Protecting Sensitive Data in VANETs Using Active Data Bundles

Abduljaleel M. Al Hasnawi (Advisor: Prof. Leszek T. Lilien)
Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008

Introduction

- Requirements for Vehicular Ad Hoc Networks (VANETs)
 - Integrate capabilities of the next generation wireless networks into vehicles
 - Share vehicular data over large-scale devices
- Typical VANET Applications
 - Traffic Safety, Traffic Efficiency, Convenience, Connectivity, Mobility
- VANET Communications and Communication Domains
 - V2V - Vehicle-to-Vehicle
 - V2I - Vehicle-to-Infrastructure
 - I2I - Infrastructure-to-Infrastructure
 - I2B - Infrastructure-to-Broadband
 - Domains: In-Vehicle, Ad Hoc, Infrastructure, Broadband

Methods

- Active Data Bundles (ADBs) (Then Othman&Lilien, 2009)
 - Sensitive Data: data to be protected
 - Metadata: specifies ADB policies
 - Operational Policies: control ADB behavior
 - Access Control Policies: control data dissemination and disclosure policies
 - Verification Policies: evaluate trust, check integrity
 - Virtual Machine (VM): executes ADB in order to evaluate and enforce privacy policies
 - Results of policy enforcement:
 - Full Data Disclosure: disclosure of all ADB data
 - Partial Data Disclosure: disclosure of a part of ADB data due to an insufficient trust level of the visited host, followed by the selective data disclosure
 - Apoptosis: complete ADB self-destruction when ADB "feels" threatened with unauthorized disclosure of its data
 - VM is encrypted or obsfuscated
- Mobile Agents (MAs)
 - Software objects able to:
 - Interact with and use capabilities of visited hosts
 - Transport themselves from one host to another
- Java Agent Development (JADE)
 - Software framework fully implemented in the Java language
 - Simplifies implementation of multi-agent systems

Results: The Proposed Solution

- ADB Lifecycle in VANETs
 - ADB Creation
 - VM: Create virtual machine
 - Encrypt data
 - Add metadata
 - Sensitive data
 - Data Owner
 - ADB Dissemination
 - Verification
 - Apoptosis
 - Unauthorized Host
 - ADB Enabling
 - VM: Enforce policies
 - Decrypt data
 - Full or partial Data Disclosure
 - Service Provider

ADB Enabling

- ADB trust verification for Host H
 - If trust value for H less than ADB-TT, then apoptosis
 - Otherwise, full or partial data disclosure
- ADB integrity verification for Host H
 - If hash value for H different than ADB-HV, then apoptosis
- ADB privacy policy enforcement for Host H
 - VM evaluates P for H
 - VM discloses data as indicated by F(C, P)
 - If last host visited by ADB, then VM apoptosizes ADB
 - Otherwise, ADB goes to the next host
- ADB decryption

Proof-of-Concept Scenario

- Pay As You Drive (PAYD) Insurance Application Scenario
 - Insurer requests driving data from an insured vehicle
 - Insurance fees calculated based on sensitive data:
 - Distance driven in a period of time
 - Driving style: speed, acceleration, time of day...

Conclusions and Future Work

- Conclusions
 - Integrating ADB with VANETs in an effective and efficient way should solve most of the privacy issues in VANETs
 - ADB is extensible - allows adding more security and privacy protection mechanisms
 - According to the sensitivity of the carried data
- Future Work
 - Evaluate using ADB in VANETs via simulation
 - Propose ADB routing protocol for VANETs
 - Apply the proposed solution to diverse VANET applications