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MULTIVARIATE AUTOREGRESSIVE TIME SERIES USING
SCHWEPPE WEIGHTED WILCOXON ESTIMATES

Jaime Burgos, Ph.D.

Western Michigan University, 2014

The increasing needs of forecasting techniques has led to the popularity of the vector autoregressive

model in multivariate time series analysis, which has become of typical use across different fields

due to its simplicity in application. The traditional method for estimating the model parameters

is the least squares minimization, due to the linear nature of the model and its similarity with

multivariate linear regression. However, since least squares estimates are sensitive to outliers, more

robust techniques have become of interest. This manuscript investigates a robust alternative by

obtaining the estimates using a weighted Wilcoxon dispersion with Schweppe-type weights. The

first section introduces the typical definition of a vector autoregressive model, along with popular

estimation methods and weighting schemes. In section two, the proposed estimator is shown to

be asymptotically multivariate normal, centered about the true model parameters, at a rate of

n−
1
2 . Section three follows with an in depth discussion of the derivation of the main theoretical

results. After that, in section four, a Monte Carlo study is presented to evaluate the performance of

alternative estimators compared against the least squares estimates. The study results suggest that

the Schweppe-weighted Wilcoxon estimates will generally have best performance. This result is most

noticeable under the presence of additive outliers or when the series is closer to non-stationarity. In

the last section, the estimation methods are applied to quadrivariate financial time series and results

are compared. The applied example results indicate that estimates that use weights are better at

detecting outliers by reducing their influence on the fit. This work provides a high efficiency robust

alternative to the estimation problem of the vector autoregressive model parameters in multivariate

time series analysis.

Keywords: Asymptotic normality, High-breakdown estimates, Rank-based estimates, Vector au-

toregressive, Schweppe weights, Multivariate times series, Innovation outliers, Additive outliers,

U-Statistics
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1 Introduction

1.1 Time Series Model

A widely used model in multivariate time series analysis is the stationary m-variate vector autore-

gressive model of order p. Through this manuscript, we refer it as the VARm(p). The model, with

an intercept, is generally expressed as

Y t = φ0 + Φ1Y t−1 + Φ2Y t−2 + · · ·+ ΦpY t−p + εt; t = 1, . . . , T

def
= φ0 + ΦXt−1 + εt, (1)

where p ∈ {1, 2, . . .}; Y t,φ0, εt ∈ Rm; m ∈ {2, 3, . . .}; Xt−1 = (Y ′t−1,Y
′
t−2, . . . ,Y

′
t−p)

′ ∈ Rmp;

Φi ∈ Rm×m, i = 1, 2, . . . , p; Φ = (Φ1, . . . ,Φp) ∈ Rm×mp; X0 is an observable process random

vector independent of εt; and T is the number of realizations in the time series. The process has a

stationary solution if and only if

det(xpIm − xp−1Φ1 − · · · −Φp) = 0 ⇒ |x| < 1, (2)

where det(·) is the determinant operator, Im represents the dimension m identity matrix, x may be

complex valued, and | · | is the modulus operator on the complex plane (Brockwell & Davis, 2002).

Furthermore, εt are assumed to be independent with an identical continuous distribution function

F(·) that satisfies

V[εt] = Ω p.d., (3)

where p.d. stands for positive definite. Under assumptions (1), (2) and (3), {Y t} is causal, invertible

(Brockwell & Davis, 2002), ergodic (Krengel, 1985), and geometrically absolutely regular (g.a.r.)

(Terpstra & Rao, 2002).

1.2 Parameter Estimation

Estimates for the parameters in (1) are typically obtained by minimizing, with respect to φ0 and Φ,

a dispersion function. The most common selection, generalized with weights and for a multivariate
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setting, is the L2 dispersion function,

D2(φ0,Φ) =

T∑
t=1

bt‖ εt(φ0,Φ)‖2, (4)

where bt > 0 denotes a weight function, that may depend on both the design Xt−1 and the response

Y t. εt(φ0,Φ) = Y t − φ0 −ΦXt−1, and ‖ · ‖ denotes the Euclidean norm. Typically bt ≡ 1, which

results in a component wise Ordinary Least Squares (OLS) estimation. The asymptotic theory for

the OLS estimates can be found in many time series textbooks, including Lütkepohl (1993) and

Fuller (1996).

As with most least squares estimates, outlying observations can yield unreliable estimates and

predictions (Rousseeuw & Leroy, 1987; Hettmansperger & McKean, 2011). A number of robust

estimators for the parameters in (1) have been studied. These include a functional least squares

approach by Heathcote and Welsh (1988); an extension of the RA-estimates proposed by Bustos and

Yohai (1986), Li and Hui (1989), and Ben, Martinez and Yohai (1999); GR-estimates proposed by

Terpstra and Rao (2002); weighted-L1 estimates proposed by Reber, Terpstra and Chen (2008); an

extension of least trimmed squares by Croux and Joosens (2008); and an extension of MM-estimates

by Muler and Yohai (2013).

More robust estimators can be obtained by using different dispersion functions. For instance, a

multivariate generalization of the weighted-L1 dispersion function

D1(φ0,Φ) =

T∑
t=1

bt‖ εt(φ0,Φ)‖, (5)

where bt > 0 denotes a weight function, that may depend on both the design Xt−1 and the re-

sponse Y t. Using Mallows weights (Mallows, 1975), the asymptotic distribution of the weighted-L1

estimates is described by Reber et al. (2008).

Another robust estimator can be obtained from a multivariate generalization of the weighted-

Wilcoxon dispersion function

DWW(Φ) =

T∑
i<j

bij‖ εj(φ0,Φ)− εi(φ0,Φ)‖, (6)

where bij = bji > 0 denotes a weight function, that may depend on both the design and the response

points at the ith and jth realizations. Similar to the univariate case, φ0 cannot be estimated using

(6) due to intercept invariance property of the dispersion function. Hettmansperger and McKean
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(2011) describe methods for post-estimation of φ0 for the univariate case, which can be generalized

to the multivariate setting. Using Mallows weights, the asymptotic theory of multivariate weighted-

Wilcoxon (WW) estimates, known as Multivariate Generalized Rank (GR) estimates, was introduced

by Terpstra and Rao (2002).

1.3 Weighting Schemes

The estimates obtained from (4), (5) and (6) are influenced by the selection of the weight functions.

The weighting schemes used throughout this manuscript can be grouped into three classes: non-

random weights, Mallows weights and Schweppe weights (Handschin, Schweppe, Kohlas & Fiechter,

1975).

1.3.1 Non-random Weights

Non-random weights do no explicitly depend on the time series realizations. The most common case

is selecting the weights constant to one. Here bt ≡ 1 and bij ≡ 1 , thus weighing each realization

equally. Another example of non-random weights would be selecting bt = t and bij = ij, giving more

weight to realizations as they are more recent.

1.3.2 Mallows Weights

Mallows weights depend only on the design point. A simple example of Mallows weights for (4), (5)

and (6) are the Boldin (Boldin, 1994) and Theil weights (Theil, 1950). These can be generalized to

the multivariate setting by defining them as

bt = ‖Xt−1‖−1 if Xt−1 6= 0 and bij = ‖Xj−1 −Xi−1‖−1 if Xi−1 6= Xj−1, (7)

and when Xt−1 = 0 or Xi−1 = Xj−1, the largest observed finite weight is used for completeness

and computational feasibility.

Another popular Mallows weighting scheme can be found in Chang, McKean, Naranjo and

Sheather (1999). These can be generalized to the multivariate setting by defining them as

bt = min

{
1,

(
c

d2(Xt−1)

)k/2}
and bij = bibj , (8)

where d(·) denotes the Mahalanobis distance based on a robust measure of center and covariance and

c and k are tuning constants. Typically, c = χ2
1-α(mp) is the 100(1−α)th percentile of a chi-squared
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distribution with mp degrees of freedom and k = 2.

1.3.3 Schweppe Weights

Schweppe weights depend on both design and response points. An example of Schweppe weights

are the High Breakdown weights defined in Chang et al. (1999). These can be generalized to the

multivariate setting by defining them as

bt = ψ

(
b

at

)
and bij = ψ

(
b2

aiaj

)
, (9)

where at = d(ε̂t)
ψ(c/d2(Xt−1))

; ε̂t denotes the tth residual vector based on an initial robust estimate,

and ψ(x) = 1, x,−1 when x ≥ 1,−1 < x < 1, x ≤ −1, respectively. The tuning parameter

b = medi{ai}+ 3 MADi{ai}.

Another type of Schweppe weights are defined in Terpstra, McKean and Naranjo (2001). These

can be generalized to the multivariate setting by defining them as

bt = 1− I(d2(ε̂t) > c1) I(d2(Xt−1) > c2)(1− ht) and bij = bibj , (10)

where ht is the Mallows weight defined in (8) at the tth realization and I(·) is an indicator function

yielding 1 if the logical statement is true, and 0 otherwise. The tuning parameters c1, c2 are typically

χ2
1-α(m) and χ2

1-α(mp), respectively. These weights make use of an indicator function to downweight

only the bad leverage points.
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2 Theoretical Results

2.1 The Estimate of Φ

We propose the estimator of Φ as a value that minimizes the weighted Wilcoxon dispersion function

using Schweppe weights. Under the definition in (6), the dispersion function DWW(Φ) is non-

negative, piecewise linear, and convex. Thus, DWW(Φ) has a minimum and an estimate can be

obtained.

For notational convenience, the VARm(p) model in (1) is rewritten in a notation where Φ is

vectorized. Let vec(·) denote a columns stacking operation that transforms a r × c matrix into a

rc× 1 vector. Also, let ⊗ denote the Kronecker product. Then,

Y t = φ0 + ΦXt−1 + εt = φ0 + (X ′t−1 ⊗ Im) vec(Φ) + εt
def
= φ0 + x′t−1β + εt; t = 1, . . . , n,

where β = vec(Φ) and x′t−1 = X ′t−1⊗Im. More details on the use of vec(·) to rewrite models can be

found in Lütkepohl (1993, Appendix A.12). Furthermore, we redefine εt(φ0,β) = Y t−φ0−x′t−1β,

so that the dispersion is now viewed as a function of β instead of Φ. Hence, our proposed estimator,

denoted as β̂n, is such that DWW(β̂n) = minβ DWW(β). Recall that, DWW(β) is invariant to φ0

and as a consequence it can not be directly estimated as part of minimization. Therefore, we further

simplify the notation by removing φ0 from expressions in DWW(β).

5



2.2 Asymptotic Distribution

We start by stating a list of assumptions under which the asymptotic theory holds. The results rely

on assumptions

n
1
2 (θ̂ − θ0) = Op(1), (W1)

Dij(θ)
def
= ∇ bij(θ) is continuous ∀ (i, j,θ), (W2)

‖Dij(θ)‖ ≤ BD <∞ ∀ (i, j,θ), (W3)

b(Xi−1, εi,Xj−1, εj) = b(Xj−1, εj ,Xi−1, εi) ∀ (i, j), (W4)

sup
i<j

E[‖Xj−1 −Xi−1‖2‖εj − εi‖−1]2+δ <∞ for some δ > 0, (E1)

sup
i<j

E[bij‖Xj−1 −Xi−1‖2‖εj − εi‖−1] <∞, (E2)

sup
i<j

E[bij‖Xj−1 −Xi−1‖2‖εj − εi‖−1]2+δ <∞ for some δ > 0, (E3)

sup
i<j

E[‖Xj−1 −Xi−1‖]2+δ <∞ for some δ > 0, (E4)

sup
i<j

E[bij‖Xj−1 −Xi−1‖]2+δ <∞ for some δ > 0, (E5)

sup
i<j,i<k

E[bijbik‖Xj−1 −Xi−1‖‖Xk−1 −Xi−1‖]2+δ <∞ for some δ > 0, and (E6)

Ei.j[bij‖Xj−1 −Xi−1‖2‖εj − εi‖−1]1+δ <∞ for some δ > 0. (E7)

Since the main result to obtain is the asymptotic distribution of β̂n, we start by denoting the

true parameter vector for the VARm(p) as β0. Following traditional methods of proof, we first need

to establish asymptotic linearity (AL), asymptotic uniform linearity (AUL), and asymptotic uniform

quadradicity (AUQ). Thus, we define

S(β) = −∇DWW(β),

Dn(∆) = n−1 DWW(β0 + n−
1
2 ∆),

Sn(∆) = − ∂

∂∆
Dn(∆) = n−

3
2 S(β0 + n−

1
2 ∆), and

Qn(∆) = Dn(0)−∆′ Sn(0) + ∆′C∆,

where ∇ is the gradient operator, ∆ ∈ Rm2p is arbitrary but fixed, and C is a fixed m2p × m2p

positive definite matrix.
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In the multivariate setting, AL, AUL and AUQ refer to

AL : ‖Sn(∆)− [Sn(0)− 2C∆]‖ = op(1),

AUL : sup
‖∆‖≤c

‖Sn(∆)− [Sn(0)− 2C∆]‖ = op(1) ∀ c > 0, and

AUQ : sup
‖∆‖≤c

|Dn(∆)−Qn(∆)| = op(1) ∀ c > 0,

for some C matrix. Theorem 2.1 establishes these results and its proof is provided in Section 3.

Theorem 2.1. Let Ei.j[·] be the Product Expectation functional defined in Appendix A.1, J [·] the

Jacobian operator,

uij(x) =
εj − εi − x
‖εj − εi − x‖

, and

C =
1

4
Ei.j[bij(xj−1 − xi−1)J [−uij(0)](xj−1 − xi−1)′].

Then, AL, AUL, and AUQ hold under model assumptions (1)-(3), W1-W4, E1-E3 and E7.

With AUL and AUQ established, we proceed to derive the asymptotic distribution of Sn(0).

Theorem 2.2 establishes this result and its proof is provided in Section 3.

Theorem 2.2. Let Ei.j.k[·] be the Product Expectation functional defined in Appendix A.1,

u(x) =
x

‖x‖
, and

Σ = Ei.j.k[bijbik(xj−1 − xi−1)u(εj − εi)u(εk − εi)′(xk−1 − xi−1)′].

Then, Sn(0)
D−→ Nm2p(0,Σ), under model assumptions (1)-(3), W1-W4, and E4-E5.

Now, by combining Theorems 2.1 and 2.2 with the Jaeckel (1972) convexity argument, we proceed

to state our main result. Theorem 2.3 establishes this result and its proof is provided in Section 3.

Theorem 2.3. Under assumptions of Theorems 2.1 and 2.2, we have that

n
1
2 (β̂n − β0)

D−→ Nm2p

(
0,

1

4
C−1ΣC−1

)
.

For practicality of Theorem 2.3, estimates of Σ and C are needed. Note that, Σ and C are

actually functionals defined on the distribution function of Zt = (ε′t,X
′
t−1)′. Then, we let Σ̂n and

Ĉn be the corresponding von Mises statistics. Thus, by Lemma 3.1 and assumptions E3 and E6,

7



it follows from Theorem 1 part (c) of Denker and Keller (1983, p.507) that Σ̂n − Σ = op(1) and

Ĉn −C = op(1). Finally, we state our practical result as Theorem 2.4.

Theorem 2.4. Under assumptions of Theorems 2.1, 2.2, and assumption E6, we have that

2n
1
2 Σ̂
− 1

2

n Ĉn(β̂n − β0)
D−→ Nm2p(0, Im2p) and

4n(β̂n − β0)′ĈnΣ̂
−1
n Ĉn(β̂n − β0)

D−→ χ2(m2p),

where Σ̂n and Ĉn are the von Mises statistics of Σ and C, respectively.

8



3 Technical Details

The following property of the VARm(p) and proof is given as Lemma 2.1 in Terpstra et al. (2002).

This property is used in multiple proofs and it is stated here, using the notation of this manuscript,

for completeness.

Lemma 3.1. Consider the VARm(p) model defined in (1)-(3) and let Zt = (ε′t,X
′
t−1)′. Then,

{Zt} and {Xt} are strictly stationary g.a.r. processes.

The following inequality which we find useful in some proofs is given as Lemma 2.2 in Terpstra

et al. (2002). We present it here as Lemma 3.2, simplified in order to avoid extending the notation

used in this manuscript.

Lemma 3.2. Let Zt be a g.a.r. process so that β(n) = ρn for some ρ ∈ (0, 1), Ei.j[·] be the

Product Expectation functional defined in Appendix A.1, i < j, gn = gn(Zi,Zj) be a measurable

function (possibly depending on n) that satisfies E |gn|q <∞ and Ei.j |gn|q <∞ for some q > 1, and

Mq = max{E[|gn|q]
1
q ,Ei.j[|gn|q]

1
q }. Then,

|E[gn]− Ei.j[gn]| ≤ 4Mq

(
ρ

q−1
q

)j−i
.

The expression for S(β) is also common to several proofs and is obtained by using rules of

derivatives with respect to vectors and the definition of DWW(β). Starting from the definition of

S(β), we have that

S(β) = −∇DWW(β) = − ∂

∂β
DWW(β) = − ∂

∂β

n∑
i<j

bij‖ εj(β)− εi(β)‖

= −
n∑
i<j

bij‖ εj(β)− εi(β)‖−1 ∂

∂β
(εj(β)− εi(β))′(εj(β)− εi(β))

=

n∑
i<j

bij‖ εj(β)− εi(β)‖−1(xj−1 − xi−1)(εj(β)− εi(β))

def
=

n∑
i<j

bij(xj−1 − xi−1)u(εj(β)− εi(β)),

where u(x) = x/‖x‖.

Establishing asymptotic results is simplified under the assumption that bij has no additional

stochastic components besides Xi−1, εi, Xj−1, and εj . For notation purpose, we let θ denote the ν

dimensional vector of parameters used in the calculation of the weights. We also denote θ0 and θ̂ as

the corresponding vector of true parameters and estimators, respectively. Furthermore, we denote
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bij(θ̂) as a function of Xi−1, Xj−1, ε̂i, and ε̂j from an initial fit, and other stochastic components.

Similarly, we denote bij(θ0) as a function ofXi−1, εi, Xj−1, εj , and no other stochastic components.

Lemma A.1 shows that, under model assumptions (1)-(3), W1-W3, and E1, AL can be established

using bij = bij(θ0). Analogously, Lemma A.2 shows that, under model assumptions (1)-(3), W1-W4,

and E4, the asymptotic distribution of Sn(0) can be obtained using bij = bij(θ0).

3.1 Proof of Theorem 2.1

Heiler and Willers (1988) have shown that AL, AUL, and AUQ are equivalent in the context of linear

regression. Their proof implies that linearity in parameters of the regression model and convexity

of the dispersion function are sufficient conditions for this result to hold. Since the VARm(p) and

DWW(·) satisfy these conditions, it suffices to establish AL.

To begin, let λ ∈ Rm2p be arbitrary but fixed and Tn = λ′(Sn(∆) − Sn(0)). Thus, by the

Cramér-Wold Theorem it suffices to show that Tn + 2λ′C∆ = op(1). Then, it follows by definitions

that

Tn = λ′(Sn(∆)− Sn(0)) = n−
3
2

n∑
i<j

bijλ
′(xj−1 − xi−1)(u(εj − εi − dijn)− u(εj − εi))

def
= n−

3
2

n∑
i<j

bijλ
′(xj−1 − xi−1)(uij(dijn)− uij(0)), (11)

where dijn = (xj−1 − xi−1)′n−
1
2 ∆ and uij(x) = u(εj − εi − x). Next, we let

UAL
n = n−

3
2

n∑
i<j

bijλ
′(xj−1 − xi−1)J [uij(0)]dijn

=

(
n− 1

n

)(
2

n(n− 1)

) n∑
i<j

2−1bijλ
′(xj−1 − xi−1)J [uij(0)](xj−1 − xi−1)′∆

def
=

(
n− 1

n

)(
2

n(n− 1)

) n∑
i<j

hAL(Zi,Zj),

where J [·] is the Jacobian operator and Zt = (ε′t,X
′
t−1)′.

Lemma A.3 shows that, under model assumptions (1)-(3), E3 and E7, Tn−UAL
n = op(1). Hence,

it suffices to show that UALn + 2λ′C∆ = op(1). Furthermore, under assumption W4, UAL
n is a

U-statistic with symmetric kernel hAL(Zi,Zj). Thus, by Lemma 3.1 and assumption E3, it follows

from Theorem 1 part (c) of Denker and Keller (1983, p.507) that UAL
n − Ei.j[hAL(Zi,Zj)] = op(1).

10



Finally, we have that

Ei.j[hAL(Zi,Zj)] = Ei.j[2
−1bijλ

′(xj−1 − xi−1)J [uij(0)](xj−1 − xi−1)′∆]

= −2λ′
(

1

4
Ei.j[bij(xj−1 − xi−1)J [−uij(0)](xj−1 − xi−1)′]

)
∆

= −2λ′C∆,

which completes our proof.

3.2 Proof of Theorem 2.2

To obtain the asymptotic distribution of Sn(0), we follow the approach for U-statistics under absolute

regularity proposed by Denker and Keller (1983). To begin, let λ ∈ Rm2p be arbitrary but fixed.

Then, it follows from definitions that

λ′ Sn(0) = n−
3
2

n∑
i<j

bijλ
′(xj−1 − xi−1)u(εj − εi)

=

(
n− 1

n

)
n

1
2

(
2

n(n− 1)

) n∑
i<j

2−1bijλ
′(xj−1 − xi−1)u(εj − εi)

def
=

(
n− 1

n

)
n

1
2Un,

where, under assumption W4, Un is a U-statistic with symmetric kernel h(Zi,Zj) = 2−1bijλ
′(xj−1−

xi−1)u(εj − εi) and Zt = (ε′t,X
′
t−1)′. Next, we obtain

Ei.j[h(Zi,Zj)] =

∫∫
2−1λ′(xj−1 − xi−1)

(∫∫
bij u(εj − εi) dF(εi) dF(εj)

)
dG(Xi−1) dG(Xj−1),

where G(·) denotes the distribution function of Xt. Note that, by definition of u(·), and assumption

W4, it follows that

∫∫
bij u(εj − εi) dF(εi) dF(εj) = −

∫∫
bij u(εj − εi) dF(εi) dF(εj),∫∫

bij u(εj − εi) dF(εi) dF(εj) = 0, and

Ei.j[h(Zi,Zj)] = 0.

11



Next, following the approach, we let

h1(Zi) =

∫∫
h(Zi,Zj) dF(εj) dG(Xj−1) and

σ2
n = E

[
n∑
i=1

h1(Zi)

]2
.

By model assumptions (1) and (2), we have

σ2
n = E

[
n∑
i=1

h1(Zi)

]2

= nE[h2
1(Zi)] + 2

n∑
k=2

(n− (k − 1)) E[h1(Z1) h1(Zk)]. (12)

Focusing attention to the expectation inside the summation and by model assumption (3), we have

that

E[h1(Z1) h1(Zk)]

=

∫
h1(Z1) h1(Zk) dHk(Z1,Zk)

=

∫
h1(Z1)

(∫∫
2−1bkjλ

′(xj−1 − xk−1)u(εj − εk) dF(εj) dG(Xj−1)

)
dHk(Z1,Zk)

=

∫∫
h1(Z1)

(∫∫
2−1bkjλ

′(xj−1 − xk−1)u(εj − εk) dF(εj) dG(Xj−1)

)
dH̃k(Z1,Xk−1) dF(εk)

=

∫
h1(Z1)

∫
2−1λ′(xj−1 − xk−1)

(∫∫
bkj u(εj − εk) dF(εk) dF(εj)

)
dG(Xj−1) dH̃k(Z1,Xk−1),

where Hk(·) denotes the joint distribution function of Z1 and Zk, and H̃k(·) denotes the joint

distribution function of Z1 and Xk−1. Note that, by definition of u(·) and assumption W4, it

follows that

∫∫
bkj u(εj − εk) dF(εk) dF(εj) = −

∫∫
bkj u(εj − εk) dF(εk) dF(εj),∫∫

bkj u(εj − εk) dF(εk) dF(εj) = 0, and

E[h1(Z1) h1(Zk)] = 0 ∀ k ∈ {2, 3, . . . , n}.

12



Next, we focus attention back to equation (12), and have that

n−1σ2
n = E[h2

1(Zi)]

= 4−1λ′ Ei.j.k[bijbik(xj−1 − xi−1)u(εj − εi)u(εk − εi)′(xk−1 − xi−1)′]λ

= 4−1λ′Σλ.

Thus, by Lemma 3.1 and assumption E5, it follows from Theorem 1 part (c) of Denker and Keller

(1983, p.507) that

n
1
2Un

D−→ N(0,λ′Σλ).

Finally, since λ is arbitrary, it follows that

Sn(0)
D−→ Nm2p(0,Σ),

which completes our proof.

3.3 Proof of Theorem 2.3

To obtain the asymptotic distribution of β̂n, we follow the approach for regression coefficients by

minimization of dispersion functions proposed by Jaeckel (1972). To begin, let ∆ = n
1
2 (β−β0) and

∆̃n = min∆ Qn(∆). Then, by minimization of Qn(∆) and Theorem 2.2, we have that

∆̃n = n
1
2 (β̃n − β0)

=
1

2
C−1 Sn(0)

D−→ Nm2p

(
0,

1

4
C−1ΣC−1

)
.

Next, we let ∆̂n = n
1
2 (β̂n−β0). Thus, by Theorem 2.1 and the Jaeckel (1972) convexity argument,

we have that ∆̂n − ∆̃n = op(1). Finally, it follows by definitions that

n
1
2 (β̂n − β0)

D−→ Nm2p

(
0,

1

4
C−1ΣC−1

)
,

which completes our proof.
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4 Monte Carlo Study

4.1 The Process

In this section, we study the behavior of several estimates, in particular the WW-estimates, via

Monte Carlo simulation. For the sake of simplicity and computation time only the VAR2(1) is

considered. Thus, we define the core process as

Y t = φ0 + Φ1Y t−1+εt; t = 1, . . . , T,

εt
iid∼ (1− ρ) N2(0,Σε) + ρN2(0,Σρ),

where ρ ∈ [0, 1), and Σε, Σρ are both positive definite. In addition, we define the observed process

as

Y ∗t = Y t+Zt,

Zt
iid∼ (1− γ)δ0 + γN2(µγ ,Σγ),

where γ ∈ [0, 1), δ0 represents a bivariate point mass distribution at 0, µγ ∈ R2, and Σγ is positive

definite.

Note that when γ = 0 and ρ > 0, the observed process reduces to the core process, representing

Fox’s (Fox, 1972) Type II or Innovation Outlier (IO) model. As discussed by Rousseeuw & Leroy

(Rousseeuw & Leroy, 1987, p.275), this model produces good leverage points in the sense that they

have relatively little impact on estimates. When ρ = 0 and γ > 0, the observed process yields Fox’s

Type I or Additive Outlier (AO) model. This model produces bad leverage points which can have

a significant impact on most estimates. When γ > 0 and ρ > 0, the observed process corresponds

to a combination of the IO and AO models, denoted I&AO for convenience. In the remaining case,

when γ = 0 and ρ = 0, the observed process is bivariate normal.

4.2 The Estimators

For interpretation convenience, we group estimators according to their weighting schemes as: no

weights, Mallows, and Schweppe labeled as 1-3, respectively. This Monte Carlo study will simulate,

compute, and compare the performance of the following estimators

OLS(1) - OLS estimate based on the dispersion in (4) with bt ≡ 1.

L1(1) - L1-estimate based on the dispersion in (5) with bt ≡ 1.
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WIL(1) - Wilcoxon-estimate based on the dispersion in (6) with bij ≡ 1.

BL2(2) - Weighted L2-estimate based on the dispersion in (4) with bt defined in (7).

BL1(2) - Weighted L1-estimate based on the dispersion in (5) with bt defined in (7).

THL(2) - WW estimate based on the dispersion in (6) with bt defined in (7).

ML2(2) - Weighted L2-estimate based on the dispersion in (4) with bt defined in (8).

ML1(2) - Weighted L1-estimate based on the dispersion in (5) with bt defined in (8).

GR(2) - WW-estimate based on the dispersion in (6) with bij defined in (8).

HBL2(3) - Weighted L2-estimate based on the dispersion in (4) with bt defined in (9).

HBL1(3) - Weighted L1-estimate based on the dispersion in (5) with bt defined in (9).

HBR(3) - WW-estimate based on the dispersion in (6) with bij defined in (9).

TMNL2(3) - Weighted L2-estimate based on the dispersion in (4) with bt defined in (10).

TMNL1(3) - Weighted L1-estimate based on the dispersion in (5) with bt defined in (10).

TMNR(3) - WW-estimate based on the dispersion in (6) with bij defined in (10).

For the estimators based on Schweppe weights, we obtained initial residuals using ML1-estimates.

We used the Minimum Covariance Determinant (Rousseeuw & Leroy, 1987) to obtain the robust

measures of center and covariance required by d(·).

4.3 The Simulation Settings

We selected the simulation settings to account for the impact on estimates due to the degree of

stationarity of the time series, the level of contamination due to innovation outliers, the level of

contamination due to additive outliers, and the magnitude of the additive outlier.

Stationarity. Stationarity plays a critical role in time series, thus the following three coefficient

matrices are considered:

Φ1 ∈


 0.10 0.03

0.01 0.05

 ,
 0.30 −0.20

−0.10 0.40

 ,
 1.20 −0.50

0.60 0.30


 ,
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representing three degrees of stationarity. The processes associated to these Φ1 matrices have roots

with their largest modulus at 0.1, 0.5 and 0.8, respectively. Therefore, we denoted them as very

stationary, moderate stationary, and close to non-stationary process, respectively. Note that the

coefficient matrices satisfy the stationarity assumption in (2).

Contamination. First, we evaluate the sensitivity of the estimates to innovative outliers by con-

sidering ρ ∈ {0, 0.05, 0.1}. Next, we evaluate the sensitivity of the estimates to additive outliers

by considering γ ∈ {0, 0.05, 0.1}. Finally, we evaluate the impact of the magnitude of the additive

outlier by considering µγ ∈ {(10, 13)′, (100, 130)′}; denoted as close and far from the core process,

respectively.

The remaining parameters of the simulation are fixed. We generated 1000 replicates of size

T = 100, and set

φ0 = 0, Σε = I2, Σρ = 16 I2 , and Σγ = I2.

The estimates were computed using R (R Core Team, 2013).

4.4 Simulation Results

We estimate the efficiencies of estimators based on the trace of the empirical MSE matrix. For

comparison purpose, results have the actual trace of the empirical MSE matrix in the OLS entry,

while the other estimators are presented relative to OLS so that entries larger than 1 indicate a

more efficient estimator. The results are presented in terms of the estimators and the corresponding

1-step forecasts.

4.4.1 Efficiency of Estimators

Table 1 shows results for the very stationary setting. Under multivariate normality, the OLS es-

timates prove to be the most efficient followed by the Wilcoxon and the HBR estimates at 0.96

efficiency. Under the AO model, the OLS estimates deteriorate and are out-performed by all esti-

mates based on robust dispersions. In particular, the Wilcoxon, Theil, and HBR estimates show

the best all around performance. Also of note, the High Breakdown L2 is the only variation of

the weighted L2 dispersion that out-performs the OLS estimates. Under the IO model, the OLS is

resistant, yet the robust dispersions perform better. Unweighted dispersions perform best, followed

by Swcheppe weighted estimates, and last are the Mallows weighted estimates. Under the I&AO
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model, the AO effect is mitigated, yet the OLS estimates performance drops. Similar to the AO

model, the estimates based on robust dispersions have an overall better performance when compared

to the OLS estimates. In particular, the Wilcoxon, HBR, Theil, and L1 estimates show the best

overall performance.
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Table 2 and 3 shows results for the moderate stationary and close to non-stationary settings,

respectively. Results remain similar to those under the very stationary setting. In particular, HBR

estimates show the best all around performance under the moderate stationary. On the other hand,

under the close to non-stationary setting, the HBR estimates have a blind spot when additive

outliers that are close to the core process are present. Under the close to non-stationary setting

with additive outliers that are close to the core process, the High Breakdown weighted L1 has the

best performance.
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Simulation results suggest that Schweppe weighted estimators can achieve comparable efficiencies

across different degrees of stationarity and the presence of outliers. Additive outliers seem to have

the largest effect on estimators and are best handled by Schweppe weighted robust dispersions.

4.4.2 Efficiency of Forecasts

Tables 4-6 shows results for the forecast performance across the simulation settings. Results indicate

that there is little carry over from the efficiency of estimators. In general, estimates based on robust

dispersions out-perform the OLS estimates. Forecast efficiencies are most sensitive to the presence of

additive outliers. Under the very stationary setting, all estimates based on robust dispersions have

similar performance. Under the moderate stationary setting, Schweppe weighted robust dispersions

have best performance, in particular the HBR estimates. Under the close to non-stationary setting,

the weighted Wilcoxon dispersions have best performance when the outlier is far from the core

process. On the other hand, the weighted L1 dispersions have best performance when the outlier is

close from the core process.

22



T
ab

le
4
:

E
ffi

ci
en

cy
o
f

F
o
re

ca
st

s
-

V
er

y
S

ta
ti

o
n
a
ry

Φ
1

m
a
tr

ix
ρ

0
0.

0
5

0.
1

γ
0

0
.0

5
0
.1

0
0
.0

5
0
.1

0
0
.0

5
0
.1

µ
γ

-
C

lo
se

F
ar

C
lo

se
F

ar
-

C
lo

se
F

a
r

C
lo

se
F

a
r

-
C

lo
se

F
a
r

C
lo

se
F

ar

O
L

S
(1

)
1
.9

6
2.

1
9

1
7
.4

0
2.

2
0

2
4
.3

2
3.

3
6

3.
5
5

25
.2

0
3.

4
8

4
3
.9

4
4.

6
9

5
.1

0
2
2.

28
5
.3

6
26
.0

7

L
1
(1

)
1
.0

0
1.

0
7

8
.5

6
1.

0
8

1
2
.0

3
1.

0
1

1.
0
4

7.
75

1.
0
6

1
1
.0

4
1.

0
2

1
.0

6
5.

36
1
.0

7
4.

4
0

W
IL

(1
)

1
.0

0
1.

0
8

8
.6

2
1.

0
9

1
2
.0

6
1.

0
1

1.
0
4

7.
77

1.
0
6

1
1
.0

7
1.

0
2

1
.0

6
5.

35
1
.0

6
4.

4
0

B
L

2
(2

)
0
.9

9
0.

9
6

0
.7

4
0.

9
5

0
.6

3
0.

9
9

0.
9
6

0.
72

0.
8
9

0.
5
3

0.
9
8

0
.9

7
0.

64
0
.9

1
0.

4
7

B
L

1
(2

)
0
.9

9
1.

0
6

8
.4

9
1.

0
6

1
1
.9

0
1.

0
0

1.
0
3

4.
99

1.
0
3

9.
0
0

1.
0
1

1
.0

4
5.

28
1
.0

6
4.

3
5

T
H

L
(2

)
1
.0

0
1.

0
7

8
.6

1
1.

0
8

1
1
.9

8
1.

0
1

1.
0
4

7.
74

1.
0
5

1
1
.0

0
1.

0
1

1
.0

6
5.

35
1
.0

7
4.

4
0

M
L

2
(2

)
1
.0

0
0.

9
4

0
.6

0
0.

9
2

0
.5

5
0.

9
9

0.
9
4

0.
63

0.
8
8

0.
4
7

0.
9
7

0
.9

6
0.

42
0
.8

9
0.

3
5

M
L

1
(2

)
1
.0

0
1.

0
6

8
.5

3
1.

0
6

1
1
.8

2
1.

0
1

1.
0
3

7.
64

1.
0
3

1
0
.8

9
1.

0
0

1
.0

5
5.

28
1
.0

6
4.

3
2

G
R

(2
)

1
.0

0
1.

0
6

8
.5

8
1.

0
7

1
1
.8

1
1.

0
1

1.
0
3

7.
62

1.
0
3

1
0
.9

2
1.

0
0

1
.0

5
5.

30
1
.0

6
4.

3
2

H
B

L
2
(3

)
1
.0

0
1.

0
6

8
.5

7
1.

0
7

1
1
.5

2
1.

0
0

1.
0
3

7.
56

1.
0
2

1
0
.6

4
1.

0
0

1
.0

5
5.

27
1
.0

4
4.

2
8

H
B

L
1
(3

)
1
.0

0
1.

0
6

8
.5

2
1.

0
6

1
1
.9

1
1.

0
1

1.
0
3

7.
69

1.
0
3

1
0
.9

8
1.

0
0

1
.0

5
5.

32
1
.0

7
4.

3
5

H
B

R
(3

)
1
.0

0
1.

0
7

8
.6

0
1.

0
8

1
1
.9

6
1.

0
1

1.
0
4

7.
69

1.
0
5

1
1
.1

1
1.

0
2

1
.0

7
5.

39
1
.0

7
4.

3
7

T
M

N
L

2
(3

)
1
.0

0
0.

9
8

0
.6

8
0.

9
8

0
.6

0
1.

0
0

0.
9
9

0.
98

0.
9
7

0.
8
0

1.
0
0

1
.0

3
0.

91
1
.0

0
0.

7
2

T
M

N
L

1
(3

)
1
.0

0
1.

0
6

8
.5

3
1.

0
7

1
1
.8

1
1.

0
0

1.
0
3

7.
65

1.
0
4

1
0
.9

9
1.

0
1

1
.0

6
5.

36
1
.0

6
4.

3
7

T
M

N
R

(3
)

1
.0

0
1.

0
7

8
.6

0
1.

0
7

1
1
.8

0
1.

0
1

1.
0
3

7.
64

1.
0
4

1
1
.0

6
1.

0
1

1
.0

6
5.

35
1
.0

6
4.

3
7

23



T
ab

le
5
:

E
ffi

ci
en

cy
o
f

F
o
re

ca
st

s
-

M
o
d

er
a
te

S
ta

ti
o
n

a
ry

Φ
1

m
a
tr

ix
ρ

0
0.

0
5

0.
1

γ
0

0
.0

5
0
.1

0
0
.0

5
0
.1

0
0
.0

5
0
.1

µ
γ

-
C

lo
se

F
ar

C
lo

se
F

ar
-

C
lo

se
F

a
r

C
lo

se
F

a
r

-
C

lo
se

F
a
r

C
lo

se
F

ar

O
L

S
(1

)
2
.1

4
2.

1
9

1
7
.8

1
2.

4
3

2
5
.2

9
3.

7
3

4.
2
3

16
.5

3
4.

0
9

2
5
.1

3
4.

8
4

6
.0

9
2
5.

23
5
.2

4
40
.8

6

L
1
(1

)
1
.0

0
1.

0
5

8
.0

7
1.

1
1

1
1
.9

1
1.

0
0

1.
0
5

5.
10

1.
0
6

6.
4
8

1.
0
1

1
.0

4
4.

55
1
.0

6
7.

5
2

W
IL

(1
)

1
.0

0
1.

0
5

8
.1

2
1.

1
1

1
1
.9

5
1.

0
0

1.
0
5

5.
11

1.
0
6

6.
5
0

1.
0
1

1
.0

4
4.

54
1
.0

6
7.

5
3

B
L

2
(2

)
1
.0

0
0.

9
5

0
.7

1
0.

9
4

0
.5

8
0.

9
9

0.
9
8

0.
61

0.
9
5

0.
4
9

0.
9
8

0
.9

8
0.

71
0
.9

7
0.

6
7

B
L

1
(2

)
0
.9

9
1.

0
3

5
.8

8
1.

1
2

1
1
.8

2
1.

0
0

1.
0
6

5.
21

1.
0
6

6.
5
3

1.
0
0

1
.0

4
4.

59
1
.0

6
4.

5
1

T
H

L
(2

)
1
.0

0
1.

0
6

8
.1

9
1.

1
3

1
1
.9

1
1.

0
0

1.
0
6

5.
16

1.
0
7

6.
5
1

1.
0
1

1
.0

4
4.

62
1
.0

7
7.

5
5

M
L

2
(2

)
1
.0

0
0.

9
7

0
.6

5
0.

9
6

0
.5

6
0.

9
9

0.
9
7

0.
46

0.
9
6

0.
4
2

0.
9
9

0
.9

5
0.

56
0
.9

8
0.

4
9

M
L

1
(2

)
0
.9

9
1.

0
6

8
.1

5
1.

1
3

1
2
.0

2
1.

0
0

1.
0
6

5.
28

1.
0
7

6.
5
5

1.
0
0

1
.0

4
4.

68
1
.0

7
7.

7
7

G
R

(2
)

1
.0

0
1.

0
6

8
.1

9
1.

1
3

1
2
.0

4
1.

0
0

1.
0
6

5.
27

1.
0
7

6.
5
5

1.
0
1

1
.0

4
4.

67
1
.0

7
7.

7
3

H
B

L
2
(3

)
1
.0

0
1.

0
5

8
.1

3
1.

1
2

1
1
.7

4
1.

0
0

1.
0
6

5.
23

1.
0
6

6.
4
2

1.
0
1

1
.0

3
4.

64
1
.0

7
7.

6
2

H
B

L
1
(3

)
1
.0

0
1.

0
5

8
.2

4
1.

1
3

1
2
.0

9
1.

0
0

1.
0
6

5.
30

1.
0
7

6.
5
9

1.
0
0

1
.0

4
4.

73
1
.0

7
7.

8
4

H
B

R
(3

)
1
.0

0
1.

0
6

8
.2

7
1.

1
3

1
2
.1

7
1.

0
0

1.
0
7

5.
31

1.
0
7

6.
6
2

1.
0
1

1
.0

5
4.

71
1
.0

7
7.

8
8

T
M

N
L

2
(3

)
1
.0

0
0.

9
8

0
.7

2
0.

9
9

0
.6

2
1.

0
0

1.
0
1

0.
71

1.
0
0

0.
6
6

1.
0
1

1
.0

0
1.

01
1
.0

2
0.

8
9

T
M

N
L

1
(3

)
1
.0

0
1.

0
5

8
.1

8
1.

1
2

1
2
.0

1
1.

0
0

1.
0
6

5.
29

1.
0
6

6.
5
6

1.
0
1

1
.0

4
4.

72
1
.0

7
7.

8
4

T
M

N
R

(3
)

1
.0

0
1.

0
5

8
.2

1
1.

1
2

1
2
.0

5
1.

0
0

1.
0
6

5.
29

1.
0
7

6.
5
9

1.
0
1

1
.0

5
4.

69
1
.0

7
7.

8
3

24



T
ab

le
6:

E
ffi

ci
en

cy
o
f

F
o
re

ca
st

s
-

C
lo

se
to

N
o
n

-S
ta

ti
o
n

a
ry

Φ
1

m
a
tr

ix
ρ

0
0.

0
5

0.
1

γ
0

0
.0

5
0
.1

0
0
.0

5
0
.1

0
0
.0

5
0
.1

µ
γ

-
C

lo
se

F
ar

C
lo

se
F

ar
-

C
lo

se
F

a
r

C
lo

se
F

a
r

-
C

lo
se

F
a
r

C
lo

se
F

ar

O
L

S
(1

)
2
.1

3
3.

5
5

1
9
.2

7
4.

7
3

3
2
.4

7
3.

5
4

5.
3
9

26
.8

6
6.

5
3

5
4
.5

4
4.

9
7

6
.4

0
3
0.

02
8
.0

6
41
.7

5

L
1
(1

)
1
.0

0
1.

5
5

2
.8

9
1.

3
9

4
.8

2
1.

0
0

1.
4
7

2.
38

1.
4
8

4.
5
6

1.
0
0

1
.3

2
2.

06
1
.4

3
2.

4
5

W
IL

(1
)

1
.0

0
1.

3
4

2
.8

6
1.

1
9

4
.9

0
1.

0
1

1.
3
0

2.
35

1.
2
1

4.
6
6

1.
0
0

1
.2

3
2.

03
1
.2

2
2.

4
5

B
L

2
(2

)
0
.9

9
1.

3
4

0
.8

6
1.

2
9

0
.7

3
0.

9
9

1.
2
6

0.
81

1.
2
3

0.
7
0

0.
9
8

1
.1

2
0.

83
1
.1

6
0.

7
6

B
L

1
(2

)
0
.9

9
1.

7
4

9
.3

4
2.

0
3

1
5
.0

2
1.

0
0

1.
5
6

7.
50

1.
9
1

6.
2
0

0.
9
9

1
.3

4
5.

95
1
.6

3
8.

5
7

T
H

L
(2

)
1
.0

0
1.

7
3

9
.1

0
1.

8
4

1
2
.8

6
1.

0
1

1.
5
5

7.
40

1.
7
5

1
3
.7

2
1.

0
0

1
.3

4
5.

92
1
.5

4
7.

6
1

M
L

2
(2

)
1
.0

0
1.

4
7

0
.8

2
1.

4
5

0
.7

0
1.

0
0

1.
3
0

0.
76

1.
2
9

0.
7
8

0.
9
9

1
.1

5
0.

86
1
.1

6
0.

7
7

M
L

1
(2

)
0
.9

9
1.

7
6

9
.6

0
2.

0
9

1
5
.6

9
1.

0
0

1.
5
8

7.
68

1.
9
5

1
6
.5

7
1.

0
0

1
.3

6
6.

06
1
.6

5
8.

8
2

G
R

(2
)

1
.0

0
1.

7
7

9
.6

6
2.

0
3

1
5
.8

5
1.

0
1

1.
5
7

7.
67

1.
8
3

1
6
.5

1
1.

0
0

1
.3

5
6.

06
1
.5

5
8.

8
5

H
B

L
2
(3

)
1
.0

0
1.

7
5

9
.6

3
1.

9
4

1
5
.4

7
1.

0
1

1.
5
5

7.
61

1.
7
3

1
6
.0

7
1.

0
0

1
.3

3
6.

03
1
.4

7
8.

7
1

H
B

L
1
(3

)
1
.0

0
1.

7
7

9
.5

8
2.

1
2

1
5
.7

1
1.

0
0

1.
5
9

7.
72

1.
9
9

1
6
.5

9
1.

0
0

1
.3

6
6.

09
1
.6

7
8.

8
4

H
B

R
(3

)
1
.0

0
1.

7
5

9
.6

9
1.

8
1

1
5
.9

4
1.

0
1

1.
5
7

7.
71

1.
6
6

1
6
.6

9
1.

0
0

1
.3

4
6.

11
1
.4

6
8.

8
9

T
M

N
L

2
(3

)
1
.0

0
1.

5
0

0
.9

5
1.

4
8

0
.7

7
1.

0
0

1.
3
8

1.
07

1.
3
9

0.
9
8

0.
9
9

1
.2

1
1.

17
1
.2

5
1.

0
3

T
M

N
L

1
(3

)
1
.0

0
1.

7
6

9
.5

9
2.

1
0

1
5
.6

5
1.

0
0

1.
5
9

7.
69

1.
9
6

1
6
.5

6
1.

0
0

1
.3

6
6.

08
1
.6

6
8.

8
3

T
M

N
R

(3
)

1
.0

0
1.

7
6

9
.6

7
2.

0
4

1
5
.8

4
1.

0
1

1.
5
8

7.
69

1.
8
7

1
6
.5

5
1.

0
0

1
.3

6
6.

08
1
.5

9
8.

8
6

25



Simulation results suggest that, even in the presence of additive outliers, Schweppe weighted

Wilcoxon estimates can achieve comparable efficiencies on forecasts as well.
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5 Time Series Example

5.1 Data Description

We present an illustrative data example in order to demonstrate how the estimation method can

affect the estimates and residual analysis. We use the quadravariate dataset made popular by Ooms

(1994) for estimating VARm(p) models under the presence of outliers for this illustration. The

dataset was originally extracted from International Financial Statistics (IFS) and contains quarterly

macroeconomic data for France that starts at the first quarter of 1965 and ends at the first quarter of

1988. The multivariate measurement (Y ) includes the log GDP in 1980 prices (Y1), the log private

consumption deflated by consumer price index (Y2), the log gross fixed capital formation deflated

by the GDP deflator (Y3), and the first difference of the log consumer price index (Y4). Figure 1

shows the time series realization on the top row and the differenced series on the bottom row.

Figure 1: France Macroeconomic Data (IFS)
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Following Ooms’ recommendation, we fitted first order differences of the time series to a VAR4(2)

model with no intercept. We evaluate all estimators described in 4.2 and preserve the last four

realizations to evaluate their forecast performance.

5.2 Estimation Results

Outlier Detection. We used a visual approach to evaluate the estimators ability to detect outliers.

The approach involves a time series plot of d(ε̂t) that has special markers to identify leverage points.
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Leverage points satisfy d2(Xt−1) > χ2
1-α(mp) and are identified with open circles. A horizontal

critical line is drawn at
√
χ2
1-α(m), with α = 0.05, to separate outlying realizations. Thus, open

circles above the critical line indicate bad leverage points. A more detailed description of this type

of plot can be found in Terpstra et al. (2001).

We present the plots, across weights and for each dispersion function, in Figures 2-4. The

weighted estimates identified the same set of outliers with more consistency. Focusing attention

on the outliers identified as bad leverage points, realizations 1968-2 through 1969-1 are identified

by weighted estimates while the least squares estimate and L1-estimate did not detect the 1968-4

realization. The Wilcoxon estimate only detected realizations 1968-2 and 1968-3. These results,

coupled with the insights from Section 4, suggest that the IFS series may contain additive outliers

since weighted estimates offer better protection against fitting bad leverage points produced under

this type of contamination.
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Figure 2: Least Squares Residual Plots
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Figure 3: L1 Residual Plots
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Figure 4: Rank Norm Residual Plots
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Parameter Estimates. We present the estimated Φ1 and Φ2 matrices, across weights and for

each dispersion function, in Tables 7 - 9. Inspection of these matrices indicate that the sign and

magnitude of the estimates are influenced by the presence of outliers. All estimates yielded results

that satisfy (2).

Table 7: Least Squares Estimates for IFS Series
Estimate Φ1 Φ2

OLS(1)


−0.519 0.707 −0.088 −0.272
−0.177 0.304 0.038 −0.003
−1.417 1.024 0.359 −0.236

0.072 0.052 −0.059 −0.372




0.002 0.349 −0.040 −0.195
−0.050 0.226 0.095 0.033

0.021 0.331 −0.063 0.066
−0.043 0.015 0.011 −0.297



BL2(2)


−0.250 0.418 −0.074 −0.038

0.044 0.051 0.049 0.125
−0.977 0.619 0.343 −0.062

0.084 0.032 −0.056 −0.346




0.198 0.374 −0.022 −0.001
0.172 0.250 0.092 0.085
0.235 0.364 0.065 0.285
−0.016 −0.008 0.015 −0.284



ML2(2)


−0.108 0.384 −0.047 0.065

0.273 −0.077 0.054 0.149
−0.802 0.399 0.353 0.034

0.065 0.022 −0.048 −0.294




0.164 0.383 −0.005 0.054
0.145 0.218 0.139 0.188
0.293 0.546 0.021 0.347
0.066 −0.074 0.019 −0.291



HBL2(3)


0.148 0.242 −0.038 0.068
0.328 −0.107 0.056 0.133
−0.608 0.287 0.416 0.192

0.075 0.025 −0.055 −0.343




0.183 0.245 0.035 0.115
0.180 0.180 0.147 0.194
0.546 0.175 0.078 0.435
−0.008 −0.002 0.009 −0.303



TMNL2(3)


−0.068 0.366 −0.042 0.029

0.241 −0.065 0.062 0.170
−0.945 0.440 0.416 0.111

0.070 0.040 −0.057 −0.320




0.216 0.281 0.015 0.076
0.189 0.182 0.149 0.186
0.534 0.294 0.054 0.321
−0.013 −0.007 0.010 −0.285


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Table 8: L1 Estimates for IFS Series
Estimate Φ1 Φ2

L1(1)


0.137 0.206 −0.002 −0.013
0.336 −0.089 0.096 −0.039
−0.712 0.503 0.462 −0.062

0.093 0.041 −0.057 −0.315




0.182 0.171 0.015 0.040
0.061 0.153 0.097 0.118
0.193 0.211 0.051 0.069
−0.048 0.033 0.006 −0.378



BL1(2)


0.224 0.123 0.004 0.008
0.342 −0.180 0.106 0.011
−0.795 0.437 0.435 0.118

0.033 0.063 −0.048 −0.312




0.275 0.188 −0.004 0.043
0.283 0.178 0.050 0.057
0.559 0.204 0.072 0.348
−0.055 0.014 0.017 −0.386



ML1(2)


0.220 0.181 0.008 0.023
0.423 −0.230 0.103 −0.062
−0.702 0.234 0.352 0.124
−0.047 0.069 −0.039 −0.287




0.199 0.232 0.007 0.079
0.124 0.267 0.078 0.078
0.744 0.188 0.087 0.270
0.057 −0.044 0.020 −0.370



HBL1(3)


0.250 0.160 0.001 0.026
0.352 −0.230 0.108 0.010
−0.934 0.297 0.459 0.153

0.036 0.081 −0.058 −0.308




0.201 0.189 0.026 0.103
0.259 0.178 0.096 0.042
0.869 0.134 0.090 0.364
−0.067 0.023 0.004 −0.373



TMNL1(3)


0.218 0.178 0.004 0.032
0.365 −0.251 0.112 0.001
−1.024 0.325 0.463 0.153

0.035 0.094 −0.060 −0.302




0.223 0.188 0.020 0.097
0.293 0.156 0.096 0.007
0.828 0.205 0.085 0.324
−0.076 0.024 0.003 −0.349


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Table 9: Wilcoxon Estimates for IFS Series
Estimate Φ1 Φ2

WIL(1)


−0.164 0.204 −0.052 0.007

0.005 −0.053 0.051 0.083
−1.268 0.507 0.393 0.207

0.145 0.029 −0.060 −0.385



−0.149 0.213 −0.004 0.060
−0.251 0.180 0.099 0.152
−0.373 0.195 0.022 0.447
−0.013 0.014 0.013 −0.321



THL(2)


−0.026 0.161 −0.038 0.025

0.094 −0.130 0.067 0.041
−0.937 0.363 0.368 0.323

0.144 0.019 −0.053 −0.401




0.013 0.207 0.003 0.096
−0.046 0.181 0.092 0.111
−0.097 0.263 0.099 0.475

0.027 −0.018 0.016 −0.327



GR(2)


0.128 0.125 −0.026 0.064
0.343 −0.284 0.060 −0.004
−0.689 0.173 0.371 0.085

0.063 0.032 −0.046 −0.291




0.075 0.224 0.014 0.081
0.008 0.167 0.124 0.128
0.301 0.279 0.081 0.379
0.103 −0.073 0.018 −0.328



HBR(3)


0.133 0.097 −0.028 0.056
0.160 −0.164 0.064 0.101
−0.947 0.311 0.427 0.257

0.142 0.029 −0.058 −0.379




0.025 0.203 0.024 0.090
0.016 0.171 0.120 0.143
0.319 0.121 0.072 0.444
0.007 0.014 0.014 −0.332



TMNR(3)


0.122 0.137 −0.020 0.045
0.258 −0.258 0.070 0.042
−0.963 0.243 0.438 0.194

0.090 0.062 −0.056 −0.333




0.062 0.207 0.019 0.108
0.031 0.164 0.121 0.127
0.391 0.169 0.087 0.385
0.017 0.007 0.008 −0.328


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Forecast Performance. We compared forecasting performance of the estimators, by adding the

squared forecast errors of the four outcomes into a single statistic, at each forecast step. We refer to

this statistic as the Total Squared Error (TSE). For comparison purpose, we present the actual TSE

in the OLS entry, while the other estimates are presented relative to OLS, such that entries larger

than 1 indicate a more efficient estimate. We present these results in Table 10. Results suggest that

ML1 and ML2 have an overall better performance for the IFS series.

Table 10: Forecast Performance for IFS Series
Estimator 1-step 2-step 3-step 4-step

OLS(1) 1.424 1.357 0.269 5.742

L1(1) 1.11 1.02 0.80 1.46
WIL(1) 1.05 0.82 0.36 0.94
BL2(2) 1.03 0.70 0.73 1.39
BL1(2) 0.85 0.69 0.71 1.50
THL(2) 1.05 0.73 0.39 1.14
ML2(2) 1.37 1.19 1.62 1.40
ML1(2) 1.27 1.34 1.11 1.34
GR(2) 1.33 0.96 0.46 1.12

HBL2(3) 0.89 0.98 1.84 1.52
HBL1(3) 0.71 0.82 1.40 1.64
HBR(3) 0.90 0.81 0.50 1.13

TMNL2(3) 0.90 0.97 1.90 1.52
TMNL1(3) 0.73 0.81 1.39 1.66
TMNR(3) 0.94 0.83 0.53 1.18
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A Appendix

A.1 Lemmas

Lemma A.1. Let Sn(·) and Ŝn(·) denote the gradient evaluated with bij(θ0) and bij(θ̂) as defined

in Section 3. Then, under model assumptions (1)-(3), W1-W3, and E1, we have that

‖[Ŝn(∆)− Ŝn(0)]− [Sn(∆)− Sn(0)]‖ = op(1).

Proof. To begin, on the left hand side of the proposition, we evaluate the expression inside the

norm to obtain,

[Ŝn(∆)− Ŝn(0)]− [Sn(∆)− Sn(0)]

= n−
3
2

n∑
i<j

(bij(θ̂)− bij(θ0))(xj−1 − xi−1)(u(εj − εi − dijn)− u(εj − εi))

def
= n−

3
2

n∑
i<j

(bij(θ̂)− bij(θ0))(xj−1 − xi−1)(uij(dijn)− uij(0)),

where dijn = (xj−1 − xi−1)′n−
1
2 ∆ and uij(x) = u(εj − εi − x). Next, by assumption W2 and the

Mean Value Theorem, we have that

n−
3
2

n∑
i<j

[bij(θ̂)− bij(θ0)](xj−1 − xi−1)(uij(dijn)− uij(0))

= n−2
n∑
i<j

(xj−1 − xi−1)(uij(dijn)− uij(0))Dij(θ
∗)′n

1
2 (θ̂ − θ0)

def
= V n(n

1
2 (θ̂ − θ0)),
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where θ∗ ∈ {λθ̂+(1−λ)θ0 : λ ∈ [0, 1]}. Given assumption W1, it suffices to prove that ‖V n‖ = op(1).

By Theorems A.1 and A.2, and under assumption W3, it follows that

‖V n‖ ≤ n−2
n∑
i<j

‖xj−1 − xi−1‖‖uij(dijn)− uij(0)‖‖Dij(θ
∗)‖

≤ 2n−2
n∑
i<j

‖xj−1 − xi−1‖‖(xj−1 − xi−1)′∆n−
1
2 ‖‖εj − εi‖−1‖Dij(θ

∗)‖

≤ (2‖∆‖BDn−
1
2 )n−2

n∑
i<j

‖xj−1 − xi−1‖2‖εj − εi‖−1

= (2m‖∆‖BDn−
1
2 )n−2

n∑
i<j

‖Xj−1 −Xi−1‖2‖εj − εi‖−1

= (m‖∆‖BDn−
1
2 )

(
n− 1

n

)(
2

n(n− 1)

) n∑
i<j

‖Xj−1 −Xi−1‖2‖εj − εi‖−1

def
= (m‖∆‖BDn−

1
2 )

(
n− 1

n

)(
2

n(n− 1)

) n∑
i<j

hV(Zi,Zj)

def
= (m‖∆‖BDn−

1
2 )

(
n− 1

n

)
UVn ,

where UVn is a U-statistic with symmetric kernel hV(Zi,Zj). Note that the first 2 factors of this

expression have order relations of o(1) and O(1), respectively. Thus, it suffices to prove that UVn =

Op(1). Finally, given Lemma 3.1 and assumption E1, it follows from Theorem 1 part (c) of Denker

and Keller (1983, p.507) that UVn = Op(1), which completes the proof.

Lemma A.2. Let Sn(·) and Ŝn(·) denote the gradient evaluated with bij(θ0) and bij(θ̂) as defined

in Section 3. Then, under model assumptions (1)-(3), W1-W4, and E4, we have that

‖ Ŝn(0)− Sn(0)‖ = op(1).
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Proof. To begin, on the left hand side of the proposition, we evaluate the expression inside the

norm, using assumption W2 and the Mean Value Theorem, to obtain,

Ŝn(0)− Sn(0) = n−
3
2

n∑
i<j

[
bij(θ̂)− bij(θ0)

]
(xj−1 − xi−1)u(εj − εi)

= n−2
n∑
i<j

(xj−1 − xi−1)u(εj − εi)Dij(θ
∗)′n

1
2 (θ̂ − θ0)

= n−2
n∑
i<j

(xj−1 − xi−1)u(εj − εi)([Dij(θ
∗)−Dij(θ0)]′ +Dij(θ0)′)n

1
2 (θ̂ − θ0)

def
= (V 1n + V 2n)n

1
2 (θ̂ − θ0), (13)

where θ∗ ∈ {λθ̂ + (1 − λ)θ0 : λ ∈ [0, 1]}. Given assumption W1, it suffices to prove that ‖V 1n‖ =

‖V 2n‖ = op(1). Focusing on V 1n, by definition of u(·) and Theorem A.2, we have that

‖V 1n‖ ≤ n−2
n∑
i<j

‖xj−1 − xi−1‖‖u(εj − εi)‖‖Dij(θ
∗)−Dij(θ0)‖

≤ m 1
2n−2

n∑
i<j

‖Xj−1 −Xi−1‖‖Dij(θ
∗)−Dij(θ0)‖.

By taking expectations, and using model assumptions (1)-(3), and Lemma 3.2, we have that

E[‖V 1n‖] ≤ m
1
2n−2

n∑
i<j

E[‖Xj−1 −Xi−1‖‖Dij(θ
∗)−Dij(θ0)‖]

≤ m 1
2n−2

n∑
i<j

Ei.j[‖Xj−1 −Xi−1‖‖Dij(θ
∗)−Dij(θ0)‖] + o(1)

= m
1
2

(
n(n− 1)

2n2

)
Ei.j[‖Xj−1 −Xi−1‖‖Dij(θ

∗)−Dij(θ0)‖] + o(1).

By assumption W1 and the Squeeze Theorem, we have that θ∗ − θ0 = op(1). Which, by

assumption W2 and the Continuous Mapping Theorem, implies that ‖Dij(θ
∗)−Dij(θ0)‖ = op(1).

Furthermore, by assumption W3, it is easy to show that ‖Dij(θ
∗) −Dij(θ0)‖ ≤ 2BD. Thus, by

model assumptions (1)-(3) and the Lebesgue Dominated Convergence Theorem, the expectation on

the right hand side (RHS) is o(1). Note that the remaining factor on the RHS is O(1), which implies

that E[‖V 1n‖] = o(1). Thus, using Markov’s Inequality, it follows that ‖V 1n‖ = op(1).

Next, we focus attention back to V 2n, from equation (13). Let λ1 ∈ Rm2p, λ2 ∈ Rν be arbitrary

but fixed, and UV 2
n = λ′1V 2nλ2. Thus, by the Cramér-Wold Theorem it suffices to show that
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UV 2
n = op(1). By definitions, it follows that

UV 2
n = n−2

n∑
i<j

λ′1(xj−1 − xi−1)u(εj − εi)Dij(θ0)′λ2

=

(
n− 1

n

)(
2

n(n− 1)

) n∑
i<j

2−1λ′1(xj−1 − xi−1)u(εj − εi)Dij(θ0)′λ2

def
=

(
n− 1

n

)(
2

n(n− 1)

) n∑
i<j

hV2(Zi,Zj).

Note that, under assumption W4, UV 2
n is a U-statistic with symmetric kernel hV2(Zi,Zj). Thus,

by Lemma 3.1 and assumption E4, it follows from Theorem 1 part (c) of Denker and Keller (1983,

p.507) that UV 2
n − Ei.j[hV2(Zi,Zj)] = op(1). Next, we obtain

Ei.j[hV2(Zi,Zj)]

=

∫∫
2−1λ′1(xj−1 − xi−1)

(∫∫
u(εj − εi)Dij(θ0)′ dF(εi) dF(εj)

)
λ2 dG(Xi−1) dG(Xj−1),

where G(·) denotes the distribution function of Xt. Note that, by definition of u(·) and assumption

W4, it follows that

∫∫
u(εj − εi)Dij(θ0)′ dF(εi) dF(εj) = −

∫∫
u(εj − εi)Dij(θ0)′ dF(εi) dF(εj),∫∫

u(εj − εi)Dij(θ0)′ dF(εi) dF(εj) = 0, and

Ei.j[hV2(Zi,Zj)] = 0.

Finally, since UV 2
n = op(1), ‖V 1n‖ = ‖V 2n‖ = op(1), which completes the proof.

Lemma A.3. Let Tn be as defined in (11) and let

UAL
n = n−

3
2

n∑
i<j

bijλ
′(xj−1 − xi−1)J [uij(0)]dijn

where J [·] is the Jacobian operator. Then, under model assumptions (1)-(3), and E2, we have the

following,

Tn − UAL
n = op(1).
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Proof. To begin, note that

|Tn − UAL
n | ≤ n−

3
2

n∑
i<j

|bijλ′(xj−1 − xi−1)(uij(dijn)− uij(0)− J [uij(0)]dijn)|

≤ n− 3
2 ‖λ‖

n∑
i<j

bij‖xj−1 − xi−1‖‖uij(dijn)− uij(0)− J [uij(0)]dijn‖

= n−
3
2 ‖λ‖

n∑
i<j

bij‖xj−1 − xi−1‖‖dijn‖‖dijn‖−1‖uij(dijn)− uij(0)− J [uij(0)]dijn‖

def
= n−

3
2 ‖λ‖

n∑
i<j

bij‖xj−1 − xi−1‖‖dijn‖ η(dijn)

≤ n−2m‖λ‖‖∆‖
n∑
i<j

bij‖Xj−1 −Xi−1‖2 η(dijn).

By taking expectations, and using assumptions E3, E7, and Lemma 3.2, we have that

E[|Tn − UAL
n |] ≤ n−2m‖λ‖‖∆‖

n∑
i<j

E[bij‖Xj−1 −Xi−1‖2 η(dijn)]

≤ n−2m‖λ‖‖∆‖
n∑
i<j

Ei.j[bij‖Xj−1 −Xi−1‖2 η(dijn)] + o(1)

= m‖λ‖‖∆‖
(
n(n− 1)

2n2

)
Ei.j[bij‖Xj−1 −Xi−1‖2 η(dijn)] + o(1).

By model assumptions (1)-(3) and the definition of the Multivariate Derivative, we have that dijn =

op(1) and η(dijn) = op(1). Furthermore, with Theorem A.3, it is easy to show that η(dijn) ≤

(m
1
2 + 1)‖εj − εi‖−1. Thus, by assumption E2 and the Lebesgue Dominated Convergence Theorem,

the expectation on the right hand side (RHS) is o(1). Note that the remaining factor on the RHS

is O(1), which implies that E[|Tn −UAL
n |] = o(1). Finally, using Markov’s Inequality, it follows that

Tn − UAL
n = op(1), which completes the proof.

A.2 Support Definitions and Theorems

Definition A.1. Let g : Rm×k → R and X1, · · · ,Xk random m-dimensional vectors with marginal

distribution functions F1(·), · · · ,Fk(·), respectively. The Expected Value of g(X1, · · · ,Xk) with

respect to the product distribution is the functional

E1.··· .k[g(X1, · · · ,Xk)] =

∫
· · ·
∫

g(x1, · · · ,xk) dF1(x1) · · · dFk(xk)

and is called the the Product Expectation of g(X1, · · · ,Xk).
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Theorem A.1. Let x,a ∈ Rn and ‖ · ‖ be a norm. Then,

∥∥∥∥ x− a
‖x− a‖

− x

‖x‖

∥∥∥∥ ≤ 2
‖a‖
‖x‖

.

Theorem A.2. Let A be an arbitrary matrix, Im the m dimensional identity matrix, ‖ · ‖ be the

euclidean norm, and ⊗ denote the Kronecker product. Then,

‖A⊗ Im‖ = m
1
2 ‖A‖.

Theorem A.3. Let a,x ∈ Rn (a column vector), ‖ · ‖ be the euclidean norm, J[·] the Jacobian

operator, and u(x) = (a− x)‖a− x‖−1. Then,

J [u(x)] = − 1

‖a− x‖

[
In −

(a− x)(a− x)′

‖a− x‖2

]
, and

‖J [u(x)]‖ ≤ (n
1
2 + 1)‖a− x‖−1.
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