
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Masters Theses Graduate College

4-2013

BroncoBlade: An Open Source Wind Turbine Blade Analysis Tool BroncoBlade: An Open Source Wind Turbine Blade Analysis Tool

Alex R. Quinlan
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Aerodynamics and Fluid Mechanics Commons, and the Energy Systems Commons

Recommended Citation Recommended Citation
Quinlan, Alex R., "BroncoBlade: An Open Source Wind Turbine Blade Analysis Tool" (2013). Masters
Theses. 133.
https://scholarworks.wmich.edu/masters_theses/133

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Masters Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/222?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/299?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/133?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

BRONCOBLADE: AN OPEN SOURCE WIND TURBINE BLADE
ANALYSIS TOOL

by

Alex R. Quinlan

A thesis submitted to the Graduate College
in partial fulfillment of the requirements

for the degree of Master of Science in Engineering (Mechanical)
Mechanical and Aeronautical Engineering

Western Michigan University
April 2013

Thesis Committee:

Peter Gustafson, Ph.D., Chair
Daniel Kujawski, Ph.D.
John Patten, Ph.D.

BRONCOBLADE: AN OPEN SOURCE WIND TURBINE BLADE
ANALYSIS TOOL

Alex R. Quinlan, M.S.E.

Western Michigan University, 2013

This thesis reports the development and validation of BroncoBlade, a hori-

zontal axis wind turbine analysis tool. BroncoBlade prepares finite element mod-

els and integrates them with an aeroelastic simulator. Analysis results for the

SNL100-00 baseline blade are evaluated against reference results published by

Sandia National Laboratories. Variations on the SNL100-00 blade incorporating

carbon fiber are compared to the baseline blade.

c©2013 Alex R. Quinlan

ACKNOWLEDGMENTS

I would first like to thank my family, who have provided unwavering support

for me and my education throughout my twenty years of schooling. Along with

them, my friends have helped me keep a healthy balance between academia and

the rest of the world, and to them I owe many thanks.

I would like to thank Dr. Gustafson for his guidance not only on this thesis,

but for the entirety of my graduate studies. I would like to thank Dr. Patten for

the opportunity to study wind energy as a research assistant and for his willingness

to be on my thesis committee. I would also like to thank Dr. Kujawski for his

membership on the committee and for his instruction in the classroom.

Alex R. Quinlan

ii

Contents

Acknowledgments ii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Wind Turbine Terminology . 2

1.2 Coordinate Systems . 3

1.3 Overall Turbine Design . 5

1.3.1 Aerodynamic Design . 6

1.3.2 Structural Design . 7

1.4 HAWT Blade Loading . 8

1.4.1 Aerodynamic . 8

1.4.2 Gravitational . 10

1.4.3 Inertial . 11

1.4.4 Operational . 11

1.4.5 Wind Cases . 12

1.5 Analyses for Turbine Blades . 13

1.6 Current Designs Issues . 14

1.7 Larger Blades . 15

iii

1.7.1 Examining the Power Equation 15

1.7.2 A Case for Carbon Fiber 17

1.8 Outline of the SNL100-00 Baseline Blade 18

1.9 Review of Available Modeling Tools 19

1.9.1 NuMAD . 19

1.9.2 SolidWorks/Inventor . 20

1.9.3 FAST . 21

1.10 Objectives . 22

1.11 Deliverables . 22

2 BroncoBlade 24

2.1 Introduction to BroncoBlade v0.1 24

2.2 Required Inputs . 25

2.2.1 Command Line Arguments 26

2.2.2 Main Input . 27

2.2.3 Airfoil Definitions . 28

2.2.4 Airfoil Schedule . 29

2.2.5 Laminate Schedule . 29

2.2.6 Material Properties . 29

2.3 Model Creation: The Blade Module 30

2.3.1 Meshing . 31

2.3.2 Material Assignment . 34

2.3.3 FEA file writing . 35

2.4 Spanwise Properties: The Sections Module 35

2.5 Blade Frequencies: The Modes Module 38

2.6 Running Operational Simulation: FAST 39

2.6.1 Inputs . 39

2.6.2 Outputs . 40

iv

2.7 Applying FAST Results: The Loads Module 40

3 Methods 42

3.1 Element Selection . 42

3.2 Mesh Density Convergence . 44

3.3 Boundary Conditions . 47

3.4 Section Modeling . 47

3.4.1 Torsional Analysis . 48

3.4.2 Flapwise and Edgewise Analyses 49

4 Validation of BroncoBlade Using SNL100-00 51

4.1 BroncoBlade Input Data . 51

4.1.1 Airfoils . 52

4.1.2 Airfoil Schedule . 52

4.1.3 Shear Webs . 54

4.1.4 Materials . 55

4.1.5 Composite Layup . 56

4.2 Comparison of Calculated Blade Properties 57

4.3 FAST Results . 65

4.4 Static Stress Analysis Results . 67

4.5 Buckling Analysis Results . 67

4.6 Conclusion of Validation Process 68

5 Turbine Design Iterations 71

5.1 SNL100-00: Baseline Design . 72

5.2 AQ100-xx Design Iterations . 73

5.3 Suggested Future Iterations . 74

v

6 Future Work 76

6.1 Software Compatibility . 76

6.2 Input Improvements . 77

6.3 Module Improvements . 78

6.3.1 Meshing . 78

6.3.2 Stiffness and Mode Shape Calculation 79

6.4 Module Additions . 80

7 Conclusion 82

Bibliography 84

Appendix 86

A BroncoBlade I/O File Examples 86

A.1 Input . 87

A.2 Output . 92

B BroncoBlade Source Code 95

vi

List of Tables

1.1 Comparison of Density and Engineering Material Properties [3] [5] 18

2.1 Description of Keywords in the Main Input File 28

3.1 Sensitivity Study Meshes . 45

4.1 Airfoil Schedule [7] . 53

4.2 Material Properties [7] . 56

4.3 Composite Layup: Shear Webs [7] 56

4.4 Composite Layup: Skin [7] . 57

4.5 Laminate Reinforcement Positioning [7] 58

4.6 Material Usage in Blade . 59

4.7 Buckling Modes . 69

5.1 Mass of Models . 71

5.2 Results of EWM50 Wind Condition (Parked Blade) 72

5.3 Results of ECD-R Wind Condition 72

vii

List of Figures

1.1 Labeled components of a wind turbine [2] 2

1.2 Terminology describing the blade’s cross section 4

1.3 Global coordinate system . 4

1.4 Twist of the blade shown by stations along the global z-axis . . . 5

1.5 Effects of relative wind speed . 6

1.6 Blade cross section of SNL100-00 [7] 8

1.7 Free body diagram of aerodynamic forces 9

1.8 Gravitational load’s cyclic nature in the blade coordinate system . 11

1.9 User interface of the NuMAD program [13] 20

2.1 Overview of the four modules in the BroncoBlade program 25

2.2 Coordinates for a defined airfoil 28

2.3 Flow of programs and data in the Blade module 30

2.4 Station shapes defined (stations 10-16) 32

2.5 Chordwise seeding applied (stations 10-16) 32

2.6 Spanwise splines created from chordwise seeding (stations 10-16) . 33

2.7 Completed mesh seen in ABAQUS CAE (stations 10-16) 33

2.8 Joining of a shear web element with skin elements 34

2.9 Flow of programs and data in the Sections module 36

2.10 Extrusions of stations into beams for property calculations 37

2.11 Flow of programs and data in the Modes module 39

viii

2.12 Flow of programs and data in the Loads module 41

3.1 Two second-order elements . 43

3.2 Sensitivity analysis results for two station section beams 45

3.3 Skin nodes at the edge tied to a central reference node 47

3.4 Section beam (scaled deflections) 48

3.5 Loading of station beam for stiffness calculation (scaled deflections) 50

4.1 Geometries of the airfoils used in the SNL100-00 [7] 52

4.2 Location of shear webs in the SNL100-00 [7] 55

4.3 Comparison of linear mass: Sandia and BroncoBlade 60

4.4 Comparison of flapwise stiffness: Sandia and BroncoBlade 61

4.5 Comparison of edgewise stiffness: Sandia and BroncoBlade 61

4.6 Comparison of flapwise mode shapes: Sandia and BroncoBlade . . 63

4.7 Comparison of edgewise mode shapes: Sandia and BroncoBlade . 63

4.8 Comparison of Sandia’s flapwise mode shapes at 0 and 7.44 RPM 64

4.9 Comparison of Sandia’s edgewise mode shapes at 0 and 7.44 RPM 64

4.10 Example of the gust profile used for the EWM50 wind condition [2] 65

4.11 Tip deflections for the EWM50 wind condition 66

4.12 Root moments for the EWM50 wind condition 66

4.13 First three unique mode shapes with their eigenvalues (scaled) . . 68

5.1 New buckling mode in AQ100-02 73

ix

Chapter 1

Introduction

As environmental and economic factors urge reform in the energy sector, wind

energy has emerged as one of the primary alternatives to fossil fuels. Historically,

wind energy has been used for centuries, but its recent development as a utility

scale electricity provider can be attributed to improvements in design and available

materials. As the wind turbines advance, they are trending towards larger blades,

allowing each turbine to produce more power.

In 2011, Griffith and Ashwill of Sandia National Labs released a report on the

SNL100-00, a 100m fiberglass turbine blade design [7]. At the time of publication,

the largest wind turbine blades in production were about 60m, so Sandia’s design

is meant as a baseline for development of future blades. The original goal for

this thesis was to explore design improvements to the baseline turbine, mainly

by modifying the composite materials in the design. During the modeling of the

SNL100-00, it was observed that the easiest path to creating an accurate model

involved several closed source software packages, which required licenses that were

not available at Western Michigan University. From this attempted design path,

the need for an open-source blade meshing program was discovered.

From that point on, the thesis had two goals. The first was to write a pro-

1

gram that could model a wind turbine blade using minimal proprietary software

packages. The second goal was to use the program to create a duplicate model

of the SNL100-00, and make subsequent design iterations based on that model.

This developed program was entitled BroncoBlade, after the Western Michigan

University mascot.

1.1 Wind Turbine Terminology

For the purpose of clarity, the main components of a horizontal axis wind turbine

(HAWT) and the accompanying terminology will be briefly reviewed.

Figure 1.1: Labeled components of a wind turbine [2]

The components labeled in Figure 1.1 are described here:

1. Tower

The tower serves to be a stable structure holding the turbine and anchoring

it to the earth (or to an offshore platform). This allows for free rotation

of the blades without contacting the ground and for access to higher wind

speeds, the turbine must be placed well above the ground.

2

2. Nacelle

The nacelle houses the generator, gearbox, and other electromechanical sys-

tems.

3. Generator

The generator turns the mechanical energy of the rotor into electrical energy.

4. Rotor

The rotor is composed of the hub and of the blades.

5. Hub

The hub connects to the generator shaft and acts as the center of rotation

for the rotor. The blades are bolted onto the hub

6. Blade

The blades use aerodynamic principals to extract energy from the wind.

The components in Figure 1.2 are labeled here. Descriptions of these items

appear throughout the paper.

1. Skin

2. Shear Web

3. Chord

4. Thickness

5. Leading Edge

6. Trailing Edge

1.2 Coordinate Systems

To provide proper orientation, the global and local coordinate systems are de-

scribed here. Because the design focuses on the blade, the coordinate systems are

based on the blade geometry.

3

Figure 1.2: Terminology describing the blade’s cross section

The local coordinates are confined to a 2D plane for a given cross section of

the blade. The x-axis lies on the chord of the blade, connecting the leading edge

to the trailing edge. This is referred to as the edgewise direction. The y-axis lies

perpendicular to the x-axis on the cross section plane, pointed towards the low

pressure side of the airfoil. Movement on the y-axis is referred to as flapwise. The

general coordinates on the xy plane are called chordwise. The origin for the local

coordinate system lies on the pitch axis, or the global z-axis, which is described

below. In this paper, there is no sweep to the blade, so the local z-axis is always

the same as the global z-axis.

Turbine blades typically have a circular cross section at the root where they

are bolted into the rotor hub. The origin for the global coordinates is located at

the center of this circle. The z-direction, also referred to as the spanwise direction,

extends normal to this root connection. The z-axis is also referred to as the pitch

axis because the blade rotates about it during pitching maneuvers. Figure 1.3

illustrates the directions used to describe the blade.

Figure 1.3: Global coordinate system

4

Figure 1.4: Twist of the blade shown by stations along the global z-axis

Because each section of the blades has a unique angle of twist as shown in

Figure 1.4, the angle between the global x-direction and local x-direction will

vary based on the angle of twist at that location. Following the convention used

by Sandia in the description of the SNL100-00, the cross section at the tip will have

a twist of 0◦, meaning the global x and y directions are parallel with the local

coordinates at the tip. The degree of twist then increases as the cross section

moves closer to the root.

1.3 Overall Turbine Design

When beginning the design of any component, it is critical to define the goals and

boundaries that are required. For a horizontal-axis wind turbine (HAWT) blade,

the design parameters are outlined as so [2]:

1. Maximize annual energy yield for specific wind speed distributions

2. Limit maximum power output

3. Resist extreme and fatigue loads

4. Restrict tip deflections to avoid tower collision

5. Avoid resonances

6. Minimize weight and cost

5

The first two parameters are mainly aerodynamic design problems, while 3-6

incorporate structural design. Methods for addressing these two types of problems

differ, though a full design will need to use both to fully simulate the behavior of

the turbine.

1.3.1 Aerodynamic Design

A Horizontal-axis wind turbine operates on the principle of extracting energy from

the passing air by means of lift generated by the blades. An ideal aero-design of

a blade will try to maximize the efficiency of the turbine, getting as close to the

theoretical maximum limit (Betz limit is 59.3%) as possible.

As the wind blows across the blades, a lift force is generated, causing the

turbine rotor to rotate. Once rotation begins, the blade is subjected to a combined

airflow that is composed of both the blowing wind and the relative movement of

the blade through the air. Thus, the wind direction seen by the blade is not the

same as the global wind direction, and is dependent on the rotational speed of

the blade. Figure 1.5 illustrates the relative wind phenomenon.

(a) Blade rotation (b) Relative wind speed

Figure 1.5: Effects of relative wind speed

6

Because the global wind velocity is not constant, a turbine cannot be designed

for a single wind speed. Blades are designed with an operating speed in mind,

which is the speed at which the turbine will be most efficient. The best choice for

operating speed will be a function of the local wind distribution, which is always

studied before a wind farm is built or a turbine is placed.

To predict the behavior of a blade during operation, the lift and drag coeffi-

cients are needed as functions of the angle of attack for the different airfoils used

in the blade. These are used to approximate the pressure distribution on the blade

and thus its movement. Programs, such as FAST [11], use this to simulate the

aerodynamic loads and structural deflection during operation.

1.3.2 Structural Design

For an aerodynamic design to be functional, there must be sufficient support to

keep the aerodynamic profile from deforming. Like in other aerospace applica-

tions, the cost and effectiveness of the turbine is generally negatively affected by

increased weight, so excess material is not desirable. To optimize the design, a

structural analysis of the blade must be performed. To accurately examine the

stresses and strains of the blade, the finite element method should be used.

The blade’s skin serves to both define the aerodynamic surfaces and to provide

structural support. The outer surface of the skin has its design governed by the

aerodynamic requirements, but can have its internal thickness and composition

designed for structural performance. Typically, an outer layer of fiber-reinforced

polymers will be used for the entire blade. Then different sections will be rein-

forced with more composites or foam material as is deemed necessary.

The skin has limited ability to resist shear loads because of it’s hollow struc-

ture, so thin structures called shear webs are added internally [2]. As these connect

the top and bottom surfaces, they also form a torque box which aids in resisting

7

torsional loads. Shown in Figure 1.6, shear webs also reduce the active buckling

area of the skin, increasing the buckling stability in that section.

Figure 1.6: Blade cross section of SNL100-00 [7]

1.4 HAWT Blade Loading

Throughout its lifetime, a wind turbine will undergo many different loadings based

on the different wind conditions. The structure of the wind turbine must be able

to withstand these loadings to prevent failure and to ensure the proper operation

of the turbine. In the most basic terms, a blade is a cantilever beam rotating about

a fixed axis. To understand the requirements of the structure, one must under-

stand the four different sources of loading that are present in turbine’s operational

lifetime.

1.4.1 Aerodynamic

The aerodynamic loads come from the relative movement of air over the turbine

blade. The blade has a cross section in the shape of an airfoil, so lift and drag

forces are generated as it passes through the air, using the same principal that

allows wings on an airplane to fly. The way these forces act on the blade are

shown in Figure 1.7.

The aerodynamic design of the blade ensures that the lift force will cause the

blade to rotate about its rotor axis. The lift and drag forces can be calculated

using Equations 1.1 and 1.2, where the section lift and drag coefficients (CL and

8

Figure 1.7: Free body diagram of aerodynamic forces

CD, respectively) are determined by the shape of the airfoil, and the area (A) is

determined by the chord length.

FLift =
1

2
CLρAv

2 (1.1)

FDrag =
1

2
CDρAv

2 (1.2)

As the blade begins to rotate, the relative speed between the air and the

blade (v) increases, since the global wind speed becomes augmented with the

relative velocity of the blade moving through the air. Because the blade is rotating

about a fixed axis, the principals of rotational motion apply, which require that

the blade have a constant rotational velocity throughout the structure and the

linear speed of the blade increase from the root to the tip. This means that at

any given moment during operation, the speed v will be highest at the tip and

decrease linearly as the location moves towards the root. Also, since the velocity

component coming from rotation changes as a function of location, its ratio to

the global wind speed changes too, meaning that the effective direction of the

wind experienced by the blade changes with its spanwise position. Because of this

fact, blades incorporate twist to allow the ideal angle of attack for the maximum

amount of the blade.

9

When the lift force, drag force, and rotational moment are applied, the struc-

tural reaction results in the blade bending and twisting. Consequentially, the

aerodynamic forces change with the new blade configuration. Because of their

interdependence and the variability of the global wind speed and direction, the

aerodynamic forces cannot be calculated by hand. Fortunately, there are simula-

tion programs that can handle the many calculations that are required to give a

prediction of the turbine’s performance.

1.4.2 Gravitational

As the turbine rotates, gravity is always present, applying a load on all of the

turbine down toward the earth. From the global turbine perspective this load is

constant, but since the blades are spinning, their orientation is always changing in

relation to gravity. This means that from the local turbine perspective, the grav-

itational loads are applied to the blade in a cyclically varying direction. Because

of the pitching of the blade, the gravitational loads are mainly in the edgewise

direction. If the position of the turbine is represented by the hands on a clock as

pictured in Figure 1.8, then the positions corresponds with the following example

gravitational loadings:

• 12 o’clock = axial compression

• 4 o’clock = axial tension + leading edge compression / trailing edge tension

• 8 o’clock = axial tension + leading edge tension / trail edge compression

The gravitational load, or the blade’s weight, is only affected by the mass of

the blade, since gravity is assumed constant. However, the moment caused by

the gravitational load at the root will increase as the blade length increases, since

the moment arm is extending. For small turbines, gravitational loads are usually

small in comparison to the aerodynamic loads. But, in the case of large turbines,

10

(a) 12 o’clock (b) 4 o’clock (c) 8 o’clock

Figure 1.8: Gravitational load’s cyclic nature in the blade coordinate system

such as the one modeled in this paper, the gravitational loads become increasingly

important.

1.4.3 Inertial

As the blade spins, centripetal forces act on the blade in the radial direction. If

the blade were perfectly rigid and did not undergo bending from the other load

types, these centripetal forces would act in a purely axial fashion, causing tension

throughout the blade and effectively stiffening it. When the blade does undergo

bending, the stiffening from the centripetal forces acts in a manner that reduces

the bending curvature of the blade.

1.4.4 Operational

Operational loads are loads that occur during specific instances of the turbine’s

life, opposed to the aerodynamic, gravitational, and inertial loads, which are al-

ways in effect when a turbine is running. Examples of operational loads include

those experienced during braking, pitching (rotation of the blade about the pitch

11

axis), and yawing (rotation of the nacelle). The turbine also experiences addi-

tional loads during start up and shutdown, and in extreme conditions like the

failure of the generator. While these loads are very important for a complete tur-

bine design, they are neglected in this paper because the aerodynamic simulation

does not include any special operations (although pitching is included in a few

cases).

1.4.5 Wind Cases

The IEC (International Electrotechnical Commission) designates different wind

conditions that can be experienced by a wind turbine. Each of these has a different

code, and its exact wind values depend on the wind classification at the location

of the turbine. For example, the harshest wind classification is Class IB [2]. The

Class I means that the annual average wind speed is 10 m/s, which is the highest

of all of the classes. Consequentially, the reference wind speed and 50-year gust

speed are also the highest in Class I, at 50 m/s and 70 m/s respectively. The

B in Class IB signifies a higher level of turbulence than a class A location. A

Class IB wind condition is used in this paper, since a design that can survive

this class will survive all of the other classes. The load cases mentioned used in

this paper are the EWM50 extreme wind 50 year gust condition and the ECD-R

extreme coherent gust with direction change load condition. While the ECD-R

condition occurs during operation, the EWM50 condition is applied when the high

wind speeds have forced the turbine to be shut down and the blades have stopped

rotating.

12

1.5 Analyses for Turbine Blades

To comply with the design parameters outlined in the previous section, a blade

design must be subjected to a number of simulations to prove its quality. The

three structural simulations that are performed on blades are a static maximum

load simulation, a buckling simulation, and a fatigue simulation. The buckling and

static simulations are options in BroncoBlade v0.1. Improvements to the static

simulation and the creation of the fatigue simulations are planned for addition

and discussed in Chapter 6.

By nature of the wind turbine, blades will be exposed to the elements, including

unpredictable extreme weather. Though designs do not plan for the destructive

forces of hurricanes or tornadoes, they do account for the rarest of heavy winds

that are known in the area. The maximum wind condition usually taken into

design is called the 50-year gust, meaning the maximum wind speed in a 50 year

period. This value is estimated on wind distribution data, rather than recording

the actual maximum during a 50 year wind speed study.

Additionally, the position of the turbine will change how damaging the extreme

wind is on the blade. Though many small and mid-sized turbine designs use a stall-

regulated blade, the largest turbines use a pitching system to control the rotational

speed. During extreme weather, turbines shut down to minimize the damage from

the extreme wind. Pitch regulated machines will pitch to feather during extreme

weather, which reduces the angle of attack (minimizes drag). However, Sandia

ran the extreme wind speed simulation under the worst case scenario, where the

blades could not be pitched out of the wind and were stuck in the maximum drag

position [7].

The aerodynamic loading that occurs from this extreme situation is then

applied to a static FEA model of the turbine to find the stresses that occur.

The stress values must comply with safety factors, such as those set forth by

13

Germanschier-Lloyd [14].

When the relatively thin skin of the blade is subjected to compressive loads,

there is a possibility of localized buckling. This buckling can remain in the elastic

region and contribute to fatigue damage, or move into the plastic region and cause

localized skin failure. Because of the high cycle lifetime of the blade, the structural

design must take into consideration all types of buckling.

To evaluate how a design will perform in terms of buckling, the load conditions

are applied and a specific buckling FE analysis is performed. The results of this

analysis give the buckling modes and an accompanying eigenvalue. An eigenvalue

of 1 or below implies that the critical load for buckling has been exceeded. The

eigenvalues greater than 1 can be interpreted as the safety factor on the applied

loads. Some eigenvalues are negative, which means the direction of loading would

need to be reversed to cause buckling. These negative values are not used for the

buckling analysis.

1.6 Current Designs Issues

A HAWT blade is composed of an exterior shell and interior structure. For large

scale turbines, the shell is a laminate of either fiberglass or carbon fiber paired

with foam or a light wood (balsa). The main two interior support designs used

are a 1 piece (being a single box spar) and a 2 piece (a pair of shear webs). The

important difference is that loads are transfered through the box spar directly,

and less load is transfered to the skin. However, since the pair of shear webs are

unconnected, the load between the two is transfered via the skin and adhesive.

The consequence of this is that a stronger adhesive must be used for the 2 piece

support system.

Both bend-twist and stretch-twist coupling are utilized in wind turbine design.

14

Stretch-twist relies on centrifugal forces and twists the blade, thus changing the

pitch and aero-characteristics [15]. Bend-twist is animated by the thrust force of

the wind. Elastic coupling mechanisms can be embedded in the skin or in the box

spar.

This coupling increases the level of complexity of the interaction between the

aerodynamic performance and the structural response. If properly incorporated

into the design, this coupling phenomenon could be advantageous for the perfor-

mance of the turbine.

Coupling is currently not included in FAST, and so it is not actively being

developed in BroncoBlade.

1.7 Larger Blades

The central goal in wind turbine design is an economic one: to minimize the cost

of energy produced, which is dependent on the ratio of the power output of the

turbine and it’s production, installation, and operating costs.

1.7.1 Examining the Power Equation

Compared to the complicated algorithms that go into cost estimation, the tur-

bine’s general power output (P) can be summarized in one simple equation [2].

P =
1

2
CpρAU

3 (1.3)

The first variable in the equation, Cp, is known as the power coefficient. It

has a theoretical maximum of .593, known as the Betz limit, but in practice

has a lower value. Turbines are designed with a rated wind speed, and the Cp

changes depending on how close the wind speed is to the rated speed. Next is ρ,

which is the density of the air passing through the wind turbine. This has little

15

fluctuation compared to the other parameters, ranging from 1.225kg/m3 at sea

level and reducing to slightly less than 1kg/m3 at high altitudes. For a general

overview, it is most important to notice that power output is directly related to

Cp and ρ, meaning that they are raised to the first power. This is different from

the last two variables, which have high order correlations.

Though power output is directly related to the swept rotor area, the area is

determined by πr2. Thus, the power output is related to the square of the blade

length. This makes larger blades an attractive option, since a turbine with 20m

blades will have the same swept area as 4 turbines with 10m blade.

The final variable, U, is the speed of the wind as it heads towards the wind

turbine (the turbine generates electrical energy by extracting kinetic energy from

the wind, which means that the speed of the wind after it passes through the

rotor is much less than it is before). Because of the cubic relationship between

U and P, wind speed is the most important factor in the power production of a

turbine. The wind speed is dependent on two things: the geographic location,

and the height above the ground (or sea).

Though wind speed is the most important factor, it cannot be engineered by

man on a large scale. Thus, engineers are focused on increasing the size of the

turbine blade to maximize the swept rotor area. Of course, like all engineering

problems, there are limits and trade offs.

P ∝ r2 (1.4)

m ∝ r3 (1.5)

As mentioned above, the swept rotor area and turbine power output are related

to the square of the blade length. However, as the blade increases in length it

must also increase in its cross sectional dimensions to prevent it from failing under

16

the increased bending moments caused by added material. In general, it is said

that the volume, and thus the mass, of the blade will increase with the cube of

the blade length. An increase in mass means an increase in material, and thus

an increase in cost of the blade, and an increase in cost in other aspects of the

turbine [2].

The relations between the rotor radius, r, mass, m, and power, P, in Equations

1.4 and 1.5 show that to keep an optimal power to cost ratio, the design of the

blade should adapt as the blade becomes longer.

1.7.2 A Case for Carbon Fiber

Because the weight of the blade becomes a more significant factor in design as

the blade length increases, the use of a stronger and lighter material becomes

more and more advantageous. The terms often used to quantify the relationship

between strength/stiffness and density of a material are called specific strength

and specific stiffness.

Carbon fiber reinforced polymers (CFRP) are known for their high specific

strength and stiffness, and are being explored as an alternative to the current

fiberglass design. As can be seen in Table 1.1, the AS4 carbon fiber laminate

doubles the specific strength of E-glass and more than triples the specific modulus.

Using carbon fiber would reduce the amount of material required in the structure

of the blade to handle the loads, which would in turn reduce the mass of the blade

and reduce the gravitational loads.

While carbon fiber offers structural advantages, its high cost has limited its use

in large scale applications; it generally costs about 10 times more than fiberglass.

However, recent advances, like the use of a CFRP fuselage in the Boeing 787

Dreamliner [9], suggest that the economic benefits of a carbon fiber design may

be starting to outweigh the raw material cost.

17

Table 1.1: Comparison of Density and Engineering Material Properties [3] [5]

Elastic Tensile Specific Specific
Form Material Density Modulus Strength Modulus TS

(kg
m3) (GPa) (MPa) (MNm

kg
) (KNm

kg
)

E-Glass 2540 73 3450 28.7 1350
Fibers S-Glass 2490 86 4500 34.5 1800

AS4 Carbon 1810 235 3799 129.8 2100
IM-7 Carbon 1800 290 5170 161.1 2870

Uni-axial E-Glass (0.55) 1970 41 1140 20.8 578
laminates S-Glass (0.50) 2000 45 1725 22.5 862
(Vf) AS4 Carbon (0.63) 1600 147 2280 91.9 1420
Isotropic A36 steel 7850 207 500 26.3 63
Engineering 440A Steel 7800 200 1790 25.6 229
Materials Ti-6Al-4V Titanium 4430 114 1172 25.7 264

7075 Aluminum 2800 71 573 25.3 204

1.8 Outline of the SNL100-00 Baseline Blade

With the rotor size of turbine designs increasing annually, Sandia National Lab-

oratory’s research for the future of HAWTs goes past the state of the art 60m

blades, and looks to a larger blade of 100m. It is expected that the challenges

associated with this larger blade will push designs to be more aerodynamically,

structurally, and economically efficient. Sandia’s first model is the purposely a

basic design, using fiberglass as its primary material. This model, the SNL100-00,

is to be the starting point for future studies (such as this thesis) that look to

reduce weight and increase performance.

The first step in developing the SNL100-00 was upscaling two 5MW turbine

designs to 13.2 MW designs. There was no available composite laminate data from

either of the 5MW blades, so a laminate schedule was developed to approximate

the stiffnesses predicted by scaling. The upscaled models were then simulated in

FAST using extreme loading conditions. The results of the simulation showed that

a good 13.2 MW design required more edgewise reinforcement than the directly

scaled models provided. The next design iteration added reinforcement, but was

shown to be inadequate in buckling in the aft panel. This problem was addressed

18

in the final design by adding a third shear web.

Both the aerodynamic and structural properties of the Sandia 100m Baseline

Blade are outlined in a Sandia report [7]. There was enough information in the

report to complete the input files that would eventually be used in BroncoBlade.

1.9 Review of Available Modeling Tools

With the goal of exploring the structural design of a blade, a finite element model

was required. A few approaches were used in trying to create a 3D blade model

and mesh.

1.9.1 NuMAD

One tool specifically designed for creating a finite element model of a wind turbine

blade is Sandia National Laboratories’ NuMAD [13]. This program generates a

mesh based on airfoil station inputs defining the blade’s exterior shape, and on

defined shear webs inside the skin, shown in Figure 1.9. NuMAD links with the

FEA solver ANSYS to compute the properties of the blade, and requires an AN-

SYS license for the FE mesh to be exported. Unfortunately, ANSYS educational

licenses were not compatible with NuMAD at the time of this thesis, which limited

the program’s usefulness in a university setting without the full ANSYS license.

Although the program was available for free upon request from Sandia, the

source code was not available, and was only actively developed for the Windows

platform. Since Linux was the preferred platform for this project, it was decided

to forgo the use of NuMAD. However, the creation of BroncoBlade attempted to

incorporate the attractive aspects of NuMAD and provide open source code that

can be altered for the user’s needs.

19

Figure 1.9: User interface of the NuMAD program [13]

1.9.2 SolidWorks/Inventor

Once the use of NuMAD had been removed from consideration, an attempt was

made to create a solid model of the blade using general commercial 3D CAD

packages, SolidWorks and Inventor. The general idea was to imitate the stations

of NuMAD by creating a 2D spline for each airfoil and placing them as cross

sections along the blade. Once in place, the airfoils could then be lofted into a

shell.

However, all aspects of this approach proved cumbersome. Importing the xy

coordinates defining the airfoil required the use of Microsoft Excel file for one

3D modeling package, and didn’t seem to work at all for the second (possibly an

issue with the teaching license). Once the points were import from the Excel file,

splines had to be generated and manually altered. At this point, the 3D graphics

20

display started to bog down. The display problem was exacerbated when the loft

was created from the stations, and the response of the user interface to commands

became choppy and mostly unusable. Once a loft was finally exported from the 3D

modeler and re-opened in the meshing program Hypermesh, the complex shape

of the blade had been simplified down to a single airfoil cross section and a line

depicting the trailing edge. Despite trying multiple file formats, none could be

exported from the modeling package, and imported by the meshing program, and

still accurately represent the geometry.

Though these programs are available in most universities and work places,

they are closed source, have a fee for use, and force the user to operate within

a graphical interface. Rather than continuing to troubleshoot the solid modeling

programs, this approach was abandoned in favor of creating BroncoBlade.

1.9.3 FAST

With the overall goal being the analysis of a blade under appropriate loading,

generating a blade model is only half of the process. For a realistic simulation,

there must also be realistic loading of the blade. This is where FAST comes in.

FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is simulation program

created by the National Renewable Energy Laboratory (NREL) [11]. It couples

with another NREL program, AeroDyn [16], to simulate the Aerodynamic loads

and structural response of a wind turbine in the field. NREL makes both of these

simulators available on their website, including the source code.

BroncoBlade is written to provide FAST/AeroDyn with the required informa-

tion for accurate simulation, and to retrieve the results so they can be applied to

the finite element model. Because FAST takes very detailed input, some assump-

tions must be made when there is no specific value given by the Sandia Baseline

report (e.g. Tower Properties).

21

FAST has the capability of preparing an ADAMS model, and interfacing with

Simulink. Since this project is leaning away from commercial packages, FAST’s

ability to link with these programs will initially go un-utilized.

1.10 Objectives

The two objectives for this thesis are to explore the use of carbon fiber in the

structure of the wind turbine, and to create a program to aid in this exploration.

The idea for the thesis began with wanting to see how composite laminate material

and layups can be redesigned to improve the performance of the SNL100-00 blade.

In pursuing this goal, it was quickly seen that the available resources fell short of

what was needed to complete the task. As described in sections 1.9.1 and 1.9.2,

existing tools required expensive licenses unavailable at WMU or were inefficient

in creating the model.

The design process failures that occurred using these avenues of modeling

showed the need for an open-source design code, powered by and linked with other

open-source packages. Having the code available for free and open for modification

would be valuable to people outside of private industry who have limited or no

access to expensive commercial engineering software.

Though the exploration of materials in the blade structure was the original

goal for the project, this objective was pushed back into a secondary roll as the

creation of BroncoBlade became the main focus of the project.

1.11 Deliverables

The items delivered by this thesis include:

1. Release of BroncoBlade v0.1

22

This is the alpha release of BroncoBlade. The code has been tested by the

author and has been proven to be functional, but it has not yet had any

other user. Feedback from this release will help to make BroncoBlade a

more user friendly program.

2. BroncoBlade user manual

This user manual is presented here as Chapter 2 of this document. It ex-

plains the how BroncoBlade functions, but does not dive into line by line

explanations, as the source code has commentary throughout.

3. Results validating BroncoBlade

To prove itself as a useful engineering tool, the results of BroncoBlade are

validated against Sandia’s results for the SNL100-00 turbine in Chapter 4.

4. Re-design iterations of SNL100-00

Models based on the SNL100-00 are created with improvements to reduce

weight and material in Chapter 5.

23

Chapter 2

BroncoBlade

2.1 Introduction to BroncoBlade v0.1

BroncoBlade is a software package capable of pre-processing both aerodynamic

and structural simulations of a wind turbine blade and linking results between

the two. It is inspired directly by Sandia National Laboratory’s NuMAD [13]

and by NSE Composite’s BladeMesher [10]. Though these programs have similar

capabilities, BroncoBlade is unique in that it is open source. It is written in

the object oriented programming language Python [6]. With the source code

available to the user, BroncoBlade can be customized to work with the user’s

preferred analysis tools; for example, though BroncoBlade is currently configured

to read and write ABAQUS file formats, it can be freely modified to integrate

with ANSYS or any other finite element program. Additionally, BroncoBlade’s

four modules can be expanded upon or augmented with other modules. The four

modules contained in the initial release of BroncoBlade are:

1. The Blade module, which builds the mesh for the full turbine blade

2. The Sections module, which calculates stiffnesses and densities at each sta-

tion

24

3. The Modes module, which calculates the mode shapes and prepares the

input files for the aerodynamic simulation

4. The Loads module, which reads in the loads generated by FAST and writes

out FE input files for static and buckling analysis

BroncoBlade.py

1. Blade
2. Sections

3. Modes4. Loads

FAST

Section
Properties

Mode
Shapes

Blade
Mesh

Operational
Loads

Stresses
& Strains

Buckling
Modes

Figure 2.1: Overview of the four modules in the BroncoBlade program

Each module can be run individually or multiple can be run together. The

Blade, Sections, and Modes modules are used as pre-processors for the aerody-

namic simulation. The Loads module is used to post-process the aerodynamic

simulation, and is then used in conjunction with the Blade module to pre-process

the structural analysis. The basic interactions and dependencies between these

modules are shown in Figure 2.1.

2.2 Required Inputs

BroncoBlade runs based on three types of input. The first is the arguments given

from the command line. Second is the text and data files that are opened and

25

read by BroncoBlade. The third is a python script that contains the materials

properties in a way so they can be written to the FE input file in the proper

format. Examples of each of these input files is shown in the Appendix.

2.2.1 Command Line Arguments

The first input read when running BroncoBlade is the series of arguments given

from the command line. Each module is activated by supplying an argument in

the form of a dash followed by the first letter of the module. Sub-arguments follow

without any blank space in between. The arguments available for each module

are:

1. -B = Blade module

s = save station attributes

2. -S = Sections module

l = load station attributes

r = run FE analysis

p = post-process FE analysis

s = save station attributes

3. -M = Modes module

l = load station attributes

r = run FE analysis

p = post-process FE analysis

4. -L = Loads module

When pre-processing for FAST, the general order of operation is to run the

Blade, Sections, and Modes modules in that order. If these three modules are all

selected, there is no need to save and load station data between the modules. The

command line for this would look like:

• BroncoBlade.py -B -Srp -Mrp input.in

26

The modules can also be run in separate callings of BroncoBlade, which allows

the user to inspect results between modules.

• BroncoBlade.py -Bs input.in

• BroncoBlade.py -Slrps input.in

• BroncoBlade.py -Mlrp input.in

The Loads module is slightly different in that it has no sub-arguments, but

must be followed by the name of the results file produced by FAST containing the

loads chosen for analysis. Since the Loads module is only usable after this results

file has been generated by FAST, it typically will be used in a separate calling of

BroncoBlade from the other modules. An example of calling the Loads module

looks like this:

• BroncoBlade.py -L WindCondition.elm input.in

When calling BroncoBlade, the last item in the command line must always be the

main input file.

2.2.2 Main Input

As shown in the examples of command line entries in the previous section, the

final argument of the command line is the name of the main input file. This file

has the extension .in and contains both model data and the location of the other

required data files. The file is structured with each line containing a keyword

followed by the value for the keyword with white space in between. The order of

the keywords is not important, as long as they are all contained in the file. Table

2.1 lists the keywords with a brief description.

27

Table 2.1: Description of Keywords in the Main Input File

Keyword Description

dir directory containing airfoil definition files
sched file listing the airfoil schedule
length length of the blade from root to tip (m)
seeds chordwise seeding parameters for sections A,B,C,D,E

spseed spanwise seeding parameter for sections between stations
num aerosections number of aerodynamic sections used in FAST (needed only for Loads module)

Asize chordwise length of leading edge reinforcement (m)
Esize chordwise length of trailing edge reinforcement (m)
spar1 chordwise location of Spar 1 relative to the pitch axis (m)
spar2 chordwise location of Spar 2 relative to the pitch axis (m)
SPstrt starting spanwise location for Spars 1 and 2 (m)
SPend ending spanwise location for Spars 1 and 2 (m)

2.2.3 Airfoil Definitions

Since BroncoBlade does not have a built-in library of airfoil shapes, the user must

provide airfoil definition files. The files must consist of a column of x coordinates

and a column of y coordinates. The first coordinate listed should be either (0,0)

or (1,0), so the points start at either the leading or trailing edge. Subsequent

coordinates should follow in a continuous fashion; there should not be any back-

tracking. The color change in Figure 2.2 shows an airfoil defined with the start

at the trailing edge.

0.0 0.2 0.4 0.6 0.8 1.0
x coordinate

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y
co

or
di

na
te

DU99-W-350_34 Airfoil Coordinates

First Entry
Last Entry

Figure 2.2: Coordinates for a defined airfoil

28

2.2.4 Airfoil Schedule

The airfoil schedule describes the shape and position of each of the stations. It

has a file extension of .bld. Columns containing the data appear the following

order:

1. Station number

2. Fraction of spanwise position

3. Airfoil type

4. Chord (m)

5. Twist (degrees)

6. Pitch axis fraction

7. Thickness-to-chord ratio

An example of an airfoil schedule file format is shown in the Appendix, and the

data is shown later on in Table 4.1 on page 53.

2.2.5 Laminate Schedule

The laminate schedule is defined in a file called layup.txt. This file tells Bron-

coBlade where to put reinforcement in the skin, what material to use, and how

thick is should be. Currently, this file follows the format of the laminate schedule

published for the SNL100-00 [7], which is shown later on in Table 4.5 on page 58.

2.2.6 Material Properties

The python file write-mats.py is contained in the source code directory, but should

be copied into the working directory and customized for each blade. It is config-

ured so that it will write out all of the material properties in the proper ABAQUS

input file format. Because of the high variability in material definitions, such as

modeling as isotropic, orthotropic, or fully anisotropic, the material properties are

29

left in this script rather than being formatted in a general text file. The future

work chapter includes a suggested modification to this input: coding a reader that

will allow a text file to be used to define the material properties.

2.3 Model Creation: The Blade Module

The Blade module (Figure 2.3) is core of the BroncoBlade program. It creates

the stations that define the blade geometry, meshes the blade, assigns the lam-

inate sections, and then prints out the almost the entire finite element model.

The printed FE input file lacks loads and boundary conditions, allowing it to be

referenced by multiple jobs with different loadings throughout the BroncoBlade

process.

BroncoBlade.py

buildblade.py
● Create stations
● Create nodes and elements
● Divide mesh into sections

● Aerodynamic
● Structural

● Assign material properties

printblade.py
Print into Abaqus
input format:
● Nodes
● Elements
● Sets

1. Blade

Blade
Mesh

Airfoil
Definitions

Blade
Schedule

Laminate
Schedule

Mesh
Parameters

Figure 2.3: Flow of programs and data in the Blade module

30

2.3.1 Meshing

The first product of BroncoBlade is a finite element mesh containing both the skin

and the shear webs of the blade. BroncoBlade uses stations, which are essentially

airfoil cross sections that can be lofted together to define the exterior surface of the

blade (see Figure 2.4). On each of the stations, the chordwise seeding is applied,

giving each station the same number of nodes (see Figure 2.5). These nodes are

created so that all of the nodes with the label “node 1” on each station can be

used to generate a spline in the spanwise direction. BroncoBlade generates these

spanwise splines using a curve fit, giving the blade a general wire-frame form (see

Figure 2.6). Since the blade is fully divided in the chordwise direction, the next

step is to further divide the blade in the spanwise direction, since it currently only

has spanwise divisions at the stations. In the case of the SNL100-00 blade, there

are 34 stations, and thus 33 sections between them. So, the spanwise seeding

control is a vector of length 33, telling BroncoBlade how to subdivide each of the

33 sections. At each of the subdivision points, a node is created. As an object

in the python language, each node is assigned a number, (x,y,z) coordinates, and

(chordwise,spanwise) coordinates. Once all of the nodes on the skin have been

created, then the elements can be created. The default elements in BroncoBlade

are second order 8-noded shell elements, which has 4 corner nodes and 4 side

nodes. Because not every node is a corner, it becomes very important to create the

nodes such that the corners of the element coincide with the geometric boundaries.

This can be done by maintaining the odd or even characteristic of the different

parameters in the input file. Avoiding this complication is a part of the future

work and is discussed in section 6.3.1. Also, since there are 8 nodes associated

with each element, the 9th or center node is ignored and left unattached. The

completed skin mesh of a portion of the blade is shown in Figure 2.7.

31

Figure 2.4: Station shapes defined (stations 10-16)

Figure 2.5: Chordwise seeding applied (stations 10-16)

32

Figure 2.6: Spanwise splines created from chordwise seeding (stations 10-16)

Figure 2.7: Completed mesh seen in ABAQUS CAE (stations 10-16)

33

Figure 2.8: Joining of a shear web element with skin elements

Since there are two shear webs that run the length of the blade, there are

4 spanwise splines that define the connecting point of the shear webs and the

skin. The chordwise seeding subroutine automatically aligns the nodes at the

specified spar locations. There is a parameter that determines the number of

nodes created between the top and bottom of the shear web. This parameter is

used to interpolate between the two splines that define the top and bottom of each

shear web. Since the shear webs are physically connected to the skin, they need

to be mathematically connected to them also. To do this, the shear webs have

direct nodal connectivity to the skin nodes at that location. Figure 2.8 shows the

shear web element sharing three nodes with skin elements. In BroncoBlade v0.1,

the adhesive layer bonding the shear web and skin is not modeled.

2.3.2 Material Assignment

One of the inputs for BroncoBlade is a skin laminate definition. BroncoBlade di-

vides the skin mesh into four chordwise sections and as many spanwise sections as

are created between the stations. BroncoBlade then reads the laminate definition,

and assigns each section its own shell composite definition. This is an advantage

of BroncoBlade, since in a GUI model the user would have to manually select and

specify the elements in each of the 100+ sections and then list the section’s layup.

34

2.3.3 FEA file writing

Once all of these nodes, elements, and materials have been created inside of Bron-

coBlade, they must be stored in a format that can be used by a finite element

program. BroncoBlade v0.1 supports ABAQUS; additional formats may be sup-

ported in the future, or can be written by the user without difficulty. The current

version writes the FILE mesh.inp file in this format:

• Part Name

• Nodes

• Elements

• Structural section assignments

list of elements in section

composite laminate assigned to section

• Aerodynamic surface creation

list of elements in section

surface creation command

• Station node sets creations

• Reference node set creation

2.4 Spanwise Properties: The Sections Module

With the complete model from the Blade module, the next step in evaluating

a blade is to calculate the appropriate loads. BroncoBlade utilizes the turbine

simulator, FAST, to predict the behavior of the blade during operation. Though

most of the inputs to FAST are user specified, BroncoBlade is responsible for

calculating stiffness and mass properties along the blade, and for computing the

blade’s mode shapes. These properties are calculated using the Sections module

(see Figure 2.9) and are written out to a data file that defines the blade’s structure

35

BroncoBlade.py

buildstasections.py
●Create pairs of stations

● Root station
● Tip station

staNodesElms.py
●Create Nodes and Elements
●Divide into structural sections
●Apply material properties

printstasections.py
●Write to FE input file:

● Mesh
● Material properties
● Steps
● Boundaries
● Loads
● Output requests

getEI.py
●Submit job to FE solver
●Post process FE data
●Import results
●Calculate

● Stiffnesses
● Mass / unit length

2. Sections

Section
Properties

Section
Mesh

Airfoil
Definitions

Blade
Schedule

Laminate
Schedule

Mesh
Parameters

Begin
Cycling
Stations

Figure 2.9: Flow of programs and data in the Sections module

for use in the FAST simulation.

For each of the stations, FAST requires both the flapwise and edgewise bending

stiffnesses and the linearized mass. While some tools available for computing these

properties analyze the 2D cross section, BroncoBlade uses its previously created

subroutines to create finite element models of 3D beams with a constant cross

section equivalent to each of the station cross sections, such as the models in

Figure 2.10.

Each beam is created using a similar process as what was used for mesh gener-

ation in the Blade module. For example, rather than creating a mesh over many

different stations, only one station is used to define the mesh. During the investi-

gation of the properties of Station 14, a station is created at the beam’s root with

the xy values of station 14 and z-values set to 0. Another station with the same

36

(a) Station 0 beam (b) Station 14 beam

Figure 2.10: Extrusions of stations into beams for property calculations

cross section is created at the tip, identical to the root in x and y coordinates, but

having a z-coordinates equal to 20 times the chord length. These z-coordinates are

chosen to ensure the model can be idealized as an Euler-Bernoulli beam. These

two identical stations are then used to create spanwise splines, nodes, elements,

and composite layup assignments. The resulting mesh is of a beam with the ex-

truded cross section of Station 14. This is then printed into an ABAQUS input

file, along with the loads and boundary conditions.

In order to calculate the bending stiffness of the beam, three analyses need

to be run. The first calculates the center of twist for the beam. This allows for

the displacement due to twisting to be isolated from the the bending result. The

second and third analyses apply a load and use beam bending theory to calculate

the stiffness in the flapwise and edgewise directions. Equation 2.1 is a basic beam

bending equation that can be rearranged into Equation 2.2, where it is used to

calculate the effective EI value. Further discussion of the methods used for these

analyses is in Section 3.4.

δtip =
PL3

3EI
(2.1)

37

EI =
PL3

3δtip
(2.2)

For each of the beams, the EI values are calculated, providing stiffness values

along the blade as an input for FAST. The linear mass calculation is done by

requesting the total mass of the beam from the solver, then dividing by the beam

length. The stiffness and mass values are assigned to the appropriate stations; all

of the stations and their respective attributes are then saved to file for future use.

While running this simple bending analyses gives the required stiffness, the

time required to run the FE models is larger than what is desired. Improving the

computational efficiency of the Sections module is discussed in the future work

chapter.

2.5 Blade Frequencies: The Modes Module

In the Modes module (see Figure 2.11), mode shapes are calculated by using the

model generated in the Blade module and performing a frequency analysis on it

in an FE program. BroncoBlade generates the input file for an ABAQUS job,

submits the job for analysis, then reads the output file, and calculates the first

two flapwise mode shapes and first edgewise mode shape using a least-squares fit.

Once the stiffness values and mode shapes have been calculated, BroncoBlade

writes them into the “.bld” file that is used by FAST.

38

BroncoBlade.py3. Modes

printFreqTest.py
●Write link to mesh created in Blade
●Write material properties
●Write steps, boundaries, and outputs

getModes.py
●Submit frequency analysis to FE solver
●Post process output data
●Import results
●Calculate mode shapes

genFAST.py
●Copy template file to working directory
●Open template in append mode
●Write station stiffness properties
●Write mode shapes

Mode
Shapes

Blade
Mesh

FAST
Blade
File

Figure 2.11: Flow of programs and data in the Modes module

2.6 Running Operational Simulation: FAST

Because FAST is a detailed software package with ample documentation [11], only

the basic requirements for operation with BroncoBlade will be outlined here.

2.6.1 Inputs

The following files are required to run a basic analysis with no turbine operations

(yawing, pitching, etc):

• Primary.fst

the main input file outlining the analysis parameters, linking to the other

input files, and specifying the data to be written to the output file

• File AD.ipt

the Aerodyn input file, linking to the wind input file, the airfoil data files,

and outlining the aerodynamic profile of the blade. aerodynamic

• File Tower.dat

tower property definitions

39

• File Blades.dat

definition of the mass, stiffness, and modes of the blades; generated by

BroncoBlade.

• wind.wnd

specification of the wind condition for the simulation; can be generated by

the IECWind program [1].

• airfoil.dat

contains lift and drag coefficients as functions of the angle of attack; there

should be one of these files for each of the airfoil shapes referenced in the

Aerodyn file.

2.6.2 Outputs

The desired FAST outputs can be requested at the bottom of the Primary.fst file.

The selected parameters are printed into a tabular data file called Primary.out.

This file is not used directly by BroncoBlade, but is very useful in examining

the performance of the turbine. For example, in the validation chapter, the tip

deflection and root moments are taken from this file.

FAST uses the program AeroDyn [12] [16] to calculate the aerodynamic loads

on the blade. By turning on the PRINT flag in the Aerodyn AD.ipt file, the

aerodynamic data of the simulation will be printed out to a file called Primary.elm.

The normal and tangential forces for each aero-section are listed in this file, which

are read by BroncoBlade’s Loads module.

2.7 Applying FAST Results: The Loads Module

The purpose of the Loads module (see Figure 2.12) is to take the results from

FAST and use them to prepare a finite element analysis. The Loads module

40

takes an input of a “.elm” file that contains the aerodynamic loads of the FAST

simulation. These loads are given in pairs of flapwise and edgewise forces for each

of the aerodynamic sections. BroncoBlade uses the aerosection’s twist to rotate

the loads into global x and y coordinates.

BroncoBlade.py4. Loads

readelm.py
●Import loads generated by FAST
●Rotate loads into xyz coordinates

write-fastloads.py
and write-fastbuckl.py

●Write in FE input format
● link to mesh created in Blade
● material properties
● boundary conditions
● loads for each aero section
● output requests

FE Solver

Blade
Mesh

Stresses
& Strains

Buckling
Modes

FAST
Results

Figure 2.12: Flow of programs and data in the Loads module

In BroncoBlade, the elements of each aerosection are stored in a list. Because

individual element areas are calculated, the elements in the aerosection can be

summed to give the surface area of the section. This allows BroncoBlade to

distribute the load over the entire aerosection using a generalized surface traction.

This helps avoid the use of artificial concentrated forces.

BroncoBlade then writes out two separate FE files. Both of these use ABAQUS’s

*include command [17] to reference the mesh created in the Blade module and

apply the calculated section pressures. The only difference is that one specifies a

static analysis and the other a buckling analysis.

The writing of the these two files ends the current version of BroncoBlade.

The user can then manually run the analyses and interpret the results.

41

Chapter 3

Methods

BroncoBlade is a pre-processor for both the turbine simulator FAST and the struc-

tural finite element analysis program ABAQUS. Both of these external programs

allow for highly detailed models that go beyond the current capabilities of Bron-

coBlade. The choices of inputs for these simulations are important for properly

modeling the turbine and obtaining accurate results. This chapter discusses the

techniques that are used in these analyses.

3.1 Element Selection

In structural mechanics, the finite element method is often used to perform anal-

ysis on complex structures that can not be solved using elementary engineering

equations. The FE method uses a structure discretized into elements where the

engineering equations can be directly applied [4]. Though in theory the finite

element method can be performed by hand, in practice it requires a computer to

perform the thousands of required calculations.

As with any simulation, the quality of results depends directly on the quality

of the modeling methods. Element selection is a very important part of the

finite element method. Choosing an inappropriate element can cause errors in

42

the results, failure to capture certain phenomena, or an unnecessary increase to

the computational cost of the model. Because of the curves on the blade’s skin a

second order element has been selected. The addition of side nodes in a second

order shell element allows it to have a curved geometry. A first order element mesh

would require a many more elements to adequately approximate the curvature.

Most of the available structural elements can be divided into the beam, shell,

and solid element types, with each type having its own advantage in specific situ-

ations. For modeling a wind turbine blade, qualifications for use of shell elements

have been met, and the features of the shell elements have been determined to

be the most advantageous. The main requirement for a structure to be modeled

using shell elements is that the thickness of the structure be small in relation to

the other dimensions. In the SNL100-00, for example, the maximum thickness of

the skin is 170.6 mm, occurring at the root. In comparison to the 100m blade

length, and the 5.694m chord at the root, the thickness is small enough for the

skin and shear webs to be idealized as shells.

(a) Shell element with 8 nodes and 48
DOF

(b) Solid element with 20 nodes and 60
DOF

Figure 3.1: Two second-order elements

The main alternative to shell elements (Figure 3.1a) in the situation would

be 3D solid elements (Figure 3.1b). In ABAQUS, the general 3D solid element

has 20 nodes with 3 translational degrees of freedom on each [17]. These solid

elements are lack rotational degrees of freedom on their nodes. Since the turbine

is mainly subjected to bending and torsional loads, and the skin undergoes very

little out-of-plane compression or tension, solid elements are non-ideal compared

to shell elements. Shell elements have three rotational degrees of freedom for each

43

node, providing an advantage in bending analyses.

Shell elements do not require the discretization of the skin thickness during

the creation of the mesh, so it is much easier for BroncoBlade to create a mesh

of shell elements than solid elements. The shell element meshing in BroncoBlade

can be created by defining the surface of the outer skin and then defining the

numerical value for the element thickness later. Similarly, a composite laminate

can simply be assigned to the shell element, with every ply represented in the

single shell element.

A solid mesh would require the 8 nodes of the top surface of the solid elements

to form the exterior of the blade, and another set of 8 nodes to define the interior.

Since the thickness is not constant throughout the blade, the interior surface

would have to be smoothed out to avoid any discontinuities. Also, applying the

composite layup would be more challenging, requiring an element to be created

for each ply.

3.2 Mesh Density Convergence

For every finite element model, the mesh must be of adequate quality; a coarse

mesh or poorly formed elements can cause errors in the analysis results. Typically,

an increasing quality of mesh will approach the “correct” results asymptotically,

so after a certain point the mesh refinement does not improve the results much but

still increases the computational cost. An ideal mesh is refined to give accurate

results without spending extra resources on negligible improvement.

A mesh convergence study was conducted using BroncoBlade to determine an

appropriate mesh for the airfoil beams created in the Sections module. Two of

these sections were chosen to be studied for convergence of the stiffness calculation.

The station 0 beam has a cylindrical cross section and no shear webs, while the

44

station 14 beam has an DU99-W-405 airfoil cross section and three shear webs.

Seven analyses were performed for each of the beams, each with different levels of

mesh quality. The spanwise, chordwise, and total node counts are shown in Table

3.1.

Table 3.1: Sensitivity Study Meshes

Mesh Chordwise Spanwise Total Inverse
Number Seed Seed Nodes Nodes

1 94 91 8554 116.90e-06
2 78 191 14898 67.12e-06
3 94 291 27354 36.55e-06
4 114 491 55974 17.86e-06
5 238 491 116858 8.55e-06
6 238 991 235858 4.23e-06
7 476 1991 947716 1.05e-06

The results of the analyses are shown in Figure 3.2 with the stiffness results

being shown as a percent difference from the accepted converged value. Using this

percent difference allows for the flapwise stiffness, edgewise stiffness, and linearized

mass to be compared on one plot. The mesh density is displayed on the x-axis as

the inverse of the node count in the model.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
1/(number of nodes)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

%
 e

rr
or

Percent Difference vs Number of Nodes: Station 0

Edgewise
Flapwise
Linear Mass

(a) Station 0 beam

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
1/(number of nodes)

4

3

2

1

0

1

2

3

%
 e

rr
or

Percent Difference vs Number of Nodes: Station 14

Edgewise
Flapwise
Linear Mass

(b) Station 14 beam

Figure 3.2: Sensitivity analysis results for two station section beams

First, Figure 3.2a shows that in the station 0 beam the EI and mass values

45

converge as the mesh density increases. The edgewise stiffness shows the most sen-

sitivity to the mesh, followed by the flapwise stiffness, and then by the linearized

mass. Analysis 5 shows good quality results, with differences less than .01%. Mesh

6 and 7 show little change in results even though they greatly increase the node

count, so mesh 5 is chosen.

However, the results for station 14 in Figure 3.2b do not show an expected

trend. The flapwise stiffness shows convergence towards meshes 5 and 6, but

the more sensitive edgewise stiffness does not converge with the increase node

count. Using the converged value of mesh 5 from the station 0 study, the percent

difference for the edgewise stiffness ranges up to 3.5%. Because it appears that

further refinement of the mesh would not have much result and there is no clear

convergence point, and because the 3% difference between the meshes 5, 6, and 7

is deemed not to be catastrophic, mesh 5 has been chosen as the default mesh for

the Sections module.

The trouble with the station 14 beam is likely due to the nature of chordwise

seeding. In order to apply the the proper materials and composite layups, the

beam is divided into five chordwise sections that have hard boundaries. Bron-

coBlade currently uses a chordwise seeding parameter that specifies the mesh

inside of each of these boundaries. The distribution of elements across these

boundaries can be uneven, and since the total chordwise seed number does not

account for where the seeds are on the cross section the effects of seeding can be

hidden. This point is revisited in the future work chapter with a suggestion of

changing the meshing algorithm and interface.

46

3.3 Boundary Conditions

Every HAWT blade is fixed at the root to the rotor hub, either with bolts or some

other mechanical fixture. Other than this single point of constraint, the blade is

free to move. To model this as a boundary condition in the FE model, all of the

nodes at the spanwise location of z=0 have all six degrees of freedom constrained.

This prevents any translation or rotation from occurring and sufficiently removes

any singularity from the models stiffness matrix.

For the analyses performed in the Sections module, the root of the beam will

not always be the circular shape that it is in the full blade model. Still, the nodes

on the z=0 edge of the beam are constrained in all six degrees of freedom, as

shown in Figure 3.3, making the model a cantilever beam problem.

Figure 3.3: Skin nodes at the edge tied to a central reference node

3.4 Section Modeling

Two different load sets are applied in the BroncoBlade process. In the Sections

module, analyses are run to calculate the stiffness properties at each station, so

the load is arbitrary. In the Loads module, the resulting aerodynamic forces of

FAST are applied to the blade.

In order to calculate the bending stiffness of the beam, three analyses need to

47

be run. In all three, the nodes on the root edge are constrained in all 6 degrees of

freedom, and the nodes on the tip edge are fully tied to a single reference node.

This reference node is where loads are applied, such that the whole edge sees equal

loading. Each analysis records the displacement of two measured nodes, which are

located on the leading and trailing edge on the loaded end of the beam. Because

of the beam’s asymmetric shape, it will undergo twisting during the bending

loads, so the displacement of any given node will have both bending and twisting

components.

3.4.1 Torsional Analysis

The purpose of the first analysis is to find the center of twist of the beam. This

allows the twisting component to be isolated from the calculation of displacement

in analyses two and three, leaving only the deflection due to bending. The center

of twist is calculated by applying a 1 Nm torque load to the reference node, and

thus twisting the beam as shown in Figure 3.4. BroncoBlade assumes that the

cross sectional shape of the beam will not change, and so the chord will retain

the same length and rotate about some unknown center. This first assumption

is made because the load applied is very small, so non-linear deformation and

distortion of the beams profile is not expected.

(a) Unloaded (b) Torsional Load

Figure 3.4: Section beam (scaled deflections)

48

BroncoBlade also assumes this center will lie on the chord, which allows the

center’s location to be easily calculated. This second assumption was made after

trying an algorithm that calculated the center as an arbitrary point, not necessar-

ily lying on the chord. This algorithm experienced difficulties because it utilized

the angle formed between the leading edge node, the trailing edge node, and the

center. Since the center was very close to being on the line chord, this angle was

approaching zero, and caused problems with the precision of the mathematics

packages being used.

The calculated location of the center is notated as a fraction of the chord,

with 0 being at the leading edge, .5 being in the middle, and 1 being at the

trailing edge. This center fraction value is added as an attribute of the station by

BroncoBlade, and so is saved to a data file when the save Stations Module (-Ss)

argument is used. This matters because the center fraction value is also required

to run the Modes module, so either the Sections and Modes modules must be run

sequentially in the same calling of BroncoBlade, or the Modes module can use the

load stations into Modes Module sub-argument (-Ml) to retrieve station data and

thus the center fraction value.

3.4.2 Flapwise and Edgewise Analyses

In the flapwise analysis, a 1 N force is applied in the y-direction. Similarly,

the edgewise analysis applies a 1 N force in the x-direction. Both of these use

the displacements of the measured nodes (u and v for x and y, respectively)

and the center fraction (Cfrac) found in the torsional analysis to calculate the

displacement of the center of twist using Equations 3.1 and 3.2, where u and v

are the translations in the x and y directions, respectively, and Cfrac is the location

49

of the center of twist as a fraction along the chord.

ucenter = uleading + (utrailing − uleading) ∗ Cfrac (3.1)

vcenter = vleading + (vtrailing − vleading) ∗ Cfrac (3.2)

(a) Edgewise (b) Flapwise

Figure 3.5: Loading of station beam for stiffness calculation (scaled deflections)

These center values reflect the deflection of the beam due to only bending, and

thus can be used in the basic beam bending Equation 2.2 to calculate EI.

50

Chapter 4

Validation of BroncoBlade Using

SNL100-00

To qualify BroncoBlade as an accurate and useful modeling tool, it needed to be

validated against generally accepted results. The chosen model to validate with

is the SNL100-00 turbine created by Sandia National Laboratories, which has

published model inputs and analysis results [7] [8].

4.1 BroncoBlade Input Data

As import as the analysis process is to the accuracy of results, equally important

are the inputs to the analysis. The SNL100-00 turbine was attractive because of

the documentation of the turbine’s properties in addition to the simulation results.

The input parameters primarily come from source [7]. Some of the numerical data,

such as the FAST input files, was taken from models acquired from Sandia.

51

4.1.1 Airfoils

The SNL100-00 design is an based on scaled models of the NREL 5MW turbine

and the UpWIND 5MW, which both use the airfoils from the DOWEC turbine.

Unlike similar NACA airfoils that have many free profile generation tools available,

there appeared to be no coordinate definitions of these DOWEC airfoils publicly

available. Fortunately, the profile data files were provided in the requested Sandia

model. The airfoils used in the SNL100-00 are shown in Figure 4.1.

(a) Root and Transition (b) Outboard

Figure 4.1: Geometries of the airfoils used in the SNL100-00 [7]

4.1.2 Airfoil Schedule

With the normalized airfoil shapes defined, the overall geometry of the blade can

be created from positioning, resizing, and rotating the airfoils at positions along

the blade. Thus, the exterior of the blade’s skin is defined by the airfoil schedule

listed in Table 4.1. Each of the 34 airfoils placed along the blade is referred to as

a station, starting at the root of the blade with Station 0, and ending at the tip

with Station 33.

Each station’s spanwise position is defined by a fraction of the blade, and is

thus normalized to the total blade length. If the spanwise position were to be

listed in meters instead, the table would have to specify whether the distance was

52

Table 4.1: Airfoil Schedule [7]

Station Spanwise Airfoil Chord Twist Pitch Axis Thickness to
Number Fraction Type (m) (degree) Fraction Chord Ratio

0 0.000 circle 5.694 13.308 .5 1
1 0.005 circle 5.694 13.308 .5 1
2 0.007 circle 5.694 13.308 .5 .9925
3 0.009 circle 5.694 13.308 .5 .985
4 0.011 circle 5.694 13.308 .5 .9775
5 0.013 circle 5.694 13.308 .5 .97
6 0.024 circle 5.792 13.308 .499 .931
7 0.026 circle 5.811 13.308 .499 .925
8 0.047 transition840 6.058 13.308 .498 .840
9 0.068 transition760 6.304 13.308 .468 .760
10 0.089 transition680 6.551 13.308 .453 .68
11 0.114 transition600 6.835 13.308 .435 .6
12 0.146 transition510 7.215 13.308 .410 .51
13 0.163 transition470 7.404 13.177 .400 .47
14 0.179 transition435 7.552 13.046 .390 .435
15 0.195 DU99W405 7.628 12.915 .380 .405
16 0.222 DU99W405 7.585 12.133 .378 .38
17 0.249 DU99W350 7.488 11.350 .3725 .3
18 0.276 DU99W350 7.347 10.568 .375 .34
19 0.358 DU97W300 6.923 9.166 .375 .30
20 0.439 DU91W250 6.429 7.688 .375 .26
21 0.520 DU93W210 5.915 6.180 .375 .23
22 0.602 DU93W210 5.417 4.743 .375 .21
23 0.667 NACA64618 5.019 3.633 .375 .19
24 0.683 NACA64618 4.920 3.383 .375 .185
25 0.732 NACA64618 4.621 2.735 .375 .18
26 0.764 NACA64618 4.422 2.348 .375 .18
27 0.846 NACA64618 3.925 1.380 .375 .18
28 0.894 NACA64618 3.619 0.799 .375 .18
29 0.943 NACA64618 2.824 0.280 .375 .18
30 0.957 NACA64618 2.375 0.210 .375 .18
31 0.972 NACA64618 1.836 0.140 .375 .18
32 0.986 NACA64618 1.208 0.070 .375 .18
33 1.000 NACA64618 0.100 0.000 .375 .18

53

from the root of the blade, or from the center of rotation, which would add the

2.5m hub radius to each of the positions.

The normalized airfoil shape is listed, specifying the profile that will be used

as the starting point for the creation of the station. This profile, which by default

has a chord length of 1, is scaled to match the station’s listed chord length. The

airfoil is rotated about its specified pitch axis by its twist value. In the SNL100-00,

the tip is listed as being at 0◦, and the root is twisted to 13.308◦.

The final parameter in the schedule is the thickness to chord ratio. In the

model distributed by Sandia, there is an airfoil profile for each individual shape

of airfoil, including those that only differ in the thickness to chord ratio. For

example, there is a data file with the coordinates for both of the DU93W210

variations: DU93-W-210 23.txt and DU93-W-210.txt. Though this is perfectly

acceptable, only one is required in BroncoBlade, since part of the station creation

code will scale the airfoil in the y-direction so it has the appropriate thickness to

chord ratio.

BroncoBlade is a unit-less program, so the user is responsible for keeping

units consistent. The SNL100-00 uses kilograms, meters, and seconds as it’s unit

system, so this convention will be used for the remainder of the chapter.

4.1.3 Shear Webs

With the airfoil schedule defining the external surface of the blade, the next step

is to define the internal support structure. The NREL and UpWind turbines

both have two shear webs running almost the length of the blade. After finding

insufficient buckling performance in the first design iteration, a third shear web

was added to the SNL100-00 that runs for a shorter section of the blade. The

position of the shear webs are shown in Figure 4.2. The two main shear webs

are connected by a spar cap, so the combined box spar is represented by the blue

54

rectangle. The third shear web is represented by the red line.

Figure 4.2: Location of shear webs in the SNL100-00 [7]

Shear web 1 is located at a fixed position of -0.75m along the chord from the

pitch axis, and shear web 2 is located at 0.75m on the other side of the pitch

axis. Both of these begin at 2.4m from the root of the blade and end at 94.4m

from the root. The orientation of these two webs match with the standard shear

web creation algorithm in BroncoBlade, which assumes that the shear webs will

have the same location in reference to the local pitch axis and would essentially

be straight beams if not for the global twist of the blade.

Shear web 3, however, does not follow the same conventions as webs 1 and 2,

and must be manually created and added to the mesh that BroncoBlade generates.

Shear web 3 begins at 14.6m from the root, at a chordwise location of 68% of the

chord. It expires at 60.2m from the root, with a chordwise location of 78% of

the chord. ABAQUS CAE was used to create a shell at this location between

the top and bottom surfaces of the blade. The shear web shell was meshed and

constrained to the skin mesh using ABAQUS utilities.

4.1.4 Materials

For all structural engineering problems, material properties are a necessity. Mod-

ern HAWT blades are constructed mainly from composite and foam or wood core

materials. Unlike metals, which have well documented material properties for

hundreds of variations, the composite materials do not have accepted standard

values because of the great varieties of fibers, matrices, and configurations that go

into making a composite laminate. Because of this, the validation must use the

55

material properties defined by Sandia, rather than using another reference. Table

4.2 contains the properties used in BroncoBlade for the SNL100-00 model. The

first three materials in the table are fiberglass laminates, listed with the lamina

properties required for an FE model. The last three are considered to be isotropic

and are defined in the FE model by only their Elastic Modulus and Poisson’s

Ratio. A shear modulus is listed in the table for the isotropic materials, but it is

not included in any analysis.

Table 4.2: Material Properties [7]

Material Stacking Density E1 E2 ν12 G12 G13 G23

Sequence kg/m3 GPa GPa GPa GPa GPa

uniaxial [0]2 1920 41.8 14.0 0.28 2.63 2.63 2.63
biaxial [±45]4 1780 13.6 13.3 0.5 11.8 11.8 11.8
triaxial [±45]2[0]2 1850 27.7 13.65 0.395 7.22 7.22 7.22
foam - 200 0.256 * 0.3 2.2* * *

gelcoat - 1235 3.44 * 0.3 1.38* * *
resin - 1100 3.5 * 0.3 1.4* * *

4.1.5 Composite Layup

The SNL100-00 is divided into the two main structural sections: the skin and the

shear webs. The shear webs have a laminate consisting of a 80mm layer of foam

between two layers of 5mm biaxial fiberglass (Table 4.3). This layup includes the

extra shear web 3. This layup is both balanced and symmetric.

Table 4.3: Composite Layup: Shear Webs [7]

Material Thickness
Type (mm)

Biaxial 5
Foam 80

Biaxial 5

The skin of the turbine blade can be characterized as having a basic composite

layup with extra reinforcement added in different sections of the blade. The basic

56

layup is shown in in Table 4.4, with the first entry being the exterior gelcoat

and the subsequent layers moving towards the interior of the skin. The inner

most layer is 5mm of resin, which is not physically present, but represents the

parasitic mass from excess resin throughout the other lamina of the skin. Inside

of this layup, there is a layer of reinforcement, which can change for each element

based on its spanwise and chordwise location. The reinforcement for each of these

sections is listed in Table 4.5.

Table 4.4: Composite Layup: Skin [7]

Material Thickness
Type (mm)

Gelcoat 0.6
Triaxial 5

Reinforcement see Table 4.5
Triaxial 5
Resin 5

The skin of the blade is divided in both the chordwise and spanwise directions.

The four chordwise divisions are the leading edge, the spar, the aft panel, and the

trailing edge. The spanwise divisions are based on the stations, which is 34. This

would yield a total of 136 sections, but the tip sections (29-33, after the shear

webs have ended) are not divided chordwise. Each of these sections can have a

different composite layup.

4.2 Comparison of Calculated Blade Properties

Because of the complexity of these models it is advantageous to compare the results

of the different steps in the process, rather than only comparing final results. This

helps to catch mistakes early and avoid wasting time running analyses on models

with fundamental errors. Comparing against the Sandia results step by step also

shows the strengths and weaknesses of BroncoBlade from start to finish.

57

Table 4.5: Laminate Reinforcement Positioning [7]

Units in (mm)
Station Spanwise Root Spar Trailing Trailing Leading Aft
Number Fraction Build-up Cap Edge Edge Edge Panel
Material triax uniax uniax foam foam foam

0 0.0 160
1 0.005 140 1 1
2 0.007 120 2 2
3 0.009 100 3 3
4 0.011 80 4 5
5 0.013 70 10 7 1 1
6 0.024 63 13 8 3.5 3.5
7 0.026 55 13 9 13 13
8 0.047 40 20 13 30 100
9 0.068 25 30 18 50 100
10 0.089 15 51 25 60 60 100
11 0.114 5 68 33 60 60 100
12 0.146 0 94 40 60 60 100
13 0.163 111 50 60 60 60
14 0.179 119 60 60 60 60
15 0.195 136 60 60 60 60
16 0.222 136 60 60 60 60
17 0.249 136 60 60 60 60
18 0.276 128 30 40 60 60
19 0.358 119 30 40 60 60
20 0.439 111 15 20 60 60
21 0.520 102 8 10 60 60
22 0.602 85 4 10 60 60
23 0.667 68 4 10 60 60
24 0.683 64 4 10 55 55
25 0.732 47 4 10 45 45
26 0.764 34 4 10 30 30
27 0.846 17 4 10 15 15
28 0.894 9 4 10 10 10
29 0.943 5 4 10 5 0
30 0.957 5 4 10 5
31 0.972 5 4 10 5
32 0.986 5 4 10 5
33 1.000 0 0 0 0

58

Because it does not require running any analysis, checking the material com-

position of the model is the first criterion for model validation. Major errors in

geometry, material properties, or laminate assignments will cause a noticeable dif-

ference in the the overall mass of the model or in the mass of individual materials.

Opening the model in the ABAQUS CAE GUI allows the user to inquire on the

mass content of the entire blade, specific sections, or specific materials. Table 4.6

compares the acquired mass from ABAQUS CAE with the listed material usage

by Sandia. In addition to this method, FAST also calculates an approximate blade

mass during analysis, which gave a mass of 114,679 kg. Sandia reported a value of

115,684 kg calculated using PreComp, and 118634 kg using ANSYS. This shows

that there is a bit of variation in the mass calculation depending on the method

used, which allows for the conclusion that the results in Table 4.6 are acceptable.

Table 4.6: Material Usage in Blade

SNL SNL[7] Difference Percent Difference
Material Density Mass Percentage Mass Percentage vs SNL vs SNL
Laminate (kg/m3) kg of total kg of total kg of total

Biaxial 1,780 4,112 3.6 3,996 3.3 -115.6 -2.81
Foam 200 15,333 13.3 15,059 12.5 -273.29 -1.78

Gelcoat 1,235 920 0.8 927 0.77 7.19 0.78
Resin 1,100 6,863 5.9 6,873 5.7 10.38 0.15
Triax 1,850 38,908 33.6 41,483 34.5 2,575 6.618
Uniax 1,920 49,527 42.8 52,054 43.2 2,527 5.104
Total 115,663 100 120,394 100 4,731 4.09

Once the total mass of the model has been checked, the next level of validation

is with its structural properties. The sections module of BroncoBlade analyzes

the blade properties at each of the stations. These properties are used in the

FAST analysis, and thus are very important for the aerodynamic simulation. The

linear mass density performs all of the checks done previously in the material mass

validation, but additionally checks for proper distribution of materials.

The flapwise and edgewise stiffness values are more sensitive to errors in the

model than the mass values are. The stiffness is defined as EI, which is the Elastic

59

Modulus (E) multiplied by the area moment of inertia (I). First, accurate EI values

require that the composite layup be properly oriented, otherwise the anisotropic

nature of the fiberglass will yield erroneous results, since the expected E11 stiffness

will not be acting in the desired direction. Secondly, the area moment inertia is

sensitive to small changes in cross sectional geometry. These two factors combine

to make the stiffness values the most stringent of pre-analysis validation checks.

Figures 4.3, 4.4, and 4.5 show the correlation between the results calculated in

BroncoBlade and the values released by Sandia [8] for the linear mass, flapwise,

and edgewise stiffness, respectively. Though there are some minor departures, the

results provide an acceptable level of correlation.

0.0 0.2 0.4 0.6 0.8 1.0
Spanwise Blade Fraction

0

1000

2000

3000

4000

5000

6000

Li
ne

ar
 M

as
s

(k
g/

m
)

Spanwise Distribution of Mass

BroncoBlade
Sandia

Figure 4.3: Comparison of linear mass: Sandia and BroncoBlade

The results from the Modes module are also used to validate the model. FAST

requires a minimum of the first flapwise and edgewise mode shapes, and allows for

the optional inclusion of the second flapwise mode. Each mode shape is defined

by listing the coefficients for the Equation 4.1.

60

0.0 0.2 0.4 0.6 0.8 1.0
Spanwise Blade Fraction

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

EI
 (N

-m
^

2

1e11 Flapwise Stiffness vs Spanwise Position

BroncoBlade
Sandia

Figure 4.4: Comparison of flapwise stiffness: Sandia and BroncoBlade

0.0 0.2 0.4 0.6 0.8 1.0
Spanwise Blade Fraction

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

EI
 (N

-m
^

2

1e11 Edgewise Stiffness vs Spanwise Position

BroncoBlade
Sandia

Figure 4.5: Comparison of edgewise stiffness: Sandia and BroncoBlade

61

0 + 0 · x+ C2x
2 + C3x

3 + C4x
4 + C5x

5 + C6x
6 = 1 (4.1)

Because of the cantilever beam nature of the blade, the coefficients C0 and C1

are forced to 0, and thus are omitted from Equation 4.1. A least-squares fit is

used to determine the remaining four coefficients. Because different combinations

of coefficients can produce similar polynomial shapes, only the shapes are shown

here in Figures 4.6 and 4.7, and the coefficients are listed in blade data file in the

Appendix.

The wind condition used in the validation simulates the turbine’s performance

in extreme winds where normal operating conditions have been exceeded and the

turbine has shut down. Since the rotational velocity of the turbine affects the

mode shapes, the parked blade’s mode shapes must be evaluated separately from

the operating mode shapes.

To property calculate the mode shapes of a rotating turbine blade, the ro-

tational loads must be included in the analysis. Unfortunately, an elementary

attempt to incorporate these loads into the frequency analysis model failed. Fur-

ther work on modeling these forces was deemed to be outside of the scope of the

project. Because of the similarity between the 0 RPM and 7.44 RPM mode shapes

from the Sandia FAST models, shown in Figures 4.8 and 4.9, the parked blade’s

modes shapes will be used temporarily for any rotating simulations.

62

0.0 0.2 0.4 0.6 0.8 1.0
Spanwise Blade Fraction

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Flapwise Mode Shapes: 0 rpm

BroncoBlade Mode 1
Sandia Mode 1
BroncoBlade Mode 2
Sandia Mode 2

Figure 4.6: Comparison of flapwise mode shapes: Sandia and BroncoBlade

0.0 0.2 0.4 0.6 0.8 1.0
Spanwise Blade Fraction

0.0

0.2

0.4

0.6

0.8

1.0
Edgewise Mode Shapes: 0 rpm

BroncoBlade
Sandia

Figure 4.7: Comparison of edgewise mode shapes: Sandia and BroncoBlade

63

0.0 0.2 0.4 0.6 0.8 1.0
Spanwise Blade Fraction

0.0

0.2

0.4

0.6

0.8

1.0
Edgewise Mode Shapes: Sandia

Mode 1 @ 0 rpm
Mode 1 @ 7.44 rpm

Figure 4.8: Comparison of Sandia’s flapwise mode shapes at 0 and 7.44 RPM

0.0 0.2 0.4 0.6 0.8 1.0
Spanwise Blade Fraction

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Flapwise Mode Shapes: Sandia

Mode 1 @ 0 rpm
Mode 1 @ 7.44 rpm
Mode 2 @ 0 rpm
Mode 2 @ 7.44 rpm

Figure 4.9: Comparison of Sandia’s edgewise mode shapes at 0 and 7.44 RPM

64

4.3 FAST Results

In their report [7], Sandia identified eight wind loading conditions to be simulated.

Out of these load conditions, the maximum flapwise root moment and maximum

tip deflection occurred during EWM50, and maximum edgewise moment occurs

during EDC-R. As the extremes, these two load conditions were the ones intended

for validation, but because of complications with the pitch controller in the oper-

ation turbine, only the EWM50 condition was used.

The EWM50 load condition simulates a 50-year gust when the turbine has

been shut down (RPM=0) and the ability to pitch the blades out of the wind

has been lost [7]. The assumed wind loading starts with the reference speed of

50 m/s, allowing the simulation to escape the transient period. The wind speed

then follows the sequence of dip-spike-dip shown in Figure 4.10. For the Class IB

wind site, the wind dips from 50 m/s to 45 m/s, and then spikes to a maximum

of 70 m/s [2]. The results in Figure 4.11 and 4.12 show reasonable correlation.

The total tip deflection of 12.6m is 2.5% above Sandia’s reported value of 12.3m.

The maximum flapwise and edgewise root moments are 111,000 Nm and 43,700

Nm, respectively; these are 0.2% and -14% of the Sandia values of 110,700 Nm

and 17,300 Nm.

Figure 4.10: Example of the gust profile used for the EWM50 wind condition [2]

65

0 50 100 150 200 250
Time (s)

2

0

2

4

6

8

10

12

14

Ti
p

De
fle

ct
io

n
(m

)

Tip Deflection vs Time: EWM50

BB Out-of-plane
BB In-plane
BB Total
SNL Max Total

Figure 4.11: Tip deflections of the BroncoBlade FAST simulation compared with
reported Sandia maximum for the EWM50 wind condition

0 50 100 150 200 250
Time (s)

20000

0

20000

40000

60000

80000

100000

120000

Ro
ot

 M
om

en
t (

kN
-m

)

Root Moment vs Time: EWM50

BB Out-of-plane
SNL Max Out-of-plane
BB In-plane
SNL Max In-plane

Figure 4.12: Root moments of the BroncoBlade FAST simulation compared with
reported Sandia maxima for the EWM50 wind condition

66

4.4 Static Stress Analysis Results

Using the maximum flapwise aerodynamic forces and the gravitational forces for

a blade pointed vertically upward, the static loading produces a tip deflection of

only 10.8m, short of the 12.6m calculated in the FAST simulation. The simple ex-

planation for this discrepancy is that the gusting wind causes a dynamic response

in the blade that cannot be properly modeled by simply applying the static loads.

Sandia calculated strain results using Euler-Bernoulli beam theory and the

root moments computed by FAST. While this is a valid method, BroncoBlade

should ideally calculate strain results at an element level, rather than for the blade

overall. This element level strain will allow for the use of failure criterion to be

applied to the composite layup on that element. This leads to the conclusion that

a dynamic or quasi-static analysis needs to be incorporated into future versions

of BroncoBlade.

4.5 Buckling Analysis Results

Sandia describes their loading analysis as using only the flapwise aerodynamic

loads, since the edgewise loads are relatively small in comparison (see the root

moments in Figure 4.12). The BroncoBlade code includes both edgewise and

flapwise loads. The buckling mode eigenvalues and locations are compared in

Table 4.7 and illustrated in Figure 4.13.

What is apparent from Table 4.7 is that BroncoBlade produces higher eigen-

values. In this static buckling analysis where the design loads are applied, the

eigenvalue is equivalent to the safety factor of the design with respect to buckling.

Sandia cites an acceptable safety factor to be 2.042. Thus, the higher values of

BroncoBlade are less conservative than those published by Sandia.

It is thought that the difference in buckling modes comes from the differ-

67

ent methods of load application. BroncoBlade reads the aerodynamic forces on

each aerosection from the FAST output, and applies the load as a surface pres-

sure distributed over the skin of that section. Sandia’s method of loading uses a

concentrated force at the center of each of the 18 aerosections. This artificially

concentrates the forces over the geometry, which could be the reason that the

Sandia model exhibits a lower buckling safety factor.

(a) 2.84 (b) 3.18 (c) 3.37

Figure 4.13: First three unique mode shapes with their eigenvalues (scaled)

4.6 Conclusion of Validation Process

BroncoBlade performs well in creating the blade data file input for FAST. The

linear mass, flapwise stiffness, and edgewise stiffness all show strong correlation

with the published Sandia results. The mode shapes depart a bit more from

Sandia, but this could be related to the manual addition of the third shear web.

The outputs from FAST reasonably match Sandia’s descriptions of maximum

tip deflection and root moments. Some of the discrepancy could be attributed

to differences in the wind loading, since Sandia provides the wind type but not

specifics on the duration of the gust.

After applying the aerodynamic loads calculated in FAST to the blade, the

results begin to differ. BroncoBlade produces consistently higher eigenvalues,

meaning it is less conservative than the Sandia results. This discrepancy is thought

68

Table 4.7: Buckling Modes

Sandia BroncoBlade
Eigenvalue Location Eigenvalue Location

(order)
2.173 10-15 meters 3.183 (2) 10-20 meters

spar cap spar cap
3.327 (6) 10-20 meters

spar cap
2.183 19.5 meters

max chord
spar cap

2.229 72-80 meters 2.837 (1) 74-83 meters
spar cap/ spar cap/
aft panel aft panel

3.37 (3) 72-82 meters
spar cap/
aft panel

3.585 (5) 72-82 meters
spar cap/
aft panel

2.327 25-29 meters
leading edge

2.536 23-37 meters
trailing edge

2.589 19.5 meters
max chord

trailing edge
3.557 (4) 84-88 meters

spar
3.979 (7) 65-85 meters

aft panel/
spar

69

to be caused by BroncoBlade’s distributed loading method, opposed to Sandia’s

concentrated loads. Even with this, the buckling modes are similar.

Overall, BroncoBlade’s performance compares favorably with the results pub-

lished by Sandia. It is deemed to have sufficient quality to allow for its use in new

design iterations.

70

Chapter 5

Turbine Design Iterations

Three design iterations, called AQ100-01, -02, and -03, were compared with the

baseline SNL100-00 design for both the parked blade EWM50 wind condition, and

the operating turbine ECD-R load condition. A buckling analysis was performed

on the models using the maximum flapwise forces found in the EWM50 simulation.

The iterations maintained the same skin and shear web thicknesses; changes were

made to the material type or removed a shear web.

The masses of the models were calculated using ABAQUS and FAST, which

showed slightly different values that are shown in Table 5.1. The results for the

EWM50 and ECD-R simulations are compiled in Tables 5.2 and 5.3, respectively.

The results of the three iterations were then used to suggest future design itera-

tions.

Table 5.1: Mass of Models

Mass from Mass from
Model ABAQUS FAST

(kg) (kg)

SNL100-00 113,511 112,591
AQ100-01 113,108 112,213
AQ100-02 112,000 111,115
AQ100-03 97,714 97,906

71

Table 5.2: Results of EWM50 Wind Condition (Parked Blade)

Maximum Maximum Maximum Lowest
Model tip deflection root moment x root moment y Eigenvalue

(m) (Nm) (Nm)

SNL100-00 12.6 14860 111000 2.873
AQ100-01 12.2 14860 111100 3.02
AQ100-02 12.2 14850 111000 2.67
AQ100-03 3.3 15900 113600 n/a

Table 5.3: Results of ECD-R Wind Condition

Max Flapwise Max Edgewise Max Max
Model tip deflection tip deflection root moment x root moment y

(m) (m) (Nm) (Nm)

SNL100-00 7.08 0.576 44700 50990
AQ100-01 6.87 0.546 44560 51050
AQ100-02 6.88 0.550 44170 51010
AQ100-03 1.99 0.051 39300 51120

5.1 SNL100-00: Baseline Design

As described in the validation chapter, the SNL100-00 model uses triaxial fiber-

glass as the main material in the skin, with uniaxial fiberglass and foam used for

reinforcement throughout the blade, and more triaxial fiberglass used to reinforce

the the root of the blade. The shear webs are composed of foam sandwiched

between to layers of biaxial fiberglass.

Under the EWM50 loading, the skin experienced buckling modes with maxi-

mum displacement at three different locations. The lowest eigenvalue was 2.873,

with a maximum displacement on the spar cap around 77 m from the root, the

second had an eigenvalue of 3.183 at a location around 13 m, and the third has

an eigenvalue of 3.55 around 78m on the spar cap and aft panel.

The ECD-R loading was not conducted in the validation chapter because the

pitch control input for the Sandia results was not available. A pitch file was

generated for this chapter, so each blade is run with the same pitch control. The

operating turbine incorporates cycling gravitational loads and centripetal loads

72

that were not present in the stationary EWM50 simulation. The inclusion of these

loads better demonstrates the turbine’s performance during typical operation.

5.2 AQ100-xx Design Iterations

The first design iteration, AQ100-01, simply changed the material of the 3 shear

webs to carbon fiber, and is otherwise geometrically identical to the SNL100-

00. The buckling modes exhibited were in the same locations as the SNL100-00

results, but with higher eigenvalues of 3.02, 3.13, and 3.7 respectively.

AQ100-02 kept the same design as AQ100-01, but removed the third shear

web that supported the aft panel. The buckling modes that exhibited in the three

shear web design did not show much change in eigenvalues. However, the lowest

eigenvalue occurred at a new buckling modes that was introduced by the removal

of the aft shear web. This mode had a value of 2.67, which is higher than the

minimum 2.042 listed by Sandia [7], but shows still shows the potential buckling

problems with the unreinforced aft panel. The lowest mode shape is shown in

Figure 5.1.

Figure 5.1: New buckling mode in AQ100-02

The final iteration, AQ100-03, used the 2-spar configuration of AQ100-02, but

replaced the fiberglass skin with carbon fiber. It used the same thickness and

layup for the laminate skin and shear webs. It was shown to be an over-design in

73

terms of buckling since all of the first 17 calculated eigenvalues were negative. The

final eigenvalue calculated was -5.77, which means that the first positive buckling

mode of the model must be greater than 5.77.

While the AQ100-01 and AQ100-02 models showed slight reductions in tip

deflection from the baseline, the all carbon design had tip deflection values less

than 30% of the baseline model’s. This shows that the switch to carbon fiber

provides an unnecessary amount of added stiffness, and should have it’s composite

layup reduced to save material costs and avoid over-design. Even in it’s current

over designed state, the all carbon blade is the lightest of the models and can have

its mass reduced even more with proper design of the skin and spar laminates.

5.3 Suggested Future Iterations

From the completed design iterations, it is clear that any optimal carbon fiber

design lies between the AQ100-02 and AQ100-03 models. These two models share

the two carbon fiber shear web design, but differ in the skin laminate. There is

an array of designs that are worth investigating in the future.

Rather than replacing all of the fiberglass, the carbon fiber could replace only

the spar cap reinforcement. In conjunction with the carbon shear webs, this would

form a square carbon fiber tube running the length of the blade. This enclosed

tube would add torsional rigidity and bending stiffness, but not carry the expense

of using carbon fiber for all of the skin.

The over design of the AQ100-04 iteration can be seen by the reduction of

tip deflection and by the high buckling safety factors. The general design of this

iteration can be made more effective by reducing the amount of carbon fiber in the

skin. To see how thick the skin needs to be, models could be iterated with varying

thicknesses of unreinforced CFRP skin. The skin should be thin enough so that

74

there are some areas that require reinforcement, and thick enough so that some

areas that can stay unreinforced. Using the unreinforced iterations to determine

an appropriate basic skin laminate, reinforcement can be gradually added in to

the areas that have the highest strain values or undergoing buckling.

A potential alternative to increasing the aft panel reinforcement or adding

in a third shear web would be to include stringers on the interior surface of the

skin. This could be more effective, since typically the aft panel skin is only in

compression on the low-pressure surface.

All of the previous iterations have used uniaxial, biaxial, and triaxial com-

posites. If a turbine simulation could be used that incorporates bend-twist and

stretch-twist coupling, then the a custom laminate would be very useful for de-

sign. Using uniaxial plies stacked in angles other than 0◦and 90◦could cause these

couplings to exist. These couplings could be designed to take advantage of aero-

elastic coupling, like changing the angle of attack based on the bending curvature

[15].

75

Chapter 6

Future Work

The end goal for BroncoBlade is to provide a competent and customizable in-

terface, dependable results, and minimal resource consumption for the maximum

amount of users. BroncoBlade version 0.1 is intended to be released as an open

source software package. This will help promote the use of the program and allow

for additional development. There are several improvements that can be made to

the initial release of the program that will increase its functionality and efficiency.

6.1 Software Compatibility

BroncoBlade currently uses one commercial software package, which is the finite

element solver ABAQUS. Ideally, BroncoBlade should be using an open source FE

package, but it was decided to use a professionally documented and tested package

during the creation and debugging of BroncoBlade. Now that it has been shown

to be functional, BroncoBlade should be adapted to work with the open source

program Calculix. Calculix shares a similar input file format with ABAQUS, so

the amount of reconfiguring should be minimal.

Because BroncoBlade was developed using the Linux platform, the initial re-

lease has only been tested with Linux. To make BroncoBlade as inclusive as

76

possible, it should be ported to other platforms. The eventual hosting website

should allow a potential user to download a compressed file that contains the

source code and a directory with an example turbine model. The user should be

able to unzip the file and have BroncoBlade operating in a minimal amount of

time.

BroncoBlade uses several other open source packages, such as FAST, python,

numpy, scipy, matplotlib, etc. BroncoBlade’s website will have a list of the re-

quired packages and links to their hosting sites. This will help users who are un-

familiar with open source software or do not have the packages already installed

on their computers.

6.2 Input Improvements

While the skin geometry input file is working well, there are several other model

inputs that need to be upgraded to a more intuitive and user friendly interface.

Currently, material properties are changed by editing a python script file.

While this method is functional, it should be replaced by a text file. The text

file should first specify the material type, either isotropic or a laminate, then the

following list of material properties would be read and interpreted internally in

BroncoBlade.

The method of applying reinforcement to the skin is reasonably effective, uti-

lizing an input file with thicknesses and locations. However, for the user to change

the constant exterior skin laminate or the shear web laminate, they have to open

up python scripts and find the line of code that writes out the laminate. Ideally,

the user should not have to open any python files unless they are doing develop-

mental work.

The chordwise boundaries of the mesh are set in the main input file by selecting

77

the position of the spars and the size of the reinforcement areas. The spanwise

boundaries are set by the location of the stations. The method of setting these

boundaries is acceptable, but a problem arises in specifying the mesh seeding

between them.

Chordwise seeding requires a 5 parameter list to identify the seeding of each

section; the vector defining the spanwise seeding has one less term than the number

of stations, so it can easily have a length of over 30. Filling out these vectors

requires the calculation of the number of nodes based on the desired element size

and the size of the area to be meshed.

An improved meshing algorithm would allow for the specification of a preferred

element size. BroncoBlade would then apply seeding so that the elements were

as close to this size as possible. A single value could be used to govern the entire

blade’s mesh, or individual chordwise or spanwise sections could have assigned

element sizes.

6.3 Module Improvements

Though the modules have proven functional, there is room for improvement in

efficiency and accuracy.

6.3.1 Meshing

The meshing algorithm used in BroncoBlade works well for most of the blade, but

falls short at the root and the tip. Addressing these problems would allow for

more confidence to be put in the mesh.

Initially, the chordwise seeds were applied by seeding along the chord to define

the x-values, and then applying the x-values to a polynomial curve fit of the

top and bottom surfaces. This worked well for most of the airfoil, but not for

78

the curvature at the leading edge. To accommodate this curvature, the seeding

was switched to the y-direction and a polynomial curve fit was performed for the

x-values.

The current method works for all of the blade except for the root. Because

the root is cylindrical, the trailing edge encounters the same problems that are

mentioned above for the leading edge. Because the trailing edge at the root has

a different shape than the rest of the blade, there is method used for the leading

edge cannot be applied on the trailing edge.

What is needed is for the chordwise seeds to be applied such that the spacing

is defined by the total distance between the nodes, not just the x or y component

like it is now.

To use the spanwise spline method of meshing, there needs to be an equal

number of nodes on each station. This works fine up until the tip of the blade,

where the chord length starts become very small. Because there are the same

number of elements around the maximum and minimum chords, the elements at

the tip will be very small in comparison to those towards the root.

6.3.2 Stiffness and Mode Shape Calculation

The FEA based stiffness calculator currently used in BroncoBlade has been vali-

dated and shown to produce quality results. However, it requires the preparation,

analysis, and post-processing of 30+ finite element models. Each station took

around 3-5 minutes using 4 processors on a laptop computer. While the individ-

ual jobs had reasonable run times, the entire sections module took between 1 and

3 hours to complete. This limits the speed at which designs can be iterated and

should ideally be much faster.

One alternative is to examine the cross section as a 2D structure and use

integration techniques to calculate the EI value for the section. This method

79

would avoid the use of the FE solver and would be expected to be much faster. It

is not used in the original BroncoBlade release because the time required to write

and debug this program was predicted to be much greater than using pre-existing

tools to create the FE mesh. There are existing programs that calculate cross

section stiffness, but it is not known if they are detailed enough for BroncoBlade

or if their interface would be compatible.

Similarly to the stiffness calculation, the mode shape calculation was func-

tional, but non-ideal. The FE frequency analysis did not take very long to run,

but for the SNL100-00 the analysis required on the order of 10 GB of RAM to

run optimally. These frequency analyses had to be performed on a performance

machine, since the author’s computer was limited to 6 GB. While some potential

users may have the computing power for this, it is expected that many will not

have access to high performance computers. Some alternate method should be

used; perhaps a method based on simplifying the blade into a beam model, using

the stiffness values calculated in the Sections module.

6.4 Module Additions

Version 0.1 of BroncoBlade provides the tools to calculate a model’s loading during

operation and to evaluate its performance with respect to buckling. However, it

lacks the ability to evaluate the modes of failure common in wind turbines.

To determine the strains that result from the simulation loading, a dynamic

analysis will have to be performed on the FE model. The nature of the operating

turbine takes it out of the static realm, so it can not be evaluated using only

the applied forces but requires the addition of inertial loads. When the loading is

properly applied, the FE model will yield strain values for all of the elements in the

mesh. Using the strain values and the element’s laminate information, a damage

80

or failure criterion could be applied. This would allow for the identification of the

elements where failure could occur. Additionally, a fatigue failure module could

be added. The results of FAST could be used to predict the loadings over the

lifetime of the blade. Each level of loading could be associated with a specific

amount of incurred damage. This would allow for the accumulated amount of

damage to be calculated for each element. This would be too computationally

expensive if every element was used, but a few critical elements could be chosen

for evaluation.

81

Chapter 7

Conclusion

BroncoBlade, a tool for preparation and integration of a finite element model

with a turbine simulation program, is reported. It contains four modules: the

creation of a finite element model, the calculation of cross-sectional stiffness at

locations along the blade, the calculation of mode shapes, and the application of

loads calculated by the turbine simulator, FAST.

Analysis results for a model of the SNL100-00 baseline blade compared favor-

ably against reference results published by Sandia National Laboratories. These

results include stiffness properties of the blade, tip deflection and root moments

from FAST using the EWM50 extreme speed wind condition, and the buckling

behavior of the blade’s skin.

Three design iterations were evaluated and compared with the all fiberglass

SNL100-00 blade model. These designs used carbon fiber to reduce the mass of

the blade while adding stiffness. Results from these iterations suggest designs for

additional iterations.

Accompanying the initial release of BroncoBlade are a list of suggested en-

hancements to the program. These include improvements to the user interface,

increased module efficiency, and the addition of more modules. With the source

82

code available, users are free to revise and contribute to the development of this

software package.

Source code and further information on BroncoBlade can be ob-

tained by contacting either Alex Quinlan (alex.r.quinlan@wmich.edu)

or Dr. Peter Gustafson (peter.gustafson@wmich.edu).

83

Bibliography

[1] Marshall Buhl. Nwtc design codes: Iecwind, October 2012.

[2] Tony Burton, David Sharpe, Nick Jenkins, and Ervin Bossanyi. Wind energy

handbook. Wiley, 2001.

[3] William D Callister and David G Rethwisch. Materials science and engineer-

ing: an introduction, volume 7. Wiley New York, 2007.

[4] Robert D Cook et al. Concepts and applications of finite element analysis.

John Wiley & Sons, 2007.

[5] Isaac M Daniel, Ori Ishai, Issac M Daniel, and Ishai Daniel. Engineering

mechanics of composite materials, volume 3. Oxford university press New

York, 1994.

[6] Harvey M Deitel, Paul J Deitel, Ben Wiedermann, and Jonathan P Liperi.

Python with Cdrom. Prentice Hall Professional Technical Reference, 2001.

[7] D Todd Griffith and Thomas D Ashwill. The sandia 100-meter all-glass base-

line wind turbine blade: Snl100-00. Sandia National Laboratories Technical

Report, SAND2011-3779, 2011.

[8] D Todd Griffith and Brian R Resor. Description of model data for snl100-00:

The sandia 100-meter all-glass baseline wind turbine blade. Sandia National

Laboratories Technical Report, SAND2011-9309P, 2011.

84

[9] Bob Griffiths. Boeing sets pace for composite usage in large civil aircraft.

High-Performance Composites, 2005.

[10] D.M. Hoyt and D. Graesser. Rapid fea of wind turbine blades — summary

of nse composites’ structural analysis capabilities for blade nse blademesher

in-house software. Technical report, NSE Composites, 2008.

[11] Jason M Jonkman and Marshall L Buhl Jr. Fast user’s guide. Golden, CO:

National Renewable Energy Laboratory, 2005.

[12] David J Laino and A Craig Hansen. User’s guide to the wind turbine aerody-

namics computer software aerodyn. Windward Engineering, Salt Lake City,

UT, December, 2002.

[13] Daniel L Laird. NuMAD User’s Manual. Sandia National Laboratories, 2001.

[14] Germanischer Lloyd. Rules and regulations, iv-industrial services, part 1-

guideline for certification of wind turbines, 2010.

[15] James Locke and Ivan Contreras Hidalgo. The implementation of braided

composite materials in the design of a bend-twist coupled blade. 2002.

[16] Patrick J Moriarty and A Craig Hansen. AeroDyn theory manual. National

Renewable Energy Laboratory Colorado, 2005.

[17] DCS Simulia. Abaqus 6.11 analysis user’s manual. Abaqus 6.11 Documenta-

tion, 2011.

85

Appendix A

BroncoBlade I/O File Examples

86

A.1 Input

Airfoil Chord(m) Twist(deg) Pitch_Axis
Blade_Frac t/c ratio
Cylinder 5.694 13.308 .5
0.000 1
Cylinder 5.694 13.308 .5
0.005 1
SNL100m0pt007 5.694 13.308 .5
0.007 .9925
SNL100m0pt009 5.694 13.308 .5
0.009 .985
SNL100m0pt011 5.694 13.308 .5
0.011 .9775
SNL100mEllipse97 5.694 13.308 .5
0.013 .97
SNL100mEllipse93pt1 5.792 13.308 .499
0.024 .931
SNL100mEllipse92pt5 5.811 13.308 .499
0.026 .925
SNL100mTransition84 6.058 13.308 .498
0.047 .840
SNL100mTransition76 6.304 13.308 .468
0.068 .760
SNL100mTransition68 6.551 13.308 .453
0.089 .68
SNL100mTransition60 6.835 13.308 .435
0.114 .6
SNL100mTransition51 7.215 13.308 .410
0.146 .51
SNL100mTransition47 7.404 13.177 .400
0.163 .47
SNL100mTransition43pt5 7.552 13.046 0.390 0.179
.435
DU99W405 7.628 12.915 0.380
0.195 .405
DU99W405_38 7.585 12.133 0.378

SNL100.bld

87

0.222 .38
DU99W350_36 7.488 11.350 0.377
0.249 .36
DU99W350_34 7.347 10.568 0.375
0.276 .34
DU97W300 6.923 9.166 0.375
0.358 .30
DU91W2250_26 6.429 7.688 0.375
0.439 .26
DU93W210_23 5.915 6.180 0.375
0.520 .23
DU93W210 5.417 4.743 0.375
0.602 .21
NACA64618_19 5.019 3.633 0.375
0.667 .19
NACA64618_18pt5 4.920 3.383 0.375
0.683 .185
NACA64618 4.621 2.735 0.375
0.732 .18
NACA64618 4.422 2.348 0.375
0.764 .18
NACA64618 3.925 1.380 0.375
0.846 .18
NACA64618 3.619 0.799 0.375
0.894 .18
NACA64618 2.824 0.280 0.375
0.943 .18
NACA64618 2.375 0.210 0.375
0.957 .18
NACA64618 1.836 0.140 0.375
0.972 .18
NACA64618 1.208 0.070 0.375
0.986 .18
NACA64618 0.100 0.000 0.375
1.000 .18

SNL100.bld

dir airfoils # Airfoil Directory
sched SNL100.bld # Airfoil Schedule
length 100 # Blade Length (m)
seeds [24,28,24,34,9] # Seeding for regions [A,B,C,D,E] or [LE, LP, Sp
ar, Aft P, TE]
spseed [1,1,1,1,3,3,3,3,5,5,5,7,7,7,9,9,9,11,13,15,21,21,23,23,25,25,27,27,29,3
1,31,33,33]
 # Spanwise Seed (odd number)
number_aerosections 18
Asize .02 # Length of leading reinforcement region (m)
Esize .5 # Length of trailing reinforcement region (m)
spar1 −.75 # Chordwise location of spar from pitch axis (m)
spar2 .75 # Chordwise location of spar from pitch axis (m)
SPstrt 2.4 # Start of spars (m) from root
SPend 94.4 # Termination of spars (m) from root

SNL100_00.in

88

StaNum BlSpan RootBuild SparCap TEuni TEfoam LEpan AFTpan
x x triax uni uni foam foam foam
1 0.0 160 0 0 0 0 0
2 0.005 140 1 1 0 0 0
3 0.007 120 2 2 0 0 0
4 0.009 100 3 3 0 0 0
5 0.011 80 4 5 0 0 0
6 0.013 70 10 7 0 1 1
7 0.024 63 13 8 0 3.5 3.5
8 0.026 55 13 9 0 13 13
9 0.047 40 20 13 0 30 100
10 0.068 25 30 18 0 50 100
11 0.089 15 51 25 60 60 100
12 0.114 5 68 33 60 60 100
13 0.146 0 94 40 60 60 100
14 0.163 0 111 50 60 60 60
15 0.179 0 119 60 60 60 60
16 0.195 0 136 60 60 60 60
17 0.222 0 136 60 60 60 60
18 0.249 0 136 60 60 60 60
19 0.276 0 128 30 40 60 60
20 0.358 0 119 30 40 60 60
21 0.439 0 111 15 20 60 60
22 0.520 0 102 8 10 60 60
23 0.602 0 85 4 10 60 60
24 0.667 0 68 4 10 60 60
25 0.683 0 64 4 10 55 55
26 0.732 0 47 4 10 45 45
27 0.764 0 34 4 10 30 30
28 0.846 0 17 4 10 15 15
29 0.894 0 9 4 10 10 10
30 0.943 0 5 4 10 5 0
31 0.957 0 5 4 10 5 0
32 0.972 0 5 4 10 5 0
33 0.986 0 5 4 10 5 0
34 1.000 0 0 0 0 0 0

layup.txt

89

1 0
1 −0.00347
0.9966 −0.00261
0.98235 0.0004
0.96706 0.00232
0.95072 0.00303
0.93333 0.00258
0.9149 0.00103
0.89542 −0.0016
0.8749 −0.00539
0.85333 −0.01045
0.83072 −0.01681
0.80706 −0.02452
0.78235 −0.03354
0.7566 −0.04382
0.73 −0.05519
0.70333 −0.06717
0.67667 −0.07958
0.65 −0.09228
0.62333 −0.10515
0.59667 −0.11804
0.57 −0.13083
0.54333 −0.14333
0.51667 −0.15537
0.49 −0.16673
0.46333 −0.17727
0.43667 −0.18683
0.41 −0.19527
0.38333 −0.20248
0.35667 −0.20827
0.33 −0.21243
0.30333 −0.21476
0.27667 −0.21501
0.25 −0.21297
0.22421 −0.2087
0.19982 −0.20257
0.17684 −0.19496
0.15526 −0.18616
0.13508 −0.17635
0.11631 −0.16567
0.09893 −0.15429
0.08297 −0.1423
0.0684 −0.12982
0.05524 −0.11698
0.04348 −0.10392
0.03312 −0.09076
0.02417 −0.07766
0.01662 −0.06446
0.01047 −0.05117
0.00572 −0.03783
0.00238 −0.02333
0.00044 −0.00905
0.00018 −0.00567
0 0
0.00124 0.01552
0.00388 0.03133
0.00792 0.04505
0.01337 0.0579
0.02022 0.0707
0.02847 0.08324
0.03812 0.09549

DU99W405.txt

90

0.04918 0.1074
0.06164 0.11884
0.07551 0.12972
0.09077 0.13998
0.10745 0.14953
0.12552 0.15831
0.14499 0.16625
0.16587 0.17323
0.18816 0.17916
0.21184 0.18388
0.23693 0.18729
0.26333 0.18924
0.29 0.18979
0.31667 0.18914
0.34333 0.18746
0.37 0.18491
0.39667 0.18154
0.42333 0.17739
0.45 0.17253
0.47667 0.16701
0.50333 0.16088
0.53 0.15417
0.55667 0.14698
0.58333 0.13938
0.61 0.13142
0.63667 0.12318
0.66333 0.11471
0.69 0.10605
0.71667 0.09724
0.74333 0.08832
0.76961 0.07947
0.79484 0.07094
0.81902 0.06275
0.84216 0.05493
0.86425 0.04754
0.88529 0.04056
0.90529 0.034
0.92425 0.02786
0.94216 0.02212
0.95902 0.0167
0.97484 0.01158
0.98961 0.00678
0.99314 0.00565
0.9966 0.00455
1 0.00347

DU99W405.txt

91

A.2 Output

−−
−−−−−−−−−−−−−−−−−−−−−− FAST INDIVIDUAL BLADE FILE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1.5 MW baseline blade model properties from "InputData1.5A08V07adm.xls" (from C.
 Hansen) with bugs removed.
−−−−−−−−−−−−−−−−−−−−−− BLADE PARAMETERS −−
 34 NBlInpSt − Number of blade input stations (−)
False CalcBMode − Calculate blade mode shapes internally {T: ignore mode
 shapes from below, F: use mode shapes from below} [CURRENTLY IGNORED] (flag)
 3.882 BldFlDmp(1) − Blade flap mode #1 structural damping in percent of cr
itical (%)
 3.882 BldFlDmp(2) − Blade flap mode #2 structural damping in percent of cr
itical (%)
 5.900 BldEdDmp(1) − Blade edge mode #1 structural damping in percent of cr
itical (%)
−−−−−−−−−−−−−−−−−−−−−− BLADE ADJUSTMENT FACTORS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 1.0 FlStTunr(1) − Blade flapwise modal stiffness tuner, 1st mode (−)
 1.0 FlStTunr(2) − Blade flapwise modal stiffness tuner, 2nd mode (−)
 1.0 AdjBlMs − Factor to adjust blade mass density (−)
 1.0 AdjFlSt − Factor to adjust blade flap stiffness (−)
 1.0 AdjEdSt − Factor to adjust blade edge stiffness (−)
−−−−−−−−−−−−−−−−−−−−−− DISTRIBUTED BLADE PROPERTIES −−−−−−−−−−−−−−−−−−−−−−−−−−−−
BlFract AeroCent StrcTwst BMassDen FlpStff EdgStff GJStff EA
Stff Alpha FlpIner EdgIner PrecrvRef PreswpRef FlpcgOf EdgcgOf FlpEAOf
EdgEAOf
(−) (−) (deg) (kg/m) (Nm^2) (Nm^2) (Nm^2) (N
) (−) (kg m) (kg m) (m) (m) (m) (m) (m)
(m)
0.0 0.25 13.308 5742.76987179 320293309389.0 319372302063.0 74.43384
47848 0 0 0 0 0 0 0 0 0
0
0.005 0.25 13.308 5095.46116965 286019378400.0 285168697105.0 74.43384
47889 0 0 0 0 0 0 0 0 0
0
0.007 0.25 13.308 4431.46454162 246921129476.0 249080151272.0 74.41894
80081 0 0 0 0 0 0 0 0 0

SNL100−Blade−00.dat

92

0
0.009 0.25 13.308 3772.35158061 208599746214.0 212853795639.0 74.40404
95653 0 0 0 0 0 0 0 0 0
0
0.011 0.25 13.308 3127.23040042 171345954978.0 177639525232.0 74.38915
3559 0 0 0 0 0 0 0 0 0
0
0.013 0.25 13.308 2844.46954689 156852345194.0 160721149885.0 74.37429
47932 0 0 0 0 0 0 0 0 0
0
0.024 0.25 13.308 2639.76813709 141367558279.0 152236892525.0 75.57574
2074 0 0 0 0 0 0 0 0 0
0
0.026 0.25 13.308 2682.66133196 129604657230.0 139188752417.0 75.81156
18375 0 0 0 0 0 0 0 0 0
0
0.047 0.25 13.308 2321.10463024 99829388877.2 120916755138.0 78.62645
35407 0 0 0 0 0 0 0 0 0
0
0.068 0.25 13.308 1943.91138959 75923186720.1 100665959889.0 81.71784
91857 0 0 0 0 0 0 0 0 0
0
0.089 0.25 13.308 1831.33163639 66601768726.8 90379813590.8 84.81087
24533 0 0 0 0 0 0 0 0 0
0
0.114 0.25 13.308 1620.01826628 54279506818.7 79836846124.0 88.38200
78148 0 0 0 0 0 0 0 0 0
0
0.146 0.25 13.308 1616.82509356 48647619378.3 84247063952.1 93.21976
41993 0 0 0 0 0 0 0 0 0
0
0.163 0.25 13.177 1738.67615478 46559683088.7 95733634458.2 95.79058
20564 0 0 0 0 0 0 0 0 0
0
0.179 0.25 13.046 1783.72657574 40966357101.0 105111221165.0 97.75060

SNL100−Blade−00.dat

94893 0 0 0 0 0 0 0 0 0
0
0.195 0.25 12.915 1796.84803356 38354322436.6 99799418842.6 98.92221
8698 0 0 0 0 0 0 0 0 0
0
0.222 0.25 12.133 1771.0131114 33094318991.6 98055468154.5 98.24977
17291 0 0 0 0 0 0 0 0 0
0
0.249 0.25 11.350 1745.52049279 28092572244.2 93774686429.9 98.09797
04597 0 0 0 0 0 0 0 0 0
0
0.276 0.25 10.568 1574.99156118 22752970561.4 66486126421.6 96.08934
5847 0 0 0 0 0 0 0 0 0
0
0.358 0.25 9.166 1443.5957244 14329276096.3 55230585564.6 90.17245
62302 0 0 0 0 0 0 0 0 0
0
0.439 0.25 7.688 1251.57802147 8732435314.43 33036584674.9 81.95871
68781 0 0 0 0 0 0 0 0 0
0
0.52 0.25 6.180 1103.32524091 5201111970.21 21345813111.1 73.93068
86526 0 0 0 0 0 0 0 0 0
0
0.602 0.25 4.743 935.497360162 3015967853.39 14432955918.7 67.86061
95141 0 0 0 0 0 0 0 0 0
0
0.667 0.25 3.633 780.044102411 1763264032.52 11476227574.9 61.73410
40033 0 0 0 0 0 0 0 0 0
0
0.683 0.25 3.383 741.513027439 1518017441.91 10767128710.6 60.58369
30668 0 0 0 0 0 0 0 0 0
0
0.732 0.25 2.735 607.313343432 991342617.2 8673770279.41 56.99370
57952 0 0 0 0 0 0 0 0 0
0

SNL100−Blade−00.dat

93

0.764 0.25 2.348 504.129669833 717762355.701 7390865225.39 54.56996
68914 0 0 0 0 0 0 0 0 0
0
0.846 0.25 1.380 359.208951592 346053289.357 4891933465.82 48.52280
76344 0 0 0 0 0 0 0 0 0
0
0.894 0.25 0.799 289.101269688 202003563.338 3643785418.11 44.80475
15521 0 0 0 0 0 0 0 0 0
0
0.943 0.25 0.280 212.387576133 79977867.6009 1750824270.59 35.16650
80603 0 0 0 0 0 0 0 0 0
0
0.957 0.25 0.210 126.567930947 28301407.6971 710938933.696 29.57022
01957 0 0 0 0 0 0 0 0 0
0
0.972 0.25 0.140 97.8436734749 12538819.906 327836477.308 22.85936
18867 0 0 0 0 0 0 0 0 0
0
0.986 0.25 0.070 64.3764457781 3242088.20298 92979715.3976 15.04042
86362 0 0 0 0 0 0 0 0 0
0
1.0 0.25 0.000 5.1221452 2023.59891257 47155.1000883 1.246275
59905 0 0 0 0 0 0 0 0 0
0
−−−−−−−−−−−−−−−−−−−−−− BLADE MODE SHAPES −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0.0621412002672 BldFl1Sh(2) − Flap mode 1, coeff of x^2
1.94285689321 BldFl1Sh(3) − , coeff of x^3
−3.17213960891 BldFl1Sh(4) − , coeff of x^4
4.10515507636 BldFl1Sh(5) − , coeff of x^5
−1.93801356093 BldFl1Sh(6) − , coeff of x^6
−1.20226576502 BldFl2Sh(2) − Flap mode 2, coeff of x^2
5.0093940699 BldFl2Sh(3) − , coeff of x^3
−22.1778418001 BldFl2Sh(4) − , coeff of x^4
35.0436041897 BldFl2Sh(5) − , coeff of x^5
−15.6728906946 BldFl2Sh(6) − , coeff of x^6

SNL100−Blade−00.dat

1.14406900084 BldFl1Sh(2) − Edge mode 1, coeff of x^2
0.569475113272 BldFl1Sh(3) − , coeff of x^3
−2.16181502454 BldFl1Sh(4) − , coeff of x^4
2.52332522063 BldFl1Sh(5) − , coeff of x^5
−1.07505431021 BldFl1Sh(6) − , coeff of x^6

SNL100−Blade−00.dat

94

Appendix B

BroncoBlade Source Code

95

#!/usr/bin/python

###
#−−
This is the master file for creating the Abaqus Input Files
#−−
###
import site
import sys
import os
from subprocess import *
import subprocess
from numpy import *
import pickle as pickle
sdir=" /home/quinlan/thesis/gen_mesh/BroncoBladev0.0/" # Source Directory’s Global loc
ation
site.addsitedir(sdir)
from bladeclasses import *
set_printoptions(precision=10,suppress=True) # This limits the n
umber of decimal places printed
print " \n\n ====== BroncoBlade v0.0 ====== \n\n "

parse arguments −−−−−−−−−−−−−−−−−−−−−−
infile=str(sys.argv[−1]) # Reads input file
from command line (final entry)
if os.path.isfile(infile): print " Input file "+infile+" found. \n "
else: print " ERROR: Input file "+infile+" not found."

modelname=infile.split(’ .’)[0]

optcode=list(sys.argv[1:−1]) # Reads options cod
e from command line
optlist=process_arguments(optcode) # Turn options code
 into a list of usable variables

execfile(sdir+" intro.py") # reads in external f
iles for use in scripts; prints "Intro is done" upon completion

#===
−−−−− Blade Module −−−−−−−−−−−
Create the overall blade mesh
if ’ B’ in optlist[’ Blade’]:
 print " Blade Module Started... \n "
#===
 execfile(sdir+" buildblade.py") # This script builds
the blade and creates the elements and nodes
 execfile(sdir+" printblade.py") # This creates the mes
h for the entire blade
 if ’ s’ in optlist[’ Blade’]:
 f=open(" storedstations.dat"," w")
 pickle.dump(Stations,f)
 f.close()
 g=open(" asecAREA.dat"," w")
 pickle.dump(asecAREA,g)
 g.close()
 print " \n Stations have been saved in ’storedstations.dat’\n"
 print " \n Blade Module Completed \n "
#===
−−−−−− Sections Module −−−−−−−−−
Calculate the structural properties for each station
if ’ S’ in optlist[’ Sections’]:

BroncoBlade.py

96

 print " \n Sections Module Started... \n "
#===
 if ’ l’ in optlist[’ Sections’]:
 f=open(" storedstations.dat"," r")
 Stations=pickle.load(f)
 print " \n Stations have been loaded from ’storedstations.dat’ \n "

 execfile(sdir+" buildstasections.py") # create stations for
both ends of each station
 num_stas=34 # number of stat
ions to be used !!! This should be read from somewhere
for job in [14]: # TROUBLE SHOOTI
NG: uncomment this to investigate a single section,
 # ... instead of
 having to cycle through all of them
 for job in (range(num_stas)): # Start cycling
through sections
 print " −−−−−−−−−−−−\n \n Begin Station "+str(job)+" \n" # Print current job bein
g worked on
 dirname=" dir_Section"+str(job)
 # Making section directory for storing FE run files
 if os.path.isdir(dirname):
 print " Directory "+dirname+" exists and will be used for section file storage."
 else:
 os.system(" mkdir "+dirname)
 print " Directory "+dirname+" has been created and will be used for section file storage."
 if os.path.isfile(" Section"+str(job)+" .inp"):
 os.system(" mv Section"+str(job)+" .* "+dirname)

 Csta=Stations[’ sta’+str(job)] # store Current S
tation in a local variable
 gz=float(sta_list[job][4])*100 # Global z locat
ion of the station. Used to determine how the station section is treated
 execfile(sdir+" staNodesElms.py") # Generates Nodes a
nd Elements for the station sectio
 execfile(sdir+" printstasections.py") # This creates abaqus
input files to extract the stiffness of each section of the blade
 execfile(sdir+" getEI.py") # Retrieves displa
cement information and calculates stiffness

 print " chordwise = " + str(cwseed) + " spanwise = " + str(spanseed)
 print " Element 1 area = " +str(SkinElements[0].area)
 print " Element 1 aspect = " +str(SkinElements[0].lensw/SkinElements[0].lencw)

 if ’ s’ in optlist[’ Sections’]:
 f=open(" storedstations.dat"," w")
 pickle.dump(Stations,f)
 print " \n Stations have been saved in ’storedstations.dat’\n"
 g=open(" asecAREA.dat"," w")
 pickle.dump(asecAREA,g)
 g.close()

 print " \n Sections Module Completed. \n "

os.system("mv Section"+str(job)+"* "+dirname)
print "Files moved for Section " + str(job)
#subprocess.call([’mv Section* section−jobs’],shell=True) # Clean up work
ing directory; store abaqus files in ’station−jobs’

#===
−−−−−− Mode Module −−−−−−−−−−

BroncoBlade.py

97

Get mode shapes and natural frequencies
if ’ M’ in optlist[’ Modes’]:
 print " \n Modes Module Started... \n "
#===
 if ’ l’ in optlist[’ Modes’]:
 f=open(" storedstations.dat"," r")
 Stations=pickle.load(f)
 print " \n Stations have been loaded from ’storedstations.dat’ \n "

 execfile(sdir+" printFreqTest.py") # print frequency an
alysis
 execfile(sdir+" getModes.py")
 execfile(sdir+" genFAST.py")

 print " \n Modes Module Completed. \n "

#===
−−−−−− Loads Module −−−−−−−−−−−−−−−−−−
Apply Aeroloads from FAST to the total Blade model
if ’ L’ in optlist[’ Loads’]:
 print " \n Loads Module Started... \n "
#===
 f=open(" storedstations.dat"," r")
 Stations=pickle.load(f)
 g=open(" asecAREA.dat"," r")
 asecAREA=pickle.load(g)
 print " \n Stations have been loaded from ’storedstations.dat’ \n "

 execfile(sdir+" readelm.py")
 execfile(sdir+" write−fastloads.py")
 print " Static analysis input file written"
 execfile(sdir+" write−fastbuckle.py")
 print " Buckling analysis input file written"

 print " \n Loads Module Completed. \n "

#===
print " \n All modules finished."
print " \n BroncoBlade is done."

BroncoBlade.py

98

#−−−

Read input file from arguments, then open it and extract control values (d
uplicates code in bar.py)
#−−−

print infile
cf = open(infile)
Controls={}
rc=cf.readlines()
for ln in rc:
 lcont=ln.split()
 Controls[lcont[0]]=lcont[1]
check values

print " Normalized Airfoil definitions are in the directory: " , Controls[’ dir’]
print " The airfoil schedule file is: ", Controls[’ sched’]
print " The total length of the blade is: ", Controls[’ length’]
#−−−

Read in the Blade file

#−−−

f = open(Controls[’ sched’])
Separate strings into lists for each station

sta_list=[] # initialize station list

read_parameters = f.readlines()
for ln in read_parameters[1:]: # skips first line header

 sta=ln.split()
 sta_list.append(sta)
number_of_stations=len(sta_list)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Initialize Stations
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Stations = {} # initialize station dictionary (this
 might work better as a list, but that change would take some work)
for i in range(number_of_stations):
 stanum=" sta"+str(i)
 Stations[stanum]=Station(i) # create instances of stations
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Read seeding parameters
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Asize=float(Controls[’ Asize’])

Esize=float(Controls[’ Esize’])

intro.py

99

spar1=float(Controls[’ spar1’])

spar2=float(Controls[’ spar2’])

seed=Controls[’ seeds’][1:−1].split(’ ,’)
Aseed=int(seed[0])

Bseed=int(seed[1])

Cseed=int(seed[2])

Dseed=int(seed[3])

Eseed=int(seed[4])

cwseed=(Aseed+Bseed+Cseed+Dseed+Eseed)*2 # total of each regional seed (x2 f
or top and bottom halves)
z_sparstart=float(Controls[’ SPstrt’])
z_sparend=float(Controls[’ SPend’])
Read layup
if os.path.isfile(" layup.txt"):
 print " Layup file ’layup.txt’ found."
 Lay=Layup(" layup.txt")
else: print " \n Warning: Layup file ’layup.txt’ not found."

print " \n Intro is done \n "

intro.py

100

This module contains classes for the blade stations

from numpy import *
from pylab import *
from scipy import interpolate
import warnings
warnings.simplefilter(’ ignore’, np.RankWarning)
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

def xyzplot(x,y,z,xlab=" X−vals",ylab=" Y−vals",zlab=" Z−lab"):
 fig = plt.figure()
 ax = Axes3D(fig)
 for c, m, in [(’ r’, ’ o’), (’ b’, ’ ^’)]:
 ax.scatter(x, y, z, c, marker=m)
 ax.set_xlabel(xlab)
 ax.set_ylabel(ylab)
 ax.set_zlabel(zlab)
 plt.show()

def process_arguments(optcode):
 optlist={’ Blade’:[’ off’],’ Sections’:[’ off’],’ Modes’:[’ off’],’ Loads’:[’ off’]}
 for i in optcode:
 if list(i)[1] ≡ ’ B’:
 optlist[’ Blade’]=list(i)[1:]
 print " Blade module on"
 elif list(i)[1] ≡ ’ S’:
 optlist[’ Sections’]=list(i)[1:]
 print " Sections module on"
 if ’ r’ in list(i)[1:]: print " with FE analysis on"
 if ’ p’ in list(i)[1:]: print " with FE post−processing on"
 elif list(i)[1] ≡ ’ M’:
 optlist[’ Modes’]=list(i)[1:]
 if ’ r’ in list(i)[1:]: print " with FE analysis on"
 if ’ p’ in list(i)[1:]: print " with FE post−processing on"
 elif list(i)[1] ≡ ’ L’:
 optlist[’ Loads’]=list(i)[1:]
 idx=optcode.index(’ −L’)+1 # Since the parser will rea
d the results.elm file as a different
 optlist[’ Loads’].append(optcode[idx]) # argument and not a sub−ar
gument, we have to append it here to
 print " FAST element load file = "+optcode[idx]
 optcode.pop(idx) # the list of ’Loads’ sub−a
rguments, and then delete it from the argument list (optcode)
 else:
 print " Warning: "+str(list(i)[1])+" is not a valid argument. It will be ignored"
 return optlist

def spline(x,y,xrange,order=20):
 pf=polyfit(x,y,order)
 spy=polyval(pf,xrange)
 return spy

def splint(x,y,xrange):
 tck = interpolate.splrep(x,y,s=0)
 spy = interpolate.splev(xrange,tck,der=0)
 return spy

class Station:
 def __init__(self,jobnum):
 self.stanum=jobnum

bladeclasses.py

101

 def setfoil(self,airfoil,directory):
 self.foilname = airfoil
 foilfile = directory + " /" + airfoil + " .txt"
 self.normalized = genfromtxt(foilfile)
 self.x=self.normalized[:,0]
 self.y=self.normalized[:,1]
 self.nx=self.x # these 2 are just for reference
 self.ny=self.y #

 def plotfoil(self):
 plot(self.x,self.y)
 title(self.foilname)
 show()

 def top_bot(self):
 for position, item in enumerate(self.x):
 if item ≡ self.t:
 self.half_t=position
 if item ≡ self.h:
 self.half_h=position

 if self.x[0] < 0:
 self.half=self.half_t
 else:
 self.half=self.half_h
 self.h1_x=self.x[0:self.half+1]
 self.h1_y=self.y[0:self.half+1]
 self.h2_x=self.x[self.half:len(self.x)]
 self.h2_y=self.y[self.half:len(self.x)]
 self.h2_x=concatenate((self.h2_x,self.h1_x[0:1]))
 self.h2_y=concatenate((self.h2_y,self.h1_y[0:1]))

 def chordwise_seed(self,z,limz,Asize,Esize,spar1,spar2):
 self.h=min(self.x)
 self.t=max(self.x)
 self.hr=self.h+Asize
 self.tr=self.t−Esize
 self.sp1=spar1
 self.sp2=spar2
 self.crd=self.t−self.h
 [seedA,seedB,seedC,seedD,seedE]=self.seed

These could be changed to some non−linear seeding function
X−seeding for blade tip
 if z > limz:
 self.checker=" tip"
 self.Lead=Lead=linspace(self.h,(self.h+self.crd*.10942),seedA+seedB+
1)
 self.Spar=Spar=linspace(self.h+self.crd*.10942,self.h+self.crd*.6405
8,seedC+1)
 self.Trail=Trail=linspace(self.h+self.crd*.64058,self.t,seedD+seedE)
 self.cws=concatenate([Lead[:−1],Spar[:−1],Trail])
X−seeding for main part of blade
 else:
 self.checker=" root"
 self.A=A=linspace(self.h,self.hr,seedA+1)
 self.B=B=linspace(self.hr,self.sp1,seedB+1)
 self.C=C=linspace(self.sp1,self.sp2,seedC+1)
 self.D=D=linspace(self.sp2,self.tr,seedD+1)
 self.E=E=linspace(self.tr,self.t,seedE)

bladeclasses.py

102

 self.cws=concatenate([A[:−1],B[:−1],C[:−1],D[:−1],E])

 def spline(self,x,y,xrange,weights=1,order=10):
 w=ones(len(x))
 xmax=x.argmax()
 w[xmax]=100000000
 pf=polyfit(x,y,order)
 spy=polyval(pf,xrange)
 return spy

 def combine_foil(self,y1,y2,lead_y,lead_x,N):
 if y2[N]/lead_y[0] < 0: # make sure that x and y are continuous
 ylead=lead_y[::−1]
 xlead=lead_x[::−1]
 else:
 ylead=lead_y
 xlead=lead_x
 self.y=concatenate((y1[N:][:−2], array([(y1[−2]+y2[−1])/2]),
 y2[N:][::−1] , ylead))
 self.x=concatenate((self.cws[N:][:−2], array([(self.cws[−2]+self.cws[−1
])/2]), self.cws[N:][::−1], xlead))

 def resize(self,scale):
 self.x=self.x*scale
 self.y=self.y*scale

 def xshift(self,meters):
 self.x=self.x−(min(self.x) + meters)

 def yshift(self,offset=0):
 x_min_index=self.x.argmin()
 self.y_at_xmin=self.y[x_min_index]
 self.y=self.y−self.y_at_xmin+offset

 def set_tcr(self,tcr):
 chrd=max(self.x)−min(self.x)
 thck=max(self.y)−min(self.y)
 tc=thck/chrd
 adjust=tcr/tc
 self.y=self.y*adjust

 def rotate(self,twist):
 theta=radians(twist)
 self.cx=self.x
 self.cy=self.y
 self.rx=cos(theta)*self.cx−sin(theta)*self.cy
 self.ry=sin(theta)*self.cx+cos(theta)*self.cy
 self.x=self.rx
 self.y=self.ry

 def zval(self,z):
 self.z=z

 def coords(self):
 self.xyz=column_stack((self.x,self.y,ones(len(self.x))*self.z))

 def graphdata(self):
 self.thickness=max(self.y)−min(self.y)
 self.local_le=min(self.x) # local implies neglecting the twist of the s
tation in global coordinates
 self.local_te=max(self.x)

bladeclasses.py

103

 self.chord=self.local_te−self.local_le

class SpanSpline:
 def __init__(self,node,Stations):
 self.num = node
 self.sx=[] # Station X values
 self.sy=[]
 self.sz=[]
 self.zzz=Stations[’ sta1’].z
 for i in range(len(Stations)):
 sn=" sta"+str(i)
 self.sx.append(Stations[sn].xyz[self.num][0])
 self.sy.append(Stations[sn].xyz[self.num][1])
 self.sz.append(Stations[sn].xyz[self.num][2])

 def smooth(self,sta_rtsplit,z_rtsplit):
 dividers=self.spansplit
 seeds=self.splitseed
 self.z=[]

 if self.spansplit > 0:
 for i in range(len(seeds)): # distribution of ’z’ over entire bl
ade (root and tip)
 self.z=concatenate((self.z[:−1], linspace(dividers[i],dividers
[i+1],seeds[i])))
 for i in range(len(self.z)): # Find index of root/tip transi
sition (end of spar)
 if self.z[i] ≡ z_rtsplit:
 index_sparend=i
 # seed division
 self.zr=self.z[:index_sparend+1] # root z seeds (includes transitio
n point)
 self.zt=self.z[index_sparend:] # tip z seeds (includes transiti
on point)
 # value division
 self.szr=self.sz[:sta_rtsplit+1] # root z−vals
 self.szt=self.sz[sta_rtsplit:] # tip z−vals
 self.sxr=self.sx[:sta_rtsplit+1] # root x−vals
 self.sxt=self.sx[sta_rtsplit:] # tip x−vals
 self.syr=self.sy[:sta_rtsplit+1] # root y−vals
 self.syt=self.sy[sta_rtsplit:] # tip y−vals

 self.xr=splint(self.szr,self.sxr,self.zr)
 self.xt=splint(self.szt,self.sxt,self.zt)
 self.x=concatenate((self.xr,self.xt[1:]))
 self.yr=splint(self.szr,self.syr,self.zr)
 self.yt=splint(self.szt,self.syt,self.zt)
 self.y=concatenate((self.yr,self.yt[1:]))

 self.xyz=hstack((reshape(self.x,(−1,1)), reshape(self.y,(−1,1)), re
shape(self.z,(−1,1))))

 else:
 self.x=linspace(self.sx[0],self.sx[1],self.splitseed)
 self.y=linspace(self.sy[0],self.sy[1],self.splitseed)
 self.z=linspace(0,self.zzz,self.splitseed)
 self.xyz=hstack((reshape(self.x,(−1,1)), reshape(self.y,(−1,1)), re
shape(self.z,(−1,1))))

class Spar:
 def __init__(self,spline_top,spline_bot,sparnodes,start, end):

bladeclasses.py

104

 self.top=spline_top
 self.bot=spline_bot
 self.nn=sparnodes # Nodes through spar thickness (from
 top surface to bottom surface)
 self.z_start=start
 self.z_end=end

 for i in range(len(self.top)):
 if self.top[i][2] ≤ start:
 startloc=i
 if self.top[i][2] ≤ end:
 endloc=i
 self.i_start=startloc
 self.i_end=endloc

 def interp(self,full=’ full ’):
 self.sparx=[]
 self.spary=[]
 self.sparz=[]
 if full ≡ ’ full ’:
 for i in range(len(self.top))[self.i_start:self.i_end]:
 self.sparx.append(linspace(self.bot[i][0],self.top[i][0],self.nn
))
 self.spary.append(linspace(self.bot[i][1],self.top[i][1],self.nn
))
 self.sparz.append(ones(self.nn)*self.top[i][2])
 if full ≡ ’ stasec’:
 for i in range(len(self.top)):
 self.sparx.append(linspace(self.bot[i][0],self.top[i][0],self.nn
))
 self.spary.append(linspace(self.bot[i][1],self.top[i][1],self.nn
))
 self.sparz.append(ones(self.nn)*self.top[i][2])
 self.xyz=hstack((reshape(self.sparx,(−1,1)), reshape(self.spary,(−1,1))
, reshape(self.sparz,(−1,1))))

class Node:
 def __init__(self,num,spline_num,span_num,x,y,z):
 self.num=num
 self.spline=spline_num
 self.span=span_num
 self.x=x
 self.y=y
 self.z=z
 self.output=str(self.num)+" , "+str(self.x)+" , "+str(self.y)+" , "+str(self.z
)

class Element: # 8 noded shell element
 def __init__ (self,num,corner1,corner2,corner3,corner4,side5,side6,side7,sid
e8,elx,ely,elz,lencw,lensw):
 self.num=num
 self.n1=corner1
 self.n2=corner2
 self.n3=corner3
 self.n4=corner4
 self.n5=side5
 self.n6=side6
 self.n7=side7
 self.n8=side8
 self.lencw=lencw
 self.lensw=lensw

bladeclasses.py

105

 self.area=lencw*lensw
 self.nodes=[self.n1,self.n2,self.n3,self.n4,self.n5,self.n6,self.n7,self
.n8]
 self.output=str(self.num)+" , "+str(self.nodes)[1:][:−1]
 self.elcen=[elx,ely,elz]

 def base_sort_cw(self,tex):
 if self.elcen[0] < −0.75:
 cw=0
 if −0.75 < self.elcen[0] ∧ self.elcen[0] < 0.75:
 cw=1
 if 0.75 < self.elcen[0] ∧ self.elcen[0] < (tex−1.0):
 cw=2
 if (tex−1.0) < self.elcen[0]:
 cw=3
 self.cw=cw

 def sort_sw(self,spansplit,aerob):
 sw=−1
 for line in spansplit:
 if self.elcen[2] > line:
 sw+=1
 self.sw=sw
 asnum=−1
 for line in aerob:
 if self.elcen[2] > line:
 asnum+=1
 self.asnum=asnum

class Layup:
 def __init__ (self,layfile=’ layup.txt’):
 matfile=open(layfile)
 mf=matfile.readlines()
 Lay=[]
 for ln in mf:
 stan=ln.split()
 Lay.append(stan)
 self.lay=Lay
 def get_layer(self,m,n):
 sta=n+2

reinforcement
 rein_t2=0
 rein_m=0
 if m≡0:
 rein_t1=float(self.lay[sta][6])
 rein_m1=’ foam’
 label=" LE−panel"
 if m≡1:
 rein_t1=float(self.lay[sta][3])
 rein_m1=’ uniax’
 label=" SparCap−reinf"
 if m≡2:
 rein_t1=float(self.lay[sta][7])
 rein_m1=’ foam’
 label=" Aft−panel"
 if m≡3:
 rein_t1=float(self.lay[sta][4])
 rein_t2=float(self.lay[sta][5])
 label=" TE−reinf"
 rein_m1=’ uniax’

bladeclasses.py

106

 rein_m2=’ foam’

 if rein_t1 ≡ 0:
 rein1=" ** delete this line "
 else:
 rein1=(str(rein_t1/1000) +’ , 3, ’+ rein_m1 +’ , 90, ’ + label)

 if rein_t2 ≡ 0:
 rein2=" ** delete this line "
 else:
 rein2= (str(rein_t2/1000) + ’ , 3, foam, 90, TE−foam’)
root build−up
 root_t=float(self.lay[sta][2])

 if root_t ≡ 0:
 root=" ** no root build−up"
 else:
 root=(str(root_t/1000) +’ , 3, triax, 90, root−buildup ’)
 return [root,rein1,rein2]

class Section:
 def __init__ (self,nodes):
 self.nodes=nodes

bladeclasses.py

107

Build the Blade
#−−−−−−−−−−−−−−−−−−−−−−−
stationzvals=[]
for i in range(number_of_stations):
 stanum=" sta"+str(i)
 Stations[stanum].setfoil(sta_list[i][0],Controls[’ dir’]) # get airfoil
 z=float(sta_list[i][4])*float(Controls[’ length’])
 stationzvals.append(z)
#−−−
Seed stations chordwise (create spline)
#−−−
Shift leading edge into position
 Stations[stanum].xshift(float(sta_list[i][3]))
Adjust thickness to chord ratio
 Stations[stanum].set_tcr(float(sta_list[i][5]))
Apply Chord Length
 Stations[stanum].resize(float(sta_list[i][1]))
 Stations[stanum].seed=[Aseed,Bseed,Cseed,Dseed,Eseed]
 Stations[stanum].chordwise_seed(z,z_sparend,Asize,Esize,spar1,spar2)
 Stations[stanum].oldx =Stations[stanum].x
 Stations[stanum].oldy =Stations[stanum].y
Split the normalized foil into top and bottom
 Stations[stanum].top_bot()
Spline ’y’ values for top and bottom
 Stations[stanum].y1=y1=Stations[stanum].spline(Stations[stanum].h1_x,Station
s[stanum].h1_y,Stations[stanum].cws)
 Stations[stanum].y2=y2=Stations[stanum].spline(Stations[stanum].h2_x,Station
s[stanum].h2_y,Stations[stanum].cws)
Smooth out leading edge
 N=Aseed+Bseed
 Stations[stanum].lead_x = lead_x = concatenate((Stations[stanum].cws[:N][::−
1],Stations[stanum].cws[:N]))
 Stations[stanum].lead_y = lead_y = concatenate((y1[:N][::−1],y2[:N]))
 Stations[stanum].lead_seed = lead_seed = linspace(min(lead_y),max(lead_y),le
n(lead_y)+1)
 Stations[stanum].new_x = new_x = spline(lead_y,lead_x,lead_seed) # seed the
 leading edge with an odd number of nodes
Recombine top, bottom, and leading edge
 Stations[stanum].combine_foil(y1, y2, lead_seed, new_x, N)
Shift the average ’y’ value
 Stations[stanum].yshift()
Calculate values for graphs
 Stations[stanum].graphdata()
Rotate
 Stations[stanum].rotate(float(sta_list[i][2]))
Bring in the spanwise location, ’z’
 Stations[stanum].zval(z)
Generate a printable summary
 Stations[stanum].coords()
Find root/tip transition station
qqq=[]
for s in range(len(Stations)):
 qqq.append(abs(Stations[’ sta’+str(s)].z−z_sparend))
minq=min(qqq)
for s in range(len(Stations)):
 if qqq[s] ≡ minq:
 sta_rtsplit=s

z_rtsplit=Stations[’ sta’+str(sta_rtsplit)].z
#−−−
Create Spanwise Splines *****FIX ME FIX ME FIX ME*****

buildblade.py

108

#−−−
num_spsp=len(Stations[’ sta0’].xyz) # number of spanwise splines
SpSpline={}
Spxyz=[]
spansplit=list(stationzvals)
splitseed=[5.0, 3.0, 3.0, 3.0, 3.0, 9.0, 5.0, 15.0, 15.0, 15.0, 19.0, 23.0, 15.0
, 15.0, 15.0, 23.0, 23.0, 25.0, 69.0, 71.0, 73.0, 75.0, 61.0, 17.0, 49.0, 35.0,
83.0, 53.0, 53.0, 17.0, 19.0, 19.0, 19.0]

for i in range(num_spsp):
 spnum=" spsp"+str(i)
 SpSpline[spnum]=SpanSpline(i,Stations)
 SpSpline[spnum].splitseed=splitseed
 SpSpline[spnum].spansplit=spansplit
 SpSpline[spnum].smooth(sta_rtsplit,z_rtsplit)
 Spxyz.append(SpSpline[spnum].xyz)
spanseed=len(SpSpline[’ spsp0’].z) # there’s probably a better way to do this
#−−
Create Spars
#−−
sparmesh=21
spar1_top=0
spar1_bot=2*(Cseed+Dseed+Eseed)
spar2_top=Cseed
spar2_bot=Cseed+2*(Dseed+Eseed)
te_top=Cseed+Dseed
te_bot=Cseed+Dseed+2*Eseed
L_edge=cwseed−Aseed−Bseed
T_edge=Cseed+Dseed+Eseed
Spar1 = Spar(SpSpline[’ spsp’+str(spar1_top)].xyz,SpSpline[’ spsp’+str(spar1_bot)].x
yz,sparmesh,z_sparstart,z_sparend)
Spar1.interp()
Spar2 = Spar(SpSpline[’ spsp’+str(spar2_top)].xyz,SpSpline[’ spsp’+str(spar2_bot)].x
yz,sparmesh,z_sparstart,z_sparend)
Spar2.interp()
#−−
Create Skin Nodes
#−−
Nodes=[]
SkinNodes=[] # 2−D matrix of nodes
nn=1
for i in range(cwseed):
 tmp=[]
 for j in range(spanseed):
 tn=Node(nn,i,j,SpSpline[" spsp"+str(i)].xyz[j][0],SpSpline[" spsp"+str(i)].x
yz[j][1],SpSpline[" spsp"+str(i)].xyz[j][2])
 tmp.append(tn)
 nn+=1
 SkinNodes.append(tmp)
#−−
Create Spar Nodes
#−−
SparNodes=[]
SparNodes1=[]
SparNodes2=[]
ss=0
for i in range(spanseed)[Spar1.i_start:Spar1.i_end]:
 tmp=[]
 for j in range(sparmesh):
 tn=Node(nn,i,j,Spar1.xyz[ss][0],Spar1.xyz[ss][1],Spar1.xyz[ss][2])
 if j ≡ 0: # Top and bottom of the spar is tied to

buildblade.py

109

the skin nodes along that spline

 tn=SkinNodes[spar1_bot][i]
 elif j ≡ (sparmesh−1):
 tn=SkinNodes[spar1_top][i]
 else:
 nn+=1
 ss+=1
 tmp.append(tn)
 SparNodes.append(tmp)
 SparNodes1.append(tmp)

ss=0
for i in range(spanseed)[Spar2.i_start:Spar2.i_end]:
 tmp=[]
 for j in range(sparmesh):
 tn=Node(nn,i,j,Spar2.xyz[ss][0],Spar2.xyz[ss][1],Spar2.xyz[ss][2])
 if j ≡ 0: # Top and bottom of the spar is tied to
the skin nodes along that spline
 tn=SkinNodes[spar2_bot][i]
 elif j ≡ (sparmesh−1):
 tn=SkinNodes[spar2_top][i]
 else:
 nn+=1
 ss+=1
 tmp.append(tn)
 SparNodes.append(tmp)
 SparNodes2.append(tmp)
Create Node list (instead of matrix)
Nodes=[]
for i in range(len(SkinNodes)):
 for j in range(len(SkinNodes[0])):
 Nodes.append(SkinNodes[i][j])
for i in range(len(SparNodes)):
 for j in range(len(SparNodes[0])):
 Nodes.append(SparNodes[i][j])
#−−
Create Elements
#−−
SkinElements=[]
elemnum=1
Skin Elements
spar_end=round(float(Controls[’ SPend’])/float(Controls[’ length’])*spanseed−2) #
end spar length / total length * seed − 2
cutoff=round(90/float(Controls[’ length’])*spanseed−2) # desired cut off of 90m
/ total length * seed − 2
span=range(spanseed)
chrd=range(cwseed)
chrd.append(0)

for a in range(cwseed/2):
 for b in range(int(spanseed/2)):
 m=a*2
 n=b*2
 # Node Numbers for each of the 8 node positions (4 corners + 4 sides)
 c1=SkinNodes[chrd[m]][span[n]]
 c2=SkinNodes[chrd[m+2]][span[n]]
 c3=SkinNodes[chrd[m+2]][span[n+2]]
 c4=SkinNodes[chrd[m]][span[n+2]]
 s5=SkinNodes[chrd[m+1]][span[n]]
 s6=SkinNodes[chrd[m+2]][span[n+1]]

buildblade.py

110

 s7=SkinNodes[chrd[m+1]][span[n+2]]
 s8=SkinNodes[chrd[m]][span[n+1]]
 # area and side lengths
 elencw=sqrt((c2.x−c1.x)**2+(c2.y−c1.y)**2+(c2.z−c1.z)**2) # element len
gth in chordwise direction
 elensw=sqrt((c4.x−c1.x)**2+(c4.y−c1.y)**2+(c4.z−c1.z)**2) # element len
gth in spanwise direction
 # Locations of Element Center
 elx=(c1.x + c3.x) *0.5
 ely=(c1.y + c3.y) *0.5
 elz=(c1.z + c3.z) *0.5
 # Create Element instance
 el=Element(elemnum,c1.num,c2.num,c3.num,c4.num,s5.num,s6.num,s7.num,s8.n
um,elx,ely,elz,elencw,elensw)
 elemnum+=1
 SkinElements.append(el)

Spar Elements −−− Check on nodal ordering!!!!!!!!!!!!!!
SparElements=[]
for i in range(len(SparNodes1)/2):
 for j in range(len(SparNodes1[0])/2):
 m=2*i
 n=2*j
 c1=SparNodes1[m][n]
 c2=SparNodes1[m+2][n]
 c3=SparNodes1[m+2][n+2]
 c4=SparNodes1[m][n+2]
 s5=SparNodes1[m+1][n]
 s6=SparNodes1[m+2][n+1]
 s7=SparNodes1[m+1][n+2]
 s8=SparNodes1[m][n+1]
 # area and side lengths
 elencw=sqrt((c2.x−c1.x)**2+(c2.y−c1.y)**2+(c2.z−c1.z)**2) # element len
gth in chordwise direction
 elensw=sqrt((c4.x−c1.x)**2+(c4.y−c1.y)**2+(c4.z−c1.z)**2) # element len
gth in spanwise direction
 # Locations of Element Center
 elx=(c1.x + c3.x) *0.5
 ely=(c1.y + c3.y) *0.5
 elz=(c1.z + c3.z) *0.5
 el=Element(elemnum,c1.num,c2.num,c3.num,c4.num,s5.num,s6.num,s7.num,s8.n
um,elx,ely,elz,elencw,elensw)
 elemnum+=1
 SparElements.append(el)
for i in range(len(SparNodes2)/2):
 for j in range(len(SparNodes2[0])/2):
 m=2*i
 n=2*j
 c1=SparNodes2[m][n]
 c2=SparNodes2[m+2][n]
 c3=SparNodes2[m+2][n+2]
 c4=SparNodes2[m][n+2]
 s5=SparNodes2[m+1][n]
 s6=SparNodes2[m+2][n+1]
 s7=SparNodes2[m+1][n+2]
 s8=SparNodes2[m][n+1]
 # area and side lengths
 elencw=sqrt((c2.x−c1.x)**2+(c2.y−c1.y)**2+(c2.z−c1.z)**2) # element len
gth in chordwise direction
 elensw=sqrt((c4.x−c1.x)**2+(c4.y−c1.y)**2+(c4.z−c1.z)**2) # element len
gth in spanwise direction

buildblade.py

111

 # Locations of Element Center
 elx=(c1.x + c3.x) *0.5
 ely=(c1.y + c3.y) *0.5
 elz=(c1.z + c3.z) *0.5
 el=Element(elemnum,c1.num,c2.num,c3.num,c4.num,s5.num,s6.num,s7.num,s8.n
um,elx,ely,elz,elencw,elensw)
 elemnum+=1
 SparElements.append(el)
Elements=SkinElements+SparElements
#−−
Sections
#−−
sectionsplit0=[0.0,0.5,0.7,0.9,1.1,1.3,2.4,2.6,4.7,6.8,8.9,11.4,14.6,16.3,17.9,1
9.5,22.2,24.9,27.6,35.8,43.9,52.0,60.2,66.7,68.3,73.2,76.4,84.6,89.4,94.3,95.7,9
7.2,98.6,100.0]
sectionsplit=stationzvals
Initialize layup sections with Labels
chrd_sec=[" L"," S"," A"," T"]
span_sec=range(34)[1:]
sec=[]
sparsec=[]
for c in chrd_sec:
 row=[]
 for s in span_sec:
 label=c+str(s)
 derp=[]
 derp.append(label)
 row.append(derp)
 sec.append(row)
Initialize aero sections (applied force sections)
execfile(sdir+" readaerosections.py")
aero_borders=[]
for a in Asecs:
 aero_borders.append(a.rnodes−0.5*a.drnodes−hubrad)
aerosec=[] # holds skin elements associate with each of the aerodynamic blade
sections used in FAST
for i in range(len(aero_borders)):
 derp=[]
 nerp=[]
 derp.append(" AeroE"+str(i))
 aerosec.append(derp)
trail_edge_num=Cseed+Dseed+Eseed−1
Sort Elements
for e in SkinElements:
#−−−non−tip
 if e.elcen[2] < 94.4:
#−find the x−position of the trailing edge
 trailing_edge=SpSpline[’ spsp’+str(trail_edge_num)]
 find_trail=polyfit(trailing_edge.z,trailing_edge.x,5)
 tex=polyval(find_trail,e.elcen[2])
 # sort chordwise
 e.base_sort_cw(tex)
#−−−tip
 if e.elcen[2] > 94.4:
 e.cw=0
sort spanwise (base and tip)
 e.sort_sw(sectionsplit[:−1],aero_borders)
 sec[e.cw][e.sw].append(e.num)
 aerosec[e.asnum].append(e.num)
Sort Spanwise Spar
for s in span_sec:

buildblade.py

112

 sparlabel=" Spar"+str(s)
 berp=[]
 berp.append(sparlabel)
 sparsec.append(berp)
for e in SparElements:
 e.sort_sw(spansplit,aero_borders)
 sparsec[e.sw].append(e.num)
Get surface area for aerosections (skin elements only)
asecAREA=[]
for a in aerosec:
 A=0
 for i in range(len(a))[1:]:
 A+=Elements[a[i]−1].area
 asecAREA.append(A)
Read layup
Lay=Layup(" layup.txt")
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Grab nodes for station rigid tie
spanz=[]
for i in range(len(SkinNodes[0])):
 spanz.append(single(SkinNodes[0][i].z))
foo=[]
for s in range(len(Stations)):
 sta=’ sta’+str(s)
 Stations[sta].spannum=spanz.index(single(Stations[sta].z))
 foo.append([s,Stations[sta].z,Stations[sta].spannum])
for f in foo:
 lon=[]
 for m in range(len(SkinNodes)):
 lon.append(SkinNodes[m][f[2]].num)
 f.append(lon)
#−−−
Create Station Reference Nodes
#−−−
start_refnodes=nn # note where mesh nodes end and reference nodes start
RefNodes=[] # These nodes are NOT part of the mesh, but will be tied to the me
sh numerically. They will be used for the application of boundary conditions an
d loads
for i in range(len(Stations)):
 sta=’ sta’+str(i)
 RefNodes.append(Node(nn,0,0,0,0,Stations[sta].z))
 # (0,0,z) node created
 nn+=1
RecNodes=[] # These nodes are part of the mesh, but are also selected as defle
ction measuring points
for i in range(len(Stations)):
 sta=’ sta’+str(i)
 RecNodes.append(SkinNodes[cwseed−Aseed−Bseed−1][Stations[sta].spannum].num)
 # Leading edge node number (from skin nodes)
 RecNodes.append(SkinNodes[Cseed+Dseed+Eseed−1][Stations[sta].spannum].num)
 # Trailing edge node number (from skin nodes)

print " Blade has been built"

buildblade.py

113

This file shows how I calculated the locations of the aerosection to be used
in the FAST_AD.ipt input file.
** All of the z−locations are relative to the root of the blade, rather than
the center of rotation.
** The hub radius will have to be included for making the actual data file.

hubrad=2.5
aeroplot=0
class Asec:
 def __init__(self,sec_prox,sec_dist):
 self.pe=mids[sec_prox]+hubrad
 self.de=mids[sec_dist+1]+hubrad
 self.drnodes=self.de−self.pe
 self.rnodes=(self.de+self.pe)/2
 self.prof=sta_list[sec_prox][0]
 self.chrd=float(sta_list[sec_prox][1])
 self.twst=float(sta_list[sec_prox][2])
 self.x=[0,.5*self.chrd,.5*self.chrd,−.5*self.chrd,−.5*self.chrd]
 self.z=[self.rnodes,self.pe,self.de,self.de,self.pe]
 self.output=[self.rnodes,self.twst,self.drnodes,self.chrd,self.prof]
 def plot(self):
 plot(self.z,self.x,’ o’)
 plot([self.z[1],self.z[2],self.z[3],self.z[4],self.z[1]],[self.x[1],self
.x[2],self.x[3],self.x[4],self.x[1]])
 show()

def checkfoils(foil_list):
 for i in range(len(foil_list)−1):
 if foil_list[i].de ≡ foil_list[i+1].pe:
 print str(i) + ’ and ’ + str(i+1) + ’ have a proper boundary.’
 else:
 print ’ WARNING! ’+str(i)+’ and ’+str(i+1)+’ have a misfitting boundary.’

Asecs=[] # manually build sections and add them to this list
sta_zs=[] # Z location of the sandia specified stations
for st in Stations:
 sta_zs.append(Stations[st].z)
sta_zs.sort()
mids=[] # Z location of the midpoints between stations. These are also the bo
undaries of the aerosections.
mids.append(0) # must bound at the root
for s in range(len(sta_zs)−1):
 mids.append((sta_zs[s]+sta_zs[s+1])/2)
mids.append(100) # must bound at the tip
aerosec_len=[] # Length of the aerosections (DRNodes)
for i in range(len(mids)−1):
 aerosec_len.append(mids[i+1]−mids[i])
aerosec_cen=[] # Center of the aerosections (RNodes w/o hub rad)
for i in range(len(mids)−1):
 aerosec_cen.append(mids[i]+aerosec_len[i]/2)
diff=[] # diffence between station location and aerocenter
for i in range(len(sta_zs)):
 diff.append(sta_zs[i]−aerosec_cen[i])
pdiff=[] # difference as a fraction of aerosection length
for i in range(34):
 pdiff.append(diff[i]/aerosec_len[i])
Asecs.append(Asec(0,5))
Asecs.append(Asec(6,7))
for i in range(23)[8:]:
 Asecs.append(Asec(i,i))

buildaerosections.py

114

Asecs.append(Asec(23,24))
for i in range(34)[25:]:
 Asecs.append(Asec(i,i))

buildaerosections.py

115

stiffstaA=[] # list of stations with z=0 used for calculating EI
ststas=[] # list containing dictionaries with paris of stiffness−stations
for i in range(number_of_stations):
 S={}
 crd=float(sta_list[i][1]) # chord length for the station
 for zees in [0,1]:
 EIsta=Station(i) # initialize station
 EIsta.setfoil(sta_list[i][0],Controls[’ dir’]) # set airfoil

 z=float(sta_list[i][4])*float(Controls[’ length’]) # used to determine sp
ar status
#−−−

Seed stations chordwise (create spline)

y−shift and rotation are neglected here
#−−−

Adjust x−position (needed to make sure the skin aligns with the shear webs)
 EIsta.xshift(float(sta_list[i][3]))
Adjust thickness to chord ratio

 EIsta.set_tcr(float(sta_list[i][5]))
Apply Chord Length

 EIsta.resize(float(sta_list[i][1]))
 EIsta.seed=[Aseed,Bseed,Cseed,Dseed,Eseed]
 EIsta.chordwise_seed(z,z_sparend,Asize,Esize,spar1,spar2)
 EIsta.oldx =EIsta.x
 EIsta.oldy =EIsta.y
Split the normalized foil into top and bottom

 EIsta.top_bot()
Spline ’y’ values for top and bottom

 EIsta.y1=y1=EIsta.spline(EIsta.h1_x,EIsta.h1_y,EIsta.cws)
 EIsta.y2=y2=EIsta.spline(EIsta.h2_x,EIsta.h2_y,EIsta.cws)
Smooth out leading edge

 N=Aseed+Bseed
 EIsta.lead_x = lead_x = concatenate((EIsta.cws[:N][::−1],EIsta.cws[:N]))
 EIsta.lead_y = lead_y = concatenate((y1[:N][::−1],y2[:N]))
 EIsta.lead_seed = lead_seed = linspace(min(lead_y),max(lead_y),len(lead_
y)+1)
 EIsta.new_x = new_x = spline(lead_y,lead_x,lead_seed) # seed the leadin
g edge with an odd number of nodes
Recombine top, bottom, and leading edge

 EIsta.combine_foil(y1, y2, lead_seed, new_x, N)
Set spanwise location to either z=0 or z=1, depending on iteration of ’zees’
 EIsta.zval(([0,20*crd])[zees])
Generate a printable summary

buildstasections.py

116

 EIsta.coords()
Add to Stiffness−Station list
 stiffstaA.append(EIsta)
 name=’ sta’+str(zees)
 S[name]=EIsta
 S[’ sta0’].zloc=z
 ststas.append(S)
print " ’buildstasections’ is complete"

buildstasections.py

117

#−− Part 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Write Blade Data File −−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−
subprocess.call([’cp’,sdir+’GenBlade.dat’,’TestBlade.dat’])
blf=open("TestBlade.dat","a")
cycle stations
for i in range(number_of_stations):
 sta="sta"+str(i)
 s=Stations[sta]
These are given as Bronco Blade inputs
 blade_fraction=str(float(sta_list[i][4]))
 aero_center=str(0.25)
 strc_twst=str(sta_list[i][2])
These are calculated via Abaqus
 bmass_den=str(s.lmass)
 flp_stff=str(s.EIf) #str(EI[i+1][1])
 edg_stff=str(s.EIe) #str(EI[i+1][2])
 gj_stff=str(s.GJ)
According to FAST user manual, these are only needed for an ADAMS model
 ea_stff=alpha=flpiner=edginer=precrvRef=preswpRef=flpcgOf=edgcgOf=flpEAOf=ed
gEAOf=str(0)
write it to the AeroDyn file
 blf.write("%s" % (blade_fraction+’\t’+aero_center+’\t’+strc_twst+’\t’+bmass_den
+’\t’+flp_stff+’\t’+edg_stff+’\t’))
 blf.write("%s" % (gj_stff+’\t’+ea_stff+’\t’+alpha+’\t’+flpiner+’\t’+edginer+’\t’+
precrvRef+’\t’))
 blf.write("%s\n" % (preswpRef+’\t’+flpcgOf+’\t’+edgcgOf+’\t’+flpEAOf+’\t’+edgEAO
f))
Move into Mode Shapes
blf.write("%s\n" % "−−−−−−−−−−−−−−−−−−−−−− BLADE MODE SHAPES −−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−")
f1=flapmode1
f2=flapmode2
e1=edgemode1
t1=["Flap mode 1"," "," "," "," "]
t2=["Flap mode 2"," "," "," "," "]
t3=["Edge mode 1"," "," "," "," "]
for i in range(5):
 blf.write("%s\n" % (str(f1[i]) + "\t BldFl1Sh("+str(i+2)+") − "+t1[i]+", coeff of x "̂+
str(i+2)))
for i in range(5):
 blf.write("%s\n" % (str(f2[i]) + "\t BldFl2Sh("+str(i+2)+") − "+t2[i]+", coeff of x "̂+
str(i+2)))
for i in range(5):
 blf.write("%s\n" % (str(e1[i]) + "\t BldFl1Sh("+str(i+2)+") − "+t3[i]+", coeff of x "̂+
str(i+2)))
blf.close()

genFAST.py

118

#−−−−−−−−−−−− Run Abaqus: Submit Section*.inp to FE solver −−−−−−−−−−−−−−−−−−−
−−−−−−−−
if ’r’ in optlist[’Sections’]:
 section="Section"+str(job) # input file name
 os.system("cd "+dirname+"; abaqus −j "+section+" −cpus 4 −memory ’4 GB’ −interactive −double"
)
 # subprocess.call([’abaqus’,’−j’,section,’−cpus’,’4’,’−memory’,’4 GB’,’−i
nteractive’,’−double’]) # perhaps include file for FE options
 print "Section "+ str(job) + " Job complete" # Completion message

#−−−−−−−−−−−− Post−Process from .odb file −−−−−−−−−−−−−−−−−
if ’r’ in optlist[’Sections’]:
 # subprocess.call([’cp’,sdir+’/writexy−standard.py’,’.’]) # Brings code fro
m sdir into PWD.
 # subprocess.call([’abaqus’,’cae’,’−noGUI’,’writexy−standard.py’]) # Run ab
aqus python script. It writes displacements to file Section*.out
 os.system("cp "+sdir+"/writexy−standard.py "+dirname)
 os.system("cd "+dirname+"; abaqus cae −noGUI writexy−standard.py")
 print "Section "+ str(job) + " post−processing complete" # Completions message

#−−−−−−−− Read Results of Analyses −−−−−−−−−−−−−−−−−−
resultfile=open(dirname+"/Section"+str(job)+".out")
resultlist=resultfile.readlines()
results=[]
for ln in resultlist:
 results.append(ln.split())
Csta.mass=float(results[3][1]) # get model mass
Csta.lmass=Csta.mass/Csta.sectl # get linear mass by divi
ding model mass by section length
U=[] #
x−direction displacements
U.append([float(results[13][1]),float(results[15][1]),float(results[17][1])]) #
leading node − torque, flap, edge
U.append([float(results[26][1]),float(results[28][1]),float(results[30][1])]) #
trailing node − torque, flap, edge
V=[] #
y−direction displacements
V.append([float(results[39][1]),float(results[41][1]),float(results[43][1])]) #
leading node − torque, flap, edge
V.append([float(results[52][1]),float(results[54][1]),float(results[56][1])]) #
trailing node − torque, flap, edge
#−−−−−−−− Find Displacement of Center −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
from pproctools import *
Psec=postSection(RefNodes[2].x,RefNodes[2].y,RefNodes[3].x,RefNodes[3].y) #
creates a postSection with the original points of the leading and trailing nodes
Psec.findCenter(U[0][0],V[0][0],U[1][0],V[1][0]) #
used torque−step displacements to calculate center
Psec.findDisplacement(’f’,U[0][1],V[0][1],U[1][1],V[1][1]) #
displacement for flapwise load
Psec.findDisplacement(’e’,U[0][2],V[0][2],U[1][2],V[1][2]) #
displacement for edgewise load
#−−−−−−− Compute EI −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Csta.df=abs(Psec.cvf)
Csta.de=abs(Psec.cue)
Csta.EIf=1*(Csta.sectl**3) / (3*Csta.df)
Csta.EIe=1*(Csta.sectl**3) / (3*Csta.de)
Csta.GJ=1*Csta.sectl/Psec.twist
Csta.cfrac=Psec.cfrac # save center of twist location as a fraction of the cho
rd

! Note in the report that global variables (Csta.attribute) is being used for

getEI.py

119

debugging purposes, both by the author and any other user/developer
! Once the program is proven to work smoothly, these could be made local to sa
ve time/space (but not the space/time continuum)
! Some parameters, like Csta.cfrac, would have to remain, as they are referenc
ed later

getEI.py

120

#−−−−−−−−−−−− Run Abaqus −−−−−−−−−−−−−−−−−−−−−−−−−−−
if ’ r’ in optlist[’ Modes’]:
 subprocess.call([’ abaqus’,’ −j’,infile[:−3]+" _freq" ,’ −interactive’,’ −double’]) # Sub
mit frequency analysis to FE solver
#−−−−−−−− Post−Process Results of Analyses −−−−−−−−−−−−−−−−−−

if ’ p’ in optlist[’ Modes’]:
 subprocess.call([’ cp’,sdir+’ writexy−freq.py’,’ .’]) #
 copy post−processing script into PWD
 subprocess.call([’ abaqus’,’ cae’,’ −noGUI’,’ writexy−freq.py’]) #
run post−processing script in abaqus. Creates freq.rpt
#−−−−−−−−− Read in from file −−−−−−−−−−−−−
outs=[]
if os.path.isfile(’ freq.rpt’): frq=open(" freq.rpt")
else: print " Frequency file ’freq.rpt’ found."
contents=frq.readlines()
for ln in contents:
 outs.append(ln.split())
#−−−−−−−−− Calculate Station Deflections −−−−−−−
deflection=[]
ltdef=[]
for i in range(number_of_stations): # cycles through stations
 us=[]
 vs=[]
 ltu=[]
 ltv=[]
 for m in [1,2,3]: # cycles through modes (may need to change ba
sed on which modes are flap and edge)
 # deflection U1
 lead=float(outs[(3+m) + (i*32)][1])
 trail=float(outs[(19+m) + (i*32)][1])
 du=lead+Stations[’ sta’+str(i)].cfrac*(trail−lead)
 us.append(du)
 ltu.append((lead,trail,du,Stations[’ sta’+str(i)].cfrac))
 # deflection U2
 lead=float(outs[(1093+m) + (i*32)][1])
 trail=float(outs[(1109+m) + (i*32)][1])
 dv=lead+Stations[’ sta’+str(i)].cfrac*(trail−lead)
 ltv.append((lead,trail,du,Stations[’ sta’+str(i)].cfrac))
 vs.append(dv)
 deflection.append([us,vs])
 ltdef.append([ltu,ltv])
stationzvals=[]
for ln in sta_list:
 stationzvals.append(single(ln[4]))
z=array(stationzvals)
a=transpose(vstack([z**2,z**3,z**4,z**5,z**6]))
u1=[]
v1=[]
v2=[]
for s in deflection:
 u1.append(s[0][1]) # x−direction, 2nd mode
 v1.append(s[1][0]) # y−direction, 1st mode
 v2.append(s[1][2]) # y−direction, 3rd mode
flapmode1=linalg.lstsq(a,v1)[0]
flapmode2=linalg.lstsq(a,v2)[0]
edgemode1=linalg.lstsq(a,u1)[0]
the least squares above has been producing modes where the sum of the coeffici
ents is
not exactly 1; results looked like .98234235, which is too far from 1 for FAST

getModes.py

121

 to accept.
The code below multiplies the mode shape coefficents so they will add to 1 at
the tip
This new code can be removed once the least squares calculation produces more
precise results.
newmodes=[]
for i in [flapmode1, flapmode2, edgemode1]:
 adjust=1.0/sum(i)
 tmp=[]
 for j in i:
 tmp.append(j*adjust)
 newmodes.append(tmp)
flapmode1=newmodes[0]
flapmode2=newmodes[1]
edgemode1=newmodes[2]

getModes.py

122

This is a module!
This contains functions and classes for post−processing the FEA results
from numpy import *
from pylab import *
from scipy import interpolate
import warnings
warnings.simplefilter(’ ignore’, np.RankWarning)

class postSection:
 def __init__(self,lead_x,lead_y,trail_x,trail_y):
 self.lx=lead_x
 self.ly=lead_y
 self.tx=trail_x
 self.ty=trail_y
 self.slope0=(trail_y−lead_y)/(trail_x−lead_x)
 self.yint0=lead_y−self.slope0*lead_x
 self.cvec0=[trail_y−lead_y,trail_x−lead_x]

 def findCenter(self,lead_u,lead_v,trail_u,trail_v):
 self.lxtq=self.lx+lead_u # tq for torque
 self.lytq=self.ly+lead_v
 self.txtq=self.tx+trail_u
 self.tytq=self.ty+trail_v
 self.cvec1=[self.txtq−self.lxtq,self.tytq−self.lytq]
 self.twist=arccos(dot(self.cvec0,self.cvec1)/(norm(self.cvec0,2)*norm(se
lf.cvec1,2)))
 self.slope1=(self.lytq−self.tytq)/(self.lxtq−self.txtq)
 self.yint1=self.lytq−self.slope1*self.lxtq
 self.cx=(self.yint1−self.yint0)/(self.slope0−self.slope1)
 self.cy=self.yint1 + self.slope1*self.cx
 self.cfrac=(self.cx−self.lx)/(self.tx−self.lx)

 def findDisplacement(self,eorf,lead_u,lead_v,trail_u,trail_v):
 if eorf ≡ ’ e’:
 self.cue=lead_u+(trail_u−lead_u)*self.cfrac
 self.cve=lead_v+(trail_v−lead_v)*self.cfrac
 if eorf ≡ ’ f’:
 self.cuf=lead_u+(trail_u−lead_u)*self.cfrac
 self.cvf=lead_v+(trail_v−lead_v)*self.cfrac

pproctools.py

123

#−−
Printing
#−−
#==== Main Mesh Input File ================
abq_out_file=infile[:−3]+" _mesh.inp"
abq=open(abq_out_file,’ w’)
abq.write(" %s\n" % " *Part, name=Blade")
abq.write(" %s\n" % " *Node, nset=nall")
for n in Nodes:
 abq.write(" %s\n" % n.output)
abq.write(" %s\n" % " *Element, type=S8R, ELSET=skin")
for i in range(len(SkinElements)):
 abq.write(" %s\n" % SkinElements[i].output)
abq.write(" %s\n" % " *Element, type=S8R, ELSET=spar")
for i in range(len(SparElements)):
 abq.write(" %s\n" % SparElements[i].output)
print sections to Elsets
abq.write(" %s\n" % " ** Skin Element Sets")
for m in range(len(sec)):
 for n in range(len(sec[0])):
 abq.write(" %s\n" % (’ *Elset, elset=CompositeLayup−’ + sec[m][n][0] + ’ −1’))

 for i in range(1+len(sec[m][n])/16): # print element numbers in r
ows of 16 (last row may be less)
 abq.write(" \t%s\n" % (str(sec[m][n][(1+16*i):][:16])[1:][:−1]))

 abq.write(" %s\n" % (’ *Shell Section, elset=CompositeLayup−’ + sec[m][n][0] + ’ −1 , co
mposite, layup=CompositeLayup−’ + sec[m][n][0] + " , offset=SPOS"))
 abq.write(" %s\n" % (’ .0006, ’+’ 3, ’+’ gelcoat, ’+’ 0, ’+’ gelcoat ’))
 abq.write(" %s\n" % (’ .005, ’+’ 3, ’+’ triax, ’+’ 90, ’+’ ext−triax ’))
 reinforcement=Lay.get_layer(m,n)
 abq.write(" %s\n%s\n%s\n" % (reinforcement[0],reinforcement[1],reinforcemen
t[2]))
 abq.write(" %s\n" % (’ .005, ’+’ 3, ’+’ triax, ’+’ 90, ’+’ int−triax ’))
 abq.write(" %s\n" % (’ .005, ’+’ 3, ’+’ resin, ’+’ 0, ’+’ parasitic_resin ’))
abq.write(" %s\n" % (’ *Shell Section, elset=spar , composite, layup=CompositeLayup−Spar’))
abq.write(" %s\n" % (’ .003, ’+’ 3, ’+’ biax, ’+’ 90, ’+’ double−bias−1 ’))
abq.write(" %s\n" % (’ .080, ’+’ 3, ’+’ foam, ’+’ 0, ’+’ foam ’))
abq.write(" %s\n" % (’ .003, ’+’ 3, ’+’ biax, ’+’ 90, ’+’ double−bias−2 ’))

for asn in range(len(aerosec)):
 abq.write(" *Elset, elset=aeroset_"+str(asn)+" \n")
 for i in range(1+len(aerosec[asn])/16): # print element numbers in ro
ws of 16 (last row may be less)
 abq.write(" \t%s\n" % (str(aerosec[asn][(1+16*i):][:16])[1:][:−1]))
 abq.write(" *Surface, type=ELEMENT, name=aerosurf_"+str(asn)+" \n")
 abq.write(" aeroset_"+str(asn)+" , SNEG \n")
abq.write(" %s\n" % " *End Part")
abq.write(" %s\n" % " *Assembly, name=Assembly")
abq.write(" %s\n" % " *Instance, name=Blade−1, part=Blade")
abq.write(" %s\n" % " *End Instance")

Write station nodes
for f in foo:
 abq.write(" %s\n" % (’ *Nset, nset=_Sta’+str(f[0])+’ Set, internal, instance=Blade−1’))
 for i in range(1+len(f[3])/16): # print element numbers in rows of 16
 (last row may be less)
 abq.write(" \t%s\n" % (str(f[3][(1+16*i):][:16])[1:][:−1]))

abq.write(" %s\n" % (’ *Nset, nset=_RecNodes, internal, instance=Blade−1’))

printblade.py

124

for i in range(1+len(RecNodes)/16): # print element numbers in rows of 16
 (last row may be less)
 abq.write(" \t%s\n" % (str(RecNodes[(1+16*i):][:16])[1:][:−1]))

abq.close()
fr=open(" recnodes.txt"," w")
for r in RecNodes: fr.write(str(r)+" \n")
fr.close()

printblade.py

125

abq_out_file=infile[:−3]+" _freq.inp"
ftest=open(abq_out_file,’ w’)
ftest.write(" %s\n" % (" *include, input="+infile[:−3]+" _mesh.inp")) # bring in the fil
e written by ’printmain.py’
ftest.write(" %s\n" % " *End Assembly")
outfile=ftest # ’outfile’ is used to write material properties

execfile(" writemats.py")
ftest.write(" %s\n" % " *Step, name=Step−1, perturbation")
ftest.write(" %s\n%s\n" % (" *Frequency, eigensolver=Lanczos, acoustic coupling=on, normalization=displac
ement"," 10, , , , ,"))
ftest.write(" %s\n%s\n" % (" *Boundary"," _Sta0Set, 1, 6"))
ftest.write(" %s\n" % " *Output, field, variable=PRESELECT")
ftest.write(" %s\n" % " *Output, history")
ftest.write(" %s\n" % (" *Node Output, nset=_RecNodes"))
ftest.write(" %s\n" % " U1,U2,UR3")
ftest.write(" %s\n" % " *Output, history, variable=PRESELECT")
ftest.write(" %s\n" % " *End Step")
ftest.close()

printFreqTest.py

126

#−−
Print Extruded Stations Sections
#−−
sect_fn=dirname+" /Section"+str(job)+" .inp"
sect=open(sect_fn,’ w’)
sect.write(" %s\n" % (" *Part, name=Stiffness−Station−Section"+str(job)))
sect.write(" %s\n" % " *Node, nset=all")
for n in Nodes:
 sect.write(" %s\n" % n.output)
sect.write(" %s\n" % " *Element, type=S8R, ELSET=skin")
for i in range(len(SkinElements)):
 sect.write(" %s\n" % SkinElements[i].output)
sect.write(" %s\n" % " *Element, type=S8R, ELSET=spar")
for i in range(len(SparElements)):
 sect.write(" %s\n" % SparElements[i].output)
sect.write(" %s\n" % " ** Skin Element Sets")
Print Element Sets
for m in range(len(sec)):
 sect.write(" %s\n" % (’ *Elset, elset=CompositeLayup−’ + sec[m][0] + ’ −1’))
 for i in range(1+len(sec[m])/16): # print element numbers in rows of
16 (last row may be less)
 sect.write(" \t%s\n" % (str(sec[m][(1+16*i):][:16])[1:][:−1]))
 sect.write(" %s\n" % (’ *Shell Section, elset=CompositeLayup−’ + sec[m][0] + ’ −1 , composite,
layup=CompositeLayup−’ + sec[m][0] + " , offset=SPOS"))
 sect.write(" %s\n" % (’ .0006, ’+’ 3, ’+’ gelcoat, ’+’ 0, ’+’ gelcoat ’))
 sect.write(" %s\n" % (’ .005, ’+’ 3, ’+’ triax, ’+’ 90, ’+’ ext−triax ’))
 reinforcement=Lay.get_layer(m,job)
 sect.write(" %s\n%s\n%s\n" % (reinforcement[0],reinforcement[1],reinforcement[2
]))
 sect.write(" %s\n" % (’ .005, ’+’ 3, ’+’ triax, ’+’ 90, ’+’ int−triax ’))
 sect.write(" %s\n" % (’ .005, ’+’ 3, ’+’ resin, ’+’ 0, ’+’ parasitic_resin ’))
The spar elset has already been created in the *Element command
sect.write(" %s\n" % (’ *Shell Section, elset=spar , composite, layup=CompositeLayup−Spar’))
sect.write(" %s\n" % (’ .003, ’+’ 3, ’+’ biax, ’+’ 90, ’+’ double−bias−1 ’))
sect.write(" %s\n" % (’ .080, ’+’ 3, ’+’ foam, ’+’ 0, ’+’ foam ’))
sect.write(" %s\n" % (’ .003, ’+’ 3, ’+’ biax, ’+’ 90, ’+’ double−bias−2 ’))
RefNodes.append(SkinNodes[cwseed−Bseed−Aseed−1][spanseed−1]) # leading edge refe
rence node
RefNodes.append(SkinNodes[Cseed+Dseed+Eseed−1][spanseed−1]) # trailing edge ref
erence node
sect.write(" %s\n%s\n" % (" *Nset, nset=measure", str(RefNodes[2].num) +" , "+str(RefNodes
[3].num)))
sect.write(" %s\n" % " *End Part")
sect.write(" %s\n" % " *Assembly, name=Assembly")
sect.write(" %s\n" % (" *Instance, name=Bsec"+str(job)+" −1, part=Stiffness−Station−Section"+str(jo
b)))
sect.write(" %s\n" % " *End Instance")
sect.write(" %s\n" % " *Node, nset=Ref1")
sect.write(" %s\n" % RefNodes[0].output)
sect.write(" %s\n" % " *Node, nset=Ref2")
sect.write(" %s\n" % RefNodes[1].output)
Write station nodes
for f in [foo[0],foo[1]]:
 sect.write(" %s\n" % (’ *Nset, nset=_Sta’+str(f[0])+’ Set, internal, instance=Bsec’+str(job)+
’ −1’))
 for d in range(1+len(f[3])/16): # print element numbers in rows of 16
 (last row may be less)
 sect.write(" %s\n" % (str(f[3][(16*d):][:16])[1:][:−1]))

for f in [foo[0],foo[1]]:
 sect.write(" %s\n" % (’ *Rigid Body, ref node=’+str(RefNodes[f[0]].num)+’ , tie nset=_Sta’+

printstasections.py

127

str(f[0])+’ Set’))
sect.write(" %s\n" % " *End Assembly")
outfile=sect # ’outfile’ is used to write material properties
execfile(" writemats.py")
sect.write(" %s\n%s\n" % (" *Boundary", (str(RefNodes[0].num)+" , 1, 6")))
tipload=1/cwseed

sect.write(" %s\n" % " *Step, name=Step−Torque")
sect.write(" %s\n%s\n" % (" *Static", " 1.0, 1.0, 1e−05, 1.0"))
sect.write(" %s\n%s\n" % (" *Cload", (str(RefNodes[1].num)+" , 6, 1 ")))
sect.write(" %s\n" % " *Output, field, variable=PRESELECT")
sect.write(" %s\n%s\n%s\n" % (" *Output, history"," *Node Output, nset=Bsec"+str(job)+" −1.measure"
," U1,U2"))
sect.write(" %s\n%s\n%s\n" % (" *Output, history"," *Element Output"," MASS"))
sect.write(" %s\n" % " *End Step")

sect.write(" %s\n" % " *Step, name=Step−Flapwise")
sect.write(" %s\n%s\n" % (" *Static", " 1.0, 1.0, 1e−05, 1.0"))
sect.write(" %s\n%s\n" % (" *Cload, op=NEW", (str(RefNodes[1].num)+" , 2, 1 ")))
sect.write(" %s\n" % " *Output, field, variable=PRESELECT")
sect.write(" %s\n%s\n%s\n" % (" *Output, history"," *Node Output, nset=Bsec"+str(job)+" −1.measure"
," U1,U2"))
sect.write(" %s\n" % " *End Step")

sect.write(" %s\n" % " *Step, name=Step−Edgewise")
sect.write(" %s\n%s\n" % (" *Static", " 1.0, 1.0, 1e−05, 1.0"))
sect.write(" %s\n%s\n" % (" *Cload, op=NEW", (str(RefNodes[1].num)+" , 1, 1 ")))
sect.write(" %s\n" % " *Output, field, variable=PRESELECT")
sect.write(" %s\n%s\n%s\n" % (" *Output, history"," *Node Output, nset=Bsec"+str(job)+" −1.measure"
," U1,U2"))
sect.write(" %s\n" % " *End Step")
sect.close()

mnodes=open(dirname+" /measurenodes.tmp",’ w’)
mnodes.write(" %s\n%s\n%s\n" % (str(job), str(RefNodes[2].num) , str(RefNodes[3].nu
m))) #("one","two","three")
mnodes.close()
print " Section" + str(job) +" input has been printed."

printstasections.py

128

This file shows how I calculated the locations of the aerosection to be used
in the FAST_AD.ipt input file.
** All of the z−locations are relative to the root of the blade, rather than
the center of rotation.
** The hub radius will have to be included for making the actual data file.

hubrad=2.5
aeroplot=0
class Asec:
 def __init__(self,num):
 self.asecnum=num
 def build(self,sec_prox,sec_dist):
 self.pe=mids[sec_prox]+hubrad
 self.de=mids[sec_dist+1]+hubrad
 self.drnodes=self.de−self.pe
 self.rnodes=(self.de+self.pe)/2
 self.prof=sta_list[sec_prox][0]
 self.chrd=float(sta_list[sec_prox][1])
 self.twst=float(sta_list[sec_prox][2])
 self.x=[0,.5*self.chrd,.5*self.chrd,−.5*self.chrd,−.5*self.chrd]
 self.z=[self.rnodes,self.pe,self.de,self.de,self.pe]
 self.output=[self.rnodes,self.twst,self.drnodes,self.chrd,self.prof]
 def plot(self):
 plot(self.z,self.x,’ o’)
 plot([self.z[1],self.z[2],self.z[3],self.z[4],self.z[1]],[self.x[1],self
.x[2],self.x[3],self.x[4],self.x[1]])
 show()
def checkfoils(foil_list):
 for i in range(len(foil_list)−1):
 if foil_list[i].de ≡ foil_list[i+1].pe:
 print str(i) + ’ and ’ + str(i+1) + ’ have a proper boundary.’
 else:
 print ’ WARNING! ’+str(i)+’ and ’+str(i+1)+’ have a misfitting boundary.’
Asecs=[] # manually build sections and add them to this list
f=open(" AQ_FASTsim/SNL13pt2−00−Land_AeroDyn.ipt")
frl=f.readlines()
aerodyn=[]
for ln in frl:
 aerodyn.append(ln.split())
num_asec=int(aerodyn[26][0])
for j in aerodyn[−num_asec:]:
 tmp=Asec((num_asec+1)−len(aerodyn)+aerodyn.index(j))
 tmp.rnodes=float(j[0])
 tmp.atwist=float(j[1])
 tmp.drnodes=float(j[2])
 tmp.chord=float(j[3])
 tmp.nfoil=float(j[4])
 Asecs.append(tmp)

readaerosections.py

129

read = 1
plotvals = 0
startup = .2 # approximate fraction of analysis where steady state results begi
n
import math
if read ≡ 1:
 elmfile=open(optlist[’ Loads’][−1])
 elm=elmfile.readlines()
 rows=[]
 for ln in elm:
 rows.append(ln.split())
numvars=len(rows[4])
numasec=int(Controls[’ number_aerosections’])
time_inc=len(rows)
columns=[]
Fnorm=[]
Ftan=[]
for c in range(numvars):
 cmn=[]
 for r in rows[3:]:
 cmn.append(float(r[c]))
 columns.append(cmn)
num_tsteps=len(columns[0]) # total number of time steps conducted in FAST
norm_clmns=[] # Find columns holding normal and tangential forces
tan_clmns=[]
for i in range(len(rows[1])):
 if rows[1][i][:5] ≡ ’ ForcN’: norm_clmns.append(i)
 if rows[1][i][:5] ≡ ’ ForcT’: tan_clmns.append(i)
for i in norm_clmns: Fnorm.append(columns[i])
for i in tan_clmns: Ftan.append(columns[i])
tmaxN=[] # Find time of maximum force for each airfoils
tmaxT=[]
for i in norm_clmns: tmaxN.append(columns[i].index(max(columns[i])))
for i in tan_clmns: tmaxT.append(columns[i].index(max(columns[i])))
totN=[]
totT=[]
for i in range(num_tsteps):
 tmp=[]
 for j in norm_clmns: tmp.append(columns[j][i])
 totN.append(sum(tmp))
 tmp=[]
 for j in tan_clmns: tmp.append(columns[j][i])
 totT.append(sum(tmp))
Nmax_step=totN.index(max(totN))
Tmax_step=totT.index(max(totT))
Ltime=Nmax_step
pitch=[]
for i in range(numasec):
 pitch.append(columns[i*12+10][int(startup*time_inc)])
def rotate_loads(norm,tan,pitch):
 rp=pitch*pi/180 # convert to radians
 Fx=−sin(rp)*norm + cos(rp)*tan
 Fy=cos(rp)*norm + sin(rp)*tan
 return [Fx,Fy]

readelm.py

130

#−−−− Create Spanwise Splines −−−−−−−−−−−
#−−−−− spar determination −−−−−−−−−−−−−−−−−
if z_sparstart < gz < z_sparend : # This is the range in which the main spars a
re present
 staspar=’ true’
else:
 staspar=’ false’
!!!!!!!!!!!! THIS NEXT SECTION IS ONLY FOR SANDIA 3−SPAR MODELS!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
if 14.6 < gz < 60.2: # This is the range in which spar 3 is present (SANDIA MO
DEL ONLY!!!!!)
 staspar3=’ true’
else:
 staspar3=’ false’
staspar3=’ false’ # uncomment if there are only 2 spars in the model

Csta.sectl=section_length=ststas[job][’ sta1’].z
num_spsp=len(ststas[0][’ sta0’].x) # number of spanwise splines

Splines=[] # list containing spanwise splines

#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
spanseed=491 # #<<<<<<< Spanwise Mesh Parameter
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

for i in range(num_spsp):
 SS=SpanSpline(i,ststas[job])
 SS.splitseed=spanseed
 SS.spansplit=0 # value of 0 here triggers simplified interpolation
 SS.smooth(1,1) # (1,1) are ... ?
 Splines.append(SS)
#−−

Create Spars

#−−

if staspar ≡ ’ true’:
 sparmesh=31 #<<<<<<< Mesh Parameter
 spar1_top=0
 spar1_bot=2*(Cseed+Dseed+Eseed)−2
 spar2_top=Cseed
 spar2_bot=Cseed+2*(Dseed+Eseed)−2
 Spar1 = Spar(Splines[spar1_top].xyz,Splines[spar1_bot].xyz,sparmesh,0,sectio
n_length)
 Spar2 = Spar(Splines[spar2_top].xyz,Splines[spar2_bot].xyz,sparmesh,0,sectio
n_length)
 Spar1.interp(’ stasec’)
 Spar2.interp(’ stasec’)
if staspar3 ≡ ’ true’:
 spar3x= (gz−14.6)*−0.022451367366587198 + 2.66955
 trailindex= argmax(ststas[job][’ sta0’].x) # index of tr
ailing edge (used to split the airfoil)
 spardiff=abs(array(ststas[job][’ sta0’].x)−spar3x) # difference
between each chordwise location and the prefered spar3 location
 spar3_top=list(spardiff).index(min(spardiff[:trailindex:2])) # find the F
IRST minimum value of spardiff (closest to spar3 loctation)
 spar3_bot=list(spardiff[(spar3_top+1):]).index(min(spardiff[trailindex::2])

staNodesElms.py

131

)+(spar3_top+1) # start the indexing process after the first index

 # to find the SECOND minimum value of spardiff
 Spar3 = Spar(Splines[spar3_top].xyz,Splines[spar3_bot].xyz,sparmesh,0,sectio
n_length)
 Spar3.interp(’ stasec’)
Nodes=[]
SkinNodes=[] # 2−D matrix of nodes

nn=1
for i in range(cwseed):
 tmp=[]
 for j in range(spanseed):
 tn=Node(nn,i,j,Splines[i].xyz[j][0],Splines[i].xyz[j][1],Splines[i].xyz[
j][2])
 tmp.append(tn)
 nn+=1
 SkinNodes.append(tmp)
SparNodes=[]
SparNodes1=[]

SparNodes2=[]

SparNodes3=[]

if staspar ≡ ’ true’:
 ss=0

 for i in range(spanseed):

 tmp=[]

 for j in range(sparmesh):
 tn=Node(nn,i,j,Spar1.xyz[ss][0],Spar1.xyz[ss][1],Spar1.xyz[ss][2])
 if j ≡ 0: # Top and bottom of the spar is tied
 to the skin nodes along that spline
 tn=SkinNodes[spar1_bot][i]
 elif j ≡ (sparmesh−1):
 tn=SkinNodes[spar1_top][i]
 else:
 nn+=1
 ss+=1
 tmp.append(tn)
 SparNodes.append(tmp)
 SparNodes1.append(tmp)
 ss=0
 for i in range(spanseed):
 tmp=[]
 for j in range(sparmesh):
 tn=Node(nn,i,j,Spar2.xyz[ss][0],Spar2.xyz[ss][1],Spar2.xyz[ss][2])
 if j ≡ 0:
 tn=SkinNodes[spar2_bot][i]
 elif j ≡ (sparmesh−1):
 tn=SkinNodes[spar2_top][i]
 else:
 nn+=1
 ss+=1
 tmp.append(tn)

staNodesElms.py

132

 SparNodes.append(tmp)
 SparNodes2.append(tmp)
if staspar3 ≡ ’ true’:
 ss=0
 for i in range(spanseed):
 tmp=[]
 for j in range(sparmesh):
 tn=Node(nn,i,j,Spar3.xyz[ss][0],Spar3.xyz[ss][1],Spar3.xyz[ss][2])
 if j ≡ 0: # Top and bottom of the spar is tied
 to the skin nodes along that spline
 tn=SkinNodes[spar3_bot][i]
 elif j ≡ (sparmesh−1):
 tn=SkinNodes[spar3_top][i]
 else:
 nn+=1
 ss+=1
 tmp.append(tn)
 SparNodes.append(tmp)
 SparNodes3.append(tmp)
for i in range(len(SkinNodes)):
 for j in range(len(SkinNodes[0])):
 Nodes.append(SkinNodes[i][j])
if staspar ≡ ’ true’:
 for i in range(len(SparNodes)):
 for j in range(len(SparNodes[0])):
 Nodes.append(SparNodes[i][j])
Nodes=list(set(Nodes)) # Remove duplicates from Nodes
start_refnodes=nn # note where mesh nodes end and reference nodes start
RefNodes=[]
for i in range(len(S)): # create reference nodes for Station A and Station B
 sta=’ sta’+str(i)
 RefNodes.append(Node(nn,0,0,0,0,ststas[job][sta].z))
 nn+=1
#−−

Create Elements

#−−

SkinElements=[]
elemnum=1
Skin Elements

span=range(spanseed)
chrd=range(cwseed)
chrd.append(0)
for a in range(cwseed/2):
 for b in range(int(spanseed/2)):
 m=a*2
 n=b*2
 c1=SkinNodes[chrd[m]][span[n]]
 c2=SkinNodes[chrd[m+2]][span[n]]
 c3=SkinNodes[chrd[m+2]][span[n+2]]
 c4=SkinNodes[chrd[m]][span[n+2]]
 s5=SkinNodes[chrd[m+1]][span[n]]
 s6=SkinNodes[chrd[m+2]][span[n+1]]
 s7=SkinNodes[chrd[m+1]][span[n+2]]
 s8=SkinNodes[chrd[m]][span[n+1]]
 # area and side lengths

 elencw=sqrt((c2.x−c1.x)**2+(c2.y−c1.y)**2+(c2.z−c1.z)**2) # element len

staNodesElms.py

133

gth in chordwise direction
 elensw=sqrt((c4.x−c1.x)**2+(c4.y−c1.y)**2+(c4.z−c1.z)**2) # element len
gth in spanwise direction
 # Locations of Element Center

 elx=(c1.x + c3.x) *0.5
 ely=(c1.y + c3.y) *0.5
 elz=(c1.z + c3.z) *0.5
 el=Element(elemnum,c1.num,c2.num,c3.num,c4.num,s5.num,s6.num,s7.num,s8.n
um,elx,ely,elz,elencw,elensw)
 elemnum+=1
 SkinElements.append(el)
SparElements=[]
if staspar ≡ ’ true’:
 for i in range(spanseed/2):
 for j in range(sparmesh/2):
 m=2*i
 n=2*j
 c1=SparNodes1[m][n]
 c2=SparNodes1[m+2][n]
 c3=SparNodes1[m+2][n+2]
 c4=SparNodes1[m][n+2]
 s5=SparNodes1[m+1][n]
 s6=SparNodes1[m+2][n+1]
 s7=SparNodes1[m+1][n+2]
 s8=SparNodes1[m][n+1]
 # area and side lengths

 elencw=sqrt((c2.x−c1.x)**2+(c2.y−c1.y)**2+(c2.z−c1.z)**2) # element
 length in chordwise direction

 elensw=sqrt((c4.x−c1.x)**2+(c4.y−c1.y)**2+(c4.z−c1.z)**2) # element
 length in spanwise direction
 # Locations of Element Center

 elx=(c1.x + c3.x) *0.5
 ely=(c1.y + c3.y) *0.5
 elz=(c1.z + c3.z) *0.5
 el=Element(elemnum,c1.num,c2.num,c3.num,c4.num,s5.num,s6.num,s7.num,
s8.num,elx,ely,elz,elencw,elensw)
 elemnum+=1
 SparElements.append(el)

 for i in range(spanseed/2):
 for j in range(sparmesh/2):
 m=2*i
 n=2*j
 c1=SparNodes2[m][n]
 c2=SparNodes2[m+2][n]
 c3=SparNodes2[m+2][n+2]
 c4=SparNodes2[m][n+2]
 s5=SparNodes2[m+1][n]
 s6=SparNodes2[m+2][n+1]
 s7=SparNodes2[m+1][n+2]
 s8=SparNodes2[m][n+1]
 # area and side lengths

 elencw=sqrt((c2.x−c1.x)**2+(c2.y−c1.y)**2+(c2.z−c1.z)**2) # element
 length in chordwise direction

 elensw=sqrt((c4.x−c1.x)**2+(c4.y−c1.y)**2+(c4.z−c1.z)**2) # element

staNodesElms.py

134

 length in spanwise direction
 # Locations of Element Center

 elx=(c1.x + c3.x) *0.5
 ely=(c1.y + c3.y) *0.5
 elz=(c1.z + c3.z) *0.5
 el=Element(elemnum,c1.num,c2.num,c3.num,c4.num,s5.num,s6.num,s7.num,
s8.num,elx,ely,elz,elencw,elensw)
 elemnum+=1
 SparElements.append(el)
if staspar3 ≡ ’ true’:
 for i in range(spanseed/2):
 for j in range(sparmesh/2):
 m=2*i
 n=2*j
 c1=SparNodes3[m][n]
 c2=SparNodes3[m+2][n]
 c3=SparNodes3[m+2][n+2]
 c4=SparNodes3[m][n+2]
 s5=SparNodes3[m+1][n]
 s6=SparNodes3[m+2][n+1]
 s7=SparNodes3[m+1][n+2]
 s8=SparNodes3[m][n+1]
 # area and side lengths

 elencw=sqrt((c2.x−c1.x)**2+(c2.y−c1.y)**2+(c2.z−c1.z)**2) # element
 length in chordwise direction

 elensw=sqrt((c4.x−c1.x)**2+(c4.y−c1.y)**2+(c4.z−c1.z)**2) # element
 length in spanwise direction
 # Locations of Element Center

 elx=(c1.x + c3.x) *0.5
 ely=(c1.y + c3.y) *0.5
 elz=(c1.z + c3.z) *0.5
 el=Element(elemnum,c1.num,c2.num,c3.num,c4.num,s5.num,s6.num,s7.num,
s8.num,elx,ely,elz,elencw,elensw)
 elemnum+=1
 SparElements.append(el)
Elements=SkinElements+SparElements
sections need reworking
chrd_sec=[" L"," S"," A"," T"]
sec=[]
sparsec=[]
for c in chrd_sec:
 tmp=[]
 label=c+" _stiffsec"
 tmp.append(label)
 sec.append(tmp)
X=[]
for s in Splines: X.append(s.x[0])
trail_edge_num=X.index(max(X))
Sort Elements

for e in SkinElements:
#−−−non−tip

 if gz < 94.4:
#−find the x−position of the trailing edge

staNodesElms.py

135

 trailing_edge=Splines[trail_edge_num]
 find_trail=polyfit(trailing_edge.z,trailing_edge.x,5)
 tex=polyval(find_trail,e.elcen[2])
 # sort chordwise

 e.base_sort_cw(tex)
#−−−tip

 else:
 e.cw=0
sort spanwise (base and tip)

 sec[e.cw].append(e.num)
for e in SparElements:
 sparsec.append(e.num)
spanz=[]
for i in range(len(SkinNodes[0])):
 spanz.append(single(SkinNodes[0][i].z))
foo=[]
for i in range(len(ststas[job])):
 sta=’ sta’+str(i)
 foo.append([i,ststas[job][sta].z,spanz.index(single(ststas[job][sta].z))])
for f in foo:
 lon=[]
 for m in range(len(SkinNodes)):
 lon.append(SkinNodes[m][f[2]].num)
 f.append(lon)
print " Station Extrusion Sections have been built"

staNodesElms.py

136

#−−−−−−−−−−−−−− Write Load File −−−−−−−−−−−−−−−−−−−−−−−−−
fst=open(modelname+"_fastbuckle.inp","w") #
fst.write("*include, input="+modelname+"_mesh.inp \n") # include mesh file
fst.write("*End Assembly \n")
print material properties
outfile=fst
execfile("writemats.py")
write step and stuff
fst.write("*Step, name=Step−1, perturbation \n")
fst.write("*Buckle \n")
fst.write("20, , 38, 60 \n")
fst.write("*Boundary \n")
fst.write("_Sta0Set, 1, 6 \n")
#−−−−−−−−−−−−−− Write Loads −−−−−−−−−−−−−−−−−−−−−−−−−
fst.write("*Dsload \n")
for i in range(numasec):
 fn=Fnorm[i][Ltime]
 ft=Ftan[i][Ltime]
 p=pitch[i]
 fxfy=rotate_loads(fn,ft,p) # Total force on section from FAST
 dfx=fxfy[0]/asecAREA[i] # Force distributed over the total area of the s
ection
 dfy=fxfy[1]/asecAREA[i] # Force distributed over the total area of the s
ection
 fst.write("%s\n" % ("Blade−1.aerosurf_"+str(i) + ", TRVEC, " + str(dfx) + ", 1,0,0 "
))
 fst.write("%s\n" % ("Blade−1.aerosurf_"+str(i) + ", TRVEC, " + str(dfy) + ", 0,1,0 "
))
fst.write("*Output, field, variable=PRESELECT \n")
fst.write("*Output, history, variable=PRESELECT \n")
fst.write("*End Step")
fst.close()

write−fastbuckle.py

137

#−−−−−−−−−−−−−− Write Load File −−−−−−−−−−−−−−−−−−−−−−−−−
fst=open(modelname+"_fastloads.inp","w") #
fst.write("*include, input="+modelname+"_mesh.inp \n") # include mesh file
fst.write("*End Assembly \n")
print material properties
outfile=fst
execfile("writemats.py")
write step and stuff
fst.write("*Step, name=Step−1 \n")
fst.write("*Static \n")
fst.write("1., 1., 1e−05, 1. \n")
fst.write("*Boundary \n")
fst.write("_Sta0Set, 1, 6 \n")
execfile(sdir+"readaerosections.py") # this provides data for the twist. It probabl
y could be passed in more efficiently
aerosurface_xyloads=[]
#−−−−−−−−−−−−−− Write Loads −−−−−−−−−−−−−−−−−−−−−−−−−
fst.write("*Dsload \n")
for i in range(numasec):
 fn=Fnorm[i][Ltime]
 ft=Ftan[i][Ltime]
 p=Asecs[0].atwist
 fxfy=rotate_loads(fn,0,p) # Total force on section from FAST
 dfx=fxfy[0]/asecAREA[i] # Force distributed over the total area of the s
ection
 dfy=fxfy[1]/asecAREA[i] # Force distributed over the total area of the s
ection
 aerosurface_xyloads.append([dfx,dfy])
 fst.write("%s\n" % ("Blade−1.aerosurf_"+str(i) + ", TRVEC, " + str(dfx) + ", 1,0,0 "
))
 fst.write("%s\n" % ("Blade−1.aerosurf_"+str(i) + ", TRVEC, " + str(dfy) + ", 0,1,0 "
))
fst.write("*Output, field, variable=PRESELECT \n")
fst.write("*Output, history, variable=PRESELECT \n")
fst.write("*End Step")
fst.close()
if plotvals ≡ 1:
 from pylab import *
 plot(columns[0][2:],columns[1][2:])

write−fastloads.py

138

outfile.write("%s\n%s\n" % ("** MATERIALS", "**"))

outfile.write("%s\n" % ("*Material, name=triax"))
outfile.write("%s\n%s\n" % ("*Density", " 1850,"))
outfile.write("%s\n%s\n" % ("*Elastic, type=LAMINA", " 27.7e9, 13.65e9, .395, 7.2e9, 7.2e9, 7.2e9"))

outfile.write("%s\n" % ("*Material, name=biax"))
outfile.write("%s\n%s\n" % ("*Density", " 1780,"))
outfile.write("%s\n%s\n" % ("*Elastic, type=LAMINA", " 13.6e9, 13.3e9, .50, 11.8e9, 11.8e9, 11.8e9")
)

outfile.write("%s\n" % ("*Material, name=uniax"))
outfile.write("%s\n%s\n" % ("*Density", " 1920,"))
outfile.write("%s\n%s\n" % ("*Elastic, type=LAMINA", " 41.8e9, 14.0e9, .28, 2.63e9, 2.63e9, 2.63e9")
)

outfile.write("%s\n" % ("*Material, name=foam"))
outfile.write("%s\n%s\n" % ("*Density", " 200,"))
outfile.write("%s\n%s\n" % ("*Elastic", " .256e9, .3"))

outfile.write("%s\n" % ("*Material, name=gelcoat"))
outfile.write("%s\n%s\n" % ("*Density", " 1235,"))
outfile.write("%s\n%s\n" % ("*Elastic", " 3.44e9, .3"))

outfile.write("%s\n" % ("*Material, name=resin"))
outfile.write("%s\n%s\n" % ("*Density", " 1100,"))
outfile.write("%s\n%s\n" % ("*Elastic", " 3.5e9, .3"))

writemats.py

139

−*− coding: mbcs −*−
#
Abaqus/CAE Release 6.12−2 replay file
Internal Version: 2012_06_28−23.43.29 119883
Run by quinlan on Tue Dec 18 15:40:14 2012
#
from driverUtils import executeOnCaeGraphicsStartup
executeOnCaeGraphicsStartup()
#: Executing "onCaeGraphicsStartup()" in the site directory ...
from abaqus import *
from abaqusConstants import *
from caeModules import *
from driverUtils import executeOnCaeStartup
executeOnCaeStartup()
##
jobname=’AQ100_03_freq.odb’ ### ODB file name goes here
##
o2 = session.openOdb(name=jobname)
session.viewports[’Viewport: 1’].setValues(displayedObject=o2)
odb = session.odbs[jobname]
frec=open("recnodes.txt")
lines=frec.readlines()
RecNodes=[]
for ln in lines:
 RecNodes.append(ln.split()[0])
session.xyDataListFromField(odb=odb, outputPosition=NODAL, variable=((’U’, N
ODAL, ((COMPONENT, ’U1’), (COMPONENT, ’U2’),)),), nodeLabels=((’BLADE−1’, (R
ecNodes)),))
U=[]
V=[]
for r in RecNodes:
 x = session.xyDataObjects[’U:U1 PI: BLADE−1 N: ’+r]
 U.append(x)
 y = session.xyDataObjects[’U:U2 PI: BLADE−1 N: ’+r]
 V.append(y)
session.xyReportOptions.setValues(numDigits=7, layout=SEPARATE_TABLES)
session.writeXYReport(fileName=’freq.rpt’, appendMode=OFF, xyData=U)
session.writeXYReport(fileName=’freq.rpt’, appendMode=ON, xyData=V)

writexy−freq.py

140

−*− coding: mbcs −*−
#
Abaqus/CAE Release 6.12−2 replay file
Internal Version: 2012_06_28−23.43.29 119883
Run by quinlan on Thu Nov 29 13:36:01 2012
#
from driverUtils import executeOnCaeGraphicsStartup
executeOnCaeGraphicsStartup()
#: Executing "onCaeGraphicsStartup()" in the site directory ...
import sys
from abaqus import *
from abaqusConstants import *
from caeModules import *
from driverUtils import executeOnCaeStartup
executeOnCaeStartup()
f=open("measurenodes.tmp")
ins=f.readlines()
job=ins[0].split()[0]
odbase_name=’Section’+job+’.odb’

lead=ins[1].split()[0]
trail=ins[2].split()[0]
print str(job)+’, ’+str(lead)+’, ’ +str(trail)
o1 = session.openOdb(name=odbase_name)
odb = session.odbs[odbase_name]
U=[]
V=[]
some temporary changes need to be made here.
if job[:2] ≡ ’0_’:
 bsec = ’BSEC0’
elif job[:3] ≡ ’14_’:
 bsec =’BSEC14’
else:
 bsec=’BSEC’+str(job)
Ulead=session.XYDataFromHistory(name=’U−lead’, odb=odb, outputVariableName=’Spatial
displacement: U1 PI: ’+bsec+’−1 Node ’+lead+’ in NSET MEASURE’,
 steps=(’Step−Torque’,’Step−Flapwise’,’Step−Edgewise’
),)
Utrail=session.XYDataFromHistory(name=’U−trail’, odb=odb, outputVariableName=’Spatia
l displacement: U1 PI: ’+bsec+’−1 Node ’+trail+’ in NSET MEASURE’,
 steps=(’Step−Torque’,’Step−Flapwise’,’Step−Edgewise’
),)
Vlead=session.XYDataFromHistory(name=’V−lead’, odb=odb, outputVariableName=’Spatial
displacement: U2 PI: ’+bsec+’−1 Node ’+lead+’ in NSET MEASURE’,
 steps=(’Step−Torque’,’Step−Flapwise’,’Step−Edgewise’
),)
Vtrail=session.XYDataFromHistory(name=’V−trail’, odb=odb, outputVariableName=’Spatia
l displacement: U2 PI: ’+bsec+’−1 Node ’+trail+’ in NSET MEASURE’,
 steps=(’Step−Torque’,’Step−Flapwise’,’Step−Edgewise’
),)
mass = session.XYDataFromHistory(name=’MASS’, odb=odb, outputVariableName=’Mass:
MASS for Whole Model’, steps=(’Step−Torque’,),)

session.xyReportOptions.setValues(numDigits=9, layout=SEPARATE_TABLES)
session.writeXYReport(fileName=’Section’+job+’.out’, appendMode=OFF, xyData=(mass))
session.writeXYReport(fileName=’Section’+job+’.out’, appendMode=ON, xyData=(Ulead))
session.writeXYReport(fileName=’Section’+job+’.out’, appendMode=ON, xyData=(Utrail)
)
session.writeXYReport(fileName=’Section’+job+’.out’, appendMode=ON, xyData=(Vlead))
session.writeXYReport(fileName=’Section’+job+’.out’, appendMode=ON, xyData=(Vtrail)
)

writexy−standard.py

141

	BroncoBlade: An Open Source Wind Turbine Blade Analysis Tool
	Recommended Citation

	tmp.1375116948.pdf.PXcYX

