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Fig. 5.2 The Estimated Amplitude by Kalman Filter for Different Periodic Values of    

             ttr 
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Fig. 5.3 Estimated Amplitude by Kalman Filter after Ignoring the Estimated Values at 

the Updating Time for Different ttr Time 

                

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 The Average Values of 

the Estimated Amplitude by Kalman Filter for Different Updating ttr Time 
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Fig. 5.5 shows several values for ttr and the instant t = 0.4 sec when there are 

dynamic changes in the fundamental amplitude in the measured signal. The proposed 

algorithm is able to track the changes in the fundamental amplitude of the measured 

signal. The Fig. 5.6 shows the mean values from Fig. 5.5. The results from these 

figures show that the estimated amplitude is strongly dependent on the value of ttr. As 

the value of ttr is increased, this causes a delay in the proposed algorithm to track the 

dynamic changes even though the proposed algorithm is successful in tracking the 

fundamental amplitude as shown in first and second subplot of Fig 5.5. There are no 

delays as shown in third and fourth subplot of Fig 5.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Estimated Amplitude by Kalman Filter after Ignoring the Estimated Values at 

the Updating Time for Different ttr Time 
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Fig. 5.6. The Average of  the Estimated Amplitude by Kalman Filter for Different 

Updating ttr Time 

 

The fundamental frequency (50 Hz) usually changes due to load changes; 

under normal conditions, the frequency could be vary up to 49.5 Hz. The Kalman 

filter cannot estimate the fundamental signal amplitude if the frequency is varying 

because the system becomes non-linear; the Kalman filter works for linear systems. 

The Fig. 5.7 shows the results when the frequency changes to different values at t = 

0.4 sec. The proposed algorithm would track and detect the fundamental signal 

amplitude but the normal Kalman filter could not track the fundamental signal 

amplitude.  
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The first Kalman filter will be used to sense if dynamic changes are happening while 

the second Kalman filter will be used to track the signal in order to diagnose the 

voltage sag problem. The first Kalman filter will be used to determine the necessary 

time for updating the P matrix in the second Kalman filter.  

  The second Kalman filter will be used to update P matrix to higher value than 

the P matrix of the first Kalman filter in order to detect and track the fundamental 

amplitude after the dynamic changes occur. However, the P matrix for the first 

Kalman will be updated periodically and must be selected such that the output 

variations of the first Kalman filter is bounded within narrow limits. For good 

response, it is better if the Kalman filter updates of the P matrix can be achieved as 

soon as a dynamic change occurs. Therefore, the periodic time of the first Kalman 

filter is selected to be small after several tries; 0.01 sec or  ½ cycle for 50 Hz.  

 

 

Fig. 5.11 The Block Diagram of the Second Proposed Adaptive Filter 

 

Fig.5.12 shows the results for different factors for updating the P matrix in the 

first Kalman filter for constant periodic time (t = 0.01 sec). Fig.5.12 shows the best 

factor for updating the P matrix in order to keep the output variations of the first 

Kalman filter bounded is 2.5 at t = 0.01 sec, as a periodic time.  
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Fig. 5.12 Estimated Amplitude by Kalman Filter for Fix Periodic Time and Different 

Updating Values 

 

By comparing the estimated output of the second and the first Kalman filters 

in the normal operation, the difference between them will be within this narrow limit. 

When a dynamic change in the measured signal occurs, the output of the first Kalman 

filter will interact with the signal at this instant more than the second Kalman filter. 

This is because the updating P matrix causes the amplitude difference between the 

first and second Kalman filter to exceed the narrow limit and this will be used as an 

indicator for an amplitude change in the signal. When the difference between the first 

and the second Kalman filter exceeds this bounded limit, the P matrix in the second 

filter must be updated to track the signal variation. 

 The first Kalman filter will update the P value while the second will keep it 

constant. The Fig. 5.13 shows the amplitude variation between the second and the first 

Kalman filters for amplitude change at 0.3 sec. The P matrix in the first Kalman filter 
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is updated every 0.01 sec with a factor of 1.05 from the previous value of the P and 

the fundamental amplitude of the measured signal is changed at 0.3 sec to several 

values. When the amplitude is constant, the amplitude variation is bounded within 

0.01 limits. When the amplitude is changed at 0.3 sec, the variation between the two 

Kalman filters increases and exceeds the normal limit (0.01). This will be used to 

detect the amplitude change in the signal to update the P matrix in the second Kalman 

filter.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.13 Amplitude Variation Between the Second and the First Kalman Filter for 

Different Signal Amplitude Changing, P is increased 1.05 every 0.01 sec  

 

In the second proposed algorithm, as soon as the amplitude variation between 

the first and the second Kalman filters exceeds the normal limit, the second Kalman 

filter will update the P matrix to higher value to interact fast with the dynamic change. 

The two differences between the first and the second Kalman filters are; (i) the P 

matrix is updated periodically in the first Kalman filter with small variations to keep 

these variation within bounded limit; and (ii) while the second difference is the 
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updating value in the second Kalman filter is higher to achieve a faster response for 

tracking the fundamental amplitude of the measured signal when dynamic changes 

occur.  

Fig. 5.14 shows the strength of the performance of the proposed algorithm 

when two adaptive Kalman filters are used to detect and track the fundamental 

amplitude of the measured signal when dynamic changes occur at t = 0.5 sec.  

 

    Fig. 5.14 Estimated Amplitude by the Proposed Adaptive Kalman Filter for 

Different Amplitude Changing at t = 0.5 sec  
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In Fig. 5.15, the second proposed adaptive Kalman filter shows good response 

in tracking and detecting the fundamental amplitude of the measured signal when two 

dynamic changes occur at t = 0.3 sec and t = 0.6 sec.  

 

 

Fig.5.15 Amplitude Estimated by the Proposed Adaptive Kalman Filter for Dynamic 

Changing in the Signal Amplitude 
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The signal fundamental frequency is kept constant (50 Hz) for all the previous 

results. In normal operation in power systems, the fundamental frequency varies 

within ±0.5 Hz due to load variations.  Fig. 5.16 shows the estimated fundamental 

signal amplitude of the measured signal by the second proposed adaptive Kalman 

filter when the amplitude and frequency change from 50 Hz to different values at t = 

0.5. The results show in this figure that, for small frequency variations, the second 

proposed filter shows a good response when the frequency changes by less than 0.5 

Hz. When the frequency is equal to  49.5 Hz, the estimated amplitude by the proposed 

algorithm starts to decrease due to the frequency change before the amplitude change 

occurs at t = 0.5 sec. This causes the difference between the second and the first 

Kalman filter to exceed the bounded limit and lead to the update of the P matrix in the 

second Kalman filter to correct the estimated amplitude. When the fundamental 

amplitude of the measured signal changes, the P matrix is also updated to keep signal 

tracking. However, when the frequency is decreased to 49 Hz as shown in Fig.5.16, 

the estimated amplitude by the second Kalman filter is less than the real value. The 

first Kalman filter constantly triggers the second Kalman filter. The second Kalman 

filter updates the P matrix in order to keep tracking of the fundamental signal 

amplitude. Based on the results shown in Fig. 5.16, the second proposed filter shows a 

good response for normal operation of the power system where the frequency is 

within ±0.5 Hz range. This multi-triggering from the first Kalman filter can be used as 

an alarm when there are large variations in frequency.  
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Fig. 5.16 The Estimated Amplitude by the Proposed Adaptive Kalman Filter for 

Amplitude Changing at t = 0.5sec and Different Signal Frequency Values 
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5.2.1 Effect of Signal to Noise Ratio (SNR) on Second Algorithm 

 

The signal to noise ratio (SNR) is considered one of the measures of 

performance.  In this section, the performance of the second proposed algorithm for 

different levels of noise (high or low noise) will be examined. The Figs.5.17 (a) to (g) 

show the performance of the second proposed algorithm to detect and track the 

fundamental signal amplitude for different values of the signal to noise ratio (SNR) of 

the measured signal. The results show that the proposed algorithm has a very good 

performance when the SNR has high value (that is, low noise) as shown in Figs. 5.17 

(a) to (d). For low SNR (that is, high noise), the proposed algorithm also has a good 

performance, but there are some overshoots on the estimated output (see Figs. 5.17 (e) 

to (g)). These overshoots are bounded to a certain limit and come from updating P 

matrix several times by the second Kalman filter of the proposed algorithm. If these 

overshoots are ignored, the second proposed algorithm will be efficient in detecting 

and tracking the fundamental signal amplitude even with very high noise.  
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 (a) 

 (b) 

Fig.5.17  The Estimated Fundamental Amplitude by the Second Proposed Algorithm 

for Different Values of SNR 
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(c) 

 (d) 

Fig.5.17  (Continued) 
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(e) 

 

(f) 

Fig.5.17  (Continued) 
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(g) 

Fig.5.17  (Continued) 
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CHAPTER 6 

 

FUTURE WORK AND CONCLUSION  

 

6.1 Contributions  

 The major contributions of this dissertation are:  

  The effect of the noise covariance matrices (R, Q) under static and dynamic 

cases (i.e. change in fundamental amplitude of measured signal) is 

investigated. It is found that balancing between R and Q can improve the 

Kalman filter estimation when the real values of these matrices are 

unavailable and therefore, there is no need for extra techniques to evaluate 

them. 

 When a dynamic change occurs in the system parameter, it is found that 

updating the Kalman filter covariance matrices lets the Kalman filter interact 

better with the signal changing, such as the state covariance matrix P.  

  Two new adaptive Kalman filters are proposed to detect and track any 

dynamic change in the fundamental amplitude of the measured signal, which 

helps in diagnosing the voltage sag problem. 

 The proposed algorithms show good performance in detecting and tracking 

the fundamental amplitude of measured signal even under a higher signal to 

noise ratio SNR and small frequency variations, where the simple Kalman 

filter cannot be used in such case. 

 The proposed algorithms show robustness against SNR; they can track the 

fundamental amplitude changing even though the SNR is very small. 
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 One proposed algorithm can be used as alarm for users when severe changes 

in the fundamental frequency occur. 

6.2 Conclusion 

 Based on the literature review, previous research on Kalman filter estimation 

of fundamental amplitude in noisy and harmonic signals in power systems can be 

divided into four categories. First, the Kalman filter is used with fixed noise 

covariance matrices Q and R, and the results show that the Kalman filter performance 

is very good and better than many existing filters. Second, the Kalman filter is 

modified to overcome some of the Kalman filter drawbacks in other applications. 

Third, the focus is on the importance of estimating the real value of the noise 

covariance matrices to guarantee the optimality of Kalman filter. Fourth, the focus is 

on the importance of updating the noise covariance matrices for any parameter 

changes in the system. In many of the previous research studies there were strong 

arguments for the importance of the noise covariance matrices; Q, R, and the ratio 

between them. 

 The effects of noise covariance matrices are discussed in details for static and 

dynamic signals. A typical example of an electrical signal was used, where the signal 

contained fundamental and odd orders of harmonics. Two real values of the measured 

signal noise covariance matrix (Rreal= 0.1 and Rreal= 100) are used for static and 

dynamic signals. It is concluded from the present work that balancing between Q and 

R values improves the Kalman filter performance. When the value of R is decreased, 

then the Kalman filter gives more weight to the measured value than the predicted 

value. This enhances the Kalman filter capability to detect any changes in the 

measured signal, but this will lead to the presence of noise in the estimated signal. If 

the value of Q is decreased, the Kalman filter gives more weight to the predicted 
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signal value, which helps the Kalman filter to get rid of the noise in the estimated 

signal. The estimated signal will depend strongly on the system model and cause 

delay in the Kalman filter response to detect the variations in the measured signal. 

When Rreal = 0.1, there are several values of Q to balance a single values of R. When 

Rreal =100, there is a single value of Q to balance some values of R. The Kalman filter 

show very good response in detecting the amplitude of signal containing the first 51 

odd harmonics. The Kalman filter shows poor response when the fundamental signal 

frequency is changed because the system becomes nonlinear under the frequency 

variation condition.  

When the fundamental signal amplitude is changed, the Kalman filter shows 

poor response in detecting this change, even though that the Kalman filter shows good 

response before the change occurs. Updating Q, R or both can improve the Kalman 

filter performance to detect the fundamental amplitude changes. Updating the value of 

R to small values gives better results compared with that obtained from updating Q.  

The Q and R matrices must be updated for each fundamental signal amplitude 

change. If the values of Q and R are updated but the ratio between them is kept 

constant, the Kalman filter will not give the same results for dynamic changes in the 

fundamental signal amplitude. However, Q and R values must return to their origin 

values but the same ratio before the updating. The Kalman filter response to detect the 

fundamental signal amplitude can be improved by increasing the state covariance 

matrix P (where value of P becomes zero when Kalman filter converges). This 

prevents the Kalman filter from interacting with the fundamental signal amplitude 

variations. 

 Updating P at the instant where the fundamental signal amplitude variations 

occur allows the Kalman filter to detect and track the fundamental signal amplitude. If 
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P is updated to high values, there is overshoot in the estimated fundamental signal 

amplitude but the settling time is low. If P is updated to low value, the overshoot is 

small but the settling time increases. 

Updating P at the time when the fundamental amplitude of the measured 

signal changes improves the Kalman filter performance to detect and track the 

fundamental signal amplitude. It is not easy to determine the time when measured 

signal changes occur. Therefore, two adaptive Kalman filters are proposed to track the 

fundamental amplitude of the measured signal based on the Kalman filters only. The 

first proposed algorithm updates the P value periodically; the period time can be 

chosen based on the knowledge of the system. If system changes rapidly or slowly, a 

small periodic time can be selected. In this proposed method, the value of P must be 

updated to a higher value, which causes high overshoot in the estimated fundamental 

signal amplitude. If the overshoot is ignored at the instant where P is updated, the 

Kalman filter performance improves. This algorithm also shows good response in 

tracking and detecting the fundamental signal amplitude under normal fundamental 

frequency variations. In this method when P is updated, the Kalman filter interacts 

with the signal again to detect any fundamental signal variations. If the value of P is 

updated periodically, it helps the Kalman filter to correct the estimated fundamental 

amplitude. 

If the fundamental signal frequency is assumed to be constant in the Kalman 

filter, the model is linear, otherwise the system becomes nonlinear and an extended or 

unscented Kalman filter should be used. In normal operation the frequency variation 

is usually kept within narrow limits, where the frequency variation must not exceed 

±0.5Hz, [49.5 to 50.5 Hz]. The Kalman filter cannot estimate fundamental signal 

amplitude correctly under such frequency variation. Updating P matrix periodically in 
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the first proposed algorithm improves the estimated output by Kalman filter for 

normal frequency variation. 

The second proposed algorithm uses two Kalman filters, one of them is called 

the first Kalman filter and the other is called the second Kalman filter. Both Kalman 

filters update the value of P in different ways. In the first Kalman filter, the value of P 

is updated to small values periodically but with shorter period. This causes the 

estimated output of the Kalman filter to vary within small narrow limits (threshold 

limit). When the amplitude is changed, the estimated amplitude by the first Kalman 

filter exceeds the threshold limit, and this will be used as an indicator to trigger the 

second Kalman filter to update the P value to detect the dynamic change. The value of 

P is higher in the second Kalman filter compared to the value of P in the first Kalman 

filter in order to get fast response in tracking and detecting the fundamental signal 

amplitude change.  

The second proposed algorithm shows a very good response, especially when 

the fundamental signal amplitude changes suddenly. The main advantage of the 

second proposed algorithm over the first one is that the output overshoot is low, while 

the first proposed algorithm is simpler and requires one Kalman filter. It is worth 

mentioning here that the values of Q and R use in both two proposed algorithms are 

not the same as real values. It is enough to use small value of R to let the Kalman 

filter interact with the signal variation. 

 

6.3 Future Work 

In future work, the simpler Kalman filter that was used in this work will be 

replaced by an extended Kalman filter in the two proposed algorithms to sense wide 



 

114 

 

range frequency variations. This means extra investigations of the effects of Q, R, and 

updating P on the performance of two proposed algorithms. 

Two models of Kalman filter for power systems are described in Chapter 3. 

The first model includes only the fundamental amplitude signal and the second model 

includes the fundamental and all the other harmonics. In this dissertation only the first 

model is used. In future work, the second model may be used. However, the sizes of 

Kalman filters matrices for the second model will be large, but the performance of the 

Kalman filter in the second model will be much better. 
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