An Approximation Algorithm for Motif Finding in DNA Sequences

Hasnaa Al-Shaikhli
Dr. Elise DeDoncker
Department of Computer Science

Abstract

- Motif finding is a significant problem in biology and computer science fields.
- Search for similar (not exact) motifs in multiple DNA sequences is non-trivial, and is a time-consuming problem.
- **IDEA:** design an algorithm that reduces the search space to decrease the run-time based on a d-neighbors set analysis.
- The d-neighbors set is a list of all instances for a subsequence x of length l with maximum allowed mutations ≤ d.
- Analyzing these sets to make use of the distance frequencies between neighbors without generating them would help to build the proposed algorithm and make it faster.

Hypothesis

The proposed algorithm reduces average search time by narrowing the search space depending on prior computational knowledge.

What is DNA?

- DNA stands for **Deoxyribonucleic Acid**.
- Recipe book that holds all instructions for making all proteins.
- DNA is a two-stranded long molecule that contains unique genetic code.
- DNA has a unique double helix shape, like a twisted ladder.
- DNA contains four basic building blocks or bases: adenine (A), cytosine (C), guanine (G) and thymine (T).
- The bases always pair together in the same way, A↔T, C↔G.

What are DNA Motifs?

- DNA motifs are recurring short segments with expected length of 8-30 nucleotides. Motifs may occur with mutations.
- They often indicate binding sites for proteins such as transcription factors (TF).
- Motifs or Transcription Factor Binding Sites (TFBS) located upstream of genes.

Figure 1: Human Cell and DNA

Motif Finding Problem

The planted (l, d) Motif Finding Problem can be described as follows:

Input: Given
1. Set of t sequences \(s_1, s_2, \ldots, s_t \) of length n over alphabet \(R = \{A, C, G, T\} \).
2. Two integers \(l \) and \(d \) where \(0 \leq d < l \leq n \).

Output:
1. Consensus motif (original motif without mutations).
2. All subsequences (motifs) of length \(l \) at hamming distance \(d \) from the consensus motif.

Motif Finding Algorithms

Exact Algorithm
Consumes a long time. Always obtains correct solution.

- **Examples:**
 - WINNOWER (2000)
 - SP-STAR (2000)
 - MITRA (2002)
 - PMS series (2005)
 - RISOTTO (2005)

Approximate Algorithm
- Faster.
- Does not necessarily return the correct solution.

- **Examples:**
 - MEME (1994)
 - CONSUNS (1999)
 - PROJECTION (2001)
 - MULTIPROFILE (2002)
 - Pattern Branching (2003)

Computational Results

- Total number of d-neighbors \(N \) for a given subsequence \(x \) of length \(l \) with allowed mutation \(d \) is \(|N(x,l)|=\sum_{k=0}^{d} \binom{l}{k} \).
- If \(A, B \) are two strings of length \(l \) with \(d(A, B) \leq d \) and \(d_{A,B} \leq 2d \) and expected Hamming distance \(E_{2d} = 2d + \frac{4}{3}d^2 \).

Figure 2: DNA sequences with motifs upstream of genes

Figure 3: D-Neighbors Distance Frequencies Distribution for “AAAA”

Figure 4: Neighbors Distance Frequencies Distribution for “AAAA”

Proposed Algorithm

Input
- \(M \): consensus motif
- \(n \): length of each DNA sequence
- \(d \): maximum allowed mutations
- DNA[n][t]: t=x DNA sequences

Output
- Consensus motif

Algorithm
For each subsequence of length \(l \) in the first sequence DNA(0) from starting positions 0 to \(n+1 \)
- If S is found in all other sequences within specificant distance range then add it to the Nominated Motifs
- Else Ignore S

Conclusions and Future Work

- Implement the computational results in the designed algorithm to make it faster.
- Compare it with other approximate algorithms to test its performance.
- Test it on real DNA datasets such as TRANSFAC dataset.