Selective binding and extraction of anions by artificial receptors is one of the most far-reaching areas of supramolecular chemistry, with implications in chemical, biological and environmental sciences. The extraction of kosmotropic anions from aqueous media is challenging, due to their large hydration energies (affinity for water). We have recently shown that a class of toroidal copper(II)-hydroxide/pyrazolate complexes (nanojars), with the formula \([\text{Cu(OH)}_x\text{pz}]_n\), \(n = 27\)–36, totally incarcerate kosmotropic anions with an unprecedented strength. Lined by H-bond donors on the inside and hydrophobic on the outside, these ~2 nm sized assemblies selectively extract kosmotropic anions from mixtures with chaotropic anions (low hydration energies). Up to twelve hydrogen bonds from the neutral host assembly wrap around and sequester anions from aqueous solutions, similarly to their analogs in living organisms, such as the sulfate- and phosphate-binding proteins. Tetrabutylammonium “lids” seal the nanojars and render the encapsulated anion completely buried and inaccessible, so that, for example, sulfate is not precipitated out as BaSO4 by Ba2+ ions.

Introduction

Selective binding and extraction of anions by artificial receptors is one of the most far-reaching areas of supramolecular chemistry, with implications in chemical, biological and environmental sciences. The extraction of kosmotropic anions from aqueous media is challenging, due to their large hydration energies (affinity for water). We have recently shown that a class of toroidal copper(II)-hydroxide/pyrazolate complexes (nanojars), with the formula \([\text{Cu(OH)}_x\text{pz}]_n\), \(n = 27\)–36, totally incarcerate kosmotropic anions with an unprecedented strength. Lined by H-bond donors on the inside and hydrophobic on the outside, these ~2 nm sized assemblies selectively extract kosmotropic anions from mixtures with chaotropic anions (low hydration energies). Up to twelve hydrogen bonds from the neutral host assembly wrap around and sequester anions from aqueous solutions, similarly to their analogs in living organisms, such as the sulfate- and phosphate-binding proteins. Tetrabutylammonium “lids” seal the nanojars and render the encapsulated anion completely buried and inaccessible, so that, for example, sulfate is not precipitated out as BaSO4 by Ba2+ ions.

Mechanism of formation (by ESI-MS)

Selective anion extraction

Effect of peripheral pyrazole ligand substitution on nanojar structure and stability

Homoleptic nanojars can be obtained with pyrazoles shown in green; those in orange can only form heteroleptic nanojars, and the ones in red do not form nanojars under similar conditions. Substitution of the 4-position does not effect nanojor formation; straight chains in the 3-position are also tolerated, and favor the \([\text{Cu}_3\text{O}_3\text{Se}]_{2\text{–}}\) nanojar; two bulky substituents in the 3,5-positions prevent nanojar formation. Substituents with donor ability are not tolerated at any position of the pyrazole ligand.

Synthesis and structure of nanojars

Mass spectrometric studies

Survival of the fittest nanojar

In solution, nanojar species ranging from \([\text{Cu}_3\text{O}_3\text{Se}]_{2\text{–}}\) to \([\text{Cu}_6\text{O}_6\text{Se}]_{2\text{–}}\) have been observed.

With increasing anion size, a preference for increasingly larger nanojars is observed (for each anion, the most abundant nanojar species in the ESI mass spectrum is indicated by underlining).

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CHE-1404730.