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I. Motivations for research

In recent years, there has been interest in the mathematical

community in a rapidly developing branch of theoretical mathematics

known as random topological graph theory. This new area of

mathematics explores the different ways in which certain graphs can

be imbedded in given surfaces. The random nature of the new branch

results when one also imposes a random distribution on set of all

imbeddings of a fixed graph, via the the orientation of the edges

at each vertex.

Many interesting results have been discovered in the field of

topological graph theory. One that is very interesting is that it

was proven mathematically that there exist only five regular

polyhedra. For a full explanation and proof, refer to [3]. In

addition, graph theory has been utilized to model complex circuits

that are being put on computer chips. Thus, the applications that

are developing in our technological society are immense.

In 1960, J. Edmonds conducted research on an algorithm to

investigate the various ways in which a graph can be imbedded on a

surface (see [1] ) . He documented a very powerful algorithm to

explore these imbeddings, commonly named the Edmonds' Permutation

Technique.

Using this technique and a random topological graph theory

model developed by Lee and White in [2] , we shall explore the

imbeddings for the graph Q3 using a particular group and a

particular generating set. Hopefully, the results obtained will

help later researchers develop a theory by which we can predict the



nature of a general cubic graph's imbeddings through knowledge of

its rotation scheme.

I have chosen to research random topological graph theory in

order to complete my undergraduate honors curriculum by producing

an honors thesis. My studies at Western Michigan University have

given me the opportunity to study statistics and computer science,

but I have been lacking in my development of abstract thought.

Before embarking on a career in the very applied field of actuarial

science, I believed that it would be helpful to expand my

theoretical mathematics knowledge.

Dr. Arthur White has been instrumental in my research. As a

highly respected mathematician and researcher of random topological

graph theory, Dr. White has done much for the science of

mathematics by exploring this new field. I hope that this bit of

research that I have conducted will aid him in his research.

II. Definitions

Because of the relative newness of topological graph theory,

a few definitions would be in order. The notation discussed below,

as found in [2] and [3], will be utilized throughout the paper.

A graph G is a non-empty set of vertices, V(G), together with

a set of unordered pairs of distinct veritices, E (G) . Each element

of E(G) is called an edge. The graph that we shall explore is

called Q3, and it can be pictured as the one-dimensional skeleton

of a cube, with eight vertices and twelve edges.

The degree of a vertex v is the number of edges to which v



belongs and is denoted by deg(v) . The graph Q3 is cubic in nature,

meaning that each vertex v in V(G) has degree three.

A compact, orientable 2-manifold Sk is a topological surface

which is topologically equivalent to a sphere with k handles, for

ksO. For example, S0 is the sphere and S1 is the torus (or

doughnut).

The graph G with vertex set V(G) ={vl; ...,vm} and edge set

E(G) ={e17 ...,en} is imbedded in a 2-manifold M if there exists a

subspace G(M) such that

G(M)= iOi Vi(M) u jOi e.j (M) , where

(i) v-l (M) ,...,vm(M) are m distinct points of M,

(ii) e-L (M) ,...,en(M) are n mutually disjoint open arcs in M,

(iii) e.j (M) n v± (M) =0, for i=l, ...,m and j=l, ...,n, and

(iv) if e.j= (vj:L, vj2) , then the open arc ej (M) has

vjx(M) and vj2 (M) as end points for j=l,...,n.

In reference to this definition, an arc is a homeomorphic image of

the closed unit interval. An open arc is an arc without its

endpoints.

A surface which is topologically equivalent to a sphere with

k handles is said to have genus k. The genus of an imbedding of G

on Sk is defined to be k. Furthermore, the genus of the graph,

denoted T(G), is defined as the minimum genus of all such

imbeddings of the graph G. If T(G)=k, an imbedding of G in a

surface of genus k is said to be minimal.

The regions or faces of G imbedded on M are the components of

the complement of the Image of G on M. With the simple example of

the cube which is associated with Q3, the faces of the graph G



would be the six "square" sides of the cube. As in this example,

if all the faces are 2-cells (topologically equivalent to open

disks), we say the imbedding is a 2-cell imbedding.

A Cayley Graph is a graph G which can be depicted as a set of

vertices V(G) and a set of edges E (G) determined as the elements of

a finite group r. These edges in E(G) depend upon a generating set

A of the group r. In this paper, we describe the set E(G) as:

E(G) = { {g,g+d} | g e r, 6 e A }

For the Cayley Graph Q3, the group being used is the group Z2xZ2xZ2,

represented by {(a,b,c) a,b,c e Z2}, where Z2 = {0,l}, and the

generating set A = { (0,0,1), (0,1,0), (1,0,0) }. For the sake of

clarity, we shall write the elements of this generating set as 001,

010, and 100 respectively.

III. Analytical Techniques.

In order to analyze the nature of the imbedded graph Q3, it is

important to recognize a very useful equation known as Euler's

Identity, which applies to every 2-cell imbedding. The equation is

F + V = E + 2(l-k),

where F is the number of faces, V is the number of vertices, E is

the number of edges, and k is the genus of the imbedding.

Using this simple formula, we can analyze all the 2-cell

imbeddings of the graph. Since Q3 is a graph with eight vertices

and twelve edges, we have two of the necessary variables in the

equation. In order to obtain the number of faces and hence the



value of k, we need to explore a method of examining each imbedding

of the graph.

One method of representing 2-cell imbeddings is to utilize an

algebraic method known as Edmonds' Permutation Technique. The

procedure follows:

Suppose a graph G has m vertices; V(G)

{l,2,...,m}. Let V(i)={k | {i,k} is an element of the

set E(G)}. Let p± be a cyclic permutation of V(i) ,

i=l,2,...,m (of length mi= | V(i) | ). The advantages of

this representation become apparent when one sees the

following theorem.

THEOREM

Each choice G=(Pi,p2# ••-/Pj » called a rotation

scheme, determines a 2-cell imbedding G(M) of

G in orientable 2-manifold M, such that there

is an orientation on M which induces a cyclic

ordering of the arcs (i,k) at i in which the

immediate successor to (i,k) is (i,pi(k)),

i=l,2,...,m. In fact, given (plfp2f ...,pj

there is an algorithm which produces the

determined imbedding. Conversely, given a 2-

cell imbedding G(M) of G in an orientable 2-

manifold M with a given orientation, there is

a corresponding (plfp2l ...,pm) determining that

imbedding. Furthermore, the face boundaries

of the imbedding can be computed as follows.



Let D={(a,b)|{a,b} is an element of E(G)}.

Define P:D^D by : P ((a, b) )= (b, pb (a) ). Then the

orbits under the permutation P correspond to

the face boundaries.

III. Analysis of the Graph Q3

Using Edmond's permutation technique, let us work an example

dealing with the graph Q3. Let's take a particular orientation of

the edges around each of the eight vertices. For ease of notation,

we write each of the vertices as pi; where i is the value of the

binary number corresponding to the group element in the group

T=Z2xZ2xZ2. According to the notation included above, we have:

Po_Pooo : ( 001, 100, 010 )
Pi=Pooi : ( 000, 011, 101 )

p2=PoiO ( 000, 110, 011 )

P3=Poil ( 001, 010, 111 )

P4=Pl00 ( 000, 101, 110 )

P5=Pl01 ( 001, 111, 100 )

P6=PllO ( 010, 100, 111 )
P7=P111 • ( 011, 110, 101 )

Given this set of Pi's, we can determine the face boundaries using

the permuation technique. Take the edge going from 000 to 001.

The next edge leading away from the vertex 001 can be shown to be

( 001, p001 (000) ). Now, p001 (000) = 011 since the vertex 011

follows the vertex 000 in the cyclic permutation p001. We can

continue this process resulting in the following set of vertices,

which are pictured in the drawing above as the shaded region:

000 -* 001 -* 011 -» 010 -* 000 -> 001



Notice that the region ends with a repetition of the first two

vertices. Thus, we express the region as the four-sided region:

000 -> 001 -* 011 -* 010

Similarly, we have the other regions given by:

000 h> 010 h» 110 -* 100

000 -* 100 -* 101 h» 001

001 -* 101 h» 111 H> 011

010 -* 011 -* 111 -* 110

100 -* 110 -* 111 h> 101

From the faces shown, we can solve for the genus random variable

using Euler's Identity, with F = 6, V = 8, and E = 12. Thus, we

have

F + V = E + 2(l-k) h> k=0.

The complete analysis of Q3 thus is carried out by changing the set

of cyclic permutations pi; for i=l,...,m.

Since it is necessary to change the orientation of the edges

at each vertex using this algorithm, another interesting aspect of

this problem surfaces. Let us place a probability distribution on

the orientation of the edges at each vertex. Since the graph is

cubic, there are only two possibilities of an orientation scheme at

each vertex. Let's define one possibility as clockwise, and the

other as counterclockwise. Furthermore, let the probability of

selecting counterclockwise be p, and the probability of selecting

clockwise be 1-p = q. Note that once this is accomplished, one can

immediately note that the number of clockwise vertices resembles a

binomial distribution, with the number of trials equal to the

number of vertices, and the probability of "success" equal to p.

Topological Graph Theory analyzes the graph using the uniform case,

with p = 0.5. Now, we can define a random variable T to give the



genus of the given imbedding. Mathematically we write,

T:Q ^ N n {0} and

T(Q3,q) = k, if q imbeds Q3 on Sk,

where Q is the samples space containing all possible cyclic

permutations for the given graph Q3. Note that the size of Q with

the graph Q3 is 28 = 256. This analysis of the random imbeddings

of the graph G leads to an instance of a developing branch of

mathematics known as Random Topological Graph Theory. In this new

area of mathematics, the researcher is interested in the value of

the genus random variable, T=k, rather than in the number of

"successes". Currently, a method for determining the relationship

between the graph, its number of clockwise vertices, and the genus

random variable is being explored by Dr. A. T. White at Western

Michigan University.

In the example given above, we can determine the orientation

of each of the vertices. Let the term counterclockwise apply to

adding the vectors of the generating set in the following order:

001, 010, and then 100. Then the term clockwise refers to the

application of the vectors in the generating set in the order:

001, 100, and then 010. Thus, the orientation of each of the

vertices in the example above is given as:

000

001

010

011

100

101

110

111

clockwise

counterclockwise

counterclockwise

clockwise

counterclockwise

clockwise

clockwise

counterclockwise

In analyzing the graph Q3, it is necessary to look at

jQj = 28 = 256 different imbeddings in order to exhaust all



possible orientations. A computer program was developed in January

of 1994 to analyze these imbeddings for Q3. This program utilizes

Edmond's Permutation Technique to determine the region boundaries

for each imbedding. Then, using Euler's identity, the genus of the

imbedding is found for each.

The results obtained by analyzing the data follow, organized

in columns by the number of clockwise vertices:

i

k

0 1 2 3 4 5 6 7 8 Totals

0 0 0 0 0 2 0 0 0 0 2

1 1 0 0 8 36 8 0 0 1 54

2 0 8 28 48 32 48 28 8 0 200

Totals 1 8 28 56 70 56 28 8 1 256

Notice that the example demonstrated earlier in this paper had four

clockwise vertices and a genus of 0. Also notice that the totals

along the bottom represent the coefficients in the binomial

expansion of the expression below:

(1+i)8 = E (\) p1 (l-p)8"1 = (p + (1-p))8 = l8 = 1

This is simply a restatement of the binomial theorem for this

situation.

Given the uniform case, that is at p=0.5, we can determine the

expectation of the genus random variable k, commonly called the

average genus of Q3, by the equation

E[k] = ((2)(0) + (54)(1) + (200)(2)) + 256 ~ 1.7734375

In the general case, with a random p, we can also determine E [k] by

adding each term of the form:

(frequency) (k) (pJMl-p)8"1



where i is the number of clockwise vertices, k is the genus of the

imbedding, and frequency denotes the number of occurrences for the

given genus along with the given number of clockwise vertices

(i.e., the number from the table above).

After going through the analysis, it was determined that the

polynomial to analyze is

E[k] = 1 + 8p - 28p2 + 48p3 - 70p4 + 128p5 - 164p6 + 104p7 - 26p8.

Differentiating with respect to p and setting equal to 0, we have

0 = 8- 56p + 144p2 - 280p3 + 640p4 - 984p5 + 728p6 - 208p7.

Factoring this equation, we have

0 = (2p - 1) (-13p6 + 39p5 - 42p4 + 19p3 - 8p2 + 5p - 1) .

Since the above equation has only one rational root at p=0.5, I

turned to Maple V to give me the other two symbolic roots:

0.5 ± (1/78) (V 351A1/3 - 2028A2/3 + 248 V3) + A1/6 ~

.28315 and .71685,

where A = (53/2197) + (1/117)V 11 V~~3. The second derivative of

the expression was then determined, yielding

-56 + 288p - 840p2 + 2560p3 - 4920p4 + 4368p5 - 1456p6.

Thus, each of the values for p was substituted into the second

derivative, indicating whether each was a maximum or minimum value

point. The value of E[k] is minimized when p=0 and when p=l. The

two irrational roots mentioned above give the absolute maxima. A

relative minimum exists at the point where p=0.5 (i.e., in the

uniform case). This is an intuitively interesting point since the

symmetry about the point p=0.5 is a result of the definition used.

Namely, if we look to either side of the point where p=0.5, it is

identical to exchanging each clockwise vertex for counterclockwise,



and each counterclockwise vertex for clockwise. These imbedding

schema yield reflections of one another, and therefore the same

genus value. A graph of the expectation of the genus random

variable versus the value of p yields the following:

!

I

1.2T

1

0.2 0.4 0.6 0.8 L

Also of interest is the value of p that maximizes the

expression:

Pr[k=0] = 2p4(l-p)4 = 2p4 - 8p5 + 12p6 - 8p7 + 2p8

Setting the first derivative to zero and solving for p, we have:

8p3 - 40p4 + 72p5 - 56p6 + 16p7 = 8p3(l-p)3(l - 2p)

The roots are therefore at p = 0, 1, and 0.5. Checking each of

these values using the second derivative, we find that 0 and 1 each

yield inflection points which are also absolute minima on the

interval [0,1] . The value p=0.5 yields an absolute maximum.

Recall that this corresponds to the uniform distribution.

IV. General Summary

We've seen that the rapidly developing field of Random

Topological Graph Theory has many interesting questions about one



graph Q3, described by one group Z2xZ2xZ2 and one generating set

{ 001, 010, 100 }. Based on the data compiled in this study, it

seems likely that a relationship can be found between the genus

random variable and the particular number of clockwise vertices in

the imbedding of the general cubic graph. In addition, it would be

interesting to explore whether a relative maximum or a relative

minimum of the E [k] can always be found in the uniform case of

p=0.5. Since we explored the nature of the graph Q3, it now

remains to be seen whether the results for another cubic graph of

order eight, say the Cayley graph using the group r=Z8 and the

generators 1 and 4, differ significantly from the results obtained

here. Also, what happens when one changes the group for a fixed

graph? For example, one could examine the group r=Z2xZ4 and

A={(0,1) ,(1, 0) } or the group r=D4 (a nonabelian group giving the

symmetries of a square) and A consisting of a 90° rotation and

reflection. Both of these yield the graph Q3 again. Since a cubic

graph necessarily has an even number of vertices, we could then

study cubic graph of order 10, 12, 14, and so on. All of these

questions are interesting, and they should be examined closely in

the future.
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******* ******************************

* This program shall analyze the graph Q3, with it's 8 vertices and 12
* edges. The program is modularized extensively, to allow the program to
* be read by programmers as well as nonprogrammers. Each module details
* what shall occur within its framework. The program was written by
* Jody Koenemann with assistance from Dr. Arthur White
* Western Michigan University

Winter, 1994
***************************************]

***************************************

* The graph Q3 must be represented in a matrix format as the vertices &
* and the vertices that they each connect with by an edge. A single
* embedding is therefore an array of dimensions 8 by 3, since there are
* eight vertices and three edges to each vertex. An example of such an
* array follows, followed by whether the vertex is said to be clockwise or
* counterclockwise in orientation.

* M: 0 1 2

0 1 4 2

1 0 3 5

2 3 0 6

3 2 7 1

4 5 6 0

5 4 1 7

6 7 2 4

7 6 5 3

ORIENTATION

clockwise

counterclockwise

counterclockwise

clockwise

counterclockwise

clockwise

clockwise

counterclockwise

Analysis of this graph involves finding how many faces there are in the
embedding described by M. In order to accomplish this, a parallel
array must be kept showing whether an edge has been visited before ( in
the correct order, since this isn't a commutative operation ). The
parralel array will consist of a matrix of values, which we shall call
VISITED and NOTVISITED. This will make the program more readable.
Then, the algorithm for finding the faces shall consist of determining
which edges are still left NOTVISITED. Although it would be nice to be
able to examine the nature of the faces, we will not attempt this
immediately. NOTE: A possibility for storing the faces would be to
write them to a text file and then read the text file later. ENDNOTE.

Without further introduction, let us begin the list of algorithms.
******* ******************* ********!

program ANALYZEGRAPH (output,outfile);

type

vertexorientationtype = (CLOCKWISE,COUNTERCLOCKWISE);
vtype = array[0..7] of vertexorientationtype;
Mrowtype = array [0..2] of integer;
embeddingrepresentation = array [0..7] of Mrowtype;
edgestatus = (NOT_VISITED,VISITED);
rowtype = array [0..2] of edgestatus;
parallelarray = array [0..7] of rowtype;



var

VertexSet : vtype;
(* Becuase of difficulty using an array in a for loop, we needed separate
(* variable names for each vertex. Once the values were set by the for
(* for loop, they were then each entered into the array for further
(* processing. *)
v0,v1,v2,v3,v4,v5,v6,v7 : vertexorientationtype;

M : embeddingrepresentation;
Numberof Faces : integer;
IsVisited : parallelarray;
counter : integer; (* counter is used to determine when all of the faces

(* are accounted for. Since the number of edges is 12,
(* we know that the product of the number of faces &
(* the number of sides per face is 2*12 = 24. *)

outfile : text; (* Used to store the results of the study. *)
rowjndex : integer;!* Used to print out the embedding to the file. *)
genusarray : array [0..2] of integer;
Numberclockwise, Numbercounterclockwise : integer;

***************************************

* UpdateMwith(VertexSet) is a procedure which uses the VertexSet that
* describes the orientation of each vertex, and actually updates M with the
* correct orientation. The orientation is determined through the use of
* group theory. It can be described mathematically as the group Z2*Z2*Z2.
************************************** *i

procedure UpdateMwith (VertexSet:vtype);
type

binarytype = 0..1;
var

index,indexcopy : integer;
z1,z2,z3 : binarytype;

**************************************

* Orientcwise takes the binary representation of the vertex and orients
* the vertex in a clockwise direction. Thus, the values 001,100,010 are
* added to the vertex in that order. Index is referred to as a global
* variable.
************************************* *\

procedure Orient_cwise(z1,z2,z3: binarytype;
var M:embedding_representation);

begin (* procedure Orientcwise
M[index][0]

M[index][1]

M[index][2]

= z1 *4 + z2*2 + (z3 +1) mod 2;
= ((z1 +1) mod 2)*4 + z2*2 + z3;
= z1*4 + ((z2 + 1) mod 2)*2 + z3

end; (* procedure Orientcwise

**************************************

* Orientccwise takes the binary representation of the vertex and orients
* the vertex in a counterclockwise direction. Thus, the values 001,010,
* 100 are added to the vertex in that order. Index is referred to as a

* global variable. *)



************************************** *}
(•
procedure Orient_ccwise(z1,z2,z3: binarytype;

var M: embeddingrepresentation);

begin (* procedure Orientccwise *)
M[index][0]

M[index][1]

M[index][2]

= z1 *4 + z2*2 + (z3 + 1) mod 2;
= z1 *4 + ((z2 +1) mod 2)*2 + z3;

= ((z1 +1) mod 2)*4 + z2*2 + z3
end; (* procedure Orientccwise *)

begin (* procedure UpdateMwith (VertexSet) *)
for index: =0 to 7 do

begin (* for *)
indexcopy : = index;
z3 : = indexcopy mod 2;
indexcopy : = indexcopy div 2;
z2 : = indexcopy mod 2;
indexcopy : = indexcopy div 2;
z1 := indexcopy mod 2;
if VertexSettindex] = CLOCKWISE then

begin (* if *)
Orient_cwise(z1 ,z2,z3,M);
Numberclockwise : = Numberclockwise + 1

end (* if *)

else

begin (* else *)
Orient_ccwise(z1 ,z2,z3,M);
Numbercounterclockwise : = Numbercounterclockwise + 1

end; (* else *)

end; (* for *)

end; (* procedure Update M with (VertexSet) *)

i* **************************************

(* InitializelsVisited initializes the array as all NOTVISITED values.
i* ************************************* *\

procedure InitializelsVisited;
var

indexl ,index2:integer;
begin (* procedure InitializelsVisited *)

for indexl : = 0 to 7 do

for index2 : = 0 to 2 do

lsVisited[index1][index2] := NOTVISITED

end; (* procedure Initialize IsVisited *)

***************************************

* GoAroundAFace is the "meat" of the program. It uses the matrix
* representations M and IsVisited to determine what the faces are on the
* embedding. First, this procedure determines which edge has not been
* VISITed. This will be the starting point. Next, it goes all the way
* around the face, counting the number of edges. As it does this, it marks
* the IsVisited matrix with the appropriate updates. In addition, a screen
* printout is given for each face. In the future, the outfile data file



* will be updated using the route around the region. Finally, when the
* route around the face has doubled up on itself (it has gone all the way
* around the region), the number of sides will be displayed and counter
* will be updated.
************************************** *i

procedure Go_Around_A_Face(var counteninteger);
var

row_index,col_index: integer;
first_vertex,second_vertex:integer;
vertex 1,vertex2: integer;

begin (* procedure GoAroundAFace *)
(* First, we must determine what the first edge is going to be. *)
rowindex: =0; colindex: =0;

while lsVisited[row_index][col_index mod 3] = VISITED do
begin (* while *)

colindex: = colindex + 1;

rowindex: =col_index div 3
end; (* while *)

colindex : = colindex mod 3;

firstvertex : = rowindex;

secondvertex : = M[row_index][col_index];

lsVisited[row_index][col_index] := VISITED;
vertex 1 : = firstvertex;

vertex2 : = secondvertex;

write(outfile, vertexl :2, ' - ', vertex2:2);

repeat

(* find the index where the first vertex resides in the second vertex's row *)

rowindex : = vertex2;

colindex : = 0;

while M[row_index][col_index] < > vertexl do
colindex : = colindex + 1;

colindex : = (colindex + 1) mod 3;
vertexl : = vertex2;

vertex2 : = M[row_index][col_index];
lsVisited[row_index][col_index] : = VISITED;
counter: = counter + 1;

write(outfile,' - \vertex2:2);
until ( (vertexl =first_vertex) AND (vertex2=second_vertex) );
writeln(outfile)

end; (* procedure Go Around A Face *)

i* **************************************

(* function SomeEdgelsNOTVISITED checks the array IsVisited for some
(* value NOT_VISITED
/***************************************!

function SomeEdgelsNOTVISITED : boolean;
var



Foundone : boolean;

row_index,col_index : integer;
begin (* function SomeEdgelsNOTVISITED *)

Foundone : = FALSE;
for rowindex : = 0 to 7 do

for colindex : = 0 to 2 do

begin (* for *)
If lsVisited[row_index][col_index] = NOTVISITED then

Foundone : = TRUE

end; (* for *)

Some_Edge_ls_NOT_VISITED : = Found_one
end; (* function SomeEdgelsNOTVISITED *)

***************************************

* The main procedure first initializes the arrays, then produces an
* orientation, and finally analyzes that orientation. This is repeated for
* all 256 possible embeddings.
***************************************]

begin (* main *)
Open(outfile, filename : = 'output.file', history : = new);
rewrite(outfile);

genus_array[0]: =0;
genus_array[1]: =0;
genus_array[2]: =0;

for vO : = CLOCKWISE to COUNTERCLOCKWISE do

for v1 : = CLOCKWISE to COUNTERCLOCKWISE do

for v2 : = CLOCKWISE to COUNTERCLOCKWISE do

for v3 := CLOCKWISE to COUNTERCLOCKWISE do

for v4 : = CLOCKWISE to COUNTERCLOCKWISE do

for v5 : = CLOCKWISE to COUNTERCLOCKWISE do

for v6 : = CLOCKWISE to COUNTERCLOCKWISE do

for v7 : = CLOCKWISE to COUNTERCLOCKWISE do

begin (* for *)
VertexSetIO] : = vO;
VertexSetM] := v1;
VertexSet[2] : = v2;
VertexSet[3] : = v3;
VertexSet[4] := v4;

VertexSet[5] : = v5;
VertexSet[6] : = v6;
VertexSet[7] : = v7;

Numberclockwise : = 0;
Numbercounterclockwise : = 0;

writeln(outfile, 'New orientation.');

UpdateMwith(VertexSet);

writeln(outfile,' M: j- -j');
for rowindex : = 0 to 7 do

begin (* for *)



write(outfile, ' ',row_index:1,'| ',
M[row_index][0]:1, ' ',
M[row_index][1]:1, ' ',
M[row_index][2]:1, ' |');

if VertexSettrowindex] = CLOCKWISE then

writeln(outfile,' CLOCKWISE')
else

writeln(outfile,' COUNTERCLOCKWISE')
end; (* for *)

writeln(outfile,' |- -|');

InitializelsVisited;
counter : = 0;

NumberofFaces : = 0;
while counter < 24 do

begin (* while *)
GoAroundAFace(counter);

NumberofFaces : = NumberofFaces + 1;

end; (* while *)
If Some_Edge_ls_NOT_VISITED then

writeln(outfile,'Error. Done with orientation, but not',

' all edges have been visited.');
writeln(outfile);
write(outfile,'Then number of CLOCKWISE vertices is ',

Numberclockwise: 1);

writeln(outfile,' and the number of COUNTERCLOCKWISE is
Numbercounterclockwise: 1);

writeln(outfile,'The number of Faces is ',

Number_of_Faces:2);
writeln(outfile,'Thus the genus r.v. = ',

((6-Number_of_Faces) div 2):2);
genus_array[(6-Number_of_Faces) div 2] : =

genus_array[(6-Number_of_Faces) div 2] + 1;
writeln(outfile,' ***** End of this orientation',

» * * * * *>\.

writeln(outfile); writeln(outfile); writeln(outfile)

end; (* for *)

writeln(outfile);

writeln(outfile,'

writeln(outfile,'

writeln(outfile,'

writeln(outfile,'

writeln(outfile,'

writeln(outfile,'

Close(outfile)

end. (* main *)

writel n(outfile);

FINAL F

Genus

0

1

2

IEPORT');

Frequency');
'\.

\genus_array[0]:3)
\genus_array[1]:3)
\genus_array[2]:3)
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