Protecting Users’ Privacy in Electronic Prescribing Systems with Active Privacy Bundles

Raed M. Salih (Adviser: Dr. Leszek T. Lilien)
Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008

Introduction

- Electronic prescribing (e-Rx) systems — record and transmit electronic prescriptions among prescribers, pharmacy benefit managers, and pharmacies
 - Prescriber — the subject (e.g., a physician) who writes prescriptions (Rx) for a patient
 - Pharmacy benefit manager (PBM) — a third-party administrator responsible for developing and maintaining the formulary, contracting with pharmacies, and negotiating discounts and rebates with drug manufacturers
 - Also responsible for processing and paying prescription drug claims

- The current e-prescribing workflow

 1. Patient visits a当地
 2. Prescriber
 3. Collect patient info • Send to PBM
 4. Return prescription info • Return formulary & medication history
 5. Receive drug claims & offers
 6. Develop & maintain the formulary • Contract with pharmacies
 7. Notify Patient that Rx is filled
 8. Validate patient’s information • Review eligibility & formulary
 9. Select patient’s pharmacy • Generate & send Rx

- User privacy — a user’s right to control what information she reveals about herself, and who can access that information
 - Patient privacy (a special subcase of user privacy) — deals with data that are or include a patient’s healthcare-related data (incl. Rx data)

- An active privacy bundle (APB)
 - A software construct

Motivation and Problem Statement

- Data privacy in an e-Rx system — a critical challenge
 - Users must be sure that the e-Rx system does not disseminate or share their private data (e.g., name, home address, names of mental illness medications) to unauthorized entities
 - Users do not know who/what controls their data physically
 - Do not know where data are sent in an e-Rx network, and who manages them
 - Some companies profit from selling physician’s prescribing routines to pharmaceutical companies

- Security = confidentiality + integrity + availability (CIA)
 - This is a classical definition of security

- Problem Statement
 - Assure that an e-Rx system provides all 3 components of security
 - Assure that private data are not disclosed to unauthorized parties by an e-Rx system

The Proposed Solution

- Modifications of the Active Privacy Bundle
 - Modified two APB execution phases
 1. APB creation: APB constructed in user space with APB creator software (either automatically or interactively)
 - The APB creation steps
 - Darker color indicates modified steps
 1) Collect sensitive data and metadata, build APB
 2) Generate APB’s encryption keys
 3) Encrypt sensitive data and metadata
 4) Compute hash value for APB
 5) Bundle APB’s components, encrypt APB
 6) Attach authorization program to APB
 7) Send APB to a visited host
 2. APB enabling: APB automatically enabled on the visited host
 - The APB enabling steps
 - Darker color indicates modified steps

Work Status and Future Work

- Status
 - Nearing completion of a pilot APB implementation
 - Developing active privacy bundles with multi-agent system (APB-MAS)

- Future work
 - Adding to APB privacy policy inclusion
 - Adding to APB privacy policy verification
 - Adding to APB automatic negotiation of privacy policies
 - Using APB-MA for protecting patients’ privacy in e-Rx systems

- The e-prescribing workflow with APBs
 - Analogous to “The current e-prescribing workflow” but...
 - Activities (drawn as arrows) are not labeled below
 - Contents of APB data are described in the broken-line boxes shows
 - Different APB sizes — due mostly to different sizes of APB’s data and metadata components

Requirements for APB creation

- Using domain names, addresses & associated certificates
- Key derivation
- Key stretching
- Detached signatures

Requirements for APB enabling

- Message disposition notification (MDN)
- Provides indications of message delivery (read or discarded) to the sender
- Using certificate authority (e.g., X509)
- Certificate discovery
- Through DNS and LDAP
- Trust verification

Salient Solution Features

- Attribute-based access control (ABAC)
- No need for trusted third party (TTP)