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Resonant inelastic x-ray scattering (RIXS) is a powerful technique in 

condensed matter physics for studying the electronic excitations in novel materials of 

interest. In currently operating hard x-ray RIXS instruments the energy and 

momentum transfers are measured while the outgoing polarization is not measured 

due to significant technical challenges. But the outgoing polarization of the scattered 

photons provides valuable information (excitation symmetry) about the states 

involved in the scattering which is difficult to determine without polarization analysis. 

Polarization analysis has proved extremely valuable in soft x-ray RIXS, and so a 

polarization analysis system is being developed to fill the technical void at higher 

energies. 

A polarization analyzer is designed to reflect the scattered photons from the 

main analyzer by about 90 degrees. At this reflecting angle, the in-plane polarization 

is naturally eliminated by the polarization factor so that the scattered photons 

perpendicular to the reflection plane are fully obtained. Therefore it can separate the 

two orthogonal polarizations (named ‘π’ and ‘σ’) by rotating the system by 90 

degrees. 

The research in this dissertation is about the development of an outgoing 



polarization analysis system complementing for the current RIXS instrument at 

Advanced Photon Source (APS). The polarization analysis system developed includes 

the x-ray polarization analyzer and the mechanics attached to the RIXS spectrometers 

and for aligning the polarization analyzer. A variety of diffraction-based polarization 

analyzers are being developed for different x-ray absorption edges. A polarization 

analyzer for Cu K-edge has been developed, and one for the Ir L3-edge has also been 

developed. 

By separating the outgoing polarization, the strong polarization dependent 

electron excitations, e.g. the spin-orbital excitations in iridates can be measured by the 

polarization analysis system. Further, the system enables us to separate and study the 

transverse and longitudinal magnons in Sr2IrO4, demonstrating a new capability for 

the RIXS technique. 
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CHAPTER 1 

INTRODUCTION 

The work of this dissertation is divided into three main parts. The first part is 

the development of an outgoing polarization analysis system for current resonant 

inelastic x-ray scattering (RIXS) instruments. The calculations and ray tracing 

simulations are presented for the prototype of the polarization analyzer (PA). A 

graphite-based PA was designed and tested at the Cu K-edge to study the scattered 

polarization dependence in the superconducting parent cuprates. For the second part, 

we designed and fabricated a new type of bent single crystal Si PA for the study of 

strongly spin-orbit coupled and magnetic excitations in iridium based 5d transition 

metal compounds (iridates) at the Ir L3 absorption edge. Finally, for the third part, 

studies of excitations in the 2D-layered system Sr2IrO4, and the quasi-1D system 

BaIrO3 are presented.  

Development of polarization analysis for RIXS is important because the 

current RIXS spectrometers measure the changes in energy and momentum of the 

photons scattered by the sample, but they cannot measure the polarization 

components of the scattered photons which contain the information of excitation 

symmetry. By achieving a polarization analysis system, the future RIXS spectrometers 

can measure all the key factors (energy, momentum and polarization) in the double 

differential scattering cross-section which relate the initial state to a final state during 

scattering.   

Since the polarization analysis system is developed based on the RIXS 

spectrometer, in this introductory chapter, a review of inelastic x-ray scattering (IXS) 
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technique, especially the RIXS technique, is presented and their capabilities. 

Hereafter, the importance and benefits of polarization analysis are exhibited which 

impels us to the work of this dissertation. 

1.1 Inelastic x-ray scattering 

Standard X-ray scattering is an analytical technique which reveals information 

about the crystal structure and physical properties of materials of interest. In operating 

x-ray instruments, incident photons incident on the sample are scattered with different 

angles and energies. The scattered photons are typically measured as a function of 

incident and scattered angle.  

Inelastic x-ray scattering (IXS) is an experimental technique that measures the 

changes of the momentum and energy between the incident and scattered photons. 

The momentum and energy transfers during the scattering process provide the crucial 

information on the excitations of interest. In the typical x-ray scattering process 

schematically shown in Figure 1.1, the incident beam hits the sample and is scattered 

in different spatial directions (different q values). The intensity as a function of the 

frequency change (energy loss) of the scattered beam at a certain q value is measured. 

The scattered beam spectrum includes the contributions of elastic scattering (ω2 = ω1), 

energy transferred to the sample (ω2 < ω1), and energy transferred from the sample 

(ω2 >ω1). We are interested in the spectrum of scattered photons as a function of 

energy transferred ℏ(ω1  - ω2) and momentum transferred (q) (Plakida, 2003).  
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Figure 1.1 X-ray scattering process. k1, ε1, ω1 (k2, ε2, ω2) are wave vector, polariza-

tion, and frequency of the incident (scattered) beam, respectively. 

Momentum transferred q is defined by q = k2−k1.  

IXS technique is generally divided into two branches depending on whether 

the incident photon energy is at a resonance. When the incident energy is off any 

resonance, this case is called non-resonant inelastic x-ray scattering (NIXS). If the 

incident energy is close to or at the absorption edge of interest, the scattering is called 

RIXS. 

In RIXS, the Kramers-Heisenberg formula is the key formula for the double 

differential scattering cross section. But to get into that, first, we need to consider the 

Hamiltonian that describes the interaction between the incident electromagnetic field 

and the electrons in the material. Then, by applying the first-order perturbation 

treatment on the interaction Hamiltonian, the double differential cross section of 

NIXS can be obtained. Accordingly, in the next section, double differential cross 

section of RIXS can be derived using the second-order perturbation treatment.     The 

electron Hamiltonian H can be split into two terms, the non-interacting term Ho and 

the interacting term Hi  (Beaurepaire et al., 2010).  

 o iH H H   (1.1) 

 
21

( )
2

o j jj'

j jj'

H V r
m

  p  (1.2) 
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2

2

2
( ) ( )

2
i j j j

j j

e e
H

mc mc
    A Ar p r  (1.3) 

Ho is the sum of the kinetic energy and potential energy of the electrons. Hi 

expresses the interaction between electrons and electromagnetic field. A(r) is the 

operator of the vector potential of the electromagnetic wave at the position r of the 

electron and p is the momentum operator. This treatment omits the spin-dependent 

contributions since they are smaller by a factor of ℏω/mc
2
 than the spin-independent 

ones (Schülke, 2007). In the interaction Hamiltonian, the term that is linear in A, 

needs a second-order perturbation treatment and the term that is quadratic in A is 

appropriate for first-order perturbation calculation. By applying the Fermi Golden rule 

on the interacting Hamiltonian Hi to the second-order perturbation, the transition 

probability between the ground state and final state can be obtained, 

2

1
( )

i i

i f i f i

n n i

f H n n H i
w f H i E E

E E
   


  (1.4) 

Since A linearly contains the photon creation and annihilation operators, the 

quadratic term of A contains the product of creation operator and annihilation 

operator, which is suitable for a two-step scattering process. Under the first-order 

perturbation, substituting Hi  by the terms of A
2
, the double differential cross section 

for NIXS is obtained (Rueff et al., 2010), 

 

2
2 2

2 22
1 22

2 1

d
( ) ( ) exp(i )

d d

( )

i,f j

f i

e
f i

Ω mc

E E ω



 



  

  

 ε ε q r
 (1.5) 

where the last sum is usually expressed as the dynamic structure factor S (q, ω), 
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d e e e

2
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f i E E ω

t i i

 



   



    



 


q r q r

q q r

 (1.6) 

The dynamic structure factor depends only on the energy and momentum transferred 

to the system independent of the incident photon energy and wave vector. The 

dynamic structure factor represents the total scattering from all atomic sites in the 

solid from the ground state to all the excited final states obeying the conservation of 

energy and momentum. It is widely used in non-resonant IXS to study phonon 

excitations.  

1.2 Resonant inelastic x-ray scattering 

Resonant inelastic x-ray scattering (RIXS) is distinguished from NIXS by its 

incident energy selection. When tuning the incident photon energy close to an 

absorption edge of interest, the inelastic signal is significantly enhanced; therefore the 

atomically selective and weak scattering excitations can be measured at the resonance. 

The energy and momentum transferred during the scattering are measured to study the 

nature of intrinsic excitations and to reveal information on the ground state of 

materials of interest. RIXS is a powerful and unique technique requiring third 

generation synchrotron radiation sources with high photon intense and high energy 

resolution and is widely used in various scientific fields. 

1.2.1 RIXS double differential cross section 

Resonance happens when the incident photon energy is close to or at the 

energy of the absorption edge of interest. At the resonance, the interaction between 



  

6 

 

the incident electromagnetic field and the electrons in the material is strongly 

enhanced. Thus, the term Ap is dominant in the interacting Hamiltonian Hi. By 

applying the second-order perturbation to the expression (1.2), in |…|
2
, the first term 

(non-resonant part) is negligible compared to the second term (resonant part) when 

the incident energy ℏω1 = Ei - En (Rueff, 2010). At this condition, the dominator of the 

resonant term approaches zero and the scattering is dominated and enhanced by the 

resonant scattering term. Then the famous Kramers-Heisenberg formula (Kramers et 

al., 1925) at the resonance is the following, 

2 1
2

i i2
2 12 2

2 1 1

( )e ( )ed
( ) ( )

d d i / 2

(E E )

j j'

j j'

0

f n i n n

i f

f n n iωσ
r

Ω ω ω m E E ω Γ

 

    


  

  

 
ε p ε p

k r k r

 (1.7) 

where ℏω1 and ℏω2 are incident and scattered photon energy which direction of k1 and 

k2; i , n , f  are the initial, intermediate and final states of the system with energy 

Ei, En, Ef respectively; the sum is over the intermediate and final states; ε1 and ε2 are 

the incident and scattered photon polarizations; Γn is the energy broadening of the 

intermediate state. The formula represents the probability of the scattered photons in 

the solid angle dΩ with an energy bandwidth of dℏω2. 

1.2.2 Physical process in RIXS  

RIXS can be explained as a two-step process which includes the system 

absorption of an incoming x-ray and emission of an x-ray by the system.  By the 

absorption of incoming x-rays, an electron in the core level is knocked out into an 

empty state. The excitation is created by the complex electron interactions between 

the core hole and valence band which is called the core hole potential. This excitation 
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typically occurs from an occupied valence state to an unoccupied valence state. Then 

the core hole is filled by the decay of an electron by the emission of an x-ray. There 

are two different RIXS processes which are known as direct and indirect RIXS.  

(a)   

(b)   

Figure 1.2 (a) Direct RIXS process. An electron is knocked out from a core level into 

the empty valence band by the incoming x-rays. The core hole is filled by 

an electron from occupied states by the emission of an x-ray. The 

excitation occurs in the valence with the change of momentum ℏ(k2 − k1) 

and change of energy ℏ(ω2 − ω1). (b) Indirect RIXS process. An electron is 

knocked out from core level into the valence shell by the incoming x-rays. 

An electron is excited to the empty valence under the Coulomb interaction 

between core hole and valence electrons. The core hole is filled by the 

electron decay from valence shell by the emission of an x-ray. The 
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excitation is created with change of momentum ℏ(k2 − k1) and change of 

energy ℏ(ω2 − ω1).  

Direct RIXS. For direct RIXS, as shown in Figure 1.2a, the electron in the 

deep-lying core level is excited by the incoming x-ray into an empty valence state. 

Then an electron in the valence state decays and fills the core hole by the emission of 

an x-ray. The excitation is the electron transition from the occupied valence band to 

the empty valence band. This excitation is created with a momentum change ℏ(k2− 

k1) and an energy change ℏ(ω2 − ω1). In 5d transition-metal (TM) oxide Sr2IrO4, the 

electron is knocked out from 2p to 5d state by the absorption of incoming x-rays. 

Then the electron decays from 5d to 2p core hole. The absorption and emission give 

direct information of the empty valence state and occupied valence state (Ament et 

al., 2011a).  

Indirect RIXS. A most interesting example is TM Cu K-edge RIXS (1s→4p). 

In indirect RIXS, as shown in Figure 1.2b, the electron is excited by the incoming x-

ray to a valence shell (4p state), leaving a core hole in the system. The intermediate 

state with a core hole creates a strong Coulomb potential with the 3d valence 

electrons, which creates an electron excitation in the valence band. As the electron 

decays to the core hole (4p→1s), the system emits an outgoing x-ray, leaving an 

electron-hole excitation behind. Excitations in indirect RIXS typically suffer from 

much weaker inelastic signals than the elastic scattering resulting in the difficulty to 

observe low energy excitations. However, in direct RIXS, e.g. L-edge RIXS, since the 

electron is knocked out directly to the state of the final excitation, a large inelastic 

signal, sometimes even stronger than the elastic scattering, arises in the spectrum 

(Ishii et al., 2011a). 

RIXS has more strict conditions compared to NIXS. The resonance requires 
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the incident energy to be the electron transition energy from core level to the specific 

valence shell on the atomic site of interest. In RIXS experiments, one needs to tune 

the incident energy to different positions in the fluorescence yield to knock the core 

electron to different unoccupied states, screening a core-hole potential environment in 

the immediate state, therefore inducing a certain excitation of interest after the core 

hole is filled by the electron’s decay. However, a NIXS experiment is more straight 

forward since one can set the incident energy to any value, which is usually chosen to 

improve energy resolution. 

1.2.3 Excitations which can be probed with RIXS 

A. Charge transfer excitations 

In condensed matter systems, a charge transfer (CT) excitation phenomenon 

happens when an electron moves from one site to another. In TM oxides, charge 

transfers were well explained by Hubbard model (Hubbard, 1964). The Hubbard 

Hamiltonian described the charge transfers as the electron ‘hopping integral t’ 

between sites (e.g. from a ligand site to a metal site) and the on-site Coulomb 

repulsion U. The correlated system can be classified by the relation between t and U, 

which represents the metallic property and insulating property, respectively. For the 

half-filled band, if U/t = 0 the system is metallic and if U/t = ∞, each electron is most 

likely standing on different site and unfavorable standing on same site, so the 

electrons are fully localized. Such a system is called Mott insulator. RIXS is a 

powerful probe to study the several CT features, e.g. electron transfers between ligand 

state and metal state. The CT is localized or dispersive through lattice and may 

depend on temperature or pressure, etc. The metal-insulator boundary was 
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theoretically classified described in (Zaanen et al., 1985). The CT excitations in 

manganites (Grenier et al., 2005; Weber et al., 2010) and in nickelates and cuprates 

(Wakimoto et al., 2009) have been studied by metal K-edge RIXS at the APS. 

B. Orbital excitations 

RIXS is currently in wide use to understand the valence electrons properties in 

many strong correlated systems. The orbital degree of freedom which is coupled to 

the other (charge, spin) degrees of freedom is one of the most interesting subjects to 

understand the natures of the solid. The orbital levels of an ion of interest are split to 

different energy levels in the crystal field produced by the surrounding charge 

distribution (anion neighbors). For example, in TM cuprates, there are five-fold 

degenerate d-orbitals. These orbitals are dz
2
 and dx

2
-y

2
 orbitals in the higher energy 

levels and dxy, dxz and dyz orbitals in lower energy. The electron transitions between 

different d orbitals are called d-d transitions. d-d transitions in many correlated 

systems had been studied by RIXS to understand the orbital ground states in the 

crystal field. There is another orbital excitation called orbitons or orbital waves 

dispersing through the crystal lattice which differ from the local d-d transition. d-d 

orbital excitations in NiO (Huotari et al., 2008), and cuprates (Kim et al., 2004b) have 

been studied by direct RIXS. The orbiton was predicted as one quasi-particle that 

behaves similar to the holon and spinon. The observation of dispersing orbital 

excitations is a hot topic (Saitoh et al., 2001; Tokura et al., 2000). RIXS contributes 

to measuring the orbitons since it is sensitive to the dipole forbidden d-d excitations 

and has momentum capture through the Brillouin zone (Ament et al., 2011b).  
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C. Magnetic excitations-magnons 

Recently, RIXS has shown the ability to study the magnetic excitations in 

transition metal oxides (TMO), especially the ability of L-edge RIXS to probe the 

single magnon excitations, which the K-edge RIXS cannot probe due to the selection 

rules. Magnetic excitations have been studied by RIXS in the soft x-ray region. For 

example, the magnetic excitations in one dimensional system Sr14Cu24O41 at the Cu 

L3-edge (Schlappa et al., 2009),  single magnon in two dimensional La2CuO4 at the 

Cu L-edge (Braicovich et al., 2010a), and magnon dispersion in 2D antiferromagnetic 

insulator Sr2CuO2Cl2 (SCOC)(Guarise et al., 2010). Magnon excitation is a collective 

excitation phenomenon related to the superposition of electrons’ ‘spin-flip’ at 

equivalent sites, carrying a fixed amount of energy and lattice momentum in the 

crystal lattice. The 5d elements, such as Ir, are attracting attention with its interesting 

features. Unlike the 3d TMO that has a strong Coulomb interaction and narrow d-

band, the 5d orbitals are extended in space with very weak Coulomb interaction but it 

is a Mott insulating ground state system due to the strong spin-orbital coupling. For 

example, the 2D layered 5d system, Sr2IrO4, is believed to be described by a Jeff = 1/2 

ground state. The strong spin-orbital coupling splits the t2g state to the Jeff = 3/2 

quartet with lower energy and a singly occupied Jeff = 1/2 doublet near the Fermi 

level, driving the system into a Mott insulating ground state instead of a metallic state. 

In the direct RIXS process, e.g. L-edge RIXS, the single spin-flip (~200 meV) occurs 

when the electron is excited from 2p→3d due to the strong spin-orbital coupling (Ishii 

et al., 2011c; Kim et al., 2012b). However, in the indirect RIXS process, e.g. K-edge 

RIXS (1s→4p), two-magnon excitations (∆Sz = 0) are allowed by both experimental 

observation and theoretically understanding (Brink, 2007). 
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1.3 RIXS instrumentation 

RIXS spectrometer is operating with the high flux and the resolution incident 

energy tuned to the absorption edge of an atom of interest, which can enhance certain 

excitations during the scattering event. Scattered photons with various energies from 

the sample are analyzed by the analyzer at a certain momentum transfer angle that 

related to the reciprocal lattice space of the solid. Information of energy and 

momentum transferred are measured.  

In the first part of the project, a polarization analysis system based on HOPG 

graphite-based was developed and tested at 30-ID based on MERIX instrument. For 

the second part of the project, a bent Si PA and its control system was being 

developed at 9-ID where the rotation of the polarization of incident photons had been 

achieved by the insertion of diamond phase plate (Lang et al., 1995). With the 

outgoing polarization analysis system, 9-ID will be the first RIXS beamline in the 

world which can measure both incident and scattered polarization. 

The project of this thesis is carried out at the Advanced Photon Source (APS), 

Argonne National Lab shown Figure 1.3. The IXS technique is allocated at three 

sectors, 3-ID, 9-ID, and 30-ID according to different experimental requirements. The 

medium energy resolution resonant IXS (MERIX) and high energy resolution 

resonant IXS (HERIX) are located at 30-ID to study a wide variety of complex 

materials. MERIX is a RIXS instrument with overall energy resolution of ~30-600 

meV depending on the x-ray monochromators and analyzer used in the experiment. 

HERIX is a NIXS instrument with extremely high energy resolution (1~3 meV) and 

large Rowland circle diameter (9 m), taking the duty of doing the phonon related 

experiments in solids and liquids.  A similar type of instrument as MERIX is at 9-ID 

for doing medium energy resolution RIXS experiment. 3-ID includes the nuclear 
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resonant scattering and  does 2.6 meV resolution measurements. 

  

Figure 1.3 Advanced Photon Source, Argonne National Lab, IL, USA. This is a high-

brilliance synchrotron radiation light source. High speed electrons are 

injected into a 1.1km circumference storage ring. On the tangent direction, 

the storage ring is divided by 35 beamlines for a variety of x-ray 

techniques and scientific fields. 

The mechanics of the graphite-based polarization analysis system were 

designed based on the MERIX instrument and the outgoing polarization analyzed 

RIXS data of CuGeO3 was carried out there as well. Then a modified system with 

bent Si PA was developed based on the instrument at 9ID. As an example of RIXS 

instrument, a detail description of instrument at 9ID from upstream to downstream is 

presented Figure 1.4. 

Undulator. 9ID is an undulator insertion device beamline. Electrons in the 

storage ring are propagating tangentially into the undulator, which is a series set of 

magnets with antiparallel magnetic fields so that it forces the electrons to oscillate in 

many small periods. At each oscillation x-ray are emitted and added up coherently in 
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from the beginning to the end of the undulator. Therefore, the radiation contribution 

generates a very intense beam with a small divergence and a horizontally linear 

polarization (Jens Als-Nielsen, 2001). Brilliance is an important quality of x-ray 

which is defined as photons/s/mm
2
/mrad

2
/0.1%bandwith. Undulator devices are 

widely used in third-generation synchrotron radiation sources and a factor of ~10
12

 

brighter that the early lab sources.  

 

Figure 1.4 Schematic of RIXS beamline at 9ID-B, APS. From the upstream to down-

stream is the undulator, first and second monochromator, focusing mirrors, 

sample, analyzer and detector. 

Monochromators. The monochromator of hard-x ray is the first optics at the 

upstream of the beamline to choose the reference working energy and energy 

bandwith of the incident photon. It is typically a set of flat perfect crystals (e.g. Si, 

Ge) with a two- or four-bounce geometry, which diffracts the x-ray following the 

famous Bragg Law, given by: 
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 n 2d sin    (1.8) 

where λ is the wavelength of the incident photon, d is the lattice spacing of the 

diffraction plane respect to the certain Bragg reflection, and θ is the angle between 

incident beam and diffraction plane, n is an integer. Differentiating the Bragg Law, 

the relation between the energy resolution after the diffraction and so-called rocking 

curve width (in rad) can be derived:  

 
E

cot
E


 



 
     (1.9) 

For an ideal source, Δθ is an intrinsic factor, depending on the crystal quality, crystal 

structure, and the Bragg reflection index. In practice, it needs to be combined with the 

real source features at APS, such as beam divergence and bandwidth. In 9ID as shown 

in Figure 1.4, high intense polarized x-rays are produced by a periodic undulator 

followed by a cryogenically cooled Si (111) crystals (first monochromator) and a 

four-bounce high-resolution monochromator. A set of K-B focusing mirrors focus the 

beam to the sample position with a small beam size. 

Analyzer. The analyzer for RIXS experiments is for analyzing the energies in 

scattered photons from the sample at a certain 2θ angle with respect to the beam. The 

sample, analyzer, and detector are on the so-called “Rowland circle” geometry. 

Rowland circle is the circle tangent to the analyzer whose radius of curvature is half 

of the bending radius of the analyzer, which the divergent source (sample), center of 

analyzer and focus are all located on. The RIXS experiments require an incident 

energy fixed at the resonance to enhance certain excitations in solids. The analyzer is 

a spherical diced bent crystal working at near-backing scattering configuration, 

collecting and focusing the scattered photons to an one dimensional strip detector 
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(Huotari et al., 2006). Each pixel of the analyzer can be treated approximately as an 

unstrained perfect flat crystal. Based on the Bragg law, scattered photons from the 

sample with different energies are separated by their different incident and outgoing 

angles on the analyzer crystals and geometrically illuminated on different channels on 

the detector. The energy resolution from the analyzer depends on Eq. 1.9 as well. The 

total energy resolution can be expressed approximately as the square sum of incident 

bandwidth ΔEin from the first and second monochromator, intrinsic analyzer 

resolution ΔEan, and geometry factor ΔEge. ΔEge is the called geometry term, affected 

by the spatial geometry contributions from the sample and detector, which depends on 

the foot print on the sample and  pixel size of the detector (Gog et al., 2012). The total 

energy resolution ΔEtot is: 

 
2 2 2

tot in an geE E E E      (1.10) 

A series of options for first and second monochromator, analyzers respect to the 

absorption edge of an element can be found at the Sec 30 website with their energy 

and angular resolutions theoretically (Gog et al., 2012). The polarization analyzer is a 

complement additional analysis component which is placed after the focus of the 

energy analyzer as a secondary analyzing and focusing optics. More detail of 

polarization analyzer will be introduced in latter sections. 

1.4 Energy and momentum dependence in RIXS 

1.4.1 Energy dependence  

The incident energy dependence is the most important fact in the RIXS 

experiment. Based on the resonant cross-section, the intensities of energy loss, often 
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called inelastic peaks, are enhanced when the incident energy is tuned to the vicinity 

of a certain absorption edge. Different excitation is emphasized for different incident 

energy region at the x-ray absorption spectrum (XAS), which depends on the energy 

level that the core electron is excited into and the intermediate state under electron-

core hole interaction. 

In RIXS experiment, one chose a fixed incident energy that enhances the 

inelastic peak of interest, and then scans the emission radiation from the sample to 

obtain the relative emitted energy spectrum. For example, at K-edge RIXS, at the pre-

edge region, the core electron is directly excited into a 3d state, which is the case of d-

d excitations are assigned. And at the resonant edge, the excitations are usually 

dominated by the charge-transfer (CT) excitations. At the region beyond the 

absorption edge, for example of Cu K-edge RIXS for CuGeO3 shown in Figure 1.5, 

the inelastic peaks at ~7 eV are dominated by the CT excitations which do not appear 

at lower incident energies. The 2 eV elastic peak appears when the incident energy is 

at pre-edge region.  
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Figure 1.5 Cu K-edge RIXS data set of CuGeO3 for different incident energies.  

1.4.2 Momentum dependence 

The cross section of RIXS also shows the momentum transfer dependence of 

the electronic excitations. RIXS measurement can be utilized to probe the different 

positions within any one Brillouin zone since the momentum can be always reduced 

to the first Brillouin zone by the periodical feature. Sometimes RIXS experiments are 

measured at high reciprocal vectors in the horizontal geometry configuration, tuning 

the angle between the in-plane polarizations of reflected and incident beam to nearly 

90°, largely reducing the huge elastic line to detect the low energy loss features, such 

as magnons. An example of K-edge RIXS of 1D cuprates in the Figure 1.6 shows the 
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dispersive feature between 2 ~ 4 eV interpreted to be in the form of spinons and 

holons, and the non-dispersive is assigned to be the CT excitation. RIXS as a 

powerful technique shows its wide use and can that it can probe the momentum 

within the entire Brillouin zone, which is an advantage compared to the small 

momentum transferred by optical measurements (q ≈ 0).  

 

Figure 1.6 Image plot of Cu K-edge RIXS of SrCuO2, as a function of momentum and 

energy transfer. 3.5 eV peak disperses in the entire Brillouin zone and is 

interpreted as a charge density wave. Non-dispersive feature ~6eV is 

attributed to a local CT excitation (Kim et al., 2004a).  

1.5 Polarization in RIXS 

1.5.1 Polarization of scattered photon 

X-ray is a transverse electromagnetic wave that can be either linear polarized 

(the electric field oriented in one direction, perpendicular to the propagating 
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direction), circular polarized (the electric field rotates as time changes) or elliptically 

polarized (the combination of linear and circular polarization). The polarization can 

be therefore determined by three parameters (P1, P2, P3) called Stokes-Poincaré 

parameters (Shen et al., 1993), which are related to (σ and π) linear polarization, ± 

45°-tilted linear polarization, and the left- and right-hand circular polarization, 

respectively. If the beam is 100% polarized, the relation between the Poincaré-Stokes 

parameters is 1PPP 2
3

2
2

2
1  . As shown in Figure 1.7, linear polarization has two 

orthogonal components (ε1 and ε2) propagating in phase (phase difference is zero) and 

the amplitude ratio remains constant, so that the total vector is a line projection on the 

polarization plane. By contrast, the circular polarization always have the two 

components with a phase difference of  π/2 but the two component have same 

amplitude, so that the projection is a circle on the polarization plane.  

 

Figure 1.7 Linear and circular polarized beam propagation. Two orthogonal compo-

nents oscillate separately in the color of red and blue. The black wave is 

the combination of the two components. Linear polarization has a 

projection of a straight line; circular polarization has a circle projection. 

The electric field of a plane wave with a wave vector k and energy ℏω can be written 
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as the form of: 

 

1
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a cos( )
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a1 and a2 are the amplitude of two components in ε1 and ε2 direction, respectively. φ is 

the relative phase difference between them. The amplitude and phase information can 

be conveniently represented by the Jones vector, 
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A polarization ellipse shown in Figure 1.8 describes the projection of the 

electric field on the plane perpendicular to the wave propagation direction as time 

passes.  
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Figure 1.8 The polarization ellipse of an elliptical beam, combining the linear po-

larization and circular polarization. The counterclockwise is the positive 

P3 direction when looking into the source (Detlefs et al., 2012).  

The Poincaré-Stokes vector P (P1, P2, P3) is defined as (Blume et al., 1988; Detlefs et 

al., 2012): 
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 (1.13) 

There are several special polarization cases: 

(1) When the beam is circular polarized, a1 = a2, and χ = ± 45°, corresponds the 

relative phase difference ϕ = θ2–θ1 = ± 90° . Therefore P3  = 1 (left-handed circular 

polarization) or P3 = -1 (right-handed circular polarization). 

(2) When the beam is linearly polarized, the ellipticity χ is zero, so the circular 

portion P3 = 0; P1 ≠ 0, P2 ≠ 0, so that the beam is oriented at arbitrary direction. 

(3) If the beam is linear polarized, and the polarization is along the horizontal 

direction (ε1), ψ = 0; then P1 = 1, and P2 = P3 = 0; this polarization is called σ-

polarization. 

(4) When the linear polarization is along vertical direction (ε2), ψ = 90°; then P1 = -1, 

and P2 = P3 = 0; this polarization is called π-polarization. 

The polarization analyzer is a crystal to analyze the polarization components 

(σ and π) in the scattered photons from the real sample. Here σ is the polarization 
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perpendicular to the scattering plane of the polarization analyzer and π is the 

polarization within the scattering plane as shown in Figure 1.9.  

Kinematically, the intensity of a Bragg diffraction of a linear polarized is 

(Shen et al., 1993): 

    2 20
1 2( ) 1 cos 2 sin 2 P cos 2 P sin 2

2

I
I          

   (1.14) 

where the I0 is the incident intensity; θ is an arbitrary Bragg angle of the diffraction of 

reflector; χ is the angle between the normal of the diffraction plane and the incident σ 

polarization as the reference. P1 and P2 are given by:  
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 (1.15) 

They can be obtained by measuring the intensities in different scattering planes of the 

polarization analyzer with a nonzero Bragg angle θ. The linear (σ, π) polarization 

parameter P1 can be obtained by the measurement of scattered intensities on the 

vertical and horizontal plane and P2 can be obtained by measuring the intensities at 

the plane respect to incident σ polarization to ± 45°. In practices, the normalization of 

I(0°) (I(45°)) to I(90° )(I(-45°)) is necessary to cancel to signal to noise ratio and the 

overall reflectivity of the polarization analyzer.  
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Figure 1.9 Incident polarization and scattered polarization with respect to the reflector 

(polarization analyzer crystal). Here the incident x-rays (with k vector) are 

related to the polarization analyzer diffraction process, but these are the 

scattered photons from the real sample. 

The intensity of I(χ) reveals the crucial point of the scattered polarization 

analysis. When the incident x-rays respective to the polarization analyzer crystal is 

pure σ polarization, (P1 = 1, P2 = P3 = 0) and the diffraction plane is vertical, χ = 0, the 

intensity detected is always a constant and independent on the scattering angle 2θ, 

given by (only consider polarization effect on the scattering intensity and ignore the 

dynamic process of scattering): 

  2 20
01 cos 2 sin 2

2

I
I I     

   (1.16) 

If the incident x-rays respective to the polarization analyzer crystal are pure π 

polarization, (P1 = -1, P2 = P3= 0) and the diffraction plane is vertical, the intensity is: 

  2 2 20
01 cos 2 sin 2 cos 2

2

I
I I      

   (1.17) 

The term of cos
2
2θ is called polarization factor for the in-plane polarization. This is 
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the reason that polarization analyzer is ideally designed to have 2θ = 90° (cos
2
2θ = 0) 

to eliminate the in-plane π polarization and fully preserve out of plane σ polarization, 

therefore, separate the two orthogonal components in the scattered photons from the 

sample. One also can eliminate the π polarization and preserve σ polarization by 

rotating the diffraction plane of polarization analyzer to χ = 90°. This polarization 

separation in the scattered photons can help improve the signal-noise ratio which 

many experiments usually suffer during the data collection. This is especially helpful 

for the study of the low energy excitations in RIXS. For instance, for the magnetic 

scattering in π polarization channel, after the diffraction of polarization analyzer, the σ 

polarization channel signal (Thomson scattering or elastic line remains) is largely 

reduced nearly to zero, then the low energy inelastic peaks ‘survive’ from the tail of 

elastic peak. Multiple inelastic peaks with close energy loss positions overlap to show 

one broad peak. If they are in different polarization directions, they can be 

distinguished by polarization analysis. 

The scattering angle 2θ may not be 90° exactly, only approximately, since the 

selection of a desired d-spacing of polarization analyzer crystal that satisfies the 

Bragg condition for 90° with the energy at a certain absorption edge does not always 

exist. This increases the difficulty of developing the polarization analyzers. 

Polarization analyzers made by different crystals will work for different resonances, 

similar to the conventional energy analyzer in RIXS. One needs to consider the 

channel leakage related to the Bragg angle to the polarization when processing the 

polarization analyzed data, especially when the analyzer is removed from 90°. 

1.5.2 Importance of polarization dependence in RIXS 

The polarization dependence is one of the most important factors in the RIXS 
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technique as can be seen in the RIXS cross section Eq.(1.7). RIXS is a second-order 

process where the selection rules involve both polarizations of incident and scattered 

photons. The incident and scattered polarization are compared to the orientation of the 

sample and provide valuable symmetry information of the excitation states involved 

during the scattering. The polarization of the incident photons is in the plane of the 

synchrotron radiation ring and perpendicular to the propagation direction which is 

often called “σ” polarization. RIXS experiments are favorably performed in 

horizontal scattering geometry so that the intense elastic scattering can be largely 

reduced by the polarization factor cos
2
(2θ), when the scattering angle between 

incident and outgoing beam 2θ is close to 90° shown in Figure 1.10, which helps to 

measure the low energy excitation closed to the elastic line.  

 

Figure 1.10 Horizontal geometry and vertical geometry with different polarization of 

incident beam respect to the scattering plane. In the horizontal geometry, 

incident polarization and outgoing polarization are near perpendicular to 

largely reduce the elastic scattering from the sample. 

Rotating the incident polarization relative to sample orientation can be 

performed by using the phase retarder (Lang et al., 1995) or by rotating the crystal 

itself. In current experiments, there is no setup for the measurements of this 
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polarization.  Therefore, a polarization analysis of the scattered photons is required to 

a complete determination of excitation symmetry for both technical and scientific 

point of view (Gog et al., 2009), which is the work of this dissertation.  

The symmetry selectivity strongly related to scattered polarization dependence 

had been discussed by (Schülke, 2007) in the square matrix element between the 

intermediate state and final state: 
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which can be treated by dipole one-electron system approximation: 

 

2
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with a tensor T , e2 is the scattered polarization vector with respect to the principle 

crystal axes, n  ( f ) is the intermediate state (final state). The tensor T can be 

written in the diagonal matrix elements by the principle coordinate: 

 
2

T f n   (1.20) 

where η = x, y, z are the coordinates of the principle axes of the tensor. The principle 

square matrix element is determined by the tensor component and scattered 

polarization vector. Therefore by scattered polarization analysis one can assign the 

excitation nature by the symmetry arguments qualitatively to avoid the complexity of 

solving the theoretical models. 

1.5.3 Polarization dependence of orbital excitations 

As a good example of polarization analysis, the orbital excitation in Cu-K 
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edge of KCuF3 by RIXS had been studied by polarization analysis on the scattered 

photons (Ishii et al., 2011b). This is currently the only work of hard RIXS with 

polarization analysis. But the broad energy resolution (~600 meV) and the low 

efficiency of the flat graphite necessitated long integration times. A more efficient 

analyzer concept is needed to enable widespread usage. KCuF3 has cubic symmetry 

with hole orbitals 3dy
2

-z
2
  and 3dy

2
-z

2
 (eg  state) on neighboring Cu sites. The d-d 

excitation which is the transition between 3d orbitals can be the transition between 

two-fold eg orbitals (eg excitation) or from the three-fold t2g orbital to eg orbital (t2g 

excitation). With the outgoing polarization analysis the eg excitation is distinguished 

from t2g excitation by the symmetry arguments. The selection rules for RIXS can be 

expressed as the product representation Γi ×Γj ×ξi ×ξj, where Γi, Γj  are initial and final 

state, ξi , ξj are incident and outgoing polarization. The possible excitation occurs if 

the product representation Γi ×ξi ×ξj contains the same symmetry as the final state Γj.  

KCuF3 sample has D4h group symmetry. The symmetry determined by the 

polarization configuration shows the possible symmetry of the excitation. eg 

excitation requires the B1g symmetry which only appears on the (a), (b) ,(d) 

configuration only at π→ π’ channel. To compare the experimental results in Figure 

1.11, t2g excitation shows up in (c) configuration on both π’ and σ’ channels, so the 

spectrums in both channels are almost identical, and the eg excitation is symmetry 

forbidden. In the other three polarization configurations both eg and t2g excitations 

contribute to the spectrum in both scattered polarization channels. By analyzing the 

spectrum weight, the eg excitation is distinguished from the t2g excitation at the energy 

about 1eV instead of 1.3eV.  
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Figure 1.11 Polarization analyzed RIXS spectra of KCuF3. (Ishii et al., 2011b) 

The polarization analyzed spectra are obtained from a flat graphite 

polarization analyzer with a low overall efficiency, which is largely reduced by ratio 

of the mosaic of the graphite crystal and the divergence of scattered photon from the 

main energy analyzer. We had developed a graphite polarization analyzer with a 

curved surface for Cu K-edge RIXS with a reasonable efficiency and energy 

resolution, which will be introduced in a later chapter. 

1.5.4 Polarization in magnetic excitations  

RIXS has recently shown its ability to study the magnetic excitations. Some 

experiments have shown good results with dispersing magnetic excitations at Cu L3-

edge (Braicovich et al., 2010b; Schlappa et al., 2009) and Ir L3-edge (Kim et al., 

2012a; Kim et al., 2012b). The magnetic excitations in L-edge RIXS are easier to 

detect with about two orders of magnitude stronger signal than K-edge RIXS due to 
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the direct projection of the core electron to the d-state rather than the indirect process 

of K-edge RIXS. X-ray carries only angular momentum L, unlike neutrons that carry 

magnetic spin half to directly produce the spin-flip excitations. The magnetic 

excitations in RIXS, therefore, are the spin-flips due to the strong interaction between 

the spin and orbital (spin-orbital coupling) with presence of the core-hole state. With 

strong spin-orbital coupling, the total angular momentum is now the good quantum 

number instead of spin and orbit angular momentum themself. Photons can transfer 

ΔL = 0, 1, 2 to the system which will cause the single magnon excitation with ΔS=1 

or two-magnon with ΔS=2 under conservation of the total angular momentum (Ament 

et al., 2011b). 

A fast collision approximation made by Luo (Luo et al., 1993) to express the 

magnetic scattering when the lifetime of core electron excited in the system and decay 

to the core level leaving a excited state is fast and can be neglected. The cross section 

of RIXS for magnetic excitations can be expressed by factoring the low-energy 

effective scattering operator that includes the creation and annihilation of the core 

hole, leaving the system in a low-energy excited state. The effective low-energy 

operator represents the magnetic excitation with a strong transferred momentum and 

incident and scattered polarization dependence (Haverkort, 2010). The effective 

scattering operator given by(van Veenendaal, 2006) that is an exact form for magnetic 

excitation in RIXS: 
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Where the Sj is the spin operator at site j, with the expectation value s. σ
(0)

, σ
(1)

, σ
(2)

is 
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the isotropic, magnetic circular dichroic and magnetic linear dichroic spectral 

functions. εi and εo are the incident polarization and outgoing polarization.  To clarify 

the polarization dependence of the incident and outgoing polarization, the scattering 

operator for spin 1/2, tetragonal, D4h point group system can be written as form of 3× 

3 tensor and polarization vectors: 
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 (1.22) 

Magnon dispersions for several systems with different crystal structures has 

calculated theoretically (van Veenendaal, 2006). In practice, the symmetry arguments 

to the transition operator cannot be made completely if there is missing information of 

the scattered polarization vectors. Utilizing a polarization analysis system, magnetic 

excitation components in different polarization channels can be separated, so the 

transverse and longitudinal magnon wave related to exact spin-flip directions can be 

detected which has not been studied experimentally. The polarization analysis system 

developed for studying the magnetic excitations in iridates at Ir L3-edge will be 

introduced later in this thesis.  
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CHAPTER 2 

DESIGN OF GRAPHITE-BASED POLARIZATION ANALYZER  

The energy analyzer is an important part of the RIXS instruments that has 

been introduced in the previous chapter. In this chapter a secondary crystal analyzer 

whose function is to analyze the outgoing polarization is presented. We name the 

conventional energy analyzer and the secondary analyzer as “main analyzer” and 

“polarization analyzer (PA)”, respectively. The main analyzers of RIXS are made by 

perfect crystals wafers (e.g. Ge or Si) diced and then spherically bent (Huotari et al., 

2006). The main analyzer, sample and detector are all placed on the Rowland circle as 

shown in Figure 2.1a, working at the near-back scattering conditions (Bragg angle is 

near 90°) to achieve the best energy resolution. The crystal wafer is diced to small 

perfect crystals to effectively eliminate the strain which broadens the intrinsic 

resolution (Collart et al., 2005). The bending radius of main analyzer equals the 

diameter of the Rowland circle which is typically called Johann geometry. The PA is 

an additional optic added to the current RIXS spectrometers to obtain the polarization 

information of outgoing photons. The PA is designed to diffract the scattered photons 

from the main analyzer at a Bragg angle near 45° (2θ ≃ 90°, polarization factor 

cos
2
2θ ≃ 0, to separate the two polarization components) as shown in Figure 2.1.  

In this chapter, design of a highly oriented pyrolytic graphite (HOPG) 

(Arkadiev et al., 2007; Grigorieva et al., 2003; Tuffanelli et al., 1999) prototype PA  

is presented with its shape and estimation of the reflection and focus features, based 

on the analytical model and numerical ray tracing model (Monte-Carlo simulation). A 

PA with toroidal surface turns out to be the option under the consideration of 
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compromising the best energy resolution (smallest focus size) and best efficiency. 

Comparison of the focus features of programmed model and the results from the x-ray 

ray tracing software “SHADOW” (Sanchez del Rio et al., 2011) is presented. This 

optic is matched to the Cu K-edge energy to help reveal symmetry information for 

excitations in RIXS studies of parent compounds of superconducting copper oxides. 

Characterizations of PA at Cu K-edge RIXS and preliminary polarization analyzed 

RIXS data of CuGeO3 are displayed.  

2.1 Geometry of RIXS with polarization analysis 

In current hard RIXS spectrometers, sample, main analyzer and detector are all 

on the Rowland circle.  The dispersed scattered rays from the main analyzer are 

analyzed and focused to a point-like spot on a one dimensional strip detector. Position 

sensitive detector is placed at the focus of main analyzer to capture varies energies 

that hit on different channels on the detector. On the MERIX spectrometer (Sector 30, 

APS), the detector is placed at a distance of 1 m away from the center of the main 

analyzer. The details of the sample/analyzer/detector are shown in Figure 2.1a.  

Once removing the detector, the scattered beam from main analyzer converges 

to the focus and diverges spatially. The polarization analysis system is placed after the 

focus of main analyzer (named “primary focus”) to refocus the divergent beam to the 

focus of PA (named “secondary focus”) where the detector is relocated to.  
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(a)  

(b)  

Figure 2.1 (a) Configuration of RIXS spectrometer. The scattering plane of the 

primary analyzer is shown. The strip detector is at the primary focus. 

Energy dispersion from the primary analyzer due to the flat diced crystal 

elements is shown by rainbow color. R is the radius of the primary 

analyzer. (b) Refocusing scheme with polarization analyzer. The blue 

triangle pointing left represents the scattering plane of the primary 

analyzer, as shown in Fig.2.1a. The strip detector is replaced with a 

polarization analyzer located behind the primary focus in one of two 

configurations. The strip detector is now placed at the focus of the 

polarization analyzer, the secondary focus. The two different 

configurations are named ‘π’ and ‘σ’. In the configuration the scattering 

plane of the polarization analyzer (green square) is perpendicular to the 

primary scattering plane. In the configuration the scattering plane of the 

polarization analyzer (blue square) is in the same plane as the primary 

scattering plane. 

The polarization analyzer is mounted on the detector arm of the RIXS 
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instrument after the main analyzer focus and results in a new 

sample/analyzer/analyzer (polarization analyzer)/detector pattern. As shown in Figure 

2.1b, the photons scattered from the main analyzer can be separated to have a 

polarization perpendicular and a polarization parallel to the analyzer scattering plane 

(blue triangle). PA is mounted downstream of the focal point of main analyzer. The 

polarization component parallel to the main analyzer scattering plane can be 

eliminated by mounting the polarization analyzer to have the same scattering plane 

(blue rectangle) as the main analyzer. The polarization component perpendicular to 

the main analyzer scattering plane can be eliminated by mounting the polarization 

analyzer to have a perpendicular scattering plane (green rectangle) to the main 

analyzer’s. These two configurations are named as “σ-σ” and “σ-π”, corresponded to 

obtain the outgoing polarization in σ and π channel, respectively.  

2.2 Flat graphite polarization analyzer 

A preliminary test was utilized by a flat PA with Graphite (0 0 6) diffraction. 

PA was placed 3 mm before the primary focus Figure 2.1b. The advantage of this 

design is that all rays converge to the original focus in the case of flat reflector on the 

path of ray. SPI-1, SPI-2 and SPI-3 grades flat graphite were tested in the experiment. 

SPI-1, -2, and -3 have mosaicity of 0.4º, 0.7º and 1.0º, respectively. Flat analyzers was 

tested and found to have a very low overall efficiency (<0.1%) due to its angular 

acceptance limitation. The reflectivity in principle is on the order of 10 times larger. 

Although the large mosaicity in some sense increases the angular acceptance, the 

mosaicity are small compared to the beam convergence (~5.8º) from the main 

analyzer. Therefore, a more sophisticated polarization analyzer must be designed that 

captures all incident x-rays and images the x-ray spot from the primary focus with 
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high fidelity into a secondary focus at the detector. This can only be accomplished by 

a concave reflective optic placed behind the primary focus (Gao et al., 2011). 

2.3 Calculation of polarization analyzer surface 

The scattered photons from the main analyzer within a certain solid angle 

(determined by the size and radius of curvature of the main analyzer) are reflected by 

PA symmetrically about the primary focus-detector axis. Therefore the optimization 

of the surface of PA can be simplified onto a two dimensional plane which contains 

the primary focus, PA and secondary focus. Once obtaining the optimized two-

dimensional curve, the surface of PA is then the revolution of the curve about the axis 

trough the primary and secondary focus.  

The 2D analytical model assumes that x-rays from the primary focus are a 

monochromatic point source, with an angular spread of 5.8° (cotangent of a 4 inches 

analyzer size and 1m radius of curvature). PA is placed at a constant distance (OA = 

5cm,) from the source (0, 0) (primary focus of main analyzer) as shown in Figure 2.2. 

The reference ray OA is on the x-axis. φ (−2.9° ≤ φ ≤ 2.9°) represents angular 

divergence of the main analyzer. Spot size on the one dimensional detector plane is 

defined by the function f(φ). 
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Figure 2.2 Polarization analyzer scattering plane. The beam from the energy selective 

analyzer (on the left) is shown schematically, with the rainbow indicating 

the position dependent spread of energies in the beam. The logarithmic 

spiral is shown in red. The blue curve is the circular approximation, of 

radius R1 (R1 = |OA|/sin(θ0)), centered at C, to the logarithmic spiral 

around point A and represents the shape of the polarization analyzer. The 

polarization analyzer surface is generated by rotating the circular 

approximation about the OD axis by radius R2 (R2 = R1sin
2
(θ0)).  The 

photon source is positioned at O. A generic ray, in green, impinges on the 

polarization analyzer at A’ and is reflected to the detector near the 

secondary focus, D. The curve at D represents the intensity distribution 

from a point source at O and is used to calculate the image broadening. 

From (Gao et al., 2011). 

There are two important factors which provide information to determine 

whether the PA surface is valuable. The first is the incident angular spread. For a 

monochromatic beam, each local point treated as a flat crystal on the surface reflects 

the x-ray that can be described by a rocking curve with a FWHM width δθ and peak 

reflectivity Rmax. Ideally, one desire every ray hits on the PA surface with same 

incident angle (θB) under Bragg conditions, thus to be reflected by maximal 

reflectivity of the crystal. Then the overall efficiency is the peak reflectivity Rmax 

independent on the incident angle. This is the case of PA with the surface of the 
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revolution of logarithmic spiral which will be introduced next. The other key factor is 

the spot size at the secondary focus. The position sensitive detector (Huotari et al., 

2005) detects energies of x-rays by pixel positions the x-rays hit. The detector has an 

intrinsic energy resolution broadening that depends on the pixel size. The spot size on 

the detector directly affects the overall energy resolution of the system. Large spot 

size corresponds to poor resolution. Therefore a successful design of PA surface is to 

have smallest focal size with reasonable overall efficiency. 

2.3.1 Logarithmic spiral 

Logarithmic spiral by its mathematical definition, has the property that the 

angle between the tangent and radial line at every point on the spiral is a constant 

(Hemenway, 2005).  The curve of logarithmic spiral in polar coordinates is given by 

 
b( ) a e      (1.23) 

Where ρ is the distance from origin, a and b are constants, φ is the angle from x-axis 

as shown in Figure 2.3. The angle ψ between tangent and radial line can be derived 

from the equation 
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Figure 2.3 Schematic diagram of a logarithmic spiral. 

Thus, ψ = cot
-1

(b) is a constant. So by the mathematical definition, a logarithmic 

spiral is the optimal curve for collecting the entire divergent cone from an ideal point 

source to increase the point reflectivity (Suortti et al., 1986b), since all the rays would 

have the same incident angle (θB) at every point on the diffractor surface. However, 

the focal spot size from a logarithmic spiral is not as good as the approximated shape 

(exact comparison will be shown later) (Wittry et al., 1993). Thus, one approximated 

shape that have a much better focus without losing too much reflectivity can satisfy 

the requirements. As a good approximation about reference point P in Figure 2.2b, an 

osculating circle that has same tangent and curvature at point P as logarithmic spiral, 

indicates better focusing and manufacturing convenience. Therefore, we have chosen 

to work with a toroid shape, which is expected to be reasonable compromise for both 

focusing and meeting the Bragg condition (Wittry et al., 1990).  

2.3.2 Osculating circle 

The osculating circle of a curve at a given point (point A, in Figure 2.2) is the 

circle that has the same tangent as well as the same curvature as the curve at point A. 

The osculating circle is the best circle that approximates the curve at A (Elsa Abbena, 

2006). The radius of curvature is the length of AC shown as in Figure 2.2. The 

coordinates of center of the osculating circle C, can be derived from the parametric 

coordinates of the logarithmic spiral (m(φ), n(φ)) as defined by Eq.2.1. The 

coordinates of the center C is given by: 
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As shown in Figure 2.2, a section of the osculating circle in the color of blue and the 

curve of logarithmic spiral in red have a good approximation in the vicinity of point 

A. In 3D space, a revolution of the osculating circle about the symmetric axis OD is a 

double-concave toroidal surface with minor and major radii of curvature R1, R2, 

respectively-this is the design of PA surface. 

2.4 Calculations and results of important impact parameters 

2.4.1 Incident angle θ(φ) on polarization analyzer surface 

The logarithmic spiral and osculating circle in polar coordinates are given by 

            logarithmic  spiral :       ( )= OA exp(b )     (1.26) 

 2 2osculating circle : ( ) b sin( ) b sin( ) 1                (1.27) 

where b is the cotangent value of the Bragg angle θ0, b = cot (θ0). θ0 = 38.2° is the 

Bragg angle for the graphite (0 0 6) reflection with the energy at the Cu K-edge. Here 

φ is the angle between a random ray and the reference ray as in Figure 2.2. The 

incident Bragg angle θ(φ) on the polarization analyzer surface can be calculated as the 

angle between the curve of osculating circle and every random ray: 
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This expression can be approximated to a second order expansion of θ(φ) about the 

reference ray (φ = 0): 

  2 4

0

1
( ) b

2
        (1.29) 

This parabola is a symmetric function about the reference ray, which is desired for 

good focusing. The function of incident angular spread is showed by the insert plot in 

Figure 2.4.  

 

Figure 2.4 Rocking curve of graphite (006) diffraction at energy of E=8980.5 eV (Cu 

K-edge). Data were taken from software “XOP” (Sanchez del Rio et al., 

2004). Mosaicity of 0.4° (Gaussian width) is marked by the line on the 

curve. Peak reflectivity is 0.06. The insertion is the incident angle 

variation from Bragg angle as a function of the source divergence.  
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Incident angular has a range of 0.09° indicated by the shaded area in the 

rocking curve.  

Calculation shows that the incident Bragg angle on the graphite reflector is 38° ± 

0.09°.  Compared to the large crystal mosaicity ~0.4° of the graphite, this deviation 

caused by the shape approximation is certainly acceptable without losing too much 

reflectivity.  

2.4.2 Average reflectivity  

The relevant reflectivity of the graphite PA is a function of φ, given by: 
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Thus, the average relevant reflectivity of the graphite diffractor can be calculated by 

the integral of the reflectivity curve. The result is Rave = 0.9945 for Δθ = 0.4°.  

 1( ) R( )d



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





   (1.31) 

where φ+, φ- is the upper bound and lower bound of the scattered beam from main 

analyzer, respectively. The relevant reflectivity as a function of the beam cone is 

shown in Figure 2.5.  
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Figure 2.5 Plot of relevant reflectivity as a function of φ. The average reflectivity is 

99.45% relative to the peak reflectivity of the rocking curve of graphite 

Figure 2.4.  

2.4.3 Polarization factor  

Linear polarization components of an x-ray beam can be separated by in and 

out of plane Bragg reflections with a Bragg angle close to 45°. The purpose of the PA 

is to measure the inelastic signal after the elimination of one linear polarization 

component. The success of this endeavor can be expressed by the polarization factor, 

PF = cos
2
(2θ), where θ is the Bragg angle. A perfect PA, with θ = 45°, will have PF = 

0. For our analyzer, which uses the (0 0 6) reflection of HOPG, the Bragg angle is 

38.2° at the Cu K-edge. The effective polarization factor is 0.05801, which integrates 

polarization factor cos
2
(2θ) over the whole surface, so that ~94.2% of the linear 

polarization component parallel to the scattering plane of the polarization analyzer is 

eliminated.  
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2.4.4 Focal spot size  

Focal spot size function f(φ) is a function of beam divergence φ from the main 

analyzer which represents the distance deviation from the reference focal point. The 

function is given by:  

      5 1 ( )sin( ) cot 2 ( ) 5 ( )cos( )f                 (1.32) 

This focusing is not as perfect as the point to point focusing generated by the ellipse 

optics but a reasonable approach. Focal spot size at the secondary focus with 5cm 

focusing distance is ~78 μm for a primary monochromatic point source, which is an 

acceptable broadening compared to the 350 μm for a 100 meV wide beam (this is the 

overall energy resolution from using main analyzer Ge (3 3 7) in regular RIXS 

scheme). Without a detailed calculation, one can approximately estimate the overall 

resolution is broadened to 122 meV by the imperfect focusing.  

Energy resolution is an important factor in RIXS experiment so that an 

analyzer with a relatively large broadening is not practical. The energy resolution 

broadens when the x-ray spot imaged from the primary focus to the secondary focus. 

To study these effects further we carried out ray tracing of our optics using Monte 

Carlo methods. We generate the appropriate source at the primary focus and trace the 

rays to the detector (secondary focus). Given our configuration, a source with a 

Gaussian profile will be broadened by ∼33% at the secondary focus shown in the 

Figure 2.6. This corresponds to a calculated decrease in the energy resolution from 

100 meV to 133 meV. With a revolution logarithmic spiral the resolution would 

increase to 200 meV.  
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Figure 2.6 Spot size broadening of circle is a comparison by a Gaussian distribution at 

the primary focus (red curve) and the distribution at the secondary focus 

(blue curve) convoluted with the distribution from optics. x is the size of 

the spot, normalizing the FWHM of red curve to 1. The FWHM of the 

blue curve is about 1.33 so that the broadening effect from the PA is 33%. 

 2.4.4 Mosaicity vs reflectivity  

A non-perfect crystal with a mosaicity can be thought to be built-up by many 

crystalline blocks inside the crystal. Each block is treated a perfect crystal. The 

mosaic blocks are not exactly oriented as the diffraction direction, but oriented as a 

Gaussian distribution around the reference direction within a certain mosaicity, which 

is usually in a range of 0.1~1 degree. An important consideration of mosaic crystal is 

the secondary extinction depth that represents the x-ray penetration inside the crystal. 

Once the thickness of the crystal is thinner than the distinction depth, the total 

thickness is penetrated by x-ray and the throughput (reflectivity) is reduced. As 

following the conceptual model of mosaic crystal (del Rio et al., 1992), the 

reflectivity of a mosaic crystal is given by 
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Where μ is the linear absorption coefficient, t is the thickness, θB is the Bragg angle, 

and δ is the mosaic spread. Qs is a constant related to structure factor, and incident 

wavelength for σ polarization. We calculated the integrated intensities versus 

mosaicities of graphite crystal to estimate the mosaic effect on crystal reflectivity for 

thin and thick crystals. The result is shown in Figure 2.7 

 

Figure 2.7 Integrated intensity vs crystal mosaicity for graphite. The red curve is for a 

thick crystal, thickness = 7 mm; the blue curve is for a thin crystal, 

thickness = 0.5 mm. The calculation combines the angular spread in our 

model and the crystal mosaicity (W. H. Zachariasen, 1967). The 

calculation covers all the mosaic values, but the region below the dashed 

line is beyond the fabrication limit of mosaic graphite crystal. 
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The 0.5 mm and the 0.4° were the respective limits for the maximum thickness and 

smallest mosaic that could be coated onto our substrate by the manufacturer. As 

shown in Figure 2.7, the desired mosaic value is under 0.1°, but the best graphite 

commercially available for this application has a mosaic of ∼ 0.4° which gives a total 

throughput of 15% of the maximum in the ideal. The secondary extinction depth for 

PA is about 4.7mm in our case. By comparing two integrated reflectivity curves, for 

the PA with 0.5mm thickness, at the 0.4° mosaicity the integrated reflectivity of the 

polarization analyzer is reduced by 31%. 

 2.5 Monte Carlo simulation-3D ray tracing of an analyzer with a toroidal shape 

To further evaluate the quality of PA, we used Monte-Carlo method in a 3D 

space to simulate the real ray traces of PA, which matches the 2D analytic model. The 

ray tracing model includes three important parts: source, optical element (surface of 

PA in our case) and image which are shown in Figure 2.8. We simply the source 

features as geometric source: each ray is a ray vector that has several parameters of 

interest, for instance, rayi (xi0, zi0, Vix, Viy, Viz, Ii, ei) has a starting origin (xi0, zi0, y 

coordinate is assumed to be zero), incoming direction vector (Vix, Viy, Viz), intensity Ii 

and an energy of ei. Once a ray is generated, based on the direction of the ray and 

analytical function of the optical element surface, the incident path can be calculated. 

Therefore, the intersection point and normal vector at the intersection point can be 

obtained. Then the outgoing vector can be obtained by the intersection point and 

normal vector based on the reflection relation shown in Figure 2.8. Finally, the 

intersection point with image/detector plane can be obtained depending on the 

focusing distance and outgoing vector. Furthermore, since the optical element 
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graphite is not a simple mirror, the local reflectivity information related to the crystal 

rocking curve needs to be included for each intersection point on the optical element 

surface. 

 

Figure 2.8 Schematic ray tracing model. A ray vector generated on the source plane 

with an incident vector Vin is reflected at the PA surface based on Braggs 

law. Each reflected ray is recorded at the 2D detector plane. 

2.5.1 Monte Carlo loop 

Monte Carlo ray tracing simulation can be achieved by tracing the path of a 

single ray from the source to the image plane and repeating the trace loop for 

thousands of rays randomly generated at the source to simulate the real diffraction 

process and obtain the full information at the image plane. The details for each step in 

the loop are shown in Figure 2.9. 
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Figure 2.9 Flow chart of the ray tracing loop of Monte Carlo simulation. This process 

is not only specified for the PA case, but also generally used for different 

source contributions and optical elements of interest.  

After running the ray tracing loop, all the information of the diffracted beam at the 

detector plane is seperately stored in different columns in the output data file, e.g. 

reflected path, coordinates at the image plane, intensity, and energy. For plotting the 

result, one can choose two or three columns to get the 2D or 3D graph of different 

parameters of interest. 

2.5.2 Results at the image plane 

The simplest case is for a monochromatic point source at the origin. The 3D 

focus feature is shown in Figure 2.10a compared with the image of the focus 
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calculated from SHADOW1.04 shown in Figure 2.10b. Both results are showing a 

‘butterfly’-like focus for a point source on a toroidal surface. The major and minor 

radius of the toroid is 3.08 cm and 8.12 cm and the incident Bragg angle is 38.2°. 

Source-plane distance and image-plane distance are both 5 cm. The local reflectivity 

is based in the Gaussian reflectivity curve of graphite (006) at Cu K-edge from 

XOP2.3. 

(a)  

 (b)  
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Figure 2.10 (a) 3D image at the detector plane of a monochromatic point source 

calculated by the simulation model. Simulation programmed in 

Mathematica 8.0 (Wolfram, 2009). (b) 2D focal image calculated by 

SHADOW for the same input parameters as the Monte Carlo model. 

Considering the real case, the main analyzer that is diced to 1.5×1.5 mm
2
 

pixels collects the photons within a certain solid angle from the sample and focus the 

beam to a 3 mm spot (twice of the pixel size) on the detector. Therefore, a ray tracing 

model of a finite source with a size of 3×3 mm
2
 is simulated to have a focus profile 

shown in Figure 2.11a. The most interesting character of an analyzer is the energy 

resolution broadening at the focus. The calculated energy resolution function at the 

secondary focus is shown in Figure 2.11b, considering the energy distribution is 

linearly distributed at the primary focus with a bandwidth of 100 meV, which is the 

overall energy resolution after a Ge (3 3 7) main analyzer at incident energy of Cu K-

edge.   

(a)  
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(b)  

Figure 2.11 (a) Focus of a finite source. Simulation is from the ray tracing model 

programmed by Mathematica 8.0. (b) Energy resolution at the secondary 

focus. 

The estimated energy resolution at the secondary focus is enlarged by a factor of 30% 

of the primary focus, which coincides with increment of the FWHM of the real focal 

spot size at the secondary focus as shown in Figure 2.6. 

2.6 Prototype of HOPG polarization analyzer 

The polarization analyzer is a HOPG (0 0 6) reflection. For resonant studies 

with incident energy near the Cu K-edge the graphite has a Bragg angle of about 

38.2°. The angular spread on the polarization analyzer is 5.8° due to the size and 

radius of curvature of main analyzer. To gather the entire cone, one has to shape the 

crystal, since the crystal mosaicity (0.4°) of flat graphite is relatively small compared 

to the angular spread. Instead an appropriate shape of the HOPG surface is designed 

in the 2D reflection plane. The shape is toroid-like due to symmetry about the optical 

axis. The two toroidal radii used are R1 = 3.08 cm and R2 = 8.12 cm based on the 
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calculation from the ray tracing model. The polarization analyzer is designed to work 

at 5 cm focusing distance for both σ and π reflection direction. After the shape was 

machined, it was coated with graphite with a thickness of 500 μm. A thicker layer 

would benefit the overall efficiency due to the penetration of the incident x-rays, but 

this is the maximum thickness that the manufacturer (Optigraph GmbH, Germany) 

can offer without increasing slope error. The numerical surface of PA and the actual 

PA coated by HOPG are shown in Figure 2.12. 

 (a)    (b)  

Figure 2.12 (a) Numerical double-concave surface. (b) HOPG polarization analyzer 

coating on a toroidal aluminum substrate (manufactured by Optigraph 

GmbH). 

2.7 Experimental results 

The PA designed for the hard RIXS at Cu K-edge was characterized at Sector 

30, APS. The details for experimental setup, alignment of polarization analysis 

system, resolution function of with polarization analysis system are described in this 

section. The full characterization of HOPG PA and the polarization analyzed RIXS 

data of CuGeO3 are presented as well. 
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2.7.1 Experiment setup and alignment 

As in a standard RIXS setup, the main analyzer provides the energy and 

momentum analysis. The beam reflected from the main analyzer contains both σ and 

π polarization components. 

The PA is placed 5 cm beyond the focal point of the main analyzer (Ge (3 3 

7)). The PA reflects the outgoing beam from the main analyzer at 2θ = 76.4° giving 

predominantly σ or π polarizations. The polarization factor for this reflection is given 

by cos
2
(2θ) or about 6% contamination from the other polarization direction. The PA 

refocuses the scattered photons onto the position sensitive strip detector (MYTHEN) 

which is placed 5 cm away from the PA at the appropriate 2θ value.  

The PA was mounted on the detector arm of MERIX instrument in two 

different configurations σ and π, as shown in Figure 2.1b. After removing the detector 

in the conventional RIXS setup, PA is placed 5 cm beyond the primary focus and strip 

detector is placed 5 cm away as well to coincide with the secondary focus.  

The polarization analysis system is roughly aligned putting the direct beam on 

the primary analyzer. The primary and polarization analyzer are then aligned so that 

the Bragg reflection of the primary analyzer impinges on the polarization analyzer at 

its Bragg angle. Next, 3M Magic 810 Tape, a fairly uniform elastic scatterer, was 

placed in the sample position and the primary analyzer was moved to the peak of the 

elastic structure factor for the tape (about 20° away from the direct beam). The main 

analyzer was in the same position for measurements of both polarization directions 

and the same tape sample was used. Elastic scattering from the tape will have the 

same polarization as the incident beam (σ). The fine alignment is performed in this 

configuration. The fine alignment is the adjustment of the polarization analyzer 

distance from the primary focus, the distance of the detector from the polarization 
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analyzer, and the polarization analyzer angle. Since the synchrotron does not produce 

π polarized x-rays, alignment for scattered π polarization relies on the small amount 

(6%) of the σ scattering present since the scattering angle is not exactly 45°.  

2.7.2 Characterization of polarization analyzer 

In the standard RIXS operation without polarization analysis, the spot size at 

the primary focus is about 350 μm on the detector, which corresponds to a 100 meV 

energy bandwidth. The energy resolution function of elastic scattering measured from 

a tape standard without PA is shown in blue in Figure 2.13. The polarization of elastic 

line is σ which is the same as the incident polarization of the synchrotron.  

The energy resolution function of PA in σ-σ polarization configuration is 

shown in the Figure 2.13a. With polarization analysis, the FWHM of elastic scattering 

broadens from the 100 meV at the primary focus to 175 meV at the secondary focus. 

The broadening comes from the inexact focus of the polarization analyzer, the mosaic 

spread of the HOPG, and the finite penetration depth of the HOPG.  

The resolution function in σ-π configuration is shown in Figure 2.13b. The 

weak elastic scattering comes from the 6% remnant of the σ polarization. In the ideal 

case of polarization analysis, the elastic scattering is eliminated by the PF = 0, and is 

very difficult to align upon the elastic scattering of the system. But aligning the 

polarization analysis system in σ-π configuration by the intense inelastic signal from a 

well-known sample is a reasonable solution. 
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a)  

(b)  

Figure 2.13 Elastic scattering from the tape standard. (a) σ-configuration. (b) π 

configuration. The scattering at the primary focus, without polarization 

analysis, is shown in blue.  The polarization analyzed signals are shown 

in black.  

The efficiency of the PA can be estimated by integrating the two energy resolution 

curves at the primary and secondary focus in σ-σ configuration. The ratio of 
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integrated intensities is ~0.014. This is about four times less than the peak reflectivity 

of 0.5 mm HOPG with a mosaicity of 0.4° which is 0.06. The efficiency of an ideal 

PA with should be same as the peak reflectivity since all the rays are reflected at exact 

Bragg angle. The ratio of the integrated intensities in σ-π configuration is about 4.0e-

4  This ratio, when normalized by the measured efficiency, should be equal to the 

polarization factor.  The integrated intensity is about half of the expected number, 

suggesting there are additional efficiency losses in the π configuration. 

The elastic line width in the π configuration is unexpectedly large, 490 meV.  

The precise reason for this broadening is not known but may result from fabrication 

errors in the polarization analyzer.  Since the detector position is flipped in the π 

direction compared to the σ direction while the polarization analyzer is not, the two 

reflections are affected differently by fabrication errors. Full characterizations of the 

PA are tested and shown in Table 2.1.  

Table 2.1 

Characteristic values of HOPG polarization analyzer 

Average reflectivity 0.059 

Bragg angle θ 38.2° 
Effective polarization 
factor 0.05801 

Efficiency η 1.36% 

Polarization  
Configuration 

Measured Relative Integrated 
Intensity 

Measured Relative 
Energy Width 

None 1 1 

σ 1.4E-2 1.75 

π 4.0E-4 4.86 
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2.7.3 Polarization analyzed inelastic spectrum of CuGeO3 

A preliminary measurement of a superconducting parent cuprate CuGeO3 with 

polarization analysis system was carried out after the characterization of the PA. 

CuGeO3 is a good candidate as an initial polarization analysis measurements since it 

is well characterized and studied by conventional RIXS measurements (Suga et al., 

2005). Two spectra (with and without polarization analysis) from CuGeO3 are 

displayed in Figure 2.14. Both spectra are measured at momentum transferred Q = 

(2.6 0 0) in reciprocal space using the spectrometer in horizontal geometry. The 

incident polarization was normal to the crystal c-axis. The black spectrum was 

measured with a polarization analyzer in the σ configuration. In both cases the well-

known 6.5 eV charge transfer feature is shown.  

 

Figure 2.14 RIXS spectra of CuGeO3. Blue: without polarization analyzer. Black: 

with polarization analyzer in the σ configuration. 

With polarization analysis the broad inelastic peak around 7 eV is separated to a 

sharper bump on left shoulder to some extent. The preliminary measurement is to 
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emphasize the ability to detect inelastic signals with sufficient count rate and energy 

resolution with the PA. More detailed understanding of the underlying physics of the 

sample and other cuprate systems needs more polarization analyzed measurements in 

the future. 
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CHAPTER 3 

SILICON-BASED POLARIZATION ANALYZER  

In the previous chapter, the low count rate of the scattered polarization from 

the HOPG polarization analysis system requires us to develop a more efficient 

polarization analyzer working in the same outgoing polarization configuration. A 

HOPG PA with mosaicity of 0.4° was characterized to have an overall efficiency of 

1.36%. The reflectivity as a function of mosaicity indicates the maximal reflectivity is 

at a mosaicity ~0.01° as shown in Figure 2.7., which can provide the integrated 

efficiency about 7 times the efficiency of the crystal with 0.4° mosaic. This leads us to 

develop a new type of PA using a bent perfect crystal such as Si or Ge, to improve the 

efficiency of PA since the reflectivity width of a bent perfect crystal is in the same 

order as 0.01°. 

Since we developed the first bent crystal PA, much current research about the 

role of spin-orbit coupling in transition metals systems using RIXS at Ir L-edge (E = 

11.215 keV for Ir L3-edge) have been carried out (Hirata et al., 2013) and these 

systems are attracting more interest (Boseggia et al., 2013). Interesting excitations, 

e.g. single and two magnons excitations are being studied and can be reasonably 

explained by theoretical models (Haverkort, 2010). The magnetic excitations involve 

polarization dependence (Hannon et al., 1988), but they are not currently measured in 

a way that allows polarization analysis. With polarization analysis, the nature of 

magnetic excitations can be revealed by symmetry arguments (Ishihara et al., 2008) 

instead of the theoretical complexities. These issues encouraged us to develop the PA 

at Ir L-edge. 
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Ir L3-edge RIXS is currently a hot topic, which is a direct RIXS process to the 

5d states related to exotic magnetic properties of material, having stronger inelastic 

signal than Cu K-edge that benefits throughput of the optics. We developed a bent Si 

(444) polarization analyzer bent to a double-concave shape working at the Ir L3-edge. 

This analyzer works at a Bragg angle θB of ~45° meaning it can totally eliminate the 

in-plane reflection by polarization factor; therefore obtaining a nearly pure 

polarization component of scattered photons. The RIXS process in TM L-edge is a 

direct transition rather than the indirect process in K-edge RIXS. The inelastic 

throughput at L-edge is orders of magnitude larger than at the Cu K-edge. The count 

rate at Ir L-edge is on the order of hundreds of counts per second compared to a count 

per second at the Cu K-edge, so the polarization analysis at the Ir L-edge will yield 

reasonable signal rates with the expected efficiency of PA.  

In this chapter, the features of a bent Si PA based on the strong bending theory 

of a perfect crystal, the fabrication of the bent Si PA to a double-concave shape, and 

the characterizations with different method such as metrology, topography, etc. of the 

PA are presented respectively. The bent Si PA was preliminary tested at the 9ID with 

the polarization analyzed RIXS data of Sr2IrO4. 

3.1 Features of strongly bent Silicon 

Perfect crystals such as Si or Ge, are the ideal material to fabricate the 

analyzer for hard RIXS experiment because of their high reflectivity and narrow 

intrinsic Darwin width. The analyzers for RIXS experiments are typically spherical, 

diced and placed on the Rowland circle working at near backscattering configuration 

(Blasdell et al., 1995; Verbeni et al., 2005). Each Si pixel on the analyzer is a small 

flat crystal that reflects the x-ray at different solid angle. The closer the Bragg angle is 
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approaching to 90 degrees the higher energy resolution. The diced bent analyzer is 

generally treated as a perfect crystal but does not act like a bent crystal since the diced 

cubes are separated and can be accurately treated as perfect crystals without any 

distortions. The bent crystal is typically a wafer bent to a curved surface without 

dicing. The polarization analyzer aims to reflect the outing beam at ~45 degrees to 

obtain photons in one polarization direction and eliminate the photons with the 

orthogonal polarization direction. This requires larger angular acceptance of the 

polarization analyzer. The bent shape of bent Si PA satisfies the criteria of strong 

bending. The criterion for judging whether a bent crystal  has a small or large 

deformation depends on the ratio of the maximum deflection and crystal thickness 

(Krisch et al., 1991). The diffraction of crystal under deformation no longer follows 

the dynamical theory but moves to the kinematical region. 

The diffraction profile of bent crystals compresses the rocking curve of a flat 

crystal perfect crystal by increasing the reflection width and decreasing the peak 

reflectivity. The general diffraction theory of a distorted crystal can be explained by 

the Takagi-Taupin (TT) equations (Takagi, 1969; Taupin, 1964) which describe the 

diffraction by electromagnetic wave propagation inside the crystal. Solving the 

Maxwell equations completely to obtain an analytical solution is limited to some 

special cases, and even the numerical solution cannot work for general bent cases. 

Especially for our case of biaxial bending, finding a diffraction profile by TT 

equations is not practical. The multi-lamellar (ML) method (White, 1950) is a good 

approximation to calculate the diffraction profile which decomposes the crystal into 

many crystallographic atomic planes; each plane acts as perfect crystal, but with a 

certain tilted angle between neighboring layers (Sanchez del Rio et al., 1997). This 

method can be used from the small deformation to strong bending to a radius of 
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curvature of a few cm and was used to optimize the monochromator for inelastic 

scattering (Erola et al., 1990; Suortti et al., 1986a) and bent crystal analyzer for fusion 

plasma diagnostics (Caciuffo et al., 1990). 

Bending Si about a unique axis (called cylindrical bending as well) would 

enlarge the reflection width and reduce the peak reflectivity due to the distortion of 

crystal planes generated during the bending. This bending effect on the rocking curve 

of bent crystal for different radii of curvature is shown in Figure 3.1a, which is 

calculated by XOP2.3 (Sanchez del Rio et al., 2004) according to multi-lamellar code 

(Caciuffo et al., 1990). 

(a)  
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(b)  

(c)  

Figure 3.1 (a) Rocking curves of the bent Si (444), thickness = 50 micron, at different 

bending radii with the incident energy at Ir L-edge. (b) Peak reflectivity 

and FWHM of the rocking curve at different bending radius. (c) Rocking 

curves of bent Si with bending radius R=10cm for different thicknesses. 

The rocking curve width of perfect Si crystal is typically in the range of a milliradian. 

As shown in Figure 3.1b, the broader rocking curve width of a bent crystal is in the 

range of 0.1~1milliradian, which effectively helps to increase the angular acceptance 
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of the bent polarization analyzer, and accordingly increase the whole analyzer 

efficiency. Figure 3.1b indicates the reflecitvity might increase by a factor of 10~20 

from the HOPG crystal when the bending radius is less than 15 cm. Figure 3.1c shows 

the diffraction profile of a certain bending radius with different thickness. The peak 

reflectivity are at same level but the angular width of thicker crystal is much larger 

which benefits the integreted intensity. The bent Si PA is chosen to be made by 100 

μm thickness wafer to gain integrated intensity and better wafer quality than the 50 

μm as the first attempt. There is no practical calculation for biaxial bent crystal, but 

the reflection width is expected to be wider than uniaxial bending since the diffraction 

planes in the crystal are distorted by the additional mechanical tension applied.  

3.2 Prototype of bent Si polarization analyzer 

3.2.1 Fabrication of bent Si polarization analyzer 

At the near-back scattering configuration, a spherically bent crystal shows the  

best spatial resolution and can be widely used as x-ray analyzer (Rio et al., 1997). But 

if not at the near-backscattering configuration, an optic with toroidal shape has the 

minimum astigmatism when the source-crystal distance and crystal-detector distance 

is the same (Sinars et al., 2003). Good focusing features of HOPG PA have been 

explained in previous chapter. Fabrication of bent Si PA is carried out by 

mechanically pressing the ultrathin (50 μm ~ 100 μm) Si wafer to a toroidal surface. 

The conventional fabrication method of spherical analyzers (Blasdell et al., 

1995) is to press the Si wafer with a spherical concave lens on the bottom and a 

spherical convex lens on the top of the Si wafer under a hydraulic pressure on the top 

lens as shown in Figure 3.2a. For diced crystal analyzer, the diced wafer needs to be 
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glued onto a polycarbonate substrate in advance. As the first attempt, we followed the 

same way as the conventional pressing method to press the 50 μm Si wafer to a 

toroidal concave substrate, but the crystal is too fragile when applying a pressure on 

the top. The fragment comes from the uneven force applied during the press process 

due to the asymmetric toroidal shape, small radii of curvature, off axis between the 

convex and concave lenses. Reduction of pressure can avoid the breaking, but the 

surface error (basically the radii of curvature) is not acceptable. 

These led us to develop a novel method to manufacture the analyzer, using 

one single lens as the presser rather than two, trying to avoid the constraints from the 

other lens. The way is to apply an elevating pressure from the bottom with a convex 

lens pressing the Si wafer to a flexible thin material. When slowly applying the 

pressure underneath, under the reaction force from top material the thin Si wafer will 

be gradually bent onto the convex shape until the top material, Si wafer and the 

convex lens are coincide. The elevation frame and method are shown in Figure 3.2b, 

compared with the conventional pressing of x-ray analyzer shown in Figure 3.2a.  

(a)  



  

67 

 

(b)  

Figure 3.2 (a) Fabrication  method of spherically bent crystal x-ray analyzer. Convex 

and concave lens on the top and bottom of crystal wafer.  (b) Elevation 

press method for fabricating bent Si PA. Clamping plates hold kapton foil 

to deform to the toroid shape. Si wafer is between the convex lens and 

kapton foil. 

3.2.2 Process of pressing and molding 

The elevating fabrication method had been tested and required several 

conditions to work:  the surface of the Si wafer is small; the crystal wafer is not 

thicker than 250μm; for the size of our PA, the elevation needs to be at least 6 ~ 7 mm 

relevant to the flat kapton level. 

Fabrication process for bent Si PA are: 

1. Prepare the mixing low viscosity expoxy (EPO-TEK
® 

301-2) in hand.  

2. Set up the items in sequence from the bottom to the top: elevating base, convex 

lens, Si wafer, glue, bottom clamping plate, 60 μm kapton, top clamping plate, 

repectively. A half drop of glue is enough to spread all over the whole surface of 

Si.  

3. Elevate the lab jack gradually. The kapton deforms and compresses the flat Si 
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piece to the convex lens. 

4. The elastic deformation of the kapton film drives the pressure from the center of 

cystal to the edge around until kapton foil eventually coinicides with the convex 

shape. Keep the configuraton for a few days until the glue is totally cured. 

5. The last step is to cast a substrate on the top to keep the bent shape still. This step 

is carried out after the glue is totally dry. I used the 2-ton epoxy (by Devcon). It 

drys in 24 hours and hardens in 1~2 days. Dow Corning 7 mold release compound 

between the casting material and mold frame was used to allow removal from the 

casting materical.  

3.2.3 Protype of bent Si polarization analyzer 

The prototype of the bent Si PA is a Si (4 4 4) Bragg reflection suitable for the 

Ir L3 absorption edge (E = 11.215 keV). The Bragg angle θB = 44.8448°. This Bragg 

reflection is nearly ideal (2θB = 90°) for a PA, which a PF = 0.005 that reduces the 

mixing polarizations by a factor of 12 from the HOPG PA. 99.5% of the in-plane 

ougoing polarization is eliminated and nearly pure out of-plane polarization is 

obtained.  

PA is fabricated from a 100 μm thickness Si wafer. 100 mm diameter Si wafer 

was purchased from Addison Engineering, Inc. and cut to ~ 2×2 cm
2
 square piece by 

diamond cutter before pressed. The maximum path length inside the crystal is 66 μm 

(calculated by the XOP Bent Crystal Module code (Sanchez del Rio et al., 2004)). 

100μm wafer is the thinnest comercially avaible with good quailities. 

This opics is designed to be placed downstream after the primary focus with 

both primary focus-PA and PA-detector distance equal to 10 cm. The major radius of 

curvature R1 in the meridional plane and the minor radius curvature R2 in the sagittal 
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plane are 141.8 mm, 70.5 mm respectively. The relations bewteen the focusing 

distance and Bragg angle, and the relation bewteen R1 and R2 have been described in 

the design of HOPG PA in Chapter 2. Numerical surface and the manufactured object 

are shown in Figure 3.3.  

 (a) (b)  

Figure 3.3 (a) Numerical surface of bent Si PA. (b) Prototype of bent Si PA. 

Dimesion of PA is 20×20 mm
2
. Two type of PA with thickness t = 100 

μm and 50 μm were fabricated. 

3.3 Characterization of bent Si polarization analyzer 

We characterized the bent Si analyzer in three different aspects. First, the 

surface feature which includes the radii of curvature and uniformity of the crystal after 

bending was measured. The surface profile was measured by the laser interferometer 

at the Metrology Lab, APS. Second, the distortion of the diffraction planes after 

bending, which reveals whether there are irregularities, strains or distortions in crystal 

lattice was measured. The crystal lattice deformations were detected by x-ray 

topography using 8 keV x-ray tube source with copper as the anode material at 

Optical Shop, APS. The last is the characterizations of the optics in synchrotron 
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radiation source, such as reflectivity, energy and spatial resolution at the focus. 

Reflection features of the optics include the local reflectivity and overall efficiency. 

The preliminary characterization of bent Si PA in a hard RIXS spectrometer was 

carried out at 9ID, APS. Energy spectrum of polarization analyzer from a plastic 

scatterer is presented and the polarization analyzed RIXS spectrum of Sr2IrO4 as well.  

3.3.1 Metrology measurement  

The metrology test of a curved surface is to measure altitudes (z coordinates) 

of each point ((x, y) coordinates) on the tested surface relevant to the principle surface 

(a flat surface as the reference). Then a full three dimensional profile of the tested 

surface is mapped out by stitching the overlapped images of all tested spots. This 

measurement was carried out by a laser interferometer as shown in Figure 3.4 

(Assoufid et al., 2007) in the Metrology Lab, APS.  
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Figure 3.4  Schematic of the interferometer in Metrology lab, APS 

The laser interferometer is an optical measuring instrument to obtain surface 

profile in three dimensional space by the principle of light interference. The incoming 

beam from the laser source and reflected beam from the tested surface interfere with 

each other with the same frequency, forming a superposition of combined waves. 

Each ray travels a certain distance called the light path depending on the height of the 

point it hits on the curved surface. The differences in traveling path create a wave 

phase difference between two waves, and these phase differences create an 

interference pattern which is captured by the detector. The in-phase waves cause 

constructive interference and out-of-phase waves cause destructive interference, 

which generate the bright and dark zones in the interference pattern, respectively. 

The surface profile is the interferometric stitching of images from every spot 

tested. The spot size is determined by the focused source aperture on the tested 

surface. Each two neighboring images overlaps by a constant fraction and are 

numerically stitched together to generate one image. The surface profile of bent Si 

analyzer is shown in Figure 3.5a. Only a certain part of the surface around the center 

can be measured because the tested radius of curvature is small so that the 

interference fringes beyond the center are too tight to be analyzed by the system.  
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(a)  

(b)  

Figure 3.5 (a) Contour map of double-concave surface of bent Si PA. The tested area 

is 2.75 mm×5.31 mm. The color intensity represents the ampitude of z 

coordinates. The map is stitched by 6×12 spots with a laser spot size 

(0.61mm)
2
 by 30% overlapping. (b) Profile of bent crystal by conventional 
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pressing to a lens substrate. Central line profile indicates the radius of 

curvature is off by at least an order of magnitude. 

Crystal surface is in a toroidal shape so the contour graph is ellipse-like. Two 

orthogonal center lines along the x and y axis can indicate the accuracy of the 

fabrication which is fitted by a circular function. The designed values for the radii are 

70.52 mm and 141.8 mm. The actual radii of curvature are 71.49 mm and 140.3 mm 

which give an error of 1% off the designed values. This error is within the intrinsic 

systematic error of the equipment. 

3.3.2 X-ray topography  

A good quality ultra-thin Si wafer is the foundation for making a bent 

polarization analyzer. The bent Si analyzer is developed for hard x-ray spectroscopy, 

thus a measurement of the crystal surface at the atomic level is necessary rather than 

only restricted at a surface level. X-ray topography (XRT) (Hartmann et al., 1975) is a 

technique to characterize microstructure of crystals by x-ray diffraction. When the 

crystal is at the Bragg angle, the monochromatic, parallel incident x-ray hits the 

sample and the diffracted beam is recorded by a 2D x-ray detector. The diffraction 

image can give information on crystal structure by the intensity of the diffracted beam 

on the detector. The image from a perfect crystal is commonly homogeneous since the 

diffraction profile has a same intensity everywhere on the image for a flat perfect 

crystal, however, if there are strains, distortions of crystal plane or imperfections 

inside the crystal, the area surrounding the irregularities are seen in the image with 

intensity contrast to the perfection diffraction (Schwuttke et al., 1968).  

Metrology test of the bent Si has shown a good quality of bending radii of 

curvature relevant to the expected values. But XRT can provide the extra information 
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in the lattice inside the crystal thanks to the finite penetration depth of x-rays. The 

XRT setup is shown in Figure 3.6. A 8 keV collimated beam generated from the 

asymmetric Si (2 2 0) monochromator covers the whole test surface. For testing a flat 

crystal, the entire beam is reflected at the Bragg angle and the reflected beam on the 

detector is an image about the same size of the tested crystal. However, in our case, 

for a curved crystal, only a tiny vicinity of Bragg angle can be reflected but the other 

are not reflected since the incident angles are not satisfied with Bragg condition. The 

topography image is obtained by rotating the crystal along Θ direction. The image is a 

curved line at the each Θ angle since the crystal is biaxially bent. A straight line is the 

image of uniaxial bending (cylindrical bending). The image shown in Figure 3.7 is the 

sum of all scanned Θ values which describes the whole crystal surface. The lines are 

uniformly contributed except the defects at the edges which mostly result from the 

cutting procedure. 
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Figure 3.6 Schematic of the top view of x-ray topography with a tube source. The 

corresponded reflection of tested crystal is Si (3 3 3) for the incident 

energy of 8keV. 

 

Figure 3.7 Topography image of 100μm thickness curved silicon crystal. Most area is 

uniformly distributed except the edges. The imperfections on the edges 

and upper left corner indicate the strains in the crystal due to the cutting 

and pressing procedures. 

3.4 Preliminary test of bent Si polarization analyzer at RIXS beamline 

3.4.1 Experimental setup 

The RIXS setup with polarization analysis system was described as shown in 

Figure 2.1 in σ-σ configuration. Bent PA with a double concave shape designed for Ir 

L3-edge was tested at the RIXS beamline 9ID at the APS. The experiment was carried 

out with σ polarization of incident x-ray with Ei = 11.215 keV in vertical scattering 

geometry. A double bounce Si (1 1 1) is the high heat load main monochromator and 

Si (3 3 3) is the high resolution secondary monochromator. The main analyzer is a 
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diced, etched, spherically bent (R = 1m) Si (8 4 4) crystal working at near 

backscattering condition. The bent Si PA is placed about 10 cm downstream from the 

primary focus and the detector is placed 10 cm away from the PA as well. Scattering 

beam from the sample is first reflected by the main analyzer down to the PA at the 

near backscattering Bragg angle, and then subsequently reflected by the PA with 2θ ≃ 

90° down to the detector. The RIXS setup with polarization analysis system is shown 

in Figure 3.8.  

 

Figure 3.8 Experimental setup of RIXS with polarization analysis system at 9ID in σ-

σ configuration. The main analyzer that is not shown on the picture is ~1m 

away from the sample position. Incident x-ray hits on the sample and 

scattered beam is reflected by the main analyzer to the PA and finally ends 

into the detector.  

The pin diode detector is placed in front of PA to detect to total intensity before 

coming into the PA. The polarization analysis system is mounted on the detector arm 

of RIXS spectrometer. PA is placed on a goniometer with two rotational and two 
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linear motions. The goniometer is mounted on a rotational stage that aligns the theta 

angle of PA. There two additional linear motions to align the primary focus-PA and 

PA-detector distances. 

3.4.2 Resolution of elastic scattering   

To characterize the overall energy resolution broadening and overall efficiency 

of PA, one need to measure the resolution function at the primary focus in front of PA 

with the conventional RIXS setup, and the resolution function at the secondary focus 

after PA. The resolution function at the primary focus without polarization analysis 

system has an FWHM of 172 meV shown in blue in Figure 3.9. The FWHM of the 

spectrum at the secondary focus with σ polarization configuration is 246 meV which 

broadens the primary focus by 43%. 

 

Figure 3.9 Energy resolution function at the primary focus before the PA and second-

ary focus after PA. Both spectra are taken with σ polarization of incident 

x-ray in the vertical diffraction geometry. 
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Overall efficiency can be estimated by the ratio of the integrated intensity at the 

secondary focus and the primary focus. The overall efficiency turned out to be 0.4% 

which is lower by an order of magnitude than the expected value. The low efficiency 

might come from the surface strain of the flat Si wafer due to the lapping from the 

manufacturer, large strain gradient inside the crystal due to strong deformation, or the 

intrinsic sharp acceptance due to the critical Bragg conditions (θB ≃ 45°) of PA. 

3.4.3 Polarization analyzed RIXS of Sr2IrO4 

Polarization analyzed RIXS of Sr2IrO4 was measured as a first attempt. 

Although the efficiency of PA is not as want we expected, it shows the polarization 

analysis ability at least at the Ir L3-edge because to the large elastic signal result from 

the direct transition at TM L-edge RIXS rather than the indirect process at TM K-edge 

RIXS. The energy loss spectrum of Sr2IrO4 at the resonant incident energy is shown in 

Figure 3.10. Resolution function of elastic scattering of PA is shown in black circles 

to make the low energy excitation outstanding. 
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Figure 3.10 Polarization analyzed data of Sr2IrO4. The energy transferred spectrum 

compares the resolution function to elastic scattering of PA. The low 

energy excitation below 1eV can be detected with enough counting time. 

The low energy excitation in this compound is related to exotic magnetic 

behavior explained by the Jeff = 1/2 ground state under strong spin-orbital coupling   

(Kim et al., 2008). The PA shows its potentials to detect and analyze the low energy 

excitations for the Ir L3-edge RIXS. More polarization analyzed measurements need 

to be carried out to deeply study the magnetic excitations such as momentum 

dispersion, temperature dependence, etc. Complete simulation to analyze the causes 

of the low efficiency requires information of Bragg condition (strongly depending on 

the d-spacing variation) at each local reciprocal lattice point which can be solved by 

finite-element analysis (Sutter et al., 2008) and modified Bragg law from a bent 

crystal (Tchen, 2003). Improving the bent Si PA to achieve higher efficiency will be 

carried out in future work. 
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CHAPTER 4  

IRIDIUM COMPOUNDS 

In the previous chapter, a polarization analysis system with HOPG PA 

designed for Cu K-edge hard RIXS and bent Si PA designed for Ir L3-edge RIXS were 

presented to study the outgoing polarization in correlated systems. L-edge hard RIXS 

is a powerful technique to study the magnetic excitations in the low energy region in 

contrast with K-edge RIXS. The low energy L-edge inelastic signal is typically 

10~100 times (100~300 c/s) of K-edge RIXS which is due to the direct transition of 

L-edge RIXS rather than the indirect RIXS process in K-edge RIXS and the small 

elastic line in the near 90° horizontal scattering configuration (Kim et al., 2012c). The 

magnetic excitations in the 5d system Sr2IrO4 were measured by Ir L3-edge RIXS to 

have dispersing features spread out the entire Brillouin zone which is explained by the 

splitting Jeff = 1/2 and Jeff = 3/2 coupling states under strong spin-orbital coupling 

(Kim et al., 2009). The effective RIXS matrix for magnetic excitations is strongly 

polarization dependent (both incident and outgoing polarizations) (Hannon et al., 

1988). The interesting physics in iridium systems and the sufficient count rates 

encouraged us to develop the polarization analysis system. 

In this chapter, the physics related to the magnetic excitations in the 5d system 

such as magnon, spin-orbit coupling, crystal field, etc. are presented for understanding 

the background of the system of interest. 5d systems studied by Ir L3-edge RIXS 

without polarization analysis, including the 2D layer system Sr2IrO4 and the quasi-1D 

system BaIrO3 are introduced.  
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4.1 Theoretical basis 

In this section, some elementary theoretical terms in solid state physics, 

magnetism behavior, and interaction between spin and orbital angular momentum, 

etc. are introduced. Only key items strongly related to the crystals that we focus on are 

presented, more can be found in the references.  

4.1.1 Spin-orbital interaction 

The spin–orbit interaction is also called spin–orbit coupling because it 

involves the electron spin and orbital degrees of freedom. An electron moving in a 

certain orbital relative to the nucleus creates a magnetic field which couples to the 

electron’s spin. The spin-orbit interaction has the form of Eso = λL·S, which couples 

the total angular momentum L and total spin S of the electrons of an atom (Alloul, 

2011 ). It is an important degree of freedom in condensed matter physics, which can 

cause a lifting of energy levels in atoms of solids, therefore affecting many properties 

such as metal-insulator phase transition, magnetism and superconductivity, etc.  

An electron moving around a nucleus with a charge Ze (e is positive) would 

experience an electric potential field described by classical electrodynamics, 

 
0

1
( )

4

Ze
V r

r
    (4.1) 

where r is the orbital radius. The associated electric field E is the gradient of the 

electric potential and is spherical symmetric,  
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The magnetic field generated as the electron travels through the electric field is: 
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From classical mechanics, the angular momentum is the cross product of position 

vector and linear momentum of a particle: 

 m L r v   (4.4) 

Substituting the angular momentum and electric field to the magnetic field, the 

expression of becomes: 
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B L   (4.5) 

It is easy to see that the magnetic field is in the same direction as the angular 

momentum and perpendicular to the electron’s velocity. The total spin-orbit 

Hamiltonian is the interaction of the magnetic moment and the magnetic field it lies 

in: 

 
1

H
2

SO   μ B   (4.6) 

The factor of 1/2 is known as the Thomas half, which is the reduction of the Larmor 

interaction energy. The magnetic moment connected with the spin is: 

 
2

e

e e
g

m m

 
 μ S S  (4.7) 

Here the ge is so called g-factor of electron, ge ≈2 is a dimensionless constant. 

Therefore we obtain the spin-orbit Hamiltonian: 

 
2
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0

1
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 S L   (4.8) 

The total momentum operator is the sum of angular momentum operator and spin 

operator J  = L + S, and J
2  

= L
2 

+ S
2 

+ 2L·S ( L and S commute). It is known that J, 
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J
2
, L

2
, and S

2
, commute with each other and all commute with spin-orbit Hamiltonian 

HSO. The expectation value of 1/r
3
 for the hydrogen wave function is: 
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where a is the Bohr radius divided by the atomic number Z. And the expectation 

value of L·S is: 
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Therefore the energy splitting due to the spin-orbital coupling is(Korneta, 2012): 
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  (4.11) 

All these are under assumption of only considering the internal magnetic field 

that is associated to electrons orbitals. When a non-negligible external magnetic field 

exists, the energy splitting is then explained by the Zeeman effect (Schiff et al., 1939). 

The Zeeman effect describes the coupling between the electron’s angular moment or 

both angular and spin moment under the weak external magnetic field (if both are 

considered, it is called the anomalous Zeeman effect). If both orbit and spin are 

involved, the quantized energy splitting has the form of: 

  
e

E
m

L B jg m B    L S B   (4.12) 

where B is the external magnetic field, gL is the Landé g-factor and mj is the z-

component of the total momentum of J. As a strong field is applied, the angular 
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momentum and spin moment independently couple to the magnetic field and the spin-

orbit coupling is disrupted, which is called Paschen-Back effect. 

4.1.2 Hund rules 

In a multi-electron atom, when the total number of electrons equals to the 

available orbit levels which are restricted by the Pauli exclusion principle, all the 

lowest energy levels are fully filled by the electrons with different spin and orbital 

magnetic quantum numbers. The total orbital L and spin S are equal to zero. For 

partially filled shells of multi-electron atoms where the number of electrons are less 

than the available levels, the atomic ground state are occupied by the electrons by a 

set of rules which are called Hund Rules (Engel et al., 2006; Miessler et al., 

1999).These rules are: 

1. The ground states are filled with maximal total spin S.  

2. The ground states are filled with maximal orbital angular momentum L. 

3. The total angular momentum J depends on how the shell is filled: 

J = |L − S|, if the shell is less than half filled. 

J = |L + S|, if the shell is more than half filled. 

J = S (L=0), if the shell is half filled 

To explain rules 1~3, an example of the case of d shell electrons is shown in 

Table 4.1. For atomic d orbital, the orbital quantum number l = 2. For different 

magnetic quantum numbers ml, lz ranges from -2 to 2. To satisfy to the 1
st
 rule Hund 

rules, the electron is put to be spin up ↑ respectively instead of spin down ↓ to reach 

the maximum of total spin S. After half of the saturated number of electrons, electrons 

with spin ↓ are allocated from the maximum lz value to reach the maximal of total 

orbital momentum L, obeying the 2
nd

 rule of Hund rules. Hund rules indicate that the 
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total momentum of the half-filled shell is zero and total momentum is purely due to 

the spin; the total angular and spin momentum are both zero for the fully filled shell. 

Table 4.1 

Ground state of d shell filled by different number of electrons, n is the total number of 

electrons, lz is the z component of the orbital angular momentum of an electron, L is 

the total orbital momentum, S is the total spin momentum, and J is the total angular 

momentum (Alloul, 2011 ). 

n lz = 2 1 0 -1 -2 S L J 

1 ↑     1/2 2 3/2 

2 ↑ ↑    1 3 2 

3 ↑ ↑ ↑   3/2 3 3/2 

4 ↑ ↑ ↑ ↑  2 2 0 

5 ↑ ↑ ↑ ↑  ↑ 5/2 0 5/2 

6   ↑↓ ↑ ↑ ↑ ↑ 2 2 4 

7   ↑↓   ↑↓ ↑ ↑ ↑ 3/2 3 9/2 

8   ↑↓   ↑↓   ↑↓ ↑ ↑ 1 3 4 

9   ↑↓   ↑↓   ↑↓   ↑↓ ↑ 1/2 2 5/2 

10   ↑↓   ↑↓   ↑↓   ↑↓   ↑↓ 0 0 0 

Hund Rules are based on the Coulomb interaction between the electrons and the Pauli 

principle so that two electrons desire to be in different orbits due to Coulomb 

repulsion and once each orbit are occupied, electrons are in the same orbit with 

antiparallel spins. This is the case of free ion, and the case of weak field applied by 

other ligands surrounding ion. In the case of ion under strong crystal field (see 4.1.3), 

electrons occupancy will not follow Hund Rules, they prefer to doubly occupy the low 

energy orbitals before filling the higher orbitals. 

4.1.3 Crystal field in solids 

In transition metal oxides, there are many physics properties, e.g. magnetic 
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4.1.3 Crystal field in solids 

In transition metal oxides, there are many physics properties, e.g. magnetic 

properties, etc. effected by the crystal field. As its name, the crystal field describes 

how the energy levels degeneracy of an atom are modified due to the electric field 

produced by the surrounding environment (anion neighbors, e.g. O
2-

) in the crystal. In 

many transition metal oxides, the interaction between electrons in d-orbitals of the 

metal ion and its surrounding electron cloud from p-orbitals of the O
2-

s
 
causes the 

energy lifting or lowering, thus changes the degenerate energy levels of the cation. 

Electrons closer to the anions will have higher energy than the ones further to the 

anions. Figure 4.1 shows the electron d and p orbital distribution symmetry. 

(a)  

(b)   
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Figure 4.1 (a) 2p orbital symmetry. (b) 3d orbital symmetry.  

A common case is in the octahedral structure (e.g. 2D-layered system Sr2IrO4), where 

the cation is at the center of the octahedron with d electrons and surrounded by six 

anions at each corner with p electrons. d-orbits of the metal ion split the free ion 

energy level into two set of degenerate levels called eg and t2g (defined by the group 

theory symmetry), respectively. The two levels differ by an energy ∆o. dxy, dxz and dyz 

orbitals are lower in energy than the dz
2
 and dx

2
-y

2
 shown in Figure 4.2.  

(a)  

(b)  

Figure 4.2 (a) crystal field splitting of octahedral crystal. (b) High spin and low spin 

diagram, for d
5
 state. 

The crystal field splitting is strongly related to the local environment of the cation, 
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e.g. the type of anion, and ionized states, crystal structure of the anion and cation. 

Different arrangement will cause a different splitting, for instance, the tetrahedral 

splitting is inverse to the octahedral, leading to a two-fold eg state with lower energy 

and three-fold t2g states with higher energy. The arrangement of electrons spins also 

depends on the effect of the crystal field. Under weak crystal field, electrons occupy 

the orbitals following the Hund Rules (high spin case, shown in Figure 4.2b); under 

strong crystal field, electrons are likely to doubly occupy the lowest orbitals instead of 

reaching high energy orbitals due to the large value of ∆o (Korneta, 2012). The 

degeneracies of d- orbitals and splitting diagram are not only effected by the crystal 

field, they are strongly related to the surrounding environment of the metal ion and it 

can be removed under some external conditions such as pressure, crystal distortion, 

etc. For instance, when the octahedron is under z-uniaxial compression, the energy 

level of dx
2

-y
2
 of eg and dxy of t2g is lowered causing a shortening of the bonds on the xy 

plane and elongating of the bond along the z-axis, which is called Jahn-Teller 

distortion or Jahn-Teller effect (Jahn et al., 1937). This effect occurs often in 

octahedral compound with odd number d-electrons on the eg orbitals.  

4.1.4 Exchange interaction 

The magnetic properties of material are quantum effects from the interactions 

between the electron spins which is the origin of the magnetic ordering. The exchange 

interaction arises due to the Coulomb interactions between electrons from the overlap 

of their wavefunctions combined with Pauli exclusion principle (Alloul, 2011). The 

direct exchange interaction from the nearest neighboring magnetic ions can be 

described by Heisenberg model (Wolfgang Nolting et al., 2010). Two particles are at 

the coordinates r1, r2 with wavefunction ϕa(r1) and ϕb(r2). The total wavefunction ψ+ , 
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ψ− with symmetry and antisymmetry is presenting the singlet (total spin S=0) and 

triplet (S=1), respectively. The singlet ψ+ and triplet ψ− are given by: 
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The eigenvalue of the state are E+ and E− and the exchange integral J has the form of: 
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Then the Heisenberg exchange interaction Hamiltonian with the spin of two particles 

S1 and S2 can be written as: 

 
(single  pair)

Heisen 1 2H 2J  S S   (4.15) 

And the total Heisenberg Hamiltonian is the sum of all pair of magnetic moment: 

 
Heisen i j

i,j

H JS S     (4.16) 

where J is the exchange constant between the ith and jth spins and a factor of 1/2 is in 

front since each site counted twice in the sum. Positive J corresponds to E+ > E− 

where the lower energy E− triplet state is favored corresponding ferromagnetism 

(parallel spins), and negative J corresponding to the lower energy E+ singlet state is 

favored corresponding antiferromagnetism (antiparallel spins). Some cases such as in 

oxides the coupling is not between the nearest neighboring magnetic ions but bridged 

through oxygen, forming a “cation-anion-cation” indirect exchange interaction that is 

called superexchange originated from the overlapping between the cation and anion 

(Korneta, 2012). For example, in Sr2IrO4 the antiferromagnetic ordering is dominated 

by the Ir-O-Ir superexchange bond. The superexchange strongly depends on the 

orbitals, bond types and bond angles, itinerant electron environment, etc. of the cation 

and anion forming complex long-range magnetic orders that can be explained by 
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different models.  

4.2 2D layered system Sr2IrO4 

4.2.1 Crystal and electron structure of Sr2IrO4  

(a)   (b)   

Figure 4.3 (a) Structure of unit cell of Sr2IrO4, which includes 4 layers of IrO6 octahe-

drons due to the elongation along c-axis. (b) IrO6 octahedra in each layer. 

The rectangular outline is the unit cell projection on the a-b plane. Shaded 

areas are IrO6 octahedrons projections. (Kim et al., 2012b) 

 Sr2IrO4 has a layered perovskite tetragonal crystal structure defined to the 

space group of I41/acd with lattice parameters a = b = 5.4979(2) Å and c = 25.798(1) 

Å at ambient temperature (Crawford et al., 1994). Each layer consists of IrO6 

octahedrons which rotate about the c-axis by ~11° relevant to the unit cell outline due 
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to the Jahn-Teller distortion and elongates the unit formula along the c-axis to be 

about 4 times larger than a-axis as shown in Figure 4.3b, forming a superlattice 

structure. The Ir
4+

 ions have a 5d
5
 electron configuration with low spin state under the 

large crystal field and strong spin-orbit coupling. Five electrons in the 5d state 

accommodate the triply degenerated t2g states by the fully occupied dyz, dxz orbitals 

and the half-filled dxy orbital (Crawford et al., 1994; Kim et al., 2009). Sr2IrO4 is 

unexpectedly an Mott insulator rather than a metallic state as seen in  the 4d
5
 

compound Sr2RhO4 which has the same crystal structure (Kim et al., 2008). This 

unusual insulating behavior attracted significant attention. 

 

(e)  

Figure 4.4 t2g band configuration. The Fermi level Ef , Coulomb interaction U, and 

spin-orbital coupling SO are indicated. (a) Metallic band without U and 

SO. (b) Mott ground state with only U. (c) Jeff band with only SO. (d) Jeff 

band with both U and SO.(e) crystal field splitting under spin-orbital 

coupling. (Kim et al., 2008) 
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Considering the strong spin-orbital coupling (~0.4eV) and large crystal field when the 

spin and orbit are not separately good quantum numbers, the three-folded t2g state is 

explained by the effective total angular momentum Jeff , as shown in Figure 4.4. t2g 

state corresponds to an effective orbital momentum Leff = 1 with state 
1

1 2 ( )l zx i yz


   and 0l xy   which correspond the effective total angular 

momentum Jeff = 3/2 four-fold degenerated states and Jeff = 1/2 two-fold degenerated 

states shown in Figure 4.4e (Jackeli et al., 2009; Kim et al., 2008). The Jeff = 3/2 

bands are full filled and the Jeff = 1/2 are half filled forming the compound a Jeff = 1/2 

Mott insulating ground state with a gap opened by a small Coulomb repulsion. In 2D 

IrO2 layer, Sr2IrO4 shows a weak ferromagnetic behavior (ferromagnetic moments = 

0.14μB/Ir) contributed by the canted antiferromagnetic order due to the in-plane 

rotation of IrO6 octahedrons (Crawford et al., 1994) below TN = 240K (Cao et al., 

1998).  

4.2.2 RIXS of Sr2IrO4 

Electronic excitations. RIXS as powerful technique is a direct probe of the 5d 

band structures by giving information on the electronic excitations, and even the 

magnetic excitations in the lower energy region thanks to the recent improvement of 

RIXS spectrometers. As shown in Figure 4.5, a RIXS spectrum covering the large 

energy region shows the interband transition (in t2g states) across the Mott gap to the 

upper Jeff = 1/2 band (0.5, 3.2eV peak), and charge transfer excitations at (6.0eV peak) 

from the O 2p band to the Ir 5d band (eg 3z
2
-r

2 
state) (Cetin, 2012). The modes of the 

Mott gap excitation show a weak dispersion, which is  interpreted by the presence of 

the narrow 5d bands of the novel Mott insulating state of Sr2IrO4 induced by the 

strong spin-orbit interaction (Ishii et al., 2011c).  
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Figure 4.5 (a) RIXS spectra of Sr2IrO4 with reduced elastic scattering. (b) Schematic 

transitions correspond to the inelastic peaks in RIXS spectrum (Ishii et al., 

2011c). 

4.2.3 Magnetic excitations in Sr2IrO4 

Magnetic excitations. A recent RIXS study of Sr2IrO4 by Kim et al. shows low 

energy excitations (0.2 ~ 0.8eV) with a very strong dispersion, as shown in Figure 4.6.  

The 0.4~0.8eV excitation with strong momentum dependence is assigned to be a 

“spin-orbit exciton” in the hole representation propagating (hole hopping between 

different sites across the spin-orbital splitting) in the antiferromagnetic ordering 

background, which is consistent with energy scale of the transition across the Mott 
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gap from optical spectroscopy (Moon et al., 2009). This spin-orbit exciton is not 

present in cuprates. The low energy excitations at less than 200meV are believed to be 

single magnon excitations with strong momentum dependence similar to the single 

magnon dispersion observed in cuprates, which is supported by the theory of 

superexchange interaction of Jeff = 1/2 moments on a corner-shared octahedral in 

canted antiferromagnetic ordering (Wang et al., 2011). The magnon dispersion is well 

fitted by a J − J’ − J’’ model (Coldea et al., 2001) considering the higher-order spin 

exchange couplings in Heisenberg Hamiltonian  with J = 60 meV, J’ = −20 meV, J’’ 

= 15 meV, where J, J’, J’’ are the first, second and third nearest magnetic neighboring 

ions.  

 

Figure 4.6  (a) Energy loss spectra recorded at T=15 K (b) image plot (c) Schematic of 

the three representative features in the data. Adopted from (Kim et al., 

2012b).  

The spin-orbit exciton and magnon with strong dispersion make Sr2IrO4 a novel 

potential candidate as a superconducting parent compound as similar dynamics seen 
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in cuprates which may be driven to a hole or electron doped mechanism with high 

temperature superconductivity (HTSC) although superconductivity has not been 

reported. Some experiments have begun to map the phase diagram of doped Sr2IrO4 

(Korneta et al., 2010).  

The magnetic excitation was proved to be strongly incident and outgoing 

polarization dependent in Chapter 1, even the inter-band transition (t2g transition, in 

Sr2IrO4) coupled with the electron orbitals can be revealed by the symmetry 

information gathered from polarization analysis. The polarization analysis system 

based on the bent Si PA designed for Ir L-edge was tested and we obtained one 

polarization analyzed RIXS spectrum of Sr2IrO4 as a first attempt shown in Figure 

3.10. Even though the count rate with polarization analysis is low, the inelastic signal 

in low energy region can be detected. More spectra at different momentum transferred 

over the Brillouin zone need to be mapped out to present the features of magnon.  

4.3 quasi-1D system BaIrO3 

4.3.1 Crystal structure of BaIrO3 
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Figure 4.7 (a) schematic unit cell of BaIrO3 (Zhao et al., 2008). (b) Two neighboring 

Ir3O12 trimers are corner sharing (Maiti, 2006).  

Quasi-1D system. In ambient condition, the crystal structure of BaIrO3 is 

monoclinic with a space group of C2/m. An ordinary perovskite structure is difficult 

to form in this compound since the large ionic radius of Ba atom makes the tolerance 

factor (t>1) exceed the perovskite structure boundary in ABO3 systems (Li et al., 

2004). The unit cell parameters are a = 10.005 Å, b = 5.751 Å, c=15.174 Å, and β = 

103.274° (Gulino et al., 1995; Powell et al., 1993a; Siegrist et al., 1991). As shown in 

Fig.7.1b, the low dimensional lattice structure of BaIrO3 is constructed by Ir3O12 

trimers. In quasi-1D symmetry, each unit cell consists of two trimers where the two 

neighboring trimers are tilted by 12° forming so called one-dimensional ‘zigzag’ 

chains along the crystal c-axis. There are four types of nonequivalent Ir atoms 

presented by Ir1, Ir2, Ir3, Ir4, defined by the way each IrO6 octahedron connects to its 

neighbors. Each Ir3O12 trimer has three IrO6 octahedra units and two nonequivalent Ir 

sites. In one trimer, the central octahedron connects its two neighboring units by face-

sharing. Between two Ir3O12 trimers, the bottom octahedron (Ir3 site) and top 

octahedron (Ir 1 site) connect by face-sharing. 

4.3.2 Magnetic and electron structure of BaIrO3 

The electronic and magnetic properties of BaIrO3 have been studied by several 

experimental methods and indicate interesting behavior in the material. The 

ferromagnetic transition at the Curie Temperature Tc=175K is accompanied by charge 

density wave formation, which is often observed in 1D crystals (Cao et al., 2000) as 

shown in Figure 4.8. The magnetic ordering is ferromagnetic below Tc and transforms 

to paramagnetic order in a metallic phase above Tc (Powell et al., 1993b), but it is 
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referred to as a “bad metal”, behaving like an insulator(Cheng et al., 2009) since the 

anisotropic resistivity increases as the temperature decreases as shown in Figure 4.8. 

BaIrO3 is found to be nonmetallic weakly ferromagnetic (Laguna-Marco et al., 2010) 

but behaves as weakly localized metal above Tc based on the tight bending calculation 

by Wangbo et al. (Whangbo et al., 2001). More recent studies of BaIrO3 pointed out 

the strong spin-orbit interaction cannot be ignored in Ir 5d system as demonstrated by 

x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) 

measurements (Laguna-Marco et al., 2010). The quasi-1D 5d Ir system is also 

established to be an exotic spin-orbital Mott insulator with splitting Jeff = 1/2 states 

and Jeff = 3/2 states under both spin-orbital coupling and on-site Coulomb interaction, 

similar to Sr2IrO4, but with stronger nearest- and second nearest-neighboring 

interaction due to the closer Ir-Ir bond between the face-sharing IrO6 octahedrons 

rather than the corner-sharing ones in Sr2IrO4 (Ju et al., 2013).  
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Figure 4.8 Electrical resistivity and magnetization vs temperature of BaIrO3 in crystal 

ab-plane and along c-axis (Cao et al., 2000).  

4.3.3 RIXS of BaIrO3 

A RIXS experiment on BaIrO3 was carried out on 9ID at the APS in the near 

90° horizontal geometry with the incident polarization in the scattering plane. The 

size of the incident beam was narrowed by utilizing a secondary focusing mirror 

system with focused beam spot (15 vertical × 30 horizontal μm
2
) on the sample. The 

overall resolution with a diced, spherically bent Si (8 4 4) analyzer and a strip detector 

turned out to be ~30 meV, which is sufficient to study the low energy features that are 
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usually dominated by the tail of the elastic scattering. BaIrO3 was aligned with 

incident polarization in the crystal ac-plane to conveniently access the chain c-axis. 

We measured the RIXS spectra of BaIrO3 only focusing on the low energy region due 

to time limitations and the reduced count rate from focusing mirror system. RIXS data 

from sample was taken at the room temperature T = 300 K. And the sample 

temperature was cooled down to T = 100 K across the first critical temperature Tc = 

180 K, the excitation at low energy region appeared and softened at the T = 7 K 

across the second critical temperature (T = 80 K). Lattice parameters shrink as the 

temperature decreases as well as the angle between crystal a-axis and c-axis, which 

required realignment of the sample orientation. Then the spectra were taken as the 

sample temperature was increased back to T = 100 K and room temperature. 

 

Figure 4.9 RIXS spectra of BaIrO3 taken at T = 300, 100, and 7K. Insertion is the 

multiple peaks fitting with the elastic peak, 80 meV and 600 meV inelastic 

peak. 

A low energy excitation below 100 meV was detected with highest intensity at T = 
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100K and soften at T = 7K as shown in Figure 4.9. This energy scale is hard to probe 

due to the elastic scattering. This 70 meV excitation is close to the soft gap opening 

(25 ~ 50 meV) at the Fermi level due to the localized electronic states by the lattice 

distortion described in (Cheng et al., 2009; Maiti et al., 2005). This low energy 

feature shown in Figure 4.10b and the high energy excitation (0.4 ~ 0.8 eV) shown in 

Figure 4.10a do not show significant dispersions at different positions in the Brillouin 

zone. The low energy excitation appeared as the temperature decreased from T = 300 

K to T = 100 K, and the spectrum weight reduced at T = 7 K. The excitation did not 

appear as the temperature increased to T = 100 K from T = 7 K. It is valuable to 

measure the lattice parameters as a function of temperature by x-ray diffraction since 

incorrect parameters can cause sample missing orientation. Beam might hit sample on 

bad area as the temperature changes. About a half of the crystal surface is not in good 

quality seen in the microscope. A small crystal with good quality can stabilize the 

experimental conditions. 

(a)       
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(b)  

Figure 4.10 Image plots of RIXS spectra of BaIrO3 at different momentum transfers, 

at T = 100K. (a) Energy excitations less than 1 eV. (b) Low energy 

excitation below 100 meV. 

The excitations are weakly dispersing and are likely to be the transition between t2g 

states across the Mott gap. Calculations considering both spin-orbital coupling and 

on-site Coulomb interactions U in (Ju et al., 2013) show a 50-meV gap between Jeff = 

1/2 LHB and Jeff = 1/2 UHB can be opened when U is set at 3eV, which is close to 70 

meV observed. The high energy excitation ~0.6 eV is likely the transition from  Jeff = 

3/2 band to the empty Jeff = 1/2 UHB. The weakly dispersing Mott gap transition from 

Jeff = 1/2 LHB to Jeff = 1/2 UHB was similarly observed in Sr2IrO4 but with larger gap 

size (~0.5eV) (Ishii et al., 2011c). Spin-orbital coupling is strongly proportional to the 

number of neighboring Ir atoms. The smaller band gap observed in BaIrO3 is due to 

the quasi-1D structure, the number of neighboring Ir atoms in BaIrO3 (z ≈ 2) even less 

than that of Sr2IrO4 (z ≈ 4), causing narrow bandwidth and thus band gap (Ju et al., 

2013). 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The work of this dissertation is the development of polarization analysis for 

hard resonant inelastic x-ray scattering which was carried out at the RIXS beamlines 

9ID and 30ID at the APS. The analysis of the polarization of the scattered photon fills 

a technical void for hard RIXS spectrometers which currently can only measure the 

energy and momentum transfers. The outgoing polarization of the scattered photons 

provides symmetry information of the states involved in the scattering which is 

difficult to determine without polarization analysis. A polarization analyzer is 

designed to reflect the scattered photons from the main analyzer by about 90 degrees. 

At this reflecting angle, the in-plane polarization is naturally eliminated by the 

polarization factor so that the scattered photons perpendicular to the reflection plane 

are fully obtained. Therefore it can separate the two orthogonal polarizations (named 

‘π’ and ‘σ’) by rotating the system by 90 degrees. 

A polarization analysis system based on a graphite (0 0 6) polarization 

analyzer has been developed for Cu K-edge RIXS with about 1.4% overall efficiency 

and a factor of 0.3 energy resolution broadening which is a significant improvement 

of the only work of polarization analysis of hard RIXS utilized by flat graphite 

analyzer (Ishii et al., 2011a). A preliminary polarization analyzed RIXS spectrum of 

CuGeO3 carried out presents the potential of the polarization analysis. An improved 

polarization analyzer based on ultra-thin bent Si (4 4 4) is being developed for iridates 

at Ir L3-edge. Although the overall efficiency is low, the bent Si polarization can 

detect the low energy excitation (below 1 eV) in the preliminary measurements with 
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Sr2IrO4.  

For future work, more RIXS spectra need to be taken at various positions in 

the Brillouin zone to necessarily map the dispersion features of the excitation. More 

detailed analysis of the bent Si polarization analyzer needs to carry out to improve the 

optic with higher reflectivity. More polarization analyzers suitable for other transition 

metal edge will be developed and eventually available for various RIXS experiment 

as the main analyzer on the shelf.  
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