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Abstract

A graph G is regular of degree d if for every vertex t; in G there exist
exactly d vertices at distance 1 from v. A graph G is fcth order regular
of degree d if for every vertex v in G, there exist exactly d vertices at
distance k from v. In this paper, third order regular graphs of degree 1
with small order are characterized.

1 Definitions and Examples

We denote the distance between two vertices u and v in a connected graph G
of order p by d(u,v). For an integer k with 1 < k < p —1, the k-neighborhood
Nic(v) is defined by

Nk(v) = {u\u e l/(G)and d{u,v) = k)

and the closed k-neighborhood by

Nk[v] = Nk{v)U{v}.

Definition The kth order degree of v is degkv = \Nk(v)\.



Definition A graph G is kth orderregular of degree d if degk(v) = d for every
vertex v of G. Consequently, first order regularity of degree d is synonomous
with regularity of degree d.

For example, the graph G\ of Figure 1 is second order regular of degree 4,
while Gi is first order regular of degree 4, second order regular of degree 5, and
third order regular of degree 2.

Figure 1

2 kth Order Regular Graphs of Degree 1

Alavi, Lick and Zou [1] conjectured that for k > 2, every connected, kth order
regular graph of degree 1 is either a path of length 2k —1 or has diameter k.
This conjecture is verified in our first result.

Theorem 1 For k > 2, every connected, kth order regular graph of degree
1 is either a path of length 2k —1 or has diameter k.

Proof. I still have to write this one up! •



3 Third Order Regular Graphs of Degree 1

Let nl<2 denote the complete n-partite graph in which each partite set contains
exactly 2 vertices. In [1] it is shown that a connected graph G is second order
regular of degree 1 if and only if G is either a path of length 3 or G is nK2 for
some n > 2. We present some similar results for graphs that are third order
regular of degree 1. We first introduce the following definitions.

Definition A kth order regular graph G of degree d is maximal if for every
pair u,v of nonadjacent vertices the graph G -f uv is not Arth order regular of
degree d.

For example, for k > 2, the graphs P2k and C2k are kth order regular of
degree 1 and C2k is maximal, while P2k is not.

Definition Two vertices u and v are defined as antipodal in a graph G if
d(u,v) = diam G. Since paths are not maximal, recall from theorem 1 that
maximal kih order regular graphs of degree 1 have diameter k. Hence, if a; is a
vertex in a maximal kth order regular graph of degree 1, the antipodal vertex of
the vertex x, denoted x', is the unique vertex at. distance k from x. We refer to
a vertex and its antipode as an antipodal pair.

Proposition 1 Let x and y be distinct vertices in a connected, maximal
third order regular graph G of degree 1. Then xy £ E(G) if and only if x'y1 E
E(G).

Proof. Assume that xy € E(G), and suppose, to the contrary, that x'y' £
E(G). Then d(x,x') - d(y,y') = 3. Since P6 is not a maximal third order
regular graph of degree 1, it follows from Theorem 1 that G has diameter 3.
Since x' is the unique vertex at distance 3 from x, we have that d(x',y) < 2.
If d(x',y) - 1, then, since d(y,x) = 1, it follows that d(x',x) < 2, producing a
contradiction. Thus d(x',y) = 2. Similarly, d(y',x) = 2.

Since x'y' £ E(G), it follows that G+ x'y1 is not third order regular of degree
1. Hence, for some pair w,w' of antipodal vertices in G, there exists a w —w'
path of length at most 2 in G + x'y'. Since d(x, x') = d(y, y') = 3 in G + x'y',
there must exist z,z' £ V(G), with {z,z'} fl {x,x',y,y'} - 0 such that there
exist z —x' and z' —y' paths or z —r/ and z' —x' paths. Then

d(z,x') + l + d(y',z')<Z

or

d(z\x') + l + d(y',*)<3,

producing a contradiction. D



Proposition 1 implies that there is an automorphism of a maximal third
order regular graph of degree 1 that interchanges each vertex with its antipode.

Corollary 1 Let G be a connected, maximal third order regulargraph of
degree 1. Let x, x' be a pairof antipodal vertices in G. Then for v £ V(G) with
v £ x, x', either vx £ E(G) or vx' £ E(G).

Proof. Let v be a vertex of G such that v ^ x, x'. Assume, to the contrary,
that v is neither adjacent to x nor to x'. Since diam G — 3 and x' is the
unique vertex at distance 3 from x, it follows that d(v,x) = d(v,x') = 2. By
the previous proposition, d(v',x) = d(v',x') = 2.

Since G is maximal, G + vx is not third order regular of degree 1. Since in
G + vx, we know that d(x,x') = d(v,v') = 3, there must exist some pair z, z'
for which d(z, z') < 2 in G + vx. Thus

d(z,v) + l + d(x,z') < 2

or

d{z',v) + 1 + d{x.z) < 2,

producing a contradiction.
Thus vx £ E(G) and, by the symmetry shown in Proposition I,'we have

that v'x £ E(G). •

Corollary 2 follows immediately.

Corollary 2 Let G be a connected, maximal third order regular graph of
degree 1 of order p. Then G is regular of degree (p —2)/2.

These results provide us with the following theorems that characterize third
order regular graphs of degree 1 of small order.

Theorem 2 The only connected, maximal third order regular graph of
degree 1 and of order 6 is Cq.

Proof. From Corollary 2, a maximal third order regular graph of degree 1
of order p is regular of degree (p —2)/2. Let G be a connected, maximal third
order regular graph of degree 1 and of order 6. Then G is regular of degree 2.
Since G is connected, G must be a cycle with six vertices. •

Theorem 3 The only connected and maximal third order regular graph of
degree 1 and of order 8 is the cube.



Proof. Let G be a connected, maximal third order regular graph of degree
1 and order 8. From Corollary 2, G is regular of degree 3. If we delete two
antipodal vertices x and x' from G, the resulting graph of order 6 is regular
of degree 2. Only two such graphs are possible, namely G3 and G4, shown in
Figure 2.

Figure 2

We now construct G from these graphs. Since, in adding two vertices to G3,
the resulting graph must be connected, we always have G4 as a subgraph of G.
Thus we need only examine the possible graphs that can be constructed from
G4. Since no pair of antipodal vertices are adjacent to the same vertex, there
are two such graphs possible, namely G5 and G& shown in Figure 3.



Figure 3

The graph G5 is not third order regular of degree 1. Hence Ge, which is
isomorphic to the cube, is the only maximal third order regular graph on eight
vertices. •

Theorem 4 The only connected, maximal third order regular graphs of
degree 1 and of order 10 are K2 x K5, the antiprism on 10 vertices, and the
cube with two pyramids. The latter two are shown in Figure 4.

the antiprism on 10 vertices the cube with two pyramids
Figure 4

Proof. Let G be a connected, maximal third order regular graph of degree
1 and order 10. From Corollary 2, the graph G is regular of degree 4. If we
delete a pair of antipodal vertices, u and u', from G, the resulting graph on
eight vertices is regular of degree 3. The three such graphs possible are G5, Gq,



and G7 (see Figure 5).

Figure 5

We now construct G from G - uv. We begin with G7. Since G is connected,
in adding two vertices to G7 we create G5 as a subgraph. Hence, we need only
examine the possible graphs that can be constructed from G5 and Gq.

Consider G5. Without loss of generality, let ud £ E(G). This forces u'd' £
E{G). Since d(u,b) = d{b,b') = 3, we must have u'b £ E{G), and thus ub' £
E(G). Since antipodal vertices cannot both be adjacent to u or to u', we now



have two possible graphs, namely the graphs G$ and G9 shown in Figure 6.

Figure 6

Both Gg and G9 are maximal third order regular of degree 1. The graph Gg
is isomorphic to the antiprism on ten vertices, and G9 is isomorphic to the cube
with two pyramids.

We now examine G§. There are four ways in which two vertices u and u'
can be added to Ge such that antipodal vertices are not both adjacent to u or



to u', as represented by G\q,G\\,G\2, and G13 of Figure 7.

Figure 7

However, observe that G\q = G\2 = Gg- Since N[u] = N[v] in Gu, it is not



third order regular of degree 1. Finally, G13 —K2 x A'5 shown in Figure 8.

Figure 8. K2 x K\

•
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