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The purpose of this three-essay dissertation is to provide practical guidance to 

evaluators planning cluster-randomized trials (CRTs) of science achievement.  In an 

educational setting, interventions are often administered at the cluster level, while 

outcomes are typically measured at the student level through standardized achievement 

testing.  When evaluating an intervention, a CRT is appropriate because it allows for 

treatment to be modeled at a different level than the unit of analysis, and properly 

accounts for the violation of independence that occurs due to nesting.  Accurately 

designing a CRT involves estimating variance parameters (i.e., intraclass correlations 

[ICCs] and percent of variance explained [R2] values).  Prior efforts to improve the 

design of CRTs in education have primarily been limited to mathematics and reading 

disciplines, and the applicability of their findings to studies of science achievement is 

unknown.   

I use three essays to present decision scenarios an evaluator faces when designing 

a CRT.  In the first essay, the evaluator has limited information to inform the selection of 

ICCs for a three-level CRT.  I use surface plots of relative efficiency to explore the 

robustness of an optimal design to misspecification of the ICCs.  Findings suggest that 



three-level CRTs are quite robust to misspecification of either or both ICCs.  In the 

second essay, I resolve the challenge of limited information by using five years of 

achievement data from Texas to estimate ICCs for two- and three-level CRTs.  I then 

analyze the decision of which covariate to include by estimating and evaluating R2 values 

for demographic and pretest covariates.  Findings suggest ICCs are larger in science than 

in mathematics and reading, and when a one-year lagged student-level science pretest is 

unavailable, a one-year lagged school-level science pretest is preferred.  In the final 

essay, I recognize that a multi-site CRT (MSCRT) design is often more appropriate than 

a CRT, and the evaluator must once again select appropriate variance design parameter 

values.  Using the Texas data, I empirically estimate a distribution of within-district 

ICCs, and show the number of districts in the MSCRT can impact the average within-

district ICC value. 
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CHAPTER I 

INTRODUCTION 

Background of the Problem 

The value of a cluster-randomized trial (CRT) is hampered by a number of 

logistical and practical challenges stemming from the fact that the true power of a study 

is unknown until the conclusion of the experiment, but must be estimated at the 

beginning of the experiment for planning purposes.  Evaluators rely on estimates of 

parameter values including effect sizes and variances (unconditional and conditional) to 

appropriately power designs.  As individual disciplines like education increasingly move 

to test interventions using CRTs involving more complex hierarchical linear model 

(HLM) structures, the need for precise parameter value estimates through meta-analyses 

and empirical research to design high quality studies is heightened.  Educational 

evaluators need practical guidance to ensure they can confidently and accurately specify 

design parameter values in their power analyses.  This dissertation research contributes to 

this effort in the specific context of science education, where the demand for rigorous 

evaluations of achievement interventions is high, but the supply of empirical estimates of 

design parameters is low. 

Currently, very few empirical examples of design parameters estimates exist, and 

many examples are needed to confidently enable the generalizability of design parameter 

estimates to new settings.   For example, there is only one study with design parameter 



 2 

 

estimates in science education (Zhu, Jacob, Bloom, & Xu, 2012), and its applicability is 

limited because it does not cover the range of grades or formats in which science is 

typically tested.  Efforts to develop repositories of design parameter values (The 

University of Chicago Center for Advancing Research & Communication, 2011) have 

generated interest, but have largely been limited to mathematics and reading disciplines. 

Over the past decade, significant advances in technology including the 

development of software have facilitated calculation of power for CRT designs, 

simplifying the process of appropriately powering these studies.  Recent innovations in 

software development have focused on linking software to existing repositories of 

empirical inputs, for example, Optimal Design Plus (Spybrook, Bloom, Condon, 

Martinez, & Raudenbush, 2011).  While these innovations will most certainly be useful, 

the reality is these projects have an infinite completion horizon.  New research and 

evaluation questions are continually asked that require estimates of design parameter 

values that do not already exist.  There is seemingly an endless need for additional 

empirical research, in conjunction with software enhancements, to facilitate better 

designs.  In the absence of empirical research, the utility of software is diminished.   

Due to a lack of empirical research on design parameter values, evaluators 

designing CRTs can face significant uncertainty in estimating these values for their 

studies.  Three specific challenges associated with the design of CRTs are the focus of 

this dissertation:  

• Challenge 1: Selecting parameter value estimates in the absence of precision. 

• Challenge 2: Selecting the most effective covariate. 
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• Challenge 3: Selecting parameter value estimates for multi-site designs.   

I elaborate on each of these challenges below.  First, due to the high costs 

associated with conducting CRTs, achieving an optimal design (i.e., a design in which the 

variance of the treatment effect is minimized subject to a budget constraint) is highly 

desirable (Raudenbush, 1997).  An overpowered design wastes valuable resources, while 

an underpowered design can render findings of limited usefulness.  In the absence of 

reasonable parameter value estimates, it is important for evaluators and researchers to 

understand the implications of parameter value misspecification in order to better select 

values that maintain a balance between power and cost.   

Second, meta-analytic and empirical estimates of design parameters for 

conducting CRTs help reduce the uncertainty associated with parameter value selection.  

Historically, the estimation of effect sizes through meta-analytic work has been the 

dominant approach leading to design parameter values of benefit for powering studies.  

As noted above, empirical estimates of variance parameters for multi-level studies rarely 

exist in the literature, and for many outcomes, empirical estimates do not exist at all.  In 

the absence of variance estimates, evaluators and researchers often will borrow parameter 

value estimates from related disciplines where estimates are available, without regard to 

the applicability of these estimates to their context.  For example, in science education 

where limited estimates exist, designers of CRTs for science achievement are often 

forced to borrow parameter value estimates to power studies from the mathematics and 

reading literature.  Without design-specific parameter value estimates in science 

education, the likelihood for misspecification of parameter values is heightened.   
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Third, for efficiency purposes, many CRTs are designed with a site-level blocking 

variable and random assignment to treatment occurring within sites.  The (within-site) 

variance design parameters required to power a multi-site CRT (MSCRT) are different 

than for a traditional CRT, and estimates must be produced in a slightly different way.  

Additionally, because the underlying true within-site variance in a MSCRT design is 

heavily influenced on the specific configuration of the relatively few sites recruited to the 

study, an evaluator’s estimate of variance may be influenced by the number of sites in the 

study.   

Experimental Designs in Education 

In this section, I introduce the central underlying assumption for the research 

found in this dissertation.  The assumption is that experimental designs are important in 

education and therefore worth improving.  This motivates the need to design better CRTs 

in science education.  I begin by describing the impetus on experimental research before 

describing the merits of CRTs.  Detailed summaries of relevant literature for each 

specific essay are found in the individual chapters. 

The Importance of Experimental Designs 

The passing of the No Child Left Behind Act (NCLB) in 2001 and subsequent 

legislation including the Education Sciences Reform Act (ESRA) in 2002 marked a 

significant shift in federally funded educational research and evaluation organizations to 

one of evidence-based research (Institute of Education Sciences, 2013a).  This priority 

continues today.  For organizations such as the Institute of Education Sciences (IES), 
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which was established under the ESRA, priority was placed specifically on experimental 

studies that generated rigorous evidence about the effectiveness of educational programs, 

practices, and policies (Institute of Education Sciences, 2013b).   

The experiment is the preferred method for establishing causal description 

(Shadish, Cook, & Campbell, 2002).  However, some researchers have advocated that 

certain quasi-experiments (e.g., regression discontinuity designs, designs with carefully 

matched—focal local (Campbell, 1976)—comparison groups, and short interrupted-time 

series) are comparable to the experiment (Cook, Shadish, & Wong, 2008; Shadish, 2011).  

In certain cases, researchers have attempted to establish when quasi-experiments replicate 

the findings of experiments (Shadish, Clark, & Steiner, 2008).  Yet, with few exceptions, 

experiments including CRTs remain the standard for causal research and large-scale 

evaluations at federal funding agencies like IES, the National Science Foundation (NSF), 

and the National Institutes of Health.   

The Importance of CRTs in Education 

In recent years, the impetus on experiments for educational research and 

evaluation has particularly revolved around experiments that involve clustering (Institute 

of Education Sciences, 2013b; Spybrook & Raudenbush, 2009).  The applicability of 

CRTs for studying the effectiveness of educational programs is a result of the inherent 

nesting that occurs in the educational structure found in the United States (Raudenbush & 

Bryk, 2002).  Students typically learn in traditional classroom environments, and these 

classrooms are located in schools, which are clustered in districts.  Because educational 

material is most often delivered through the traditional classroom environment, treatment 
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is administered at the cluster level.  Often individual schools or entire districts implement 

curriculum that is consistent across all classrooms within schools or schools within 

districts, thereby increasing the level at which the treatment is administered.  Outcomes 

are typically measured at the student level through standardized achievement testing.   

When evaluating the effects of these interventions, a CRT is appropriate because 

it allows for treatment to be modeled at a different level than the unit of analysis.  The 

use of a CRT to test a social intervention will often produce more accurate effect size 

estimates than a traditional experiment (Hedges, 2007).  Correctly modeling the nested 

structure can also increase the internal validity of the design by reducing the threat of 

contamination or treatment diffusion across treatment groups because the unit of 

randomization is, for example, an entire school as opposed to students or teachers within 

a school (Shadish et al., 2002).  Furthermore, because treatment is administered 

collectively to groups rather than individuals, the standard assumption of independence 

that is necessary when statistically analyzing the experimental data in an ordinary least 

squares framework is violated.  Using a hierarchical linear structure to model the data 

properly accounts for this violation of independence (Raudenbush & Bryk, 2002).    

Powering Experiments and CRTs 

The prevalence of CRTs in funded studies through the IES has been studied and 

shown to be increasing over time; however, many of the early funded studies were found 

to be inappropriately powered (Spybrook & Raudenbush, 2009).  In terms of model 

structure, Hedges (2007) noted that researchers often fail to account for group effects 

when powering studies and, consequently, they overstate the precision of results.  
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Likewise, when three-levels are used, it is important to account for the nesting that occurs 

at the second level, or power overestimation will occur (Konstantopoulos, 2008; 

Moerbeek, 2004).   

Experiments must be designed to be feasible within the constraint of budget, but 

they should also be designed optimally to maximize the power to detect a minimum 

detectible effect size (MDES), or likewise, to minimize the standard error of the 

treatment effect estimate (Raudenbush, 1997).  The MDES is the smallest true effect a 

design can detect (Bloom, Richburg-Hayes, & Black, 2007).  For a traditional experiment 

with a desired MDES and error tolerance, once variance across individuals has been 

estimated, the power calculation is driven by a single decision variable—the number of 

individuals.  Since power is a monotonically increasing function with respect to 

individuals, power is maximized by using as many individuals as can be afforded.   

When evaluators use a HLM structure, they face additional challenges choosing 

an appropriate design, including the choice of additional design parameters and 

maintaining optimality with respect to cost.  Like a traditional experiment, CRTs need to 

be designed with sufficient power, such that the researcher is able to detect a statistically 

significant effect when one actually exists.   

Conducting a two-level CRT requires a bit more sophistication in the planning 

stages than that of a traditional experiment because under the same set of assumptions 

(MDES, error tolerance, and variance estimation), there are two decision variables that 

drive the calculation of power—the number of individuals and the number of clusters.  

Consequently, the evaluator must specify the variance at each level of nesting.  Variance 
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in CRTs is described using an intraclass correlation (ICC), which for a two-level design 

represents the percentage of total variance that exists at Level 2.  In a two-level CRT, the 

specification of the Level 2 ICC necessarily determines the Level 1 or residual variance 

partition.  As models add more levels of nesting, variance must be partitioned across each 

level for planning purposes.  Unlike traditional experiments where power to detect a 

MDES under the estimation of variance is driven by the number of individuals, power for 

CRTs is mostly driven by the number of clusters in the design, and to a much lesser 

extent by the number of individuals in each cluster (Raudenbush & Liu, 2000).  The logic 

can be extended to CRTs with additional levels of nesting as well, with power being 

driven by the highest cluster level (Konstantopoulos, 2008). 

Improving the Design of CRTs 

Efforts to improve the design of CRTs have focused on understanding the impacts 

of model structure (like those studies mentioned above), meta-analyses, estimating 

variance design parameters, and understanding the precision of these parameter values.  

In this dissertation, I focus on only the empirical estimation of variance design 

parameters (i.e., ICCs and R2 values), noting that effect sizes, although also a design 

parameter, are generally estimated through meta-analytic approaches.  Specific attention 

is placed not only on the empirical estimates, but also on the proper use of these 

estimates. 
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Dissertation Format and Related Purposes of the Three Studies 

This dissertation consists of three essays, which together seek to improve the 

design of CRTs in education.  The opening chapter orients the reader to the broader 

context and more specifically to the challenges regarding the selection of variance design 

parameter values that evaluators face when designing CRTs.  The three essays appearing 

in this dissertation as Chapters II, III, and IV are briefly described below. A final chapter 

considers implications and limitations of this collection of research in an effort to 

highlight new directions for future research in this area.   

Each essay is written to offer practical advice regarding particular challenges an 

evaluator faces when designing a three-level CRT.  In the first essay, the evaluator must 

estimate ICCs for a traditional CRT, but is faced with limited information regarding the 

ICCs.  In the second essay, estimates of ICCs are presented in an effort to resolve the 

challenge of limited information, but the evaluator must then decide which covariate to 

use.  In the final essay, it is noted that in some situations a MSCRT is a more appropriate 

design, and the evaluator must select an appropriate within-site ICC from a distribution of 

values.  Below, each essay is described in greater detail, and specific research questions 

for each essay are presented. 

Essay 1 

Overview. The first essay includes an efficiency analysis using a three-level 

HLM framework in order to understand the robustness of an optimal design for a three-

level CRT to misspecifications of ICCs.  Misspecification is undesirable because it 
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signifies a waste of precious resources.  Unfortunately, when designing a CRT, 

misspecification of ICCs is common because the true ICC is not known until after the 

experiment has been conducted.  Additionally, very few empirical estimates of ICCs in 

which to inform the evaluator’s decision exist in the published literature.  For some 

disciplines, like science education, empirical estimates do not exist, meaning 

misspecification, in theory, could be very large. 

In this essay, a model for examining misspecification in a three-level context is 

derived using the foundations of optimal design for a three-level CRT (Konstantopoulos, 

2009) as well as an efficiency analysis, using relative efficiency (RE), of optimal designs 

in a two-level CRT framework (Korendijk, Moerbeek, & Maas, 2010).  An efficiency 

analysis for a three-level design is different from a two-level design in that there are two 

ICCs and three cost factors to consider.  Each ICC can be either over-specified or under-

specified, creating several relevant scenarios that must be considered.  The underlying 

cost structure of adding participants at each level can also impact the efficiency of a 

design and the impact of misspecification.  It is important for evaluators to understand 

how robust optimal designs are to misspecification of ICCs in order to minimize the cost 

associated with over-powering or under-powering a study. 

Research objectives. The following research questions are addressed in the first 

essay: 

1. What are the ranges of misspecification for Level 2 and Level 3 ICCs that 

maintain a high level of RE? 
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2. What are the implications on the range of acceptable misspecification for 

different costs of adding additional units?  

3. What are the implications on the range of acceptable misspecification for 

different combinations of over-specification and under-specification between 

the ICC values? 

Essay 2 

Overview. In the second essay, a state database of achievement data from Texas 

is used to empirically estimate ICCs and R2 values using a variety of pretest and 

demographic covariates for two-level and three-level CRTs in science education.  This 

reduces the likelihood of design parameter misspecification in this context.   

Recent research on empirically estimating design parameter values in education 

has focused on mathematics and reading outcomes, leaving evaluators of science 

achievement interventions, for example, whole school curricula, to borrow ICC and R2 

values from these other subjects without regard for the applicability of these estimates.  

Furthermore, because science is tested infrequently, only certain covariate options are 

available.  Often the most recent student-level pretest covariate, which typically is the 

best predictor of student performance, is lagged two, three, or more years, and the most 

desirable alternative is not immediately obvious. 

The results of the empirical estimation procedure for science are used to compare 

the applicability of ICC estimates from mathematics and reading.  In addition, various 

covariate models are considered to explore the desirability of pretest and demographic 

covariates in the years in which science is tested.   



 12 

 

Research objectives. The following research questions are addressed in the 

second essay: 

1. What are unconditional ICCs for science achievement outcomes? 

2. How do the empirical estimates of ICCs for science achievement compare to 

those for reading and mathematics achievement? 

3. For the grade levels in which science is tested, which covariate sets explain 

the most variance? 

Essay 3 

Overview. The third essay expands on the second essay to develop empirical 

estimates of design parameters for three-level MSCRT designs of science achievement 

using the Texas data.  In the MSCRT design considered, districts are treated as a blocking 

variable, and schools are randomly assigned to treatment and control within districts.  

Experiments of this form will often be utilized in educational evaluations because they 

are typically cheaper to conduct than a traditional CRT. 

Because randomization occurs in schools within-districts, the ICC design 

parameter required for a MSCRT power analysis is different than for a traditional CRT.  

An accurate estimate of the within-district ICC is needed to appropriately power a 

MSCRT design.  The within-district ICC is different from the school-level ICC in that 

district variance is explained through blocking.   

As is true for CRTs in science education, the evaluator has limited access to 

empirical estimates of a relevant ICC value for a MSCRT design.  Using a two-level 

model within each district in the state, a distribution of within-district ICCs is empirically 
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estimated.  One method of estimating the ICC from the distribution is to take the average 

within-district ICC.  However, the number of districts needed for an MSCRT design can 

vary depending on the purpose of the study.  The true within-district ICC for the recruited 

districts of one study may differ significantly from one study to the next.   

There are typically two types of MSCRTs used in practice: those with only a few 

districts, but a large number of schools per district, and those with many districts, but a 

small number of schools per district.  By categorizing the districts by size, and therefore 

design, appropriate ICCs for each MSCRT design are estimated and compared. 

Research objectives. The following research questions are addressed in the third 

essay: 

1. What is the distribution of within-district ICCs for science education by grade 

in Texas?  

2. Does the number of districts in an MSCRT affect the mean within-district 

ICC?  

Significance of the Research 

The collection of essays presented in this dissertation push the boundary of 

empirical research on improving the design of cluster-randomized trials in education.  In 

each essay, important questions that science education evaluators currently face are 

considered.  Collectively, the three essays provide practical guidance to evaluators 

planning CRTs in education.   

Several noteworthy contributions inform the selection of variance design 

parameter values for studies of science achievement.  First, evaluation efficiency is a 
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topic that is touched on in each of the three essays.  The dissertation serves as an 

important example for evaluation practitioners of how evaluative decisions like the 

specification of ICC values can impact the cost-effectiveness of an evaluation.  Second, 

there is a focus on creating an empirical base of design parameters for the evaluation of 

science education interventions.  Empirical estimates of design parameters for science 

education do not currently exist across the range of grades in which science is tested, and 

the results of this dissertation fill this void for traditional three-level CRTs as well as 

MSCRTs.  Third, in the context of science, where annual testing is not the norm, the 

comparison of lagged pretests is relevant and important, and likely will serve as an 

example for other researchers as new subject areas are explored.  Fourth, there are 

important distinctions between CRTs and MSCRTs, and evaluators must pay attention to 

subtle differences in designs when selecting variance design parameter values. 

Other contributions are timely.  For example, the notion of improved outcomes in 

science, technology, engineering, and mathematics (STEM) disciplines continues to be 

relevant to educational policy makers.  The tackling of methodological research questions 

pertinent to STEM education evaluation helps to ensure science education evaluations are 

of the highest quality.  Additionally, as educational evaluations increasingly involve more 

than two levels of nesting, the need for design parameters value estimates from three-

level CRT and MSCRT models is especially relevant.   

In the following three chapters, these and other contributions are described. In the 

closing chapter, I suggest ideas as to where the research can go next.  
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CHAPTER II 

THE ROBUSTNESS OF OPTIMAL DESIGNS TO MISSPECIFICATION  
OF INTRACLASS CORRELATIONS FOR THREE-LEVEL  

CLUSTER-RANDOMIZED TRIALS IN EDUCATION 

As the evidence-based movement pushes evaluators to increasingly utilize 

experimental designs including the cluster-randomized trial (CRT), evaluators must rely 

on a limited supply of empirically estimated design parameters to properly power their 

studies.  For many educational outcomes, accurate design parameters are unavailable. In 

some situations design parameters are known for a particular population or a related 

outcome, and evaluators will borrow these estimates without regard to their applicability 

from one study to the next.  When a design parameter is not accurately estimated, 

inefficiency in the form of over-powering or under-powering the study will occur, which 

can lead to a significant waste of resources.  In disciplines like education where resources 

are highly scarce and the number of stakeholders is high, inefficiency in evaluations can 

be particularly problematic. It is important for evaluators to understand how the selection 

of particular design parameter values impacts the overall quality of the CRT design in 

order to maximize the efficiency of their designs. 

When designing a CRT, one challenge for the evaluator is to correctly estimate 

design parameter values in order to maximize the chance of detecting an effect when one 

in fact exists. In this study, one particular design parameter is emphasized, the intraclass 

correlation (ICC), which measures the percent of total variance found at each level of 

nesting. Unfortunately, the true variance decomposition is not known until after the 
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experiment occurs and the data has been collected.  Thus, there is a tremendous 

likelihood that misspecification of the true ICC value(s) will occur, and produce an 

inefficient design.   

The purpose of this essay is to explore the robustness of optimal designs to 

misspecification of one or both ICC values in a three-level CRT.  Korendijk, Moerbeek, 

and Maas (2010) first considered the impacts of misspecification of the ICC for CRT 

designs using a two-level model.  However, the conclusions drawn from the two-level 

model, do not explicate the decision-making process for the evaluator designing a three-

level study since there are two ICC values that must be specified under this model 

structure.   

Korendijk et al. (2010) studied the impacts of ICC misspecification using relative 

efficiency (RE) as their metric.  RE, which is discussed more formally below, is a 

comparison of how much larger the variance in the treatment effect estimate is for a 

model with an incorrectly specified ICC to that of its minimum possible value.  

Moreover, the reciprocal of RE measures the extent to which the sample size for a model 

with an incorrectly specified ICC would need to be increased in order to produce the 

same level variance of the treatment effect estimate had the estimated ICC been correct. 

Larger values of RE are preferred, meaning there is only a small difference in the 

variance of the treatment effect estimate between the two model specifications. 

Findings from Korendijk et al. (2010) show that a high level of RE is maintained 

for a wider range of over-specification of values than for under-specification of values.  

As a rough estimate, 𝑅𝐸 ≥ 0.90 is maintained when an initial ICC estimate falls within a 
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range of 25% (i.e., 75% under-specification) to 275% (i.e., 175% over-specification) of 

its true value.  This indicates that the ICC is quite robust to misspecification in the two-

level model.  With only two levels in the model, the authors instruct, “Assuming that a 

researcher in pursuit of a reasonable estimate for the intracluster correlation coefficient 

value has obtained a range of plausible values, the conclusion can be drawn that it is best 

to choose a high value within the obtained range” (p. 575).  However, while this advice is 

useful in cases when a range of plausible values is small, if ICCs are unknown or a range 

is sufficiently imprecise, significant over-specification may result in large amounts of 

unnecessary participation which ultimately wastes important resources.    

In education, it is becoming more common for experimental designs to have three 

or even four levels of nesting (Spybrook, in press; Spybrook & Raudenbush, 2009).  For 

example a three-level model could include students nested in teachers nested in schools, 

or students nested in schools nested in districts.  Issues of efficiency must be investigated 

in these contexts as well because misspecification can occur for multiple ICCs.  Since the 

power of a study is most influenced by the number of participants at the highest level of 

nesting, of particular interest is whether the range of acceptable misspecification for the 

ICC at highest level of nesting is different from the range of acceptable misspecification 

for the ICC in a two-level model.  Additionally, in models with more than two levels the 

implications of misspecification of one ICC must be studied in the context of 

misspecification of other ICCs.   
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Empirical Estimates of ICCs in Three-Level Models 

The focus of this study is on designs with three-levels with a particular emphasis 

on education.  Several examples of Level 2 and Level 3 ICCs from three-level designs in 

education are found in Table 2.1; these ICCs are summarized to highlight the 

considerable amount of variability that can exist from one study to the next.  Two 

important conclusions can be drawn from Table 2.1, and motivate the research questions 

in this study.  First, ICC values typically fall on the range from 0.05 to 0.30.  Second, 

there is no consistency between whether the Level 2 ICC is larger than the Level 3 ICC, 

or the opposite is true.  These two conclusions can be attributed to the nature of the 

levels, outcome measure, and subject area. 

Using empirical estimates from the literature as a guide, in this study, the 

following questions are asked of CRTs that utilize three-level nested models: 

1. What are the ranges of misspecification for Level 2 and Level 3 ICCs that 

maintain a high level of RE? 

2. What are the implications on the range of acceptable misspecification for 

different costs of adding additional units?  

3. What are the implications on the range of acceptable misspecification for 

different combinations of over-specification and under-specification between 

the ICC values? 
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Table 2.1 

Examples of Level 2 and Level 3 ICCs from Three-Level Models in Education 

   Range of ICCs 

Nesting 
Structure Subject(s) Source Level 2 Level 3 

Students in 
Classrooms in 
Schools 

Math/Reading (Konstantopoulos, 
2009) 

0.06–0.14 0.10–0.28 

Students in 
Classrooms in 
Schools 

Math/Reading/Science (Zhu, Jacob, 
Bloom, & Xu, 

2012) 

0.03–0.38 0.04–0.17 

Students in 
Schools in 
Districts 

Math/Reading (Hedberg & 
Hedges, 2011) 

0.09–0.11 0.07–0.11 

Students in 
Schools in 
Districts 

Math/Reading (Hedges & 
Hedberg, in press) 

0.055–0.418 0.001–0.132 

Students in 
Schools in 
Districts 

Science (Westine, 
Spybrook, & 

Taylor, in press) 

0.10–0.14 0.06–0.08 

Methodology 

In this section, I describe the methods used to address the research questions.  I 

begin by presenting the three-level model for a CRT.  This is followed by a discussion of 

how an optimal design is derived for a three-level model.  Next, I formally define the 

measure of efficiency used to judge the robustness of designs in this study, RE 

(Korendijk et al., 2010).  Finally, I outline various relationships between the ICCs that are 

important to consider in assessing RE in a three-level model. 
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Model 

Presented below is the theoretical framework for use in a three-level CRT.  To 

model a three-level CRT, I use a three-level hierarchical linear model (HLM).  In the 

model, each Level 2 and Level 3 variable is treated as a random effect.  For convenience, 

I refer to Level 1 units as students, Level 2 units as teachers, and Level 3 units as schools.  

However, the reader should note that the analysis is not limited to this particular nested 

structure.   

The unconditional model for the three-level HLM with Level 1 students nested 

within Level 2 teachers nested within Level 3 schools is as follows. The Level 1 model 

is: 

 𝑌𝑖𝑗𝑘 = 𝜋0𝑗𝑘 + 𝑒𝑖𝑗𝑘                    𝑒𝑖𝑗𝑘~𝑁(0,𝜎2) 
 

[1] 
 

where 𝑌𝑖𝑗𝑘 is the outcome for Level 1 student 𝑖 ∈ �1, … , 𝑛𝑗𝑘�, in Level 2 teacher 𝑗 ∈

{1, … , 𝐽𝑘}, in Level 3 school 𝑘 ∈ {1, … ,𝐾}; 𝜋0𝑗𝑘 is the mean outcome of Level 2 teacher j 

in Level 3 school k; and 𝑒𝑖𝑗𝑘 is a random Level 1 effect which is assumed to be normally 

distributed with mean 0 and homogenous variance 𝜎2.  Therefore, 𝜎2 is the variance in 

outcome among Level 1 students within Level 2 teachers. The Level 2 model is:  

 𝜋0𝑗𝑘 = 𝛽00𝑘 + 𝑟0𝑗𝑘                    𝑟0𝑗𝑘~𝑁(0, 𝜏𝜋), 
 

[2] 
 

where 𝛽00𝑘 is the mean outcome of Level 3 school k, and 𝑟0𝑗𝑘 is the random Level 2 

effect which is assumed to be normally distributed with mean 0 and homogenous 

variance 𝜏𝜋.  Therefore, 𝜏𝜋 is the variance in the mean outcome among Level 2 teachers 

within Level 3 schools.  The Level 3 model is: 
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 𝛽00𝑘 = 𝛾000 + 𝛾001𝑊𝑘 + 𝑢00𝑘          𝑢00𝑘~𝑁�0, 𝜏𝛽�, [3] 
 

where 𝛾000 is the grand mean, 𝛾001 is the main effect of the treatment, 𝑊𝑘 is the 

treatment contrast indicator that equals 0.5 for treatment and -0.5 for control, and 𝑢00𝑘 is 

a random Level 3 effect which is assumed to be normally distributed with mean 0 and 

homogenous variance 𝜏𝛽.  Therefore 𝜏𝛽 is the variance in mean outcome among Level 3 

schools.   

In the three-level HLM, there are two ICCs.  The Level 2 ICC, or proportion of 

total variance that exists among Level 2 teachers within Level 3 schools is  

 𝜌2 =
𝜏𝜋

𝜏𝛽 + 𝜏𝜋 + 𝜎2
. 

 
[4] 

 
The Level 3 ICC, or proportion of total variance that exists among Level 3 schools is 

 𝜌3 =
𝜏𝛽

𝜏𝛽 + 𝜏𝜋 + 𝜎2
. 

 
[5] 

 

Optimal Design and RE 

For the three-level case, denote 𝛾�001 = 𝑌�𝑇 − 𝑌�𝐶  as the average treatment effect, 

where 𝑌�𝑇 and  𝑌�𝐶 are the mean outcome of the treatment and control conditions, 

respectively.  For convenience, I assume the sample sizes are balanced within each level, 

hence, 𝑛𝑗𝑘 = 𝑛 and 𝐽𝑘 = 𝐽.  When treatment and control groups are the same size, the 

variance of the treatment effect estimate is 

 𝑣𝑎𝑟(𝛾�001) =
2(𝐽𝑛𝜌3 + 𝑛𝜌2 + �̅�)𝜎𝑇2

𝐾𝐽𝑛
, 

 
[6] 

 
where n is the number of Level 1 students in each Level 2 teacher, J is the number of 

Level 2 teachers in each Level 3 schools, and K is the number of Level 3 schools in both 
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the treatment and control group, 𝜌2 is the Level 2 ICC, 𝜌3 is the Level 3 ICC, �̅� = 1 −

𝜌2 − 𝜌3, and 𝜎𝑇2 = 𝜏𝛽 + 𝜏𝜋 + 𝜎2 is the total variance (Konstantopoulos, 2009).  The total 

sample size is 2𝐾𝐽𝑛.   

Optimal design. An optimal design specifies sample sizes for each level of 

nesting (i.e., 𝑛𝑜𝑝𝑡, 𝐽𝑜𝑝𝑡, and 𝐾𝑜𝑝𝑡) for which the variance in the treatment effect estimate 

is minimized (Raudenbush, 1997), with respect to cost and other design parameters.1  

Typically, a linear cost function is used in the optimal design literature, though more 

complex functions are certainly possible if not likely.  Equation [7] depicts a linear cost 

function for a three-level model,   

 2𝐾𝐽𝑛𝐶1 + 2𝐾𝐽𝐶2 + 2𝐾𝐶3 ≤ 𝐶, [7] 
 

where C is the total budget, 𝐶1 is the cost of an additional Level 1 student, and 𝐶2 is the 

cost of an additional Level 2 teacher, and 𝐶3 is the cost of an additional Level 3 school 

for either the treatment or control group.   

According to Konstantopoulos (2008, 2009), optimal sample sizes for three-level 

models are as follows:  

 𝑛𝑜𝑝𝑡 = �
𝐶2
𝐶1
�

(1 − 𝜌2 − 𝜌3)
𝜌2

 [8] 

   

 𝐽𝑜𝑝𝑡 = �
𝐶3
𝐶2
�
𝜌2
𝜌3

 [9] 

                                                 

1 Equivalently, an optimal design is achieved by maximizing the non-centrality parameter, 𝜆, 
subject to the budget constraint. 
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 𝐾𝑜𝑝𝑡 =
𝐶

2𝐶1𝐽𝑜𝑝𝑡𝑛𝑜𝑝𝑡 + 2𝐶2𝐽𝑜𝑝𝑡 + 2𝐶3
 [10] 

 
An optimal design specifies an optimal allocation of resources in response to expectations 

in data variances in order to maximize the researcher’s ability to detect a desired effect.  

Therefore, holding all else constant, an optimal design given one set of ICC values likely 

will be different than for an optimal design given a different set of ICC values.  This fact 

is used to define an efficiency measure, RE, for three-level designs. 

Relative efficiency. RE is defined as the ratio of the variance of the treatment 

effect estimate for a design with correctly specified ICCs to the variance of the treatment 

effect estimate for a design with incorrectly specified ICCs (Korendijk et al., 2010; 

Raudenbush, 1997).  For a two-level model, Korendijk et al. (2010) presented RE in 

functional form as the 𝑣𝑎𝑟(𝛾�01)∗ for an optimal design given the true (population) ICC 

value, 𝜌∗, divided by the 𝑣𝑎𝑟(𝛾�01) for an optimal design based on initial ICC estimate, 𝜌; 

hence, 

 𝑅𝐸 =
�
𝑛𝑜𝑝𝑡∗ 𝜌∗ + �̅�∗
𝐽𝑜𝑝𝑡∗ 𝑛𝑜𝑝𝑡∗ �

�
𝑛𝑜𝑝𝑡𝜌∗ + �̅�∗
𝐽𝑜𝑝𝑡𝑛𝑜𝑝𝑡

�
=

�
𝑛𝑜𝑝𝑡∗ 𝜌∗ + �̅�∗

� 𝐶
2𝐶1𝑛𝑜𝑝𝑡∗ + 2𝐶2

� 𝑛𝑜𝑝𝑡∗
�

�
𝑛𝑜𝑝𝑡𝜌∗ + �̅�∗

� 𝐶
2𝐶1𝑛𝑜𝑝𝑡 + 2𝐶2

� 𝑛𝑜𝑝𝑡
�

. [11] 
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In [11] 2, the designs (𝑛𝑜𝑝𝑡∗ , 𝐽𝑜𝑝𝑡∗ ) and (𝑛𝑜𝑝𝑡, 𝐽𝑜𝑝𝑡) are optimal sample sizes derived by 

maximizing power given 𝜌∗ and 𝜌, respectively, subject to the budget constraint 

2𝐽𝑛𝐶1 + 2𝐽𝐶2 ≤ 𝐶, where C is the total budget, 𝐶1 is the cost of an additional Level 1 

student, and 𝐶2 is the cost of an additional Level 2 teacher for either the treatment or 

control group.  In the third part of [11], the optimal number of Level 2 teachers has been 

written in terms of the budget constraint. 

In the present study, I use RE to judge the robustness of designs from optimality 

as a result of misspecification of either ICC value.  However, in order to explore the 

robustness of optimal designs for models involving three levels of nesting, [6] is first 

used to expand [11] to account for multiple ICCs.   

In general, higher levels of RE are desirable.  RE exists on the range (0, 1]; thus, 

to operationalize high levels of RE, a cut-off of 𝑅𝐸 ≥ 0.90 is used.  This value is 

consistent to the cut-off used by Korendijk et al. (2010).  A value of 𝑅𝐸 = 0.90 suggests 

that an 11% (reciprocal of the RE) increase in sample size is needed to achieve a similar 

level of variance in the treatment effect estimate as a result of misspecification.   

Throughout the analysis, surface plots and cross-sectional plots of RE for 

estimates of Level 2 and Level 3 ICCs are used to determine how RE is impacted 

according to changes in costs and true variances.  To facilitate comparison of changes in 

costs and true variances, the range of misspecification of an ICC that maintains a high 

                                                 

2 The reader should note that the variance of the treatment effect is always based on the true 
(observed) ICC, 𝜌∗, regardless of the initial ICC estimate.  However, optimal sample sizes 𝑛𝑜𝑝𝑡∗ , 
𝐽𝑜𝑝𝑡∗ , 𝑛𝑜𝑝𝑡, and 𝐽𝑜𝑝𝑡 are based on true (starred) and initial (non-starred) ICC estimates, 
respectively.  The estimate 𝜌 does not appear in the equation because 𝑛𝑜𝑝𝑡 and 𝐽𝑜𝑝𝑡 are both 
functions of 𝜌. 
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level of RE is used.  This range is referred to as the “range of acceptable 

misspecification.”  Alternatively, for directional comparisons, the terms amount of 

acceptable under-specification and amount of acceptable over-specification are used.  

The specific contexts (i.e., costs and true variances) considered are described in more 

detail next. 

Assessment of the Robustness of the Optimal Design to Misspecification  
of One ICC 

To gauge the robustness of the optimal design to misspecification of one ICC 

value, RE for a three-level model is plotted across estimates of both 𝜌2 and 𝜌3 relative to 

𝜌2∗ and 𝜌3∗, and subject to the constraints that �̅�∗ + 𝜌2∗ + 𝜌3∗ = 1 and �̅� + 𝜌2 + 𝜌3 = 1.  

Using example ICCs from three-level models as a guide for 𝜌2∗ and 𝜌3∗ (see Table 2.1), I 

determine the ranges of acceptable misspecification, conditional on the correct 

specification of the other ICC.  I consider combinations of ICC values less than or equal 

to 0.30 using increments of 0.05.  For each case considered, costs for additional sample 

sizes are assumed to be the same to avoid distorting the graphs.  I use 𝐶2
𝐶1

= 5 and  𝐶3
𝐶2

= 5, 

which are examples of commonly assumed values to explore the impacts of cost 

(Konstantopoulos, 2009; Raudenbush, 1997). 

Specific relationships involving a combination of the two ICCs are also 

considered.  For example, because the sum of the ICCs is bounded above, I consider 

instances where 𝜌2∗ + 𝜌3∗ is large.  Additionally, in each source listed in Table 2.1 above, 

examples existed where the Level 2 ICC was smaller than the Level 3 ICC as well as 
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where the Level 2 ICC was bigger than the Level 3 ICC.  Thus, RE is explored for 𝜌2
∗

𝜌3∗
> 1 

as well as 𝜌2
∗

𝜌3∗
> 1.  

Next, the impact of varying costs is tested under fixed levels 𝜌2∗ = 0.15 and 

𝜌3∗ = 0.10. These particular true ICC values are chosen to represent a typical educational 

design.  Estimates of costs are also taken from the literature.  Raudenbush (1997) presents 

costs for a 2-level model as a ratio of Level 2 to Level 1 costs, which range 2-50, and 

Konstantopoulos (2009) presents costs for a three-level model as a ratio of Level 3 to 

Level 2 costs on a range of 5-20.  In this study I use cost ratios that range from 2-20 for 

𝐶2
𝐶1

, and from 2-10 for 𝐶3
𝐶2

. 

Additionally, general guidelines for maintaining high levels of RE with regard to 

misspecification of both ICCs are developed.  The representative ICC values 𝜌2∗ = .15, 

and 𝜌3∗ = .10 as well as costs,  𝐶2
𝐶1

= 5 and  𝐶3
𝐶2

= 5, are again assumed to minimize the 

repetition of the analysis.  Several important cases are considered.  First, each ICC is 

considered conditionally on the misspecification of the other.  For example, given over-

specification of 𝜌3 by 25% (i.e., 𝜌3 = 1.25𝜌3∗), it is possible to find the range for 𝜌2 that 

still maintains 𝑅𝐸 ≥ 0.90.   Examples with under-specification of each ICC by 20 and 

40% as well as over-specification of each ICC by 20, 60 and 100% are presented.   

Findings 

Using [6] and [11], the RE for a 3-level model is derived as, 
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𝑅𝐸 =
�
𝐽𝑜𝑝𝑡∗ 𝑛𝑜𝑝𝑡∗ 𝜌3∗ + 𝑛𝑜𝑝𝑡∗ 𝜌2∗ + �̅�∗

𝐾𝑜𝑝𝑡∗ 𝐽𝑜𝑝𝑡∗ 𝑛𝑜𝑝𝑡∗ �

�
𝐽𝑜𝑝𝑡𝑛𝑜𝑝𝑡𝜌3∗ + 𝑛𝑜𝑝𝑡𝜌2∗ + �̅�∗

𝐾𝑜𝑝𝑡𝐽𝑜𝑝𝑡𝑛𝑜𝑝𝑡
�

= ⎝

⎜
⎜
⎜
⎛

𝐽𝑜𝑝𝑡∗ 𝑛𝑜𝑝𝑡∗ 𝜌3∗ + 𝑛𝑜𝑝𝑡∗ 𝜌2∗ + �̅�∗

�
𝐶
2

𝐶1𝐽𝑜𝑝𝑡∗ 𝑛𝑜𝑝𝑡∗ + 𝐶2𝐽𝑜𝑝𝑡∗ + 𝐶3
� 𝐽𝑜𝑝𝑡∗ 𝑛𝑜𝑝𝑡∗

⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛

𝐽𝑜𝑝𝑡𝑛𝑜𝑝𝑡𝜌3∗ + 𝑛𝑜𝑝𝑡𝜌2∗ + �̅�∗

�
𝐶
2

𝐶1𝐽𝑜𝑝𝑡𝑛𝑜𝑝𝑡 + 𝐶2𝐽𝑜𝑝𝑡 + 𝐶3
� 𝐽𝑜𝑝𝑡𝑛𝑜𝑝𝑡

⎠

⎟
⎟
⎟
⎞

. [12] 

 

In [12], the designs (𝑛𝑜𝑝𝑡∗ , 𝐽𝑜𝑝𝑡∗ , 𝐾𝑜𝑝𝑡∗ ) and (𝑛𝑜𝑝𝑡, 𝐽𝑜𝑝𝑡, 𝐾𝑜𝑝𝑡) are optimal sample sizes 

derived by maximizing power given 𝜌2∗ and 𝜌3∗, or 𝜌2 and 𝜌3, respectively, subject to the 

budget constraint [7].  In the third part of [12], the optimal number of schools has been 

written in terms of the budget constraint.  Furthermore, specific equations for optimal 

sample sizes were detailed above ([8] – [10]); using these equations, [12] can be rewritten 

as follows, 
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[13] 

 

Figure 2.1 is a surface plot of [13], with 𝐶3
𝐶2

= 𝐶2
𝐶1

= 5, 𝜌2∗ = .15, and 𝜌3∗ = .10 

which is used to illustrate the relationship between 𝜌2 and 𝜌3 in terms of RE. 3  The 

height of the surface is RE. RE reaches a maximum of 1 when both ICC estimates equal 

their true values.  However, when either 𝜌2 ≠ 𝜌2∗ or 𝜌3 ≠ 𝜌3∗, the variance of the 

treatment effect estimate is not minimal in the denominator for [13], and therefore 

𝑅𝐸 < 1.   

  

                                                 

3 Notice that by standardizing the numerator and denominator by 𝐶2, all references to cost 
can be written as ratios of costs between adjacent levels, which are assumed constants.  
Additionally, total cost is arbitrary, as it appears equally in the numerator and denominator. 
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Note. In this example, it is assumed 𝜌2∗ = .15,  𝜌3∗ = .10,  𝐶2
𝐶1

= 5, and  𝐶3
𝐶2

= 5. 

Figure 2.1. RE surface as a function of 𝜌2 and 𝜌3. 

 
It is clear from [13] the range of misspecification for ICCs that maintains an 

acceptable range of RE is impacted by context (i.e., costs and true variances).  Below, 

several contextual factors that influence RE are explored: correct specification of one 

ICC, important relationships involving both ICCs, relative costs of additional 

participants, and simultaneous misspecification of both ICCs. 

Correct Specification of One ICC 

As shown in Figure 2.1, RE declines more rapidly for under-specification of 𝜌2∗ 

and 𝜌3∗ than for over-specification.  This is more easily illustrated through a contour map.  

Figure 2.2 illustrates the same example, only in two dimensions, with RE represented by 

0

1

ρ2 

RE
 

ρ3 
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shading.  In this plot, only values with 𝑅𝐸 ≥ 0.90 are shown.  The maximum RE is 

highlighted at the true ICC values.   

 

Note. In this example, it is assumed 𝜌2∗ = .15,  𝜌3∗ = .10,  𝐶2
𝐶1

= 5, and  𝐶3
𝐶2

= 5. 

Figure 2.2. RE contour map as a function of 𝜌2 and 𝜌3 for 𝑅𝐸 ≥ 0.90. 
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When 𝜌3 = 𝜌3∗, the range of acceptable misspecification of 𝜌2∗ is shown using a 

vertical line.  This line can be divided into over-specification (above the true value), and 

under-specification (below the true value).  When 𝜌2 = 𝜌2∗, the range of acceptable 

misspecification of 𝜌3∗ is represented by a horizontal line.  This line can also be divided 

into over-specification (right of the true value), and under-specification (left of the true 

value). Clearly there is more shaded area above (representing over-specification of 𝜌2∗) 

and to the right (representing over-specification of 𝜌3∗) of the true value, than below or to 

the left (representing under-specification of the respective values). 

The empirical literature (see Table 2.1) suggests that 𝜌2∗ and 𝜌3∗ typically range 

from 0.05 to 0.30.  Thus, using an increment of 0.05, the range of acceptable 

misspecification is explored for combinations of 𝜌2∗ and 𝜌3∗.   

Table 2.2 shows the amount of acceptable under-specification and over-

specification for the various combinations of 𝜌2∗ and 𝜌3∗; several conclusions are apparent.  

First, for estimates 𝜌2 and 𝜌3, the range of acceptable misspecification is more influenced 

by its corresponding true value, 𝜌2∗ and 𝜌3∗, respectively.  Next, the acceptable amount of 

under-specification for the ICCs does not vary considerably for different 𝜌2∗ and 𝜌3∗.  

𝑅𝐸 ≥ 0.90 is maintained for under-specification of both ICC values by up to 60% for 

smaller values of 𝜌2∗ and 𝜌3∗, and by up to 80% and 70% for larger values of 𝜌2∗ and 𝜌3∗, 

respectively.  Finally, across the range of true values considered, there is significantly 

more variance in the amount of acceptable over-specification with regard to 𝜌2∗ than 𝜌3∗ .  

Depending on 𝜌2∗ and 𝜌3∗, the amount of acceptable over-specification in the estimate 𝜌2 

may be as little as 100% or as much as 480%, while the amount of acceptable over-
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specification in the estimate 𝜌3 may be as little as 93% or as much as 240%.  In general, 

for larger 𝜌2∗ and 𝜌3∗, the amount of acceptable over-specification for either of the estimate 

is smaller.   

 
Table 2.2 

Ranges of Acceptable Misspecification for Estimates 𝜌2 and 𝜌3 

 
𝜌2 

   
Amount of acceptable under-specification 

(%)  
Amount of acceptable over-specification  

(%) 
 𝜌3∗   𝜌3∗ 
𝜌2∗ 0.05 0.10 0.15 0.20 0.25 0.30  𝜌2∗ 0.05 0.10 0.15 0.20 0.25 0.30 

0.05 80 80 80 80 80 80  0.05 340 380 420 440 460 480 
0.10 70 70 70 80 80 80  0.10 260 280 290 300 300 310 
0.15 73 73 73 73 73 73  0.15 207 220 227 227 227 220 
0.20 70 70 75 75 75 75  0.20 170 180 180 180 175 165 
0.25 68 72 72 72 72 72  0.25 144 148 148 144 136 128 
0.30 70 70 70 70 73 73  0.30 123 123 120 117 110 100 
               

𝜌3 
   

Amount of acceptable under-specification 
(%)  

Amount of acceptable over-specification  
(%) 

 𝜌3∗   𝜌3∗ 
𝜌2∗ 0.05 0.10 0.15 0.20 0.25 0.30  𝜌2∗ 0.05 0.10 0.15 0.20 0.25 0.30 

0.05 60 70 67 70 68 70  0.05 220 200 180 155 136 120 
0.10 60 70 67 70 68 67  0.10 240 200 180 155 136 117 
0.15 60 70 67 70 68 67  0.15 240 200 173 150 132 113 
0.20 60 70 67 70 68 67  0.20 240 200 173 150 128 107 
0.25 60 70 67 70 68 67  0.25 240 200 173 145 120 100 
0.30 60 70 67 70 68 67  0.30 240 200 167 140 116 93 
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Important Relationships Involving Both ICCs 

Since the true ICC values 𝜌2∗ and 𝜌3∗ are significant drivers of the shape of the RE 

surface, certain relationships involving both of these values also warrant exploration.  

Below, two important cases are considered: 𝜌2∗ + 𝜌3∗ large and 𝜌2
∗

𝜌3∗
<> 1. 

First, because ICCs are percentages, 𝜌2∗ + 𝜌3∗ must be greater than 0, and cannot 

sum to more than 1.  In the present study, actual estimates of educational ICC values 

from the literature have motivated examples with smaller true ICC values.  However, as 

the sum of 𝜌2∗ and 𝜌3∗ gets larger, due to a ceiling effect, RE will decline more rapidly for 

over-specification of 𝜌2 and 𝜌3 than for under-specification.   

Another important relationship to consider is 𝜌2
∗

𝜌3∗
 (where the true ICCs are small, as 

is typically true in education.)  As a benchmark, consider the case when 𝜌2
∗

𝜌3∗
= 1, or 

equivalently, when 𝜌2∗ = 𝜌3∗  Both the amount of acceptable under-specification and the 

amount of acceptable over-specification are larger for 𝜌2∗ than for 𝜌3∗ (see Table 2.2); 

however, the differences in these amounts for estimates 𝜌2 and 𝜌3 vary according to the 

size of the true values.  For larger true values (e.g., 𝜌2∗ = 𝜌3∗ = 0.30), the ratio between 

the amount of acceptable under-specification and over-specification of estimates 𝜌2 and 

𝜌3 is small, approximately 1.08 for under-specification and 1.09 for over-specification.  

For smaller true values (e.g., 𝜌2∗ = 𝜌3∗ = 0.05), the ratios are bigger, approximately 1.33 

for under-specification and 1.55 for over-specification. 
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Now consider the case when 𝜌2
∗

𝜌3∗
< 1.  For example, let 𝜌2∗ = 0.10 and 𝜌3∗ = 0.25.  

A similar result to the benchmark example is found.  The amount of acceptable under-

specification as well as the amount of acceptable over-specification are larger when 

estimating 𝜌2 than when estimating 𝜌3.  The ratio in the amount of acceptable under-

specification is 1.18, while the ratio in the amount of acceptable over-specification is 

2.21.  

For the case when 𝜌2
∗

𝜌3∗
> 1, a different result is found.  Consider a situation with 

𝜌2∗ = 0.25 and 𝜌3∗ = 0.10.  Now, the amount of acceptable under-specification is larger 

when estimating 𝜌2 than when estimating 𝜌3, but the amount of acceptable over-

specification is smaller when estimating 𝜌2 than when estimating 𝜌3.  The ratio in the 

amount of acceptable under-specification is 1.03, while the ratio in the amount of 

acceptable over-specification is 0.74.  

Relative Costs of Additional Participants 

Figure 2.3 shows how RE is impacted for specific ICCs under varying cost 

structures, assuming 𝜌2∗ = 0.15 and 𝜌3∗ = 0.10.  Within each row, the cost for an 

additional Level 2 teacher relative to the cost of a Level 1 student increases from left to 

right.  Similarly, within each column, the cost for an additional Level 3 school relative to 

the cost of a Level 2 teacher increases from top to bottom.   
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Note. In this example, it is assumed 𝜌2∗ = .15 and 𝜌3∗ = .10. 

Figure 2.3. RE contour maps under various cost ratios, 𝐶2
𝐶1

 and  𝐶3
𝐶2
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Comparing the different panels in Figure 2.3, it is clear that changes in the relative 

cost of additional participants across levels impacts the acceptable range of 

misspecification of ICCs.  However, the overall impact is relatively small.  This is 

illustrated by comparing the examples depicted in panels A and I.  The acceptable 

amount of under-specification of 𝜌2∗ and 𝜌3∗ does not change; it is 73% and 70%, 

respectively, in both examples.  The acceptable amount of over-specification of 𝜌2∗ grows 

from 193% for the example in panel A to 220% for the example in panel I, while the 

acceptable amount of over-specification of 𝜌3∗ shrinks from 260% for the example in 

panel A to 230% for the example in panel I.  Neither a ten-fold increase in the cost of an 

additional Level 2 teacher relative to the cost of a Level 1 student, nor a five-fold 

increase in the cost of an additional Level 3 school relative to the cost of a Level 2 

teacher changes the amount of acceptable under-specification of 𝜌2∗ and 𝜌3∗ by much.  

These large changes in cost have at most a 14% impact the amount of acceptable over-

specification of 𝜌2∗ and 𝜌3∗. 

Simultaneous Misspecification of Both ICCs 

Earlier, the acceptable range of misspecification for each ICC was considered 

conditionally on the correct specification of the other.  In this section the range of 

acceptable misspecification for each ICC is considered conditionally on the 

misspecification of the other.   

Table 2.3 presents the amount of over-specification and under-specification for 

each ICC estimate conditional on over-specification and under-specification of the other.  
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For convenience, it is again assumed that 𝜌2∗ = .15, and 𝜌3∗ = .10, while cost ratios are 

also held constant with  𝐶2
𝐶1

= 5 and  𝐶3
𝐶2

= 5.  The examples considered include 20 and 

40% under-specification and 20, 60 and 100% over-specification.   

 
Table 2.3 

Respective Ranges of Acceptable Misspecification for Estimates 𝜌2 and 𝜌3 Conditional 
on Misspecification of 𝜌3∗ and 𝜌2∗ 
 

Acceptable Range of Misspecification for 𝜌3|𝜌2 
   

  

Range of 
misspecification for  
𝜌3 where 𝑅𝐸 ≥ 0.90 

 Amount of  
under-misspecification and over-

misspecification of  
𝜌3 where 𝑅𝐸 ≥ 0.90 

𝜌2 
Amount of 

Misspecification 
Lower  
Bound 

Upper  
Bound 

 Under-
Specification 

Over-
Specification 

0.09 40% under 0.03 0.26  70% 160% 
0.12 20% under 0.03 0.29  70% 190% 
0.15 None 0.03 0.30  70% 200% 
0.18 20% over 0.04 0.31  60% 210% 
0.24 60% over 0.04 0.29  60% 190% 
0.30 100% over 0.04 0.28  60% 180% 

       
Acceptable Range of Misspecification for 𝜌2|𝜌3 

   

  

Range of 
misspecification for  
𝜌2 where 𝑅𝐸 ≥ 0.90 

 Amount of  
under-misspecification and over-

misspecification of  
𝜌2 where 𝑅𝐸 ≥ 0.90 

𝜌3 
Amount of 

Misspecification 
Lower 
Bound 

Upper 
Bound 

 Under-
Specification 

Over-
Specification 

0.06 40% under 0.04 0.41  73% 173% 
0.08 20% under 0.04 0.46  73% 207% 
0.10 None 0.04 0.48  73% 220% 
0.12 20% over 0.04 0.48  73% 220% 
0.16 60% over 0.05 0.45  67% 200% 
0.20 100% over 0.07 0.40  53% 167% 
 
Note. In this example, it is assumed 𝜌2∗ = .15,  𝜌3∗ = .10,  𝐶2

𝐶1
= 5, and  𝐶3

𝐶2
= 5. 
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For both 𝜌2 and 𝜌3, the range of misspecification does not change much for small 

amounts of conditional misspecification of the other ICC.  For under-specification and 

over-specification of 𝜌2∗ and 𝜌3∗ by 20%, the respective amount of acceptable under-

specification and over-specification of the other ICC is nearly identical to when 

specification is correct.  However, when misspecification is large for one ICC, the range 

of acceptable misspecification for the other ICC can be dramatically reduced.  This is 

particularly true for under-specification more extreme than 40% and over-specification 

more extreme than 100%.   

Figure 2.4 depicts the example above to illustrate how the range of acceptable 

misspecification changes for various combinations of conditional under-specification and 

conditional over-specification.  When under-specification and over-specification of one 

ICC becomes extreme, the slope of the boundary of RE is steep relative to the 

corresponding ICC axis, and small amounts of additional misspecification for one ICC 

can produce a large change in the range of acceptable misspecification for the other ICC.  

In contrast, when misspecification is minimal, the slope of the boundary where 

𝑅𝐸 = 0.90 is flat relative to the corresponding ICC axis, and small amounts of additional 

misspecification for one ICC do not produce a significant change in the range of 

acceptable misspecification for the other ICC. 
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Note. In this example, it is assumed 𝜌2∗ = .15,  𝜌3∗ = .10,  𝐶2
𝐶1

= 5, and  𝐶3
𝐶2

= 5. 

Figure 2.4. Graphical depiction of the respective ranges of acceptable misspecification 
for estimates 𝜌2 and 𝜌3 conditional on misspecification of 𝜌3∗ and 𝜌2∗. 

Discussion 

As evaluators begin to appropriately account for additional levels of nesting with 

larger and more sophisticated CRTs, the need to understand the implications of parameter 
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misspecifications is heightened.  Few empirical estimates exist of parameter values for 

three-level models, and therefore CRTs with three levels are prone to misspecification.  

When misspecification occurs, the resulting CRT can be underpowered and effectively 

useless, or overpowered and waste important resources.  In a discipline like education 

where resources for evaluation are scarce, properly powering a design is essential 

practice.  Furthermore, according to established standards, evaluators are charged with 

using cost-effective methods (Yarbrough, Shulha, Hopson, & Caruthers, 2011), and by 

definition, a relatively inefficient design is not cost-effective.  

Given the shape of the RE curve in two-dimensions (Korendijk et al., 2010), the 

resulting shape of the RE surface in three dimensions might be expected; a similar shape 

can be seen in the profile along each axis.  Grounding the analysis to correspond to 

empirical estimates of ICCs in education, this study concludes that for both 𝜌2∗ and 𝜌3∗, the 

amount of acceptable over-specification is much larger than the amount of acceptable 

under-specification.  For example, for representative true ICC values 𝜌2∗ = 0.15 and 

𝜌3∗ = 0.10 (assuming 𝐶2
𝐶1

= 5 and  𝐶3
𝐶2

= 5), the range of acceptable misspecification for 

estimate 𝜌2 is from 73% under-specified to 220% over-specified. For estimate 𝜌3 this 

range is from 70% under-specified to 200% over-specified.  Additionally, in this study it 

has be shown that when true ICC values are equivalent, the range of acceptable 

misspecification is larger for estimate 𝜌2 than for estimate 𝜌3.   

In this study, small fluctuations in costs or true ICC values appear to have little 

impact on the range of misspecification that maintains a high level of RE.  Hence, in most 

situations optimal designs are quite robust to misspecification of an ICC.  However, when 
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costs or true ICC values are extreme, the acceptable range of misspecification of either 

ICC value can shrink dramatically. 

Careful inspection of Figure 2.4 reveals that the range of acceptable 

misspecification for estimates 𝜌2 and 𝜌3 is not necessarily maximal where 𝜌2 = 𝜌2∗ =

0.15 and 𝜌3 = 𝜌3∗ = 0.10.  Rather, in this case, slight over-specification of 𝜌2∗ yields a 

wider range of acceptable misspecification of 𝜌3.  Such a fact could be useful for 

evaluators estimating variances in situations where variance at one level is believed to be 

larger than variance at the other level.  However, as the shape of the contour map can 

change substantially depending on the values of the true ICCs, this is not always the case. 

Evaluators designing CRTs with three-levels in education face the challenge of 

not having precise estimates of variances across the different levels of nesting.  However, 

the results of this study suggest the additional level of nesting provides increased 

cushioning for maintaining a high level of RE if one of the two estimates is accurate.  

Korendijk et al. (2010) suggest an acceptable range of misspecification is defined by 75% 

under-specification and 175% over-specification.  Using a representative example with 

𝜌2∗ = 0.15, 𝜌3∗ = 0.10, 𝐶2
𝐶1

= 5 and  𝐶3
𝐶2

= 5, conditional on the correct specification of 

𝜌2 = 𝜌2∗, the amount of acceptable under-specification for estimate 𝜌3 is a bit smaller, 

70%, than the cut-off proposed for a two-level design, but the amount of acceptable over-

specification for estimate 𝜌3, 200%, is 14% larger.  Likewise, using the same example, 

conditional on the correct specification of 𝜌3 = 𝜌3∗, the amount of acceptable under-

specification for estimate 𝜌2 is only slightly smaller, 73%, than the cut-off proposed for a 
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two-level design, but the amount of acceptable over-specification for estimate 𝜌2, 220%, 

is 26% bigger.   

Unfortunately, misspecification is likely to occur on both ICCs, and this 

negatively impacts the range of acceptable misspecification for the ICCs.  However, for 

the same representative sample, this study demonstrates that only when one ICC is under-

specified by more than 40% or over-specified by more than 100% does the range of 

under-specification and over-specification for the other ICC drop to the levels found in 

the two-level model. 

Application 

To illustrate the findings of this study, consider the following example.  Suppose 

an evaluator is asked to assess the impact of a new biology curriculum by a state agency.  

The new biology curriculum will be implemented for tenth graders in schools across the 

state.  The evaluator is concerned about the threat of contamination and therefore plans to 

use a three-level CRT with students nested in teachers nested in schools for the 

curriculum study.  The outcome measure will be student scores on a standardized science 

test for grade 10. 

To design the study the evaluator needs to conduct a power analysis by estimating 

various design parameter values.  Suppose the evaluator wants the study to have power of 

at least 0.80, and be able to detect an effect of at least 0.20 with 95% confidence.  For 

simplicity of explanation, assume that the evaluator does not have access to a covariate to 
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explain variance.4  Assume the cost structure for implementing the CRT has 𝐶2
𝐶1

= 5 and  

𝐶3
𝐶2

= 5. The evaluator next must estimate the percentage of total variance that occurs 

among teachers and among schools. 

Assume the ICC estimates used by the evaluator for this hypothetical study are 

taken from Zhu, Jacob, Bloom, and Xu (2012), who used North Carolina end-of-course 

data to develop empirical estimates of ICCs for studies of biology.  According to Zhu et 

al. (2012), an estimate of the school-level (Level 3) ICC is 0.077 and teacher-level (Level 

2) ICC is 0.293. Using equations [8] - [10], the evaluator will estimate the optimal sample 

sizes5 for students, teachers, and schools as: 

 

 𝑛𝑜𝑝𝑡 = √5�
(1 − 0.293 − 0.077)

0.293
= 3.279 [14] 

   

 𝐽𝑜𝑝𝑡 = √5�
0.293
0.077

= 4.362 [15] 

   

 𝐾𝑜𝑝𝑡 =

𝐶
2𝐶2

0.2 ∗ 3.279 ∗ 4.362 + 4.362 + 5
=

𝐶
24.445𝐶2

. 

 

[16] 

                                                 

4 Zhu, Jacob, Bloom, and Xu (2012) provide estimates of R2 values for a school-level and 
student-level covariates using end-of-course assessments from North Carolina from 2005.  Their 
estimates of variance explained by a school-level covariate are 0.675 at the school-level, 0.003 at 
the classroom-level, and 0.000 at the student-level.  Alternatively, they estimate that a student-
level covariate could explain 0.229, 0.693, and 0.310% of the variance, respectively, at the 
school-, classroom-, and student-level.  Thus, use of a covariate would significantly reduce the 
number of schools needed in the study. 

5 Here I assume that fractional units are acceptable for demonstrative purposes.  When 
assuming a balanced design, fractional units are theoretically impossible in an educational setting.  
However, if the requirement of balance is relaxed, then the harmonic mean number of units is 
typically used as the sample size measure, and may be fractional. 
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Clearly the optimal design depends on the budget.  With a larger budget, the evaluator 

can include more schools.  Referring to Konstantopoulos (2009), for the desired power 

level of 0.80 with significance level 0.05, the design will need 149.68 schools, and hence 

a total of 4,281.39 participants in order to detect the desired effect. The evaluation will 

proceed with the experiment under sample sizes ([14] - [16]), and when the experiment 

has concluded the evaluator will learn the true ICCs (recall that no covariates are used in 

this example.) 

Suppose the true ICCs are 𝜌2∗ = 0.15, 𝜌3∗ = 0.10.  These values mean the original 

estimates represent under-specification of the true Level 3 ICC by approximately 20% 

and over-specification of the true Level 2 ICC by approximately 100%. At first glance, 

the North Carolina estimates do not appear to translate well for this particular study.  

Using these estimates for the ICCs, misspecification will occur in both ICCs. However, 

according to the analysis (see Table 2.3), misspecification, even at these levels, will still 

yield a reasonably high level of RE.  This can also be seen by looking at Figure 2.4, 

where the intersection of the vertical “20% Under” line and the horizontal “100% Over” 

line is still in the shaded region.  The optimal sample sizes given the true variance and 

cost structure are   

 𝑛𝑜𝑝𝑡∗ = √5�
(1 − 0.15 − 0.10)

0.15
= 5 [17] 

   

 𝐽𝑜𝑝𝑡∗ = √5�
0.15
0.10

= 2.739 [18] 
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 𝐾𝑜𝑝𝑡∗ =

𝐶
2 ∗ 𝐶2

0.2 ∗ 5 ∗ 2.739 + 2.739 + 5
=

𝐶
20.954𝐶2

. [19] 

 

For the desired power level of 0.80 to detect an effect of size 0.20, with significance level 

0.05, the design will need 166.41 schools, and therefore a total of 4,557.36 participants.  

If the true ICCs are as described above, RE will be less than one because the 

optimal sample sizes are determined by the budget, which in this example is dictated by 

[16].  To illustrate this point, suppose 𝐶2 = 1.  Then, for the model with incorrectly 

specified ICCs, C=3,658.83 in order to achieve power of 0.80, but for the model with 

correctly specified ICCs, only C=3,487.06 was needed to achieve power of 0.80.  The 

difference in budget suggests inefficiency.  In effect, more resources to achieve the 

desired power level were used than needed because sample size estimates for the true 

case are derived using the wrong ICC values.  Under correctly specified ICCs, the 

additional resources could have been allocated optimally, which would result in no 

change to equations [14] and [15] (these equations are based on the cost ratios between 

levels and the ICCs which are constant in the two cases), but equation [16] will instead be 

 𝐾𝑜𝑝𝑡 =
3,658.83

2 ∗ 1
0.2 ∗ 5 ∗ 2.739 + 2.739 + 5

= 174.61. [20] 

 
Then [17], [18], and [20], represent the correct specification with the true ICCs given the 

budget dictated by the original estimates, and the variance of the treatment effect estimate 

for this model is 0.0024.  The variance of the treatment effect estimate for [14], [15], and 

[16] and the true ICCs is 0.002496.  Thus, RE=0.9614, suggesting that a (1/.9614=1.04) 
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4% larger sample size is needed in order to achieve the same level in the variance of the 

treatment effect estimate. 

Closing Remarks 

Although it appears there is a considerable amount of flexibility for evaluators to 

estimate ICC values for a three-level CRT, and more flexibility than in a two-level 

model, evaluators should still strive to properly estimate ICCs by developing more 

rigorous empirical estimates.  Misspecification of parameter values, even when a 

reasonably high level of RE is maintained, still is an inefficient design.  When CRTs are 

efficiently designed, resources are saved.  The high cost of conducting a CRT means that 

misspecification of design parameter values can translate into significant waste, through 

over-powering or under-powering a study.  With efficient designs, these resources can be 

directed toward more educational programming, or other deserving research and 

evaluation efforts. It is important that designs are powered precisely so that research 

dollars are maximized to grow the evidence-base. 
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CHAPTER III 

AN EMPIRICAL INVESTIGATION OF VARIANCE DESIGN PARAMETERS 
FOR PLANNING CLUSTER-RANDOMIZED TRIALS  

OF SCIENCE ACHIEVEMENT6 

In the past decade, there has been a dramatic shift in educational policy towards 

the use of randomized trials (RTs) to test the effectiveness of educational programs, 

policies, and practices. Given the natural clusters in the U.S. education system involving 

students nested within classrooms, classrooms nested within schools, and schools nested 

within districts, and the fact that interventions are typically administered at the 

classroom-, school-, or district-level, a specific category of RTs, cluster-randomized trials 

(CRTs), are common (Bloom, 2005; Boruch & Foley, 2000; Cook, 2005). CRTs rely on 

random assignment of intact clusters to treatment conditions, such as the classroom or 

school (Raudenbush & Bryk, 2002).  

 The rise of CRTs to determine the effectiveness of educational interventions is 

clear from funding trends by agencies such as the Institute of Education Sciences (IES). 

Since 2002, the National Center for Education Research (NCER) within the IES has 

funded more than 100 CRTs (Institute of Education Sciences, 2013b; Spybrook & 

Raudenbush, 2009). Compare this to the few CRTs funded prior to 2002 by the 

Department of Education and the shift is overwhelming (Mosteller & Boruch, 2002). The 

                                                 

6 The most recent version of this chapter has been accepted for publication with the peer-
reviewed journal Evaluation Review by SAGE. 
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majority of these CRTs focus on examining the effectiveness of reading and mathematics 

programs and practices. The studies focus on all grade levels ranging from pre-K through 

high school, with the majority of them focusing on pre-K and the elementary grades. We 

have also started to see more CRTs of interventions to boost science achievement from 

major grant funders. For example, the What Works Clearinghouse lists 13 CRTs for 

science achievement started since 2005 in its registry of RTs (Institute of Education 

Sciences, 2013a). 

In order for CRTs to yield high-quality evidence of whether a program is 

effective, among other things, such studies must be well-designed with adequate power to 

detect a treatment effect of a reasonable magnitude. The field has made substantial 

progress in terms of how to calculate statistical power for CRTs (Donner & Klar, 2000; 

Raudenbush, 1997; Raudenbush & Liu, 2000; Raudenbush, Martinez, & Spybrook, 2007; 

Schochet, 2008).  One of the key concepts emerging from this line of investigation is the 

importance of good design parameters to use in the power analyses, noting that the power 

analysis is only as accurate as the design parameters. That is, if any of the design 

parameters are inaccurate, then too many or too few schools may be recruited resulting in 

unnecessary costs or an underpowered trial. 

As a result, there has been a growing body of literature in the past several years 

providing empirical estimates of design parameters necessary for statistical power 

calculations for CRTs in education.  Aside from meta-analytical work to estimate effect 

sizes, and recent work by Kelcey and Phelps (2013), which expands the discussion to 

teacher-level outcomes, the literature on empirical estimates of design parameters has 
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largely revolved around using student outcomes to estimate intraclass correlations (ICCs) 

and percent of variance explained (R2) by pretest and demographic covariates.  Early 

endeavors focused on estimating these parameters for two level models using national 

longitudinal survey data and data from individual districts or program evaluations 

(Bloom, Bos, & Lee, 1999; Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 

2007).  More recent work has utilized entire state databases of student achievement as 

well as program evaluation data to estimate ICCs and R2 values for models with three 

levels (Hedberg & Hedges, 2011; Jacob, Zhu, & Bloom, 2010; Konstantopoulos, 2009; 

Zhu, Jacob, Bloom, & Xu, 2012).   

The majority of this literature has emphasized empirical estimates for elementary, 

middle, and high school students and is predominately focused on reading and 

mathematics outcomes. Zhu et al. (2012) briefly examined design parameters for science 

outcomes. However, this study was limited to end-of-class tests for specific science 

classes, i.e., biology, chemistry, and was restricted to high school grades. We are unaware 

of any systematic investigations into design parameters for science outcomes across 

elementary, middle, and high school grades. In addition, we are unaware of any estimates 

that use a standardized science test as the outcome, which is a common outcome in 

intervention studies. The lack of empirical estimates of design parameters for science 

outcomes makes it challenging for researchers to design CRTs to test science 

interventions. Researchers are often forced into using empirical estimates for 

mathematics and reading design parameters since none exist for science outcomes. 
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However, it is unclear whether this borrowing of empirical estimates of design 

parameters is appropriate.  

Challenges with Borrowing ICCs 

Currently we lack empirical estimates of ICCs for science outcomes to know 

whether reading and mathematics ICCs are a good proxy for science. To further 

complicate things, estimates of reading and mathematics ICCs are often inconsistent. 

Drawing from the literature of available ICC estimates, Table 3.1 provides a summary of 

the unconditional ICCs for grades 5, 8, 10, and 11 for reading and mathematics (ICCs for 

reading in grade 11 are not reported by any source) for models with two levels. We 

specifically report for grades 5, 8, 10, and 11 because unlike reading and mathematics, 

science is not tested annually. In fact, only 3 states tested science annually in grades 3 

through 12 whereas 18 states tested science in grades 5, 8, 10, and 11 (Time4Learning, 

2013). Of the remaining states, a combination of grades 5, 8, 10, and 11 are the most 

commonly tested. From Table 3.1 it is clear that in many cases there is inconsistency in 

the unconditional ICCs for reading and mathematics. For example, consider grade 10 for 

the study conducted by Hedges and Hedberg (2007).  They found an ICC in grade 10 of 

0.234 for mathematics and 0.183 for reading. These two values are quite different and 

would lead to different power calculations. For example, suppose a researcher believes 

the science ICC is likely to be similar to mathematics and chooses to borrow this value. If 

in fact the ICC is more similar to reading, the researcher overestimated the ICC initially 

and may have an overpowered study. If the researcher borrowed from reading when in 

fact the ICC is more similar to mathematics, the initial ICC would be too small resulting 
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in an underpowered study. The only case in which it would not make a difference if the 

researcher borrowed from reading or mathematics is if the estimates are the same. This 

was only the case for Massachusetts, grade 5. 

 
Table 3.1 
 
Empirically Estimated ICCs from Two-Level Models with Students Nested in Schools 
 

Sourcea Mathematics  Reading 
5 8 10 11  5 8 10 

National Educational Longitudinal Study, 
1988 (Hedges & Hedberg, 2007) 
 

0.216 0.185 0.234 0.138  0.263 0.197 0.183 

District A 
(Bloom et al., 2007) 
 

0.20 0.16 0.13   0.25 0.18 0.15 

District B 
(Bloom et al., 2007) 
 

0.19     0.15   

District C 
(Bloom et al., 2007) 
 

0.17 0.27 0.25   0.20 0.23 0.29 

District E 
(Bloom et al., 2007) 
 

0.18     0.12   

Longitudinal Evaluation of School Change 
and Performance (Schochet, 2008) 
 

0.18     0.21   

21st Century Community Learning Centers 
Program (Schochet, 2008) 
 

0.17     0.09   

Massachusetts Department of Education  
(Hedberg & Hedges, 2011) 
 

0.239 0.276    0.239 0.249  

Florida Elementary Schools Data 
(Zhu et al., 2012) 
 

0.132     0.109   

North Carolina Elementary Schools Data  
(Zhu et al., 2012) 
 

0.118     0.090   

Hawaii State Assessment Total Reading b 
(Brandon et al., 2013) 

     0.177 0.137 0.136 

 
a Decimal length of reported ICC values varies by source, and is preserved in this summary table. 
b Hawaii State Assessment Total Reading ICCs are a 95% confidence interval upper-bound. 
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It is also important to note that the ICCs within subject vary across the studies. 

Looking down the column for grade 5, reading ICCs range 0.09-0.26, while ICCs in 

mathematics range 0.12-0.24. The data source for the studies differs which may explain 

some of this variability. The data source for the studies include: a collection of national 

samples (Hedges & Hedberg, 2007), all districts in a single state (Brandon, Harrison, & 

Lawton, 2013; Hedberg & Hedges, 2011; Zhu et al., 2012), single districts in multiple 

states (Bloom et al., 2007), and multiple districts in multiple states (Schochet, 2008). 

Hence it is critical that a researcher carefully considers the most relevant data source in 

selecting the appropriate ICC.  

Challenges with Borrowing R2 Values 

The importance of the use of covariate sets to increase the precision of a study has 

been well established. The covariate set that rises to the top for mathematics and reading 

outcomes in terms of the explanatory power is the one-year lagged same subject, student-

level pretest (Bloom et al., 2007; Hedges & Hedberg, 2007; Zhu et al., 2012). The key 

challenge for science studies is that the one-year lagged same subject, student-level 

pretest often does not exist. Assuming the testing pattern of grades 5, 8, 10, and 11, a 

one-year lagged same subject, student-level pretest would only be available for grade 11. 

For grade 10, a two-year lag would be the closest available student-level pretest, for 

grade 8, a three-year lag, and there is no available student-level pretest for grade 5. 

Bloom et al. (2007) show that for mathematics and reading, the explanatory power of 

student-level pretests reduces slightly as the number of years between pretest and posttest 
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increases. Hence it is critical to examine the specific covariate sets available for science 

to determine which are the most powerful. 

Other covariate sets besides the one-year lagged same subject student-level pretest 

have also been explored in reading and mathematics. Researchers have found that the 

explanatory power of school-level pretests can be nearly as effective as student-level 

pretests (Bloom et al., 2007; Gargani & Cook, 2005; Jacob, Goddard, & Kim, 2014). 

Also, the use of a cross-subject pretest covariate (i.e., reading achievement pretest with a 

mathematics achievement outcome) was found to be helpful. For science, school-level 

science pretests are available for all grades and thus may offer a powerful alternative for 

grades in which there is no one-year lagged student-level science pretest. Cross-subject 

pretests may also be important for science studies since a one-year lagged student-level 

mathematics and reading pretest is available for all grades.  

Research Questions 

As noted above, no systematic investigations of science ICCs exists. Hence the 

first question we ask is: 

1. What are unconditional ICCs for science achievement outcomes? 

Given the practice of borrowing ICCs from reading and mathematics, we are also 

interested in how science ICCs compare to mathematics and reading ICCs. As we saw in 

Table 3.1, ICCs can vary greatly across data sources. Hence we use the same data set to 

calculate reading and mathematics ICCs in order to address our second research question: 

2. How do the empirical estimates of ICCs for science achievement compare to 

those for reading and mathematics achievement? 
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Finally, we know the importance of the use of covariate sets to increase the power 

of a study. The unique testing patterns for science do not allow for a one-year lagged 

same subject, student-level pretest for all grades. However, one-year lagged school-level 

pretests and one-year cross subject student-level pretest are available for all grades. 

Hence our third question is: 

3. For the grade levels in which science is tested, which covariate sets explain 

the most variance? 

The remainder of this paper is organized as follows. First, we provide a 

description of the data used to address the three focal research questions. Then we 

describe the two models we use to estimate the parameters: the two-level hierarchical 

linear model (HLM) with students nested within schools and the three-level HLM with 

students nested within schools nested within districts. In the results section, we present 

our estimates for the unconditional ICCs for science, reading, and mathematics followed 

by the explanatory power of the covariate sets specific to science. Next, we collectively 

consider the various covariate models and demonstrate the use of the empirical estimates 

using a brief example.  Finally, we present our conclusions and address the limitations of 

this study.  

Method 

Data 

Data from the Texas Education Agency (TEA) for the State of Texas was 

obtained for 5 academic years beginning in the 2006-07 academic year.  The data 
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included student-level achievement data for science, mathematics, and reading from the 

Texas Assessment of Knowledge and Skills (TAKS), student demographic information 

(e.g., gender, race, socio-economic status), and school and district identifiers.  In Texas, 

as was noted above, science is tested only in grades 5, 8, 10, and 11, while mathematics 

and reading are tested in all grades 3-11.  Testing for science using the TAKS occurs 

annually in April. 

In accordance with the Family Educational Rights and Privacy Act (FERPA), the 

TEA masked data according to the lowest level of clustering.  When fewer than five 

individuals exist in any single group within a cluster (school), achievement scores for 

every student in that group are masked.  Masking occurs less often in higher grades 

because school size generally grows as the grade increases.   

Table 3.2 describes the number of students, schools, and districts by grade for 

2007-2011 for the unconditional analysis.  Students were removed from the analysis due 

to the masking process as well as the data cleaning process.  The masking makes it is 

difficult to account for certain demographic or other testing information (e.g., special 

education students and students receiving a test accommodation) because the act of 

identifying this information produces a disproportionately large incidence of masking 

within these subgroups.  However, these students are often excluded from research 

studies.  Therefore, we have removed students with these identifiers from the analysis.7  

In Table 3.2, we report incidence of masking as a percentage of the remaining data after 

                                                 

7 Students excluded from the analysis solely because of a testing accommodation represent 
approximately 4% of the non-masked, cleaned data.  A sensitivity analysis comparing the results 
with and without the removal of these students shows very little difference. 
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cleaning.  The incidence of masked data in the cleaned Texas dataset is approximately 

16%; however, this varies by grade.     

 

Table 3.2 

 

Science Achievement Unconditional Model Sample Sizes for Student, School, and District 

 

Grade Year 

% of Data 

Removed by 

Cleaning 

% of 

Cleaned Data 

that is 

Masked 

Total 

Students 

Total 

Schools 

Total 

Districts 

Grade 5 2007 16.4 22.5 215,443 3,414 932 

 
2008 20.2 22.0 216,480 3,497 947 

 
2009 20.1 21.7 221,713 3,581 955 

 
2010 19.0 28.1 210,770 3,625 954 

 
2011 20.0 26.7 218,712 3,681 952 

Grade 8 2007 15.8 13.2 247,800 1,601 934 

 
2008 16.8 12.9 241,312 1,610 926 

 
2009 16.5 12.4 252,122 1,646 943 

 
2010 15.3 17.4 242,141 1,664 937 

 
2011 15.9 16.2 249,608 1,704 942 

Grade 10 2007 16.8 11.5 235,828 1,279 931 

 
2008 17.2 11.7 236,411 1,312 944 

 
2009 16.3 11.3 241,548 1,324 941 

 
2010 15.7 15.9 231,799 1,329 923 

 
2011 16.8 14.3 239,716 1,348 925 

Grade 11 2007 15.9 11.4 206,076 1,229 894 

 
2008 15.6 11.5 208,188 1,254 908 

 
2009 14.8 11.2 218,876 1,307 930 

 
2010 14.2 15.4 216,260 1,321 917 

  2011 15.9 14.3 217,526 1,326 899 
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Data from the TEA were cleaned to obtain a consistent set of usable data across 

years.  The analysis was performed on non-masked, non-special education students with a 

valid, unique student identification number that took the English version of the TAKS in 

the standard administration setting that were scored.  Students with non-valid or duplicate 

student identification numbers, as well as students taking an alternate version of the 

TAKS (i.e., TAKS [Accommodated], TAKS-Modified, and TAKS-Alternative) or 

otherwise requiring an accommodation (i.e., presentation, response, setting, timing and 

scheduling, and oral administration) were removed from the sample. 

In all years, indicator variables were generated from a set of demographic 

variables including gender, race, socio-economic status (SES), and limited English 

proficiency (LEP) status.  Since the race variable included five or more categories, four 

indicator variables were created to denote each of five racial identifiers.  In 2007-2010, 

race was collected with five sub-categories (American Indian or Alaskan Native, Asian or 

Pacific Islander, African American, Hispanic, and White, not of Hispanic Origin).  In 

2011, race was collected with seven sub-categories (Hispanic/Latino, American Indian or 

Alaskan Native, Asian, Black or African American, Native Hawaiian or Other Pacific 

Islander, White, or Two or More Races).  The 2011 coding was collapsed to fit with the 

2007-2010 coding structure by merging Asian and Native Hawaiian or Other Pacific 

Islander, and eliminating the records coded as two or more races.  A proxy for SES was 

developed based on free or reduced-priced lunch status.  The SES variable was coded 1 

for any student eligible for free or reduced-priced meals or other economic disadvantage, 

and coded 0 when the student was not identified as economically disadvantaged.  An LEP 



 61 

 

variable was coded 1 for any student that had ever been identified as LEP, and coded 0 

otherwise.  Collectively, the indicator variables for gender, race, SES, and LEP make up 

the set of demographic covariates. 

HLM Models 

There are two primary models of interest for this study. The first is the two-level 

HLM with students nested within schools; this model treats school as a random effect, 

but ignores the district-level. The second is the three-level HLM with students nested 

within schools nested within districts.  In the three-level HLM, both school and district 

are included as random effects.  We present the theoretical framework for both the two-

level and three-level HLM. 

The unconditional two-level HLM.  The unconditional model for the two-level 

HLM with students (Level 1) nested in schools (Level 2) is as follows. The Level 1 or 

student-level model is: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑟𝑖𝑗                    𝑟𝑖𝑗~𝑁(0,𝜎2), [21] 

where 𝑌𝑖𝑗 is the outcome for individual 𝑖 ∈ �1, … ,𝑛𝑗� in school 𝑗 ∈ {1, … , 𝐽}, 𝛽0𝑗 is the 

average achievement at school j, and 𝑟𝑖𝑗 is a random student effect, which is assumed to 

be normally distributed with a mean of 0 and homogeneous variance 𝜎2.  Therefore, 𝜎2 is 

the variance in achievement among students within schools.  The Level 2 or school-level 

model is  

 𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                    𝑢0𝑗~𝑁(0, 𝜏00), [22] 
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where 𝛾00 is the grand mean, and 𝑢𝑜𝑗 is a random school effect, which is assumed to be 

normally distributed with a mean of 0 and homogeneous variance 𝜏00.  Therefore, 𝜏00 is 

the variance in mean achievement among schools.  A single ICC represents the 

proportion of total variance that exists among schools, 

 𝜌 =
𝜏00

𝜏00 + 𝜎2
. [23] 

The standard error estimate of the ICC, assuming large sample sizes, is given by Hedges, 

Hedberg, and Kuyper (2012) and Donner and Koval (1982), 

 𝑆𝐸(𝜌) = �
(1 − 𝜌)2𝑣2
(𝜎2 + 𝜏00)2, [24] 

where 𝑣2 is the variance of the variance component estimate of 𝜏00.  For large sample 

sizes Equation [4] is asymptotically equivalent to similar formulas given by Fischer 

(1925) as well as Donner and Koval (1980). 

The unconditional three-level HLM.  The unconditional model for the three-

level HLM with students (Level 1) nested within schools (Level 2) nested within districts 

(Level 3) is as follows. The Level 1 or student-level model is: 

 𝑌𝑖𝑗𝑘 = 𝜋0𝑗𝑘 + 𝑒𝑖𝑗𝑘                    𝑒𝑖𝑗𝑘~𝑁(0,𝜎2) [25] 

where 𝑌𝑖𝑗𝑘 is the outcome for individual 𝑖 ∈ �1, … , 𝑛𝑗𝑘�, in school 𝑗 ∈ {1, … , 𝐽𝑘}, in 

district 𝑘 ∈ {1, … ,𝐾}, 𝜋0𝑗𝑘 is the mean achievement at school j in district k, and 𝑒𝑖𝑗𝑘 is a 

random student effect, which is assumed to be normally distributed with a mean of 0 and 

homogenous variance 𝜎2.  Therefore, 𝜎2 is the variance in achievement among students 

within schools. The Level 2 or school-level model is:  
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 𝜋0𝑗𝑘 = 𝛽00𝑘 + 𝑟0𝑗𝑘                    𝑟0𝑗𝑘~𝑁(0, 𝜏𝜋), [26] 

where 𝛽00𝑘 is the mean in district k, and 𝑟0𝑗𝑘 is the random school effect, which is 

assumed to be normally distributed with a mean of 0 and homogenous variance 𝜏𝜋.  

Therefore, 𝜏𝜋 is the variance in mean achievement among schools within districts.  The 

Level 3 or district-level model is: 

 𝛽00𝑘 = 𝛾000 + 𝑢00𝑘                    𝑢00𝑘~𝑁�0, 𝜏𝛽�, [27] 

where 𝛾000 is the grand mean, and 𝑢00𝑘 is a random district effect, which is assumed to 

be normally distributed with a mean of 0 and homogenous variance 𝜏𝛽.  Therefore 𝜏𝛽 is 

the variance in mean achievement among districts.   

In the three-level HLM, there are two ICCs. The school-level ICC, or proportion 

of total variance that exists among schools within districts is  

 𝜌2 =
𝜏𝜋

𝜏𝛽 + 𝜏𝜋 + 𝜎2
. [28] 

The district-level ICC, or proportion of total variance that exists among districts is 

 𝜌3 =
𝜏𝛽

𝜏𝛽 + 𝜏𝜋 + 𝜎2
. [29] 

The respective standard errors of 𝜌2 and 𝜌3 in the large sample, balanced (i.e., ∀𝑘, 𝐽𝑘 =

𝐽) three-level model are: 

 𝑆𝐸(𝜌2) = �
[𝐽(1 − 𝜌2)2 + 2𝜌2(1 − 𝜌2)]𝑣2 + 𝐽𝜌22𝑣3

𝐽�𝜏𝛽 + 𝜏𝜋 + 𝜎2�
2 , [30] 

and 
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 𝑆𝐸(𝜌3) = �
[𝐽𝜌32 + 2𝜌3(1 − 𝜌3)]𝑣2 + 𝐽(1 − 𝜌3)2𝑣3

𝐽�𝜏𝛽 + 𝜏𝜋 + 𝜎2�
2 , [31] 

where 𝑣2 and 𝑣3 are variances of the variance component estimates of 𝜏𝜋 and 𝜏𝛽, 

respectively, and 𝐽 is assumed to be the harmonic mean number of schools per district 

(Hedges et al., 2012).  

 Proportion of variance explained by the covariate sets.  As unconditional 

models are modified to include individual-level and cluster-level covariates, variance is 

explained.  In this study, Level 1 covariates are student-level data (e.g., gender, scores on 

prior test), Level 2 covariates represent averages across students within schools, and 

Level 3 covariates represent averages across schools within districts.  Because of the 

hierarchical structure, Level 1 covariates can theoretically be used without a 

corresponding Level 2 covariate; however, if a Level 1 covariate is used in our model, we 

aggregate it to be used as a Level 2 covariate as well, and if a Level 2 covariate is used in 

a model, we also aggregate it to be used at Level 3.  Below is the model for a two-level 

HLM with covariates at Level 1 and Level 2.  The model for a three-level HLM is 

excluded since this model can be easily extended from the two-level HLM case.   

 In the conditional two-level HLM, the new Level 1, or student-level model is: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽𝑞𝑗𝑋𝑞𝑖𝑗𝑞 + 𝑟𝑖𝑗      𝑟𝑖𝑗~𝑁 �0,𝜎|𝑿𝑄
2 � [32] 

for 𝑖 ∈ �1, 2, … ,𝑛𝑗� students per school and 𝑗 ∈ {1, 2, … , 𝐽} schools, where 𝑌𝑖𝑗 is the 

outcome for student I in school j, 𝛽0𝑗 is the mean for school j, 𝑋𝑞𝑖𝑗 is the value of the qth 

student-level covariate 𝑞 ∈ {1,2, … ,𝑄} for student I in school j, 𝛽𝑞𝑗 is the student-level 



 65 

 

coefficient associated with the qth student-level covariate for school j, 𝑟𝑖𝑗 is a random 

student effect or the residual error associated with each student, conditional on the Q 

covariates, which is assumed to be normally distributed with mean 0 and homogeneous 

variance 𝜎|𝑿𝑄
2 .  Therefore, 𝜎|𝑿𝑄

2  is the residual variance in achievement among students 

within schools after adjusting for the Q Level 1 covariates.  The new Level 2 or school-

level model is: 

 
𝛽0𝑗 = 𝛾00 + ∑ 𝛾0𝑠𝑊𝑠𝑗𝑠 + 𝑢0𝑗           𝑢0𝑗~𝑁�0, 𝜏|𝑾𝑆� 

𝛽𝑞𝑗 = 𝛾𝑞0,∀𝑞 ∈ {1,2, … ,𝑄} 
[33] 

where 𝛾00 is the grand mean of the adjusted outcome measure, 𝑊𝑠𝑗 is the value of the sth 

school-level covariate 𝑠 ∈ {1,2, … , 𝑆} for school j, 𝛾0𝑠 is the fixed school-level coefficient 

associated with the sth school-level covariate, 𝑢0𝑗 is the residual error associated with 

each school, conditional on the S covariates, and 𝜏|𝑾𝑠 is the residual variance among 

schools after adjusting for the S Level 2 covariates.  Slope values for the Q Level 1 

covariates are assumed to have fixed effects across schools, and 𝛾𝑞0 represents the fixed 

student-level coefficient associated with the qth student-level covariate. 

The proportion of variance reduced at each level by the inclusion of the covariate 

sets, denoted R2, is calculated using the results from the unconditional model and 

conditional models containing one or more covariates.  The R2 at Level 1 and Level 2 are 

calculated as follows:  

 𝑅𝐿12 =
𝜎2 − 𝜎|𝑿𝑄

2

𝜎2
, [34] 

and 
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 𝑅𝐿22 =
𝜏00 − 𝜏|𝑾𝑆

𝜏00
. [35] 

Data Analysis 

To empirically estimate ICC values from the TEA dataset we use a modified Stata 

(StataCorp, 2011) program which uses the XTMIXED function with a restricted 

maximum-likelihood estimation procedure for the estimates and the ICCVAR function 

assuming a balanced design to compute bounds on the ICC values (Hedges et al., 2012; 

Hedberg, 2012).  We estimate the unconditional ICCs for science, reading, and 

mathematics achievement for the same set of students in order to compare values across 

the subject areas. 

We use the same program to calculate R2 values. We strategically examined the 

following covariate sets: (a) demographics, (b) the most recent student-level science 

pretest, (c) the one-year lagged student-level reading pretest, (d) the one-year lagged 

student-level mathematics pretest, (e) the one-year lagged school-level science pretest, 

(f) the one-year lagged school-level reading pretest, and (g) the one-year lagged school-

level mathematics pretest.  The most recent student-level science pretest may be a one-, 

two-, or three-year lag depending on the grade. Student-level reading and mathematics 

pretest covariates are always available with a one-year lag as these subjects are tested in 

every grade.  School-level covariates, regardless of subject, are always available with a 

one-year lag, and demographic covariates can be added to any model.  The full list of 

relevant covariates is presented in Table 3.3.  

  



 67 

 

Table 3.3 
 
Covariate Definitions 
 
Models Covariate Definitions 

yd Demographics-only 

ys-t Same student scores in science lagged t-year(s), 𝑡 ∈ {1, 2, 3} 

ym-1  Same student scores in mathematics lagged one year 

yr-1  Same student scores in reading lagged one year 

Ys-1  Mean school scores in science for the same grade lagged one year 

Ym-1  Mean school scores in mathematics for the same grade lagged one year 

Yr-1  Mean school scores in reading for the same grade lagged one year 
 
Note. All pretest models can be run with or without the set of demographic variables. 

 
There are of course other possibilities, such as the two-year lagged student-level 

reading or mathematics pretest or the two-year lagged school-level science pretest, but 

we maintain these are not likely to be used. As demonstrated by Bloom et al. (2007) the 

explanatory power decreases for longer length lags.  Since the one-year lagged school-

level science pretest is available, we do not consider the two-year (or more) lagged 

school-level science pretest. Likewise, the two-year (or more) lagged student-level 

reading and mathematics pretests are unnecessary because in Texas students are tested in 

these subjects annually, which ensures a one-year lagged student-level pretest is available 

for both reading and mathematics. 

Results 

 The results are organized as follows. We begin by presenting the unconditional 

ICCs for the two-level and three-level HLMs for each grade and subject. Next, we 
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examine the percentage of variance in science achievement explained with particular 

pretest covariates and with demographic characteristics for each grade.  In all cases, the 

presentation of a single ICC or R2 value represents an average across the years in which 

the statistic can be calculated. 

Unconditional Model 

Unconditional ICC and standard error estimates for science, reading, and 

mathematics achievement are presented in Table 3.4 for both the two-level and three-

level HLM.  The average unconditional ICCs in the two-level HLM range from 0.172 to 

0.196 for science.  For the three-level HLM, the school-level science ICCs range from 

0.104 to 0.136 and the district-level ICC ranges from 0.055 to 0.079, depending on grade.  

This suggests that approximately one-third of the variance at the school-level actually 

occurs at the district-level.  While it is unlikely that a researcher would design a CRT that 

involved random assignment at the district-level, an estimate of the school-level and 

district-level ICCs do provide an approximate bound on the amount of variance that 

could exist at the school-level if a within-district design is utilized when planning a CRT, 

which is a more common approach. 
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Table 3.4 
 
Average Unconditional ICCs for a Two-Level and Three-Level HLM by Grade for 
Science, Reading, and Mathematics Achievement, 2007-2011 
 

Achievement 
Outcome Subject  Grade 

Two-Level HLM  Three-Level HLM 

ICC SE  ICCL2 SE ICCL3 SE 

Science 5 0.191 0.004  0.118 0.003 0.079 0.007 

 8 0.172 0.005  0.104 0.005 0.060 0.007 

 10 0.196 0.007  0.136 0.008 0.055 0.008 

 11 0.191 0.007  0.127 0.008 0.059 0.008 

Reading 5 0.156 0.004  0.097 0.003 0.050 0.005 

 8 0.099 0.004  0.060 0.003 0.031 0.004 

 10 0.140 0.006  0.100 0.007 0.037 0.007 

 11 0.122 0.006  0.092 0.006 0.025 0.005 

Mathematics 5 0.168 0.004  0.105 0.003 0.067 0.006 

 8 0.163 0.005  0.103 0.005 0.053 0.006 

 10 0.169 0.006  0.124 0.007 0.042 0.007 

  11 0.172 0.007  0.119 0.007 0.049 0.007 

 

Unconditional ICCs can also be compared across subjects.  In the two-level HLM, 

the average unconditional ICCs for science are larger than the unconditional ICCs for 

reading for all grades. The most dramatic differences occur in the middle and high school 

grades. The science ICC in grade 8 is 0.172 and the corresponding reading ICC is 0.099. 

In essence, the science ICC is almost twice as large as the reading ICC. Compared to the 

mathematics ICC, the science ICC tends to be slightly larger, although the margin is 

much smaller than that between reading and science. In the three-level HLM, a similar 

pattern exists for the average unconditional school-level ICCs as well as the 
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unconditional district-level ICCs with science ICCs consistently being larger than reading 

ICCs and the same as or slightly larger than mathematics ICCs. 

In all cases, ICC values appear to decrease somewhat between grade 5 and 8 and 

then increase again for the high school grades, though considering the standard errors for 

each grade negates or nearly negates this trend for mathematics and science.  We 

hypothesize that one reason for a drop between grade 5 and 8 may be the vast difference 

in the number of elementary schools versus middle schools.  Consolidation of students at 

the school-level generally translates into more heterogeneity among students within 

schools, and hence more homogeneity among schools.  Since there are over twice as 

many elementary schools as middle schools, we would expect larger ICCs in grade 5 than 

in grade 8.  This is consistent to a finding from Hedges and Hedberg (2007) that ICCs 

generally decrease slightly as grade increase for both mathematics and reading.   

The subsequent increase in average ICCs between grade 8 and grades 10 and 11 is 

more puzzling, though not unique to science; a somewhat similar pattern can be found in 

Hedges and Hedberg (2007) in that middle school unconditional ICCs for mathematics 

and reading are often smaller than elementary and high school ICCs.  However, without 

more examples of science ICCs, for example from other grades and states, it is difficult to 

identify the true source(s) of the larger ICCs in these grades. 

Models with Covariate Sets 

As discussed earlier, the unique testing patterns in science in Texas means that not 

all covariate sets are available for each grade.  Table 3.5 presents the grades in which 

each covariate set can be run for each year of data.  For example, for the earliest year, 
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2007, no pretest covariates are available in the data, and the only covariate set available is 

demographics.  In 2008, the set of demographics is available for each grade as well as the 

cross-subject tests lagged one-year at the student-level and the school-level tests in all 

subjects lagged one year.  In 2008, a one-year lagged student-level science pretest is also 

available for grade 11.  Note that in subsequent years, a one-year lagged student-level 

science pretest is available for grade 11, a two-year lagged student-level science pretest is 

available for grade 10 and a three-year lagged student-level science pretest is available 

for grades 8 and 11. In our findings, we present the R2 values as averages across years in 

which the covariate sets are run. 

Using science achievement as the outcome, we estimate R2 values for the 

demographics-only model and a total of six pretest models.  Note that the one year 

lagged-student level pretest is considered one model, the most recent science pretest, 

regardless of the number of lagged years.  We also examined each of the pretest models 

with demographics.  Hedges and Hedberg (2007) and Bloom et al. (2007) show results 

from models with only demographics, and with only a pretest can explain a considerable 

amount of variance, but that models with both pretests and demographics produce little 

value beyond when only a pretest is used.  Our findings echo this result, especially for 

models with one-year lagged student-level pretest covariates.  Because including the 

demographics covariates can use up valuable degrees-of-freedom, and does not 

considerably affect our conclusions, in the interest of consistency and space, we limit our 

presentation and interpretation to the demographics-only model and the six models with 
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only a pretest.  Results of the models with a pretest and demographics are not elaborated 

on, but for completeness can be found in the Appendix. 

 
Table 3.5 
 
Grades in Which Data are Available Across Years for Relevant Models 
 

Modelsa 
Outcome Years 

2007 2008 2009 2010 2011 

yd 5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 

ys-1  11 11 11 11 

ys-2   10 10 10 

ys-3    8, 11b 8, 11b 

ym-1  5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 

yr-1  5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 

Ys-1  5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 

Ym-1  5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 

Yr-1  5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 

 
a Relevant models are defined by their covariates: yd is the demographics-only model; ys-1 is 
the same student scores in science lagged one year; ys-2 is the same student scores in science 
lagged two years; ys-3 is the same student scores in science lagged three years; ym-1 is the same 
student scores in mathematics lagged one year; yr-1 is the same student scores in reading lagged 
one year; Ys-1 is the mean school scores in science for the same grade lagged one year; Ym-1 is 
the mean school scores in mathematics for the same grade lagged one year; Yr-1 is the mean 
school scores in reading for the same grade lagged one year.  All models with a pretest 
covariate can be run with or without the set of demographic variables. 
b A three-year lagged student-level pretest in science can be computed for both grades 8 and 
11, but we do not present the calculation for grade 11 in our tables of findings because a one-
year lagged student-level pretest in science is available for that grade, and would be preferable. 

Demographics only.  Table 3.6 shows the effect of including only the 

demographics covariate set.  The demographics covariates alone account for a 

considerable amount of variance in both the two-level and three-level HLMs of science 

achievement.  In the two-level HLM, adding the demographics covariate set explains 
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52.7-61.5% of the school-level variance depending on the grade.  In the three-level HLM, 

the demographics covariate set explains 50.7-66.3% of the school-level variance, and 

45.8-66.5% of the district-level variance.   

 
Table 3.6 
 
Average R2 for a Two-Level and Three-Level HLM of Science Achievement with 
Demographics Covariates by Grade, 2007-2011 
 

 Two-Level HLM  Three-Level HLM 

Grade R2
L1 R2

L2  R2
L1 R2

L2 R2
L3 

5 0.103 0.527  0.103 0.507 0.498 

8 0.134 0.615  0.134 0.663 0.458 

10 0.128 0.615  0.128 0.609 0.665 

11 0.130 0.598  0.130 0.616 0.618 

Most recent student-level pretests.  We consider the effect of a student-level 

pretest using the most recent student-level pretest in science, reading, and mathematics.  

Recall that student-level science pretests are not available for grade 5. For grade 8, 

student scores in grade 5 are the most recent science pretest, a three-year lag.  In grade 

10, student scores in grade 8 are the most recent science pretest, a two-year lag.  In grade 

11, student scores in grade 10 are the most recent science pretest, a one-year lag. For all 

grades, a mathematics or reading pretest is available as a one-year lag. 

Table 3.7 shows the results for the student-level pretests. The results suggest that 

the researcher’s ability to explain variance by adding a student-level science pretest is 

strong, but diminishes as the lag increases on the pretest.  In the two-level HLM, a one-

year lagged student-level science pretest (grade 11) explains 91.2% of the school-level 
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variance, whereas the science pretest with a two-year (grade 10) lag or three-year (grade 

8) lag explains 80.6 and 64.0% of the school-level variance, respectively.  The 

researcher’s ability to explain student-level variance diminishes proportionally as well.  

For the three-level HLM, 92.2% of the district-level variance, 90.3% of the school-level 

variance, and 50.5% of the student-level variance is explained using a one-year lagged 

(grade 11) student-level science pretest, but as the lag length increases, the percentage of 

variance explained decreases considerably.   

 
Table 3.7 
 
Average R2 for a Two-Level and Three-Level HLM of Science Achievement with the Most 
Recent Student-Level Science, Reading, or Mathematics Pretest Covariate by Grade, 
2008-2011 
 

Pretest Subject Grade 
Two-Level HLM  Three-Level HLM 

R2
L1 R2

L2  R2
L1 R2

L2 R2
L3 

Science 5 - -  - - - 

 8 0.297 0.640  0.297 0.630 0.565 

 10 0.470 0.806  0.470 0.817 0.740 

 11 0.505 0.912  0.505 0.903 0.922 

Reading 5 0.268 0.634  0.268 0.558 0.713 

 8 0.319 0.745  0.319 0.758 0.605 

 10 0.167 0.664  0.167 0.688 0.550 

 11 0.191 0.707  0.191 0.678 0.729 

Mathematics 5 0.270 0.628  0.270 0.522 0.747 

 8 0.413 0.754  0.413 0.714 0.741 

 10 0.439 0.839  0.439 0.865 0.718 

  11 0.445 0.817  0.445 0.827 0.758 
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The result that less variance is explained with a longer lag in the student-level 

science pretest is confounded with the fact that grade level and number of lag years are 

perfectly aligned, and so it is unclear whether a grade-effect or a lag-effect is associated 

with this result.  In an effort to clarify this finding further, we estimated the R2 value 

using a three-year lagged student-level science pretest covariate for grade 118 and 

compared it to the corresponding statistic for grade 8.  For the two-level HLM, the pretest 

explains more school-level variance for grade 11 (76.9%) than for grade 8 (64.0%), and a 

similar pattern exists for school-level variances the three-level HLM.  The difference in 

variance explained across grades with the same length lag suggests to some extent that a 

grade effect may also be present.   

We can also compare the results for the most recent student-level science pretest 

to the one-year lagged student-level cross subject pretest. In the two-level HLM, when 

the one-year lagged student-level science pretest is available (grade 11), the proportion of 

school-level variance explained, 91.2%, is greater than the one-year lagged student-level 

reading or mathematics pretest, 70.7 and 81.7%, respectively. However, in grade 10 when 

only a two-year lagged science pretest is available, the one-year lagged mathematics 

pretest explains slightly more variance than the two-year lagged science pretest, 83.9 and 

80.6%, respectively. However, the one-year lagged reading pretest is not as powerful and 

only explains 66.4% of the variance at grade 10. In grade 8, when only a three-year 

lagged science pretest is available, one-year lagged student-level pretests in both reading 

                                                 

8 The three-year lagged student-level science pretest for grade 11 is possible in the Texas 
dataset (see Table 3.5), but ultimately an unnecessary model given that a one-year lagged student-
level pretest is available for that grade.   
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and mathematics explain more variance than the science pretest, 74.5, 75.4, and 64.0%, 

respectively. In the three-level HLM, a similar pattern exists for both the district and 

school level. For grades 11 and 10, the most recent student-level science pretest explains 

more variance than the one-year lagged student-level reading or mathematics pretest at 

the district level. At the school level, the one-year lagged student-level mathematics 

pretest explains slightly more variance than the two-year lagged science pretest, 86.5 and 

81.7%, respectively. When there is a three-year lagged student-level science pretest, 

grade 8, the one-year lagged reading or mathematics pretest explain more variance than 

the science pretest.  

One-year lagged school-level pretests.  Often student-level pretest scores are too 

expensive or otherwise not possible to obtain, but school-level pretest covariates are 

readily available. The extent that a one-year lagged school-level science, reading, or 

mathematics pretest covariate explains variance in science achievement is presented in 

Table 3.8. For one-year lagged school-level pretests, we report only the covariates’ 

contribution to explaining school-level and, when applicable, district-level variances.  

Regardless of whether the model is a two-level or three-level HLM, student-level 

variance can only be explained by student-level covariates and thus in this case, the level-

one variance remains unchanged.   

For the two-level HLM, a one-year lagged school-level science pretest explains 

67.5-86.8% of the school-level variance in science achievement depending on grade.  For 

the three-level HLM, 54.6-86.5% of the school-level variance, and 83.6-91.7% of the 

district-level variance in science achievement is explained, depending on grade. 
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Table 3.8 
 
Average R2 for a Two-Level and Three-Level HLM of Science Achievement with a  
One-Year School-Level Science, Reading, or Mathematics Pretest Covariate by  
Grade, 2008-2011 
 

Pretest Subject Grade 
Two-Level HLM  Three-Level HLM 

R2
L2  R2

L2 R2
L3 

Science 5 0.675  0.546 0.917 

 8 0.802  0.739 0.856 

 10 0.868  0.858 0.859 

 11 0.866  0.865 0.836 

Reading 5 0.582  0.472 0.713 

 8 0.658  0.619 0.623 

 10 0.629  0.634 0.525 

 11 0.584  0.583 0.586 

Mathematics 5 0.569  0.440 0.755 

 8 0.671  0.630 0.617 

 10 0.761  0.797 0.581 

  11 0.783  0.803 0.679 
 

Conceptually, a school-level science pretest is preferable to a school-level cross-

subject pretest because it is theoretically more justifiable.  Additionally, based on the 

work of Bloom et al. (2007), empirically we know that same-subject pretests tend to have 

more explanatory power than cross-subject pretests, at least for mathematics and reading 

outcomes.  Thus, our inclusion of cross-subject school-level pretest models may seem 

odd at first, given that science is tested annually in each of the specified grades, and 

therefore always available.  However, we note there is always a chance science testing 

was otherwise not conducted for the same grade in the prior year (e.g., change in testing 
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patterns, lack of funding) or the results are not readily available, and so in these instances 

a school-level reading or mathematics pretest could be a logical choice.   

As one would expect, across all grades, a school-level science pretest explains 

more variance than either mathematics or reading. The explanatory power of school-level 

mathematics and reading pretests was similar for grade 5 and 8. However, in grades 10 

and 11, the explanatory power of the school-level mathematics pretest exceeds the power 

of the school-level reading pretest by somewhat larger margins. For example, in the two-

level model, the reading pretest explains 58.4% of the variance in science achievement 

whereas the mathematics pretest explains 78.3% of the variance in science achievement.  

All covariate options.  Thus far, we examined demographics, student-level 

pretest covariate sets, and school-level pretest covariate sets. In Table 3.9, we summarize 

all of the findings. Note that the covariate set explaining the most variance at the highest 

level is presented in bold and varies by grade. For grade 11, where a one-year student-

level science pretest is available, this is the most powerful covariate set for both the two-

level and three-level HLM.  In grades 8 and 10, where a student-level pretest is lagged 

more than one year, the most variance is explained by a school-level science pretest for 

both models.  In grade 5, where no student-level science pretest is available, the school-

level science pretest explains the most variance for the two-level and three-level HLM. 
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Table 3.9 
 
Maximum Science Achievement R2 in the Highest Level of Nesting for Two-Level HLM 
and Three-Level HLM with Relevant Covariate Sets by Grade 
 
  Highest 

Level of 
Nesting 

R2 

Type of HLM Modelsa, b Grade 5 Grade 8 Grade 10 Grade 11 

Two-Level yd L2 0.527 0.615 0.615 0.598 

 ys-t L2 - 0.640 0.806 0.912 

 ym-1 L2 0.628 0.754 0.839 0.817 

 yr-1 L2 0.634 0.745 0.664 0.707 

 Ys-1 L2 0.675 0.802 0.868 0.866 

 Ym-1 L2 0.569 0.671 0.761 0.783 

 Yr-1 L2 0.582 0.658 0.629 0.584 

Three-Level yd L3 0.498 0.458 0.665 0.618 

 ys-t L3 - 0.565 0.740 0.922 

 ym-1 L3 0.747 0.741 0.718 0.758 

 yr-1 L3 0.713 0.605 0.550 0.729 

 Ys-1 L3 0.917 0.856 0.859 0.836 

 Ym-1 L3 0.755 0.617 0.581 0.679 

 Yr-1 L3 0.713 0.623 0.525 0.586 

 
a Relevant models are defined by their covariates: yd is the demographics-only model; ys-1 is 
the same student scores in science lagged one year; ys-2 is the same student scores in science 
lagged two years; ys-3 is the same student scores in science lagged three years; ym-1 is the same 
student scores in mathematics lagged one year; yr-1 is the same student scores in reading lagged 
one year; Ys-1 is the mean school scores in science for the same grade lagged one year; Ym-1 is 
the mean school scores in mathematics for the same grade lagged one year; Yr-1 is the mean 
school scores in reading for the same grade lagged one year.  All models with a pretest 
covariate can be run with or without the set of demographic variables; results shown here for 
pretest models reflect only pretest models without demographics variables. 
b For student-level science pretests, 𝑡 ∈ {1, 2, 3}. In grades 11, 10, and 8, respectively, t=1, t=2, 
and t=3.  Maximum variance explained in each grade excluding covariate models with both a 
pretest and demographics are highlighted in bold. 
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Application 

 We now present an example to illustrate how our findings can be utilized.  

Numerous examples of how to appropriately power CRTs exist in the literature (Bloom et 

al., 2007; Hedges & Hedberg, 2007); we build on this foundation to illustrate that the 

choice of pretest is contextual, and can lead to considerable differences with regard to 

optimally designing a CRT.   

Suppose that a team of researchers are designing a CRT to test the effectiveness 

of a science intervention aimed at 8th graders. They propose a two-level CRT, with 

students nested within schools. They want to design a study that is powered at 0.80 to 

detect an effect of 0.20, with a significance level of 0.05. They plan to select 100 students 

from each school. Based on the findings presented in this paper, they assume the 

unconditional ICC is 0.172. The researchers are unsure which covariate set will be the 

most powerful and hence result in the smallest number of schools needed to adequately 

power the study. Because the most recent science test for students was three years prior, 

the researchers consider the three-year lagged student-level science pretest. However, 

they also have the one-year lagged student-level mathematics pretest which they think 

may be better since it is only lagged one-year. Finally, they consider the one-year lagged 

school-level science pretest. 

Using the Optimal Design Plus program (Spybrook, Bloom, Condon, Martinez, & 

Raudenbush, 2011), the researcher computes the number of schools needed for a design 

with no covariates, the two-year lagged student-level science pretest, the one-year lagged 

student-level mathematics pretest, and the one-year lagged school-level science pretest. 
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Without a covariate, approximately 146 schools are required to power the study. 

According to Table 3.7, the three-year lagged student-level science pretest accounts for 

29.7% of the variance at level-one and 64.0% of the variance at level-two. Using these 

estimates, approximately 56 schools total are necessary. The second option, the one-year 

lagged student-level mathematics pretest accounts for 41.3% of the variance at level-one 

and 75.4% of the variance at level-two (see Table 3.7). Under these assumptions, a total 

of approximately 40 schools are needed. The one-year lagged school-level science pretest 

is a third option available to researchers. According to Table 3.8, 80.2% of the school-

level variance in science achievement is explained by this covariate. In this case, the total 

number of schools is approximately 36. In this particular example, the one-year student-

level mathematics pretest was better than the three-year lagged student-level science 

pretest. However, the school-level pretest was more powerful than either of the two 

student-level pretest options and hence yielded the smallest number of schools to achieve 

power of 0.80 to detect an effect of 0.20. In other cases, it may be that a student-level 

covariate is the most powerful. That is, fewer schools are needed when a student-level 

covariate is used. In these cases, a cost analysis should be performed to determine if the 

additional operational cost associated with acquiring student-level data outweighs the 

cost of the additional schools required in the study design if relying only on a school-

level pretest (Konstantopoulos, 2009). 

Conclusions 

Our main objectives were to (a) present empirically estimated ICC values for 

science achievement and compare these values to ICCs for mathematics and reading 
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achievement, and (b) present empirically estimated R2 values for covariate sets that are 

likely to be available to researchers designing CRTs of science interventions.  We 

accomplished these goals using student-level data from the State of Texas.  

We estimated unconditional ICC values that range by grade from 0.172 to 0.196 

for science achievement in a two-level HLM with students nested in schools.  For the 

three-level HLM, with students nested in schools nested in districts, estimated 

unconditional ICC values ranged by grade from 0.055 to 0.079 at the district-level, and 

0.104 to 0.136 at the school-level.  Hence, inclusion of district as a random variable 

reduces the school-level variance 30-40%.   

 Our findings also suggest that unconditional ICCs for science achievement are 

consistently larger than unconditional ICCs for reading. This is an important finding for 

researchers designing CRTs with science as the primary outcome who try to borrow 

design parameters from reading as they may run the risk of under-powering their studies. 

We also found that science ICCs were larger than mathematics ICCs, though the 

difference was much smaller than that of science and reading.  

With respect to the most powerful covariate sets for researchers planning CRTs 

with science outcomes, grade and lag-length must be considered. In addition, trade-offs 

in costs associated with including a student-level or school-level covariate will likely 

enter into discussions.  Our results suggest that as expected, when a one-year lagged 

student-level science pretest is available, it explains the most variance in science 

achievement at the highest level of nesting. However, this was only available for grade 

11. For grades 8 and 10, which have a two-year lagged and three-year lagged science 
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pretests, respectively, the one-year lagged school-level science pretest was the more 

powerful covariate set. The one-year lagged school-level science pretest was also the best 

for grade 5, as no student-level science pretest existed for this grade. 

Prior research focused primarily on empirically estimating design parameters for 

CRTs in mathematics and reading achievement. This study extends the work to science 

achievement and provides a resource for researchers designing CRTs of science 

intervention studies. Future research includes extending this work to other states, 

nationally representative datasets, and other grades in which science is tested. 

Limitations 

In the TEA dataset, there are two possible outcome variables, the raw score and 

the scale score, and use of either outcome variable presents limitations.  The scale score 

represents a scaled version of the raw score which takes into consideration the version of 

the test taken.  The scale score is based on all test takers. However, we excluded students 

taking a non-standard TAKS, special education students, and students receiving a test 

accommodation from the analysis.  The impact of these exclusions cannot be properly 

modeled using the scale score.  Due to the masking of data, use of the raw score outcome 

limits the generalizability of produced ICCs to only those that are unmasked.  This result 

is undesirable in terms of generalizability, but the raw score is an accurate reflection of 

student performance for those that took the test.  Therefore, in order to compute 

defensible ICCs that are applicable to students in which data are available we chose to 

use the raw score as the measure of science achievement.   
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The masking process makes it difficult to account for specific subpopulations, for 

example students that received a testing accommodation.  In order to assess the impact of 

our decision to remove students with a testing accommodation, we conducted a 

sensitivity analysis by also computing ICC values in each year using the two-level and 

three-level unconditional, demographics-only, and science pretest models, including the 

unmasked students that received a test accommodation.  Although this is not the full 

population of students that received a test accommodation, the number of unmasked 

students meeting this requirement varied from a few hundred in 2007 to more than 

10,000 in other years.  Our results for ICCs were nearly identical across all models tested 

and years, with the largest difference in ICC between the analysis samples being less than 

0.007.  This suggests the impact of removing the students that received a test 

accommodation is small, but that a minor amount of bias is present due to the masking of 

data in accordance to FERPA.  More research into the impact of masking on empirical 

estimates is warranted, especially as state agencies continue to share data and collaborate 

with researchers. 
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CHAPTER IV 

INTRACLASS CORRELATIONS FOR THREE-LEVEL MULTI-SITE 
CLUSTER-RANDOMIZED TRIALS OF SCIENCE ACHIEVEMENT 

In recent years, the impetus on experiments for educational research and 

evaluation has particularly revolved around experiments that involve clustering 

(Spybrook & Raudenbush, 2009; Institute of Education Sciences, 2013). A cluster-

randomized trial (CRT) relies on random assignment of intact clusters to treatment 

conditions, such as classrooms or schools (Raudenbush & Bryk, 2002).  

The applicability of CRTs for studying the effectiveness of educational programs 

is a result of the inherent nesting that occurs in the educational infrastructure. Students 

typically learn in traditional classroom environments, and these classrooms are located in 

schools, which are clustered in districts (Raudenbush & Bryk, 2002). Because 

educational material is most often delivered through traditional classroom environments, 

treatment is administered at the cluster level. For example, teachers teach to entire 

classrooms of students, or new curricula are implemented for whole schools or across 

districts. However, outcomes are typically measured at the student level through 

standardized achievement testing. When evaluating the effects of these interventions, a 

CRT is appropriate because it allows for treatment to be modeled at a different level than 

the unit of analysis.  

Additionally, because in traditional educational environments treatment is 

administered collectively to groups rather than individually, the standard assumption of 
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independence is violated. Independence is necessary to operate in an ordinary least 

squares framework when statistically analyzing experimental data. Using a hierarchical 

linear structure to model these types of data properly accounts for this violation of 

independence (Raudenbush & Bryk, 2002).  

For reasons of feasibility, a traditional CRT with randomization at the highest 

level is not always the most practical CRT for an evaluator to utilize. For example, it is 

unlikely for evaluations of educational interventions to be randomized at the district 

level; yet, ignoring any district clustering can be detrimental to such studies because the 

school-level variance will be overestimated, producing a design that is overpowered 

(Moerbeek, 2004).  

One specific type of CRT, a multi-site CRT (MSCRT), is commonly employed in 

educational research and evaluation studies (Bloom, Richburg-Hayes, & Black, 2007; 

Spybrook, in press; Spybrook & Raudenbush, 2009). The three-level MSCRT is a nested 

design with the level-three units (or sites) treated as a blocking variable, and the level-

two units randomly assigned to treatment and control within each site. In an educational 

context, the three-level MSCRT, with district blocks and treatment at the school-level, 

offers an alternative design to a two-level CRT with students nested in schools, yet still 

captures the district effect. In this particular three-level MSCRT design, schools are 

randomly assigned to condition within districts, which act as blocks to remove the district 

variance that is present. 

As a result, MSCRTs offer some benefits over traditional CRTs. For example, 

MSCRTs are often a more economical design choice, particularly in educational contexts 
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(Raudenbush & Liu, 2000). Operational costs are typically limited due to the 

randomization process occurring within sites. Additionally, sample sizes required to 

achieve a desired power level often are smaller for a three-level MSCRT that randomizes 

at the school-level than for a traditional two-level CRT that ignores district effects. This 

occurs, as long as the between-school variance is large, the blocking variable is strong, 

and there are a large number of schools (Raudenbush, Martinez, & Spybrook, 2007). 

A common concern in the design of CRTs that randomly assign treatment at a 

lower level, like an MSCRT, is the increased likelihood of contamination relative to a 

traditional CRT (Bloom et al., 2007; Rhoads, 2011; Shadish, Cook, & Campbell, 2002; 

Schochet, 2008; Torgerson, 2001). For a nested model of students within teachers within 

schools, a MSCRT would randomly assign classrooms within the same school to either 

treatment or control. Those not receiving treatment in one classroom may in fact be 

exposed to treatment via a peer that does receive treatment in a different classroom.  

However, contamination need not always be a major concern for MSCRTs in 

education. For example, in MSCRT designs with students nested within schools nested 

within districts where the units of randomization (schools within districts) are still 

geographically separated, the likelihood of one student partially receiving treatment as a 

result of interaction from another student or between schools would seem low.   

Recent empirical research from Doyle and Hickey (2013) on contamination in 

studies of childhood interventions suggests that the problem does exist, and is discussed 

frequently in the literature, but actual amounts of contamination are rarely reported in 

published studies.  Thus, the amount of contamination that does exist for MSCRTs in 
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education is difficult to estimate. However, Rhoads (2011) showed that even when 

contamination does occur, only very large amounts will decrease the power of a MSCRT 

design to the amount of a traditional CRT with an equal number of levels. 

Planning CRTs and MSCRTs 

As in all experimental studies, evaluators must design CRTs with appropriate 

power to detect an expected effect. Powering a CRT is similar to powering any 

experimental study in that the evaluator must specify the number of participants required 

to detect a particular effect-size at an assumed power-level and error-rate. To do this, the 

evaluator must estimate the amount of variance that exists in the outcome variable, and 

how much variance is explained by including covariates. For CRTs, which have multiple 

levels of nesting, the additional stipulation of needing to determine the appropriate 

sample size at each level of nesting and therefore the amount of variance in the outcome 

variable that can be partitioned at each level, must be estimated.  

A common challenge for evaluators planning CRTs is selecting an appropriate 

intraclass correlation (ICC), an estimate of the percentage of total variance that exists at 

the group level, to accurately power the study. For studies with more than one level of 

nesting, multiple ICCs must be estimated. For a three-level MSCRT with treatment at 

level-two (school-level), the evaluator must specify the within-site ICC, since the 

between-site variance is removed by blocking (Konstantopoulos, 2008).  

In this study only a natural blocking variable (i.e., district) is considered, thus it is 

logical to consider a within-district ICC. However, other derived variables (e.g., 

percentage of students eligible for free or reduced-lunch in a school) can be used as a 
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blocking variable (Raudenbush et al., 2007). In these cases, one may consider the total 

variance across schools, prior to blocking, and an estimate of the percent of variance 

reduced by the blocking.  

Empirically estimating ICCs for use in mathematics, reading, and science are a 

common trend in the education literature (Bloom et al., 2007; Brandon, Harrison, & 

Lawton, 2013; Hedges & Hedberg, 2007, in press; Jacob, Zhu, & Bloom, 2010; Schochet, 

2008; Westine, Spybrook, & Taylor, in press). These estimates are typically based on 

completed evaluations, district datasets, and statewide databases. Until recently, the 

majority of these estimates were computed using two-level models (e.g., students nested 

in schools). However, many studies are being designed as MSCRTs with districts as sites 

and schools as the unit of randomization (Spybrook, in press).  

Generally, there are two different types of MSCRTs that randomize schools 

within districts. If the goal of a study is to establish the efficacy of an intervention under 

ideal conditions, it is likely that there may only be a few (three or less) districts in the 

study. For example, one district may not provide enough schools to adequately power a 

study, so similar districts may be recruited in order to increase the sample size. This is 

similar to an Institute of Education Sciences (IES) goal 3 study, or efficacy trial, in which 

the evaluator is attempting to ascertain whether a treatment-effect is present, and is not 

looking to generalize beyond the participants recruited to the study. Often studies of this 

form will assume fixed district effects (or homogeneous treatment effects), resulting in 

smaller sample size requirements to achieve necessary power. On the other hand, if the 

purpose of a study is to establish the effectiveness of an intervention across various 
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conditions, it is more likely that there will be a large number of districts (eight or more) 

that are either scattered across a state or across the country. This is similar to an IES goal 

4 study, or effectiveness trial, in which the evaluator is interested in the generalizability 

of an intervention’s effect. Typically in this case, the evaluator assumes random district 

effects (or heterogeneous treatment effect), thereby increasing the sample size 

requirements in order to achieve necessary power. 

Both designs require an estimate of the within-district (school-level) ICC for the 

power analysis. An estimate of a school-level ICC from a two-level model, which uses all 

districts across an entire state (or a national sample), is not directly applicable because it 

is not removing the between-district variation, and in fact will likely overestimate the 

between-school variance. Furthermore, use of an empirically estimated within-district 

ICC from a single (typically large) district may not accurately depict the variance 

structure of a MSCRT design with multiple districts because recruited districts can vary 

significantly, and may not resemble the source district of the estimate (Hedberg & 

Hedges, 2011).  

The specific choice of districts to include can significantly affect the number of 

schools per district needed to appropriately power a study because sample sizes are 

impacted by the within-district ICC. Conceptually, when districts with more homogenous 

schools (i.e., having a smaller ICC) are included in the study, fewer schools will be 

necessary to power a study than when districts with heterogeneous schools (i.e., having a 

larger ICC) are included. Consider the following example of an MSCRT. Suppose there 

are two districts which are treated as fixed effects and, hence, the effect size variability is 
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0. Assuming a significance level of 𝛼 = 0.05, 𝑛 = 100 students per school, and that 

𝑟𝐿22 = 0.80 of the variability in achievement using school-level covariates can be 

explained, then to detect an effect of size of 𝛿 = 0.20 it would take 𝐽 = 12 schools per 

district if the within-district ICC was 𝜌 = 0.08, and it would take 𝐽 = 18 schools per 

district if the within-district ICC was 𝜌 = 0.16. Thus, a total of 12 additional schools 

would be needed for the design with more variance at the school-level.  

This gives rise to the notion of evaluators developing ways to improve MSCRT 

designs according to desired purposes (e.g., IES goal 3 or goal 4 studies) by strategically 

recruiting districts for their designs. For example, when elements of external validity are 

prioritized, propensity score based sampling strategies for selecting districts may be used 

to improve generalization (Tipton et al., 2014). Although these concepts have been put in 

practice in designs prioritizing internal validity for many years, there has been little 

empirical research with regard to specific strategies for district selection in three-level 

MSCRTs, and how this affects within-district ICCs because empirical examples of ICCs 

from large state databases, which enable examinations across sets of districts, are 

relatively recent.  

Purposes of This Study 

In this study, I aim to improve the design of MSCRTs by producing estimates of 

within-district ICCs for the outcome of science achievement across all districts in an 

entire state; resulting in a distribution of within-district ICCs. The within-district ICC 

estimates can be used to power a three-level MSCRT with treatment at the school level. 
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Currently, evaluators planning trials focused on science outcomes must estimate ICCs 

based on empirical estimates from two-level or three-level models that do not block on 

district (Westine et al., in press; Zhu, Jacob, Bloom, & Xu, 2012). Alternatively, 

evaluators can borrow estimates from another subject, for example mathematics or 

reading (Hedberg & Hedges, 2011), but borrowing has its limitations, since science 

estimates appear to be larger than estimates in both these subjects, and recent student-

level pretest covariates in other subjects are not always available (Westine et al., in 

press).  

The distribution of within-district ICCs serves as an empirical basis for the 

selection of an ICC value in order to facilitate better designs of MSCRTs in science 

education. Recent empirical work for mathematics and reading outcomes by Hedberg and 

Hedges (2011) suggests that distributions of within-district ICCs for states are 

asymmetrical.  I examine if this holds for the outcome of science achievement.   

Additionally, I investigate how an evaluator would utilize the distributional 

information to estimate a within-district ICC for a MSCRT design. In particular, an 

evaluator must select a point estimate to summarize the variances of participating 

districts. This estimate is needed in order to perform a power analysis, but such analyses 

typically occur before districts are even recruited. This analysis focuses on investigating 

whether within-district ICC estimates differ for (1) MSCRTs that include only a few 

districts with a larger number of schools per district; and (2) MSCRTs that include 

several more districts with a smaller number of schools per district. Using actual student 
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outcomes, I empirically investigate how the structure of an MSCRT impacts ICC 

estimates. 

In summary, the following research questions guide this investigation:  

1. What is the distribution of within-district ICCs for science education by grade 

in Texas?  

2. Does the number of districts in an MSCRT affect the mean within-district 

ICC?  

Method 

Data 

Student-level data from the Texas Education Agency (TEA) for the academic year 

2010-2011 is used for this study. The dataset includes student-level achievement data for 

science from the Texas Assessment of Knowledge and Skills (TAKS), which occurs 

annually in April, student demographic information (e.g., gender, race, socio-economic 

status), and school and district identifiers. In Texas, as is common in many other states, 

science is tested only in grades 5, 8, 10, and 11.  

The TEA masks data according to the lowest level of clustering. Thus, if fewer 

than five individuals (n < 5) exist in any single demographic group within a cluster 

(school), achievement scores for every student in that demographic group are masked. 

Masking occurs more often in elementary grades because school size is generally smaller 

for elementary grades. For this dataset, the incidence of masked data across grades is, on 

average, 16%.  
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The raw score on the TAKS is used as the outcome measure.9 The analysis is 

performed using non-masked, non-disabled students with a valid, unique student 

identification number that took the English version of the TAKS in the standard 

administration setting that were scored. Records with non-valid or duplicate student 

identification numbers, as well as students taking an alternate version of the TAKS (i.e., 

TAKS [Accommodated], TAKS-Modified, TAKS-Alternative) or otherwise requiring an 

accommodation (i.e., presentation, response, setting, timing and scheduling, braille, large 

print, and oral administration) are removed from the sample.   

Models and ICCs 

The primary design examined is the three-level MSCRT with districts treated as 

sites and schools randomly assigned within sites. Below, I present a model for the three-

level MSCRT with treatment at the school level. However, within-district ICCs are 

estimated using an unconditional two-level HLM for each individual district. The net 

result is a distribution of ICC values across districts. After the three-level MSCRT, I 

present the model for a two-level CRT, which is used to empirically estimate an ICC 

value for each district.  

The three-level MSCRT. The unconditional three-level MSCRT with students 

(Level 1) nested within schools (Level 2) nested within districts (Level 3), where 

                                                 

9 Alternatively, the scale score could have been used, which represents a scaled version of 
the raw score. The scale score takes into consideration the version of the test taken, and is derived 
from outcomes across all versions of the TAKS. Given that data from non-standard TAKS are 
excluded from the analysis, the use of the raw score limits any bias in the results to that of 
masking as opposed to also introducing bias through scaling that is attributable to the test version. 
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blocking occurs on districts and treatment is administered at the school-level, is as 

follows. The Level 1 or student-level model is: 

 𝑌𝑖𝑗𝑘 = 𝜋0𝑗𝑘 + 𝑒𝑖𝑗𝑘                               𝑒𝑖𝑗𝑘~𝑁(0,𝜎2), [36] 

where 𝑌𝑖𝑗𝑘 is the outcome for individual 𝑖 ∈ �1, … , 𝑛𝑗𝑘�, in school 𝑗 ∈ {1, … , 𝐽𝑘}, in 

district 𝑘 ∈ {1, … ,𝐾}, 𝜋0𝑗𝑘 is the mean achievement at school j in district k, and 𝑒𝑖𝑗𝑘 is a 

random student effect, which is assumed to be normally distributed with a mean of 0 and 

homogenous variance 𝜎2. Therefore, 𝜎2 is the variance in achievement among students 

within schools. The Level 2 or school-level model is:  

 𝜋0𝑗𝑘 = 𝛽00𝑘 + 𝛽01𝑘𝑊𝑗𝑘 + 𝑟0𝑗𝑘           𝑟0𝑗𝑘~𝑁(0, 𝜏𝜋), [37] 

where 𝛽00𝑘 is the mean in district k, 𝑊𝑗𝑘 is the school-level treatment indicator typically 

set to 0.5 for the treatment group and -0.5 for the control group, 𝛽01𝑘 is the mean effect of 

treatment for the kth district, and 𝑟0𝑗𝑘 is the random school effect, which is assumed to be 

normally distributed with a mean of 0 and homogenous variance 𝜏𝜋. Therefore, 𝜏𝜋 is the 

variance in mean achievement among schools within districts. The Level 3 or district-

level model with heterogeneous treatment effects (or random district-effects) is: 

 𝛽00𝑘 = 𝛾000 + 𝑢00𝑘                        𝑢00𝑘~𝑁�0, 𝜏𝛽00�, [38] 

 𝛽01𝑘 = 𝛾010 + 𝑢01𝑘                        𝑢01𝑘~𝑁�0, 𝜏𝛽11�, 

𝑐𝑜𝑣(𝑢00𝑘,𝑢01𝑘) = 𝜏𝛽01 

 

where 𝛾000 is the grand mean, 𝑢00𝑘 is a random district effect which is assumed to be 

normally distributed with a mean of 0 and variance 𝜏𝛽00, 𝛾010 is mean effect of treatment, 

and 𝑢01𝑘 is a random treatment effect which is assumed to be normally distributed with a 
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mean of 0 and variance 𝜏𝛽11. Therefore 𝜏𝛽00 is the variance in mean achievement among 

districts, 𝜏𝛽11 is the variance in the treatment effect among districts, and 𝜏𝛽01 is the 

covariance between district-specific mean achievement and treatment effects. 

 If homogeneous treatment effects (or fixed district-effects) are assumed, then 

𝜏𝛽11 = 0, and 𝑢01𝑘 becomes a fixed-effect for each district. Additionally, 

𝑐𝑜𝑣(𝑢00𝑘,𝑢01𝑘) = 0. 

For models with random district-effects or fixed district-effects, the parameters 

are standardized so that there is only one10 ICC value,  

 𝜌 =
𝜏𝜋

𝜏𝜋 + 𝜎2
. [39] 

The unconditional two-level model. To empirically estimate ICCs for each 

district I utilize a two-level HLM for each district. The unconditional model for the two-

level HLM with students (Level 1) nested in schools (Level 2) is as follows. The Level 1 

or student-level model is: 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑟𝑖𝑗                                       𝑟𝑖𝑗~𝑁(0,𝜎2), [40] 

where 𝑌𝑖𝑗 is the outcome for individual 𝑖 ∈ �1, … ,𝑛𝑗� in school 𝑗 ∈ {1, … , 𝐽}, 𝛽0𝑗 is the 

average achievement at school j, and 𝑟𝑖𝑗 is a random student effect, which is assumed to 

be normally distributed with a mean of 0 and homogeneous variance 𝜎2.   Therefore, 𝜎2 

is the variance in achievement among students within schools. The Level 2 or school-

level model is:  

                                                 

10 Other parameterizations include two ICC values for a three-level MSCRT with treatment 
at Level 2, see, for example, Spybrook, Hedges, and Borenstein (in press). 
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 𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                  𝑢0𝑗~𝑁(0, 𝜏00), [41] 

where 𝛾00 is the grand mean, and 𝑢𝑜𝑗 is a random school effect, which is assumed to be 

normally distributed with a mean of 0 and homogeneous variance 𝜏00. Therefore, 𝜏00 is 

the variance in mean achievement among schools. A single ICC represents the proportion 

of total variance that exists among schools, 

 𝜌 =
𝜏00

𝜏00 + 𝜎2
. [42] 

It is important to present both the three-level MSCRT and two-level CRT models 

because ICCs from the two-level CRT are used to inform the design of the three-level 

MSCRT. Although equations for the ICCs in each model look similar, they are actually 

quite different. In a MSCRT, the variance among districts is accounted for by blocking on 

districts and [39] represents the within-district variance among schools. In equation [42] 

variance among districts is not accounted for.  However, it is also not present in our 

context because the model is only used one district at a time. To power an MSCRT, an 

estimate of the within-district variance among participating districts is needed. This is 

accomplished, for example, by taking the mean school-level ICC for these specific 

districts. In this way, the ICC calculations using a two-level model for each district 

inform the ICC estimate for a MSCRT.  

Analysis 

With the Texas dataset I first create a distribution of school-level ICCs for each 

district in the state with at least four schools, using the two-level model. Using Stata 

(StataCorp, 2011), I execute LONEWAY by grade (for grades 5, 8 10, and 11) with 
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school as a random factor to compute variance estimates for each district. The choice to 

use 𝐽 ≥ 4 is based on an initial investigation across all districts, and in response to 

findings from Hedberg and Hedges (2011) that districts with only a few schools can 

produce considerable variance in the school-level ICC. The result is a distribution of 

unconditional within-district ICCs for each grade.  

Next, I investigate the variability of within-district ICCs across districts. Here the 

interest is whether the number of districts in the design affects the within-district ICC 

estimate. Thus, I generate and compare confidence intervals on the mean within-district 

ICC for MSCRTs of different sizes. The analysis is limited to Grades 5, 8, 10, and 11 

because these are the grades in which science is tested in Texas. However, in higher 

grades the number of schools per district is smaller, and so there is less flexibility in 

designing studies due to sample size limitations. The analysis is also limited to balanced 

MSCRTs where the average number of students per school is chosen to include the vast 

majority of schools, where 𝑛 ≥ 25.  

First, the set of districts in Texas that can feasibly be used when conducting 

MSCRTs in each grade is defined. Two broader classes of MSCRTs that are commonly 

used in the education literature, those with only a few districts, and those with many 

districts, are of interest. For a MSCRT with only a few districts, a large number of 

schools per district are needed to adequately power the study. For a MSCRT with many 

districts, a small number of schools per district are needed. To operationalize a MSCRT 

with only a few districts I use 𝐾 = 3 districts with a corresponding value of 𝐽 ≥ 20 

schools per district. To operationalize a MSCRT with many districts, 𝐾 = 10 with a 
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corresponding value of 6 ≤ 𝐽 < 20 is used. The number of schools per district is used to 

identify the individual districts  as either (1) eligible for a MSCRT with only a few 

districts; (2) eligible for a MSCRT with many districts; or (3) not eligible for a MSCRT 

(i.e., too small).  The three categories of districts are mutually exclusive. 

The choice for the number of districts and schools per district for each case was 

based on two primary decisions. First, I wanted to be consistent with the empirical 

literature, and these choices correspond to existing examples of three-level and four-level 

MSCRTs (excluding matched-pairs designs) taken from the What Works Clearing House 

for Goal 3 and Goal 4 studies (Spybrook, in press), where Level-2 corresponds to school. 

In these examples, for studies with only a few districts the corresponding J value ranges 

between 19 and 24. For studies with a larger number of districts the corresponding J 

value is between four and six. While sample sizes from actual studies vary and depend 

upon a number of circumstances (e.g., desired minimum detectible effect-size, estimated 

ICC value, cost structure), the sample sizes chosen are seemingly representative of the 

two broader classes of MSCRTs. Second, a consistent number of total schools in the two 

designs is maintained in order to investigate differences that may exist between the two 

designs. In each MSCRT, the total number of schools is 60. Ultimately, the district, 

school, and student sample size requirements for each of the cases limits the number of 

districts eligible for each design.  

Considering the sets of eligible districts, I explore the range of within-district ICC 

values that could occur in a design for each grade in which science is tested. I conduct a 

t-test for each grade to compare the mean within-district ICC for designs with only a few 
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districts to designs with many districts. More specifically, grade is tested at the 

𝛼 = 0.0125 significance level (thereby accounting for multiple tests), to determine if 

there is a difference in mean within-district ICC for districts with 𝐽 ≥ 20, �̅�25,20,3, and 

districts with 6 ≤ 𝐽 < 20, �̅�25,6,10. Formally, this test is 𝐻0: �̅�25,20,3 − �̅�25,6,10 = 0 and 

𝐻𝐴: �̅�25,20,3 − �̅�25,6,10 ≠ 0. 

Results 

In Texas, there are 154 districts with four or more schools that include fifth grade, 

84 districts with four or more schools that include eighth grade, 50 districts with four or 

more schools that include tenth grade, and 51 districts with four or more schools that 

include eleventh grade. In Figure 4.1 I present the distribution of school-level ICCs for 

each district by grade using a bandwidth of 0.02. In order to plot all grades on the same 

graph, the percentage (rather than the count) of districts meeting the corresponding ICC 

level is shown. Given that ICCs are limited on the range [0, 1], with most examples in the 

educational literature emphasizing 0.1 to 0.3, these distributions are expected to be 

skewed. In fact, the findings for science are similar to those found for mathematics and 

reading (Hedberg & Hedges, 2011).  
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Figure 4.1. Distribution of unconditional school-level ICCs in science by grade for 
districts with four or more schools in Texas. 

 

The distributions are fairly consistent across grades as well, as can be seen in 

Table 4.1. The mean within-district ICC for each grade ranges between 0.0781 and 

0.0982. An F-test using analysis of variance under equal variances shows no significant 

difference (p = 0.2610) in mean within-district ICC across grades. 

 
  

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5

Pe
rc

en
t o

f D
is

tr
ic

ts
 

School-level ICC 

Grade 11 Grade 10 Grade 8 Grade 5



 105 

 

Table 4.1 

Average Within-District ICC by Grade for Districts with 𝐽 ≥ 4 

Grade K �̅� SE 

5 154 0.0964 0.0060 

8 84 0.0781 0.0069 

10 50 0.0982 0.0099 

11 51 0.0933 0.0118 

F(3,335) 1.340   

p 0.2601   
 

Conceptually, the number of districts in an MSCRT does not change the 

underlying variance structure of the data. However, this choice does affect the number of 

districts eligible for a study, and therefore the sampling frame of districts for MSCRTs of 

various configurations can be quite different. Respectively, in Grades 5, 8, 10, and 11, 

there are 46, 4, 2, and 2 districts meeting the sample size requirements for an MSCRT 

with 𝐾 = 3 districts, 𝐽 ≥ 20 schools per district, and 𝑛 ≥ 25 students per school. 

Similarly, across grades, there are 68, 49, 19, and 21 districts that meet the sample size 

requirements for the MSCRT with 𝐾 = 10 districts, 6 ≤ 𝐽 < 20 schools per district, and 

𝑛 ≥ 25 students per school. 

In Table 4.2 I present a comparison, by grade, of the mean within-district ICC for 

a MSCRT with many districts, and a MSCRT with only a few districts. In Grade 5, a 

significant difference exists in the mean within-district ICC for the two designs 

(p = 0.0020). More specifically, I find for the design with only a few districts, �̅�25,20,3 =



 106 

 

0.1295 (𝑆𝐸 = 0.0098), and for the design with many districts, �̅�25,6,10 = 0.0843 

(𝑆𝐸 = 0.0069).  

 
Table 4.2 

Comparison of Mean ICC Values by Grade for MSCRTs with Many Districts and  
Only a Few Districts 
 

 MSCRT with many 
districts 

MSCRT with only a 
few districts  

     

 (𝑛 ≥ 25, 6 ≤ 𝐽 < 20) (𝑛 ≥ 25, 𝐽 ≥ 20)      

Grade K �̅�25,6,10 SE K �̅�25,20,3 SE Difference SE df. t p 

5 68 0.0843 0.0069 46 0.1295 0.0098 -0.0452 0.0116 112 -3.9058 0.002 

8 49 0.0877 0.0096 4 0.1102 0.0300 -0.0225 0.0347 51 -0.6484 0.5196 

10 19 0.0957 0.0153 2 N/A N/A N/A N/A N/A N/A N/A 

11 21 0.0893 0.0135 2 N/A N/A N/A N/A N/A N/A N/A 

  
 

          

In Grade 8, no significant difference in the mean within-district ICC for the two 

designs is found (p = 0.5196); however, the ability to determine a difference is impacted 

by having only four eligible districts for the design with fewer districts. For the design 

with only a few districts, I find �̅�25,20,3 = 0.1102 (𝑆𝐸 = 0.0300), but for the design with 

many districts, �̅�25,6,10 = 0.0877 (𝑆𝐸 = 0.0096).  

In Grades 10 and 11, there are not enough large districts to execute a balanced 

MSCRT with 𝐾 = 3 districts, 𝐽 ≥ 20 schools per district, and 𝑛 ≥ 25 students per school 

because there are only two districts per grade that meet these criteria. Hence, mean 

within-district ICCs for the two different MSCRT designs cannot be compared. Thus, for 

each grade only the mean within-district ICC for the design with many districts is 
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presented. In Grade 10, I find �̅�25,6,10 = 0.0957 (𝑆𝐸 = 0.0153), and in Grade 11, I find 

�̅�25,6,10 = 0.0893 (𝑆𝐸 = 0.0135). 

Discussion 

Efforts to increase the rigor of science, technology, engineering, and mathematics 

(STEM) educational evaluations have emphasized designs such as CRTs which account 

for variance found in different levels of nesting.  Part of the job of STEM evaluators is to 

efficiently design studies including appropriately powering designs by accurately 

estimating variance at each level of nesting. In cases where treatment diffusion is of little 

concern, such as whole school interventions, MSCRTs with schools randomly assigned 

within districts are often an efficient design choice.  While empirical estimates of design 

parameters for CRTs in STEM continue to appear in the literature, they have primarily 

focused on outcomes of mathematics.  Empirical estimates of ICCs for studies of science 

achievement outcomes are rare, and have yet to consider MSCRT designs. This study 

fills this void in the empirical literature. 

Using student achievement data from Texas, the distribution of within-district 

ICCs required for powering an MSCRT of science achievement primarily exist between 0 

and 0.30.  Also, the mean within-district ICC does not vary much by grade (0.0781-

0.0982).  These estimates are much smaller than school-level ICC estimates from a two-

level model, using statewide data, which ranged from 0.172-0.196 (Westine et al., in 

press).  While average within-district ICC estimates by grade are expected to be smaller 

than those from a two-level model because district variance is not accounted for, the 
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actual difference (approximately 50%) highlights the importance of recognizing the 

conceptual difference between the two school-level ICC values when selecting parameter 

values for a power analysis. In the present study, the two-level model is used only for 

individual districts, thus eliminating any district variance that would exist when multiple 

districts are present, but not accounted for by the model. 

The two common MSCRT scenarios by grade demonstrate that ICC estimates for 

MSCRTs can be refined further in some cases. By basing this investigation in an 

empirical example, I show that two common design types drastically, but uniquely limit 

the eligibility of districts for each design by grade. For example, in Grade 5, only about 

one-third of districts have school-level sample sizes large enough (𝐽 ≥ 20) to participate 

in a MSCRT design that utilizes only a few districts (𝐾 = 3). Another one-third are in 

mid-size districts (6 ≤ 𝐽 < 20), which are used in MSCRT designs with many districts. 

The final one-third cannot reasonably be used in a balanced MSCRT because they are too 

small.  

In Texas, only Grade 5 had enough districts and schools to meaningfully compare 

means for district subsets defined by the type of MSCRT; in higher grades, not enough 

(or barely enough) districts were eligible for a MSCRT with 𝐾 = 3 districts. For Grade 5, 

estimates for a design with only a few districts and a large number of schools per district 

were significantly larger than for a design with many districts and a smaller number of 

schools per district. In other states where the structure of schools in districts is different, 

it will be useful to explore whether significant differences exist between mean within-

district ICC values in higher grades.  
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Using Optimal Design, I demonstrate the impact of the different ICC values for 

Grade 5. Suppose one desires to power a MSCRT with 𝐾 = 3 districts in order to detect 

an effect size of 𝛿 = 0.20. Assuming a significance level of 𝛼 = 0.05, 𝑛 = 25 students 

per school, 𝐽 = 20 schools per district, a school-level covariate explains 60% of the 

variability in achievement, and the within-district ICC is 𝜌 = 0.084, the mean value for 

mid-sized districts, then the study would be sufficiently powered at 0.81. However, if 

𝜌 = 0.130, the mean value for large districts, the study would be underpowered at 0.72.  

Thus, when estimating a within-district ICC value for a MSCRT power analysis, 

the evaluator should note the size of the districts in the sample from which the estimate is 

derived, and plan accordingly. Larger districts, which are commonly used in IES goal 3 

or similar-type studies, seem to be associated with larger within-district ICC values, 

which unfortunately is counterproductive to reducing costs. Specific district ICC values 

can vary considerably, though, so caution should be exercised in estimating this value.  

In IES goal 3 or similar-type studies where generalizability is not emphasized, 

evaluators would benefit from documenting within-district ICC values, or predictive-type 

models which could help identify districts with smaller school-level ICC values. For 

example, for Grade 5 in Texas, the three large districts with the smallest within-district 

ICCs have an average ICC of only 0.0442. Considering the example above, the power of 

the study using these particular districts is 0.8946. This suggests fewer participating 

schools per district are actually needed to meet an acceptable level of power.  

MSCRT designs including many districts, such as IES goal 4 or similar-type 

designs, offer more flexibility in the choice of districts. In Grade 5, where there are many 
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large districts to choose from, a design would seemingly also benefit from the evaluator 

targeting recruitment of districts with the smallest school-level ICCs. However, selecting 

specific districts with small ICC values could be challenging as two important criteria for 

designs, generalizability and efficiency, do not necessarily work in harmony.   

As demonstrated in this paper, certain districts align better with one type of 

MSCRT than another. To further improve the design of MSCRTs of science 

achievement, emphasis should be placed on expanding empirical estimates of within-

district ICCs across states in order to test the properties of within-district ICCs from 

different educational structures.  
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CHAPTER V 

CONCLUSION 

In this final chapter, I first summarize and review the main findings from each of 

the essays in order to draw conclusions regarding the impact of the research on improving 

the design of cluster-randomized trials in education.  Next, I collectively discuss the 

limitations of the essays.  Finally, I consider where the research can go from here, and 

highlight what I believe to be productive avenues for future research. 

Summary and Review of Main Findings 

Throughout the essays, there are several specific noteworthy contributions.  First, 

in Chapter II, the analysis of relative efficiency in a three-level CRT shows that both 

Level 2 and Level 3 ICCs are reasonably robust to misspecification, even when both 

ICCs are incorrect.  This finding mirrors foundational work in this area by Korendijk, 

Moerbeek, and Maas (2010). This is useful for science education evaluators who face 

significant uncertainty when specifying parameters, because small increases in sample 

size can compensate for misspecification. 

Chapters III and IV contribute to the formation of an empirical base of design 

parameters for the evaluation of science education interventions using CRT and MSCRT 

designs.  Empirical estimates of design parameters for science education do not currently 

exist across the range of grades and formats in which science is tested, and the results of 
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this dissertation fill this void for traditional three-level CRTs as well as MSCRTs.  The 

results from the one state considered, Texas, show that in all grades in which science is 

tested, science ICCs are equal to or larger than both mathematics and reading, and that 

there is a much larger difference between science and reading ICCs than between science 

and mathematics ICCs.  Additionally, within-district ICCs for science were typically 

found to range between 0 and 0.30.  However, in grade 5, the average within-district ICC 

varies according to the number of districts used in a design.  By considering actual data 

from Texas in two commonly used MSCRT designs, within-district ICCs were shown to 

be larger for designs with only a few districts and a large number of schools than for 

designs that have many districts and only a few schools in grade 5.  On average, within-

district ICCs are approximately half the size of a school-level ICC from a two-level 

model with students nested in schools.   

Finally, Chapter III is the first study to explore the hierarchy of educational 

pretest covariates for a specific application.  Beyond specific findings for science, the 

analysis likely will serve as an example for other researchers as empirical estimates of 

design parameters are explored in new subject areas.  While others studies have presented 

R2 estimates for various covariate models (Bloom, Richburg-Hayes, & Black, 2007; 

Hedges & Hedberg, 2007), the context has always been mathematics or reading 

achievement where pretest covariates are readily available.  In the context of science, 

where annual testing is not the norm, the comparison of lagged pretests is relevant and 

important.  Results of this study show that when available a one-year lagged student-level 

science pretest is the best predictor of science achievement, although a one-year school-
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level science pretest is a very good predictor too.  When the one-year lagged student-

level science pretest is unavailable, which is true in all grades except grade 11, the one-

year lagged school-level science pretest is preferred.   

Other contributions are less specific, but are significant because they are timely.  

For example, as educational evaluations increasingly involve more than two levels of 

nesting, the need for design parameters values estimates from three-level models is 

especially relevant.  Additionally, the notion of improved outcomes in science, 

technology, engineering, and mathematics (STEM) disciplines continues to be relevant to 

educational policy makers.  The tackling of research questions pertinent to science 

education evaluation methods helps to ensure science education evaluations are of the 

highest quality.  Finally, evaluation efficiency is a topic that is touched on in each of the 

three essays.  The dissertation serves as an important example for evaluation practitioners 

of how evaluative decisions like the specification of ICC values can impact the cost-

effectiveness of an evaluation. 

Overall, the results of this dissertation are encouraging.  While it is important for 

evaluators to be cost-effective in their evaluation designs, three-level CRT designs are 

reasonably robust to misspecification of one, two, or both ICCs. 

Prior to this research effort, science education evaluators planning a three-level 

CRT had very little guidance regarding how to appropriate estimate ICC and R2 values.  

Decisions regarding sample sizes need to be justified, and there was very literature to 

reference for defensible claims regarding variance.  At best, evaluators needed to rely on 
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borrowing ICC values from mathematics or reading, and attempt to justify their 

applicability.  

The results of this research should instill confidence in science education 

evaluators.  Science education evaluators are now equipped with useful information to 

accurately design and better plan more efficient studies.   

Limitations 

In this section, I describe some limitations of the research, including concerns 

regarding the masking of data, assumptions, and the overall generalizability of the 

findings.  First, because of the large population in Texas, sample sizes for ICC and R2 

estimates are large, and help to create precise estimates.  However, the data used in 

Chapter III and IV were subject to masking.  Thus, despite the large dataset, some student 

records were not available for analysis, which introduces an unknown amount of bias in 

the results.  However, many of the student achievement scores were masked because the 

student took a different version of the TAKS test, and therefore would not have been 

considered in the analysis anyway.  This diminishes the impact of the masking.  

Nevertheless, in any research effort it is important to adequately describe the population 

served by the intervention, and in this research I was unable to consider the full 

population of students in Texas. 

Throughout the dissertation, assumptions were made to clarify or sometimes 

simplify the analysis.  For example, models in the analysis are assumed to be balanced, 

when in all likelihood a balanced design is unrealistic.  In other instances, assumptions 

were made to consider a single representative case because it would be impractical to 
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explore all alternatives.  In these situations, I do not presume the representative case 

represents all possible configurations of parameters.  Results may different depending on 

the assumptions made.  Therefore, the precision of estimates is biased due to these 

assumptions. The extent of this bias is likely small, unless significant imbalance occurs; 

the actual amount of bias is unknown.  

While the estimates of ICCs for CRTs and MSCRTs should be considered when 

designing a CRT or MSCRT in another state, it is unlikely that the educational structure 

in other states will align with those in Texas.  Data for other states and grades are needed 

in order to assess the impact of various cleaning and analysis steps.  Hence, the 

applicability of the results to be generalized beyond population of students in Texas is 

limited.   

New Directions 

To conclude, I pause to reflect on the motivation for this dissertation, and 

consider extensions of this work that are most relevant going forward.  When I originally 

conceptualized this dissertation, I was working under motivation to equip science 

educational evaluators with the tools necessary to accurately design a three-level cluster-

randomized trial with students nested in schools nested in districts.   Recent work in 

mathematics and reading had expanded the repertoire of design parameters to include 

ICCs and R2 values that could be used to design three- or even four-level models, but 

science education evaluators still were without access to empirical estimates specific to 

their discipline.   



 118 

 

Of course, there are multiple directions for future research in this area.  One 

obvious need is to extend the analysis to four levels by including the teacher level.  While 

Zhu, Jacob, Bloom, and Xu (2012) find that, in most cases, a three-level analysis can be 

performed using two levels, ignoring the classroom level, and therefore the classroom 

level is less important, many interventions target the teacher level for assignment.  For 

example, technological interventions like digital instructional delivery may more easily 

be implemented at the classroom level, and the threat of contamination is low because 

students do not interact across classrooms during the actual instructional delivery. 

Adding a fourth level of data is also helpful for considering outcomes associated 

with teacher professional development.  Kelcey and Phelps (2013) were the first to 

provide empirical estimates of design parameters for teacher professional development, 

but the outcomes did not include science education.  Because there is such a demand for 

improved STEM teaching and learning, adding a teacher level will help researchers to 

better explore the links between science teacher professional development and student 

achievement. 

One challenge with adding a fourth level is that the masking process will most 

assuredly render the data unusable.  As state agencies increasingly partner with 

researchers, steps need to be taken to avoid the masking process, yet still maintain an 

adherence to privacy-related issues.  By working together to understand the nuances of 

the data, researchers and data managers can improve the quality of CRTs and other 

evaluation methodologies in education. 
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Appendix A 

Average R2 Values for Models with Demographics and Pretest Covariates 
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Table A 
 
Average R2 for a Two-Level and Three-Level HLM of Science Achievement with  
Student-Level Demographics and the Most Recent Student-Level Science,  
Reading, or Mathematics Pretest Covariate by Grade, 2008-2011 
 

Pretest Subject Grade 
Two-Level HLM  Three-Level HLM 

R2
L1 R2

L2  R2
L1 R2

L2 R2
L3 

Science 5 - -  - - - 

 8 0.335 0.705  0.335 0.687 0.679 

 10 0.485 0.820  0.485 0.825 0.789 

 11 0.519 0.913  0.519 0.908 0.925 

Reading 5 0.311 0.677  0.311 0.623 0.740 

 8 0.371 0.776  0.371 0.785 0.678 

 10 0.245 0.780  0.245 0.803 0.725 

 11 0.267 0.786  0.267 0.789 0.789 

Mathematics 5 0.313 0.701  0.313 0.626 0.783 

 8 0.453 0.800  0.453 0.770 0.790 

 10 0.471 0.874  0.471 0.886 0.816 

  11 0.479 0.861  0.479 0.865 0.843 

  



 122 

 

Table B 
 
Average R2 for a Two-Level and Three-Level HLM of Science Achievement with  
Student-Level Demographics and a One-Year School-Level Science, Reading,  
or Mathematics Pretest Covariate by Grade, 2008-2011 
 

Pretest Subject Grade 
Two-Level HLM  Three-Level HLM 

R2
L1 R2

L2  R2
L1 R2

L2 R2
L3 

Science 5 0.101 0.731  0.101 0.651 0.898 

 8 0.129 0.819  0.129 0.775 0.860 

 10 0.129 0.877  0.129 0.884 0.822 

 11 0.131 0.874  0.131 0.880 0.844 

Reading 5 0.101 0.637  0.101 0.587 0.705 

 8 0.129 0.717  0.129 0.713 0.658 

 10 0.129 0.757  0.129 0.778 0.680 

 11 0.131 0.736  0.131 0.770 0.706 

Mathematics 5 0.101 0.675  0.101 0.607 0.772 

 8 0.129 0.757  0.129 0.737 0.720 

 10 0.129 0.834  0.129 0.847 0.763 

  11 0.131 0.838  0.131 0.848 0.796 
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Appendix B 

Human Subjects Institutional Review Board 
Approval Letter 
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