
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Dissertations Graduate College

6-2014

Opportunistic Service Differentiation and Cloud Resource Opportunistic Service Differentiation and Cloud Resource

Management in Support of Enhanced Vehicular Applications Management in Support of Enhanced Vehicular Applications

Mohammad Ali Salahuddin
Western Michigan University, mohammad.salahuddin@ieee.org

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

 Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, OS and

Networks Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Salahuddin, Mohammad Ali, "Opportunistic Service Differentiation and Cloud Resource Management in
Support of Enhanced Vehicular Applications" (2014). Dissertations. 292.
https://scholarworks.wmich.edu/dissertations/292

This Dissertation-Open Access is brought to you for free
and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Dissertations by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.wmich.edu%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.wmich.edu%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.wmich.edu%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.wmich.edu%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.wmich.edu%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/292?utm_source=scholarworks.wmich.edu%2Fdissertations%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

OPPORTUNISTIC SERVICE DIFFERENTIATION AND CLOUD RESOURCE

MANAGEMENT IN SUPPORT OF ENHANCED VEHICULAR

APPLICATIONS

by

Mohammad Ali Salahuddin

A dissertation submitted to the Graduate College

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Department of Computer Science

Western Michigan University

June 2014

Doctoral Committee:

Ala Al-Fuqaha, Ph.D., Chair

Dionysios Kountanis, Ph.D.

Mohsen Guizani, Ph.D.

OPPORTUNISTIC SERVICE DIFFERENTIATION AND CLOUD RESOURCE

MANAGEMENT IN SUPPORT OF ENHANCED VEHICULAR

APPLICATIONS

Mohammad Ali Salahuddin, Ph.D.

Western Michigan University, 2014

An integral part of Intelligent Transportation Systems (ITS) are Vehicular Ad hoc

Networks (VANETs), which consist of vehicles with on-board units (OBUs) and fixed road-side

units (RSUs). Wireless Access in Vehicular Environment (WAVE) offers QoS via service

differentiation by using application defined priorities. However, WAVE has unbounded delay and

is oblivious to network load and severity of vehicles with respect to their environment. Our

context severity metric innovatively enhances WAVE to be sensitive to vehicle and environment

interactions. Our novel Opportunistic Service Differentiation (OSD) technique, dynamically

readjusts the WAVE packet priorities to improve utilization of lower latency queues, prioritizing

packets in order of context severity. This also overcomes the unbounded delay in WAVE, which

is crucial for safety applications.

On the other end, our novel RSU Cloud is a unique approach to hosting non-safety

services on specialized RSU micro-datacenters. Optimal provisioning of constrained resources is

critical in RSU Clouds. Furthermore, inherently dynamic demands from the vehicles require

replications, migrations and, or instantiations of new or existing services, on virtual machines

(VMs) in the RSU Cloud. We leverage the deep programmability of Software Defined

Networking (SDN) to dynamically reconfigure the RSU Cloud. However, frequent changes to

service hosts and data flows not only result in degradation of services, but are also costly for

service providers. In Mininet, we analyze this reconfiguration overhead, which is used to design

and model optimal RSU Cloud resource management (CRM).

CRM will optimally select service hosts and data forwarding rules, such that, the

reconfigurations in the network are minimized with varying demands. We begin by designing the

Pareto Optimal Frontier of non-dominated solutions (POF), such that, each solution is a

configuration that minimizes either the number of service instances or the RSU Cloud

infrastructure delay. The network is a priori configured for some demand and, now, the optimal

CRM selects a configuration from the POF that minimizes the reconfiguration costs for the new

demand. Together, CRM and OSD can improve QoS for ITS applications.

© 2014 Mohammad Ali Salahuddin

ii

ACKNOWLEDGEMENTS

It is only due to the will of Al-Mighty Allah, that I hold this position and write my

dissertation. I would like to thank the numerous faculty, fellow students, peer-reviewers from

conferences and journals, for their time, efforts, and invaluable feedback in improving the quality

of my research work and its presentation. I would like to send my deepest gratitude to the staff at

Department of Computer Science, Western Michigan University, for their tremendous help and

support in administrative tasks and equipment setup.

I am indebted and forever grateful to my Ph.D. Committee Chair, Dr. Ala Al-Fuqaha, for

his support, guidance and far-sightedness in research problems and solution methodologies. I

would also like to thank Dr. Dionysios Kountanis and Dr. Mohsen Guizani for the time they spent

in reviewing my work and their invaluable and critical comments and suggestions.

My parents, siblings, wife, and children have been a support system and source of

inspiration. I stand here today because of the perseverance inculcated in me, by my parents Mr.

and Mrs. Hashim Ali Khan and the love and support of my brother Shaukat and sister Saadia. My

wife, Zill-E-Huma Kamal, has been an integral part of this journey. As always, her support and

belief in my success has pushed me through the thick and thin. I would like to acknowledge my

children, Iman, Shaiq and Safa, for lulling my worries and anxieties with their smiles. They

empower me to be a Super Hero and helped me find courage to stay course.

My faltered steps found renewed inspiration, motivation and dedication in my in-laws

Mr. and Mrs. Mohammad Anwar Kamal and I thank them for everlasting love. Lastly, I am

thankful to my late brother-in-law, Muneeb Kamal, for changing my life forever. He taught me to

value time and live a purposeful life.

 Mohammad Ali Salahuddin

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES .. v

LIST OF FIGURES .. vi

CHAPTER 1 INTRODUCTION... 1

I. Opportunistic Service Differentiation .. 2

II. RSU Cloud Resource Management ... 6

CHAPTER 2 RELATED WORK ... 10

I. Limitations of WAVE .. 10

II. Clouds in support of VANETs ... 12

CHAPTER 3 OPPORTUNISTIC SERVICE DIFFERENTIATION FOR WAVE 14

I. Fuzzy Inference System ... 15

II. OSD Traffic Distribution Scheme ... 18

III. OSD Traffic Distribution Model .. 19

i. Problem Statement .. 19

ii. Delay Model ... 20

IV. Linear Programming Formulation ... 23

V. Lemmas and Theorem.. 26

VI. OSD Traffic Distribution–Heuristic .. 28

CHAPTER 4 RESULTS–OPPORTUNISTIC SERVICE DIFFERENTIATION................... 31

I. Analytical Results .. 31

II. Simulation and Results .. 34

i. Scenario .. 34

ii. Topology ... 35

iii. Analysis Setup .. 38

iv. Results and Discussion ... 38

iv

Table of Contents - continued

CHAPTER 5 RSU CLOUD RESOURCE MANAGEMENT ... 46

I. RSU Cloud Architecture .. 46

II. Reconfiguration Overhead Analysis in Mininet .. 48

III. RSU Cloud Resource Management Model .. 51

i. Problem Statement .. 52

ii. Delay Model ... 52

IV. Multi-Objective Integer Linear Programming Formulation 54

V. RSU Cloud Resource Management–Heuristic ... 60

VI. Markov Decision Process .. 62

CHAPTER 6 RESULTS–RSU CLOUD RESOURCE MANAGEMENT 64

I. Scenario–Topology and Analysis Setup .. 64

II. Results and Discussion .. 65

CHAPTER 7 CONCLUSION–ENHANCED VEHICULAR APPLICATIONS 73

I. Opportunistic Service Differentiation for Safety Applications 73

II. RSU Cloud Resource Management for Non-Safety Applications 74

III. Future Work ... 75

REFERENCES .. 76

APPENDICES ... 81

A. Mininet Topology .. 82

B. Enabling Stochastic Switching in Open vSwitch ... 84

C. Mininet Python Topology Script ... 87

D. Performing Stochastic Switching in Mininet ... 93

v

LIST OF TABLES

1. OSD and WAVE QoS Parameters .. 31

2. OSD Simulation Parameters .. 36

3. OSD Vehicle Assignment to AC with Respect to Severity ... 37

vi

LIST OF FIGURES

1. OSD service replaces user priority service in WAVE. .. 5

2. OSD scheme with sequence of interactions. ... 14

3. Membership functions for the input and output variables. .. 17

4. FIS rules to deduce context severity metric. ... 18

5. FIS input variables deduce context severity of an OBU. .. 18

6. Systematic load distribution (promotion and demotion) links to offer next best QoS. 25

7. Pseudo code for OSD traffic distribution heuristic. .. 29

8. Delay comparison of OSD enhanced WAVE with classical WAVE. 32

9. Load redistribution amongst ACs. ... 32

10. Load decomposition in AC, w.r.t severity, in OSD traffic distribution heuristic. 32

11. QoS w.r.t delay bounds on AC for 1000 vehicles. .. 33

12. Traffic demotion to achieve better QoS w.r.t delay for 240 vehicles. 33

13. EstiNet simulation scenario consisting of 1 consumer (vehicle ID 2) and

30 provider OBU. .. 37

14. Simulation performance comparison of classical WAVE with OSD enhanced WAVE

with 95% confidence intervals. ... 41

15. Performance of vehicles with respect to severity in OSD enhanced WAVE with 95%

confidence intervals. .. 44

16. RSU Micro-datacenter architecture. .. 47

17. RSU Cloud architecture. .. 48

18. Reconfiguration overhead analysis in Mininet. ... 50

19. FDOT RSU deployment [56]. ... 54

20. MDP for minimizing VM migrations. ... 63

21. Cost optimization optimally hosts services. .. 65

vii

List of Figures - continued

22. Joint optimization consistently incurs lower VM migrations. ... 65

23. Cumulatively, Joint optimization incurs lower control plane modification with average

demand ��� over time ��. ... 66

24. Joint Optimization has magnitudes lower infrastructure delay, over changing average

demand ���. ... 66

25. Every ���� ∈ Ψ�� is a Pareto Optimal configuration with respect to number of service

hosts and infrastructure delay. ... 67

26. It is evident that higher number of replications K, yields better results. 67

27. It is evident that higher number of replications K, yields better results w.r.t. cumulative

average number of control plane modifications. ... 68

28. An increase in K the number of replications reduce margin of error, with respect to

number of service hosts. .. 68

29. An increase in the number of replications reduce margin of error in the results, with

respect to infrastructure delay. .. 69

30. Heuristic with K=100 and Optimization outperform purist Cost Optimization. 70

31. Heuristic incurs highest control plane modifications due to fine grain load balancing. 70

32. Purist Cost and Joint Optimization outperform Heuristic with K=100. 70

33. Heuristic with K=100 yields suboptimal infrastructure delay. Heuristic with K=100

outperforms Joint Optimization with an increase in the number of service hosts. 71

34. VM Migrations comparison for pure heuristic and heuristic followed by MDP, when

starting with a 2 installation configuration. ... 71

35. VM Migrations comparison for pure heuristic and heuristic followed by MDP, when

starting with a 3 installation configuration. ... 72

36. VM Migrations comparison for pure heuristic and heuristic followed by MDP, when

starting with a 5 installation configuration. ... 72

1

CHAPTER 1

INTRODUCTION

Intelligent Transportation System (ITS) applications are envisioned to increase safety of

drivers and passengers, reduce traffic congestion and pollution of the environment, and increase

in-vehicle productivity. They are generally classified into safety, efficiency, convenience and

infotainment applications. Safety applications, such as, collision avoidance, require local,

neighborhood and contextual information of vehicles and surroundings. Whereas, non-safety

applications such as, on-the-go internet, rely on Internet services. These applications pose unique

requirements on the communication medium and require different degrees of quality of service

(QoS) with respect to delay.

An integral part of ITS are Vehicular Ad hoc Networks (VANETs), which consist of

vehicles with on-board unit (OBUs) and fixed roadside units (RSUs). The set of standards and

protocols that govern vehicle-to-vehicle (V2V) in VANETs are defined in Wireless Access in

Vehicular Environments (WAVE). WAVE offers QoS via service differentiation by using

application defined priorities. However, WAVE has unbounded delay and is oblivious to network

load and severity of vehicles with respect to their environment. Our context severity metric

innovatively enhances WAVE to be sensitive to vehicle and environment interactions. Our novel

Opportunistic Service Differentiation (OSD) technique, dynamically readjusts the WAVE packet

priorities to improve utilization of lower latency queues, prioritizing packets in order of context

severity. This also overcomes the unbounded delay in WAVE, which is crucial for safety

applications.

On the other end, non-safety services are increasingly being hosted in the cloud. The

RSU Cloud is a unique approach to hosting non-safety services on specialized RSU micro-

datacenters. Optimal provisioning of constrained resources is critical in RSU Clouds.

Furthermore, inherently dynamic demands from the vehicles require replication, migration and, or

2

instantiation of new or existing services, on virtual machines (VMs) in the RSU Cloud. A

configuration is a snapshot of the network that records the service hosts and the data forwarding

rules in the network. We leverage the deep programmability of SDN to dynamically reconfigure

the RSU Cloud. The reconfiguration may prompt VM migrations, and modifications to the data

forwarding rules. Frequent changes to service hosts and data flow not only results in degradation

of service, but are also costly for service providers. We use Mininet to analyze this

reconfiguration overhead.

The reconfiguration overhead is used to design and model optimal RSU Cloud resource

management (CRM). In the face of dynamic demands, CRM will optimally select a service host

and data forwarding configuration, such that, the reconfigurations in the network are minimized.

We begin by designing the Pareto Optimal Frontier of non-dominated solutions (POF) such that

each solution is a configuration that minimizes either the number of service instances or the RSU

Cloud infrastructure delay, for a given demand. The network is a priori configured for some

different demand and, now, the optimal CRM selects a configuration from the POF that

minimizes the reconfiguration costs for the new demand.

Both CRM and OSD improve VANETs. First, OSD dramatically improves QoS, with

respect to context severity. Second, CRM is a novel resource sharing technique that operates on

the Pareto Frontier. Together, the CRM and OSD can improve QoS for ITS safety and non-safety

applications.

I. Opportunistic Service Differentiation

Intelligent Transportation Systems (ITS) and services were initially coined to increase

safety and reduce congestion and pollution [1]. Over the last decade, this framework has evolved

and various fundamentals have been identified, including wireless communications for

implementing ITS services. Consequentially, a 75 MHz bandwidth in the 5.9 GHz band was

reserved for dedicated short range communications (DSRC) in ITS services. IEEE undertook the

3

task for specifying the protocols and standards for wireless communications enabling ITS

services, while ITS users envisioned a range of diverse applications. These applications can be

divided into different classes, such as safety, efficiency, convenience and infotainment.

IEEE 802.11p was developed as an amendment to IEEE 802.11, which defines standards

for wireless local area network (WLAN) communication. The IEEE 802.11p standard facilitates

DSRC and governs the medium access control (MAC) and physical (PHY) layers in the Open

Systems Interconnection (OSI) model. The IEEE 1609.x protocols were developed to provide

specifications that span over other OSI layers. The IEEE 1609.x protocols and IEEE 802.11p

form the standards for wireless access in vehicular environments (WAVE), like Vehicular Ad hoc

Networks (VANETs).

WAVE nodes consist of road-side units (RSUs) and on-board units (OBUs). Road-side

units are ITS infrastructure nodes installed alongside the road, for example on traffic lights and

road signs. On-board unit comprises of localization systems (for example, Global Positioning

System, Inertial Measurement Unit, etc.), processing units and radio transceivers, mounted on the

VANET vehicles. The IEEE 802.11p component in WAVE presides over the vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communications.

WAVE addresses the unique challenges in VANET and ITS applications, such as, fast

moving nodes, multipath environment and applications with quality of service (QoS)

requirements [1]. The communication channel in DSRC is divided into 7 sub channels, of 10

MHz each, consisting of one control (CCH) and six service channels (SCH). This multi-channel

approach increases the efficiency of the channel and addresses high data transfer rate in fast and

mobile environments. A channel is further divided into 4 access categories (ACs), each with a

different priority for accessing the medium. This offers low latency communication, with service

differentiation and QoS for the different classes of ITS applications.

The multi-channel coordination mechanism is addressed in IEEE 1609.4 and is

incorporated into the OSI model, as a sub layer between LLC and MAC. It sits atop IEEE

4

802.11p MAC, which is an enhancement to 802.11a MAC. The multi-channel coordination

mechanism employs four critical services to manage channel coordination and MAC service data

unit (MSDU) data transfer [1]. The channel routing service (channel router) routes data packets to

a designated channel. The user priority service selects an access category (AC) within the

channel, based on the application defined priority. The channel coordination and MSDU data

transfer service is responsible for channel selection and MSDU data delivery, respectively [1], as

illustrated in Figure 1. Further details of DSRC and multi-channel operation in WAVE can be

found in ([1], [2], [3], [4]).

ITS applications prioritize their application packets for one of the four ACs, based on

their QoS requirement. Each AC prescribes a different set of parameter values that control its

channel access and contention mechanism. This is adapted from the IEEE 802.11e enhanced

distributed channel access (EDCA) mechanism to provide QoS, with respect to delay, and handle

time-critical messages [2]. However, this priority to AC mapping does not account for network

load, link layer bounds, the context of a vehicle, with respect to its severity and that of its

neighbors or the road infrastructure information.

These short comings deteriorate the performance of WAVE in high traffic/dense vehicle

scenarios [5] and causes time-critical ITS applications to exceed maximum acceptable delays [6].

This undermines the effectiveness of time-critical lifesaving safety applications for ITS. We

propose a novel opportunistic service differentiation (OSD) scheme, which complements WAVE

and overcomes these limitations. The OSD scheme extends WAVE nodes and primitives by

incorporating a Fuzzy Inference System (FIS) in the OBU, an OSD traffic distribution heuristic

on the RSU and replacing the user priority service with OSD service in the IEEE 1609.4 multi-

channel operation sub layer, as illustrated in Figure 1.

5

Figure 1. OSD service replaces user priority service in WAVE.

The OBU based fuzzy system infers the context severity metric for a vehicle. The context

severity metric is based on the integration of the host vehicle and neighboring vehicles driving

parameters with the ideal parameters from the road infrastructure. The driving parameters can be

captured by a vehicle’s speed, acceleration and directional stability. The ideal road infrastructure

parameters can include speed limits, weather related hazards and other environmental advisories.

These are typical parameters learnt over time for a given geographic region. The OSD traffic

distribution heuristic on the RSU uses all the vehicles context severity metrics, network load, link

layer and delay bounds on ACs to deduce a context severity based priority for each vehicle. This

careful priority assignment for vehicle load ensures that ACs do not exceed delay bounds. The

OSD service for a vehicle uses this context severity based priority to select an AC for all its

traffic. This offers context severity aware service differentiation.

Our novel opportunistic service differentiation scheme has multiple improvements over

OSI Model

Layer 2

Channel Router (CCH/SCH)

AC4 AC3 AC2 AC1

Logical Link Control Layer

Channel Selector & MSDU Transfer

WAVE Medium Access Control Layer

(External Contention)

Transmission Attempt

Internal Contention

IEEE 802.11p

IEEE 1609.4

WAVE Multi-channel

Operation Sub Layer

OSD Service (User Priority Service)

6

classical WAVE. First, we use a context severity metric that would lend WAVE critical

information about its vehicles. The metric integrates critical vehicle driving parameters, such as

speed, acceleration and directional stability with those of its neighboring vehicles. It is also

augmented with road infrastructure information to build a context for the severity of a vehicle.

This metric is used to prioritize traffic based on context severity of vehicles in the network, such

that, vehicles with higher context severity are given better QoS with respect to delay.

Second, the OSD traffic distribution heuristic leverages network load and link layer

bounds to opportunistically prioritize and distribute traffic amongst ACs to maximize the

utilization of higher priority ACs and their inherent lower delays. The traffic is systematically

redistributed amongst access categories such that the next best QoS is provided to the vehicles.

Third, the OSD traffic distribution heuristic overcomes a major limitation of unbounded delays of

WAVE [4]. We will show that the OSD traffic distribution mechanism not only improves the

performance and increases the integrity of time-critical safety applications but also guarantees

delay bounds on all ACs.

II. RSU Cloud Resource Management

Day in and day out, we suffer fatalities, deterioration of our environment and distress due

to an antiquated labyrinth of roads. Recently, Intelligent Transportation Systems have received

renewed attention from researchers and government agencies. ITS aims to integrate On-board

Units in mobile vehicles with fixed roadside infrastructure into a Vehicular Ad hoc Network.

Typically, OBUs consist of computational, communicational, storage, sensory and positioning

systems, while RSUs can vary in size and form from small, resource constrained roadside

mounted traffic monitoring cameras to high power communication towers. Numerous

applications supporting ITS have been envisioned to promote safety, efficiency, convenience and

infotainment.

7

The support of government agencies and researchers, alone, is not enough to push our

roads to the smart network of interconnected vehicles and infrastructure as envisioned in ITS. We

need the investment from large-scale commercial service providers. Recall, the Internet that we

have come to associate as necessity, was a privileged network, only decades ago. The

commercialization of the Internet was instrumental in the success it enjoys today. Similarly, if

VANETs and ITS are marketed as business opportunities for commercial service providers, we

will see ITS flourish. Undoubtedly, safety applications are the fundamental driving force of ITS

but support for infotainment and convenience applications will increase its chances of success [7].

User interest in infotainment and convenience applications and services such as video on-

demand, online multi-player gaming, on-the-go-Internet, voice over IP, remote vehicle

diagnostic, road traffic management notifications, etc. will be the driving force for ITS market

penetration and mass deployment of infrastructure.

ITS safety and non-safety applications and services have very different communication

requirements. Safety applications are time sensitive with stringent limits on QoS with respect to

delay and reliability ([6], [8]). Non-safety applications have very different QoS needs, ranging

from no specific real-time QoS requirement to guaranteed QoS with respect to delay [7]. These

disparate spectrums of QoS requirements make it impossible to design a one-fits-all solution.

Researchers ([8], [9], [10]) have studied QoS for safety applications, while the focus of this

research is QoS of non-safety applications. Lee et al. [11] call for a revolution in VANETs,

integrating it with elements of cloud computing and information centric networking for safety and

non-safety applications. The merging of cloud computing with VANETs opens a realm of

possibilities for ITS applications and services.

Pending standardization, vehicular clouds instigate very different contributions to ITS.

Some aim to interconnect vehicle resources into a cloud for cooperative sensory, storage and

computing tasks [11], while others ([12], [13]) propose that Road-side Units act as gateways to

traditional clouds or impose a cloud of On-board Units. In contrast to ([11], [12], [13]), we use

8

the reliability of fixed infrastructure and proximity of RSUs to end-users [14] to improve the

quality of service (QoS). However, it is important to realize that the aforementioned vehicular

clouds can be subsets and, or generalizations of each other. Moreover, as online infotainment

services are moving to the cloud, vehicular clouds will not only prove to be a natural transition

but a thriving commercial incentive.

We propose a novel architecture of a RSU Cloud. It consists of traditional RSUs and

specialized micro-scale datacenters, which can host services. An inherent challenge in VANETs

is maintaining QoS with dynamic demands. Commercial service providers will have to solve this

challenge cost effectively. Our contribution is leveraging the flexibility and deep programmability

of virtualization and Software Defined Networks (SDN), to dynamically migrate, replicate or

instantiate services and reconfigure the data forwarding rules in the network to meet changes in

service demands. For simplicity, we will refer to a snapshot of the network as a configuration. It

captures the services instances and their locations and records the data forwarding rules in place

to meet the service demands.

Despite the underlying benefits of the programmability of RSU clouds, service providers

will incur costs pertaining to service instantiation and reconfiguration in light of changes in

demands. Reconfiguration overhead is network traffic induced due to service migration and

changes in data forwarding rules. This begs the question of optimal service hosting and

configuration to reduce the overhead. Our contribution is the design of a novel RSU Cloud

resource manager with multiple objectives. First, we minimize RSU Cloud infrastructure delay

with QoS. Second, we minimize the number of RSUs hosting services, to minimize operational

costs, e.g. renting resources, for service providers. And most importantly, we minimize the

overhead of service migrations and data flow rule reconfigurations, which consume limited

bandwidth resources and deteriorate network performance and QoS.

Therefore, the scope of this work and its contributions are stated below.

• Architecture for RSU Clouds and its micro-datacenters.

9

• Reconfiguration overhead analysis by emulating an OpenFlow [15] enabled SDN in Mininet

[16].

• Define the RSU Cloud resource management model and solve it as a multi-objective Integer

Linear Programming (ILP) problem for selecting a Pareto Optimal solution.

• Designing an efficient heuristic for RSU Cloud resource management.

• Use Markov Decision Process (MDP) and reinforcement learning to select a Pareto Optimal

solution which minimizes the costly service migrations, over the long term.

10

CHAPTER 2

RELATED WORK

I. Limitations of WAVE

In this section, we will briefly discuss some related research work that studied the

performance of WAVE and instigated the need to improve MAC protocols in WAVE, either by

devising new MAC protocols or by improving the current MAC protocol in WAVE. We will

compare these studies to our OSD scheme and highlight our major contributions.

Many researchers ([17], [9], [18]) have proposed new and ingenious MAC layer

protocols that are more suitable, efficient, or secure for WAVE, while Mittag et al. [2] discuss

different MAC approaches for WAVE. Based on these studies, we utilize the widely accepted and

standard 802.11a MAC, which is the basis of IEEE 802.11p MAC. Therefore, we propose an

enhancement in the multi-channel operation sub layer atop MAC in WAVE, which provides

service differentiation with respect to context severity of vehicles.

Others ([19], [20]) have modeled IEEE 802.11a and IEEE 802.11b MAC distributed

coordination function (DCF) and scrutinized their performance with respect to the throughput and

delay. IEEE 802.11p MAC uses the carrier sense multiple access with collision avoidance

(CSMA/CA) mechanism of IEEE 802.11a and service differentiation EDCA from IEEE 802.11e.

Wu et al. [21] and Huang et al. [22] scrutinize QoS parameters of throughput and delay in IEEE

802.11e EDCA. Authors in [22] propose the use of an internal contention parameter that accounts

for collision amongst different ACs, which is often overlooked.

Malik et al. [23] analyze WAVE MAC by developing a VANET model in MATLAB and

evaluating channel access delay and probability of channel access. In our research, we use

tractable equations for estimating delay, which reflects the intrinsic behavior of delays incurred

by packets in the different ACs. S. Eichler [24] and N. Ferreira et al. [25] study WAVE to gain

insight into collision probability, throughput and delay. There is an increase in delay in dense and

11

high load scenarios as studied by [24]. Wang et al. [26] also noticed similar deterioration in

performance of WAVE since backoff window size does not adapt to increase in number of

vehicles. They propose both centralized and distributed solutions to overcome these limitations

by centrally calculating an optimal backoff window size or adapting the window size locally. We

propose a global approach, such that the OSD traffic distribution mechanism distributes vehicle

traffic based on the context severity metric. This promotes better QoS for vehicles with higher

context severity.

Various authors have devised mechanisms for improving QoS for safety and non-safety

applications. Amadeo et al. [9] and Zhou et al. [27] aim to provide QoS for non-safety

applications. The former use an innovative MAC layer protocol that enhances the ability of

WAVE to improve QoS, while the latter studies a content dissemination technique that employs

timestamp based reward/user satisfaction optimization. Authors in [28] develop enhancements to

WAVE to reduce the delay for safety applications. Our OSD traffic distribution mechanism

strives to improve the QoS for both safety and non-safety applications. Our contribution is to

extend the underlying communication protocols in WAVE by reprioritizing traffic to different

ACs, to provide context severity aware service differentiation.

Furthermore, [29] uses the position of vehicles to ensure effective utilization of the

channel resource, while we use the contextual information inferred from the position of a vehicle.

However, both approaches bound the delay from above, unlike the unbounded delay of classical

WAVE, which compromises time sensitive applications. Chrysostomou et al. [10] designed a

dynamic tuning of contention window parameters to offer service differentiation in WAVE and

improve the QoS with respect to throughput. The authors in [11] also design adaptations of the

WAVE MAC protocol by using dynamic contention windows and vehicle mobility parameter of

average speed to provide service differentiation. Others have analyzed and evaluated the MAC

layer parameters for channel access delay and probability of channel access [23].

However, OSD uses the standard WAVE contention window and MAC layer parameters.

12

It uses more complex vehicle mobility parameters, such as acceleration and directional stability,

to conjure a context severity metric for vehicles in the network. Our major contribution is the

OSD scheme that provides service differentiation based on the context severity metric, network

load and delay bounds on the ACs. We show an improvement over classical WAVE by using

performance metrics, like throughput, delay, number of collisions, packet loss ratio and

retransmission ratio. OSD achieves this by using a novel technique to distribute load

opportunistically amongst different ACs, optimally utilizing the higher priority ACs and

guarantees minimum delay experience.

II. Clouds in support of VANETs

Taxonomy and classification of ITS services and their requirements have been presented

in [12] and [11], and it is evident from these classifications that ITS safety applications are

dependent on direct vehicle-to-vehicle (V2V) communication, whereas, ITS non-safety

applications reply on resource constrained RSUs. Therefore, strengthening the RSUs with micro-

datacenters enables them to provide non-safety services. We propose a RSU cloud to capitalize

the proximity of RSUs to the end-users and the reliability of fixed infrastructure, to deploy a

deeply programmable network that can cater to dynamic service demands. Proponents of Fog

Computing [14] instigate the benefits of moving services to the edges of the network to increase

user exper-ience. In comparison to traditional clouds, RSU Clouds are assumed to be resource

constrained.

Strengthening the vehicles in the VANET with a cloud not only enables myriad

computational capabilities that are underutilized by safety applications alone ([12], [30]), but

also overcomes the unreliable V2V communication [31]. Some aim to interconnect OBU and

RSU resources into a cloud for cooperative sensory, storage and computing tasks [11], while

others ([12], [13]) propose that Road-Side Units (RSUs) act as gateways to traditional clouds or

design a cloud of On-board Units (OBUs). Vehicular Cloud Networking (VCN) [11] is being

13

proposed as a revolution to modernize the traditional VANET, which integrates information

centric networking and cloud computing with VANETs. In VCN vehicles and resource

constrained RSUs share their resources in one virtual platform. This is in contrast to our proposed

RSU cloud, which only includes RSUs. Amongst the RSUs in the RSU cloud, some are

specialized RSUs that contain micro-datacenters and can form a SDN of other RSU micro-

datacenters to dynamically host services and reconfigure data flows. Our RSU cloud can easily

co-exist with earlier VANET clouds or within the revolutionizing VCN.

Current techniques to ensure efficient and effective realization of RSU cloud services

include rich connectivity at the edge of the network and dynamic routing protocols to balance

traffic load [32] and reduce routing delay. Presently, capacity planning tools such as VMWare

Capacity Planer, IBM Websphere Cloudburst, Novell PlateSpin Recon, etc. decide the VM

placement locations [32]. However, they lack in load balancing at VM and result in highly

imbalanced traffic distribution [32]. Various researchers ([33], [34], [35], [36], [37]) have

proposed solutions for low latency cloud service deployment, either independently of cost of

service location or jointly. However, like Wu et al. [33], we will also jointly minimize cloud

service deployment cost and routing delay for the Pareto frontier. In contrast to Wu et al. [33] we

leverage the list of Pareto optimal solutions for selecting the one deployment and network

reconfiguration, with the least effect on existing service and routing configurations, while [33]

uses a Nash bargaining technique to balance optimality with fairness. Our significant contribution

lays in the wake of the fact that VM migrations are costly [38].

The classic cloud resource management techniques are not applicable to RSU clouds, due

to the dynamic service demands and the resource constrained micro-datacenters. These pose great

challenges for RSU clouds. First, VM migration is a costly process [38], which deteriorates

network performance. Second, data flow reconfigurations in OpenFlow enabled networks incur

cost in the control plane when flows are modified [39].

14

CHAPTER 3

OPPORTUNISTIC SERVICE DIFFERENTIATION FOR WAVE

In this chapter, we describe our Opportunistic Service Differentiation (OSD) scheme, as

illustrated in Figure 2. OSD scheme works in both unicast and broadcast scenarios. The OBU and

RSU nodes are enhanced with additional functionalities and the user priority service is replaced

with the OSD service in the multi-channel operations sub layer in WAVE. The RSU and OBU are

augmented with an OSD traffic distribution heuristic and a fuzzy inference system (FIS),

respectively.

Figure 2. OSD scheme with sequence of interactions.

In step one, the RSU broadcasts road infrastructure information, specifically the ideal

speed, ideal acceleration and ideal directional stability. The directional stability measures road

lane departures. These are the RSU suggested ideal parameters since they are based on the

RSU

(OSD traffic distribution heuristic)

Location & driving parameters

AC assignment/priority for OSD

service

Fuzzy context severity

metric & load

Euclidean

 distance

Stopping

 distance

Road Information

OBU

(FIS)

Time

OBU

(FIS)

1

2

3

4

15

integration of speed limit with real-time weather and road condition advisories (for example,

construction zones, congestion, etc.). In step two, every OBU broadcasts its location and driving

parameters. The rule based FIS uses this to deduce the vehicle’s context severity metric, which is

relayed to the RSU in step three, along with vehicle’s traffic load. The OSD traffic distribution

heuristic in the RSU computes the priority for each vehicle, and communicates the new priorities

to them in step four.

The OSD traffic distribution heuristic provides context severity aware service

differentiation, while accounting for network load, link layer bounds and the delay thresholds on

ACs. The output from the OSD traffic distribution heuristic is the priority used by the OSD

service for AC selection, in the multi-channel operation shown in Figure 1. In this manner, OSD

enhanced WAVE overrides application priorities, such that, the context severity of a vehicle

determines the priority for all its traffic through an AC. Thus, OSD traffic distribution heuristic

assigns vehicle traffic to an AC, which is a tradeoff, since it may not fully utilize AC capacity.

 In the next subsections, we will delineate the details of the FIS in the OBU and give an

overview of the OSD traffic distribution scheme on the RSU.

I. Fuzzy Inference System

A fuzzy inference system is installed in the vehicle’s OBU to deduce the context severity

metric for a vehicle, inspired from Elbes et al. [40]. Our novel context severity metric gauges the

severity of a vehicle relative to its neighborhood and environment. The FIS employs rule-based

logic to map neighborhood and environment input data to a context severity metric output. In this

manner, a vehicle is associated with urgency of the vehicles in its neighborhood.

Environment parameters constitute factors such as traffic congestion, construction,

weather elements, etc. The RSU integrates these factors with the road infrastructure information

and broadcasts the ideal speed, ideal acceleration and ideal directional stability,	��,	�� and ��,

respectively. Similarly, all vehicles �� in a neighborhood broadcast their location and driving

16

parameters of speed, acceleration and directional stability,		��� , 	���and 	��� , respectively. Vehicle

�� uses a look up table (LUT) to find its stopping distance based on its driving parameters. This

stopping distance is used to demarcate an area of critical interest, depicted in Figure 2, where ��
gives more weight
�� to the driving parameters of all vehicles �� that fall in this area. Each

vehicle �� uses Equation (1) to compute weights	
�� , for all neighbors	��.

�� = �1	,																													�
������������������ , 	��� ≤ �������������������������������������
������������������ , 	��� ,																																																								��ℎ��
���	� (1)

The relative computation of speed, acceleration and directional stability with respect to

its neighboring vehicles and the RSU suggested ideal parameters are termed context speed,

context acceleration and context directional stability. Each vehicle uses Equations (2), (3) and (4)

to deduce its context speed, acceleration and directional stability. Evidently, vehicles within the

stopping distance have a higher weight and hence a greater influence on vehicle’s contextual

information. Consequentially, the context driving parameter of a vehicle is the weighted average

of the deviation of all neighborhood vehicles from the RSU suggested ideal parameters.

 �����	�������� = 	 ∑ �
�� ×
	��� − ��

10 ���	 !
(2)

 �����	�"������������� = 	 ∑ �
�� ×
	��� − ��

10 ���	 !
(3)

 �����	�������#������� = 	 ∑ �
�� ×
	��� − ��

10 ���	 !
(4)

The context speed, context acceleration and context directional stability are system inputs

to the FIS, which is used to deduce the output, the context severity metric of a vehicle. The FIS

uses membership functions to transform the crisp input values into a value between 0 and 1,

17

which denotes the degree of membership to a fuzzy set. The if-then rules defined in the FIS are

used to infer a fuzzy set. This fuzzy set is retransformed using membership functions into a crisp

output value.

Figure 3 illustrates the membership functions (MF) we have used for our system input

and output. The membership functions in a FIS can be decomposed into simpler triangular and

trapezoidal MF or more complex Gaussian and bell-shaped functions. The MF chosen represent

the degrees of membership into the fuzzy set. We use the simpler triangular MF for context

speed, since it can be defined by the three points, slow, average and fast. However, the MF for

context acceleration and context directional stability are bell-shaped, to utilize their smoothness.

Similar to context speed, context severity is defined by MF using two discrete points, normal and

urgent.

(a) Context speed (b) Context acceleration

(c) Context directional stability (d) Context severity

Figure 3. Membership functions for the input and output variables.

A set of rules are used to implement the FIS. These rules are delineated in Figure 4 and

conjure that a vehicle’s context severity is influenced by the deviation of the driving parameters

of the vehicles in its neighborhood, including itself. Note, a higher magnitude of the context

severity metric implies a higher severity of the vehicle within its context.

18

Figure 4. FIS rules to deduce context severity metric.

Figure 5 illustrates an example that depicts the relation of the input variables to the output

variable in our FIS. It shows the crisp values for context speed, context acceleration and context

directional stability and the membership functions. Each row, numbered 1 through 4, in Figure 5

illustrates the effect of each rule, from Figure 4, on the respective MF.

Figure 5. FIS input variables deduce context severity of an OBU.

II. OSD Traffic Distribution Scheme

All the vehicles will periodically transmit their context severity and load to the RSU

performing the traffic distribution using the OSD traffic distribution heuristic. The RSU will use

this information to form a global snapshot of vehicles context severities and loads. It will assign

the vehicle to an AC based on its context severity, such that, all traffic from the vehicle is

Rule 1: IF (ContextSpeed IS NOT Average) THEN

(ContextSeverity IS Urgent)

Rule 2: IF (ContextAcceleration IS NOT Zero) THEN

(ContextSeverity IS Urgent)

Rule 3: IF (ContextDirStability IS NOT Center) THEN

(ContextSeverity IS Urgent)

Rule 4: IF (ContextSpeed IS Average)

AND (ContextAcceleration IS Zero)

AND (ContextDirStability IS Center) THEN

(ContextSeverity IS Normal)

19

transmitted through the assigned AC. The vehicles are assigned to ACs, such that, delay bounds

on the ACs are not exceeded and vehicles with higher context severity metric are given better

QoS with respect to delay. Hence, OSD provides service differentiation based on context severity

of vehicles. It also overcomes unbounded delay, which is a major limitation in WAVE [4].

The OSD traffic distribution heuristic is our major contribution and the highlight of this

research. We validate our claims of performance improvement with OSD enhanced WAVE, by

formulating an unambiguous optimization problem. We define lemmas and a theorem and prove

them to instigate the accuracy of our OSD traffic distribution heuristic. Furthermore, we use

simulation tools to study the effect of context severity aware service differentiation in WAVE.

III. OSD Traffic Distribution Model

In this section, we will present the problem statement, delay model and discuss the Linear

Programming (LP) formulation. The LP formulation defines the mathematical model for OSD

enhanced WAVE, which is used for verification and validation. A mathematical model is

deterministic, unambiguous with reproducible results, and serves as a baseline for the design of

OSD traffic distribution heuristic. We develop a delay model that approximates the delay incurred

by traffic in each AC. This enables us to use delay in a tractable and linear constraint in the LP

formulation.

i. Problem Statement

Given a set of vehicles $�	,�
, … , ��% with context severities	$��� ,��� , … , ���%, traffic

loads $&�� ,&�� , … , &��% and N access categories each with a delay	�� bounded by	'��
�. Find an

optimal assignment of vehicle loads to the ACs, such that, it provides QoS with respect to context

severity, while not exceeding the delay bounds	'��
� for ACk, ∀	1 < (≤).

20

ii. Delay Model

We develop a simplified model to approximate the delay, similar to [41], on an AC. It

appears as a linear constraint in our LP formulation. This model allows us to compare the

performance of OSD enhanced WAVE with the classical WAVE for analytical and simulation

results. It is not in the scope of this research to design an intricate delay analysis model as

presented in ([42], [43]), instead we approximate the process to illustrate the benefits of OSD

enhanced WAVE.

We model MAC access delay, which is the time from when a packet becomes the head of

the MAC queue to the time it is successfully transmitted. Recall, WAVE MAC access is based on

CSMA/CA mechanism, where packets are transmitted when the channel is sensed to be idle. If

the channel is busy, a retransmission is attempted after a specified backoff period. Similar to [42],

we also assume collision resolution time is included in the backoff period and without loss in

accuracy we use exponential distribution for backoff periods, with a mean duration of	1/*.

Each vehicle generates packets according to a Poisson distribution with probability

density function in Equation (5). We assume all vehicles are generating the same number of

packets, each of the same size, then the probability of finding the channel idle	+, is a constant for

a given number of vehicles. This means that the number of backoffs k before a successful

transmission, is geometrically distributed [42] with a probability mass function +(1 − +)��	.

Thus, the total backoff period is a convolution of possibly infinite number of backoffs [42]. Using

Laplace transform, backoff periods can be modeled as in (6) and for	(successive backoffs it

becomes	, ����-�. Then, the Laplace transform for the total backoff period is (7). Consequentially,

the backoff period, which was exponentially distributed, has a mean rate of +* [42].

 ./�0 = *���� , ∀� ≥ 0 (5)

21

ℒ1./�02 = 3 ./�0�
� ������			 = 3 *�����

� ������ = 4 *
−(� + *)

��������5∞

0
=

** + � (6)

 6/�0 = 7+�
��	 (1 − +)��	 8 ** + �9� = 7 +** + ��

��	 8(1 − +)** + � 9��	

=
+** + �7�/1 − +0** + � �	�

���

ℎ���78(1 − +)** + � 9��
��� ��	�	���:�����		������	, �ℎ��

6/�0 =
+** + � ; 1

1 −
(1 − +)** + � < = 8 +*+* + �9

(7)

Our delay model approximates the delay for a packet to be the time spent in the total

backoff period. Therefore, the delay is given as 1 +*⁄ . Intuitively, 1 +⁄ is the mean number of

retries and 1 *⁄ is the mean delay per retry. Recall, WAVE service differentiation is achieved by

using different channel contention parameters for the ACs. Therefore, we formulate the delay

incurred by traffic in each ACk as

 �� =
1+�*� . (8)

The probability of finding the channel idle	+� is in Equation (9), where the inter-arrival

time is inversely proportional to the load on the AC and transmission time	Δ� =
������	��������	���� . Each

vehicle �� generates packets for each ACk according to a Poisson distribution with mean rate	&���,
then the load on ACk is ∑ &������	 .

22

 +� =
������������	��:�������������	��:� + �����:������	��:� =

1∑ &������	
1∑ &������	 + Δ� =

1

1 + Δ� ∑ &������	 . (9)

The backoff mechanism in WAVE dictates the backoff period *� for each ACk. A vehicle

wanting to transmit a packet from ACk selects a random backoff time if it senses the channel is

idle for arbitration inter-frame space (">6��) in Equation (10) from [44]. The backoff time is a

random number from the uniformly distributed interval [0, CWk +1], where the initial contention

window (CWk) is equal to �?����. However, if the subsequent transmission attempt fails, the

interval is doubled by increasing the CWk value until it reaches �?��� . The backoff value is

decreased when the channel is free. Therefore, we model the backoff period as (11), where

�?����(����'�:�) is the lower bound on the contention window size for ACk. Table 1 ([45],

[44], [46], [47]) delineates the WAVE parameters used to compute	*�.

 ">6�� = ����'�:� × ">6�)� + �>6�'�:� (10)

 *� =
1">6�� + �?����(����'�:�)

 (11)

Substituting Equation (9) into (8), we get the delay on ACk as

 �� =
1 + Δ� ∑ &������	*� . (12)

Similar to [41], we do not account for hidden node terminals or saturated/unsaturated

traffic to approximate the process. We validate our delay model by illustrating that this analytical

delay follows the delay in simulation, as depicted in Fig. 14(b). In this research, we study the

performance of OSD in VANET, by taking a snapshot of the scenario and assuming a perfect

channel [41]. Our model can be extended to account for factors such as vehicular mobility and

channel fading.

23

IV. Linear Programming Formulation

We formulate our problem as a linear programming (LP) model with continuous

variables. In the subsections below, we define the parameters, variables and present the

formulation along with its discussion.

Parameters) Number of ACs

V Number of vehicles

'��
� Upper bound on delay for ACk

Δ� Transmission time,
������	����	(!"���)����	����	(�!��)

*� Rate of backoff for ACk

&��� Mean rate of packet generation, here after referred to as, load from �� for ACk

��� Context severity of ��
Variables &�	���#	��� &�,��	,��
,…,��� ≡ &�	���#	��� load demoted from ACk to ACj, 1 ≤ (, �,(≠ � ≤)

&�	��#�#	��� &�,��	,��
,…,��� ≡ &�	��#�#	��� load promoted from ACk to ACj, 1 ≤ (, �,(≠ � ≤)

�� Delay for ACk

Formulation

Objective

 :��	:�		$����� 	∀�� , 1 ≤ (≤)% (13)

Subject to

24

 �� =

	�$�%
&
'()�

���*)
�		
��	�

��

�����
�*)

�		
��	���

��

����*)
�	�����	�

��
���

���
�*)

�	�����	���

��
�

��� +
,-

�

��� �� ∀1 ≤ (≤)

(14)

 �� ≤ '��
�	∀1 < (≤) (15)

 &�	��#�#	��	�� + &�	���#	��	�� ≤ &��� 	∀�� , 1 ≤ (≤)
(16)

 &�	���#	��	�� ≤ &�	���#	��� 	∀�� , 1 < (≤), 1 < � < (
(17)

 &�	��#�#	��� ≥ &�	��#�#	��	�� 	∀�� , 1 ≤ (<),(< � <)
(18)

Discussion

We formulate context severity aware service differentiation by employing severity delay

products and a systematic load redistribution mechanism in our model. We use severity delay

products as an innovative approach to achieve a minimization of the delay for vehicles with

higher context severity metric. Recall, vehicles with higher context severity metric are in an

urgent state, requiring higher QoS with respect to delay for time-critical safety applications.

Therefore, our objective is formulated as the minimization of the maximum severity delay

product.

 Since the context severity of vehicles is a fixed value, the goal becomes to minimize the

delay across the ACs, by systematically redistributing loads amongst ACs. Our minimax

objective (13) entails a constant effort to improve the worst severity delay product across all ACs,

to reach the optimal severity delay products. This optimality occurs when delay is balanced

across all ACs or at predetermined threshold	'��
�. The delay on an AC is directly proportional

to the load on that AC, and a higher priority AC can be assigned more load than a lower priority

AC to reach the same delay. Inherently, the higher priority ACs are utilized first, in order of

context severity.

25

Constraint (14) captures the delay for ACk based on Equation (12) with the newly

distributed load on it. The new load on ACk is the sum of the loads from �� for ACk, the load

promoted and demoted to ACk, less the load promoted and demoted to ACk+1 and ACk-1,

respectively. It is evident from Table 1, that *	 < *
 < *. < */	for N = 4. This implies that the

same load incurs a lower delay if assigned to AC4 when compared to AC3, and so on. Thus, a

higher index AC has higher priority than a lower index AC. WAVE service differentiation is

accomplished due to the difference in backoff for the different ACs.

We deploy a series of virtual links between each AC, which abstracts the promotion or

demotion of load between ACs, as illustrated in Figure 6, where	&�	��#�#	��� 	and	&�	���#	��� is the

load promoted or demoted from ACk to ACj, respectively. These links have been designed to

systematically redistribute the load amongst the ACs, such that ACk first promotes or demotes its

neighbor in the chain as depicted in Figure 6. For example, AC4 load is not directly demoted to

AC1, instead it is gradually demoted to AC3, in an effort to offer the next best QoS.

Constraint (15) bounds the delay �� for ACk by	'��
�. It is important to carefully choose

'��
� to ensure QoS with respect to delay by not exceeding the maximum allowable delay for an

AC. Note, that AC1 is the lowest priority AC and is unbounded to accommodate load overflows

from higher priority AC. Constraints (16), (17) and (18) are used for bookkeeping and ensuring

proper distribution of loads amongst the ACs.

Figure 6. Systematic load distribution (promotion and demotion) links to offer next best QoS.

��	�����	�

��

�		�����	�

��

�
	�����	�

��

�
�	����	

��

��	�����		

��

�
�	����	�

��

�

	����	�

��

�
		����	�

��

��	�����	

��

�		�����	

��

�
�	����		

��

�

	����		

��

AC4 AC3 AC2 AC1

��
�� �

�� �	
�� ��

��

26

V. Lemmas and Theorem

The fundamental of OSD traffic distribution is the minimization of severity delay

products. Since the severity metric is constant for each vehicle	�� , to minimize a high severity

delay product, the delay has to be minimized. This implies that load from low priority access

categories with the high delay, should be pushed to higher priority access categories, with the

lower delay, to minimize the severity delay product.

Given a set @ of A vehicles and) access categories, such that, @ = $�	,�
, … , ��% with

context severities	B = $��� , ��� , … , ���%, traffic loads C = $&�� ,&�� , … , &��% and ACi MAC

delay	�� =
	�∆� ∑)

�

���
���	�� 	∀1 ≤ � ≤), where &��� = D 0,&�� is the load of vehicle �� on ACi and	*� is

the rate of back off for ACi, where 	*� < 	*��	 and	∆� =
������	��������	���� .

For	@ = ∅,	∑ &������	 = 0, 	�� = 	 	�� 	∀1 ≤ � ≤)	and	*� < 	*��	 	⇒ 	 ���	 < �� 	∀1 ≤ � ≤

) − 1 and ACi+1 has higher priority than ACi. For	@ ≠ ∅, and no upper bound on	�� , all delay

severity products $�����	∀1 ≤ (≤ A, 1 ≤ � ≤)% can be minimized.

Lemma 1 (delay equalization): Minimum severity delay products $�����	∀1 ≤ (≤ A, 1 ≤ � ≤

)% occur when delay is balanced, �� = ���		∀1 ≤ � ≤) − 1.

Proof by contradiction: Assume we have minimized each of the severity delay products in

$�����	∀1 ≤ (≤ A, 1 ≤ � ≤)% and	�� ≠ ���		∀1 ≤ � ≤) − 1. Then �� < ���	 or	���	 < ��.
If	�� < ���	, then ������	 is not minimum, since	∃	�� 	|	����� < ������	. Similarly, if	���	 < ��,
then ����� is not minimum, since	∃	���		|	������	 < �����. Contradicting the hypothesis that

each �����	∀1 ≤ (≤ A, 1 ≤ � ≤) is minimum. Thus the contrary must be true, that is,

minimum severity delay products $�����	∀1 ≤ (≤ A, 1 ≤ � ≤)% occur when delay is

balanced,	�� = ���		∀1 ≤ � ≤) − 1.

27

Corollary 1 (higher AC first): Minimum severity delay products $�����	∀1 ≤ (≤ A, 1 ≤ � ≤

)% occur when higher priority AC has more load than lower priority AC, that is,		∑ &������	 <

	∑ &��	�����	 	∀1 ≤ � ≤) − 1.

Lemma 2 (higher severity first): Minimum severity delay products $�����	∀1 ≤ (≤ A, 1 ≤ � ≤

)% occur when higher severity vehicles have more load on higher priority ACs, that

is,	∑ ���&������	 < 	 ∑ ���&��	�����	 	∀1 ≤ � ≤) − 1.

Proof by contradiction: Assume we have minimized each of the severity delay products in

$�����	∀1 ≤ (≤ A, 1 ≤ � ≤)% and	∑ ���&��	�����	 < 	∑ ���&������	 	∀1 ≤ � ≤) − 1. From

Lemma 1, minimum severity delay products $�����	∀1 ≤ (≤ A, 1 ≤ � ≤)% occur when higher

priority AC has more load than lower priority AC, that is, ∑ &������	 < 	 ∑ &��	�����	 	∀1 ≤ � ≤) −

1, which contradicts ∑ ���&��	�����	 < 	 ∑ ���&������	 	∀1 ≤ � ≤) − 1. Thus the contrary must be

true, that is, minimum severity delay products $�����	∀1 ≤ (≤ A, 1 ≤ � ≤)% occur when

higher severity vehicles have more load on higher priority AC, that is		∑ ���&������	 <

	∑ ���&��	�����	 	∀1 ≤ � ≤) − 1.

Corollary 2 (delay): For	@ ≠ ∅, the delay on ACi is as follows.

 ℎ/�, �0 = E �*� − 1

∆� 	 , ∀� >
1	*�

0,																				��ℎ��
���	F (19)

 �/&, �0 =

GHI
HJ ∆�& + � − 1 −

∑ 	*���	��		*��∑ 	*���	��		*� + 1 ∆� , ∀& > 0

0,																																														��ℎ��
���KHL
HM

 (20)

 ./&, �0 =
1 + ∆�&	*� (21)

28

Where, ./&, �0 is the delay on ACi for any given load	&, �/&, �0 is the load on ACi for delay

equalization across ACi to AC1 for any load & and ℎ/�, �0 is the load on ACi for a given delay	�.

Then, ��12 is the equalization delay for ACi with load	& − ∑ ℎ��� , ��3����	 , such that, load

∑ ℎ��� , ��3����	 has already been assigned to previous ACs.

 ��12 = 	. N�N& − 7 ℎ��� , ��3
����	 , �O , �O (22)

Therefore, the delay on an ACi is:

 �� = P��12 , ��12 < '��
�'��
�, ��ℎ��
���Q	∀1 < � ≤) (23)

 �	 = �	12

(24)

Theorem (delay bounds): For	@ ≠ ∅, bounded delay	�� ≤ '��
�	∀1 < � ≤),	&�� = &	∀1 ≤ � ≤

A, &��� = D 0,&�� is the load of vehicle �� on ACi, 	�� − .�∑ &������	 , �� ≤ ./&, �0	∀1 < � ≤)

and	.�∑ &	�����	 , 1� − �	 ≤ 	./() − 1)&, 10.
Proof by contradiction: Assume �� − .�∑ &������	 , �� > ./&, �0	∀1 < � ≤) is true. Then the load

on ACi is	∑ &������	 = R4���,��) S &, hence	ℎ/�� , �0 − R4���,��) S & ≯ &. Therefore, the contrary must be

true. Similarly, assume .�∑ &	�����	 , 1� − �	 > 	./() − 1)&, 10 is true. Then the load on AC1 is

∑ &	�����	 = R4���,	�) S & + () − 1)&, hence	R4���,	�) S & + () − 1)& − ℎ/�	, 10 ≯ () − 1)&. Thus,

the contrary must be true.

VI. OSD Traffic Distribution–Heuristic

We use lemmas and theorem from Section V to develop an efficient opportunistic service

differentiation traffic distribution heuristic. The pseudo code for our OSD traffic distribution

heuristic is presented in Figure 7. First, the OSD traffic distribution heuristic, aims to prioritize

29

vehicles based on their context severity metric, as in Lemma 2. Then, it assigns vehicles to higher

priority AC first, from Corollary 1, to leverage the inherent lower delays, thus offering higher

QoS, with respect to delay, to higher context severity vehicles.

This heuristic has a global snapshot of vehicles, their context severities, and a load. It

begins by sorting vehicles with respect to severity, so that they can be assigned AC as in Lemma

2. The heuristic deduces the delay on ACs based on Corollary 2, Equations (23) and (24) and

computes the maximum load (load cap), Equation (19), based on this delay. It assigns the vehicles

to ACs, as in Corollary 1, until it reaches the load cap, before moving to the next best AC, with

respect to priority for channel access. This ensures that the next best QoS is offered to vehicle

traffic.

Figure 7. Pseudo code for OSD traffic distribution heuristic.

Generally, the optimal solution occurs when there is equalization in the delay across all

ACs, with higher context severity load assignment to higher priority AC. This equalization delay,

���� for ACi can be computed from Equation (22), where ���� , �� is the load on ACj with

delay	�� 	∀	
 1 � � �
 and ��� � ∑ ���� , ���
����� , 	� is the portion of load on ACi when the

FUNCTION OSDHeuristic

 // sort vehicles based on context severity metric

 initialize vehLoadQueue

 FOR i = N to 1

 compute �� // equation (23), (24)

 compute ACi loadCap // equation (19)

 REPEAT

 // get vehicle load in queue without removing

 IF ACi loadCap > vehLoadQueue.peek() THEN

 assign vehicle load to ACi

 ACi loadCap -= vehLoadQueue.remove() // dequeue

 ELSE

 ACi loadCap = 0 // ACi is full

 ENDIF

 UNTIL ACi loadCap > 0 && !vehLoadQueue.isEmpty()

 ENDFOR

ENDFUNCTION

30

load	& − ∑ ℎ��� , ��3����	 has to be distributed amongst ACi to AC1 to achieve equalization in

delay and .���& − ∑ ℎ��� , ��3����	 , ��, �� is the delay on ACi with load	��& − ∑ ℎ��� , ��3����	 , ��.
Therefore, delay for ACi ∀1 < � ≤), either achieves equalization across ACi-1 to AC1 or is

bounded by '��
� from constraint (15) given in Equation (23). However, the delay on the lowest

priority AC is unbounded to accommodate the traffic overflow and is given in Equation (24). The

OSD traffic distribution heuristic assigns entire vehicle load to an AC in order of context severity

metric. This may not fully utilize an AC. However, the Theorem quantifies this loss in utilization

and shows that, given equal load per vehicle and entire vehicle load assignment to an AC, each

AC will be underutilized by atmost one vehicle load. Therefore, we have shown that our OSD

traffic distribution heuristic is scalable and efficiently achieves suboptimal results c.f. Theorem

(delay bounds), with respect to vehicle assignment to AC.

In the next chapter, we will show analytical and simulation results to demonstrate that

when service differentiation in WAVE is enhanced by our OSD traffic distribution mechanism,

we improve the QoS with respect to delay for ACs, and for vehicles with respect to context

severity.

31

CHAPTER 4

RESULTS–OPPORTUNISTIC SERVICE DIFFERENTIATION

I. Analytical Results

In this section, we will compare the OSD enhanced WAVE with the classical WAVE and

show that it not only outperforms classical WAVE but also accounts for network load, maximum

allowable delay bounds on ACs and the critical context severity metric for VANET vehicles. We

use the parameters presented in Table 1 ([45], [44], [46], [47]) for analytical comparison of

classical WAVE with our optimal OSD traffic distribution formulation and heuristic. WAVE has

been designed to operate at different data rates, 3-27 Mbps. In our analytical study, we use 3

Mbps, similar to studies in ([48], [49]). In these scenarios, each vehicle generated the same load

comprising of randomly distributed payload across ACs. lp_solve [50] was used to solve the OSD

LP formulation.

Figure 2 illustrates that the OSD scheme entails communication and computation

complexities. However, as shown in Figure 8, OSD enhanced WAVE results in improvements in

delay across ACs, when compared to classical WAVE. This is achieved by increasing the

utilization of higher priority AC and leveraging their inherent lower delay. It is also evident that

our heuristic achieves suboptimal results. Furthermore, as the number of vehicles increases, the

load increases, yielding higher delay. However, OSD enhanced WAVE has a smaller rate of

delay increase compared to WAVE.

Table 1

OSD and WAVE QoS Parameters

Parameter Value ���(��	��T�,����	���� 400 bytes, 3 Mbps &�� 	(����	���	��ℎ����) 10 packets/sec '/�
�,'.�
�,'
�
� 70 ms, 120 ms, 180 ms ">6�)/,">6�).,">6�)
,">6�)	 2, 3, 6, 9 ����'�:�, �>6�'�:� 13 µs, 32 µs �?/���,�?.��� ,�?
���,�?	��� 3, 7, 15, 15 �?/�� ,�?.�� ,�?
�� ,�?	�� 7, 15, 1023, 1023

32

Figure 8. Delay comparison of OSD enhanced WAVE with classical WAVE.

Figure 9. Load redistribution amongst ACs.

Figure 10. Load decomposition in AC, w.r.t severity, in OSD traffic distribution heuristic.

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100 120 140 160 180 200
W
g
td
.
A
v
g
.
D
el
ay
 (
m
s)

Number of Vehicles

OSD Formulation

OSD Heuristic

WAVE

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

AC4 AC3 AC2 AC1

L
o
ad
 D
is
tr
ib
u
ti
o
n
 (
%
)

Access Category

OSD Formulation

OSD Heuristic

Initial

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AC4 AC3 AC2 AC1

L
o
ad
 D
is
tr
ib
u
ti
o
n
 (
%
)

Access Category

S4 S3 S2 S1

33

Figure 11. QoS w.r.t delay bounds on AC for 1000 vehicles.

Figure 12. Traffic demotion to achieve better QoS w.r.t delay for 240 vehicles.

Figure 9 and Figure 10 illustrate opportunistic load redistribution for 200 vehicles and

four context severities, S1, S2, S3 and S4, in decreasing order of severity. Note that higher

priority ACs were assigned more traffic than lower priority AC. Figure 10 depicts that vehicles

with higher context severity metrics were assigned to higher priority ACs. This ensures minimum

severity delay products and suboptimal utilization of higher priority ACs.

Figure 11 shows how the OSD traffic distribution guarantees QoS with respect to delay

for AC, bounded by '��
�	∀1 < � ≤), while WAVE exceeds the maximum acceptable delay for

AC4, AC3 and AC2. Figure 12 depicts the benefit of using demotion of load to achieve better

0

100

200

300

400

500

600

AC4 AC3 AC2 AC1
D
el
ay
 (
m
s)

Access Category

OSD Formulation

OSD Heuristic

WAVE

T max AC4

T max AC3

T max AC2

0

10

20

30

40

50

60

70

80

90

AC4 AC3 AC2 AC1

D
el
ay
 (
m
s)

Access Category

OSD Formulation

OSD Heuristic

WAVE

T max AC4

34

overall QoS for all vehicles. Assume, only AC4 has high load, OSD traffic distribution will

opportunistically redistribute the load, systematically demoting it to lower priority ACs and

improving QoS with respect to delay.

II. Simulation and Results

We use EstiNet 7.0 Network Simulator and Emulator [51], formerly NCTUns (National

Chiao Tung University Network Simulator) [52]. It is a prevalent VANET simulator and emulator

[53], which provides an integrated framework for traffic flow and network simulation. Typical

simulators combine various functions, such as, links with varying delays and bandwidths, IP

packet routers, TCP/IP hosts and mobility and network traffic generators into a single monolithic

program. EstiNet consists of independent modules for these functions and executes them

concurrently in a BSD UNIX environment [54]. In this section, we will delineate the scenario,

simulation topology and analysis setup and present the performance comparison of classical

WAVE with OSD enhanced WAVE in the VANET environment.

i. Scenario

Let us consider the performance of a safety application, such as, cooperative collision

avoidance system, where OBU equipped vehicles communicate with each other and with the

RSUs to collectively exchange data with neighboring nodes and infrastructure to circumvent

accidents. In WAVE, VANET nodes interact with each other via services that can be produced or

consumed. We scrutinize the V2V communication aspect of the safety application by deploying

services on OBU equipped vehicles.

In WAVE, all vehicles prioritize their safety application packets, so that they are sent via

AC4. Whereas, OSD enhanced WAVE reprioritizes the application requested priorities based on

the context severity of the vehicle that hosts the application. Table 3 lists the context severity of

the vehicles. For simplicity, we map the continuous context severities into four discrete values,

S1, S2, S3 and S4, arranged in order of decreasing severity.

35

Simulation logs and statistics are used to evaluate and, or infer performance and QoS

metrics of throughput, packet collisions, packet loss and retransmission ratio and delay, to

compare performance of classical WAVE with OSD enhanced WAVE.

ii. Topology

This V2V scenario is simulated using EstiNet, by randomly deploying agent-controlled

ITS OBUs with 802.11p interface as vehicles. Each vehicle is deployed with a default

application, known as, CarAgent, which manages the driving behavior of the vehicle, based on its

profile, on the road infrastructure. A car profile is assigned to a vehicle and denotes its driving

parameters, such as speed and acceleration. Each vehicle is equipped with an omnidirectional

antenna and its physical layer parameters are configured to ensure that vehicles are within

communication range of each other. Our vehicle parameters are listed in Table 2.

The V2V communication in the network is established by creating a subnet and assigning

all vehicles to the same subnet. EstiNet uses this subnet assignment to generate IP and MAC

addresses of the vehicles. Vehicles exchange data in the WAVE mode by joining a WAVE-mode

Basic Service Set (WBSS). The service provider broadcasts its services in the control channel

(CCH) via Wave Service Advertisements (WSA) and a consumer joins the WBSS of the

provider. Since simulation time is directly proportional to the number of vehicles deployed, we

simulated our scenario with 30 vehicles providing services to our consumer in vehicle ID 2, as

illustrated in Figure 13. The simulation parameters are listed in Table 2. Similar to the work done

in ([48], [49]) we use 3 Mbps data rate in our simulation.

36

Table 2

OSD Simulation Parameters

Parameters Value

Vehicle :�	 ����� 18 meters/sec :�	 ������������ 1 meters/sec
2
 :�	 ������������ 4 meters/sec
2
 �����:������	��
�� 28.80814 dBm ��������	����������� -82 dBm

Network ����	���� 3 Mbps ����	���	�������� 15 packets/sec ���(��	��T� 400 bytes

WAVE #���
���ℎ 10 MHz �������	�ℎ�����	>� 172 ��U	�������� 50 ms ��U	�������� 50 ms ����'�:� 13 µs �>6�'�:� 32 µs ">6�)/,�?/��� ,�?/�� 2, 7, 7 time slots ">6�).,�?.��� ,�?.�� 3, 15, 31 time slots ">6�)
,�?
��� ,�?
�� 6, 31, 1023 time slots ">6�)	,�?	��� ,�?	�� 9, 31, 1023 time slots

OSD '/�
�,'.�
�,'
�
� 70, 120, 180 ms

Simulation ��:
������	��:� 10 sec ��:
������	������������ 10 �������	����
:�� 1 �������	��������� 30

The WAVE Short Message (WSM) application of EstiNet is added to vehicles to

generate prioritized data for a consumer and transmit it over a service channel (SCH). Each

service provider uses WSM to send 15 data packets/sec, of 400 bytes each, at a transmission data

rate of 3 Mbps on SCH 172, via unicast communication. These network and WAVE parameters

are listed in Table 2. Note we use EstiNet default WAVE parameters. Since we are simulating

vehicles for a safety application, like a cooperative collision avoidance system, all service

providers are generating data for the highest priority access category, AC4.

37

Figure 13. EstiNet simulation scenario consisting of 1 consumer (vehicle ID 2) and 30 provider OBU.

In EstiNet, priority 7 is used for AC4. However, the heuristic for OSD enhanced WAVE, assigns

vehicles to different access categories with respect to their severity, to ensure that access category

delays do not exceed thresholds (�	
��, �

��, ��
��), delineated as OSD parameters in Table 2.

This reassignment of vehicles to access categories based on severity is given in Table 3.

Table 3

OSD Vehicle Assignment to AC with Respect to Severity

 Access Category

S
e
v
e
ri
ty

AC4

(priority 7)

AC3

(priority 5)

AC2

(priority 3)

AC1

(priority 2)

�� 7, 12, 14, 15, 28,

29

�� 30
9, 10, 11,

24
4

��
5, 8, 16, 17, 18,

32
3, 6, 13

��
19, 20, 21, 22, 23, 25, 26, 27,

31

760 meters

420

meters

Max distance covered by

consumer, vehicle 2

38

iii. Analysis Setup

We monitor the network traffic using the packet trace file (ptr) logged by EstiNet and the

packet statistics logging offered in the MAC module of a vehicle. The packet statistics logging

records the out throughput (KB/sec) and the number of collisions at the providers. The ptr file

records the network traffic and the packet statistics are sampled at 1 second intervals. The ptr file

is used to deduce packet loss and packet retransmission ratio and log files for evaluating

throughput and collisions. The QoS metric of delay perceived by a provider is inferred from the

throughput.

There are multiple replications of a simulation run to increase the accuracy of our results.

The packet loss (25) and retransmission ratio (26) are calculated using the average number of

packet transmissions (TX), packet retransmissions (RTX) and packets received (RX). The average

throughput and number of collisions for a provider are computed by excluding data from the

warm-up and shut-down times, assumed to be 1 second each. The delay perceived by the

providers is computed based on (27).

 ���(��	����	����� =
'V + W'V − WV'V + W'V (25)

 ���(��	�������:������	����� =
W'V'V (26)

�����	/:�0 =

1�ℎ��
�ℎ�
�	(XY/���) × 1024���(��	��T�	(#����)

× 1000
(27)

iv. Results and Discussion

Recall, that in our safety application simulation scenario, for classical WAVE, all 30

service providers are vehicles generating data for the highest priority access category, AC4, and

transmitting it in the same service channel, SCH 172. This simulates a high contention scenario,

where vehicles are forced to compete for the physical channel. It ensures that vehicles use the

39

EDCA service differentiation settings in WAVE to backoff and retry for the channel. EDCA

parameters for AC4 have been selected so that vehicles in AC4 have highest priority to access the

channel and thus, incur the lowest latency. However, this service differentiation in WAVE does

not account for network traffic and load on access categories, and hence cannot guarantee delay

bounds for time critical safety applications. We will show that OSD enhanced WAVE accounts

for network traffic and load on access categories to fully utilize all access categories and can also

guarantee meeting delay requirements for high priority access categories.

In our high contention scenario for WAVE, all vehicles, providing services in AC4, are

constantly contending for the channel. This is evident in the high 383 packets/sec average

collisions in AC4, in Fig. 14(c). When the vehicles incur a collision, they backoff and retry for the

channel. In the case of a collision, AC4 is given priority, to reduce latency for AC4 traffic.

However, in this scenario, all vehicles contending for the channel belong to AC4 and hence the

priority of the access category does not benefit the vehicles. This is illustrated in the high

retransmission ratio of 2.6 in Fig. 14(e), which captures the multiple retransmissions that must

occur for one successful transmission. The packet loss ratio in Fig. 14(d) for vehicles providing

services in AC4, in classical WAVE, also concurs with the high collision rate and retransmission

ratio.

These collisions and retransmissions reduce the effective throughput of the vehicles

providing services in AC4, as depicted in Fig. 14(a), where the average classical WAVE

throughput is low at 1.8 KB/sec. A low throughput, translates to a high delay for vehicles

operating in the highest priority access category, AC4. This undermines service differentiation in

classical WAVE and diminishes the effectiveness of time-critical safety and lifesaving

applications, like cooperative collision avoidance application. Fig. 14(b) shows that vehicles, in

classical WAVE, providing services in AC4 incur an average delay of 288 ms, which exceeds

'/�
�= 70 ms. Typically, the maximum allowable latency requirement for safety applications,

like cooperative collision avoidance is approximately 100 ms ([47], [46]). As illustrated, we

40

overcome this limitation of WAVE, using opportunistic service differentiation. We also show that

our analytical delay closely follows the simulation delay, thereby validating our delay model.

In our novel approach, we not only consider the load in the network and in the ACs but

also account for the context severity of the vehicle and the maximum allowable delay

requirements. Recall, our heuristic assigns a vehicle and its entire load to an access category, with

respect to its context severity and the delay bounds on the access categories. This assignment of

vehicles to access category with respect to severity is delineated in Table III. The heuristic

assigns the vehicles to the access categories, based on the network load and delay bounds of 70,

120 and 180 ms, on AC4, AC3 and AC2, respectively.

(a) OSD redistributes load and improves throughput when compared to WAVE.

(b) Analytical delay model follows simulation results and OSD overcomes

the unbounded delay in WAVE with Tmax for AC4, AC3 and AC2.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

AC4 AC3 AC2 AC1

T
h
ro
u
g
p
u
t
(K
B
/s
ec
)

Access Category

OSD Simulation

WAVE Simulation

40

90

140

190

240

290

340

390

AC4 AC3 AC2 AC1

D
el
ay
 (
m
s)

Access Category

OSD Simulation

WAVE Simulation

Analytical Delay

Tmax
2
= 180

Tmax
3
= 120

Tmax
4
= 70

41

(c) Load distribution across ACs utilizes inherent service differentiation in WAVE to reduce

contention and collision.

(d) High throughput AC4 shares higher packet loss ratio.

(e) Packet retransmission ratio consequentially follows packet loss ratio.

Figure 14. Simulation performance comparison of classical WAVE with OSD enhanced WAVE with 95%

confidence intervals.

30

90

150

210

270

330

390

AC4 AC3 AC2 AC1
C
o
ll
is
io
n
s
(p
ac
k
et
s/
se
c)

Access Category

OSD Simulation

WAVE Simulation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AC4 AC3 AC2 AC1

P
ac
k
et
 L
o
ss
 R
at
io

Access Category

OSD Simulation

WAVE Simulation

0.2

0.7

1.2

1.7

2.2

2.7

AC4 AC3 AC2 AC1

P
ac
k
et
 R
et
ra
n
sm

is
si
o
n
 R
at
io

Access Category

OSD Simulation

WAVE Simulation

42

OSD enhanced WAVE distributed AC4 load amongst the other access categories to

utilize the inherent service differentiation mechanism of WAVE, so that there is differentiation in

the backoff and retry mechanism of all the service providers. This reduces the average collision,

packet loss and retransmission ratios, as illustrated in Fig. 14(c, d and e), respectively.

Consequently, as vehicles incur less contention on the channel, their throughput increases, as

depicted in Fig. 14(a). It is important to note that in OSD enhanced WAVE some vehicles were

assigned to lower priority access category to achieve the delay guarantees in AC4, AC3 and AC2.

Fig. 14(b) captures the innovation and essence of our OSD technique. It not only

guarantees delay bounds on the three higher priority access categories but also improves the QoS

metric of delay perceived by all service providers in the network. It decreases the average delay

for service providers in AC4 from 288 ms to 70 ms from classical WAVE to OSD enhanced

WAVE, respectively. Now, the safety application packets from service providers in AC4 can

ensure that latency does not exceed the maximum allowable delay of 70 ms. Fig. 14(b) explicitly

illustrates that even service providers in AC3 and AC2 in OSD enhanced WAVE incur lower

latency than service providers in AC4 in classical WAVE. The worst case delay incurred by

service providers in AC1 is approximately the same as the average delay incurred by service

providers in AC4 in classical WAVE.

Therefore, in our simulation scenario, classical WAVE performs worse than the lowest

priority access category in OSD enhanced WAVE. However, it is important to note that this is not

our claim. In fact, the performance of OSD enhanced WAVE primarily depends on the delay

bounds set on the access categories and the network load. If there is a low network load or no

delay bounds on the ACs, OSD enhanced WAVE distributes the load such that the delay incurred

by all vehicles across all access categories is equalized. In Fig. 14, we show that OSD enhanced

WAVE can provide delay guarantees for ACs and improve QoS metric of delay for all vehicles

with a 95% confidence interval range.

43

Table III lists the vehicle IDs of the service providers in the four different severities. The

severity of a vehicle is different from the priority of the application or service the vehicle is

providing.

(a) ACs are utilized in order of context severity metric.

(b) Higher context severity metric vehicles have smaller delay.

0

1

2

3

4

5

6

S1 S2 S3 S4

T
h
ro
u
g
h
p
u
t
(K
B
/s
ec
)

Severity

OSD Simulation

0

50

100

150

200

250

300

350

400

450

500

S1 S2 S3 S4

D
el
ay
 (
m
s)

Severity

OSD Simulation

44

(c) All ACs are optimally utilized to distribute load and share channel.

(d) Higher context severity metric vehicles are assigned to higher throughput

ACs, sharing a higher percentage of packet loss.

(e) Packet retransmission ratio is consequential to the packet loss ratio.

Figure 15. Performance of vehicles with respect to severity in OSD enhanced WAVE with 95% confidence

intervals.

0

10

20

30

40

50

60

70

S1 S2 S3 S4
C
o
ll
is
io
n
s
(p
ac
k
et
s/
se
c)

Severity

OSD Simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

S1 S2 S3 S4

P
ac
k
et
 L
o
ss
 R
at
io

Severity

OSD Simulation

0

0.2

0.4

0.6

0.8

1

1.2

S1 S2 S3 S4

P
ac
k
et
 R
et
ra
n
sm

is
si
o
n
 R
at
io

Severity

OSD Simulation

45

Therefore, a low severity vehicle can generate high priority data. OSD enhanced WAVE

distributes traffic across the ACs with respect to vehicle severity, in an effort to provide the best

possible QoS to the higher severity vehicles. The distribution of vehicles based on severity

amongst the ACs, allows us to provide service differentiation in WAVE based on the critical ITS

parameter of vehicle severity. Our OSD technique for WAVE ensures highest throughput and

lowest delay for the highest severity vehicles in Figure 15(a) and (b), respectively. The 95%

confidence intervals are also illustrated for average collisions, packet loss and packet

retransmission ratios for the four severity levels, in Figure 15(c, d, and e), respectively.

46

CHAPTER 5

RSU CLOUD RESOURCE MANAGEMENT

I. RSU Cloud Architecture

In this section, we will discuss the architecture of our RSU cloud, implemented as a

Software Defined Network (SDN). The standard protocol for SDN is OpenFlow [15], which

dictates communication primitives. There are two communication planes, the physical data plane

and an abstracted control plane. This decoupling of control and forwarding planes enable the deep

programmability of SDN. A SDN consists of OpenFlow enabled switches and controllers, where

a switch contains data forwarding rules and controller has dynamic global network

interconnection knowledge. Each switch maintains flows that pertain to data forwarding.

Switches receive flow rules, proactively or reactively, from controllers, via the control plane. This

separation of data and control plane enables SDNs to be dynamically reconfigured [55].

Recall, ITS aims to increase in-vehicle productivity, where users can subscribe for

convenience and infotainment services such as remote vehicle diagnostics, on-the-go-Internet,

online gaming, multimedia streaming, voice over IP. As illustrated in Figure 17, RSU clouds

include traditional RSUs and micro-datacenters that will host the services to meet the demand

from the underlying OBUs in the mobile vehicles. Traditional RSUs are fixed road-side

infrastructure that can perform vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)

communication using the Wireless Access in Vehicular Environments (WAVE) standard. A

fundamental component to RSU clouds is the RSU micro-datacenter.

A RSU micro-datacenter, illustrated in Figure 16, is a traditional RSU with additional

hardware and software components that can offer virtualization and communication capabilities

in a SDN. In comparison to traditional clouds, RSU cloud datacenters are resource constrained.

The micro-datacenter hardware consists of a physical small form factor computing device and an

OpenFlow switch. The software components on the computing device include the host operating

47

system and a hypervisor. A hypervisor is a low-level middleware that enables virtualization [38]

of the physical resources. This allows abstraction of various virtual machines (VMs) on a single

device. It is a technique widely employed in traditional datacenters that improves resource

utilization, portability and fault tolerance [38]. In this manner, VMs can host services by

efficiently sharing resources. VMs also enable service migrations and replications onto other

VMs on disparate physical devices.

Figure 16. RSU Micro-datacenter architecture.

Optionally, one or more of the micro-datacenters will have additional software

components, namely, OpenFlow Controller(s), Cloud Controller(s) and RSU Cloud Resource

Manager(s). Our novel RSU Cloud Resource Manager (CRM) will communicate with OpenFlow

and Cloud controllers, via the data plane, to disseminate information regarding service hosting,

service migration and, or data flow changes, as illustrated in Figure 17. In the data plane, Cloud

Controllers will govern service migration and hypervisors to instantiate new VMs hosting

services. Consequentially, OpenFlow Controllers will update their network knowledge and

simultaneously update switch flow rules via control plane.

The dynamic service demands from the vehicles may require increasing or decreasing the

number of micro-datacenters hosting the services or physically migrating the VMs hosting the

services from one micro-datacenter to another via the data plane. Without loss of generality, we

OpenFlow Controller

Hypervisor

Cloud Controller

Virtual Machine
Operating System

Service

Cloud Resource

Manager

Physical Machine OpenFlow Switch

Software

Hardware

48

interchangeably use VM migration and service migration. Though, we can reprogram the RSU

clouds to dynamically update service hosting and data forwarding information, it is costly and

deteriorates network performance [38], [55]. VM migration in the data plane, constrains the

limited bandwidth in the RSU cloud and increases network link latency, whereas, updating data

forwarding information increases control plane overhead [39]. Moreover, service providers incur

the cost of service migration and, or replications, and service users experience the deterioration in

QoS. Naïve approaches to hosting services across all micro-datacenters are too costly, since

service providers rent cloud resources from cloud infrastructure providers. Our major contribution

is the novel offline Cloud Resource Manager, which is responsible for making the optimal

decisions regarding the time, location and number of services hosted and data forwarding, in the

RSU Cloud.

Figure 17. RSU Cloud architecture.

II. Reconfiguration Overhead Analysis in Mininet

In this section, we discuss how we emulated a RSU Cloud as a SDN in Mininet [16], to

perform real-world reconfiguration overhead analysis. Recall, that SDN switches maintain data

forwarding rules in flow tables. A flow table rule is a two tuple with a prefix and an action. A

prefix contains, amongst other things, an ingress port, packet source and destination information.

RSU Cloud with SDN

Traditional

Datacenters

OpenFlow
Controller

Cloud Resource

Manager

Data Plane Control Plane Gateway to Traditional Datacenter

RSU

Micro-datacenter
Traditional

RSU

Cloud
Controller

WAVE

49

A typical action specifies the egress port for the incoming packet at the switch. When a packet

arrives at a switch it searches the prefixes in the flow tables and performs the action associated

with the first matched prefix. To implement a RSU cloud SDN in Mininet, we implement a RSU

micro-datacenter as a VM host connected to an OpenFlow switch, with a zero delay, as illustrated

in Appendix A. Our RSU Cloud topology is inspired by Florida Department of Transportation

(FDOT) deployment of RSUs [56].

It is evident from our topology that to enable real-world reconfiguration overhead

analysis, we will have to support multipath. Therefore, we implemented stochastic switching for

multipath in an OpenFlow enabled SDN. OpenFlow offers multipath through group tables, which

enable data to be forwarded across multiple egress ports. In this case, a flow table rule action

points to a group table identification number. A group table rule contains a list of buckets for

egress ports for the same ingress port and source-destination pair. We control the data forwarding

through these buckets by defining the group type. We use the select group type to stochastically

select the buckets. The bucket weights are specified so that the traffic between the buckets is split

according to the load on multiple paths between the source-destination.

We used Open vSwitch (OVS) 2.1 [57] that supports group tables and more specifically

the optional select group type. However, OVS 2.1 implements the select group type by randomly

selecting a group bucket, whereas, we want to select buckets stochastically. Therefore, we

updated xlate_select_group and group_best_live_bucket functions on OVS 2.1 to support

stochastic switching in accordance with group bucket weights. The Python scripts used for

implementing the topology in Mininet and establishing the data forwarding rules, with detailed

instructions are made available online for public access [58].

To perform reconfiguration overhead analysis, we implemented a SDN where each host

has demands for a single service and there are a fixed number of service hosts. Figure 18 depicts

two SDN over the same topology but on different configurations. Recall, a configuration is

snapshot of hosts of service and the data forwarding rules in effect. In our analysis, the SDNs are

50

catering to an average demand of 70 Mbps and 90 Mbps, at time � and �	
 	1, respectively. We

designed a joint optimization to find the optimal configuration that can meet the demand, while

minimizing number of service hosts and cloud infrastructure delay. Figure 18 illustrates the

configurations highlighting the switches with flow table rules, flow and group tables rules for

multipath and service hosts. Our reconfiguration overhead heuristic counts the changes in the data

forwarding rules and the number of service migrations. It is important to note that, deleting a host

does not induce network traffic and therefore does not count as overhead.

Figure 18. Reconfiguration overhead analysis in Mininet.

It is important to note that VM migrations induce network traffic in the data plane,

whereas, flow and group table modifications makeup the control plane overhead. In the control

���� � �	 � 	1

Flow Rules
Flow + Group Rules
Service from Host A
Service from Host B
Service from Host C

Host A

Host B

Host C

Host A

Host B

RSU

Micro-datacenter

51

plane, there is a cost associated with adding and deleting flow or group table rules. A flow table

and group table rule modification is counted doubly, a deletion of the old rule, followed by an

addition of a new rule.

Based on our reconfiguration overhead analysis, we can formally define a configuration

and reconfiguration overheads. A configuration is a network snapshot that records the service

hosts and the data forwarding rules in the network. Data forwarding rules consist of flow rules

and group rules. A configuration is defined as a three tuple < Z,[,\ >, where

Z = {		,	
, … , 	|�|} is the set of service hosts, [= {�	,�
, … ,�|5|} is the set of flow rules and

\ = {T	, T
, … , T|�|} is the set of group rules.

 Reconfiguration overhead consists of two components, number of VM migrations and

control plane modifications. For simplicity, we assume that all services are hosted on VMs of the

same size. Therefore, we simply count VM migrations. This can be extended to different size

VM. Also, tearing down a VM does not induce network traffic and does not add to the

reconfiguration overhead. Therefore, given sets of service hosts, V and V′ for time � and �	 + 	1,

respectively, the VM migrations are equivalent to |V − V′|. On the other hand, all control plane

modifications add to the reconfiguration overhead. Therefore, given sets of flow rules ^ and ^′

for time � and �	 + 	1, respectively and group rules _ and _′, for time � and � + 1, respectively,

the control plane overhead is calculated as in Equation (28). Intuitively, the control plane

overhead is the sum of flow rules to be deleted and added, group rules to be deleted and added,

flow rules changed to group rules and group rules changed to flow rules.

 �������	�����	����ℎ���
= 	 |^ − ^6| + |^6 − ^| + |_ − _6| + |_6 − _| + |^ ∩ _′| + |_ ∩ ^′| (28)

III. RSU Cloud Resource Management Model

Recall, our RSU cloud consists of RSU micro-datacenters that can host services to meet

the demands from the vehicles. A configuration takes a snapshot of service hosts and data

52

forwarding rules. Also, over time, the change in demands requires costly reconfigurations to

service hosting, service migration and, or replications and data forwarding rules. These

reconfigurations increase service latency and deteriorate user experience [55], [38]. We can

identify patterns of average demand in the network and classify them according to the time of the

day.

The cloud resource management problem is the selection of a good configuration that

minimizes reconfiguration overhead. In this section, we will present the problem statement and

the cloud resource management model.

i. Problem Statement

Given a network graph ` = (@,a), set of services B, set of average demands b =

{��� ,��� , … 	��|�|} over time period c = {�	, �
, … 	�|7|} with an initial configuration ��� =

〈Z8� ,[8� ,\8�〉 for demand ���at time �	. The set @	represents the RSU micro-datacenters

interconnected by the edges in a, each with bandwidth capacity ��	∀	�	 ∈ a. At time �� ∈ c, there

is a demand #�,� for service (, (∈ B at node �, � ∈ @ and the average demand in the network is

���. Find a Pareto Optimal configuration from a set of Pareto Optimal Frontier of configurations

Ψ
8� to minimize the number of VM migrations 〈����| min ,V��� − 	Z8���- , ∀	���� =	<

V��� , �̂�� ,_��� >, ���� ∈ Ψ8�〉. Each	���� ∈ Ψ8�, optimally hosts services within threshold f� to meet

service demands, while achieving a load-balanced network, and minimizing infrastructure delay

with QoS threshold g� for each service (.

ii. Delay Model

In this subsection, we discuss how we compute the cloud infrastructure delay. The delay

is based on a Lookup Table (LUT) with interval h, which controls the granularity. The

granularity of the LUT is a tradeoff to performance. We compute the delay on a path as a

53

summation of the delays on the edges in the path. The delay on an edge is the summation of

processing (��), queuing (��), transmission (��) and propagation (��)	delays.

Without loss of generality and similar to ([59], [60]), we currently use a G/G/1 queuing

system. In practice the LUT table will be built over time, from experimental data. For modelling

this, we assume a Poisson process for packet inter-arrival times & and processing times i, with

mean and standard deviation, �� , σ9	and �:, σ:, respectively. This assumption generally enables

the problem formulation to be generic, suitable and adaptable to various different types of

scenarios, including multimedia and network studies ([59], [60]). The coefficient of variation in

inter-arrival times and packet processing times are �� = j� ��⁄ and �� = j� ��⁄ , respectively.

These are used in Kingsman formula [61] to approximate the queuing delay, in Equation (29). In

our LUT, �� = 0.7 and �� = 0.7.

 '; = 	 ��
 + ��

2

∙
& i⁄i − &

(29)

The transmission delay on the edge is based on the distance between the RSUs as in

Equation (30). The length of the edge is based on the distance between the RSU nodes. Recall,

our topology is inspired by Florida Department of Transportation (FDOT) RSU deployment [56],

as illustrated in Figure 19. We use iTouchMaps [62] to estimate the latitude and longitude of the

FDOT RSU locations and Coordinate Distance Calculator [63], to compute the distances between

the RSU nodes. We use a processing delay of 10 µs and the propagation delay in Equation (31),

for packet size 800 Bytes.

 '� = 	 N �����ℎ
2
3

∙ �����	�.	���ℎ�O
(30)

 '< = 	 8���(��	��T��� 9
(31)

54

Figure 19. FDOT RSU deployment [56].

IV. Multi-Objective Integer Linear Programming Formulation

We model the RSU Cloud resource management problem as a multi-objective Integer

Linear Programming (ILP) problem and solve it to obtain a Pareto Frontier. Below, we define and

describe the input and output variables used in the formulation.

Input � Number of services

 |V|, the number of RSUs

��,� The demand at RSU n for service k, ∀1 � � �
, 1 � � � �
��,� �1, 	�	�����		�	�	������	� �	���!	"�	�	 �	#�$	�, ∀1 � � �
, 1 � � � �0,																																																																																																																												 ����&	��
��,� The number of paths from RSU m to RSU n, ∀1 � �, � �

'��,�,�

 (1, 	�	#�$�	�, �)��	'���	*	&	��	����	�, ∀1 � �, � �
, 1 � * � ��,� ,1 � � � |,|	0,																																																																																																																							 ����&	��

2100 meters

3
7
0
0
 m
e
te
rs

55

�� Bandwidth capacity of edge � f� Threshold on number of service hosts for service (, 1 ≤ (≤ � g� Threshold on infrastructure delay for service (, 1 ≤ (≤ � h 1 ≤ h < min{�� , ∀1 ≤ � ≤ |�|}, used to control the granularity of the LUT for edge e k�,� The delay for load i on edge e, ∀0 ≤ � ≤ �� , 1 ≤ � ≤ |�|
T�,� l1,										�.	�������	(
��	������
���	ℎ�����	��	W�m	:, ∀1 ≤ : ≤), 1 ≤ (≤ �	

0,																																																																																																																																	��ℎ��
���

���,�,
 E1,									�.	�ℎ���	
��	�	�������	�����	�
��	.��	���ℎ			#��
���	W�m�	:,�	.��	�������	(∀1 ≤ :,� ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ �	

0,																																																																																																																														��ℎ��
���

Y A large constant

Output

ℎ�,� l1,										�.	�������	(��	ℎ�����	��	W�m	:, ∀1 ≤ : ≤), 1 ≤ (≤ �	
0,																																																																																																						��ℎ��
���

���,�,
 The load carried on path x between RSUs m, n for service k, ∀1 ≤ :,� ≤),

1 ≤ 	 ≤ (�,�, 1 ≤ (≤ �, 0 ≤ ���,�, ≤ min	{�� , ∀1 ≤ � ≤ |�|, ∃���,�, = 1, }

���,�,
 E1,									�.	�ℎ���	��	�	�������	�����	�
��	.��	���ℎ			#��
���	W�m�	:,�	.��	�������	(∀1 ≤ :,� ≤), 1 ≤ 	 ≤ (�,�, 1 ≤ (≤ �	

0,																																																																																																																									��ℎ��
���

��	 Load on edge e, 1 ≤ � ≤ |�| �� Delay on edge e, 1 ≤ � ≤ |�| ��	 Maps the load on edge e to a multiple of h .�,� l1,										�.	����	��	����	�	��	�k
��	��	�	 × 	h, ∀0 ≤ � ≤ �� , 1 ≤ � ≤ |�|
0,																																																																																																													��ℎ��
���

��,�, The delay on path x between RSUs m, n ∀1 ≤ :,� ≤), 1 ≤ 	 ≤ (�,� ,

0 ≤ ��,�, ≤ ��,�,
��,�,
 Ancillary variable for non-linear products of continuous variable ��,�, with binary

variable ℎ�,�,∀1 ≤ :, � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ � +�,� l1,										ℎ�,� − T�,� > 0, ∀1 ≤ : ≤), 1 ≤ (≤ �	
0,																																																																					��ℎ��
���

*��,�,
 l1,										���,�, − ���,�, > 0, ∀1 ≤ :,� ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ �	

0,																																																																																																											��ℎ��
���

56

n��,�,
 l1,										���,�, − ���,�, > 0, ∀1 ≤ :,� ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ �	

0,																																																																																																											��ℎ��
���

Our multi-objective is to minimize the reconfiguration overhead, pertaining to VM

migration, control plane modifications, number of service installations and cloud infrastructure

delays. The minimization in the reconfiguration overhead, is the sum of VM migrations and

control plane modifications as in (32). We use weight o to control the priority of reconfiguration

overhead, such that, minimizing VM migrations takes priority over minimizing control plane

modifications.

 :��E7 7o ∙ +�,�
=

��	
3

��	 + 7 7 7 7/1 − o0 ∙ �*��,�, + n��,�, �=
��	

��,�

 �	
3

��	
3

��	 F (32)

We also want to minimize the number of services hosts and achieve a load balanced network as in

(33). Mathematically, to model delay on an edge with the number of service hosts, we normalize

the delay, making this objective unit less [64]. We use weighted sum approach with weight p for

this multi-objective optimization. To this end, we push the load across multiple paths, to

minimize the infrastructure delay across all the edges ��. Fundamentally, the load-balanced

approach controls the delay on an edge from rising exponentially with load.

 :��E7 7p ∙ ℎ�,�
=

��	
3

��	 + 7/1 − p0 ∙
��k>
,�

|1|
��� F (33)

The minimization in infrastructure delay competes with the minimization of service

hosts. Trivially, the services could be installed across all RSUs so that every demand is met by

services hosted locally. However, this naïve approach would neither be efficient for “resource

constraint” RSU clouds nor cost effective for service providers. Therefore, there is a direct

tradeoff between number of service hosts and infrastructure delay. Furthermore, every

reconfiguration incurs VM migrations and control plane modifications to the network. Therefore,

57

we have to ensure that we are not superfluous with service hosts. The VM migrations are counted

as in Constraints (34) and (35).

 Y ∙ +�,� ≥ ℎ�,� − T�,� 									∀	1 ≤ : ≤), 1 ≤ (≤ � (34)

 ℎ�,� − T�,� + �1 − +�,�� ∙ Y ≥ 0								∀	1 ≤ : ≤), 1 ≤ (≤ � (35)

The control plane overhead is counted as the addition, *��,�,
, and deletion, n��,�,

, of control

plane rules counted as Constraints (36) through (41).

 ���,�, ≤ Y ∙ ���,�, 									∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ � (36)

 ���,�, ≥ ���,�, 									∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ � (37)

 Y ∙ *��,�, ≥ ���,�, − ���,�, 									∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ � (38)

���,�, − ���,�, + �1 − *��,�, � ∙ Y ≥ 0								
													∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ �

(39)

 Y ∙ n��,�, ≥ ���,�, − ���,�, 									∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ � (40)

���,�, − ���,�, + �1 − n��,�, � ∙ Y ≥ 0								
													∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ �

(41)

The minimization objective in Equation (33) is subject to the following constraints. The

demand should be met or exceeded by RSU service providers as in Constraints (42), (43) and

(44). These constraints also ensure that only those paths carry network load that are between RSU

service providers and RSU service consumers. Note, that RSU service providers can meet their

demands locally.

 7���,�,
�, ≥ #�,� 									∀	1 ≤ � ≤), 1 ≤ (≤ � (42)

58

 Y. ℎ�,� . ��,� ≥ 7���,�,
 									∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ (≤ � (43)

 ℎ�,� . ��,� ≤ 7���,�,
 									∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ (≤ � (44)

The load on a path is pushed to its edge and the delay on an edge is looked up in the

LUT, using indexing, as in Constraints (45), (46), (47) and (48). The lookup can only happen in

every load on the edge when the load matches the enumeration in the LUT.

 �� = 7 ���,�, ∙ ���,�,
�,�, ,� 									∀	1 ≤ � ≤ |�| (45)

 �� = h. ��									∀	1 ≤ � ≤ |�| (46)

 �� = 	 7 �. .�,�>
 @⁄
��� 								∀	1 ≤ � ≤ |�| (47)

 7 .�,�>
 @⁄
��� = 1								∀	1 ≤ � ≤ |�| (48)

 �� = 7 .�,� . k�,�>
 @⁄
��� 									∀	1 ≤ � ≤ |�| (49)

The delay on a path, ��,�, is bounded by infrastructure delay threshold g� for service k, as in

Constraints (50), (51), (52), (53) and (54).

 ��,�, = 7���,�, .��|1|
��� 									∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� (50)

��,�, . ��,� ≤ g� 									∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,�, 1 ≤ (≤ � (51)

��,�, ≤ ��,�, ∙ ℎ�,� 								∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ � (52)

59

��,�, ≤ ��,�, 								∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,�, 1 ≤ (≤ � (53)

��,�, ≥ ��,�, − ��,�, . �1 − ℎ�,��						
																																												∀	1 ≤ :,�,: ≠ � ≤), 1 ≤ 	 ≤ (�,� , 1 ≤ (≤ �

(54)

In Constraints (55) and (56), we bound the number of service hosts and ensure that every service

is hosted.

 7 ℎ�,� ≥ 1

3
��	 									∀	((55)

 7 ℎ�,�
3

��	 ≤ f� 									∀	((56)

We assume all RSUs have demands for all services k and are equally equipped to host

any service k. Also, we assume that RSUs are fully capable to meet any demand. Therefore, we

assume that the number of service hosts is directly proportional to financial cost of service

hosting. This removes subjectivity from our results.

Recall, at time ��	∀	�� ∈ ', the average network demand is ��� ∈ �, so, for every service

(, we generate demand at every RSU �, that is normally distributed with mean ��� and standard

deviation σ = 0.05 × ��� and record it in #�,�. As previously described, we used the topology in

Figure 19 and the LUT is generated for the edges in the topology.

There are various techniques for solving multi-objective linear and integer linear

programming problems. One common approach is the weighted sum, where weights are used to

control the priority of one objective with respect to another. Due to the intrinsically ordered

nature of our problem, we are able to solve the multi-objective RSU Cloud resource management

problem, by decomposing it, into a smaller dual objective ILP, Equation (33), to build a Pareto

Optimal Frontier (POF) of configurations.

60

Next, we use the lp_solve [50] Linear Programming engine to partially solve our

objective, by minimizing the number of service hosts and infrastructure delay ∑ ∑ p ∙=��	3��	
ℎ�,� + ∑ /1 − p0 �
;�
,
|1|��� , subject to constraints (42) through (56), with p = 0. For a given

number of service host threshold, f� ,	the optimization will yield an optimal solution in the Pareto

Optimal Frontier. We populate the Pareto Optimal Frontier	Ψ��, by adding optimal solution ����
for each f�, such that, 1 ≤ f� ≤) and f� ∈ ℤ�. We start at f� =) and continue until there is

no infeasible solution. At the end, we will have ����qΨ�� , ∀�, f� at time ��	and average network

demand is ���.
Initially, we assume a fresh network, therefore no previous configurations exist, and thus

we select Pareto Optimal with the minimum number of service hosts, as the initial configuration

at �� for demand ���. However, ∀	�� > 	 �� there will be reconfigurations costs between Ψ�� and

Ψ
���� . We will select the Pareto Optimal D����| min ,V��� − V����- , ∀�,���� ∈ Ψ

��r, such that, first

it minimizes the difference in VM migrations, followed by control plane overhead,

D����| min , �̂�� − ^����- , ∀�,���� ∈ Ψ
��r, by controlling the weights in Equation (32).

V. RSU Cloud Resource Management–Heuristic

We design and implement a novel heuristic for the RSU cloud resource management

problem. We will show that our heuristic efficiently yields suboptimal results, by always

operating on the Pareto Optimal Frontier of non-dominated solutions. Our heuristic can be

decomposed into two components, (1) generate POF, and (2) prune POF to find the configuration

that minimizes VM migrations, followed by control plane overhead. It is important to note that

for a given average demand ���, we use the same demand (bn,k) for each RSU as in the ILP. This

ensures accurate comparison of the results from ILP optimization and our heuristic.

61

To generate POF, for each service (∈ �, we begin by randomly selecting N/2 nodes

to be the RSUs hosting services and meet their demands locally. For all, the remaining RSUs, we

randomly select a RSU n ∈V and satisfy its demand by iteratively, selecting a service host for a

unit of its demand, such that, every unit of demand receives the current best infrastructure delay.

This uniquely enables us to distribute load across the paths in the networks and achieve a load-

balanced network. We repeat this, until all the RSUs demands have been satisfied. At the end, we

have a configuration. We repeat this, to generate K configurations and select the

configuration	���� ∈ Ψ
��, that minimizes infrastructure delay, to be included in the POF. For large

values of K, we cover a large range of permutations, to increase the probability of finding a

configuration that approximates the minimum infrastructure delay for service hosts.

Next, we reduce the number of service hosts by half, and repeat the process until the

POF, Ψ��, has been filled with all the valid configurations for average demand ��� at ��. The POF

generation takes s(X���)), making it scalable. Now, we have can generate Ψ�� for ���, ∀�� ∈ '

and select the configuration that trivially minimizes the number of VM migrations

〈����| min ,V��� − 	V����- , ∀	���� =	< V��� , �̂�� ,_��� >, ���� ∈ Ψ
��〉. We break a tie between

configurations, be selecting the configuration with minimum VM migrations, followed by control

plane modifications.

However, there is a short sightedness in this heuristic. Though, we minimize the

reconfiguration overhead required to meet the change in demand from ���	 to �� , our heuristic

applies a myopic approach to configuration selection. Consequentially, a configuration that

minimizes the reconfiguration overhead from ���	 to ��, may not be the best configuration over

the long term for the network. To overcome this, we employ reinforcement learning to select

configurations that yield the optimal number of reconfigurations over the long term.

62

VI. Markov Decision Process

Thus far, the heuristic we use to select a configuration simply minimizes the number of

VM migrations. This heuristic is shortsighted and seeks immediate gains, but lacks the long term

knowledge to make an educated decision about the configuration to be selected such that a long

term reduction in the number of VM migrations can be achieved. The configuration selection

decision problem lends itself perfectly to the Markov Decision Process (MDP), where the

outcome is partially random and controlled by a decision maker.

The MDP is a discrete time stochastic process, defined by a quad-tuple < �,",t,W >,

where � is the set of states and " is set of actions. The transition from state : to � is based on the

action �, defined by the probability t(:,�,�), with corresponding reward W(:,�,�). The goal

of the MDP is to find a “policy” that dictates the action to take in a state that maximizes the

expected reward.

We design the configuration selection process as a MDP, in the following manner. First,

every configuration from the POF ���� ∈ Ψ
�� from the heuristic, across all ��� for all �� ∈ ' are

enumerated as a list of states in the MDP. Next, a set of actions are defined. In our scenario, the

number of RSUs) = 10, therefore, the heuristic finds configurations for 5, 3, and 2, service

hosts. Then, the actions are defined as " = {�	,�
,�.} where the configuration with 2, 3 and 5

installations is selected, respectively. In MDP, we define state transitions using a probability

matrix P, where we can only transition between a state, if it is a configuration in the next time

instance, that is, t/:,�,�0, ∀: ∈ Ψ
���� ,� ∈ Ψ

�� ,� ∈ A. Therefore, the configurations are

chronologically ordered. The reward matrix W is populated as the complement of the VM

migration costs. Therefore, the reward W/:, �,�0 is the difference between), the maximum

number of VM migrations, and number of VM migrations, ,V��� − 	V�����- , ∀	���� =	<
V��� , �̂�� ,_��� >, ���� ∈ Ψ

�� ,������ =	< V����� , �̂���� ,_����� >,������ ∈ Ψ
���� 	 and when moving from

63

configuration : to � on � is W/:,�,�0 =) − 	 ,V��� − 	V�����- , ∀	���� =	< V��� , �̂�� ,_��� >, ���� ∈

Ψ
�� ,������ =	< V����� , �̂���� ,_����� >,������ ∈ Ψ

����. This is delineated in Figure 20, below.

Figure 20. MDP for minimizing VM migrations.

Markov Decision Process can be solved using various techniques, such as, Q-learning,

policy iteration, value iteration, linear programming, etc. We are interested in policy iteration to

get the optimal policy. The optimal policy is one that has not changed in two successive iterations

and maximizes the reward. The policy will dictate the action to take in a state. For this purpose,

we use the MDP toolbox for MATLAB designed and developed by Chadès et al. [65]. The

toolbox contains various techniques for solving MDP, including policy iteration. We use this

toolbox with its policy iteration technique to generate a policy which will maximize reward.

Recall, our reward is the complement of the number of VM migrations therefore a policy

that maximizes the reward value will minimize the number of VM migrations in the long term.

This MDP derived policy for configuration selection will ensure that we select configurations that

minimize the VM migrations over the long term, even though it may incur a higher VM migration

cost at a time ��, over the long run, it will incur the optimally minimal number of VM migrations.

�

�����

	

�

,
�,�
� = 	1

�

,
�,�
� = 	� − ���

�� − 	�

�����
�(

,
�,�) 	= 	0

�(

,
�,�) 	= 	0

�(

,
�,��) 	= 	0

�(

,
�,��) 	= 	0

�(
�,
�,�
) 	= 	0

�(
�,
�,�
) 	= 	0

�(
�,
�,�) 	= 	1

�

�,
�,�	� = 	� − ���

���� − 	��

���
�(
�,
�,��) 	= 	0

�(
�,
�,��) 	= 	0

���

�

�����

�

�

�
5	
������

i�
���������
,

������ = �

2	
������

i�
���������
,

������ = ��

3	
������

i�
���������
,

������ = �	

64

CHAPTER 6

RESULTS–RSU CLOUD RESOURCE MANAGEMENT

I. Scenario–Topology and Analysis Setup

In this section, we will present and discuss our results. We setup the topology depicted in

Figure 19 for evaluating RSU Cloud resource management, with services �	 = 	1 and demands

for these services at all the RSUs. We assume fast Ethernet connections between the RSUs, such

that bandwidth capacity of each edge �� 	= 	100A#��, ∀1 ≤ � ≤ |�| and the LUT interval

h = 1, so that we have a fine grain LUT. We run multiple iterations for the same network

configuration. Recall, a network configuration, includes RSU host nodes, data forwarding rules

and the loads carried on paths between the producer and consumer, for every service (with given

demand	��� ∈ �. In our scenario, for a period T, the set of average demands �	 = 	 $50A#��,

60A#��, 80A#��, 70A#��, 90A#��, 50A#��, 70A#��%. In every iteration, we generate a

demand at every RSU �, such that that is normally distributed with mean ��� and standard

deviation σ = 0.05 × ��� and record it in #�,�. We run 5 iterations to get the confidence intervals.

We compare our results with a purist approach. In the given problem, there are two

possible purist approaches (1) Cost optimization, which optimally hosts services to meet network

demands, as illustrated in Figure 21, irrespective to the infrastructure delay incurred by the

services, and (2) Delay optimization, which optimally hosts services to minimize infrastructure

delay, irrespective to the cost of hosting services. We employ a joint optimization that minimizes

number of service hosts and infrastructure delay. Trivially, Delay optimization, would maximally

deploy hosts, so that services are meet locally, incurring no infrastructure delay. Moreover, this

would not be viable for RSU Cloud service providers. Therefore, we do not compare our Joint

Optimization approach to Delay optimization.

65

II. Results and Discussion

The benefits of our Joint Optimization are presented in Figure 24, with improvements in

orders of magnitude in infrastructure delay when compared with Cost Optimization. The

reduction in cumulative VM migrations and control plane overhead is attributed to the fact that a

purist approach, trying to only minimize the number of service hosts, is oblivious to the

corresponding infrastructure delay. For example, in a purist approach, installing services in nodes

:, � is the same as installing services in nodes �, � without regard to the infrastructure delay.

Figure 21. Cost optimization optimally hosts services.

Figure 22. Joint optimization consistently incurs lower VM migrations.

0

1

2

3

4

5

50 60 80 70 90 50 70

A
v
er
ag
e
N
u
m
b
er
 o
f
In
st
al
la
ti
o
n
s

Average Load (Mbps)

Joint Optimization Cost Optimization

0

1

2

3

4

5

6

7

8

50 60 80 70 90 50 70

C
u
m
m
u
la
ti
v
e
A
v
er
ag
e
V
M
 M

ig
ra
ti
o
n
s

Average Load (Mbps)

Joint Optimization Cost Optimization

66

Figure 23. Cumulatively, Joint optimization incurs lower control plane modification

with average demand ���
 over time ��.

Figure 24. Joint Optimization has magnitudes lower infrastructure delay,

over changing average demand ���
.

 Figure 25 illustrates that each ���� ∈ Ψ
�� is a Pareto Optimal configuration that minimizes

infrastructure delay and number of service hosts. Essentially, the heuristic selecting the

configuration that minimizes VM migrations is always operating on the Pareto Optimal Frontier.

Therefore, the final configuration selected is also an optimal configuration of the number of

service hosts and infrastructure delay.

0

20

40

60

80

100

120

140

160

180

200

50 60 80 70 90 50 70

C
u
m
m
u
la
ti
v
e
A
v
er
ag
e
C
o
n
tr
o
l
P
la
n
e

M
o
d
if
ic
at
io
n
s

Average Load (Mbps)

Joint Optimization Cost Optimization

1

10

100

1000

50 60 80 70 90 50 70

L
o
g
 A
v
er
ag
e
S
er
v
ic
e
D
el
ay

Average Load (Mbps)

Cost Optimization Joint Optimization

67

Figure 25. Every �

�

��
∈ Ψ

�� is a Pareto Optimal configuration with respect

 to number of service hosts and infrastructure delay.

 In accordance with prediction intervals [66], as the number of replications, K, increases,

our results show that the configurations are improving by minimizing VM Migrations Figure 26

and control plane overhead Figure 27. Due to the stochastic nature of the heuristic, Figure 28 and

Figure 29 illustrate unpredictability; however, the fundamental insight is the improvement in

confidence intervals as the number of replications increase to K. Therefore, we use the heuristic

with K=100, as the best results to compare with Joint and Cost Optimization.

Figure 26. It is evident that higher number of replications K, yields better results.

0

10

20

30

40

50

60

70

10 50 100
A
v
er
ag
e
S
er
v
ic
e
D
el
ay
 (
m
s)

Replications

2 Service Installations 3 Service Installations

5 Service Installations

0

1

2

3

4

5

6

7

8

9

10

50 60 80 70 90 50 70C
u
m
m
u
la
ti
v
e
A
v
er
ag
e
V
M
 M

ig
ra
ti
o
n
s

Average Load (Mbps)

k=10 k=50 k=100

68

Figure 27. It is evident that higher number of replications K, yields better results w.r.t.

cumulative average number of control plane modifications.

Figure 28. An increase in K the number of replications reduce margin of error,

with respect to number of service hosts.

1

10

100

1000

50 60 80 70 90 50 70

L
o
g
 C
u
m
m
u
la
ti
v
e
A
v
er
ag
e
C
o
n
tr
o
l
P
la
n
e

M
o
d
if
ic
at
io
n
s

Average Load (Mbps)

k=10 k=50 k=100

0

1

2

3

4

5

6

50 60 80 70 90 50 70

A
v
er
ag
e
N
u
m
b
er
 o
f
In
st
al
la
ti
o
n
s

Average Load (Mbps)

k=10 k=50 k=100

69

Figure 29. An increase in the number of replications reduce margin of error in the results,

with respect to infrastructure delay.

 Recall, we ran our Joint Optimization and Heuristic for 5 iterations. However, to ensure

fair comparison of the heuristic and optimization, we consider the results from a single iteration,

where each RSU n, has the same snapshot of demand #�,�, for service k. Figure 32 illustrates how

closely the Joint Optimization and Heuristic with K=100 perform when compared to Cost

Optimization for the number of service hosts. However, the infrastructure delay in Cost

Optimization is higher in magnitudes, when compared Heuristic with K=100 and Joint

Optimization Figure 33. In Figure 33, Heuristic with K=100 outperforms Joint Optimization only

with an increase in the number of services hosts, as illustrated in Figure 32.

 Figure 30 depicts the significant improvement in the number of VM migrations with

Heuristic K=100 and Joint Optimization. However, Figure 31, illustrates that Heuristic with

K=100, performs the worst with respect to control plane modifications. This is because our load-

balanced Heuristic distributes single units of load across paths until the demands are met. Each

path accounts for numerous control plane modifications, as seen, in the high cost of control plane

modifications. Our approach to increase the utilization of the number of paths between a provider

and a consumer reduces bottlenecks and potential starvation of other RSUs, in contrast to the

naïve approach of selecting the shortest path and fully utilizing the capacity of a path(s).

-50

-30

-10

10

30

50

70

90

110

130

150

50 60 80 70 90 50 70
A
v
er
ag
e
S
er
v
ic
e
D
el
ay
 (
m
s)

Average Load (Mbps)

k=10 k=50 k=100

70

Figure 30. Heuristic with K=100 and Optimization outperform purist Cost Optimization.

Figure 31. Heuristic incurs highest control plane modifications due to fine grain load balancing.

Figure 32. Purist Cost and Joint Optimization outperform Heuristic with K=100.

0

1

2

3

4

5

6

7

8

50 60 80 70 90 50 70
C
u
m
m
u
la
ti
v
e
V
M
 M

ig
ra
ti
o
n
s

Average Load (Mbps)

Joint Optimization Cost Optimization

Heuristic k=100

0

50

100

150

200

250

300

50 60 80 70 90 50 70

C
u
m
m
u
la
ti
v
e
C
o
n
tr
o
l
P
la
n
e
M
o
d
if
ic
at
io
n
s

Average Load (Mbps)

Joint Optimization Cost Optimization

Heuristic k=100

0

0.5

1

1.5

2

2.5

3

3.5

50 60 80 70 90 50 70

N
u
m
b
er
 o
f
In
st
al
la
ti
o
n
s

Average Load (Mbps)

Joint Optimization Cost Optimization

Heuristic k=100

71

Figure 33. Heuristic with K=100 yields suboptimal infrastructure delay. Heuristic with K=100

outperforms Joint Optimization with an increase in the number of service hosts.

This is evident from Figure 34, Figure 35 and Figure 36 below. In different scenarios of

the same problem, of configuration selection, we see that the configurations chosen by the

heuristic alone performs as well as the reinforcement learning MDP. However, it is evident from

Figure 36 that MDP can envision the long term benefit of choosing a higher VM migration cost at

an average load 80 Mbps and incurs lower cumulative VM migrations over the long run. This is a

novel contribution that enables configuration selections that minimize the VM migrations over

the long term for service providers hosting non-safety services on the RSU Cloud.

Figure 34. VM Migrations comparison for pure heuristic and heuristic followed by

MDP, when starting with a 2 installation configuration.

1

10

100

1000

50 60 80 70 90 50 70
L
o
g
 A
v
er
ag
e
S
er
v
ic
e
D
el
ay

Average Load (Mbps)

Joint Optimization Cost Optimization

Heuristic k=100

0

1

2

3

4

5

50 60 80 70 90 50 70

C
u
m
m
u
la
ti
v
e
V
M
 M

ig
ra
ti
o
n
s

Average Load (Mbps)

Heuristic k=100, Start @ 2 Installations

Heuristic + MDP, Start @ 2 Installations

72

Figure 35. VM Migrations comparison for pure heuristic and heuristic followed by

MDP, when starting with a 3 installation configuration.

Figure 36. VM Migrations comparison for pure heuristic and heuristic followed by

MDP, when starting with a 5 installation configuration.

0

1

2

3

4

50 60 80 70 90 50 70
C
u
m
m
u
la
ti
v
e
V
M
 M

ig
ra
ti
o
n
s

Average Load (Mbps)

Heuristic k=100, Starting @ 3 Installations

Heuritic + MDP, Starting @ 3 Installations

0

1

2

3

4

5

6

50 60 80 70 90 50 70

C
u
m
m
u
la
ti
v
e
V
M
 M

ig
ra
ti
o
n
s

Average Load (Mbps)

Heuristic k=100, Starting @ 5 Installations

Heuritic + MDP, Starting @ 5 Installations

73

CHAPTER 7

CONCLUSION–ENHANCED VEHICULAR APPLICATIONS

I. Opportunistic Service Differentiation for Safety Applications

We proposed a novel Opportunistic Service Differentiation (OSD) scheme to enhance

WAVE. The proposed OSD is a traffic distribution mechanism that promotes service

differentiation, while accounting for vehicular and communication network parameters. In this

research, we emphasized the need for a context severity metric that can accurately depict the

urgency of vehicle traffic. We proposed the use of a fuzzy inference system to deduce the severity

of a vehicle, in the context to its surroundings, such as other vehicles and real-time road

conditions. We use this context severity metric to provide service differentiation in WAVE, by

using our OSD traffic distribution heuristic.

Our traffic distribution mechanism has multiple benefits over the classical WAVE. First,

it assigns vehicle traffic to access categories (ACs) with respect to context severity. It provides

higher QoS with respect to delay, for vehicles with higher context severity. Second, it apportions

the ACs to vehicle traffic based on the network load, such that, it can guarantee delay bounds. For

example, users of the OSD scheme can specify a delay bound for traffic in AC4, the OSD traffic

distribution heuristic will utilize this AC, while ensuring traffic in AC4 meets the delay bound.

This is a significant improvement over classical WAVE and its unbounded delay.

 We also modeled the OSD traffic distribution mechanism as a linear programming

problem to validate our claims. We derived lemmas and a theorem that form the basis for our

traffic distribution heuristic. Our analytical comparisons show the improvement in QoS with the

OSD enhanced WAVE and the suboptimal performance of the OSD traffic distribution heuristic.

We also simulate a VANET with classical and OSD heuristic enhanced WAVE. The results show

that when network traffic is opportunistically distributed amongst access categories, with respect

74

to context severity, it improves the QoS with respect to delay. This traffic distribution mechanism

increases the utilization of ACs, while meeting upper bounds on AC delay.

II. RSU Cloud Resource Management for Non-Safety Applications

In this research, we propose a RSU Cloud to offer high QoS to non-safety applications in

ITS. They will make an integral component for vehicular clouds and ITS non-safety applications.

RSU Clouds consist of traditional RSUs and specialized RSUs containing micro-datacenters. The

RSU Cloud is implemented as a Software Defined Network (SDN), which can host services to

meet in-vehicle demands. In the event of inherent dynamic demands, RSU Clouds can be

reconfigured to optimally meet the service demands. We study the effects of reconfiguration on

the SDN, by implementing a SDN in Mininet. For real-world reconfiguration overhead analysis,

we implemented a stochastic switching for multipath in OpenFlow-enabled SDN. We have made

our contribution for implementing stochastic switching in Open vSwitch available online [58].

We formally define reconfiguration overhead, VM migrations and control plane modifications

and instigate the need for efficient RSU Cloud resource management.

Our novel contribution is the architecture of RSU Cloud Resource Management (CRM)

and RSU micro-datacenter. We model the CRM as a multi-objective optimization problem, for

minimizing VM migrations, control plane overhead, number of service hosts and infrastructure

delay. We designed a unique approach to solve the multi-objective so that we are continually

operating on the Pareto Optimal Frontier. We selected an optimal configuration, such that, the

VM migrations are minimized over time. We used reinforcement learning to select the

configuration that minimizes VM migrations over the long run.

We illustrated how RSU Cloud resource management selects configurations that improve

the infrastructure delay in orders of magnitude, with optimal number of service hosts. Over time

and in face of dynamic loads, the configurations are selected as part of a Pareto Optimal Frontier,

of non-dominated solutions. Any Pareto Optimal configuration is a candidate that can optimally,

75

with respect to infrastructure delay and number of service hosts, minimize VM migrations. To

select the final configuration, we used our heuristic and reinforcement learning, to show that

though some configurations may seem to immediately yield minimum VM migrations, over the

long term, we may incur higher VM migrations.

III. Future Work

Our future work entails implementing the OSD traffic distribution mechanism and the

OSD service for extensive simulation and real-time performance analysis with respect to QoS,

heavy and light load and density of vehicles. Furthermore, a scrutiny of the scalability and latency

in OSD traffic distribution mechanism would enable a detailed analysis for deployment of the

OSD scheme.

In RSU Cloud resource management, our future work includes minimizing control plane

modifications, an improved heuristic that incurs less control plane modifications and

experimentation in Global Environment for Network Innovations (GENI) testbed.

In future, we will also explore architecture of RSU Cloud in support of OSD and evaluate

its performance for vehicular applications. Traditional distributed systems problems, such as,

consistent load snapshot problem, will be studies and addressed.

76

REFERENCES

[1] R. Uzcategui and G. Acosta-Marum, "WAVE: A Tutorial," IEEE Communications

Magazine, vol. 47, no. 5, pp. 126-133, May 2009.

[2] J. Mittag, F. Schmidt-Eisenlohr, M. Killat, M. Torrent-Moreno and H. Hartenstein, "MAC

Layer and Scalability ASpects of Vehicular Communication Networks," in VANET:

Vehicular Applications and Inter-Networking Technologies, Hoboken, Wiley, 2009, pp. 219-

273.

[3] IEEE Std 1609.4-2010(Revision of IEEE 1609.4-2006), "IEEE Standard for Wireless Access

in Vehicular Environments (WAVE) -- Multi-channel Operation," 2011.

[4] Y. Morgan, "Managing DSRC and WAVE standards Operations in a V2V Scenario,"

International Journal of Vehicular Technology, vol. 2010, no. Article ID 797405, p. 18,

2010.

[5] V. Harigovindan, A. Babu and L. Jacob, "Ensuring fair access in IEEE 8002.11p-based

vehicle-to-infrastructure," EURASIP Journal on Wireless Communications and Networking,

vol. 2012, no. 168, 2012.

[6] R. Chen, D. Ma and A. Regan, "TARI: Meeting Delay Requirements in VANETs with

Efficient Authentication and Revocation," in International Conference on Wireless Access in

Vehicular Environments, 2009.

[7] M. Amadeo, C. Campolo and A. Molinaro, "Enhancing IEEE 802.11p/WAVE to provide

infotainment applications in VANETs," Ad Hoc Networks, vol. 10, no. 2, pp. 253-269, 2012.

[8] M. A. Salahuddin, A. Al-Fuqaha and M. Guizani, "Exploiting Context Severity to Achieve

Opportunistic Service Differentiation in Vehicular Ad hoc Networks," IEEE Transactions on

Vehicular Technology, 2013.

[9] M. Amadeo, C. Campolo, A. Molinaro and G. Ruggeri, "A WAVE-compliant MAC Protocol

to Support Vehicle-to-Infrastructure Non Safety Applications," in IEEE International

Conference on Communications Workshops (ICC'09), Dresden, Germany, 2009.

[10] C. Chrysostomou, C. Djouvas and L. Lambrinos, "Dynamically adjusting the min-max

contention window for providing quality of service in vehicular networks," in 11th Annual

Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net'12), Ayia Napa, Cyprus, 2012.

[11] E. Lee, E.-K. Lee and M. Gerla, "Vehicular Cloud Networking: Architecture and Design

Principles," IEEE Communications Magazine, February 2014.

[12] R. Hussain, J. Son, H. Eun, S. Kim and H. Oh, "Rethinking Vehicular Communications:

Merging VANET with cloud computing," in IEEE 4th International Conference on Cloud

Computing Technology and Science (CloudCom), Taipei, 2012.

[13] K. Mershad and H. Artail, "Finding a STAR in a Vehicular Cloud," IEEE Intelligent

Transportation Systems Magazine, vol. 5, no. 2, pp. 55-68, 2013.

[14] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog computing and its role in the internet of

things," in In Proceedings of the first edition of the MCC workshop on Mobile cloud

77

computing (MCC '12), Helsinki, 2012.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker and J. Turner, "OpenFlow: enabling innovation in campus networks," ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

[16] B. Lantz, B. Heller and N. McKeown, "A Network in a Laptop: Rapid Prototyping for

Software-Defined Networks," in 9th ACM Workshop on Hot Topics in Networks, Monterey,

2010.

[17] Y. Zang, L. Stibor, B. Walke, H. Reumerman and A. Barroso, "A Novel MAC Protocol for

Throughput Sensitive Applications in Vehicular Environments," in IEEE Vehicular

Technology Conference (VTC'07), Dublin, Ireland, 2007.

[18] Y. Qian, K. Lu and N. Moayeri, "A Secure VANET MAC Protocol For DSRC

Applications," in IEEE Global Telecommunications Conference (GLOBECOM'08), New

Orleans, 2008.

[19] M. Nekovee, "Quantify Performance Requirements of Vehicle-to-Vehicle Communication

Protocols for Rear-End Collision Avoidance," in IEEE Vehicular Technology Conference

(VTC'09), Anchorage, Alaska, 2009.

[20] J. Vardakas, I. Papapanagiotou, M. Logothetis and S. Kotsopoulos, "On the End-to-End

Delay Analysis of the IEEE 802.11 Distributed Coordination Function," in Internet

Monitoring and Protection , San Jose, 2007.

[21] H. Wu, X. Wang, Q. Zhang and X. Shen, "IEEE 802.11e Enhanced Distributed Channel

Access (EDCA) Throughput Analysis," in IEEE International Conference on

Communications (ICC'06), Istanbul, 2006.

[22] C. Huang and W. Liao, "Throughput and Delay Performance of IEEE 802.11e Enhanced

Distributed Channel Access (EDCA) Under Saturation Condition," IEEE Transactions on

Wireless Communications , vol. 6, no. 1, pp. 136-145, 2007.

[23] S. Malik, M. Shah, S. Khan, M. Jahanzeb, U. Farooq and M. Khan, "Performance Evaluation

of IEEE 802.11p MAC Protocol for VANETs," Australian Journal of Basic and Applied

Sciences, vol. 4, no. 8, pp. 4089-4098, 2010.

[24] S. Eichler, "Performance Evaluation of the IEEE 802.11p WAVE Communication

Standard," in IEEE Vehicular Technology Conference (VTC), Baltimore, 2007.

[25] N. Ferreira and J. Fonseca, "Performance Evaluation of IEEE 802.11p MAC Protocol for

VANETs," in IEEE Symposium on Communications and Vehicular TEchnology in the

Benelux (SCVT'11), Ghent, 2011.

[26] Y. Wang, A. Ahmed, B. Krishnamachari and K. Psounis, "IEEE 802.11p Performance

Evaluation and Protocol Enhancement," in IEEE International Conference on Vehicular

Electronics and Safety (ICVES'08), Columbus, Ohio, 2008.

[27] L. Zhou, Y. Zhang, K. Song, W. Jing and A. Vailakos, "Distributed Media-Service Scheme

for P2P-based Vehicular Networks," IEEE Transactions on Vehicular Technology, vol. 60,

no. 2, pp. 692-703, 2011.

[28] M. Di Felice, A. Ghandour, H. Artail and L. Bononi, "Enhancing the performance of safety

applications in IEEE 802.11p/WAVE Vehicular Networks,," in IEEE International

78

Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM'12), San

Francisco, 2012.

[29] M. Amadeo, C. Campolo and A. Molinaro, "Enhancing IEEE 802.11p/WAVE to provide

infotainment applications in VANETs," Ad Hoc Networks, vol. 10, no. 2, pp. 253-269, 2012.

[30] M. Abuelela and S. Olariu, "Taking VANET to the clouds," in In Proceedings of the 8th

International Conference on Advances in Mobile Computing and Multimedia (MoMM '10),

Paris, 2010.

[31] Y. Qin, D. Huang and X. Zhang, "VehiCloud: Cloud Computing Facilitating Routing in

Vehicular Networks," in IEEE 11th International Conference on Trust, Security and Privacy

in Computing and Communications (TrustCom), Liverpool, 2012 .

[32] X. Meng, V. Pappas and L. Zhang, "Improving the Scalability of Data Center Networks with

Traffic-aware Virtual Machine Placement," in InfoCom, San Diego, CA, 2010.

[33] D. Wu, J. He, Y. Zeng, X. Hei and Y. Wen, "Towards Optimal Deployment of Cloud-

Assisted Video Distribution Services," IEEE Transactions on Circuits and Systems for Video

Technology, 2013.

[34] J. Jiang, T. Lan, S. Ha, M. Chen and M. Chiang, "Joint VM placement and routing for data

center traffic engineering," in IEEE 2012 InfoCom, Orlando, FL, 2012.

[35] F. Chang, R. Viswanathan and T. Wood, "Placement in clouds for application-level latency

requirements," in IEEE International Conference on Cloud Computing , Honolulu4, 2012.

[36] K. Tran and N. Agoulmine, "Adaptive and Cost-effective service placement," in IEEE

GlobeCom, Houston, TX, 2011.

[37] A. Sailer, M. Head, A. Kochut and H. Shaikh, "Graph-based Cloud Service Placement," in

2010 IEEE International Conference on Services COmputing, Miami, FL, 2010.

[38] S. Anja and W. Dargie, "Does Live Migration of Virtual Machines Cost Energy?,," in IEEE

27th International Conference on Advanced Information Networking and Applications

(AINA), Barcelona, 2013.

[39] A. Tootoonchian and Y. Ganjali, "HyperFlow: a distributed control plane for OpenFlow," in

In Proceedings of the 2010 internet network management conference on Research on

enterprise networking (INM/WREN'10), San Jose, 2010.

[40] M. Elbes, A. Al-Fuqaha, M. Guizani, A. Rayes and J. Oh, "A New Hierarchical and

Adaptive Protocol for Minimum-Delay V2V Communication," in IEEE Global

Telecommunications Conference (GLOBECOM'09), Honolulu, 2009.

[41] X. Chen, H. Refai and X. Ma, "A Quantitative Approach to Evaluate DSRC Highway Inter-

Vehicle Safety Communication," in IEEE Global Telecommunications Conference,

Washington, DC, 2007.

[42] J. Zhou and K. Mitchell, "A scalable delay based analytical framework for CSMA/CA

wireless mesh networks," Computer Networks, vol. 54, no. 2, pp. 304-318, 2010.

[43] Y. Yao, L. Rao, X. Liu and X. Zhou, "Delay analysis and study of IEEE 802.11p based

DSRC safety communication in a highway environment," in IEEE INFOCOM, Turin, Italy,

2013.

[44] C. Han, M. Dianati, R. Tafazolli, R. Kernchen and X. Shen, "Analytical Study of the IEEE

79

802.11p MAC Sublayer in Vehicular Networks," IEEE Transactions on Intelligent

Transportation Systems , vol. 13, no. 2, pp. 873-886, 2012.

[45] I. C. Society, "IEEE Std. for Information technology-Telecommunications and information

exchange between systems-Local and metropolitan area networks-Specific requirements.

Part 11: Wireless LAN MAC and PHY Specifications. Amendment 6: Wireless Access in

Vehicular Enviro," IEEE Std 802.11p 2010, New York, 2010.

[46] M. Boban, G. Misek and O. K. Tonguz, "What is the Best Achievable QoS for Unicast

Routing in VANETs?," in IEEE GLOBECOM Workshops, New Orleans, 2008.

[47] The CAMP Vehicle Safety Communications Consortium, "Vehicle Safety Communications

Project - Task 3 Final Report - Identify Intelligent Vehicle Safety Applications Enabled by

DSRC," National Highway Traffic Safety Administration, U.S. Department of

Transportation, Washington D.C., 2005.

[48] Q. Wang, S. Leng, H. Fu and Y. Zhang, "An IEEE 802.11p-Based Multichannel MAC

Scheme With Channel Coordination for Vehicular Ad Hoc Networks," IEEE Transactions

on Intelligent Transportation Systems, vol. 13, no. 2, pp. 449-458, 2012.

[49] C. Campolo and A. Molinaro, "DREAM: IEEE 802.11p/WAVE extended access mode in

drive-thru vehicular scenarios," in IEEE International Conference on Communications

(ICC), Ottawa, 2012.

[50] M. Berkelaar, K. Eikland and P. Notebaert, "Open source (Mixed-Integer) Linear

Programming system (lp_solve)," GNU LGPL (Lesser General Public License), 2004.

[51] "EstiNet 7.0 Network Simulator and Emulator," EstiNet Technologies, 2012. [Online].

Available: http://www.estinet.com/products.php?lv1=1&sn=2. [Accessed 26 February

2013].

[52] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Yang, C. C. Chiou and C. C. Lin,

"The Design and Implementation of the NCTUns 1.0 Network Simulator," Computer

Networks, vol. 42, no. 2, pp. 175-197, 2003.

[53] F. J. Martinez, C. K. Toh, J. Cano, C. T. Calafate and P. Manzoni, "A survey and

comparative study of simulators for vehicular ad hoc networks (VANETs)," Wireless

Communications and Mobile Computing, vol. 11, no. 7, pp. 813-828, 2011.

[54] S. Y. Wang and H. T. Kung, "A simple methodology for constructing extensible and high-

fidelity TCP/IP network simulators," in INFOCOM, New York, 1999.

[55] M. Bari, A. Roy, S. Chowdhury, Q. Zhang, M. Zhani, R. Ahmed and R. Boutaba, "Dynamic

Controller Provisioning in Software Defined Networks," in 9th International Conference on

Network and Service Management (CNSM), Zurich, 2013.

[56] T. E. a. O. Office, "Florida Department of Transportation," Florida Department of

Transportation, [Online]. Available:

http://www.dot.state.fl.us/trafficoperations/its/projects_deploy/cv/connected_vehicles-

wc.shtm. [Accessed 18 April 2014].

[57] B. Pfaff, J. Pettit, T. Koponen, K. Amidon , M. Casado and S. Shenker, "Extending

Networking into the Virtualization Layer," in 8th ACM Workshop on Hot Topics inNetworks,

New York, 2009.

80

[58] M. Salahuddin, "Stochastic Switching using Open vSwitch in Mininet," GitHub, 18 February

2014. [Online]. Available: https://github.com/saeenali/openvswitch/wiki/Stochastic-

Switching-using-Open-vSwitch-in-Mininet. [Accessed 18 April 2014].

[59] A. Anttonen and A. Mammela, "Interruption Probability of Wireless Video Streaming With

Limited Video Lengths," IEEE Transactions on Multimedia, 2013.

[60] T. Luan, L. Cai and Xuemin Shen, "Impact of Network Dynamics on User's Video Quality:

Analytical Framework and QoS Provision," IEEE Transactions on Multimedia, vol. 12, no.

1, pp. 64-78, 2010.

[61] G. Curry and R. Feldman, Manufacturing Systems Modeling and Analysis, 2nd Edition,

New York: Springer Heidelberg Dordrecht, 2011.

[62] "Latitude and Longitude of a Point," iTouchMap.com, 2014. [Online]. Available:

http://itouchmap.com/latlong.html. [Accessed 19 April 2014].

[63] Boulter, "Coordinate Distance Calculator," [Online]. Available:

http://boulter.com/gps/distance/. [Accessed 18 April 2014].

[64] R. Marler and J. Arora, "Survey of multi-objective optimization methods for engineering,"

Structural and Multidisciplinary Optimization, vol. 26, no. 6, pp. 369-395, 2004.

[65] I. Chadès, M.-J. Cros, F. Garcia and R. Sabbadin, Markov Decision Process (MDP) Toolbox,

INRA, 2009.

[66] J. Banks, J. Carson, B. Nelson and D. Nicol, Discrete-Event System Simulation (4th

Edition), Prentice Hall, 2004.

[67] Y. Zhang, L. Stibor, B. Walke, H. Reumerman and A. Barroso, "A Novel MAC Protocol for

Throughput Sensitive Applications in Vehicular Environments," in IEEE Vehicular

Technology Conference (VTC'07), Dublin, 2007.

[68] N. Ferreira and J. Fonseca, "On the End-to-End Delay Analysis for an IEEE 802.11P/WAVE

Protocol," in IEEE Symposium on Communications and Vehicular Technology, Ghent, 2011.

81

APPENDICES

82

APPENDIX A

MININET TOPOLOGY

83

Our Mininet Topology with IP and MAC addresses for OpenFlow enabled SDN.

RSU

Micro-datacenter

84

APPENDIX B

ENABLING STOCHASTIC SWITCHING IN OPEN VSWITCH

85

Changes made in <openvswitch-install-dir>/ofproto/ofproto-dpif-xlate.c to support

stochastic switching in Open vSwitch 2.1.

Add headers:

#include <stdlib.h>

#include <time.h>

Add global variable:

static bool is_srand_initialized = false;

Modify functions:

static void

xlate_select_group(struct xlate_ctx *ctx, struct group_dpif *group)

{

 struct flow_wildcards *wc = &ctx->xout->wc;

 const struct ofputil_bucket *bucket;

 uint32_t basis;

 // The following tells the caching code that every packet in

 // the flow in question must go to the userspace "slow path".

 ctx->xout->slow |= SLOW_CONTROLLER;

 basis = hash_bytes(ctx->xin->flow.dl_dst, sizeof ctx->xin->flow.dl_dst, 0);

 bucket = group_best_live_bucket(ctx, group, basis);

 if (bucket) {

 memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);

 xlate_group_bucket(ctx, bucket);

 }

}

static const struct ofputil_bucket *

group_best_live_bucket(const struct xlate_ctx *ctx,

 const struct group_dpif *group,

 uint32_t basis) // basis in not being used

{

 uint32_t rand_num = 0, sum = 0;

 const struct ofputil_bucket *bucket = NULL;

 const struct list *buckets;

86

 // initialize random seed once

 if (!is_srand_initialized) {

 srand(time(NULL));

 is_srand_initialized = true;

 }

 // generate a random number in [1, 10]

 rand_num = (rand() % 10) + 1;

 group_dpif_get_buckets(group, &buckets);

 LIST_FOR_EACH (bucket, list_node, buckets) {

 if (bucket_is_alive(ctx, bucket, 0)) {

 sum += bucket->weight;

 if (rand_num <= sum) {

 return bucket; // return this bucket

 }

 }

 }

 return bucket; // return NULL

}

87

APPENDIX C

MININET PYTHON TOPOLOGY SCRIPT

88

Python script to create topology (Appendix A) in Mininet.

#!/usr/bin/python

"""CRM Topology with 10 switches and 10 hosts

"""

from mininet.cli import CLI

from mininet.topo import Topo

from mininet.net import Mininet

from mininet.link import TCLink

from mininet.log import setLogLevel

class CRMTopo(Topo):

 def __init__(self):

 "Create CRM Topology"

 # Initialize topology

 Topo.__init__(self)

 # Add hosts

 h0 = self.addHost('h0')

 h1 = self.addHost('h1')

 h2 = self.addHost('h2')

 h3 = self.addHost('h3')

 h4 = self.addHost('h4')

 h5 = self.addHost('h5')

 h6 = self.addHost('h6')

 h7 = self.addHost('h7')

 h8 = self.addHost('h8')

 h9 = self.addHost('h9')

 # Add switches

 s0 = self.addSwitch('s0', listenPort=6634)

 s1 = self.addSwitch('s1', listenPort=6635)

 s2 = self.addSwitch('s2', listenPort=6636)

 s3 = self.addSwitch('s3', listenPort=6637)

 s4 = self.addSwitch('s4', listenPort=6638)

 s5 = self.addSwitch('s5', listenPort=6639)

 s6 = self.addSwitch('s6', listenPort=6640)

 s7 = self.addSwitch('s7', listenPort=6641)

 s8 = self.addSwitch('s8', listenPort=6642)

 s9 = self.addSwitch('s9', listenPort=6643)

 # Add links between hosts and switches

 self.addLink(h0, s0, delay='0ms') # h0-eth0 <-> s0-eth1, delay = 0ms

89

 self.addLink(h1, s1, delay='0ms') # h1-eth0 <-> s1-eth1, delay = 0ms

 self.addLink(h2, s2, delay='0ms') # h2-eth0 <-> s2-eth1, delay = 0ms

 self.addLink(h3, s3, delay='0ms') # h3-eth0 <-> s3-eth1, delay = 0ms

 self.addLink(h4, s4, delay='0ms') # h4-eth0 <-> s4-eth1, delay = 0ms

 self.addLink(h5, s5, delay='0ms') # h5-eth0 <-> s5-eth1, delay = 0ms

 self.addLink(h6, s6, delay='0ms') # h6-eth0 <-> s6-eth1, delay = 0ms

 self.addLink(h7, s7, delay='0ms') # h7-eth0 <-> s7-eth1, delay = 0ms

 self.addLink(h8, s8, delay='0ms') # h8-eth0 <-> s8-eth1, delay = 0ms

 self.addLink(h9, s9, delay='0ms') # h9-eth0 <-> s9-eth1, delay = 0ms

 # Add links between switches, with bandwidth 100Mbps

 self.addLink(s0, s1, bw=100) # s0-eth2 <-> s1-eth2, BW = 100Mbps

 self.addLink(s0, s2, bw=100) # s0-eth3 <-> s2-eth2, BW = 100Mbps

 self.addLink(s1, s2, bw=100) # s1-eth3 <-> s2-eth3, BW = 100Mbps

 self.addLink(s2, s3, bw=100) # s2-eth4 <-> s3-eth2, BW = 100Mbps

 self.addLink(s3, s4, bw=100) # s3-eth3 <-> s4-eth2, BW = 100Mbps

 self.addLink(s3, s6, bw=100) # s3-eth4 <-> s6-eth2, BW = 100Mbps

 self.addLink(s4, s5, bw=100) # s4-eth3 <-> s5-eth2, BW = 100Mbps

 self.addLink(s5, s7, bw=100) # s5-eth3 <-> s7-eth2, BW = 100Mbps

 self.addLink(s6, s7, bw=100) # s6-eth3 <-> s7-eth3, BW = 100Mbps

 self.addLink(s7, s8, bw=100) # s7-eth4 <-> s8-eth2, BW = 100Mbps

 self.addLink(s7, s9, bw=100) # s7-eth5 <-> s9-eth2, BW = 100Mbps

 self.addLink(s8, s9, bw=100) # s8-eth3 <-> s9-eth3, BW = 100Mbps

def run():

 "Create and configure CRM network"

 topo = CRMTopo()

 net = Mininet(topo=topo, link=TCLink, controller=None)

 # Set interface IP and MAC addresses for hosts

 h0 = net.get('h0')

 h0.intf('h0-eth0').setIP('10.0.0.2', 24)

 h0.intf('h0-eth0').setMAC('0A:00:00:02:00:00')

 h1 = net.get('h1')

 h1.intf('h1-eth0').setIP('10.0.1.2', 24)

 h1.intf('h1-eth0').setMAC('0A:00:01:02:00:00')

 h2 = net.get('h2')

 h2.intf('h2-eth0').setIP('10.0.2.2', 24)

 h2.intf('h2-eth0').setMAC('0A:00:02:02:00:00')

 h3 = net.get('h3')

 h3.intf('h3-eth0').setIP('10.0.3.2', 24)

 h3.intf('h3-eth0').setMAC('0A:00:03:02:00:00')

 h4 = net.get('h4')

 h4.intf('h4-eth0').setIP('10.0.4.2', 24)

90

 h4.intf('h4-eth0').setMAC('0A:00:04:02:00:00')

 h5 = net.get('h5')

 h5.intf('h5-eth0').setIP('10.0.5.2', 24)

 h5.intf('h5-eth0').setMAC('0A:00:05:02:00:00')

 h6 = net.get('h6')

 h6.intf('h6-eth0').setIP('10.0.6.2', 24)

 h6.intf('h6-eth0').setMAC('0A:00:06:02:00:00')

 h7 = net.get('h7')

 h7.intf('h7-eth0').setIP('10.0.7.2', 24)

 h7.intf('h7-eth0').setMAC('0A:00:07:02:00:00')

 h8 = net.get('h8')

 h8.intf('h8-eth0').setIP('10.0.8.2', 24)

 h8.intf('h8-eth0').setMAC('0A:00:08:02:00:00')

 h9 = net.get('h9')

 h9.intf('h9-eth0').setIP('10.0.9.2', 24)

 h9.intf('h9-eth0').setMAC('0A:00:09:02:00:00')

 # Set interface MAC address for switches (NOTE: IP

 # addresses are not assigned to switch interfaces)

 s0 = net.get('s0')

 s0.intf('s0-eth1').setMAC('0A:00:00:01:00:01')

 s0.intf('s0-eth2').setMAC('0A:00:0A:01:00:02')

 s0.intf('s0-eth3').setMAC('0A:00:0B:01:00:03')

 s1 = net.get('s1')

 s1.intf('s1-eth1').setMAC('0A:00:01:01:00:01')

 s1.intf('s1-eth2').setMAC('0A:00:0A:FE:00:02')

 s1.intf('s1-eth3').setMAC('0A:00:0C:01:00:03')

 s2 = net.get('s2')

 s2.intf('s2-eth1').setMAC('0A:00:02:01:00:01')

 s2.intf('s2-eth2').setMAC('0A:00:0B:FE:00:02')

 s2.intf('s2-eth3').setMAC('0A:00:0D:01:00:03')

 s2.intf('s2-eth4').setMAC('0A:00:0C:FE:00:04')

 s3 = net.get('s3')

 s3.intf('s3-eth1').setMAC('0A:00:03:01:00:01')

 s3.intf('s3-eth2').setMAC('0A:00:0D:FE:00:02')

 s3.intf('s3-eth3').setMAC('0A:00:0E:01:00:03')

 s3.intf('s3-eth4').setMAC('0A:00:0F:01:00:04')

 s4 = net.get('s4')

 s4.intf('s4-eth1').setMAC('0A:00:04:01:00:01')

91

 s4.intf('s4-eth2').setMAC('0A:00:0E:FE:00:02')

 s4.intf('s4-eth3').setMAC('0A:00:10:01:00:03')

 s5 = net.get('s5')

 s5.intf('s5-eth1').setMAC('0A:00:05:01:00:01')

 s5.intf('s5-eth2').setMAC('0A:00:10:FE:00:02')

 s5.intf('s5-eth3').setMAC('0A:00:11:01:00:03')

 s6 = net.get('s6')

 s6.intf('s6-eth1').setMAC('0A:00:06:01:00:01')

 s6.intf('s6-eth2').setMAC('0A:00:0F:FE:00:02')

 s6.intf('s6-eth3').setMAC('0A:00:12:01:00:03')

 s7 = net.get('s7')

 s7.intf('s7-eth1').setMAC('0A:00:07:01:00:01')

 s7.intf('s7-eth2').setMAC('0A:00:11:FE:00:02')

 s7.intf('s7-eth3').setMAC('0A:00:12:FE:00:03')

 s7.intf('s7-eth4').setMAC('0A:00:13:01:00:04')

 s7.intf('s7-eth5').setMAC('0A:00:14:01:00:05')

 s8 = net.get('s8')

 s8.intf('s8-eth1').setMAC('0A:00:08:01:00:01')

 s8.intf('s8-eth2').setMAC('0A:00:13:FE:00:02')

 s8.intf('s8-eth3').setMAC('0A:00:15:01:00:03')

 s9 = net.get('s9')

 s9.intf('s9-eth1').setMAC('0A:00:09:01:00:01')

 s9.intf('s9-eth2').setMAC('0A:00:14:FE:00:02')

 s9.intf('s9-eth3').setMAC('0A:00:15:FE:00:03')

 net.start()

 # Add routing table entries for hosts (NOTE: The gateway

 # IPs 10.0.X.1 are not assigned to switch interfaces)

 h0.cmd('route add default gw 10.0.0.1 dev h0-eth0')

 h1.cmd('route add default gw 10.0.1.1 dev h1-eth0')

 h2.cmd('route add default gw 10.0.2.1 dev h2-eth0')

 h3.cmd('route add default gw 10.0.3.1 dev h3-eth0')

 h4.cmd('route add default gw 10.0.4.1 dev h4-eth0')

 h5.cmd('route add default gw 10.0.5.1 dev h5-eth0')

 h6.cmd('route add default gw 10.0.6.1 dev h6-eth0')

 h7.cmd('route add default gw 10.0.7.1 dev h7-eth0')

 h8.cmd('route add default gw 10.0.8.1 dev h8-eth0')

 h9.cmd('route add default gw 10.0.9.1 dev h9-eth0')

 # Add arp cache entries for hosts

 h0.cmd('arp -s 10.0.0.1 0A:00:00:01:00:01 -i h0-eth0')

 h1.cmd('arp -s 10.0.1.1 0A:00:01:01:00:01 -i h1-eth0')

92

 h2.cmd('arp -s 10.0.2.1 0A:00:02:01:00:01 -i h2-eth0')

 h3.cmd('arp -s 10.0.3.1 0A:00:03:01:00:01 -i h3-eth0')

 h4.cmd('arp -s 10.0.4.1 0A:00:04:01:00:01 -i h4-eth0')

 h5.cmd('arp -s 10.0.5.1 0A:00:05:01:00:01 -i h5-eth0')

 h6.cmd('arp -s 10.0.6.1 0A:00:06:01:00:01 -i h6-eth0')

 h7.cmd('arp -s 10.0.7.1 0A:00:07:01:00:01 -i h7-eth0')

 h8.cmd('arp -s 10.0.8.1 0A:00:08:01:00:01 -i h8-eth0')

 h9.cmd('arp -s 10.0.9.1 0A:00:09:01:00:01 -i h9-eth0')

 # Open Mininet Command Line Interface

 CLI(net)

 # Teardown and cleanup

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 run()

93

APPENDIX D

PERFORMING STOCHASTIC SWITCHING IN MININET

94

Multipath stochastic switching to route packets from host h0 to host h9 along the two highlighted

paths shown below, that is, via switches [s0, s2, s3, s6, s7, s9] and [s0, s2, s3, s6, s7, s8, s9].

Add group table entry in switch s7 and flow table entries in all switches on the paths to setup the

flows using the following commands.

ADD-GROUP at s7 for [0, 9]

ovs-ofctl -O OpenFlow13 add-group tcp:127.0.0.1:6641

group_id=0,type=select,bucket=weight:7,mod_dl_src:0A:00:14:01:00:05,mod_dl_dst:0A:00:14

:FE:00:02,output=5,bucket=weight:3,mod_dl_src:0A:00:13:01:00:04,mod_dl_dst:0A:00:13:FE:

00:02,output=4

ADD-FLOW(s) for [0, 9] at [0, 2, 3, 6, 7, 8, 9]

95

ovs-ofctl -O OpenFlow13 add-flow tcp:127.0.0.1:6634

in_port=1,ip,nw_src=10.0.0.2,nw_dst=10.0.9.2,actions=mod_dl_src:0A:00:0B:01:00:03,mod_d

l_dst:0A:00:0B:FE:00:02,output=3

ovs-ofctl -O OpenFlow13 add-flow tcp:127.0.0.1:6636

in_port=2,ip,nw_src=10.0.0.2,nw_dst=10.0.9.2,actions=mod_dl_src:0A:00:0D:01:00:04,mod_d

l_dst:0A:00:0D:FE:00:02,output=4

ovs-ofctl -O OpenFlow13 add-flow tcp:127.0.0.1:6637

in_port=2,ip,nw_src=10.0.0.2,nw_dst=10.0.9.2,actions=mod_dl_src:0A:00:0F:01:00:04,mod_d

l_dst:0A:00:0F:FE:00:02,output=4

ovs-ofctl -O OpenFlow13 add-flow tcp:127.0.0.1:6640

in_port=2,ip,nw_src=10.0.0.2,nw_dst=10.0.9.2,actions=mod_dl_src:0A:00:12:01:00:03,mod_d

l_dst:0A:00:12:FE:00:03,output=3

ovs-ofctl -O OpenFlow13 add-flow tcp:127.0.0.1:6641

in_port=3,ip,nw_src=10.0.0.2,nw_dst=10.0.9.2,actions=group=0

ovs-ofctl -O OpenFlow13 add-flow tcp:127.0.0.1:6643

in_port=2,ip,nw_src=10.0.0.2,nw_dst=10.0.9.2,actions=mod_dl_src:0A:00:09:01:00:01,mod_d

l_dst:0A:00:09:02:00:00,output=1

ovs-ofctl -O OpenFlow13 add-flow tcp:127.0.0.1:6642

in_port=2,ip,nw_src=10.0.0.2,nw_dst=10.0.9.2,actions=mod_dl_src:0A:00:15:01:00:03,mod_d

l_dst:0A:00:15:FE:00:03,output=3

ovs-ofctl -O OpenFlow13 add-flow tcp:127.0.0.1:6643

in_port=3,ip,nw_src=10.0.0.2,nw_dst=10.0.9.2,actions=mod_dl_src:0A:00:09:01:00:01,mod_d

l_dst:0A:00:09:02:00:00,output=1

	Opportunistic Service Differentiation and Cloud Resource Management in Support of Enhanced Vehicular Applications
	Recommended Citation

	Microsoft Word - Dissertation-rev10

