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The regulatory pharmaceutical approval process is flawed in that industry 

clinical trials (ICTs) are always powered for efficacy and rarely powered for safety. The 

key safety parameter is the adverse event (AE). This practice may result in efficacious 

products with confounded safety. An ICT’s ability to be powered for detecting AE 

trends may improve patient safety. Therefore, this dissertation’s purpose was to 

determine if power analysis resulted in feasible sample sizes for substantiating AE 

hypotheses. 

AEs were modeled with three Bayesian 2PL IRT models. The unidimensional 

latent trait, transfusion-related AE, was modeled as a patient predisposition for 

experiencing an AE. Parametric and nonparametric inference and power analysis 

approaches were derived for paired IRFs. Analysis was based on 1,000 bivariate 

binomial simulations of 9 AE types for n = 30 and 250 patients. 2-PL, 2-PL EX, and 

2-PL MEX adhered to the multiple chain assumption. Parameter estimators were 

stationary after 25,000 and 15,000 Gibbs samplers (GS), respectively, for 2-PL and 2-PL 

EX, and serial autocorrelation was removed. Simulation results revealed that the 2-PL 

EX demonstrated reasonable model fit based on linear trapezoid and spline 

approximations of the exact area under paired IRFs. Bootstrap, jackknife, and partial 



 

batch approaches were used for parametric and nonparametric inference. Optimal results 

occurred for the nonparametric bootstrap approach on the spline approximation. 

Superiority was expectedly not achieved. Equivalence (∆ = 10%) was not statistically 

substantiated for n = 30, but was for n = 250. Coverage was achieved for all inference. 

The superiority IRT approach required 933 patients for 95% confidence and 80% power 

different from existing methods which required a minimum of 174,451 patients. The 

equivalence IRT approach required 60 patients for ∆ = 10%. Existing methods required 

a minimum of 95 patients.  

Simulations resulted in comparable IRFs. Inference correctly characterized 

relationships between IRFs. IRT sample sizes were smaller than existing methods, and 

were expectedly larger for superiority. Powering a study to differentiate comparable 

groups typically requires enormous sample sizes. Equivalence was a viable solution to 

superiority. The next step is to have the IRT inference incorporated into the ICT safety 

investigation of all pharmaceutical products. 
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CHAPTER I 

INTRODUCTION 

Statement of Problem 

The International Conference on Harmonization (ICH) provides guidance for 

designing and conducting all aspects of industry clinical trials (ICTs) intended to support 

the regulatory approval of pharmaceutical products. Several of these guidance documents 

pertain to the evaluation of product safety (ICH E1, 1994; ICH E2a, 1995; ICH E3, 1995; 

ICH E6, 1996; ICH E8, 1997; ICH E9, 1998; ICH E11, 2000). If a regulatory agency 

agrees with a pharmaceutical company that their product’s benefits outweigh its risks 

(i.e., safety is comparable to existing treatments and efficacy is statistically substantiated; 

ICH E9, 1998), the agency is thus indicating that the product is safe for market 

consumption.  

A “safe” medical product is not one in which there is 0% risk to the consumer. No 

matter how safe a product is thought to be, at some point, a consumer will adversely 

respond to its consumption. The interaction of patient disease state and human genetics 

(Veenstra et al., 2007), concomitant medications (Jagsi et al., 2005), environmental 

factors (patient, hospital, etc.), and “outdated equipment” (Cowen & Moorhead, 2006, 

p. 273) further complicate the occurrence, prediction, and prevention of such responses. 

The safety of a medical product is gauged by its propensity for causing adverse 

events (AE). An AE is a diagnosis of a medical condition “temporally associated with the 
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use of a medicinal (investigational) product” (ICH E6, 1996, p. 7). These signs and 

symptoms may be based on objective measures or subjective observations, both of which 

may have binomial, ordinal, or continuous levels of measurement. Objective diagnostic 

criteria may comprise, but are not limited to, patient vital signs, laboratory assays, and 

radiology findings. Subjective diagnostic criteria such as scales (e.g., Visual Analog Scale 

for pain), self-reported experiences by the patient (e.g., nausea with no vomiting), or 

observations from a physician (e.g., facial flushing with no patient discomfort) may also 

lead to the reporting of an AE (ICH E3, 1995). When diagnosing a medical condition, 

physicians are typically concerned with a totality of clinical signs and symptoms. 

Strep throat is an example of an AE that is diagnosed with both objectively and 

subjectively measured clinical signs and symptoms (Figure 1, p. 3). Per the Mayo Clinic 

(2011), this AE may be diagnosed with 5 patient-reported and 4 physician-observed signs 

and symptoms and 1 objective measure. The patient-reported signs and symptoms are 

throat pain, swallowing difficulty, headache, stomachache, and fatigue. The physician-

observed signs and symptoms are tonsils that are red and swollen, soft or hard palate 

having small red spots, swollen lymph nodes in the neck, and a rash. The last clinical sign 

and symptom is a fever, which is objectively measured with patient body temperature. All 

of these signs and symptoms are required for the diagnosis of strep throat per the Mayo 

Clinic criteria. The absence of any of these signs and symptoms is likely diagnostic of a 

different type of AE.  

Risk Prediction Algorithms (RPAs) (Geraci, Rosen, Ash, McNiff, & Moskowitz, 

1993) use unique sets of clinical signs and symptoms to predict the occurrence of AEs at 

the patient level. After an RPA is developed for a specific clinical indication, medical  
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Figure 1. Medical Diagnosis Structure of Strep Throat 

 
researchers may then fine-tune these algorithms by evaluating the reliability of the 

observable measures in terms of AE prediction. For ICTs, these algorithms may then be 

extended to AE characteristics (e.g., severity, seriousness, relation to investigational 

investigational treatment, etc.). For these trials, regulatory agencies require physicians to 

classify these characteristics for each type of AE that is reported. These agencies may 

then use these data in an attempt to further understand the safety implications associated 

with the use of the product. These assessments are conducted to identify any AEs that are 

causally associated with a particular AE, or whether AEs are a result of other medications 

the patient is taking, environmental factors, and/or patient genetics. The causal 

association may be classified by a physician with the categories ruled out, doubtful, 

possible, probable, or definite.  
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A factor that may further complicate this assessment is that some patients may 

have a greater predisposition to experiencing a particular type of AE than others (Empey, 

2010). In essence, the treatment effect may interact with patient factors extraneous to the 

clinical trial. Furthermore, the type of AEs reported for a given population and treatment 

regimen is typically restricted to the context in which they occur (Battles, Kaplan, Van 

der Schaaf, & Shea, 1998). Aspirin, for example, may be used to treat headaches 

experienced by healthy individuals or serve as a preventive measure for at-risk 

individuals predisposed to cardiac arrest. As a result, the types of AEs experienced by 

these two populations may differ. A person in the latter group, for instance, may be highly 

predisposed to developing an arrhythmia that could result in death (Drugs, 2011), whereas 

individuals in the former population may have a lower predisposition to this AE. 

Given the complexities of investigating AEs in an ICT, an important question 

arises. How many patients are needed to develop a clinically sound understanding of 

medical product safety? ICH guidance recommends that 100 patients per year for a total 

of 1,500 patients over the product’s development cycle should be exposed to the 

investigative treatment (ICH E1, 1994) for this purpose. Coincidentally, not all products 

approved by regulatory agencies are based on such sample sizes. As an example, the 

website http://clinicaltrials.gov indicates that 29 of 45 Phase III ICTs enrolled less than 

100 patients for each group treated for thrombocytopenia or low platelet count (see 

Appendix N).  

The reasons are relatively simple as to why Phase III trials may not employ the 

above sample size recommendations. First, the guidance does not statistically substantiate 

these sample sizes. As a result, the number of patients needed to understand the safety of 
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a medical product could vary greatly from study to study, product to product, or 

population to population. Sample sizes for these comparisons are commonly very large 

and often are not financially feasible. Second, Phase III trials are powered for the number 

of patients required to achieve efficacy or substantiating that the product works as 

medically intended (Chow, Shao, & Wang, 2008).  

For most ICTs, the primary objective is based on an efficacy variable. 

Considerations regarding study design, hypothesis sets, sample size determination, and 

data analysis are based on this variable. Therefore, the power is properly computed for an 

analysis method used to evaluate efficacy hypotheses. This is not so for safety variables, 

such as the AE. This variable is frequently evaluated as a secondary objective in ICTs. 

Therefore, the power needed to substantiate AE hypotheses is not considered. In this 

case a statistical analysis method that is applied to the AE is considered as descriptive 

only. Mathematically, effects for efficacy are demonstrated by design, and any statistical 

inference demonstrated for AEs occurs by chance. 

Powering a trial for efficacy and not AEs may result in products on the market 

that work as medically intended but are later found to have safety problems. The 

following statement by the Food and Drug Administration (1999) within the U.S. 

Department of Health and Human Services exemplifies this situation. 

Once medical products are on the market, however, ensuring safety is 
principally the responsibility of healthcare providers and patients, who 
make risk decisions on an individual, rather than a population, basis. 
They are expected to use the labeling information to select and use 
products wisely, thereby minimizing AEs. (p. 4) 
 
Studies powered on both efficacy and AE variables would provide a more 

thorough understanding of the efficaciousness and safety of approved products. 
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Substantiating that a product is both statistically efficacious and that the rate of AEs 

reported for a new treatment is statistically and clinically comparable to an existing 

treatment prior to market release would logically be beneficial to the general public.  

This study compared sample size requirements for AEs generated between the 

current statistical methodology and the newly introduced method based on Item Response 

Theory (IRT; Lord, 1953). If the sample size requirements were found to be comparable 

between the IRT and existing methods, this result would reinforce the difficulty of 

powering an ICT on AE hypotheses. On the other hand, if the IRT-based sample sizes 

were comparable to efficacy requirements, the pharmaceutical industry may have access 

to a new statistical tool that could revolutionize the evaluation of product safety. 

IRT differs from classical statistical methods in that it is a latent trait model 

approach (Hambleton & van der Linden, 1982). This model uses mixed-effects regression 

(Hedeker, Mermelstein, & Flay, 2006) to estimate unobservable construct or latent trait 

parameters (Hambleton & Cook, 1997; Junker, 1997). IRT may be used to understand the 

“relationship between observable examinee test performance and the unobservable traits 

or abilities assumed to underlie performance on the test” (Hambleton & Cook, 1977, 

p. 75).  

In this study, the latent trait was referred to as the Transfusion-Related Adverse 

Event. This trait was an unobservable construct that represented the medical diagnosis of 

a unique set of one or more observable clinical signs and symptoms. Each type of AE or 

item was measured with the binomial response of either a 1 or 0. In a traditional IRT 

application, these values may mean, respectively, that a student passed or failed a test 
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item. In this study, these values, respectively, indicated that a unique set of clinical signs 

and symptoms were or were not diagnostic of a particular type of AE.  

This study attempted to expand the use of this diagnostic information for two 

types of patients. The first type of patient is those who are enrolled in an ICT and were 

anticipated to experience AEs, but this experience has not yet occurred. The second group 

consisted of those patients who signed an informed consent form so that they could 

participate in an ICT but their enrollment has not yet begun. A common factor associated 

with these two groups of patients is that they have not experienced any clinical signs and 

symptoms that would be diagnostic of a particular type of AE.  

Instead of evaluating the diagnosis of AEs, this study developed IRT methodology 

for modeling the predisposition of patients being diagnosed for a particular type of AE or 

AE Predisposition (θ). Disease states, human genetics, concomitant medications, 

environmental factors, and old equipment can alter this predisposition for a given 

investigational treatment. Furthermore, because this treatment alone is unlikely to cause 

the same AE for all patients enrolled in an ICT, the occurrence of this AE can be better 

understood in relation to extraneous patient factors. Various combinations of these factors 

may result in the differential occurrences of clinical signs and symptoms that are 

diagnostic of a particular type of AE. That is, certain patients may be more or less 

predisposed for experiencing AEs.  

Two-parameter logistic IRT (Embretson & Reise, 2000) was used to model the 

ability parameter (θ) based on the latent trait Transfusion-Related Adverse Event. For the 

remainder of this dissertation, this parameter is referred to as “AE Predisposition (θ).” 

The parameters used to characterize AE Predisposition (θ) for j types of AEs were 
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referred to as item discrimination and difficulty (Swaminathan, Hambleton, Sireci, Xing, 

& Rizavi, 2003). The discrimination parameter aj (for jth AE) was used to estimate the 

magnitude of the relationship between j items and the latent trait (Reeve & Fayers, 2005). 

This parameter characterized the differential contribution of each item on the latent trait. 

Moreover, these AE items were differentiated by type (e.g., infection) and item-specific 

characteristics such as severity, relationship to treatment, and seriousness. The parameter 

bj represented the difficulty (Amarnani, 2009) or observed occurrence of j types of AEs. 

Furthermore, the estimated parameters θi, aj, and bj, could be used to determine individual 

patient probabilities of experiencing an AE. This probability may be calculated with 

Equation 1, the IRT version of the logistic cumulative density function (CDF). 

( ) ( ) ( )






 +=θ −θ−−θ− jbijajbija

jji e1/eb,a;P     (Eq. 1) 

These latent trait parameters were investigated for two study objectives commonly 

evaluated in ICTs: superiority and equivalence (ICH E9, 1998). Superiority is 

substantiated if one type of treatment is statistically better than or different from another 

type of treatment on a response variable (Wiens, 2006). IRT applications have utilized 

this objective but it is typically referred to as Differential Item Functioning (DIF; Bock, 

1997). Uses of superiority for IRT application will be presented in Chapter II. 

Equivalence is achieved if one treatment group is statistically comparable to another 

treatment group on a response variable (Lui, 2005). This study attempted to incorporate 

equivalence into IRT application.  

Statistical inference (i.e., hypothesis testing and confidence intervals) was derived 

by the author for superiority and equivalence study objectives to be evaluated with IRT 
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statistical methodology. The estimator for this inference was the approximated area under 

Item Response Functions (IRFs) for the parameter AE Predisposition (θ) for each type of 

AE. The mathematical definitions of the effects and their components will be derived by 

the author in Chapter III. A paired data structure, common to transfusion medicine, was 

employed for these IRFs. In a traditional IRT setting, this data structure may mimic a 

student taking two exams of the same design. This study assumed that each patient 

received both Treatment A and Treatment B, which represented a new treatment and an 

existing treatment regimen, respectively.  

Functions used for power analysis will next be derived by the author in Chapter 

III. These functions were used to determine the likelihood or probability of demonstrating 

a particular objective for a given sample size. Specifically, sample size estimation was 

used to determine the number of patients required to demonstrate superiority or 

equivalence between treatment groups on the AE Predisposition (θ) parameter.  

Research Questions 

This study utilized simulated data that coincide with the historical incidence of 

AEs occurring from the transfusion of blood products (U.S. Department of Health and 

Human Services, 2007b). These products are but are not limited to whole blood and its 

nested components red blood cells, platelets, and plasma. The research questions explored 

with these data were: 

1. Can one or more two-parameter Bayesian logistic IRT models be used to model 

AEs? This feasibility was evaluated with statistics used to assess Gibbs sampling 

algorithms and goodness-of-fit (GoF). IRT was considered a viable solution for 
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modeling AEs under the study constraints if these algorithms demonstrated 

convergence and GoF was established. 

2. For superiority and equivalence study objectives, which combination of statistics 

resulted in the best statistical inference as defined by 

a. minimum standard error of the effect? 

b. smallest bias in Area-Under-the-Curve (AUC) approximations? 

c. confidence interval on the effect that achieves the highest coverage?  

Several combinations of statistical inference and its components on paired IRFs 

for both superiority and equivalence study objectives were investigated in this study. The 

combination of statistics that resulted in the best statistical inference was recommended 

for utilization. 

3. How do IRT sample size requirements for superiority and equivalence study 

objectives compare to the existing classical methods for paired binomial 

variables?  

This question pertained to the concept of utility. Financially feasible sample sizes 

(i.e., those comparable to efficacy requirements) will be necessary in order for 

pharmaceutical companies to adopt and incorporate the presented IRT methodology into 

their ICTs. Otherwise, IRT may only be used as a secondary analytic method. 
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Contributions of the Study 

Study Objectives  

This study resulted in four key contributions that attempt to advance the 

inferential investigation of rare binary events with IRT methodology. The first 

contribution was the incorporation of superiority and equivalence study objectives into 

IRT. Superiority enables the determination of whether or not a variable for one treatment 

group is better than or different from another group. Equivalence enables the 

determination of whether or not a variable for one treatment group is statistically the 

same as another group. An advantage of these objectives is that they are not restricted to 

any particular type of IRT model. 

Paired IRFs for treatments A and B were investigated for these objectives. The 

paired or k-sample matched design was employed because it is commonly implemented in 

transfusion medicine ICTs (Fergusson, Hebert, & Shapiro, 2002; Hshieh & Ng, 2007). 

Objectives were analyzed for the AE Predisposition (θ) parameter. If superiority was 

statistically substantiated this would mean that the predisposition of a patient 

experiencing an AE (overall or individual) was better than (i.e., lower) in Treatment A 

than Treatment B. If equivalence was statistically substantiated this would mean that the 

predisposition of patients experiencing an AE (overall or individual) was the same 

between treatment groups.  
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Statistical Inference 

The next contribution consisted of the derivation of complete statistical inference 

by the author for the k-sample matched design for the presented IRT statistical 

methodology. Formal hypothesis sets were developed for both superiority and 

equivalence study objectives. A parametric and nonparametric solution was then 

presented for the effect and its components (i.e., standard error, test statistic, and 

confidence interval) for these study objectives. The estimator of the effect was based on 

the approximate area under paired IRFs. The AUC statistic was utilized because it does 

not have units nor requires a known distribution.  

Linear trapezoid and spline approximations to the exact area under paired IRFs 

were computed. The linear trapezoid approximation assumes that the distance between 

any two sets of points is connected with a linear function (Chiou, 1978). The spline 

approximation assumes that the distance between any three sets of points is connected 

with a cubic function (Yeh & Kwan, 1978). It was anticipated that the two 

approximations would be comparable for linear functions, and the spline approximation 

would be less biased for nonlinear functions (Yeh & Kwan, 1978), such as the logistic 

which generally has a cubic polynomial form (Hogg, McKean, & Craig, 2005).  

Furthermore, the Partial (Bandos, Rockette, & Gur, 2007) and Bailer (1988) 

approaches were utilized to estimate the area under paired IRFs across all types of AEs. 

Due to volume of output, if these aggregation approaches reached comparable estimates, 

results would be limited to the Partial approach. For each type of AE, the Partial Batch 

(Navarro-Fontestad, González-Álvarez, Fernández-Terul, Bermejo, & Casabó, 2005), 
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Bootstrap (Dunning, 2007), and Jackknife (Zou, Gastwirth, & McNeil, 2003) approaches 

were used for estimation. A key advantage of the above statistical methodology is that it 

is universal to IRT models concerned with response functions (item and person) 

regardless of variable level of measurement.  

The derived statistical inference may also impact how hypotheses are used in IRT 

application. As an example, DIF, which is currently only based on a superiority objective, 

may be used to determine if groups differ on a latent trait (Bolt, 2000; Caufmann & 

MacIntosh, 2006; Glickman, Seal, & Eisen, 2009; Swaminathan & Rogers, 1990). The 

general hypothesis set for this objective can be portrayed as  

H0: No DIF 

H1: DIF 

DIF can only provide evidence as to whether groups behave differently on a latent 

trait. Hays, Morales, and Reise (2000) further indicate that DIF is present when the 

probability of two or more groups is different for endorsing a latent trait item. Such 

significance would be characterized by the lower confidence limit on the probability 

being greater than zero (Bolt, 2000). If this confidence limit was negative, a claim of DIF 

would not be statistically warranted. 

In this situation, an alternative study objective such as equivalence may be more 

appropriate. This objective, loosely speaking, can be thought of as the antithesis of 

superiority. That is, equivalence may be portrayed as  

H0: DIF  

H1: No DIF 
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For this hypothesis set, a significant p-value would indicate that groups are 

invariant or comparable on a latent trait. This study strived to make the first attempt at 

utilizing equivalence for demonstrating lack of DIF (Cook et al., 2007). The Equivalent 

Item Function (EIF) was developed as a counterpart to DIF. 

Power Functions 

The third contribution arose from the development of parametric and 

nonparametric power functions for both superiority and equivalence study objectives. 

These functions provided the a priori probability of demonstrating an alternative 

hypothesis for an objective for a given sample size. In this study, these functions were 

used to determine sample size requirements for an a priori probability of at least 0.80 

with 100(1 – α)% confidence of statistically substantiating objectives across all AE types. 

Superiority was concerned with demonstrating that treatment groups were statistically 

different in AE Predisposition (θ). Equivalence was concerned with demonstrating that 

treatment groups were statistically comparable in this parameter. A key advantage of the 

power functions derived by the author is that they are universal to IRT models concerned 

with response functions (item or person) regardless of variable level of measurement.  

Two additional advantages to these power functions are noteworthy. Although this 

study focused on patient-level sample size requirements for comparing AE Predisposition 

(θ), these functions are equally applicable to items in terms of random treatment 

allocation. The patient was the unit of analysis used in this study because the number and 

type of AEs cannot be controlled in an ICT. Outside of this setting, it may be possible for 

items to be selectively modified (Bolt, 2000) or removed (Glas & Meijer, 2003) from a 
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test instrument or survey, for example. Second, these functions and their statistical 

inference are readily adaptable to the k-sample independent study design (Maydeu-

Olivares, 2005). This adaptation can be performed by setting all covariances equal to zero 

and changing the degrees of freedom from n – 1 to 2(n – 1), where n represents the 

number of units of analysis (e.g., patients). In certain settings such as psychological and 

educational testing, independent “treatment” groups may be necessary to avoid 

difficulties such as “learning effects” (Haynie, 2007). 

Swaminathan, Hambleton, Sireci, Xing, and Rizavi (2003) claim that sample size 

estimation for IRT “has been well studied” (p. 2). This conclusion may be a result of 

many articles presenting sample size recommendations based on informal rules for IRT 

application (Bock, 1997; Cepicka, 2003; Embretson & Reise, 2000; Linacre, 1994; Reeve 

& Fayers, 2005; Teresi, Kleinman, & Ocepek-Welikson, 2000). However, Holman, Math, 

Glas, and de Haan (2003) claim that “minimal sample size and power calculations in 

relation to questionnaires analyzed with IRT have received very little attention” (p. 391). 

These authors further add that “no guidance on sample size calculations for RCTs in the 

context of IRT has been published” (p. 391). 

The Western Michigan University library system, WorldCat, Web of Science, 

ERIC, and ABI/Inform document databases were searched for all combinations of the 

terms item response theory, power function, and power analysis. The results returned a 

total of 9 articles from all of these searches, which will be detailed in Chapter II. Five of 

the articles specified that power analysis was performed, but possessed insufficient detail 

for sample size reproduction. The remaining articles presented formal power functions or 

steps used to compute power.  
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Risk Prediction Algorithms 

The last contribution concerned an additional use for IRT methodology in ICTs. 

AEs attributable to a product (Department of Veterans Affairs, 2008) that are serious 

(Rochester, 2003), unexpected, or uncommon (Rochester, 2009) are typically of most 

concern to “decision-makers and stakeholders” (Rochester, 2003). Regression models 

(Black, Markides, & Ray, 2003; D’Agostino, Grundy, Sullivan, & Wilson, 2001; 

DuMouchel, 2010; Lin, Hosmane, Olson, & Padley, 2001; Nishtala et al., 2009) are 

commonly used to understand how various combinations of demographics, disease states 

and biomarkers, concomitant medications, and treatment regimens relate to the 

occurrence of AEs (Haq, Jackson, Yeo, & Ramsay, 1995).  

Two problems complicate using interaction effects to understand clinically 

important relationships between patient-level AEs and risk factors. First, these trials are 

typically powered only for main effects on efficacy. As a result, clinically important 

interaction effects are likely to be confounded with sample size. Interaction effect p-

values are typically too large to be clinically meaningful for aggregate- or patient-level 

conclusions. A nonsignificant p-value may not necessarily mean that a certain 

combination of factors lacks predictive capability of a particular type of AE. Here, the 

problem could be a result of insufficient statistical power. Second, the relationship 

between the variables comprising the interaction effect is assumed to be linear. This will 

be problematic if a level of one main effect coincides with multiple levels of a second 

main effect. 
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The Risk Prediction Algorithm (RPA; Geraci et al., 1993) may be an alternative to 

the traditional interaction effect. As applied to this study, clinically relevant risk factor 

scores could be potentially used to develop gradations of AE Predisposition (θ) for a 

specific medical condition. As the gradation increases in magnitude the susceptibility 

(Rochester, 2009) or predisposition of a patient experiencing an AE may increase. 

Because the use of RPAs for AEs is a recent development in ICTs, the form of this 

relationship has not been established.  

An AE would be anticipated to occur for a particular type of patient once a certain 

gradation was reached. Physicians could then use this type of information to potentially 

reduce the predisposition to or severity of (Oberg, 1999) an AE by proactively (Chhibber 

& King, 2010; Hanson & France, 2004; Krediet, van Dijk, Linzer, van Lieshout, & 

Weiling, 2002) treating a patient (i.e., providing alternative or modified treatment 

regimens). RPAs have been developed for a number of medical indications with risk 

factors specific to these conditions, excluding transfusion medicine, and these will be 

detailed in Chapter II.  

In order for RPAs to have utility in medical settings, their accuracy or predictive 

utility (Bridgewater, Neve, Moat, Hooper, & Jones, 1998) must be clinically sufficient. 

The Receiver Operator Characteristic curve (ROC) has commonly been utilized to 

quantify such utility. ROC curves are based on specificity and sensitivity, both of which 

range from 0 to 1 (Zhang & Mueller, 2005). As applied to this study, specificity would be 

defined as the false positive rate of AE occurrence. Sensitivity would occur when an 

algorithm correctly predicts the presence of an AE. As sensitivity increases with 

specificity, the accuracy of the prediction algorithm increases. In theory, if the false 
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negative and positive rates are zero (i.e., AUC = 1), the algorithm would have 100% 

predictive ability.  

An example of two ROC curves is provided in Figure 2. Curve 1 and Curve 2, 

respectively, demonstrate nonlinear and linear relationships between specificity and 

sensitivity. When sensitivity equals 0.9, specificity approximately equals 0.58 and 0.93, 

respectively, for Curve 1 and Curve 2. These results would indicate that when the 

algorithm correctly predicts the occurrence of 90% of AEs, the false positive rate is lower 

for Curve 1. As a result, Curve 1 has more predictive utility of the AEs under 

investigation. This type of methodology would be amendable to comparing the algorithms 

for two RPAs. 
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Figure 2. Example Receiver Operator Characteristic Curve 
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IRT may be a new statistical framework for developing and comparing RPAs. IRT 

would substitute patient-level (conditional) probabilities for gradations of risk scores. The 

likelihood of an AE occurring would increase with the resulting probability (de Ayala, 

2009). As the width of the confidence interval of this probability decreases, the precision 

of the probability would increase. Furthermore, algorithms based only on probability may 

be easier to clinically interpret. A 90% chance of a patient with a certain set of risk factors 

experiencing a particular type of AE may be more informative than indicating that a risk 

score above a certain threshold is expected to be 90% accurate. Regardless, ROCs 

(Hanley & McNeil, 1982) via c statistics and net reclassification improvement methods 

(Steyerberg et al., 2010) will be required to re-evaluate and fine-tune the predictive ability 

of an IRT-based RPA. 

Limitations of the Study 

Three limitations to this study are relevant. First, this study was limited to IRT 

models for latent traits measured by items with binomial responses. Other levels of 

measurement (e.g., ordinal shift tables for laboratory assays) are infrequently used in 

ICTs. Many IRT applications in academic “clinical research, psychology, educational 

sciences, ecology, and epidemiology” (Hardouin, 2007, p. 1) may use variables with 

ordinal and continuous levels of measurement. Although the statistical inference and 

power analysis methodology presented in this study is universal to IRT models concerned 

with response functions (item and person), it is unknown which study design will be 

optimal in each setting until appropriate investigation is performed. 
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Second, the predisposition for a patient experiencing an AE was modeled with the 

standard normal probability density function (PDF). This distribution resulted in the 

latent trait scores having range space [ ]3,3 +−∈θ  (Thompson, 2009). It is unknown if this 

distribution can be used to sufficiently model the ability parameter (θ) in all settings 

(Samejima, 1997) such as ICTs. This study assumed this optimality for AE Predisposition 

(θ). The primary reason for this decision surrounded the interpretability of this parameter. 

If a different distribution was assumed, the range space of this parameter may not be 

[ ]3,3 +− . In this case, the interpretation of this parameter may change. For example, if the 

Beta PDF was used to model this parameter, its range space would change to (0,1).  

Last, de Ayala (2009) indicates that self-reported experiences are latent traits. 

During the course of an ICT, the patient or physician may be the source of multiple types 

of AEs. Factor analysis techniques would be required to determine if these AE types are 

distinct latent traits. If this analysis substantiated the presence of multiple latent traits, it 

would be anticipated that an IRT model such as the multidimensional two-parameter 

logistic (McKinley & Way, 1992) would possess inferential advantages over the single 

dimension counterpart. Because the dimensionality of AEs is not understood, this study 

was restricted to a single latent trait, Transfusion-Related Adverse Event. 

Study Definitions 

Adverse Event (AE) – “An AE is any untoward medical occurrence in a patient or clinical 

investigation subject administered a pharmaceutical product and that does not 

necessarily have a causal relationship with this treatment. An AE can therefore be 
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any unfavorable and unintended sign (including an abnormal laboratory finding), 

symptom, or disease temporally associated with the use of a medicinal 

(investigational) product, whether or not related to the medicinal (investigational) 

product.” (ICH E6, 1996, p. 7) 

Clinically Significant AE – An AE that “causes harm or illness and/or requires testing, 

monitoring, or short-term or long-term treatment.” (Department of Veterans 

Affairs, 2008, p. E–1) 

Serious AE – “A serious adverse event (experience) or event is any untoward medical 

occurrence that at any dose 

• results in death, 

• is life-threatening, 

[Note: The term “life-threatening” in the definition of “serious” refers to an 

event in which the patient was at risk of death at the time of the event; it does 

not refer to an event which hypothetically might have caused death if it were 

more severe.] 

• requires inpatient hospitalisation or prolongation of existing hospitalisation, 

• results in persistent or significant disability/incapacity, or 

• is a congenital anomaly/birth defect.” (ICH E2A, 1995, p. 4) 

Plasma – “Plasma is a fluid, composed of about 92% water, 7% vital proteins such as 

albumin, gamma globulin, anti-hemophilic factor, and other clotting factors, and 

1% mineral salts, sugars, fats, hormones and vitamins.” (American Red Cross, 

2010) 
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Red Blood Cells – “Red cells, or erythrocytes, carry oxygen from the lungs to your 

body’s tissue and take carbon dioxide back to your lungs to be exhaled.” 

(American Red Cross, 2010)  

Platelets – “Platelets, or thrombocytes, are small, colorless cell fragments in the blood 

whose main function is to interact with clotting proteins to stop or prevent 

bleeding.” (American Red Cross, 2010) 

Random Donor Platelets – Platelets centrifuged from whole blood after donation of whole 

blood (Silberman, 1999). 

Apheresis – “Automated blood collection in which a device continuously or intermittently 

removes a small volume of whole blood, separates the components, collects 

certain components, and returns to the donor the uncollected remainder.” (U.S. 

Department of Health and Human Services, 2007a, p. 6) 

Single Donor Platelets – Platelets extracted from whole blood during blood component 

donation (Silberman, 1999).  

Allergic Event (including anaphylaxis) – “The result of an interaction of an allergen with 

preformed antibodies. In some instances, infusion of antibodies from an atopic 

donor may also be involved.” (Centers for Disease Control, 2010, p. 11) 

Acute Hemolytic Transfusion Event – “Rapid destruction of red blood cells during, 

immediately after, or within 24 hours of a transfusion.” (Centers for Disease 

Control, 2010, p. 12) 

Delayed Hemolytic Transfusion Event – “The recipient develops antibodies to RBC 

antigen(s) between 24 hours and 28 days after a transfusion.” (Centers for Disease 

Control, 2010, p. 13) 
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Delayed Serologic Transfusion Event – “Demonstration of new, clinically significant 

alloantibodies against red blood cells between 24 hours and 28 days after a 

transfusion despite an adequate, maintained hemoglobin response.” (Centers for 

Disease Control, 2010, p. 14) 

Febrile Nonhemolytic Transfusion Event – “Fever and/or chills without hemolysis 

occurring in the patient up to 4 hours during and after transfusion.” (Centers for 

Disease Control, 2010, p. 16) 

Hypotensive Transfusion Event – “A drop in systolic and/or diastolic blood pressure 

occurring during or within one hour of completing transfusion.” (Centers for 

Disease Control, 2010, p. 15) 

Infection (Bacterial – including sepsis / Viral / Organism) – “A bacteria, parasite, virus, 

or other potential pathogen transmitted in donated blood to transfusion recipient.” 

(Centers for Disease Control, 2010, p. 22) 

Transfusion Associated Circulatory Overload – “Infusion volume that cannot be 

effectively processed by the recipient either due to high infusion rate and/or 

volume or an underlying cardiac or pulmonary pathology.” (Centers for Disease 

Control, 2010, p. 18) 

Transfusion Associated Graft vs Host Disease – “The introduction of immunocompetent 

lymphocytes into susceptible hosts. The allogeneic lymphocytes engraft, 

proliferate and destroy host cells.” (Centers for Disease Control, 2010, p. 20) 

Probability Density Function (PDF) – A function, a mathematical representation of a 

concept, is classified as a PDF when the property ∫
∞

∞−
= 1dx)x(f holds. This 
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requirement means that if the total area under a function is 1 the function meets 

this property. If this property is met then inference can be developed for the 

random variable X using this function. (Hogg & Craig, 1995) 

Marginal PDF – The marginal PDF of X given the joint PDF f(x,y) is equal to 

∫
∞

∞−
= dy)y,x(f)x(f  (Ross, 1997). 

Conditional PDF – The conditional PDF of X given the joint PDF f(x,y) is 

( ) ( )
( )yf

y,xf
y|xf =  (Ross, 1997). 

Range Space – The range of values under which the data of a parameter behaves. 

Normal PDF – The normal PDF is a distribution used for representing parameters that 

have nonlinear values between –∞ to +∞ (Hogg & Craig, 1995). The functional 

form of this PDF is ( ) ( )
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Beta PDF – A distribution used for representing parameters that have nonlinear values 

between 0 and 1 (Daly, 1992). The functional form of this PDF is 

( ) ( )
( ) ( ) ( ) 1b1a x1x

ba

ba
b,a;xf −− −

ΓΓ
+Γ= , ( )1,0x ∈ , a, b > 0. 

Gamma PDF – A distribution used for representing parameters that have nonlinear values 

between 0 and +∞ (Hogg & Craig, 1995). The functional form of this PDF is 

( )
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= , x ≥ 0, a, b > 0. 
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Cumulative Distribution Function (CDF) – The CDF equals the integral of a PDF 

with lower limit equal to the minimum range space and the upper limit equal to the 

random variable. The CDF has the general form ( ) ( )∫
∞−

=
x

dttfxF , where F(x) ranges from 

0 to 1 (Ross, 1997). 
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CHAPTER II 

LITERATURE REVIEW 

This chapter reviews the literature associated with approaches to statistical 

inference and power analysis for comparing binomial variables between paired treatment 

groups for clinical objectives. This chapter begins with an introduction to Item Response 

Theory (IRT), and then discusses the forms of the IRT models to be explored in this 

study. A brief background is then provided on mathematical statistics to assist the 

understanding of Bayesian theory and its assumptions for IRT models. The chapter then 

discusses IRT application in terms of evaluating superiority and equivalence study 

objectives. Next, the literature on determining sample size requirements is provided for 

IRT models. Thereafter, the existing methods for computing Type I and II errors for 

paired binomial variables are presented. The chapter then provides background on and 

formulae for approximating the exact Area-Under-the-Curve (AUC) utilized for 

comparing paired IRFs. Next, RPAs, a potential new application for IRT and the means 

for constructing them, are discussed. This chapter ends with a discussion of existing IRT 

methodology for modeling adverse events (AEs). 

Introduction to Item Response Theory 

IRT is a nonlinear mixed-model regression approach (Hedeker, Mermelstein, & 

Flay, 2006) for modeling data structures containing one or more latent traits. A latent trait 
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is an unobservable construct (Hambleton & Cook, 1997; Junker, 1997) that is indirectly 

measured with ability or proficiency parameters (Reeve & Fayers, 2005). Examples of 

this construct may include but are not limited to education (e.g., mathematics 

comprehension) (Fox & Glas, 2001), psychology (e.g., anxiety), and medicine (e.g., 

headache) (de Ayala, 2009). The ability or proficiency parameter, also referred to as a 

manifest variable (de Ayala, 2009), may take the form of a standardized mathematics test 

to evaluate an educational latent trait, an anxiety scale to evaluate a psychological latent 

trait, or visual analog scales to evaluate a medical latent trait. 

 The level of measurement of these ability or proficiency variables then guides 

how the associated latent traits are statistically investigated. Logistic or Normal–Ogive 

models are commonly used for binomial responses (Embretson & Reise, 2000). Rating 

Scale, Partial Credit, and Nominal Response models are appropriate for ordinal or 

polytomous data (van der Linden & Hambleton, 1997). IRT can also be utilized to model 

variables that have a continuous level of measurement such as summed scale scores 

(Drachler, Marshall, & de Carvalho, 2007) and numerical responses (Noel & Dauvier, 

2007). 

For each of these types of IRT models, parameter estimation may be performed 

within one or more theoretical frameworks. Joint or Marginal Maximum Likelihood 

Estimation (Jannarone, Yu, & Laughlin, 1990) utilizes an asymptotic approach to 

estimate parameter estimates. This parametric approach commonly assumes that a normal 

probability density function (PDF) underlies the distribution of the parameter estimates 

(Samejima, 1997). A statistical framework that does not assume a particular PDF for a 

data structure falls into the nonparametric category (de Leeuw & Hox, 1998). The third 
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framework, Bayesian, is an extension of Maximum Likelihood Estimation (MLE), and 

overcomes a key limitation of the classical approaches. Unlike solutions from classical 

methods, Bayesian estimates can be computed for respondents who have null or perfect 

scores (Hardouin, 2007). A null and perfect score represents a respondent who failed and 

passed, respectively, all test items on an instrument such as an exam (Swaminathan & 

Gifford, 1985). For this study, these scores represented a patient who experienced none or 

all of the AEs reported during an industry clinical trial (ICT). 

IRT models, regardless of the theoretical framework, density assumptions, and the 

level of measurement for responses to items, generally aim to estimate four types of 

parameters. The parameter Z denotes the n × k matrix of unobservable latent trait values 

for each respondent n and item k. This parameter’s range space is dependent upon the 

assumed PDF. For example, this range may be –3 to +3 for a normal PDF. The ability 

parameter, θ, denotes the n × 1 vector of ability values for n respondents, and typically 

has the same range space as Z. The empirical distribution of this parameter is commonly 

characterized in terms of an Item Response Function (IRF) for n respondents and k items 

or a Person Response Function (PRF) for the ith respondent for k items (Meijer & Sijtsma, 

2001). A PRF is a subset of an IRF. The last two parameters represent behavioral 

responses of items that help characterize a latent trait. The parameter B represents the 1×k 

vector of difficulty values or observed occurrences of the k items. The parameter A 

denotes the 1 × k vector of discrimination values or differential contribution of the k 

items.  

In this study, the latent trait parameter Z was categorized as the Transfusion-

Related Adverse Event (AE). The parameter AE Predisposition (θ) was a measure of a 
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patient’s predisposition to experiencing a particular type of transfusion-related AE. The 

parameters A and B measured the discrimination and occurrence, respectively, of each 

type of AE.  

Two-Parameter Logistic IRT Model 

Three versions of the two-parameter logistic IRT model were used to estimate the 

AE Predisposition (θ), discrimination, and difficulty parameters for k = 9 types of AEs. In 

that null scores were anticipated and perfect scores were possible for the AE items, a 

Bayesian framework was used for parameter estimation. Figure 3 (p. 30) is presented in 

order to transition traditional IRT terminology into the modeling of AEs reported for 

industry clinical trials.  

This figure contains two IRFs, each representing a single AE type for 10 fictitious 

patients. The discrimination and difficulty parameter were –0.5 and –2.0, respectively, for 

Curve 1. This curve may be anticipated when patients are relatively homogeneous in 

relevant baseline parameters. For Curve 2, the discrimination and difficulty parameter 

were +2.0 and +0.5, respectively. This curve may be expected when patient populations 

are relatively heterogeneous in relevant baseline parameters. 

With respect to the interpretation of a discrimination parameter, if it is less than 

zero (Curve 1, Figure 3), the IRF will not be monotonic. This means that high ability 

persons (large θ) will have a smaller probability of correct response than low ability 

persons (small θ). In terms of AEs, this finding would indicate that patients who are most 

predisposed to a particular type of AE will have lower probabilities of predisposition than 
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patients who are least predisposed. Basically, negative discrimination values would invert 

the population risk to a particular type of AE. 
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Figure 3. Example Two-Parameter Logistic IRT Curves 

When a discrimination parameter is between zero and 0.75, respondents may have 

comparable probabilities of correct response. In some instances, these items may be 

viewed as poorly fitting items and removed from the instrument so that model fit is 

improved (de Gruijter, 2004). In terms of AEs, such a discrimination parameter may 

indicate that persons in a studied population have a comparable predisposition to a 

particular type of AE. This is not necessarily a negative finding in an ICT. Furthermore, 

regulatory agencies require that AE analyses be based on all reported data (ICH E9, 

1998).  
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Last, when a discrimination parameter exceeds 0.75 (Figure 3, Curve 2), the IRF 

may provide valuable information about instrument quality over the range space of θ. In 

terms of this study, such a finding may mean that the IRT model is able to differentiate 

the predisposition of patients experiencing particular types of AEs. It is well known that 

patients may not be equally predisposed to AEs (Steyerberg et al., 2010), and an IRT 

model may be a viable solution for identifying patients that are at-risk for experiencing a 

certain type of AE. 

Difficulty is the last parameter to be estimated with an IRT model. If this 

parameter is negative (Figure 3, Curve 1), the probability of correct response may exceed 

0.5 for the majority of study respondents. In relation to this study, many patients having a 

high predisposition to an AE may be indicative of an at-risk population and/or an unsafe 

pharmaceutical product. If the difficulty parameter is positive (Figure 3, Curve 2), the 

probability of correct response may fall below 0.5 for the majority of the respondents 

(Rudner, 1998). This finding would correlate with a product approved for market use, 

where the overall patient predisposition to AEs is low for a relatively safe product. 

IRT Model Assumptions 

After the estimation of the IRT model parameters, it must be determined whether 

these results are appropriate for evaluating an instrument. Three key assumptions were 

pertinent to this evaluation. The first assumption is concerned with the number of latent 

traits assumed as compared to those that are actually present in a data structure. If an IRT 

model assumes that one latent trait exists (i.e., unidimensionality) in a data structure and 

it actually contains two or more traits (i.e., multidimensionality), the resulting parameter 
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estimates will be biased and should not be used for evaluating an instrument. The second 

assumption is concerned with whether an IRF is monotonic. Such functions enable 

respondents with high ability or proficiency to have a higher probability of a correct 

response on an item than low ability persons. The last assumption, local independence, 

requires that an instrument item does not affect the probability of correct response to 

another item; that is, the items are independent.  

Dimensionality of Latent Space. This assumption is concerned with identifying 

the number of dimensions or latent traits in a data structure (Hambleton & Cook, 1977). 

This study assumed that the latent trait Transfusion-Related Adverse Event is 

unidimensional for investigating k = 9 types of AEs that may occur from the transfusion 

of blood products such as platelets, whole blood, and plasma. According to Battles, 

Kaplan, Van der Schaaf, and Shea (1998), the type of AEs reported for a given 

population, treatment regimen, and clinical indication is typically restricted to the context 

in which these events occur. This study assumed a single context. If a data structure 

consisted of two or more contexts, it would be anticipated that the number of 

Transfusion-Related Adverse Event latent traits would be a function of the number of 

contexts present. Additional information is provided by Stout (1987), Finch and Habing 

(2007), and Nandakumar and Stout (1993) on dimensionality for IRT models.  

Monotonicity. A CDF is monotonic if it exhibits a non-decreasing form over an 

x-plane (Bartolucci & Forcina, 2005; Hogg & Craig, 1995). The logistic CDF for the two-

parameter IRT model was employed in this study. This CDF has a known form, and is 

monotonic (i.e., non-decreasing) over zero to one (Hogg & Craig, 1995). 
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Strong Form of Local Independence. The last assumption, conditional upon the 

respondent’s latent trait, requires that “an examinee’s performance on one item does not 

affect his or her performance on other items in the test” (Hambleton & Cook, 1977, 

pp. 77–78). This assumption is applicable to ICTs where a patient experiences multiple 

types of AEs. If the occurrence of one type of AE affects the occurrence of a second AE, 

these AEs would be dependent, and the strong form of local independence assumption 

would be violated. For most ICT settings, this is not the case. AEs are typically 

independent of one another (Grattagliano, Portincasa, Mastronardi, Palmieri, & 

Palasciano, 2005; Iannelli, 2010; Laake & Røttingen, 2001).  

Mathematical Statistics 

This study used three forms of the Bayesian two-parameter logistic IRT model to 

characterize the latent trait Transfusion-Related Adverse Event. Characterization was 

performed with the AE Predisposition (θ), discrimination, and difficulty parameters for 

each of these models. In order to understand how these parameters were estimated, a brief 

background on mathematical statistics is provided.  

This field of statistics is composed of three theoretical frameworks which fall 

under two philosophical paradigms. The parametric and nonparametric frameworks fall 

under the classical or frequentist paradigm (Bernardo, 2003). The Bayesian framework 

falls under the Bayesian paradigm (Bandyopadhyay & Forster, 2010). These two 

paradigms differ in structure but attempt to answer the same objectives 

Under the classical paradigm, the population parameter ψ  is fixed and no 

distribution is assumed for this parameter (Bartoszyński & Niewiadomska-Bugaj, 1996). 
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As a result, prior information can only be used to identify methods appropriate for 

analyzing data, and determining sample size requirements for substantiating a priori 

objectives (Lee, 1997). Under the Bayesian paradigm, the population parameter ψ  is 

treated as a random variable (Lynch, 2007) that can be modeled with a “prior” PDF (U.S. 

Department of Health and Human Services, 2010b). As a result, prior study information 

can be combined with prospective data to derive a posterior PDF. Hypothesis testing 

would then be based on estimators from this updated density. Common to both 

paradigms, statistical inference and power analysis are readily applicable. 

Bayesian Theory 

Bayesian statistical inference and power functions are based on posterior densities 

that are “updated” with prior information (Hogg, McKean, & Craig, 2005). A 

combination of univariate and joint densities are needed to derive a posterior PDF. For 

this derivation, the prior PDF with form ( )ψΨ h~  is to be combined with the likelihood 

function of the expected data ( )ψψ |f~| xx  and Ψ∈ψ . This cross-product results in a 

joint PDF, for conditionally independent xi, with form 

( ) ( ) ( )ψψ=ψ h;L,g xx        (Eq. 2) 

where ( ) ( ) ( )∏
=

ψ=ψ=ψ
n

1i
i |xf|f;L xx  is the likelihood function. The posterior PDF can 

then be derived as  

( ) ( ) ( )

( )∫ ψψ

ψψ=ψ
b

a

d,g

h|L
|g

x

x
x        (Eq. 3) 
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g(x) is the unconditional PDF of x with the assumption ( ) 0,g =ψx  for [ ]b,a∉ψ .  

Example. An example was provided to illustrate the derivation of a posterior PDF 

and its parameters. This result was then compared to a comparable parametric approach.  

Let ( )θθ=θ |xf~|X,...,X| n1X  be Bernoulli responses { }1,0Xi =  where 

( ) θ==1XP i  and ( ) θ−== 10XP i . The beta PDF 

( )
( )
( ) ( ) ( )

,
0

x1x
ba

ba
b,a;xf

1b1a






 −
ΓΓ
+Γ

=
−−

otherwise

1x0 <<
  

is the “conjugate prior” (U.S. Department of Health and Human Services, 2010b) of this 

Bernoulli density. The cross-product of the likelihood function of the Bernoulli PDF and 

the beta prior results in the joint PDF 

 ( ) ( ) ( )
( ) ( ) ( )∏

=

−−− θ−θ
ΓΓ
+Γ⋅θ−θ=θ

n

1i

1b1aix1ix 1
ba

ba
1;g x  

( ) ( )
( ) ( ) ( ) 1b1an

1i iXn
n

1i iX
1

ba

ba
1 −−∑ =−∑ = θ−θ

ΓΓ
+Γ⋅θ−θ=  

( )
( ) ( ) ( ) 1snb1sa 1

ba

ba −−+−+ θ−θ
ΓΓ
+Γ=  

where ∑
=

=
n

1i
iXs . The marginal distribution of this joint density then equals 

 ( ) ( ) ( )
( ) ( ) ( ) θθ−θ

ΓΓ
+Γ=θθ= ∫∫

−−+−+ d1
ba

ba
d;gg

1

0

1snb1sa
1

0

xx  

( )
( ) ( )

( ) ( )
( ) ⋅

++Γ
−+Γ+Γ⋅

ΓΓ
+Γ=

nba

snbsa

ba

ba
   [this] 
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( )
( ) ( ) ( ) θθ−θ

−+Γ+Γ
++Γ

∫
−−+−+

1

0

1snb1sa d1
snbsa

nba  since [this]=1.   

The posterior PDF then equals 

 ( ) ( )
( )

( )
( ) ( ) ( )
( )
( ) ( )

( ) ( )
( )nba

snbsa

ba

ba

1
ba

ba

g
;g

|g

1snb1sa

++Γ
−+Γ+Γ⋅

ΓΓ
+Γ

θ−θ
ΓΓ
+Γ

=θ=θ

−−+−+

x
x

x  

( )
( ) ( )

( )nba
snbsa

1 1snb1sa

++Γ
−+Γ+Γ

θ−θ=
−−+−+

 

( )
( ) ( ) ( ) ( )snb,saBeta~1

snbsa

nba 1snb1sa −++θ−θ
−+Γ+Γ

++Γ= −−+−+ . 

Using this posterior PDF, a posterior probability interval (PPI) or a credibility 

interval, the Bayesian counterpart to a confidence interval (CI), can be derived. This PPI 

can then be used, for example, to present the precision of the rate of AEs for a medical 

treatment (e.g., 0.02 ± 0.005).  

A Wald form of this PPI was based on the first and second moments of the PDF 

( )snb,saBeta −++ . The conditional mean of this PDF (Hogg & Craig, 1995) was 

derived as [ ] ( ) ( ) nba
sa

snbsa
sa

X|E
++

+=
−+++

+==θ x , where the scale and location 

parameter are denoted by a and b, respectively. The conditional variance of this function 

(Hogg & Craig, 1995) was then derived as 

[ ] ( )( )
( ) ( )1nbanba

snbsa
X|V

2 +++++

−++==θ x  

The resulting PPI was derived as 
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( )( )
( ) ( )

n/
1nbanba

snbsa
t

nba

sa
21n,2/1 














+++++

−++±
++

+
−α− . 

Continuing with this example, the number of AE occurrences s was set to 10 for 

n = 100 patients. The resulting 95% (two-sided) PPI was (0.130, 0.143) for a normal prior 

density (i.e., Beta(5,5)) and (0.109, 0.121) for the prior density Beta(3,10). Hoehler 

(1995) developed a classical method for determining sample size requirements based on 

the respective lower and upper Beta confidence limits ( )s,1snBeta1 +−− and 

( )snsBeta −+ ,1 . For s = 10 and n = 100, the resulting 95% (two-sided) CI was (0.049, 

0.176).  

The margins of error for the Bayesian normal and beta priors were 0.0065 and 

0.0060, respectively. The margin of error 0.0635 was found for the classical method. 

These results demonstrated that the CI is less precise than the PPI for both assumed 

priors. Furthermore, these results demonstrated the impact of different prior densities on 

estimation. The prior density that should be used for an analysis should be guided with an 

understanding of the fit of the prior. If this density is carefully and accurately chosen 

(Swaminathan et al., 2003) and sample size estimation is sufficiently performed, the 

obtained precision of the estimate should be trustworthy. This logic is not restricted to 

one-sample designs, and can be readily applied to more sophisticated statistical 

approaches such as the IRT model. 
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Bayesian Item Response Theory Models 

Three different forms of the Bayesian two-parameter logistic IRT model were 

used to estimate the latent trait parameters AE Predisposition (θ), discrimination, and 

difficulty. These IRT models can be differentiated as traditional and exchangeable. The 

traditional model assumed that the latent trait parameters were normal. The exchangeable 

models had a comparable structure, but differed from the traditional approach in an 

important way. The exchangeable (EX) and mixed-exchangeable (MEX) models assumed 

that the distribution of the discrimination parameter was not normal. The MEX model 

built upon the traditional and EX models by adjusting estimation on outlying 

discrimination values. This study sought to determine which of these IRT models was 

most efficient in modeling rare binomial events that possess null data structures. This 

study characterized this type of data as AEs experienced from the transfusion of blood 

products such as platelets, whole blood, and plasma.  

The general form of the Bayesian IRT model to be utilized was  

( ) ( ) ( )[ ] ( ) ( ) ( )⋅πφθφφ∝µ ∏∏ ∏∏
= = ==

n

1i

k

1j

k

1j
0j

n

1i
iijijijaa by,ZIZ|,s,,,,g YBAθZ  (Eq. 4) 

Y is an n × k matrix of observed occurrences of k AE types for n patients. The values n 

and k do not need to be a priori unless a study is powered specifically to investigate them. 

For each AE type k, a response of one indicated that patient i experienced a particular 

type of AE, and a response of zero indicated otherwise. Z, an n × k matrix of values that 

represented the latent trait Transfusion-Related Adverse Event, was modeled with the 

normal conditional posterior PDF  
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jijij ,b,a|1,baN~Z θ=σ−θ=µ     (Eq. 5) 

The superscript (i) denoted the starting or initial value of the AE Predisposition (θ), 

discrimination, and difficulty parameters. AE Predisposition (θ), an n × 1 vector of 

patient predisposition values to experiencing types of AEs, was modeled with the normal 

conditional PDF 
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B was an 1 × k vector of difficulty values or observed occurrences of each AE item. A 

was an 1 × k vector of discrimination values that denoted the differential contribution of 

each AE item to the latent trait. A and B were modeled with the multivariate normal PDF 

with different forms of µa and sa, given A(i), B(i), Z, and θ. 

[ ] [ ] [ ][ ] [ ]( )1
0

1
0

11
0 ',0''~ −−−− +=++= ΣXXσΣZXΣXXµBA 2

aMN µ   (Eq. 7) 
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Σ  and X was the covariate vector ( )1,i −θ . The mean ( aµ ) and variance 

( 2
as ) of the discrimination parameter were estimated differently for the three IRT models 

under investigation.  

The hierarchical hyperparameters (Lynch, 2007) aµ and 2
as  were set to 0 and 1, 

respectively, for the two-parameter logistic IRT model or 2-PL (Johnson & Albert, 1999). 
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The two-parameter exchangeable logistic IRT model or 2-PL EX (Johnson & Albert, 

1999) used Equation 8 for modeling aµ  and 2
as :  

( ) ( ) ( )∏
=

−−−
µφ=µπ

k

1j

2
aaj

2
as/2v11v2

a
2
aa0 s,;aess,,A  (Eq. 8) 

Johnson and Albert (1999) recommend v1 = v2 = 1. Using the posterior joint PDF 

comprising this prior PDF the mean  

∑
=

=µ
k

1j
ja a

k
1

 

was first updated with a uniform prior. The variance 2
as  was then updated by the inverse 

gamma PDF  
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2
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where α and β denoted the scale and location parameter, respectively. The two-parameter 

mixed-exchangeable logistic IRT model or 2-PL MEX (Toribio, 2006) assumed the 

conditional posterior PDF of the discrimination parameter was a mixture of two normal 

density functions in the prior density 

( ) ( ) 11v2
a

2
aa0 ss,,,

−−
=µπ γA

 ( ) ( ) ( ) ( ) ( )[ ]∏
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s

v
exp  (Eq. 9) 

for   

( ) ( )2
a

2
a

2
aaj sK,)p1(s,p~a µφ⋅−+µφ⋅  (Eq. 10) 
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φ  represented a normal PDF with mean µ  and variance 2σ . γwas a Bernoulli latent trait 

variable that indicated whether a discrimination value was outlying ( )1j =γ  with 

probability 1 – p or not outlying ( )0j =γ  with probability p. This probability was 

estimated as  

( )
( ) ( ) ( )aaj

)1t(
aaj

)1t(
aaj

)1t(
)t(

Ks,;ap1s,;ap

s,;ap
p

µφ−+µφ

µφ
= −−

−
   (Eq. 11) 

p(t+1) was simulated with the beta PDF with the scale and location parameters set to n1+1 

and n2+1, respectively. n2 and n1 represented the number of discrimination values (aj) that 

were and were not outlying, respectively. If the simulated value was greater than a pre-

specified value (e.g., 0.90), then the discrimination value was categorized as outlying. For 

this IRT model K was fixed to a constant of 3. A uniform prior was assumed for the 

hyperparameter aµ and was updated using the normal PDF with mean  
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An inverse gamma PDF was assumed on the hyperparameter 2
as  and was updated with 

variance  
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The form of this gamma density had form ~1−Γ  

( )
( )

( )
( ) 
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1
a

2
1

vv,2/kvv  (Eq. 14) 

Gibbs Sampling 

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) procedure (Patz & 

Junker, 1999a) for simulating parameter estimates from computationally complex joint 

PDFs (Patz & Junker, 1999b) such as Equation 4 (p. 38). The inverse cumulative 

distribution function (CDF) transformation method was used to simulate conditional 

densities of the joint PDFs so that model parameters could be estimated. This procedure 

uses the inverse CDF (Johnson & Liu, 2000) of marginal densities and/or conditional 

densities to generate random values for estimation.  

In order for parameters to be appropriate for use, three estimation assumptions 

must be reasonably met. First, the mean of each parameter must “converge to the chain's 

stationary distribution” (Patz & Junker, 1999b, p. 150). The period prior to convergence 

is referred to as the burn-in period (Eaves et al., 2005). The stationary state can be 

visualized as stable means over i iterations of the x-plane of the Gibbs sampler. The 

second assumption requires a “thoroughly mixed” density. A joint density is mixed if the 

parameter’s standard deviation is stable over i iterations of the x-plane of the Gibbs 

sampler. The last assumption, “thinning the chain” (Lynch, 2007, p. 147), pertains to 

reliability of statistical inference. If the parameter estimates are autocorrelated (May, 

2006), the resulting estimators (e.g., mean and variance) may not be appropriate for 
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decision-making purposes. A correctly designed systematic random sample (Lohr, 1999) 

for removing serial autocorrelation from parameter estimates may avoid this issue.  

To illustrate how a Gibbs sampling algorithms works, a detailed example was 

provided. Let the joint PDF equal the cross-product of the gamma density ( ),1,1~Y Γ  

0b,a > , and the conditional PDF 

( )
( )

,
0

e
y|xf

yx







=
−−

otherwise

xy0 ∞<<<
     (Eq. 15) 

The resulting joint PDF was  

( ) ( ) ( ) ( )yxyeey|xfyfy,xf −−−==        (Eq. 16) 

Using the inverse CDF transformation method, the CDF of  ( ),1,1~Y Γ  0b,a > , was  

( ) y
y

0

t e1dteyF −− −== ∫  

Next, this CDF was set equal to u and solved for y. 

ye1u −−=  

u1e y −=⇒ −  

( ) ( )u1logelog e
y

e −=⇒ −  

( )u1logy e −=−⇒  

( ) ( )uFu1log*y 1
Ye
−=−−=⇒ , where u ~ U(0,1)    (Eq. 17) 

U(0,1) represents the uniform PDF with range space 0,1. Continuing with this example, 

the CDF of ( )y|xf  was derived as 
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 ( ) ( ) 1eeeeedteedtey|xF yxyxy
x

y

ty
x

y

yt +−=+−=== −−−−+−
∫∫  

Setting this result equal to u and solving for x we had 

 1eeu yx +−= −  

yxee1u −−=−⇒  

yxeeu1 −=−⇒  

( ) ( )yx
ee eelogu1log −=−⇒  

( ) yxu1loge +−=−⇒  

( ) xyu1loge −=−−⇒  

( ) ( )uFxu1log*y 1
Y|Xe

−==−−⇒       (Eq. 18) 

Equations 17–18 can then be used to simulate values of Y and X, respectively, 

from the joint PDF ( ) ( )yxyeey,xf −−−= . With these simulated values, estimators (e.g., 

mean and variance) of X and Y can be computed across the sequence of Gibbs sampling 

iterations. 

A Gibbs sampling algorithm based on this approach was used to estimate the 

latent trait parameters Z, AE Predisposition (θ), A, and B for the 2-PL, 2-PL EX, and 

2-PL MEX IRT models. The general form of the density to be simulated was 

( )YBAθZ |,s,,,,g aaµ       (Eq. 19) 
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The Gibbs sampling algorithm was performed on three contingent conditional PDFs of 

the posterior joint PDF. With the initial estimates θ(i), A(i), and B(i), the latent variable Z 

was simulated and estimated with the univariate conditional PDF 

( )YθBAZ ,,,|g (i)(i)(i)       (Eq. 20) 

With this parameter, AE Predisposition (θ) was then estimated with the univariate 

conditional PDF 

( )YBAZθ ,,,|g )i()i(        (Eq. 21)  

With Z and AE Predisposition (θ) known, A and B were then simultaneously estimated 

with the multivariate conditional PDF 

( )YθZBA ,,|,g        (Eq. 22) 

The assumptions of the sequences of Gibbs sampler iterations will be detailed in Chapter 

III. 

Clinical Objectives 

This section discusses the superiority and equivalence study objectives that were 

investigated with the 2-PL, 2-PL EX, and 2-PL MEX IRT models. 

Superiority 

Superiority is utilized when the objective of a study is to demonstrate that a new 

group (e.g., Treatment A) is better than or different from another group (e.g., Treatment 

B) in a given response variable (Lange & Freitag, 2005). Mathematically, this objective is 

utilized when a minimum acceptable distance between groups is to be statistically 
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substantiated. If the effect (e.g., mean of the treatment difference: A – B) of a response 

variable is expected to be positive, the testing framework should be based on the 

hypothesis set  

:H0  0BA ≤−  

:H1  0BA >−          

If the 100(1 – α/2)% lower confidence limit on the effect is greater than zero, then 

Treatment A is statistically better than Treatment B in a response variable. If the effect is 

expected to be negative, the testing framework should be based on the hypothesis set 

:H0  0BA ≥−  

:H1  0BA <−           

If the 100(1 – α/2)% upper confidence limit is less than zero, Treatment A is statistically 

superior to Treatment B in a response variable.  

Hypothesis Testing in IRT Application 

This section overviews existing hypothesis testing applied to IRT analyses of 

binomial item responses. The general concept of each type of IRT objective with 

references is provided. These hypotheses pertain to the substantiation of calibration for 

instruments and their items, determination of item invariance, evaluation of model 

assumptions (dimensionality of latent space, monotonicity, and local independence), and 

assessment of goodness-of-fit. The latter two uses of IRT hypothesis testing are presented 

in different sections of this dissertation. 
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Calibration. Kubinger (2005) indicates that instruments and the items comprising 

these instruments are calibrated when a certain level of precision of the parameter 

estimates (e.g., θ) is achieved. Although the author uses a likelihood ratio test to assess 

such precision, a more appropriate analysis may be based on the confidence interval (CI) 

approach. Significance would be achieved if the limits of the CI for a parameter fall 

within a predetermined margin of error. As correctly specified by Kubinger, this error 

should be scientifically based and determined by the researcher prior to the collection of 

data. Goethals (1994) indicates that the margin of error should not exceed 10% of the 

historical range. As an example, if the historical range of a latent trait ability parameter is 

1.5 – 2.5, then the maximum margin of error would then equal ( ) 05.02/5.15.21.0 =− . 

The researcher could then design a study to statistically substantiate this level of precision 

with a priori power. If the final study results demonstrated that the confidence limits fall 

within this margin of error, the researcher could then claim that the item is calibrated. 

Additional information on hypothesis testing for instrument and item calibration is 

provided by Goethals (1994), Alexandrowicz (2002), and Bjorner, Kosinski, and Ware 

(2003). 

Differential Item Functioning (DIF). When developing an instrument, it may be 

desired that its use is not restricted to a limited set of respondent characteristics. That is, 

the researcher would want the items comprising the instrument to be invariant for as 

many characteristics as possible. In IRT, this phenomenon pertains to the concept of DIF. 

If respondents do not differ in latent trait parameters, the applicable instrument is 

invariant on their characteristics. If DIF is present, then subgroups or specific categories 
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of subgroups have a significantly different probability of success for a given ability level 

on a latent trait (Teresi, Kleinman, & Ocepek-Welikson, 2000). In other words, different 

types of respondents “may react differently to the same question” (Holland & Thayer, 

1986, p. 1). This defeats the creation of an instrument upon which one can broadly rely. 

Two general types of DIF or item bias are available in the literature (Mellenbergh, 

1982). Uniform DIF is based on the comparison of IRT models. If a significant difference 

exists between a full IRT model with all items included and a reduced IRT model with 

one or more items removed from the analysis, then uniform DIF is present. In other 

words, this type of DIF exists when Item Response Functions, one per subgroup (e.g., 

men vs. women), are parallel and significantly different (Swaminathan & Rogers, 1990). 

Nonuniform DIF is based on the interaction effect and is evaluated by three types of 

analysis. First, this type of DIF may occur when an ability parameter (θ) and a subgroup 

parameter (X) interact on a discrimination parameter (A) for a particular item (Cook et al., 

2007). Next, nonuniform DIF may occur when θ and X interact on a difficulty parameter 

(B) for the same item (Cook et al., 2007). Last, nonuniform DIF may occur when IRFs are 

not parallel, and interaction effects may be present for this scenario (Teresi et al., 2000). 

Many approaches have been recommended for determining the presence of DIF, 

but the Cochran–Mantel–Haenszel statistic (CMH) (Glickman, Seal, & Eisen, 2009) and 

logistic regression model (Kok, Mellenbergh, & van der Flier, 1985) appear to be widely 

utilized in IRT application. 

CMH is based on the adjusted odds ratio (OR) for each item k where the 

stratification variable is the raw score (Y). The hypothesis set is therefore 
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 :H0  1adjusted =ψ  

 :H1  1adjusted ≠ψ  

If the adjusted OR is significantly different from one, then the groups of interest (e.g., 

males vs. females) may behave differently on a given item. The OR for each level r of the 

raw score (stratum) is computed as   

r01r0

r00r
r nn

nn
  OR

1

11=  

For each stratum, n11 denotes the frequency of respondents who achieved the raw score r 

for both groups of interest (e.g., 1 = males vs. 0 = females). n10 denotes the frequency of 

male respondents who achieved the raw score r and the number of female respondents 

who did not achieve the raw score r. n01 denotes the frequency of male respondents who 

did not achieve the raw score r and the number of female respondents who achieved the 

raw score r. n00 denotes the frequency of male and female respondents who did not 

achieve the raw score r (Sinharay, 2005). 

 The use of the logistic regression model is a different approach for achieving the 

same goal as CMH. For each item, the response variable is the item response, the fixed 

effects are the respondent group variable (e.g., males vs. females) and the item score, and 

the interaction effect between these predictor variables. A significant interaction effect 

(p-value < 0.10) denotes the presence of DIF between respondent characteristics. 

 A key advantage of both the CMH and logistic regression model is that they can 

be extended to DIF for all items on a test instrument. A possible disadvantage to both of 

these approaches pertains to statistical power. If studies are not powered to sufficiently 
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detect a relevant magnitude of DIF, then conclusions regarding how various groups 

compare on a latent trait could be confounded with sample size. Additional information 

for evaluating DIF is provided by Crane, Gibbons, Narasimhalu, Lai, and Cella (2007), 

Perkins, Stump, Monahan, and McHorney (2006), Steinberg and Thissen (2006), Froelich 

and Habing (2008), Lewis (2006), Stone (2003), and Douglas (1996). 

Equivalence 

Equivalence, loosely speaking, can be thought of as the antithesis of superiority. 

When the objective of a study is to demonstrate that one treatment is the same as or 

comparable to another treatment in a response variable, equivalence is the recommended 

study objective (Liu, 2005). The equivalence margin (∆), which will be detailed in the 

next section, is a measure of the degree of this similarity or comparability (Bauer, 2005; 

Blackwelder, 2002). Mathematically, this objective is utilized when a maximum 

acceptable distance between groups is to be statistically substantiated. As opposed using a 

single one- or two-sided hypothesis to evaluate an objective, equivalence is based on two 

one-sided hypothesis tests in the set for Treatment A and B 

:H0  BBA ∆−≤−  or BBA ∆+≥−  

⇔ 0BBA ≤∆+−  or 0BBA ≥∆−−  

:H1  BBAB ∆+<−<∆−  

⇔ 0BBA:1 >∆+−ω  and 0BBA:2 <∆−−ω     

If the 100(1 – α/2)% lower confidence limit on effect 1 ( )1ω  is greater than zero and the 

100(1 – α/2)% upper confidence limit on effect 2 ( )2ω  is less than zero, then equivalence 
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is statistically substantiated between the treatments groups on a response variable with 

100( α−1 )% confidence. 

Equivalence Margin Estimation 

The equivalence margin specifies how far apart treatment groups can be before 

they are no longer scientifically comparable in a given response variable. Margins should 

be determined only in an a priori manner, and are necessary for correct sample size 

estimation. Analyses based on such a planned sample size should only use this margin. 

The study or trial may not be powered appropriately for other margins.  

The available approaches or definitions for statistically estimating this margin for 

non-placebo trials were provided. After an equivalence margin is statistically estimated, it 

should be scientifically or clinically validated before use (Lange & Freitag, 2005). This 

process comprises determining the impact on study conclusions for the chosen 

equivalence margin. As an extreme example, if one treatment group should be within 

10% of another, the study should not be designed on a margin 5 times larger than the 

expected difference. 

Equivalence Margin 1. The first definition multiplies a historical difference 

between treatments A and B (Hung, Wang, Tsong, Lawrence, & O’Neil, 2003) by the 

constant k. This margin is estimated as  

( )BA XXk −=∆         (Eq. 23) 

The use of this difference must be closely evaluated in relation to historical and 

prospective study parameters to be employed (e.g., design, population, location) (ICH 

E10, 2000). The constant k may range from 0 to 1, where these values denote superiority 
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and absolute equivalence, respectively, between treatment groups. Although Hauschke 

(2001) recommends that k can equal 1/5, 1/3, or 1/2, this constant should be based on the 

desired effect to be retained. For example, if k = 0.1, then the study would be designed to 

demonstrate that at least 90% of the effect from Treatment B is retained by Treatment A. 

Ng (2001) indicates that the value of k should be balanced with clinical substantiation and 

sample size feasibility. 

Equivalence Margin 2. The next definition for estimating an equivalence margin 

multiplies the historical standard deviation of an effect by the constant k (Wiens, 2002).  

Equivalence Margin 3. The third definition for estimating an equivalence margin 

is based on a fraction of Cohen’s effect size of the historical data (Ng, 2001). This margin 

is estimated as 








 −=∆
AB

BA
s

XX
k        (Eq. 25) 

Equivalence Margin 4. The fourth definition for estimating an equivalence margin 

is based on the Proportion of Similar Responses (PSR) approach (Heyse & Stine, 2000). 

PSR estimates the margin by calculating the area under empirical densities fi(x). This 

margin is estimated as 

[ ]dx)x(fminPSR i∫
∞

∞−
=       (Eq. 24) 

Equivalence Margin 5. Chow and Shao (2006) developed a definition for 

estimating an equivalence margin that is based on the standard normal density function 

and the variability of historical data. For treatments A and B, this margin equals 
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where Z denotes a standard normal critical value, η is the desired statistical power, Z1–ε =  

Z1–α+Zβ, where β is the allowed Type II error (e.g., 20% for a Phase III ICT), and  
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Equivalence Margin 6. The last definition, referred to as the 95%–95% approach, 

for estimating an equivalence margin was developed and recommended by the FDA (U.S. 

Department of Health and Human Services, 2010a). This method first requires estimating 

the 97.5% lower confidence limit of a 95% (two-sided) CI on the percent difference 

between treatment groups for the desired variable. With this lower limit of this CI, the 

equivalence margin is computed as  










−
−

LCL1
1

1k        (Eq. 28) 

The six equivalence margin definitions will be quantitatively compared in Chapter 

IV for various rates of binomial response variables (Table 30, p. 166). In this study, a 

single arbitrary equivalence margin (∆ = 10%) was used for statistical inference and 

power analysis application. 

Power Analysis 

This section reviews the available literature on power analysis used for IRT and 

paired binomial application. Some of this literature provides general guidance simply 

recommending its use to the reader when designing instruments. Other authors provide 
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general sample size requirements based on Cohen’s effect size. Studies that utilized 

formal power analysis for IRT application are then presented. After background on power 

analysis in IRT utilization is provided, this section introduces the concept of paired 

binomial responses. The existing functions for computing asymptotic Type I and II errors 

are then presented for multiple superiority and equivalence approaches. 

Three technical definitions of statistical power (1 – β) are generally available. The 

first definition indicates that power is the probability of rejecting the null hypothesis 

given the alterative hypothesis is true. The second technical definition indicates that 

power is the probability of rejecting the null hypothesis when it is false. Power has also 

been formally defined as the probability of rejecting the null hypothesis “for any given set 

of circumstances, even those corresponding to H0 being true.” (Castelloe, 2000, p. 1).  

These conditional definitions of power are needed in order to have a universal 

definition for different types of hypothesis sets used for statistical inference. Composite 

hypotheses (Neyman, 1977) such as H0: 0BA ≥µ−µ versus H1: 0BA <µ−µ cover the 

full range of possible treatment differences. The simple hypothesis set (Graves, 1978) 

H0: 0BA k=µ−µ  versus H1: 1BA k=µ−µ and the hybrid hypothesis set (Jones, 1952) 

H0: 0BA =µ−µ  versus H1: 0BA <µ−µ do not cover the full range of treatment 

differences. As a result, the condition that the alternative hypothesis be true 

accommodates these three testing scenarios. 
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Item Response Theory 

The Western Michigan University library system, WorldCat, Web of Science, 

ERIC, and ABI/Inform document databases were searched for all combinations of the 

terms item response theory, power function, and power analysis. The database results 

returned a total of nine articles. Five of the articles specified that power analysis was 

performed, but details for conducting the power analysis were not provided. The 

remaining articles presented either a formal power function or the details for computing 

sample size requirements for IRT application. 

Eisen, Wilcox, Leff, Schaefer, and Culhane (1999) recorded mental health 

variables based on the Behavior and Symptom Identification Scale (BASIS-32) for a 

small sample of severely ill patients. The authors concluded that their small sample size 

was a limitation of their study with respect to their primary analysis based on Classical 

Test Theory (Lord & Novick, 1968). The authors concluded that to overcome this 

limitation IRT may “create useful, reliable, and valid outcome instruments” (Eisen et al., 

1999, p. 15) for studies that have adequate statistical power. May, Cole, Haimson, and 

Perez-Johnson (2011) investigated achievement levels of state assessment exams. The 

purpose of their study was to derive parameters for these exams enabling more reliable 

sample size estimation on the ability parameter θ for various combinations of A and B for 

future studies. Steinberg and Thissen (2006) discussed sample size estimation based on 

group differences in the IRT parameters discrimination and difficulty. Cohen’s effect 

sizes on these parameters were utilized to determine the minimum number of respondents 

required for detecting DIF between groups on these parameters. Cole, Lin, and Rupnow 
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(2009) conducted a study to determine minimally important effect sizes for treatment 

groups based on the Migraine-Specific Quality of Life Questionnaire version 2.1 (MSQ 

v2.1). Cohen effect sizes, based on the mean of change score differences, were based on 

three doses of Toperimate versus a placebo for the treatment of migraines. The article 

recommended that the study results could be used to power future trials for this 

investigational treatment. Kubinger (2005) used likelihood ratio tests to discuss the 

relationship between sample size requirements and test calibration for adaptive testing. In 

order for a test to be calibrated, the parameter estimates from the IRT model must be 

“accurate” (p. 388). The author further indicated that the definition of accuracy must have 

“practical relevance” (p. 389), and went on to state that the best means of minimizing 

irrelevant significance tests is to appropriately power a study for the desired effect.  

In summary, the articles that discuss sample size recommendations based on IRT 

application and methodology are general and based on preconceived estimators such as 

Cohen’s effect size. In terms of formal power analysis, such an approach is vague and not 

recommended. The estimation of effects (numerator of effect size) is always specific to 

the study objective of interest. Furthermore, effects are computed differently for k-sample 

matched versus k-sample independent study designs, and also between superiority and 

equivalence study objectives. Also, effect sizes are dependent upon the type of estimator 

(e.g., mean, median, slope) employed for the effect. As a result, sample size requirements 

are typically specific to the study being conducted. 

The remaining IRT articles presented formal power functions or sufficient detail 

for determining sample size requirements. Sato, Rabinowitz, Gallagher, and Huang 

(2010) utilized a Difference-in-Difference study design for investigating items on a 
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mathematics exam. One-, two-, and three-parameter logistic IRT models were used for 

generating ability estimates for two types of math item sets (linguistically modified (L), 

original (O)) for three groups (EL, NEP, EP) of students categorized for reading 

proficiency levels. The hypothesis set for testing the differences between these groups 

was 

H0: 0
OLEPOLNEPOLEL =θ−θ−θ

−−−
  

H1: 0
OLEPOLNEPOLEL ≠θ−θ−θ

−−−
.  

The authors presented the following formula for determining the minimum detectable 

effect size  
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= ∑β−α−   

for level α and power 1–β. Ci is the contrast coefficient for cell i, σ2 is the common 

population (within-cell) variance, and ni is the harmonic mean of the sample sizes in the k 

cells. The power function can be readily extracted from the above equation by solving for 

1 – β. With this function, the probability of detecting any effect size can be computed for 

a desired sample size and confidence level. 

Holman, Math, Glas, and de Haan (2003) conducted a study that investigated 

responses to the health-status surveys SF–36, SF–12, and SF–8. The two-parameter 

logistic IRT model was utilized to investigate binary medical outcomes. The primary 

variable was the ability parameter (θ) that measured a single latent trait. Treatment 

differences (A – B) in θ were tested with the hypothesis set  
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H0: 0BA =θ−θ   

H1: 0BA ≠θ−θ .  

Bootstrap methodology was utilized to simulate the power of achieving the alternative 

hypothesis for various effect sizes and sample sizes per treatment group. 

Stone (2003) also used simulation methodology to investigate the empirical power 

of the Pearson (χ*2) and Likelihood Ratio (G*2) goodness-of-fit (GoF) statistics to detect 

misfitting items. Simulations comprised 100 Monte Carlo studies (MCs) each with 200 

bootstraps with 500 to 2,000 respondents per bootstrap. Hypothesis tests were based on 

differences in the discrimination parameter between instrument items, where this 

parameter was incremented by 0.3. This study found that the GoF statistics were unable to 

detect item misfit for discrimination parameter differences of less than or equal to 0.3. 

When this difference was increased to 0.5 for sample sizes exceeding 1,000, both GoF 

statistics were able to detect item misfit with sufficient statistical power. Overall, the 

Likelihood Ratio GoF statistic was found to be “slightly less” (p. 579) powerful than the 

Pearson chi-square GoF statistic (Stone, 2003). 

Last, Lord (1953) presented methodology for statistically identifying a single 

psychological test from a set of tests that bests discriminates “successful” examinees for a 

particular trait. Post-hoc power analysis based on Neyman–Pearson hypothesis testing 

(Bartoszyński & Niewiadomska-Bugaj, 1996) was employed for this purpose. Hypothesis 

testing, based on ability scores estimated with IRT, was used for statistical power 

calculations. The hypothesis set for each psychological test (i) employed was 
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H0: θ≤θi
ˆ   

H1: θ>θi
ˆ  

where θ was the true ability score and iθ̂ was the estimated maximum likelihood estimate 

of the ability score. This type of analysis resulted in the post-hoc power or probability of 

each test achieving the desired objective. In Lord’s study, the test having the highest 

power was the one that was best able to discriminate examinees. 

Paired Binomial Endpoints 

For this study, analysis for classical and IRT application was based on the 

difference between correlated variables. This section presents the available power 

functions for comparing correlated binomial variables or dependent proportions for the k-

sample matched-paired design. Discussion is limited to those articles that present formal 

sample size methodology for the objectives superiority (Bishop, Feinberg, & Holland, 

1975; Connett, Smith, & McHugh, 1987; Connor, 1987; Duffy, 1984; Lachenbruch, 

1992; Lachin, 1992; Miettinen, 1968; Mitra, 1958; Schlesselman, 1982) and equivalence 

(Liu, Hsueh, Hsieh, & Chen, 2002). Power functions for the multiple-match case or 

dependent repeated measures design (Dupont, 1988) are not presented in this dissertation. 

Additionally, power functions for the noninferiority objective, which reflects one side of 

an equivalence test, are available in Nam (1997), Lu and Bean (1995), Tang, Tang, Chan, 

and Chan (2002), Lee and Lusher (1991), Chow and Shao (2006), and Tango (1998). 

Additional authors present sample size requirements based on CIs, but these calculations 

are typically not a function of statistical power (Lachenbruch & Lynch, 1998; Pham-Gia 
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& Turkkan, 2008). Last, other authors present hypotheses and associated estimators (e.g., 

mean, variance, CI), but powering a study based on their method(s) was not provided 

(Agresti & Min, 2005; Altham, 1971; Koroto, 2009; Lloyd, 1990; May & Johnson, 1997; 

Newcombe, 1998; Wacholder & Weinberg, 1982). Before this literature is presented, a 

brief discussion on 2 × 2 contingency tables is provided. 

A study design comprising two treatment groups for comparing AEs can be 

represented by the 2 × 2 contingency format presented in Table 1. The main-diagonal 

represents the frequency (x) and proportion (p) of concordant pairs. In thisstudy, x00 and 

x11 represented the number of patients that did not and did, respectively, experience a 

particular type of AE for both treatment groups. The off-diagonal represented the 

frequency and proportion of discordant pairs. x10 represented the number of patients that 

experienced a particular type of AE on Treatment A but not Treatment B. x01 represented 

the number of patients that experienced a particular type of AE on Treatment B but not 

Treatment A. 

 
Table 1 

2 × 2 Contingency Table for Binomial Events 

Treatment B  

 

Event Occurred 

Result = 1 Result = 0 

 

 

Marginals 

Result = 1 x11 / p11 x10 / p10 p1 = p11 + p10 Treatment A 

Result = 0 x01 / p01 x00 / p00 q1 

Marginals p2 = p11 + p01 q2 Σpij = 1 
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Type I and II Errors for Superiority 

This section describes multiple methods for computing type 1 and 2 errors for the 

paired study design for variables with binomial responses. Methods 1 and 2 are based on 

the odds ratio (OR) of discordant probabilities, and the remaining methods are based on 

the difference between these probabilities. All of these methods use various unconditional 

and conditional approaches to derive asymptotic modifications of the assumed effects 

(ORs or differences) for McNemar’s statistic. In that there is no guidance as to which of 

these methods are recommended for rare binomial events, this study compared sample 

size requirements between the existing methods and the IRT approaches derived by the 

author. 

Superiority Method 1. Connett, Smith, and McHugh (1987) developed an 

unconditional approach for determining sample size requirements based on the OR of 

discordant probabilities pab for the following superiority hypothesis set for paired 

binomial events. 

 H0: 1
p

p

01

10 ≥=ψ  

 H1: 1
p

p

01

10 <=ψ  

p denotes the cell proportion for cell a,b (a = Treatment A, b = Treatment B). In an ICT 

investigating AEs, the property p10 < p01 would be desired. The function used to 

determine the number of units of analysis (e.g., persons, items) for this hypothesis set is 
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where Z is a normal critical value. The power function, algebraically solved from 

Equation 29, is 
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( )⋅Φ  denotes the standard normal quantile, and is computed with the PROBNORM 

function in SAS. The observed significance level, algebraically solved from Equation 29, 

is computed with the function 
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Superiority Method 2. Schlesselman (1982) derived a conditional method for 

determining sample size requirements based on the OR of discordant probabilities for the 

following superiority hypothesis set for paired binomial events. 

 H0: 1
p

p

01

10 ≥=ψ  

 H1: 1
p

p

01

10 <=ψ  

The function used to determine the number of units of analysis for this hypothesis set is 
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The power function, algebraically solved from Equation 32, is 
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The observed significance level, algebraically solved from Equation 32, is computed with 

the function  
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Superiority Method 3. Connor (1987) derived a method for determining sample 

size requirements based on the difference in discordant probabilities for the following 

superiority hypothesis set for paired binomial events. 

 H0: 0pp 0110 ≥−  

 H1: 0pp 0110 <−  

The function used to determine the number of units of analysis for this hypothesis set is 
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for 0110 pp +=ϕ  and 0110 pp −=δ . The power function, algebraically solved from 

Equation 35, is 
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The observed significance level, algebraically solved from Equation 35, is computed with 

the function 
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Superiority Method 4. Lachenbruch (1992) derived a method for determining 

sample size requirements based on the difference in discordant probabilities for the 

following superiority hypothesis set for paired binomial events. 

 H0: 0pp 0110 ≥−  

 H1: 0pp 0110 <−  

The function used to determine the number of units of analysis for this hypothesis set is 
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function, algebraically solved from Equation 38, is 
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The observed significance level, algebraically solved from Equation 39, is computed with 

the function 
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Superiority Method 5. Miettinen (1968) derived a first-order unconditional  

method for determining sample size requirements based on the difference in discordant 

probabilities for the following superiority hypothesis set for paired binomial events. 
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 H0: 0pp 0110 ≥−  

 H1: 0pp 0110 <−  

The formula used to determine the number of units of analysis for this hypothesis set is 
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2  for the expected number of 

discordant events (M). The power function, algebraically solved from Equation 41, is 
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The observed significance level, algebraically solved from Equation 41, is computed with 

the function 
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Superiority Method 6. Miettinen (1968) derived a second-order unconditional 

method function for determining sample size requirements based on the difference in 

discordant probabilities for the following superiority hypothesis set for paired binomial 

events. 

 H0: 0pp 0110 ≥−  

 H1: 0pp 0110 <−  

The formula to determine the number of units of analysis for this hypothesis set is 



 66 

 

2
2 n/Z2Z

n














δ
Σ+π

= βα       (Eq. 44) 

 

where [ ] ( )[ ]4/3
n

)M(E|XVar 222 ϕ+δ+ϕ
ϕ

==Σ  for the expected number of discordant 
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The observed significance level, algebraically solved from Equation 44, is computed with 

the function 
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Superiority Method 7. Bishop, Feinberg, and Holland (1975) derived a 

multinomial unconditional method for determining sample size requirements based on the 

difference in discordant probabilities for the following superiority hypothesis set for 

paired binomial events. 

 H0: 0pp 0110 ≥−  

 H1: 0pp 0110 <−  

The formula used to determine the number of units of analysis for this hypothesis set is 

2
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where [ ] ( )22 n)M(E|XVar δ−ϕ==Σ  for the expected number of discordant events (M). 

The power function, algebraically solved from Equation 47, is 
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The observed significance level, algebraically solved from Equation 47, is computed with 

the function 
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Superiority Method 8. Mitra (1958) derived a local unconditional method for 

determining sample size requirements based on the difference in discordant probabilities 

for the following superiority hypothesis set for paired binomial events. 

 H0: 0pp 0110 ≥−  

 H1: 0pp 0110 <−  

The formula used to determine the number of units of analysis for this hypothesis set is 

2
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where [ ] ϕ==Σ n)M(E|XVar2  for the expected number of discordant events (M). The 

power function, algebraically solved from Equation 50, is 
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The observed significance level, algebraically solved from Equation 50, is computed with 

the function 
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Type I and II Errors for Equivalence 

Equivalence Method 1. Liu, Hsueh, Hsieh, and Chen (2002) derived an asymptotic 

Wald-based power function based on the difference in discordant probabilities for the 

following equivalence hypothesis set for paired binomial events. 

H0: ∆≥−=δ 0110 pp  or ∆−≤− 0110 pp  

H1: ∆<−<∆− 0110 pp  

The power function is 
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for 0cc LU >−  (0, otherwise), and 
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Using the property Φ–1
Φ(x)=x, the observed significance level, algebraically solved from 

Equation 53, equals UL aa +=α and is computed with the functions  
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Equivalence Method 2. Liu, Hsueh, Hsieh, and Chen (2002) derived a Restricted 

Maximum Likelihood (RMLE) power function based on the difference in discordant 

probabilities for the following equivalence hypothesis set for paired binomial events. 

H0: ∆≥− 0110 pp  or ∆−≤− 0110 pp  

H1: ∆<−<∆− 0110 pp  

The power function is 
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for  0cc LU >−  (0, otherwise), and 

( ) ( )∆−−∆+δ−= 01U p21a , 



 70 

 

( )∆−∆−= 1pb 01U , 

( ) 4/b8aap
2/1

U
2
UU01,U 







 −+−= , 

( )
( ) 2/12

01,U

2/12
01

U
p2

p2
w

∆−∆+

δ−δ+= , 

2/12
01,U

U n

p2












 ∆−∆+
=σ , 

( ) ( )δ+−∆−δ−= 01L p21a , 

( )∆+∆= 1pb 01L , 

( ) 4/b8aap
2/1

L
2
LL01,L 







 −+−= , 

( )
( ) 2/12

01,L

2/12
01

L
p2

p2
w

∆−∆−

δ−δ+= , 

2/12
01,L

L n

p2












 ∆−∆−
=σ . 

The observed significance level, algebraically solved from Equation 56, equals 

UL aa +=α  and is computed with equations 54 and 55 with the RMLE estimation used 

for the parameters. 
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Pharmacokinetics 

Inference and power analysis for this study was based on statistical methodology 

borrowed from pharmacokinetics. This field is principally concerned with measuring the 

absorption, concentration, metabolization, and excretion rates of drugs in the human body 

(ICH E8, 1997). The physiological behaviors of pharmaceutical compounds are typically 

evaluated with the area under their relationship with time t (e.g., hours) for each healthy 

volunteer. Figure 4 provides an example of a pharmacokinetic curve from Yeh and Kwan 

(1978). The y-axis represents a person’s drug concentration during the absorption phase 

over time t (x-axis) measured in hours.   

 

Figure 4. Example Pharmacokinetic Curve 
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For this study, this pharmacokinetic methodology was used for statistically 

comparing the IRFs for the k-sample matched study design. As a result, the x-axis 

denoted the predisposition of patients experiencing AEs. The y-axis represented the 

probability of this predisposition. 

AUC Estimation 

Approaches. Two approaches for estimating AUC are available for the k-sample 

matched study design. The Partial approach (Navarro-Fontestad et al., 2005) was used to 

estimate the area under IRFs for each type of AE or item. The Partial estimate equaled the 

average area under the IRFs. The Bailer approach (Nedelman, Gibiansky, & Lau, 1995) 

takes the opposite direction for AUC estimation. Measures of patient predisposition for 

experiencing a particular type of AE are first averaged across types of AEs, resulting in 

one IRF per treatment group. The Bailer AUC estimate then equaled the area under this 

single IRF.  

Approximations. The linear trapezoid and spline approximations to the exact area 

under IRFs was investigated in this study. The linear trapezoid approximation assumes 

that the AUC is based on the functional form btay += , where a and b are linear (Yeh, 

2002). This approximation, based on two incremental points per subinterval, is calculated 

as follows 

∑
=

=
K

0k
kk ywÂ        (Eq. 63) 
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The spline approximation (Yeh & Kwan, 1978) assumes the AUC is based on the 

functional form  
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 denotes the second derivative of the function y with respect to parameter t. 

This approximation, based on three incremental points per subinterval, is generally 

calculated as follows 
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The parameters ÿi and ÿi–1 are obtained by solving the following system of linear 

equations 
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This system solves for the vector of unknown parameters  

[ ]Ti1-i2-i ÿÿÿ .  

For this study, the SAS (v9.2) PROC EXPAND procedure was utilized to compute the 

linear trapezoid and spline approximations to the exact area under IRFs. SAS 9.1.3 was 

used for all other analyses. 

It is anticipated that if the underlying empirical curve of the observed data points 

(i.e., probability of AE predisposition vs. AE Predisposition (θ)) is relatively linear, the 

linear trapezoid and spline approximations will be comparable. As the curve of these 

observations becomes more nonlinear (e.g., cubic), the spline may more closely 

approximate the exact AUC. A numerical comparison of these approximations will be 

provided in Chapter IV.  

Variance of AUC Estimators. The Partial Batch, Bootstrap, and Jackknife 

methods for estimating the variance of the approximation to the area under IRFs was 

computed for each combination of estimation approaches. The Partial Batch method 

(Navarro-Fontestad et al., 2005) estimates the variance of the AUC as  

( )
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The variance across AE types is ( ) ∑
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ÂV . The Bootstrap method (Dunning, 

2007) estimates the AUC variance as 
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for B bootstrap samples. The Jackknife method (Bonate, 1998; Hanley & Hajian-Tilaki, 

1997) estimates AUC variance as  
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Risk Prediction Algorithms 

Risk Prediction Algorithms (RPAs) are utilized for identifying those individuals 

that are “at-risk” (Newman & Roth, 2005, p. 1729) for experiencing a particular type of 

AE from the treatment of their medical condition(s). These algorithms can be used to 

investigate any type of AE, especially those that have serious health consequences. These 

algorithms identify levels of risk based on combinations of clinically relevant predictors 

of AEs (Cooper, Miller, & Humphries, 2005). Such risk can be measured by factor scores 

(Bridgewater et al., 1998), probabilities, or predicted rates of AEs (Geraci et al., 1993). 
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The quantified risk can then be categorized into deciles (Geraci et al., 1993) or ordinal 

levels (e.g., low-risk, moderate-risk, and severe-risk) (Heddle, Klama, Griffith, Shukla, & 

Kelton, 1993). After the development of this quantified risk, the discrimination and 

calibration of the RPAs may be fine-tuned and updated as necessary.  

For AEs, these algorithms may be constructed in the following manner. The first 

step consists of using a logistic regression model to identify clinically relevant factors that 

are statistically predictive of the AE under investigation. The researcher should be 

cognizant of sample size requirements so that confounding results are avoided. The 

second step comprises the development of risk factor scores (Heddle et al., 1993). 

Numerous approaches are available for generating risk factor scores, but are generally a 

function on the “degree of significance” (Higgins et al., 1992, p. 2347) of indicator 

variables (e.g., AGE = 1 for patient ages 20–25 and AGE = 0 otherwise). Newman and 

Roth (2005) used regression coefficients (R) from a logistic regression model to 

determine the expected probability of an AE, where this probability equals eR/(1+ eR).  

The development of risk gradation into deciles, ordinal categories, or other 

mechanisms occurs for the next step. Step 4 involves evaluating the calibration and 

discrimination of the algorithm. Wasson, Sox, Neff, and Goldman (1985) recommend 

testing prediction rules with bootstrap, jackknife, and split sample methodology and 

repeat this analysis for different populations. 

Calibration for RPAs is concerned with the algorithm’s goodness-of-fit. The 

Homer–Lemeshow statistic has been used to gauge the relation between observed and 

expected rates of an AE. Nonsignificant p-values are indicative of good model fit (Cooper 

et al., 2005). Discrimination is the predictive power of the algorithm. As this power 
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increases, the algorithm is better able to differentially predict AEs for at-risk and not-at-

risk populations (Steyerberg et al., 2010). Discrimination may be evaluated with the 

c-statistic or the area under an Receiver Operator Characteristic (ROC) curve (Geraci et 

al., 1993). For binomial variables, the interpretation of the c-statistic which is the same as 

the area under the ROC (Bridgewater et al., 1998) is provided in Table 2. 

 
Table 2 

Predictive Power of Algorithms 

C-statistic Predictive Power 

0 ≤ value ≤ 0.5 None 

0.5 < value < 0.7 Low 

0.7 ≤ value < 0.9 Moderate 

value ≥ 0.9 High 

Application of IRT to Adverse Events 

A single attempt in modeling AEs with IRT methodology is available in the 

literature. Zwinderman (2001) used the Twisting IRT method to generate and visually 

compare smoothed survival curves between neurologically-associated AEs for patients 

undergoing surgery for a single brain metastasis. This hybrid method is a cross-product of 

the polytomous IRT model  
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for patient i, time t, category j (j=1,…,J), latent trait score θ, and category-scoring 

parameter ψ, and the survivor curve  
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The latent trait for these two models was assumed to be neurological complaints 

and functional dependence on time t, respectively. The cumulative hazards function, h(u), 

denotes the probability of a patient’s time to first experiencing an AE. 

Although this appears to be the first attempt to model AEs with IRT methodology, 

this work is not readily applicable to ICTs that are not longitudinal in data structure. This 

study expanded upon the ideas of Zwinderman, and developed statistical methodology for 

performing statistical inference on IRFs from IRT models, and power analysis for 

determining the number of patients required for such comparisons. 
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CHAPTER III 

METHODOLOGY 

Data Sources for Study 

This study focused on types of AEs that may result from the transfusion of blood 

products. The Centers for Disease Control (CDC) has recently developed an electronic 

Hemovigilance system (Appendix L) for hospitals in the United States to centrally report 

these events. The purpose of this electronic database, in part, is to understand the 

incidence of rare reactions to transfusions of whole blood or any of its components (e.g., 

platelets, red blood cells, etc.). The historical occurrence of these types of AEs is 

provided in Table 3 (p. 81). Arbitrary item locations were based on the descending order 

of historical incidence. 

A total of 30,044,000 blood product components were transfused in the United 

States in 2006. Of these components, 10,388,000 platelet products and 1,480,270 

(apheresis) red blood cell products were transfused (U.S. Department of Health and 

Human Services, 2007b). The type of AE with the highest and lowest annual incidence 

for the United States was the Delayed Serologic Transfusion Reaction (DSTR) and the 

Hypotensive Transfusion Reaction (HTR), respectively. DSTR was projected to occur for 

1 in every 152 transfusions (Ness, Shirey, Thoman, & Buck, 1990) for an annual total of 

198,291 AEs. HTR was projected to occur for 1 in every 33,333 transfusions (Khalid, 

Usman, & Khurshid, 2010) for an annual total of 45 AEs. 
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Design of Study 

In this study, Monte Carlo (MC) simulations were utilized to construct the data for 

analysis. Simulations were based on the historical occurrence of AEs reported in Table 3. 

This section details the algorithm for constructing these datasets for the k-sample matched 

study design. The dataset for each type of AE comprised N = 500,000 patients for paired 

treatments A and B. Smaller sample sizes resulted in an algorithm with insufficient 

quality, which will be investigated in Chapter IV. Simulated bivariate binomial AE data 

was evaluated in terms of how far observed AE rates deviated from the target rates, the 

correlation between treatments A and B, and the stability of the AE Predisposition (θ), 

discrimination, and difficulty parameters from the 2-PL IRT model. Investigation of these 

scenarios was not performed for the remaining types of data and IRT models because 

comparable results and conclusions were anticipated.  

Simulation of Bivariate Binomial Data 

A bivariate binomial algorithm (Van Ness, Holford, & Dubin, 2005) based on the 

2 × 2 contingency table data structure (Table 1) was used to simulate MC data for each 

type of AE (Table 3, p. 81). This approach simulated the counts of concordant pairs (c) or 

main diagonals (0,0) and (1,1) for the historical incidence rate reported. The patterns (0,0) 

and (1,1) denoted that patients in both treatment groups did not and did, respectively, 

experience a particular type of AE. The remaining n – c counts were then randomly 

allocated to the discordant pairs (d) or off diagonals (0,1) and (1,0). With the counts of all 

four cells populated, analysis could then be performed.
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Table 3 

Historical Incidence of Transfusion-Related Adverse Events in United States 

 
Item / Type of Adverse Event 

 
Blood Product 

Historical  
Occurrence 

Incidence 
Ratio 

Annual # of 
Transfusions 

# of AEs 

1 / Delayed Serologic 
Transfusion Reaction 

All blood 
components 

0.66%1 1:152 30,044,000 198,291 

2 / Allergic Reaction (including 
anaphylaxis) 

Platelets 0.266%2 1:376 10,388,000 27,633 

3 / Delayed Hemolytic 
Transfusion Reaction 

All blood 
components 

0.12%1 1:833 30,044,000 36,053 

4 / Infection (Bacterial 
Contamination) 

Platelets 0.053%3 1:1887 10,388,000 5,506 

5 / Febrile Non-hemolytic 
Transfusion Reaction 

Platelets 0.0489%2 1:2045 10,388,000 5,080 

6 / Transfusion Associated 
Circulatory Overload 

Platelets 0.0168%4 1:5952 10,388,000 1,746 

7 / Transfusion Associated Graft 
vs Host Disease 

All blood 
components 

0.00565%5 1:17699 30,044,000 1,698 

8 / Acute Hemolytic Transfusion 
Reaction 

Red blood cells 0.004%6 1:25000 1,480,270 60 

9 / Hypotensive Transfusion 
Reaction 

Red blood cells 0.003%6 1:33333 1,480,270 45 

 
Note. 1Ness, Shirey, Thoman, & Buck, 1990; 2Huh & Lichtiger, 1995; 3Nova Scotia Department of Health, 
2005; 4Kleinman, Chan, & Robillard, 2003; 5Rühl, Bein, & Sachs, 2009; 6Khalid, Usman, & Khurshid, 
2010. 

 

The steps for executing this bivariate binomial algorithm are provided. The first 

step was to generate cell counts x11a (Treatment A) and x11b (Treatment B), the 

frequencies of patients who experienced a particular type of AE. The SAS function 

RANPOI used the historical incidence of each type of AE to simulate the Poisson counts 

x11a and x11b. The frequency x11 was then set to the minimum of x11a and x11b. The second 

step distributed the difference between x11a and x11b over the off-diagonal or discordant 

cells x10 and x01. The count x10 denoted the frequency of patients who experienced an AE 
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on Treatment A but not Treatment B. The count x01 denoted the frequency of patients 

who experienced an AE on Treatment B but not Treatment A. If the difference between 

x11a and x11b was even, then x10 was set to x01. If the difference between x11a and x11b was 

odd, then x10 and x01 equaled, respectively, the ceiling and floor of the average of the 

difference (x11a + x11b)/2. For the next step, the count x00 equaled the total sample size 

(i.e., 500,000) minus the sum of x11, x10, and x01. The sample size of 500,000 patients was 

the minimum required for simulated rates of AEs to be comparable to the historical AE 

rate (i.e., target rate). 

An example is provided to illustrate this portion of the algorithm. Step 1 resulted 

in the cell counts x11a = 50 for Treatment A and x11b = 55 for Treatment B. The difference 

between x11a and x11b is 5. Next, the remainder of the difference between x11a and x11b, the 

number of discordant pairs, is then distributed between x10 and x01. Given that this 

difference is odd, counts of 3 and 2 are allocated to x10 and x01, respectively.  

The SAS function RANTBL was then used to simulate 2 × 2 contingency tables 

based on the cell counts resulting from the previous four steps. The proportion of AE 

types for cell frequencies x10 and x11 was first simulated for row 1 with the function 

RANTBL(seed1, p10, p11). The proportion of AE types for cell frequencies x00 and x01 was 

then simulated for row 2 with the function RANTBL(seed2, p00, p01). These two rows 

were then stacked to construct each simulated 2 × 2 contingency table. Seed 1 was 

randomly generated for the simulations and seed 2 differed from this seed by a factor of 

50. Seeds with small differences (e.g., less than 100) are known to cause dependence and 

serial correlation of data vectors (Bremer, Perez, Smith, & Westfall, 2004), the data 
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structure that was of primary interest in this study. These assumptions were fully 

evaluated later in this chapter. 

Adverse Event Data Patterns 

In addition to simulating AE types based on historical incidence, four patterns of 

characteristics (Table 4, p. 84) were investigated. These analyses reflected the paired 

treatment comparison of individual AE types for 250 patients for various arbitary item 

locations derived from combinations of the AE characteristics severity, relationship to 

treatment, and seriousness (Table 5, p. 84). Severity was categorized as “Non-severe” and 

“Severe.” Relationship to treatment was categorized as “Ruled Out,” “Doubtful,” 

“Possible,” “Probable,” and “Definite.” Seriousness was categorized as “No” and “Yes,” 

where serious AEs were identified by “Life-threatening” and “Death” severity categories 

per the Case Report Form in Appendix L. Arbitrary item locations were based on the 

medical implications of the characteristics associated with the AE.  

As the medical implication of a reaction increased for a patient, the AE location 

was said to increase in magnitude. AE types that were not serious, not related to 

treatment, and non-severe were allocated the lowest item location. This category may 

mimic the easiest item on a test instrument in traditional IRT application. Serious AEs 

that were related to treatment and were severe were assigned the largest item location. 

These characteristics represented the most difficult or “hardest” item (Hays et al., 2000). 

Data Pattern 1 assumed that the AE characteristics were the same for both 

treatment groups and had occurrence of 20% and 10% for Treatment A Location 1 and 

Treatment B Location 1, respectively. The AE characteristics were slightly different for 
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Data Pattern 2, where AE occurrence was 10% for Treatment A Location 3 and 20% for 

Treatment B Location 6. Data Pattern 3 assumed an extreme difference in AE 

characteristics, where AE occurrence was 20% for Treatment A Location 20 and 5% for 

Treatment B Location 1. All other AE locations had an occurrence of 0%. For the last 

data pattern, the characteristics for the 20 AE locations for both Treatment A and B were 

randomly allocated using the SAS RANBIN function with approximate occurrence of 

15% to 20%. 

 
Table 4 

Patterns of Simulated Adverse Event Characteristics  

Treatment A Treatment B Data 
Pattern 

Severity Relationship Serious Severity Relationship Serious 

1 Non-severe Ruled Out No Non-severe Ruled Out No 

2 Severe Possible No Non-severe Doubtful No 

3 Severe Definite Yes Non-severe Ruled Out No 

4 Random Random Random Random Random Random 

 

Table 5 

Item Locations for Adverse Event Characteristics 

Location Location 

Relation to 
Treatment Severity 

Serious 
= No 

Serious 
= Yes 

Relation to 
Treatment Severity 

Serious 
= No 

Serious   
= Yes 

Ruled Out Non-severe 1 11 Possible Severe 6 16 

Ruled Out Severe 2 12 Probable Non-severe 7 17 

Doubtful Non-severe 3 13 Probable Severe 8 18 

Doubtful Severe 4 14 Definite Non-severe 9 19 

Possible Non-severe 5 15 Definite Severe 10 20 
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Research Questions 

The research questions for this study were evaluated with 1,000 MC data sets each 

comprising k = 9 types of transfusion-related AEs (Table 3, p. 81) for two dependent 

treatment groups. Each IRT analysis was based on simple random samples (SRS) of sizes 

n = 30 and 250 patients from a total of N = 500,000 patients (Treatment A – Treatment 

B). These sample sizes reflect the typical range of patients enrolled in transfusion 

medicine industry clinical trials (ICTs). 

The first research question pertained to modeling AEs with Item Response Theory 

(IRT). A single attempt has been made to model AEs with IRT (Zwinderman, 2001), and 

no publications are available on modeling rare binomial events with this methodology. 

This study sought to determine whether or not IRT can be used to model rare binary 

events characterized as AEs. The purpose of the second research question was to fill a 

gap pertaining the statistical inference and power analysis of IRT models. This study 

introduced the concept of clinical equivalence into IRT, and the superiority objective was 

advanced. This study determined which forms of statistical inference and power analysis 

were optimal for comparing IRFs between two treatment groups where these groups were 

dependent. The last research question compared sample size requirements between the 

IRT power functions derived by the author and existing approaches for superiority and 

equivalence study objectives. 

Research Question 1 

The first research question pertaining to the feasibility of IRT is repeated as  
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Can one or more forms of a two-parameter Bayesian logistic IRT model 

be feasibly used to model AEs?  

This study analyzed MC AE data with three Bayesian forms of the two-parameter 

logistic IRT model. Feasibility was evaluated with three approaches each to assess 

Bayesian Gibbs sampling algorithms and IRT model goodness-of-fit. If these algorithms 

demonstrated convergence and goodness-of-fit was reasonably achieved, IRT would be 

considered a viable solution for modeling rare binary events. Multiple chains of starting 

values (Table 6) were utilized to ensure that any conclusions reached based on the IRT 

parameter estimates were not an artifact of the data. These assumptions were evaluated 

for overall historical AE rates. Findings based on this analysis were recycled for data 

patterns 1–4. 

 
Table 6 

Starting Values for Gibbs Samplers 

θ A B 

0, ±1 2a =µ , 5a ±µ  ( ) ( )j12/1
a p̂1 −Φµ+−  

 

Gibbs Sampler Assumption 1. The first assumption required that the mean of each 

latent trait parameter “converge to the chain's stationary distribution” (Patz & Junker, 

1999b, p. 150). Convergence occurred when the mean of a parameter estimate was stable 

over i iterations of the Gibbs sampler. Trace plots (Johnson & Albert, 1999) and the 

Gelman–Rubin convergence statistic (Johnson & Sinharay, 2005) were used to identify 
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the approximate location at which each parameter reached a stationary state. Trace plots 

are iterative and the Gelman–Rubin statistic is cumulative over the x-axis. 

Figure 5 presents an example trace plot. In this example, the parameter estimate 

starts to converge at approximately 250 iterations. The period prior to 250 is known as the 

burn-in period, and the stationary state consists of iterations 250–1000. Statistical 

inference should only be based on an estimate from this stable state.  
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Figure 5. Example Trace Plot for 1000 Gibbs Sampler Iterations 

 
The Gelman–Rubin (G–R) statistic uses the ratio of the total variance and within 

variance to identify parameter stability. This statistic equals  

2/1
2/1

WV
Total

R̂ 






=        (Eq. 68)  

The within-variance (WV) is estimated as  
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where λ represents the parameter estimate, m denotes the number of blocks, and n denotes 

the length of each block. The between-variance (BV) equals 

( )∑
=

λ−λ
−

m

1i
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n
 

The total variance then equals  

( )BV
n
1

WV
n

1n +






 −
 

Stability of parameter estimates is said to occur when 2/1R̂ converges to one (Gelman, 

1996).  

Gibbs Sampler Assumption 2. The second assumption required that the standard 

deviation (SD) of each latent trait parameter represent a well-mixed density. Mixing was 

said to occur when the SD of a parameter estimate was stable over i iterations of the 

Gibbs sampler. Trace plots and the G–R convergence statistic were used to identify when 

the density is thoroughly mixed. 

Gibbs Sampler Assumption 3. The last assumption, referred to as “thinning the 

chain” (Lynch, 2007, p. 147), requires that the estimates within a stationary state are not 

serially dependent. If the parameter estimates are autocorrelated (May, 2006), the 

resulting estimators (e.g., mean and variance) are not reliable for statistical inference. To 

remove the serial autocorrelation from a sequence of values, the lag resulting in 

nonsignificant autocorrelation needs to be identified. As an example, if nonsignificant 

autocorrelation occurs for lag 25, the mean and SD of the parameter should be based on a 
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systematic random sample (Lohr, 1999) of every 25th value in the established stationary 

state. For each iterative lag, the autocorrelation function was estimated by Equation 69. 

( )( )

( )∑
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=
+

−

−−
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ACF      (Eq. 69) 

xi is the sampled value of x for iteration i. The estimator x  denotes the mean of the values 

xi in interval T which equals 2lag. For example, if a lag is 10, then T will contain 20 

values. A nonparametric bootstrap method was utilized to construct a CI on the mean of 

the ACF statistic. The first lag having the CI on the mean of the ACF contain zero was 

identified as the lag to remove autocorrelation from the stationary state. 

After stationary parameter estimates were identified from the Gibbs sampling 

algorithm, graphical displays and formal methods based on hypothesis testing were 

utilized to gauge the fit of each IRT model in terms of AE items and patients. If the Gibbs 

samplers and fit of these models were visually and statistically adequate, it was concluded 

that IRT could reasonably model rare binary event data.  

Toribio (2006) argues that existing methods for determining the goodness-of-fit 

(GoF) of logistic IRT models overall as well as the individual fit of items and persons can 

be problematic. The reason for this is that “their exact distributions are unknown and the 

asymptotic chi-square distribution may not always be true” (p. 39). This may mean that 

the inference from the GoF statistics is not always reliable. As a result, this study 

presented visual methods for assessing fit as well as attempt at a solution to the 

distribution problem noted by this author. 
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Nonparametric bootstrap methodology (Stute, Manteiga, & Quindmil, 1993) was 

utilized to assess the fit of each AE item. This approach was distribution-free and did not 

require the exact form the test statistic under investigation. The GoF statistic was 

computed for each bootstrap and compared to the observed test statistic for n = 30 and 

250. The p-value was based on the bootstrapped limits of the CI. Poor model fit was said 

to occur for p-values less than 0.10 (Toribio, 2006). 

Posterior Probability Interval Plot. This type of plot was generated with the 

following sequence of steps (Sinharay, Johnson, & Stern, 2006; Johnson & Albert, 1999) 

for each type of AE: 

1. Group AE Predisposition (θ) (x-axis) into S intervals. The number of intervals 

was a function of the statistic used to assess IRT model fit. 

2. Calculate the mean or central AE Predisposition (θ) score of each interval S. 

This parameter was denoted as )c(
sθ . 

3. Estimate the proportion of patients within each interval S that experienced the 

associated AE. This parameter was denoted as jsp̂ . 

4. Estimate the probability of a patient experiencing an AE for each interval S. 

This parameter was denoted as )c(
jsp̂  and equaled ( )j

)c(
jsj baF −θ , where F 

denoted the two-parameter logistic IRT joint density. 

5. Estimate the posterior probability interval (PPI) for each value of )c(
sθ  per 

interval S. This interval equaled the mean of the AE Predisposition (θ) scores 
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within interval S plus and minus the normal critical value times the standard 

error (SE) of the AE Predisposition (θ) scores within interval S. 

( )s2/1s SEZ θ±θ α−       (Eq. 70) 

6. Plot the IRF through the mean AE Predisposition (θ) score of each interval S. 

7. Next, overlay the PPI onto this fitted curve. 

8. Finally, overlay the observed AE Predisposition (θ) scores onto this graph. 

IRT model fit was then visually assessed by examining the location of the observed AE 

Predisposition (θ) scores in relation to the PPI. Reasonable model fit was evidenced by 

the observed AE Predisposition (θ) scores being located within the boundaries of the PPI.  

Using the above steps, Bayesian residuals were computed as 

)c(
jsjsij pp̂r −=        (Eq. 71) 

The nonparametric bootstrap Wald CI (t-distribution) was computed for each patient. CIs 

close to zero represented reasonable model fit. 

Although these graphs were utilized to gauge IRT model fit, some common 

inferential approaches were discussed below. Bock’s Index was used to assess model fit 

for each AE type. This GoF statistic has the form 

( )
∑
=

−
=

S

1s jsjss

2
jssjs

kj q̂p̂f

p̂ff
B

      (Eq. 72) 

In this study, the parameter fs was the number of patients in subinterval s. The 

parameter fjs was the number of patients who experienced AE type j in subinterval s. The 
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parameter jsp̂  equaled ( )υ−υ− + e1/e , where ( )jsj ba −θ=υ  for θs, the median of AE 

Predisposition (θ) scores for subinterval s, and jsjs p̂1q̂ −= . 

For the Bock’s Index (BI) statistic, patients were grouped into subintervals s for 

AE Predisposition (θ). Limited guidance appears to be available for how many patients 

should constitute each subinterval s, but Yen (1981) recommended a total of 10 

subintervals. Furthermore, Bock (1972) recommended that the BI statistic be tested 

against S–m degrees of freedom for the chi-square distribution, where m is the number of 

estimated parameters. In this study, these parameters were the latent trait Z, AE 

Predisposition (θ), discrimination A, and difficulty B.  

Last, the W–statistic (Wright & Stone, 1979) has been commonly used to assess 

the fit of each respondent. This statistic has the form 

( )

∑

∑

=

=
−

=
k

1j
ijij

k

1j

2
ijij

i

qp

pY

W        (Eq. 73) 

In terms of this study, Yij would represent the AE status (0 = AE did not occur, 1 = AE 

occurred) for patient i and type of AE j. The parameter pij would equal Φ(ajθi–bj), where 

aj and bj were the discrimination and difficulty values for item k and θi was AE 

Predisposition (θ) for patient i.  

For an ICT, computation of this statistic would have limited value. The FDA does 

not allow the omission of any AE data from the study analysis for any reason. As a result, 

this statistic was not investigated in this study. 
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Toribio (2006) cautions that although the above GoF inferential methods are 

commonly applied to Bayesian estimation, they should not be utilized because these 

methods require the ability parameter θ to be known. In Bayesian IRT analysis, this 

parameter is unknown until estimation. In addition, the distribution of the test statistics 

may not be chi-square, resulting in inaccurate conclusions. Furthermore, it is clear from 

the formula that if many patients do not experience an AE the numerator will become 

very large. As a result, the BI statistic may not be optimal for the data being investigated 

for this study. Given this information, the PPI and residual plots served as the primary 

source for evaluating IRT model fit.  

Research Question 2 

The second research question is repeated as 

For superiority and equivalence study objectives, which combination of 

statistics resulted in the best statistical inference as defined by 

• minimum standard error of the effect? 

• smallest bias in AUC approximations? 

• confidence interval on the effect that achieves the highest coverage?  

This research question was concerned with the statistical inference of parameters 

associated with the latent trait Transfusion-Related Adverse Event. Hypotheses were 

constructed to compare paired IRFs estimated with the 2-PL, 2-PL EX, and 2-PL MEX 

IRT models. Statistical inference was based on superiority and equivalence study 

objectives.  
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The Area-Under-the-Curve (AUC) statistic was utilized because it is readily 

applicable to empirical distributions with known and unknown form (Dunning, 2007). 

The linear trapezoid and spline approximations to the exact area under paired IRFs were 

investigated. For each combination of the AUC approximation, estimator, and variance 

estimate, the quality of inference (i.e., bias, mean, and variance of effects, test statistics, 

CI with Type I error assessment) was evaluated on simulated MC data. This study 

recommended the combination of estimation approaches that resulted in the best 

statistical inference.  

Statistical Inference. The statistical information needed to compare IRFs for the k-

sample matched study design is presented in this section. For the superiority and 

equivalence study objectives, the author derived the parametric and nonparametric effect, 

and the variability, test statistic, and CI of these effects. 

The Mean Square Error (MSE) should be substituted for individual variances 

when statistics such as AUC are biased. As the number of patients (n) converges to ∞, the 

sample AUC will theoretically converge to the true AUC. For small sample sizes, AUC 

statistics tend to be biased, meaning that the difference between the exact AUC and its 

approximation is not zero. The size of this bias further depends upon the functional form 

of the AUC approximation and sample size or the number of patients with latent trait 

ability scores. The bias in the AUC estimates will be investigated in Chapter IV. 

Superiority. The expected value of the paired effect RT AA −=ω , where T 

denotes Treatment A and R denotes Treatment B, using expectation theory, was derived 

as  
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[ ] [ ]RT AAEˆE −=ω  

[ ] [ ] [ ]RT AEAEˆE −=ω  

[ ] RT AAˆE −=ω        (Eq. 74) 

For parametric analysis, the mean of this effect was computed. For nonparametric 

analysis, the median of this effect was computed as 

{ } ( ) ,
YY

Y
medianM̂

12/n2/n

2/1n





+
=ω=

+

+
n

n

even

odd
      (Eq. 75) 

The MSE of the paired effect RT AA −=ω , using expectation theory, was 

derived as  

[ ] [ ]RT AAVˆMSE −=ω  

[ ] [ ] [ ] [ ]RTRT A,ACOV2AVAVˆMSE −+=ω  

For biased estimators, we have 

[ ] [ ] ( ){ } [ ] ( ){ }2
RR

2
TT BiasAVBiasAVˆMSE +++=ω   

[ ] ( ){ } [ ] ( ){ }2
RR

2
TTTR BiasAVBiasAV2 ++ρ−  

[ ] [ ] 2/1
RTTRRT MSEMSE2MSEMSEˆMSE ρ−+=ω  

The standard error (SE) of the effect then equaled 

[ ] [ ]( ) 2/1n/MSEˆSE ωω=ω       (Eq. 76) 

For nonparametric analysis, the SE (Olive, 2005) of the effect equaled 

( ) ( )1nLnU YY5.0effectSE +−=      (Eq. 77) 
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Ln denoted the lower order statistic (OS) of a sorted data vector, and was estimated as 









−




=
4
n

2
n

Ln . Un denotes the upper OS of this vector, and was estimated as 

nn LnU −= . 

Well-known statistical properties used to derive Equations 76 and 77 were (1) 

Var(aX) = a2Var(X), (2) COV(aX,bY) = abCOV(X,Y), (3) TRρ̂  = Pearson correlation 

coefficient between two continuous random variables, and (4) 2
is (i = T,R) was calculated 

as presented above for each estimator. 

The test statistic on the mean of the paired effect RT AA −=ω  was derived as  

effecteffectobs SE/X~t       (Eq. 78) 

This test statistic is based on the inverse t CDF for 100(1 – α)% confidence with n – 1 

degrees of freedom. The test statistic on the median of the paired effect RT AA −=ω  

was derived as  

( )MSE
AA

~t RT
obs

−
        (Eq. 79)  

This test statistic is based on the inverse t CDF for 100(1 – α)% confidence with 

1LUp nn −−=  degrees of freedom. The p-value (two-sided) was then computed with 

the inverse t CDF as ( )obs
1 tT2 −  for tobs < 0 and ( )( )obs

1 tT12 −−  for tobs ≥ 0 using the 

PROBT function in SAS. 

The Wald 100(1 – α)% confidence interval on the mean of the paired effect 

RT AA −=ω  was derived as 
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 ρ−+±− −α−      (Eq. 80)  

The Wald 100(1 – α)% confidence interval on the median of the paired effect 

RT AA −=ω  was derived as 

( ) ( )effectSEtAA p;2/1RT ⋅±− α−       (Eq. 81) 

For Equation 81, the degrees of freedom p equals 1LU nn −− , where Un and Ln were 

defined for Equation 77 (p. 95).  

For Equations 80 and 81, the coverage (i.e., observed confidence level) was 

computed with 10,000 nonparametric bootstrap simulations for each AE type and SRS of 

sizes n = 30 and 250. 

Equivalence. The expected value of the lower paired effect ( )∆+−ω 1AA: RT1 , 

using expectation theory, was derived as 

[ ] [ ] ( )[ ]∆+−=ω 1AEAEˆE RT1  

[ ] [ ] ( ) [ ]RT1 AE1AEˆE ∆+−=ω  

[ ] ( ) RT1 A1AˆE ∆+−=ω       (Eq. 82) 

The expected value of the upper paired effect ( )∆−−ω 1AA: RT2  was derived as 

[ ] ( )[ ]∆−−=ω 1AAEˆE RT2   

[ ] [ ] ( )[ ]∆−−=ω 1AEAEˆE RT2  

[ ] [ ] ( ) [ ]RT2 AE1AEˆE ∆−−=ω  

[ ] ( ) RT2 Â1ÂˆE ∆−−=ω       (Eq. 83) 
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The MSE of the lower paired effect ( )∆+−ω 1AA: RT1 , using expectation 

theory, was derived as  

[ ] ( )[ ]RT1 A1AVˆMSE ∆+−=ω  

[ ] [ ] ( )[ ] ( )[ ]RTRT1 A1,ACOV2A1VAVˆMSE ∆+−∆++=ω  

[ ] [ ] ( ) [ ] ( ) [ ]RTR
2

T1 A,ACOV21AV1AVˆMSE ∆+−∆++=ω  

[ ] ( ) RTTR
2
R

22
T1 ss)1(2s1sˆMSE ρ∆+−∆++=ω  

For biased estimators (e.g., AUC), we have 

[ ] ( ) RTTR
2
R

22
T1 ss)1(2s1sˆMSE ρ∆+−∆++=ω     

[ ] [ ] ( ){ } ( ) [ ] ( ){ }2
RR

22
TT1 BiasAV1BiasAVˆMSE +∆+++=ω   

[ ] ( ){ } [ ] ( ){ }2
RR

2
TTTR BiasAVBiasAV)1(2 ++ρ∆+−  

[ ] ( ) RTTRR
2

T1 MSEMSEˆ)1(2MSE1MSEˆMSE ρ∆+−∆++=ω   

The SE of this effect then equaled 

[ ] [ ]( ) 2/1
111 n/MSEˆSE ωω=ω       (Eq. 84) 

The MSE of the upper paired effect ( )∆−−ω 1AA: RT2  was derived as  

[ ] ( )[ ]RT2 A1AVˆMSE ∆−−=ω  

[ ] [ ] ( )[ ] ( )[ ]RTRT2 A1,ACOV2A1VAVˆMSE ∆−−∆−+=ω  

[ ] [ ] ( ) [ ] ( ) [ ]RTR
2

T2 A,ACOV21AV1AVˆMSE ∆−−∆−+=ω  

[ ] ( ) RTTR
2
R

22
T2 ss)1(2s1sˆMSE ρ∆−−∆−+=ω  
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For biased estimators, we have 

[ ] ( ) RTTRR
2

T2 MSEMSE)1(2MSE1MSEˆMSE ρ∆−−∆−+=ω  

The SE of this effect then equals 

[ ] [ ]( ) 2/1
222 n/MSEˆSE ωω=ω       (Eq. 85) 

The general form of the test statistic to be used in this study was 

[ ]
[ ][ ]

[ ]
[ ]ω
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n/MSE
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n/
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~t

2/1
    (Eq. 86) 

where 0=ω . The test statistic, using distribution theory, for the mean of the lower paired 

effect ( )∆+−ω 1AA: RT1  was derived as 
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 (Eq. 87) 

The test statistic for the mean of the upper paired effect ( )∆−−ω 1AA: RT2  was derived 

as 

( )
( ) ( )

2/1
RTTRR

2
T

RT
2

n

MSEMSE12MSE1MSE

A1A
~t











 ρ∆−−∆−+

∆−−
ω

 (Eq. 88) 

Equations 87 and 88 are based on the inverse t CDF employed 100(1 – α)% confidence 

with n – 1 degrees of freedom. The test statistic for the median of the lower paired effect 

1ω  was derived as 

( )
( )MSE

M
~t RA1TA

1
∆+−

ω

 

      (Eq. 89) 
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The test statistic for the median of the upperpaired effect 2ω  was derived as

  ( )
( )MSE

M
~t RA1TA

2
∆−−

ω       (Eq. 90) 

Equations 89 and 90 are based on the inverse t CDF employed 100(1 – α)% confidence 

with 1LUp nn −−=  degrees of freedom, where Un and Ln were defined for Equation 77 

(p. 95). 

The Wald 100(1 – α/2)% upper confidence limit on the mean of the lower paired 

effect ( )∆+−ω 1AA: RT1  was derived as 

( )[ ] 2/1
11n;2/11 MSEtX ω+ −α−ω

 
      (Eq. 91) 

The Wald 100(1 – α/2)% lower confidence limit on the mean of the upper paired effect 

( )∆−−ω 1AA: RT2  was derived as 

( )[ ] 2/1
21n;2/12 MSEtX ω− −α−ω       (Eq. 92) 

The Wald 100(1 – α/2)% upper confidence limit on the median of the lower paired effect 

( )∆+−ω 1AA: RT1  was derived as 

( )1p;2/11 M̂SEtM̂ ωα−ω +
 
      (Eq. 93) 

The Wald 100(1 – α/2)% lower confidence limit on the median of the upper 

paired effect ( )∆−−ω 1AA: RT2  was derived as  

( )2p;2/12 M̂SEtM̂ ωα−ω −       (Eq. 94) 

Equations 93 and 94 are based on the inverse t CDF employed 100(1 – α)% confidence 

with 1LUp nn −−=  degrees of freedom, where Un and Ln were defined for Equation 77 

(p. 95). For Equations 91–94, coverage (i.e., observed confidence level) was computed 
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with 10,000 nonparametric bootstrap simulations for each AE type and SRS of sizes n = 

30 and 250. 

IRT Power Functions. The general form of the IRT power function, based on the 

non-central F-distribution (Pearson & Hartley, 1951), was 

1
NCP,ddf,ndf;1F1 −

α−−        (Eq. 95) 

ndf denotes the numerator degrees of freedom (i.e., 1). ddf denotes the 

denominator degrees of freedom. This equals n – 1 for paired studies where n is the 

proposed sample size. NCP is the non-centrality parameter of the F-distribution. 

The power function for the superiority hypothesis set was based on the mean or 

median of the paired effect RT AA −=ω . For n – 1 degrees of freedom, the non-

centrality parameter for the mean of the effect was derived as  

[ ]











ω
ω

MSE

X
n

2
         (Eq. 96) 

For 1LUp nn −−=  degrees of freedom, the non-centrality parameter for the median of 

the effect was derived as 

[ ]






 ω
M̂SE

M
n

2
        (Eq. 97) 

The power function for the equivalence hypothesis set was based on the mean or 

median of the paired effects ( )∆+−ω 1AA: RT1  and ( )∆−−ω 1AA: RT2 . For n – 1 

degrees of freedom, the non-centrality parameter for the mean of the effects was derived 

as 
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(Eq. 98) 

For 1LUp nn −−=  degrees of freedom, the non-centrality parameter for the median of 

the effects was derived as 

[ ]






 ω
M̂SE

M
n

2
         (Eq. 99) 

For estimation based on the mean or median, the sample size for equivalence equaled the 

maximum sample size { }21 n,nmax ωω  .  

Research Question 3 

The last research question is repeated as  

How do IRT sample size requirements for superiority and 

equivalence study objectives compare to the existing classical 

methods for paired binomial variables? 

IRT power functions were derived by the author for both superiority and 

equivalence study objectives. If the IRT sample sizes were comparable to efficacy 

requirements, it may be possible to power ICTs for clinically relevant AE hypothses. 

Sample sizes based on existing methods do not typically result in financially feasible 

sample size requirements for AE hypotheses. If IRT sample sizes for AE hypotheses are 

not comparable to efficacy requirements, then IRT may only take a tertiary role as a 

secondary analytic method.  
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Existing methods for computing sample size requirements on paired binomial 

variables for superiority and equivalence study objectives were presented in Chapter II. 

This study compared sample size requirements from these methods to the IRT models 

with the best statistical properties investigated under Research Question 1 and 2. This 

formal comparison was necessary because IRT is not well-known to statisticians in the 

pharmaceutical industry. In order for these statisticians to accept, promote, adopt, and 

incorporate the presented IRT methodology into their ICTs, IRT will need to demonstrate 

a clear scientific and financial advantage over current practice. 



 

104 

 

CHAPTER IV 

RESULTS 

This chapter presents the results for analyzing rare types of AEs with the proposed 

IRT methodology. Assessing the distributional forms of the applicable historical data was 

the first step in this analysis. Next, Monte Carlo (MC) simulations based on the historical 

incidence of these data were performed and their quality was then assessed. In the next 

section of this chapter, the assumptions of the three Bayesian IRT models will be 

investigated with these data. Next, analyses were performed to assess superiority and 

equivalence study objectives for simulations based on AE historical incidence and four 

data patterns, which represented various scenarios of AE characteristics. The last section 

of this chapter will compare sample size requirements for superiority and equivalence 

study objectives between existing methods and the IRT approaches derived by the author. 

Distributional Forms of Historical Data 

The relative frequency (RF) statistic was used to determine if the beta, gamma, or 

normal probability density functions (PDFs) could be used to model the transfusion-

related AEs. Table 7 (p. 106) presents the probabilities for these PDFs, which are visually 

displayed in Figure 7 (p. 107). The RF equals the expected number of binary events 

divided by the total number of events reported. Known PDFs that closely follow the 

empirical distribution of the RFs can be used for modeling the data under investigation. 
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The RF of the k = 9 types of transfusion-related AEs investigated in this study was 

presented in Table 3 (p. 81). The incidence and RF of these events are presented in Figure 

6 (p. 107) and Figure 7 (p. 107), respectively. For this analysis, the RF was computed as 

the expected number of AEs (last column of Table 3, p. 81) divided by the total number 

of AEs in this column. The probability of being equal to or less than the RFs for each type 

of AE was then computed with the beta, gamma, and normal PDFs.  

As an example, the beta probability for “Delayed Serologic Transfusion Reaction” 

was computed as 

( ) ( )
( ) ( ) ( ) 0.83962x1x

ba
ba

RFXPr
74634.0

0

1b1a =−
ΓΓ
+Γ=≤ ∫

−− , 

where the shape (a) and location (b) parameters both were set to a value of 2. For this AE, 

the gamma probability was computed as 
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( )

0.52590dxex
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1
RFXPr

74634.0

0

b/x1a
a

=
Γ

=≤ ∫
−− , 

where the shape (a) and location (b) parameters both were set to a value of 1. Last, the 

normal probability was computed as 
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σ
µ−−

πσ
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∞−
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for mean 0 and variance 1.  

Table 7 (p. 106) and Figure 7 (p. 107) demonstrate that the beta and gamma PDFs 

reasonably followed the empirical distribution of the RFs. This finding was not observed 

for the normal PDF. Irrespective of these findings (Program 1.sas, Appendix M), the 
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impact of these three PDFs was compared on the discrimination parameter estimates 

obtained from the 2-PL, 2-PL EX, and 2-PL MEX IRT models for each type of AE. 

 
Table 7 

Relative Frequency of Transfusion-Related Adverse Events 

Probability  
Type of Adverse Event 

Relative 
Frequency 

Gamma Beta Normal 

Delayed Serologic Transfusion Reaction 0.74634 0.52590 0.83962 0.77227 

Allergic Reaction (including anaphylaxis) 0.09103 0.08701 0.02335 0.53627 

Delayed Hemolytic Transfusion Reaction 0.13570 0.12689 0.05025 0.55397 

Infection (Bacterial Contamination) 0.00259 0.00258 0.00002 0.50103 

Febrile Non-hemolytic Transfusion Reaction 0.01673 0.01659 0.00083 0.50668 

Transfusion Associated Circulatory Overload 0.00082 0.00082 0.00000 0.50033 

Transfusion Associated Graft vs Host Disease 0.00639 0.00637 0.00012 0.50255 

Acute Hemolytic Transfusion Reaction 0.00023 0.00023 0.00000 0.50009 

Hypotensive Transfusion Reaction 0.00017 0.00017 0.00000 0.50007 

Quality of Monte Carlo Simulations 

The quality of the algorithm for simulating bivariate binomial AE data was 

evaluated in terms of the deviation between simulated and target AE rates, the correlation 

between paired treatment groups A and B, and the stability of the AE Predisposition (θ), 

discrimination, and difficulty parameters from the 2-PL IRT model. It was assumed that 

this model represented a worst-case scenario of the three Bayesian IRT models under  
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Figure 6. Incidence of Transfusion-Related Adverse Events 
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Figure 7. Relative Frequency of Transfusion-Related Adverse Events 
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investigation, because of the empirical distribution of the AE historical incidence. Each 

MC simulation consisted of N = 500,000 patients for both treatment groups and each type 

of AE. Smaller sample sizes resulted in algorithms that did not achieve the target AE 

rates. 

Table 8 presents the mean difference (%) between target and simulated rates and 

the phi coefficient between the paired treatment groups A and B for each of k = 9 types of 

AEs (Program 2.sas). The AE rates of 1,000 MC simulations differed on average at the 

third decimal point for 4 types of AEs and the second decimal point for the remaining 5 

types of AEs. Furthermore, the average phi coefficient between treatments A and B 

ranged from 0.856 to 0.990. These findings demonstrated that the MC bivariate binomial 

simulations resulted in a paired data structure that coincided with the target AE rates. 

 
Table 8 

Metrics of Bivariate Binomial Simulation Algorithm 

Adverse Event Historical 
Occurrence 

Mean Difference 
From Target 

Mean Phi 
Coefficient 

Delayed Serologic Transfusion Reaction 0.66% –0.00590% 0.990 

Allergic Reaction (including anaphylaxis) 0.266% –0.00375% 0.984 

Delayed Hemolytic Transfusion Reaction 0.12% –0.00252% 0.977 

Infection (Bacterial Contamination) 0.053% –0.00166% 0.965 

Febrile Non-hemolytic Transfusion Reaction 0.0489% –0.00160% 0.964 

Transfusion Associated Circulatory Overload 0.0168% –0.00097% 0.939 

Transfusion Associated Graft vs Host Disease 0.00565% –0.00058% 0.892 

Acute Hemolytic Transfusion Reaction 0.004% –0.00047% 0.876 

Hypotensive Transfusion Reaction 0.003% –0.00040% 0.856 
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The last quality check of the MC simulations pertained to the stability of 

parameter estimates for each type of AE for Treatment A. MC cumulative assessment 

plots were constructed for the IRT model parameters AE Predisposition (θ), 

discrimination, and difficulty for simple random samples (SRS) of sizes n = 30 pairs 

(solid line) and 250 pairs (dashed line). Stability is evidenced with a curve having a zero 

slope with reasonably small fluctuation or acceptable noise over the x-axis. Large 

fluctuations or spikes over this plane may represent an unstable state.  

Figure 8 (p. 110) presents the MC cumulative assessment plots the discrimination 

parameter for each type of AE (Program 3.sas). The y-axis and x-axis, respectively, 

represented the discrimination parameter and number of MCs. This figure demonstrated 

that the slope of the x-plane is zero for each of the k = 9 types of AEs. For SRS of sizes n 

= 30 and 250, the discrimination parameter appeared to stabilize quickly for AE types 2, 

3, 4, 8, and 9, and by 1,000 MC simulations for the remaining AE types. Overall, the 

discrimination parameter varied within a margin of ±0.2 for all AE types. 

Figure 9 (p. 110) presents the MC cumulative assessment plots for the difficulty 

parameter (Program 4.sas). The y-axis and x-axis, respectively, represented the difficulty 

parameter and number of MCs. This figure demonstrated that the slope of the x-plane is 

zero for each of the k = 9 types of AEs. For SRS of sizes n = 30 and 250, the difficulty 

parameter stabilized quickly for AE types 8 and 9, and by 1,000 MC simulations for the 

remaining AE types. Overall, the difficulty parameter varied within a margin of ±0.5 for 

the first type of AE and ±0.3 for the remaining types of AEs. 
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Figure 8. 2-PL: Simulation Plots for the Discrimination Parameter 
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Figure 9. 2-PL: Simulation Plots for the Difficulty Parameter 
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Figure 10 presents the MC cumulative assessment plot for the AE Predisposition 

(θ) parameter across all patients (Program 5.sas). This figure demonstrated that the slope 

of the x-plane is zero. The AE Predisposition (θ) parameter stabilized quickly for the SRS 

of size n = 250, and by 1,000 MC simulations for the SRS of size n = 30. Overall, AE 

Predisposition (θ) varied within a margin of ±0.05. 
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Figure 10. 2-PL: Simulation Plots for the AE Predisposition (θ) Parameter 

Comparison of AUC Approximations 

This section compares the linear trapezoid and spline approximations to the exact 

area under the two Item Response Functions (IRFs) presented in Figure 3 (p. 30). For 

both of these IRFs, the ability parameter ranged from –2.6 to +2.9. For IRT Curve 1 or 

IRF 1, the discrimination (A) and difficulty (B) parameters, respectively, were arbitrarily 



 112 

 

set to –0.5 and –2.0. For IRT Curve 2 or IRF 2, the discrimination (A) and difficulty (B) 

parameters, respectively, were arbitrarily set to +2.0 and +0.5.  

The exact AUC of IRF 1 was computed as
( )

( )∫
−

−θ−

−θ−
=θ

+

9.2

6.2
ba

ba
54317.1d

e1

e
. The 

linear trapezoid and spline approximations to the exact AUC were respectively computed 

as 1.54976 and 1.53546. These approximations respectively deviated by a bias factor of  

–0.00659 and 0.00771. When an IRF is relatively linear, the linear trapezoid and spline 

approximations to the exact area under IRFs are expected to be comparable. 

The exact AUC of IRF 2 was computed as 2.40308. The linear trapezoid and 

spline approximations to the exact AUC were respectively computed as 2.36794 and 

2.41006. These approximations respectively deviated by a bias factor of 0.03515 and  

–0.00697. When an IRF is relatively nonlinear (e.g., cubic), the spline approximation is 

expected to better approximate the exact AUC than the linear trapezoid approximation. 

Research Question 1 Results 

The first step in performing IRT analysis consisted of evaluating the Bayesian 

assumptions for each of the parameter estimates by AE type. These assumptions were 

investigated for the AE Predisposition (θ), discrimination, and difficulty parameters 

across 1,000 MCs for SRS of sizes n = 30 and 250 for only Treatment A. Both treatment 

groups were simulated to possess the same theoretical data structure.  

The first assumption was concerned with whether or not multiple chains of 

starting values (Table 6, p. 86) converged to the same location for each IRT parameter. 

After demonstration of this assumption, the stationary states for the mean and standard 
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deviation (SD)of each parameter were evaluated with trace and cumulative Gelman–

Rubin (G–R) convergence plots. The G–R plots were based on m = 10 – 1 cumulative 

blocks of size 10. After stationary states were identified, lag functions for removing serial 

autocorrelation of the Gibbs sampler estimates were computed. Last, goodness-of-fit was 

assessed for each IRT model analyzing data from the identified stationary state after serial 

autocorrelation removal. These assumptions were described in Chapter II. 

2-PL IRT Model 

Multiple Chains. The chains of starting values used were (1) A(i) = –1 and θ(i) =  

–1, (2) A(i) = +5 and θ(i) = 0, and (3) A(i) = +4, and θ(i) = +1. The choice of these chains 

was arbitrary, and these chains were intentionally selected to be far apart to stress the IRT 

model. Across these chains, the mean of the discrimination parameter ranged from –0.02 

to 0.02 for n = 30 and from –0.01 to 0.05 for n = 250. The mean of the difficulty 

parameter ranged from 1.95 to 2.15 for n = 30 and from 2.5 to 3.0 for n = 250. The mean 

of the AE Predisposition (θ) parameter ranged from –0.002 to –0.001 for n = 30 and from 

–0.003 to 0.002 for n = 250. The SD of the discrimination parameter ranged from 0.01 to 

0.02 for n = 30 and from 0.01 to 0.03 for n = 250. The SD of the difficulty parameter 

ranged from 0.01 to 0.28 for n = 30 and from 0.02 to 0.29 for n = 250. The SD of the AE 

Predisposition (θ) parameter was 0.01 for n = 30 and ranged from 0.002 to 0.003 for n = 

250. Because the three starting chains converged to the same location for the three IRT 

parameters, the three chains of starting values were considered interchangeable. Chain 1 

appeared to converge at the slowest rate, and represented the worst-case scenario for this 
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study. As a result, results from this chain are presented below, and chain 2 and 3 results 

are presented in Appendix A. 

Convergence. Starting values defined for chain 1 were used to construct Figures 

11–22 that consisted of trace plots (left side) and G–R plots (right side). Trace plots are 

iterative, and G–R plots are cumulative. For these plots, convergence can be visualized by 

the flattening of slopes approaching zero. A limitation of these plots is the occurrence of 

re-ascending curvature. If the slopes converge to zero and later demonstrate quadrature, 

the interpretation of convergence may become confounded. This situation, a function of 

sample size, may occur when the observed PDF deviates from the expected PDF. 

Figures 11–16 are based on the mean of the IRT parameters AE Predisposition 

(θ), discrimination, and difficulty. Figures 17–22 are based on the standard deviation of 

these parameters (Program 7.sas). Plots based on discrimination (Program 8.sas) and 

difficulty (Program 9.sas) are presented for each type of AE. Plots for AE Predisposition 

(θ) are presented across i patients (Program 10.sas). Odd and even figure numbers 

represent sample sizes of 30 and 250, respectively.  

Mean of Parameter Estimates. Figures 11–12 reveal that the mean of the 

discrimination parameter was stable for all AE types after approximately 25,000 and 

15,000 Gibbs sampler iterations for n = 30 and 250, respectively. Figures 13–14 reveal 

that the mean of the difficulty parameter was stable for all AE types after approximately 

25,000 and 10,000 Gibbs sampler iterations for n = 30 and 250, respectively. Figures 15–

16 reveal that the mean of the AE Predisposition (θ) parameter was stable across all 

patients after approximately 30,000 and 25,000 Gibbs sampler iterations for n = 30 and 

250, respectively.  
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Standard Deviation (SD) of Parameter Estimates. Figures 17–18 reveal that the 

SD of the discrimination parameter was stable for all AE types after approximately 

10,000 and 30,000 Gibbs sampler iterations for n = 30 and 250, respectively. Figures 19–

20 reveal that the mean of the difficulty parameter was stable for all AE types after 

approximately 15,000 and 30,000 Gibbs sampler iterations for n = 30 and 250, 

respectively. Figures 21–22 reveal that the SD of the AE Predisposition (θ) parameter was 

stable across all patients after approximately 25,000 and 35,000 Gibbs sampler iterations 

for n = 30 and 250, respectively.  
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Figure 11. 2-PL: Trace and G–R Plot for Mean Discrimination (n = 30) 
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Figure 12. 2-PL: Trace and G–R Plot for Mean Discrimination (n = 250) 
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Figure 13. 2-PL: Trace and G–R Plot for Mean Difficulty (n = 30)
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Figure 14. 2-PL: Trace and G–R Plot for Mean Difficulty (n = 250) 
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Figure 15. 2-PL: Trace and G–R Plot for Mean AE Predisposition (θ) (n = 30)
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Figure 16. 2-PL: Trace and G–R Plot for Mean AE Predisposition (θ) (n = 250) 
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Figure 17. 2-PL: Trace and G–R Plot for SD Discrimination (n = 30)
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Figure 18. 2-PL: Trace and G–R Plot for SD Discrimination (n = 250) 
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Figure 19. 2-PL: Trace and G–R Plot for SD Difficulty (n = 30)
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Figure 20. 2-PL: Trace and G–R Plot for SD Difficulty (n = 250) 
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Figure 21. 2-PL: Trace and G–R Plot for SD AE Predisposition (θ) (n = 30)
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Figure 22. 2-PL: Trace and G–R Plot for SD AE Predisposition (θ) (n = 250) 

 
The next step in evaluating the Bayesian IRT models identified lag functions that 

remove autocorrelation from the stationary states. Lags were investigated for the 

stationary state that consisted of Gibbs sampler iterations 25,001 to 50,000 for n = 30 and 

250.  

Autocorrelation. For the discrimination parameter presented in Table 9 (p. 122), 

the lags that resulted in nonsignificant autocorrelation for the k = 9 types of AEs ranged 

from 115 to 185 for n = 30 and 230 to 350 for n = 250 (Program 11.sas). Estimation of 

this parameter was then based on systematic random samples of lags 185 and 350 for all 

types of AEs for n = 30 and 250, respectively. For the difficulty parameter presented in 

Table 10 (p. 122), the lags that resulted in nonsignificant autocorrelation for the k = 9 

types of AEs ranged from 90 to 145 for n = 30 and 215 to 350 for n = 250. Estimation of  
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Table 9 

2-PL: Autocorrelation of Discrimination by AE Type 

SRS of Size 30 SRS of Size 250 Event 

Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

1 –0.0428 (–0.0861, 0.0005) 120 –0.0567 (–0.1368, 0.0234) 230 

2 –0.0358 (–0.0800, 0.0084) 135 –0.0919 (–0.1871, 0.0034) 255 

3 –0.0106 (–0.0530, 0.0318) 155 –0.0717 (–0.1554, 0.0119) 260 

4 –0.0177 (–0.0601, 0.0247) 115 –0.0395 (–0.1224, 0.0434) 305 

5 –0.0259 (–0.0761, 0.0242) 185 –0.0367 (–0.1252, 0.0517) 250 

6 –0.0389 (–0.0821, 0.0044) 120 –0.0774 (–0.1589, 0.0041) 315 

7 –0.0434 (–0.0896, 0.0029) 135 –0.0871 (–0.1830, 0.0087) 350 

8 –0.0473 (–0.0947, 0.0001) 120 –0.0815 (–0.1668, 0.0038) 230 

9 –0.0274 (–0.0653, 0.0106) 125 –0.0793 (–0.1597, 0.0012) 280 

 
 
Table 10 

2-PL: Autocorrelation of Difficulty by AE Type 

SRS of Size 30 SRS of Size 250 Event 

Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

1 –0.0374 (–0.0834, 0.0087) 100 –0.0789 (–0.1593, 0.0015) 215 

2 –0.0407 (–0.0825, 0.0011) 90 –0.0874 (–0.1793, 0.0045) 350 

3 –0.0408 (–0.0844, 0.0029) 145 –0.0873 (–0.1774, 0.0028) 345 

4 –0.0365 (–0.0759, 0.0029) 105 –0.0660 (–0.1483, 0.0163) 265 

5 –0.0338 (–0.0758, 0.0081) 90 –0.1117 (–0.2244, 0.0010) 305 

6 –0.0388 (–0.0848, 0.0072) 135 –0.0838 (–0.1695, 0.0020) 290 

7 –0.0372 (–0.0805, 0.0060) 110 –0.0647 (–0.1673, 0.0378) 275 

8 –0.0224 (–0.0639, 0.0191) 115 –0.0851 (–0.1767, 0.0064) 250 

9 –0.0453 (–0.0908, 0.0002) 100 –0.0840 (–0.1731, 0.0051) 315 
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this parameter was then based on systematic random samples of lags 145 and 350 for all 

types of AEs for n = 30 and 250, respectively. Last, systematic random samples of lags 

330 for n = 30 and 565 for n = 250 were used to remove the serial autocorrelation from 

the AE Predisposition (θ) parameter across all patients (Table 11). 

 
Table 11 

2-PL: Autocorrelation of AE Predisposition (θ) 

SRS of Size 30 SRS of Size 250 

Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

0.0007 (–0.0040, 0.0055) 330 –0.0011 (–0.0024, 0.0002) 565 

 
 
Goodness-of-Fit. Bock’s Index (BI), posterior probability interval (PPI) plots, and 

posterior residual plots were used to evaluate the goodness-of-fit (GoF) of each type of 

AE. The mean of the BI statistic ranged from 22.1 to 27.5 for n = 30 and 162.6 to 249.5 

for n = 250. These results exceeded the critical value 204.22
1.0,6

2
1.0,mS =χ=χ −  for block 

size S = 10 and m = 4 IRT model parameters. These parameters were the latent trait Z, AE 

Predisposition (θ), discrimination A, and difficulty B. This result implied that the 2-PL 

IRT model poorly fit the data for all AE types. In addition to the concerns of Toribio 

(2006) for using the BI statistic for gauging the GoF of Bayesian IRT models, using this 

statistic was further exacerbated because the expected values of the off-diagonals or 

discordant pairs were simulated to be less than 5. As a result, IRT model fit should not be 

decided solely on the BI statistic, and assisted with visual displays. 
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Evidence of acceptable fit was visualized by plots that exhibited patient 

discriminatory power, monotonicity, the observed data points were contained within the 

Posterior Probability Interval (PPI), and the residuals were small. Figures 23–24 (p. 125) 

comprise the PPI plots (left side) and posterior residual plots (right side) for AE type 1 for 

n = 30 (Program 12.sas) and n = 250 (Program 13.sas), respectively. The plots on the left 

were used to visualize patient discriminatory power. Given a monotinic IRT, the greater 

the curvature (i.e., large slopes), the greater the IRF was able to discriminate patients on 

AE Predisposition (θ). Plots on the right were used to determine how observed values 

compared to predicted values for each patient. As the residual decreased in size, the 

reliability of the IRT model increased. 

Patient discriminatory power was not exhibited in these plots. Second, the 

observed data points were contained within the PPIs. Next, the posterior residual plots 

revealed that the residuals were small. The same conclusions were reached for the 

remaining types of AEs for both n = 30 and 250. Given that patient discriminatory power 

was not present in the GoF plots in addition to the BI statistic findings, the fit of the 2-PL 

IRT model was considered insufficient. Poor fit was evidenced by the observation that the 

empirical distribution of the IRFs did not follow a logistic CDF, and this CDF was not 

always monotonic. Good fit would follow this density with greater vertical spread of the 

probability of AE Predisposition (θ). This conclusion was consistent for the remaining 

types of AEs for both n = 30 and 250 (Appendix D). 
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Figure 23. 2-PL: Bayesian PPI and Residual Plot for AE 1 (n = 30) 
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Figure 24. 2-PL: Bayesian PPI and Residual Plot for AE 1 (n = 250) 
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Parameter Estimates. After all Bayesian IRT model assumptions were assessed, 

estimators of the IRT parameters AE Predisposition (θ), discrimination (A), and difficulty 

(B) were computed. Table 12 demonstrates that the mean (SD) of the discrimination 

parameter ranged from –0.07 (0.556) to 0.11 (0.547) for n = 30 and –0.06 (0.359) to 0.08 

(0.341) for n = 250. Table 13 (p. 127) demonstrates that the mean (SD) of the difficulty 

parameter ranged from 1.97 (0.467) to 2.19 (0.551) for n = 30 and 2.46 (0.311) to 3.06 

(0.496) for n = 250. Due to space requirements, summary statistics for the AE 

Predisposition (θ) parameter are presented in Appendix E. Tables E-1 and E-2 

demonstrate that the mean (SD) of this parameter ranged from –0.02 (0.019) to 0.29 

(0.016) for n = 30 and –0.38 (0.007) to 0.41 (0.026) for n = size 250. 

 
Table 12 

2-PL: Discrimination by AE Type 

SRS of Size 30 SRS of Size 250 AE 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

1 –0.07 (0.556) –0.10 (–0.16, 0.03) 0.07 (0.458) 0.07 (–0.03, 0.18) 

2 0.06 (0.490) 0.05 (–0.02, 0.14) 0.08 (0.341) 0.10 (–0.00, 0.16) 

3 0.02 (0.500) 0.01 (–0.06, 0.11) –0.06 (0.359) –0.06 (–0.14, 0.03) 

4 –0.03 (0.678) 0.03 (–0.14, 0.09) –0.01 (0.370) –0.02 (–0.10, 0.08) 

5 –0.01 (0.536) –0.01 (–0.11, 0.08) –0.03 (0.380) –0.06 (–0.12, 0.06) 

6 –0.06 (0.543) –0.05 (–0.15, 0.04) 0.04 (0.368) 0.07 (–0.04, 0.13) 

7 0.11 (0.547) 0.11 (0.02, 0.20) 0.07 (0.329) 0.09 (–0.01, 0.14) 

8 –0.01 (0.513) 0.04 (–0.09, 0.08) 0.07 (0.422) –0.01 (–0.03, 0.17) 

9 –0.04 (0.553) –0.01 (–0.13, 0.06) –0.04 (0.398) –0.02 (–0.13, 0.05) 
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Table 13 

2-PL: Difficulty by AE Type 

SRS of Size 30 SRS of Size 250 AE 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

1 2.03 (0.525) 1.95 (1.95, 2.11) 2.46 (0.311) 2.43 (2.38, 2.53) 

2 2.18 (0.512) 2.17 (2.10, 2.26) 2.85 (0.426) 2.80 (2.75, 2.96) 

3 2.19 (0.551) 2.17 (2.11, 2.27) 2.76 (0.460) 2.71 (2.66, 2.87) 

4 1.97 (0.467) 1.93 (1.90, 2.04) 2.98 (0.496) 2.91 (2.86, 3.09) 

5 2.11 (0.560) 2.13 (2.02, 2.19) 2.90 (0.402) 2.84 (2.81, 3.00) 

6 2.16 (0.549) 2.07 (2.08, 2.24) 2.95 (0.422) 2.87 (2.85, 3.05) 

7 2.14 (0.499) 2.09 (2.06, 2.21) 2.92 (0.406) 2.88 (2.82, 3.01) 

8 2.13 (0.508) 2.10 (2.05, 2.21) 3.06 (0.496) 3.03 (2.94, 3.18) 

9 2.11 (0.532) 2.04 (2.03, 2.19) 3.00 (0.398) 3.02 (2.90, 3.09) 

2-PL EX IRT Model 

Multiple Chains. Across the three chains of starting values, the mean of the 

discrimination parameter ranged from 0.98 to 0.99 for n = 30 and from 0.77 to 0.83 for 

n = 250. The mean of the difficulty parameter ranged from 1.73 to 1.93 for n = 30 and 

from 2.77 to 3.21 for n = 250. The mean of the AE Predisposition (θ) parameter ranged 

from –0.56 to –0.55 for n = 30 and –0.09 to 0.00 for n = 250. The SD of the 

discrimination parameter ranged from 0.002 to 0.013 for n = 30 and from 0.01 to 0.03 for 

n = 250. The SD of the difficulty parameter ranged from 0.01 to 0.32 for n = 30 and from 

0.02 to 0.25 for n = 250. The SD of the AE Predisposition (θ) parameter ranged from 

0.003 to 0.009 for n = 30 and from 0.001 to 0.002 for n = 250. Because the three starting 

chains converged to the same location for the three IRT parameters, the chains of starting 
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values were considered interchangeable. As found with the 2-PL IRT model, the first 

chain appeared to have the slowest rate of convergence. As a result, chain 1 results are 

presented below, and chain 2 and 3 results are presented in Appendix B. 

Convergence. Starting values defined for chain 1 were used to construct Figures 

25–36 that consist of trace plots (left side) and G–R plots (right side). Figures 25–30 are 

based on the mean of the IRT parameters AE Predisposition (θ), discrimination, and 

difficulty. Figures 31–36 are based on the standard deviation of these parameters 

(Program 14.sas). Plots based on discrimination (Program 15.sas) and difficulty (Program 

16.sas) are presented for each type of AE. Plots for AE Predisposition (θ) are presented 

across n patients (Program 17.sas). Odd and even figure numbers represent sample sizes 

of 30 and 250, respectively.  

Mean of Parameter Estimates. Figures 25–26 reveal that the mean of the 

discrimination parameter was stable for all AE types after approximately 15,000 and 

25,000 Gibbs sampler iterations for n = 30 and 250, respectively. Figures 27–28 reveal 

that the mean of the difficulty parameter was stable for all AE types after approximately 

15,000 and 10,000 Gibbs sampler iterations for n = 30 and 250, respectively. Figures 29–

30 reveal that the mean of the AE Predisposition (θ) parameter was stable across all 

patients after approximately 30,000 and 15,000 Gibbs sampler iterations for n = 30 and 

250, respectively. 
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Figure 25. 2-PL EX: Trace and G–R Plot for Mean Discrimination (n = 30) 
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Figure 26. 2-PL EX: Trace and G–R Plot for Mean Discrimination (n = 250) 
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Figure 27. 2-PL EX: Trace and G–R Plot for Mean Difficulty (n = 30) 
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Figure 28. 2-PL EX: Trace and G–R Plot for Mean Difficulty (n = 250)



 131 

 

M
ea

n 
of

 P
ar

am
et

er

Iterations
M

ea
n 

of
 G

el
m

an
-R

ub
in

Iterations

-0.562
-0.560
-0.558
-0.556
-0.554
-0.552
-0.550
-0.548
-0.546
-0.544
-0.542
-0.540
-0.538

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

0.979
0.980
0.981
0.982
0.983
0.984
0.985
0.986
0.987
0.988
0.989
0.990
0.991
0.992

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

 

Figure 29. 2-PL EX: Trace and G–R Plot for Mean AE Predisposition (θ) (n = 30) 
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Figure 30. 2-PL EX: Trace and G–R Plot for Mean AE Predisposition (θ) (n = 250) 
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Standard Deviation (SD) of Parameter Estimates. Figures 31–32 reveal that the 

SD of the discrimination parameter was stable for all AE types after approximately 

20,000 Gibbs sampler iterations for n = 30 and 250. Figures 33–34 reveal that the SD of 

the difficulty parameter was stable for all AE types after approximately 10,000 and 

15,000 Gibbs sampler iterations for n = 30 and 250, respectively. Figures 35–36 reveal 

that the SD of the AE Predisposition (θ) parameter was stable across all patients after 

approximately 20,000 Gibbs sampler iterations for n = 30 and 250. 

Autocorrelation. Lags were investigated for the stationary state that consisted of 

Gibbs sampler iterations 15,001 to 50,000 for n = 30 and 250. For the discrimination 

parameter presented in Table 14 (p. 136), the lags that resulted in nonsignificant 

autocorrelation for the k = 9 types of AEs ranged from 80 to 95 for n = 30 and 270 to 365 

for n = 250 (Program 18.sas). Estimation of this parameter was then based on systematic 

random samples of lags 95 and 365 for all types of AEs for n = 30 and 250, respectively. 

For the difficulty parameter presented in Table 15 (p. 136), the lags that resulted in 

nonsignificant autocorrelation for the k = 9 types of AEs ranged from 155 to 210 for 

n = 30 and 370 to 430 for n = 250. Estimation of this parameter was then based on 

systematic random samples of lags 210 and 430 for all types of AEs for n = 30 and 250, 

respectively. Last, systematic random samples of lags 180 for n = 30 and 695 for n = 250 

were used to remove the serial autocorrelation from the AE Predisposition (θ) parameter 

across all patients (Table 16, p. 137). 
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Figure 31. 2-PL EX: Trace and G–R Plot for SD Discrimination (n = 30) 
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Figure 32. 2-PL EX: Trace and G–R Plot for SD Discrimination (n = 250) 
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Figure 33. 2-PL EX: Trace and G–R Plot for SD Difficulty (n = 30) 
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Figure 34. 2-PL EX: Trace and G–R Plot for SD Difficulty (n = 250) 
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Figure 35. 2-PL EX: Trace and G–R Plot for SD AE Predisposition (θ) (n = 30) 
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Figure 36. 2-PL EX: Trace and G–R Plot for SD AE Predisposition (θ) (n = 250) 
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Table 14 

2-PL EX: Autocorrelation of Discrimination by AE Type 

 SRS of Size 30 SRS of Size 250 

Event Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

1 –0.0159 (–0.0346, 0.0028) 95 –0.0538 (–0.1140, 0.0064) 270 

2 –0.0176 (–0.0370, 0.0018) 85 –0.0526 (–0.1063, 0.0012) 315 

3 –0.0155 (–0.0342, 0.0032) 85 –0.0438 (–0.0994, 0.0118) 305 

4 –0.0175 (–0.0362, 0.0013) 80 –0.0368 (–0.0881, 0.0146) 295 

5 –0.0184 (–0.0371, 0.0004) 85 –0.0433 (–0.0945, 0.0080) 330 

6 –0.0179 (–0.0363, 0.0004) 90 –0.0500 (–0.1043, 0.0043) 300 

7 –0.0186 (–0.0375, 0.0003) 85 –0.0460 (–0.0956, 0.0037) 365 

8 –0.0195 (–0.0395, 0.0005) 85 –0.0498 (–0.1027, 0.0032) 330 

9 –0.0173 (–0.0366, 0.0020) 90 –0.0448 (–0.0982, 0.0085) 340 

 
 
Table 15 

2-PL EX: Autocorrelation of Difficulty by AE Type 

SRS of Size 30 SRS of Size 250 Event 

Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

1 –0.0368 (–0.0757, 0.0021) 155 –0.0768 (–0.1537, 0.0001) 370 

2 –0.0310 (–0.0707, 0.0086) 170 –0.0549 (–0.1389, 0.0292) 410 

3 –0.0381 (–0.0777, 0.0015) 185 –0.0648 (–0.1426, 0.0130) 405 

4 –0.0379 (–0.0779, 0.0021) 210 –0.0838 (–0.1725, 0.0049) 385 

5 –0.0302 (–0.0681, 0.0077) 185 –0.0773 (–0.1620, 0.0075) 400 

6 –0.0387 (–0.0804, 0.0031) 195 –0.0851 (–0.1750, 0.0048) 430 

7 –0.0313 (–0.0692, 0.0066) 195 –0.0855 (–0.1715, 0.0004) 400 

8 –0.0375 (–0.0774, 0.0023) 180 –0.0723 (–0.1535, 0.0089) 420 

9 –0.0364 (–0.0789, 0.0062) 205 –0.0741 (–0.1635, 0.0152) 380 
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Table 16 

2-PL EX: Autocorrelation of AE Predisposition (θ) 

SRS of Size 30 SRS of Size 250 

Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

–0.0022 (–0.0126, 0.0083) 180 –0.0116 (–0.0234, 0.0002) 695 

 
 
Goodness-of-Fit. Bock’s Index (BI), posterior probability interval (PPI) plots, and 

posterior residual plots were used to evaluate the goodness-of-fit (GoF) of each type of 

AE. The mean of the BI statistic ranged from 297.4 to 323.0 for n = 30 and 1832.7 to 

1986.1 for n = 250. These results exceeded the critical value 204.22
1.0,6

2
1.0,mS =χ=χ −  

for block size S = 10 and m = 4 IRT model parameters. These parameters were the latent 

trait Z, AE Predisposition (θ), discrimination (A), and difficulty (B). This result implied 

that the 2-PL EX IRT model poorly fit the data for all AE types. As previously stated, 

IRT model fit should not be decided solely on the BI statistic, and assisted with visual 

displays. 

Figure 37 (p. 138) and Figure 38 (p. 139) comprise the PPI plots (left side) and 

posterior residual plots (right side) for AE type 1 for n = 30 (Program 19.sas) and n = 250 

(Program 20.sas), respectively. Patient discriminatory power was exhibited in these 

monotonic plots. Second, the observed data points were contained within the Posterior 

Probability Intervals (PPIs). Next, the posterior residual plots revealed that the residuals 

were small. The same conclusions were reached for the remaining types of AEs for both 

n = 30 and 250. Although the BI statistic findings imply poor fit, the remaining GoF 

assumptions were reasonably achieved. As a result, the fit of the 2-PL EX IRT model was 
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considered acceptable for modeling rare binary event data. This conclusion was consistent 

for the remaining types of AEs for both n = 30 and 250 (Appendix F). 
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Figure 37. 2-PL EX: Bayesian PPI and Residual Plot for AE 1 (n = 30) 

 
Parameter Estimates. After all Bayesian IRT model assumptions were assessed, 

estimators of the IRT parameters AE Predisposition (θ), discrimination (A), and difficulty 

(B) were computed. Table 17 (p. 140) demonstrates that the mean (SD) of the 

discrimination parameter ranged from 0.97 (0.238) to 0.99 (0.250) for n = 30 and 0.77 

(0.220) to 0.82 (0.226) for n = 250. Table 18 (p. 140) demonstrates that the mean (SD) of 

the difficulty parameter ranged from 1.82 (0.495) to 1.94 (0.554) for n = 30 and 2.82 

(0.356) to 3.21 (0.433) for n = 250. Due to space requirements, summary statistics for the 

AE Predisposition (θ) parameter are presented in Appendix G. Tables G-1 and G-2 
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demonstrate that the mean (SD) of the AE Predisposition (θ) parameter ranged from  

–0.63 (0.044) to –0.38 (0.358) for n = 30 and –0.16 (0.133) to ≈0.00 (0.320) for n = 250. 
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Figure 38. 2-PL EX: Bayesian PPI and Residual Plot for AE 1 (n = 250) 

 

2-PL MEX IRT Model 

Multiple Chains. Across the three chains of starting values, the mean of the 

discrimination parameter ranged from 2.1 to 2.4 for n = 30 and from –0.01 to 0.10 for 

n = 250. The mean of the difficulty parameter ranged from 1.30 to 1.45 for n = 30 and 

from 2.45 to 3.00 for n = 250. The mean of the AE Predisposition (θ) parameter ranged 

from –0.87 to –0.65 for n = 30 and from –0.005 to –0.003 for n = 250. The SD of the 

discrimination parameter ranged from 0.1 to 0.3 for n = 30 and from 0.02 to 0.10 for 



 140 

 

Table 17 

2-PL EX: Discrimination by AE Type 

SRS of Size 30 SRS of Size 250 AE 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

1 0.99 (0.245) 0.99 (0.97, 1.02) 0.82 (0.226) 0.82 (0.77, 0.86) 

2 0.98 (0.239) 0.97 (0.95, 1.00) 0.79 (0.222) 0.78 (0.74, 0.83) 

3 0.98 (0.243) 0.98 (0.96, 1.01) 0.77 (0.225) 0.78 (0.73, 0.82) 

4 0.97 (0.238) 0.97 (0.95, 0.99) 0.77 (0.220) 0.78 (0.73, 0.82) 

5 0.98 (0.239) 0.98 (0.96, 1.01) 0.77 (0.227) 0.77 (0.73, 0.82) 

6 0.98 (0.247) 0.98 (0.96, 1.01) 0.77 (0.221) 0.76 (0.72, 0.81) 

7 0.99 (0.245) 0.98 (0.96, 1.01) 0.77 (0.222) 0.77 (0.72, 0.81) 

8 0.98 (0.252) 0.98 (0.95, 1.00) 0.77 (0.223) 0.77 (0.73, 0.82) 

9 0.99 (0.250) 0.99 (0.96, 1.02) 0.77 (0.222) 0.77 (0.72, 0.81) 

 

Table 18 

2-PL EX: Difficulty by AE Type 

SRS of Size 30 SRS of Size 250 AE 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

1 1.82 (0.495) 1.78 (1.75, 1.90) 2.82 (0.356) 2.80 (2.74, 2.90) 

2 1.90 (0.532) 1.88 (1.82, 1.98) 3.05 (0.403) 3.02 (2.96, 3.14) 

3 1.92 (0.536) 1.89 (1.83, 2.00) 3.11 (0.415) 3.09 (3.02, 3.20) 

4 1.89 (0.548) 1.85 (1.80, 1.97) 3.18 (0.435) 3.15 (3.09, 3.28) 

5 1.94 (0.513) 1.90 (1.86, 2.01) 3.15 (0.427) 3.13 (3.06, 3.25) 

6 1.89 (0.538) 1.86 (1.81, 1.98) 3.18 (0.432) 3.14 (3.08, 3.27) 

7 1.91 (0.538) 1.88 (1.83, 1.99) 3.20 (0.434) 3.16 (3.10, 3.29) 

8 1.94 (0.554) 1.86 (1.85, 2.02) 3.20 (0.441) 3.16 (3.11, 3.30) 

9 1.92 (0.533) 1.90 (1.84, 2.00) 3.21 (0.433) 3.17 (3.11, 3.30) 
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n = 250. The SD of the difficulty parameter ranged from 0.03 to 0.23 for n = 30 and from 

0.025 to 0.24 for n = 250. The SD of the AE Predisposition (θ) parameter ranged from 

0.025 to 0.35 for n = 30 and from 0.0015 to 0.0025 for n = 250. Because the three 

starting chains converged to the same location for the three IRT parameters, the chains of 

starting values were considered interchangeable. Following the conclusions of the 2-PL 

and 2-PL EX IRT models, chain 1 presented the slowest convergence rate. As a result, 

results for this chain were presented below, and chain 2 and 3 results are presented in 

Appendix C. 

Convergence. Starting values defined for chain 1 were used to construct Figures 

39–50 that consist of trace plots (left side) and G–R plots (right side). Figures 39–44 are 

based on the mean of the IRT parameters AE Predisposition (θ), discrimination, and 

difficulty. Figures 45–50 are based on the standard deviation of these parameters 

(Program 21.sas). Plots based on discrimination (Program 22.sas) and difficulty (Program 

23.sas) are presented for each type of AE. Plots for AE Predisposition (θ) are presented 

across n patients (Program 24.sas). Odd and even figure numbers represent sample sizes 

30 and 250, respectively.  

Mean of Parameter Estimates. Figures 39–40 reveal that the mean of the 

discrimination parameter was stable for all AE types after approximately 7,000 and 6,000 

Gibbs sampler iterations for n = 30 and 250, respectively. Figures 41–42 reveal that the 

mean of the difficulty parameter was stable for all AE types after approximately 7,000 

and 6,000 Gibbs sampler iterations for n = 30 and 250, respectively. Figures 43 and 44 

(p. 144) reveal that the mean of the AE Predisposition (θ) across all patients was not 

stable for both n = 30 and 250.  
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Figure 39. 2-PL MEX: Trace and G–R Plot for Mean Discrimination (n = 30) 
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Figure 40. 2-PL MEX: Trace and G–R Plot for Mean Discrimination (n = 250) 
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Figure 41. 2-PL MEX: Trace and G–R Plot for Mean Difficulty (n = 30) 
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Figure 42. 2-PL MEX: Trace and G–R Plot for Mean Difficulty (n = 250) 
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Figure 43. 2-PL MEX: Trace and G–R Plot for Mean AE Predisposition (θ) (n = 30) 
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Figure 44. 2-PL MEX: Trace and G–R Plot for Mean AE Predisposition (θ) (n = 250) 
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Standard Deviation (SD) of Parameter Estimates. Figures 45–46 reveal that the 

SD of the discrimination parameter was stable for all AE types except AE type 1 after 

approximately 6,000 and 7,000 Gibbs sampler iterations for n = 30 and 250, respectively. 

Figures 47–48 reveal that the SD of the difficulty parameter was stable for all AE types 

after approximately 7,000 Gibbs sampler iterations for n = 30. For n = 250, this stability 

was not observed for the majority of AE types. Figures 49–50 reveal that the SD of the 

AE Predisposition (θ) parameter across all patients was not stable for both n = 30 and 

250. 

Autocorrelation. Lags were investigated for the stationary state that consisted of 

Gibbs sampler iterations 6,001 to 12,000 for n = 30 and 250. For the discrimination 

parameter presented in Table 19 (p. 149), the lags that resulted in nonsignificant 

autocorrelation for the k = 9 types of AEs ranged from 155 to 215 for n = 30 and 140 to 

235 for n = 250 (Program 25.sas). Estimation of this parameter was based on systematic 

random samples of lags 215 and 235 for all types of AEs for n = 30 and 250, respectively. 

For the difficulty parameter presented in Table 20 (p. 149), the lags that resulted in 

nonsignificant autocorrelation for the k = 9 types of AEs ranged from 50 to 100 for n = 

30 and 130 to 205 for n = 250. Estimation of this parameter was based on systematic 

random samples of lags 100 and 205 for n = 30 and 250, respectively. Last, systematic 

random sample of lags 310 for n = 30 and 90 for n = 250 were used to remove the serial 

autocorrelation from the AE Predisposition (θ) parameter across all patients (Table 21, p. 

150). 
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Figure 45. 2-PL MEX: Trace and G–R Plot for SD Discrimination (n = 30) 
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Figure 46. 2-PL MEX: Trace and G–R Plot for SD Discrimination (n = 250) 
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Figure 47. 2-PL MEX: Trace and G–R Plot for SD Difficulty (n = 30) 

 

SD
 o

f P
ar

am
et

er

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

SD
 o

f G
el

m
an

-R
ub

in

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

 

Figure 48. 2-PL MEX: Trace and G–R Plot for SD Difficulty (n = 250) 
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Figure 49. 2-PL MEX: Trace and G–R Plot for SD AE Predisposition (θ) (n = 30) 
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Figure 50. 2-PL MEX: Trace and G–R Plot for SD AE Predisposition (θ) (n = 250) 
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Table 19 

2-PL MEX: Autocorrelation of Discrimination by AE Type 

SRS of Size 30 SRS of Size 250 Event 

Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

1 –0.1796 (–0.3653, 0.0060) 180 –0.1853 (–0.3896, 0.0189) 190 

2 –0.1603 (–0.3435, 0.0230) 190 –0.1450 (–0.3014, 0.0114) 175 

3 –0.1667 (–0.3576, 0.0243) 215 –0.1781 (–0.3614, 0.0053) 235 

4 –0.1478 (–0.3412, 0.0455) 185 –0.1402 (–0.3105, 0.0301) 145 

5 –0.1680 (–0.3615, 0.0255) 215 –0.1020 (–0.3469, 0.1429) 190 

6 –0.1733 (–0.3873, 0.0406) 205 –0.1293 (–0.3092, 0.0505) 150 

7 –0.1353 (–0.3008, 0.0302) 155 –0.1183 (–0.2942, 0.0576) 165 

8 –0.1762 (–0.3685, 0.0161) 205 –0.1509 (–0.3209, 0.0191) 140 

9 –0.1846 (–0.3713, 0.0021) 210 –0.1598 (–0.3653, 0.0457) 175 

 
 
Table 20 

2-PL MEX: Autocorrelation of Difficulty by AE Type 

SRS of Size 30 SRS of Size 250 Event 

Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

1 –0.0809 (–0.1621, 0.0003) 80 –0.1565 (–0.3218, 0.0089) 155 

2 –0.0577 (–0.1383, 0.0230) 80 –0.1719 (–0.3447, 0.0009) 145 

3 –0.0772 (–0.1577, 0.0033) 60 –0.1557 (–0.3314, 0.0201) 130 

4 –0.0562 (–0.1289, 0.0164) 60 –0.1196 (–0.3042, 0.0650) 205 

5 –0.0625 (–0.1443, 0.0193) 80 –0.1915 (–0.3841, 0.0012) 160 

6 –0.0562 (–0.1347, 0.0223) 100 –0.1494 (–0.3359, 0.0371) 180 

7 –0.0713 (–0.1441, 0.0015) 50 –0.1571 (–0.3666, 0.0523) 160 

8 –0.0804 (–0.1638, 0.0030) 70 –0.1386 (–0.3168, 0.0396) 160 

9 –0.0759 (–0.1577, 0.0058) 95 –0.1730 (–0.3714, 0.0254) 160 
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Table 21 

2-PL MEX: Autocorrelation of AE Predisposition (θ) 

SRS of Size 30 SRS of Size 250 

Mean ACF 95% CI (2-sided) Lag Mean ACF 95% CI (2-sided) Lag 

–0.0436 (–0.0910, 0.0038) 310 0.0111 (–0.0059, 0.0282) 90 

 
 
Goodness-of-Fit. Bock’s Index (BI), posterior probability interval (PPI) plots, and 

posterior residual plots were used to evaluate the goodness-of-fit (GoF) of each type of 

AE. The mean of the BI statistic ranged from 647.3 to 1095.0 for n = 30 and 190.7 to 

321.9 for n = 250. These results exceeded the critical value 204.22
1.0,6

2
1.0,mS =χ=χ −  for 

block size S=10 and m=4 IRT model parameters. These parameters were the latent trait Z, 

AE Predisposition (θ), discrimination (A), and difficulty (B). This result implied that the 

2-PL MEX IRT model poorly fit the data for all AE types. As previously stated, IRT 

model fit should not be decided solely on the BI statistic, and assisted with visual 

displays. 

Figures 51–52 comprise the PPI plots (left side) and posterior residual plots (right 

side) for AE type 1 for n = 30 (Program 26.sas) and n = 250 (Program 27.sas), 

respectively. Patient discriminatory power was and was not exhibited for n = 30 and 250, 

respectively. Second, the observed data points were contained within the Posterior 

Probability Intervals (PPIs). Last, the posterior residual plots revealed that the residuals 

were small. The same conclusions were reached for the remaining types of AEs for both n 

= 30 and 250. Given that patient discriminatory power and monotonicity were not 

consistently exhibited in the GoF plots in addition to the BI statistic findings, the fit of the 
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2-PL MEX IRT model was considered unacceptable. This conclusion was consistent for 

the remaining types of AEs for both n = 30 and 250 (Appendix H). 

Parameter Estimates. After all Bayesian IRT model assumptions were assessed, 

estimators of the IRT parameters AE Predisposition (θ), discrimination (A), and difficulty 

(B) were computed. Table 22 (p. 153) demonstrates that the mean (SD) of the 

discrimination parameter ranged from 1.73 (1.150) to 2.07 (1.288) for n = 30 and –0.04 

(0.373) to 0.12 (0.368) for n = 250. Table 23 (p. 153) demonstrates that the mean (SD) of 

the difficulty parameter ranged from 1.02 (0.574) to 1.20 (0.559) for n = 30 and 2.56 

(0.377) to 3.02 (0.441) for n = 250. Due to space requirements, summary statistics for the 

AE Predisposition (θ) parameter are presented in Appendix I. Tables I-1 and I-2 

demonstrate that the mean (SD) of the AE Predisposition (θ) parameter ranged from  

–0.79 (0.446) to –0.50 (0.487) for n = 30 and –0.45 (0.291) to 0.40 (0.395) for n = 250. 

Summary of IRT Model Assumptions. This section evaluates the assumptions of 

the three Bayesian IRT models for rare binomial events. For the 2-PL IRT model, the 

mean of the discrimination parameter ranged from –0.07 to 0.11 and –0.06 to 0.08 for 

n = 30 and 250, respectively. The mean of the difficulty parameter ranged from 1.97 to 

2.19 and 2.46 to 3.06 for n = 30 and 250, respectively. The mean of the AE 

Predisposition (θ) parameter ranged from –0.02 to 0.29 and –0.38 to 0.41 for n = 30 and 

250, respectively. Trace and G–R plots for the three chains of starting values 

demonstrated consistent convergence of the mean and standard deviation of the 

discrimination, difficulty, and AE Predisposition (θ) IRT parameters. Last, irrespective of 

the posterior probability interval and residual plots, the 2-PL IRT model did not exhibit 
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Figure 51. 2-PL MEX: Bayesian PPI and Residual Plot for AE 1 (n = 30) 
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Figure 52. 2-PL MEX: Bayesian PPI and Residual Plot for AE 1 (n = 250) 
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Table 22 

2-PL MEX: Discrimination by AE Type 

SRS of Size 30 SRS of Size 250 AE 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

1 1.87 (1.218) 1.66 (1.71, 2.97) 0.03 (0.412) –0.01 (–0.14, 0.21) 

2 1.79 (1.209) 1.61 (1.62, 2.87) 0.04 (0.384) 0.05 (–0.12, 0.21) 

3 1.73 (1.150) 1.59 (1.57, 2.75) 0.08 (0.393) 0.11 (–0.09, 0.25) 

4 1.95 (1.196) 1.80 (1.82, 3.06) –0.04 (0.373) –0.05 (–0.20, 0.12) 

5 1.86 (1.112) 1.82 (1.75, 2.90) 0.12 (0.368) 0.15 (–0.04, 0.28) 

6 1.88 (1.126) 1.80 (1.76, 2.92) 0.04 (0.385) 0.07 (–0.13, 0.21) 

7 2.07 (1.288) 1.97 (1.92, 3.25) 0.08 (0.378) 0.05 (–0.08, 0.24) 

8 1.90 (1.062) 1.76 (1.83, 2.92) 0.02 (0.411) –0.03 (–0.15, 0.20) 

9 1.94 (1.075) 1.79 (1.86, 2.97) 0.05 (0.397) 0.07 (–0.12, 0.22) 

 

Table 23 

2-PL MEX: Difficulty by AE Type 

SRS of Size 30 SRS of Size 250 AE 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

N, Mean (SD) Median 95% (2-sided) 
CI for Mean 

1 1.12 (0.571) 1.16 (1.20, 1.59) 2.56 (0.377) 2.48 (2.41, 2.71) 

2 1.17 (0.541) 1.17 (1.28, 1.65) 2.86 (0.415) 2.84 (2.70, 3.03) 

3 1.19 (0.579) 1.21 (1.29, 1.68) 2.77 (0.394) 2.77 (2.61, 2.93) 

4 1.02 (0.574) 1.07 (1.09, 1.47) 2.88 (0.452) 2.82 (2.70, 3.06) 

5 1.20 (0.559) 1.21 (1.31, 1.69) 2.93 (0.404) 2.88 (2.77, 3.09) 

6 1.20 (0.551) 1.22 (1.31, 1.68) 2.93 (0.482) 2.87 (2.73, 3.12) 

7 1.14 (0.541) 1.09 (1.24, 1.60) 2.92 (0.382) 2.89 (2.76, 3.07) 

8 1.17 (0.585) 1.14 (1.26, 1.66) 3.02 (0.441) 3.02 (2.84, 3.20) 

9 1.12 (0.543) 1.10 (1.21, 1.58) 2.96 (0.442) 2.94 (2.78, 3.14) 
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acceptable patient discriminatory power because A ≈ 0 for all AE types (de Gruijter, 

2004) and some IRFs were not monotonic. This finding was anticipated because the 

distribution of rare transfusion-related AEs was demonstrated to be non-normal in Figure 

7 (p. 107). This finding means that statistical inference based on this model may not be 

reliable for the type of data under investigation.  

For the 2-PL EX IRT model, the mean of the discrimination parameter ranged 

from 0.97 to 0.99 and 0.77 to 0.82 for n = 30 and 250, respectively. The mean of the 

difficulty parameter ranged from 1.82 to 1.94 and 2.82 to 3.21, respectively, for n = 30 

and 250. The mean of the AE Predisposition (θ) parameter ranged from –0.63 to –0.38 

and –0.16 to ≈0.00 for n = 30 and 250, respectively. Trace and G–R plots for the three 

chains of starting values revealed consistent convergence of the mean and standard 

deviation of the discrimination, difficulty, and AE Predisposition (θ) IRT parameters. 

Last, in conjunction with the posterior probability interval and residual plots, the 2-PL EX 

IRT model exhibited acceptable patient discriminatory power because A > 0.75 (de 

Gruijter, 2004) for all AE types. This result was anticipated because the distribution of 

rare transfusion-related AEs could be modeled with a gamma PDF (Figure 7, p. 107). 

This finding means that statistical inference based on this model was considered reliable 

for the type of data under investigation.  

For the 2-PL MEX IRT model, the mean of the discrimination parameter ranged 

from 1.73 to 2.07 and –0.04 to 0.12 for n = 30 and 250, respectively. The mean difficulty 

parameter ranged from 1.02 to 1.20 and 2.56 to 3.02 for n = 30 and 250, respectively. The 

mean of the AE Predisposition (θ) parameter ranged from –0.79 to –0.50 and –0.45 to 

0.40 for n = 30 and 250, respectively. Trace and G–R plots for the three chains of starting 
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values revealed inconsistent convergence of the mean and standard deviation of the 

discrimination, difficulty, and AE Predisposition (θ) IRT parameters. Last, in conjunction 

with the posterior probability interval and residual plots, the 2-PL MEX IRT model 

exhibited acceptable patient discriminatory power for n = 30 because A > 0.75. This 

result was anticipated because the distribution of rare transfusion-related AEs could also 

be modeled with a beta PDF (Figure 7, p. 107). Because GoF and parameter convergence 

was not consistent across all AE types and sample sizes, the statistical inference from this 

model for the type of data under investigation was considered unreliable.  

In brief summary, 2-PL was not sufficient for modeling rare binomial events. 

2-PL EX was sufficient for modeling this type of data. 2-PL MEX was not sufficient for 

modeling this type of data. As a result, statistical inference and power analysis results 

were based on the 2-PL EX IRT model. 

Research Question 2 Results 

 This section investigates superiority and equivalence study objectives based on 

fixed historical rate data for the 2-PL EX IRT model. Analyses were based on simple 

random samples of sizes n = 30 and 250. Paired Item Response Functions (IRFs) were 

first presented for each type of AE. Next, linear trapezoid and spline approximations were 

compared to the exact AUC for each type of AE. Statistical inference was then used to 

compare differences (Treatment A – Treatment B) between paired IRFs for superiority 

and equivalence study objectives. A parametric and nonparametric bootstrap, jackknife, 

and partial batch approach was used for estimation. 
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Each of these analyses was based on the mean and median of the paired effect and 

its standard error (SE). A 95% confidence interval (CI) and its coverage were computed 

for each estimator. Next, the t-statistic and p-value were used to compare superiority 

hypotheses against zero and equivalence hypotheses against a ∆ = 10% margin. This 

margin was arbitrarily chosen, but Table 30 (p. 166) was constructed to assist researchers 

in deciding upon a margin for their study. Last, the Shapiro–Wilk’s test was used to 

determine if the distribution of the paired differences in AUC were normal (p-value 

≥ 0.10). The findings of this investigation were used to determine which set of statistics 

were reliable for performing statistical inference on superiority and equivalence study 

objectives. The statistical approach with the lowest bias, smallest standard error, and 

highest coverage was recommended for utilization for the analysis of the historical rate 

data, Data Patterns 1–4, and Research Question 3. 

 Figure 53 (p. 157) presents the Item Response Functions (IRFs) for each type of 

AE for n = 30. This figure revealed that the empirical distribution of AE Predisposition 

(θ) for each AE type was comparable. As a result, the AE types were aggregated using the 

Partial approach (defined in Chapter II) so that analysis could be performed across all AE 

types. This approach was deemed reliable because the IRFs were comparable in 

distribution. If these IRFs possessed different distributions where different families of 

densities were present, this aggregation would require, for example, the use of 

transformation theory to construct a reliable composite for performing inference (Hogg, 

McKean, & Craig, 2005). 
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Figure 53. IRT Plots for Fixed Historical Rate Data (n = 30) 
 
 

Table 24 (p. 158) presents the linear trapezoid and spline approximations to the 

exact AUC by treatment group and AE type for n = 30 (Program 28.sas). For Treatment 

A, the exact area under IRFs ranged from 4.555 to 4.639, and the median of the exact 

AUC across all AE types was 4.622. The linear approximation of the exact AUC ranged 

from 4.410 to 4.475, and the median (bias) of the approximation across all AE types was 

4.622 (–0.160). The spline approximation of the exact AUC ranged from 4.422 to 4.492, 

and the median (bias) of the approximation across all AE types was 4.477 (–0.145). For 

Treatment B, the exact AUC ranged from 4.509 to 4.666, and the median of the exact 

AUC across all AE types was 4.622. The linear approximation of the exact AUC ranged 

from 4.201 to 4.326, and the median (bias) of the approximation across all AE types was 

4.290 (–0.331). The spline approximation of the exact AUC ranged from 4.491 to 4.622, 
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and the median (bias) of the approximation across all AE types was 4.585 (–0.036). 

Additional analysis demonstrated that the Partial and Batch approaches for estimating 

AUC for were comparable for both AUC approximations. As a result, the Partial 

approach was utilized to aggregate the area under paired IRFs for all further analysis. 

 

Table 24 
 
Summary of Approximate Area Under IRFs by Treatment (n = 30) 

Treatment A Treatment B AE 

Exact 
AUC 

Linear Trapezoid 
AUC (Bias) 

Spline AUC 
(Bias) 

Exact AUC Linear Trapezoid 
AUC (Bias) 

Spline AUC 
(Bias) 

1 4.55505 4.410 (–0.145) 4.422 (–0.133) 4.50948 4.201 (–0.309) 4.491 (–0.018) 

2 4.60949 4.453 (–0.157) 4.467 (–0.142) 4.66623 4.326 (–0.340) 4.622 (–0.045) 

3 4.62422 4.464 (–0.160) 4.480 (–0.145) 4.56258 4.243 (–0.320) 4.535 (–0.027) 

4 4.59667 4.444 (–0.153) 4.458 (–0.139) 4.62224 4.290 (–0.332) 4.585 (–0.037) 

5 4.63887 4.475 (–0.163) 4.492 (–0.147) 4.59470 4.269 (–0.325) 4.563 (–0.032) 

6 4.60211 4.447 (–0.155) 4.461 (–0.141) 4.59255 4.267 (–0.326) 4.560 (–0.033) 

7 4.62224 4.461 (–0.161) 4.477 (–0.145) 4.62422 4.293 (–0.331) 4.587 (–0.037) 

8 4.63887 4.475 (–0.163) 4.492 (–0.147) 4.62601 4.295 (–0.331) 4.590 (–0.036) 

9 4.62962 4.467 (–0.163) 4.483 (–0.147) 4.62962 4.296 (–0.333) 4.591 (–0.039) 

Xbar 4.61302 4.455 (–0.158) 4.470 (–0.143) 4.60307 4.276 (–0.327) 4.569 (–0.034) 

Med 4.62224 4.461 (–0.160) 4.477 (–0.145) 4.62224 4.290 (–0.331) 4.585 (–0.036) 

  

 Table 25 (p. 159) presents the linear trapezoid and spline approximations to the 

exact area under IRFs by treatment group and AE type for n = 250 (Program 29.sas). For 

Treatment A, the exact AUC ranged from 5.072 to 5.211, and the median of the exact 

AUC across all AE types was 5.198. The linear approximation of the exact AUC ranged 

from 4.921 to 5.071, and the median (bias) of the approximation across all AE types was 
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5.058 (–0.140). The spline approximation of the exact AUC ranged from 4.637 to 4.792, 

and the median (bias) of the approximation across all AE types was 4.777 (–0.420). For 

Treatment B, the exact AUC ranged from 5.060 to 5.222, and the median of the exact 

AUC across all AE types was 5.191. The linear approximation of the exact AUC ranged 

from 4.783 to 4.970, and the median (bias) of the approximation across all AE types was 

4.943 (–0.252). The spline approximation of the exact AUC ranged from 5.366 to 5.549, 

and the median (bias) of the approximation across all AE types was 5.522 (0.326). 

 
Table 25 
 
Summary of Approximate Area Under IRFs by Treatment (n = 250) 
 

Treatment A Treatment B AE 

Exact 
AUC 

Linear Trapezoid 
AUC (Bias) 

Spline AUC 
(Bias) 

Exact AUC Linear Trapezoid 
AUC (Bias) 

Spline AUC 
(Bias) 

1 5.07165 4.921 (–0.151) 4.637 (–0.435) 5.05977 4.783 (–0.276) 5.366 (0.306) 

2 5.15794 5.013 (–0.145) 4.731 (–0.427) 5.12398 4.859 (–0.265) 5.439 (0.315) 

3 5.16535 5.025 (–0.140) 4.744 (–0.422) 5.16842 4.918 (–0.251) 5.497 (0.329) 

4 5.19779 5.058 (–0.140) 4.777 (–0.420) 5.17471 4.922 (–0.253) 5.501 (0.326) 

5 5.18399 5.044 (–0.140) 4.763 (–0.421) 5.21305 4.960 (–0.253) 5.539 (0.326) 

6 5.19779 5.058 (–0.140) 4.777 (–0.420) 5.19594 4.948 (–0.248) 5.527 (0.331) 

7 5.20689 5.067 (–0.140) 4.787 (–0.420) 5.21591 4.967 (–0.249) 5.545 (0.329) 

8 5.20689 5.067 (–0.140) 4.787 (–0.420) 5.19140 4.943 (–0.249) 5.522 (0.330) 

9 15.21141 5.071 (–0.140) 4.792 (–0.420) 5.22211 4.970 (–0.252) 5.549 (0.326) 

Xbar 5.17774 5.036 (–0.142) 4.755 (–0.423) 5.17392 4.919 (–0.255) 5.498 (0.324) 

Med 5.19779 5.058 (–0.140) 4.777 (–0.420) 5.19140 4.943 (–0.252) 5.522 (0.326) 

 
  

Using the overall median bias (“Med”) from Table 24 (p. 158) and Table 25 

(p. 159) across treatment groups, the median of these biases was –0.206 for the linear 
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trapezoid approximation and –0.09 for the spline approximation. As a result, the spline 

approximation better approximated the exact AUC for the investigated AE data. 

Superiority Analysis  

 Tables 26–27 (p. 161) present the superiority analyses for comparing the AE 

Predisposition (θ) IRFs in Figure 53 (p. 157). Before the hypothesis test results are 

discussed for n = 30, the coverage (%) or observed confidence level was inspected for 

each type of estimation. For the linear trapezoid approximation to the exact AUC, the 

coverage for the bootstrap, jackknife, and partial batch mean estimation approaches was 

81.50%, 77.25%, and 61.20%, respectively. The coverage for the bootstrap, jackknife, 

and partial batch median estimation approaches was 95.57%, 50.00%, and 97.48%, 

respectively. For the spline approximation to the exact AUC, the coverage for the 

bootstrap, jackknife, and partial batch mean estimation approaches was 89.05%, 99.40%, 

and 92.01%, respectively. The coverage for the bootstrap, jackknife, and partial batch 

median estimation approaches was 95.51%, 50.00%, and 97.48%, respectively. 

These results demonstrated that coverage achieved 95% for the bootstrap and 

partial batch approaches based on the median. For these approaches, coverage was larger 

for the median because the distribution of the effects was consistently non-normal. As a 

result, the bootstrap and partial batch approaches based on the median will be highlighted 

in the next section for the spline approximation to the exact AUC. The above analyses for 

each AE type are repeated in Appendix K. 

For the bootstrap approach, the median (SE) of the paired difference or effect was 

1.088x10–13 (2.163x10–13). The 95% (two-sided) CI on this effect was (–9.864x10–14,  
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Table 26 

Superiority Analysis: Linear Trapezoid Approximation (n = 30) 

Type of 
Estimation 

 

Estimator 
Difference 

(SE) 

95% (2-sided) 
CI on 

Difference 
Coverage 

(%) 
Tstat 

(p-value) 
S-W1 Stat  
(p-value) 

Mean 1.371E–04 
(5.356E–03) 

(–1.077E–02, 
1.105E–02) 

81.50 8.440E–02 
(0.370) 

0.5656 
(<0.0001) 

Bootstrap2 

Median 1.101E–13 
(2.285E–13) 

(–9.908E–14, 
2.643E–13) 

95.57 1.963E+00 
(0.089) 

 

Mean 1.471E–04 
(6.743E–04) 

(–1.226E–03, 
1.521E–03) 

77.25 1.950E–01 
(0.455) 

0.5680 
(<0.0001) 

Jackknife3 

Median 1.097E–13 
(6.098E–04) 

(–1.693E–03, 
1.693E–03) 

50.00 5.522E–10 
(>0.999) 

 

Mean 1.471E–04 
(1.990E–03) 

(–3.906E–03, 
4.201E–03) 

61.20 1.805E–02 
(0.776) 

0.5700 
(<0.0001) 

Partial 
Batch4 

Median 1.101E–13 
(5.773E–14) 

(–1.415E–13, 
1.576E–13) 

97.48 1.198E+00 
(0.050) 

 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas; 3 Program 31.sas; 4 Program 32.sas 

 
Table 27 

Superiority Analysis: Spline Approximation (n = 30) 

Type of 
Estimation 

 

Estimator 
Difference 

(SE) 

95% (2-sided) 
CI on 

Difference 
Coverage 

(%) 
Tstat 

(p-value) 
S–W1 Stat  
(p-value) 

Mean –8.446E–03 
(6.787E–03) 

(–2.227E–02, 
5.379E–03) 

89.05 –3.236E+00 
(0.219) 

0.4350 
(<0.0001) 

Bootstrap2 

Median 1.088E–13 
(2.163E–13) 

(–9.864E–14, 
2.100E–13) 

95.51 1.958E+00 
(0.090) 

 

Mean –8.509E–03 
(3.083E–03) 

(–1.479E–02,  
–2.229E–03) 

99.40 –2.764E+00 
(0.012) 

0.4165 
(<0.0001) 

Jackknife3 

Median 9.348E–14 
(8.372E–03) 

(–2.324E–02, 
2.324E–02) 

50.00 1.074E–11 
(>0.999) 

 

Mean –8.509E–03 
(5.816E–03) 

(–2.036E–02, 
3.337E–03) 

92.01 –1.492E+00 
(0.160) 

0.4154 
(<0.0001) 

Partial 
Batch4 

Median 1.088E–13 
(5.795E–14) 

(–1.421E–13, 
2.087E–13) 

97.48 1.198E+00 
(0.050) 

 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas; 3 Program 31.sas; 4 Program 32.sas 
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2.100x10–13). The test statistic (p-value) was 1.958 (0.090) for a one-sample 

t-distribution. This result demonstrated that the null hypothesis of no paired difference 

between treatment groups was not rejected (i.e., the CI contained zero). That is, 

Treatment A was not statistically different from or superior to Treatment B at 95% 

confidence. These results were consistent with partial batch estimation. 

Tables 28–29 (p. 163) present the superiority analyses for comparing the AE 

Predisposition (θ) IRFs in Figure 54 (p. 164). Before the hypothesis test results are 

discussed for n = 250, the coverage (%) was inspected for each type of estimation. For 

the linear trapezoid approximation to the exact AUC, the coverage for the bootstrap, 

jackknife, and partial batch mean estimation approaches was 62.58%, 88.48%, and 

52.25%, respectively. The coverage for the bootstrap, jackknife, and partial batch median 

estimation approaches was >99.99%, 50.00%, and >99.99%, respectively. For the spline 

approximation to the exact AUC, the coverage for the bootstrap, jackknife, and partial 

batch mean estimation approaches was 75.97%, >99.99%, and 59.91%, respectively. The 

coverage for the bootstrap, jackknife, and partial batch median estimation approaches was 

>99.99%, 50.00%, and >99.99%, respectively. 

These results demonstrated that coverage achieved 95% for the bootstrap and 

partial batch approaches based on the median. For these approaches, coverage was larger 

for the median because the distribution of the effects was consistently non-normal. As a 

result, the bootstrap and partial batch approaches based on the median will be discussed 

in the next section for the spline approximation to the exact AUC. The above analyses for 

each AE type are repeated in Appendix K. 
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Table 28 

Superiority Analysis: Linear Trapezoid Approximation (n = 250) 

Type of 
Estimation 

Estimator Difference 
(SE) 

95% (2-sided) 
CI on 

Difference 

Coverage 
(%) 

Tstat  
(p-value) 

S–W1 Stat 
(p-value) 

Mean –1.089E–04 
(3.073E–03) 

(–6.161E–03, 
5.943E–03) 

62.58 1.986E–02 
(0.748) 

Bootstrap2 

Median –4.130E–14 
(2.665E–14) 

(–9.893E–14, 
1.544E–14) 

>99.99 –1.563E+00 
(<0.001) 

0.2753 
(<0.0001) 

Mean –1.154E–04 
(6.568E–05) 

(–2.448E–04, 
1.396E–05) 

88.48 –1.810E+00 
(0.230) 

Jackknife3 

Median –4.130E–14 
(1.279E–04) 

(–2.743E–04, 
2.743E–04) 

50.00 –2.784E–10 
(>0.999) 

0.2029 
(<0.0001) 

Mean –1.154E–04 
(2.088E–03) 

(–4.227E–03, 
3.996E–03) 

52.25 –5.618E–02 
(0.955) 

Partial 
Batch4 

Median –4.130E–14 
(2.465E–14) 

(–4.273E–14,  
–2.877E–14) 

>99.99 –3.064E+00 
(<0.001) 

0.2024 
(<0.0001) 

 

1 Shapiro–Wilk test for normality of paired AUC differences; 2 Program 30.sas; 3 Program 31.sas; 
4 Program 32.sas 
 
 
Table 29 

Superiority Analysis: Spline Approximation (n = 250) 

Type of 
Estimation 

 

Estimator 
Difference 

(SE) 

95% (2-sided) 
CI on 

Difference 
Coverage 

(%) 
Tstat 

(p-value) 

S–W1 
Stat  

(p-value) 

Mean –3.498E–03 
(1.133E–02) 

(–2.580E–02, 
1.881E–02) 

75.97 –6.786E–01 
(0.481) 

Bootstrap2 

Median –4.174E–14 
(2.620E–14) 

(–9.913E–14, 
1.540E–14) 

>99.99 –1.567E+00 
(<0.001) 

0.1491 
(<0.0001) 

Mean –3.504E–03 
(4.722E–04) 

(–4.433E–03,  
–2.574E–03) 

>99.99 –7.421E+00 
(<0.001) 

Jackknife3 

Median –4.174E–14 
(3.506E–03) 

(–7.519E–03, 
7.519E–03) 

50.00 –1.182E–11 
(>0.999) 

0.0879 
(<0.0001) 

Mean –3.504E–03 
(1.394E–02) 

(–3.096E–02, 
2.395E–02) 

59.91 –2.514E–01 
(0.802) 

Partial 
Batch4 

Median –4.174E–14 
(2.620E–14) 

(–9.889E–14, 
1.540E–14) 

>99.99 –1.567E+00 
(<0.001) 

0.0880 
(<0.0001) 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas; 3 Program 31.sas; 4 Program 32.sas 
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Figure 54. IRT Plots for Fixed Historical Rate Data (n = 250) 
 
 
 For the bootstrap approach, the median (SE) of the paired difference was  

–4.174x10–14 (2.620x10–14). The 95% (two-sided) CI on this effect was (–9.913x10–14, 

1.540x10–14). The test statistic (p-value) was –1.567 (<0.001) for a one-sample 

t-distribution. The conclusion based on this p-value was inconsistent between the CI and 

associated p-value. The p-value demonstrated that Treatment A was statistically superior 

(i.e., negative difference) to Treatment B at 95% confidence. The opposite and correct 

conclusion was reached with the CI because it contained zero. This inconsistency was 

likely due to an artificial effect caused by sample size. Statistical substantiation of 

superiority was not warranted because of the IRF overlap in Figure 54. These results and 

conclusions were consistent with partial batch estimation. The above inconsistency will 

be further discussed in Chapter V. 
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Equivalence Margin Evaluation 

Opposite to superiority which is based on the minimum acceptable difference 

between treatment groups, equivalence is based on the maximum acceptable difference. 

This difference is commonly denoted by the equivalence margin ∆. Seven definitions for 

computing this margin were presented in this study. Unfortunately, there is no consensus 

on which definition to use. As a result, this study performed simulations to assist with this 

choice for treatment differences in binomial event data. Definitions that result in margins 

that exceed the numerical difference between treatments and decrease as a function of this 

definition are recommended for further consideration.  

Monte Carlo simulations based on 5,000 nonparametric bootstraps were 

performed to investigate equivalence margins for differences in AEs that ranged from 

0.00039% to 2.609% (Program 33.sas).  

Table 30 (p. 166) presents the simulated equivalence margins for the 7 definitions. 

All values for Margin 1 fell below the treatment group difference. Margin 2 failed to 

exceed this difference for rates larger than 0.05. Margin 4 (linear trapezoid and spline) 

failed to exceed this difference for rates smaller than 0.0012. Margin 6 (FDA definition) 

exceeded this difference for all rates investigated, but these margins did not decrease with 

the magnitude of the percent difference between treatments A and B. Margins 2 and 5 

exceeded this difference for all rates investigated and these margins decreased with the 

magnitude of the percent difference between treatments A and B. As a result, Margin 2 

and Margin 5 were the only viable equivalence margin options for the range of data 



 166 

 

investigated. Furthermore, there is no existing criteria for being able to choose Margin 2 

over Margin 5, and vice versa.  

 
Table 30 

Evaluation of Various Equivalence Margins 

Margin (%) 
Test 

Group 
(%) 

Control 
Group 

(%) Diff (%) 1 2 3 
Linear 

Trapezoid Spline 5 6 

20 17.391 2.609 0.5 7.8 1.3 16.7 16.7 8.9 4.3 

15 13.0433 1.95675 0.4 6.9 1.1 12.5 12.5 7.9 3.6 

10 8.6955 1.30450 0.3 5.8 0.9 9.1 9.1 6.6 3.7 

5 4.3478 0.65225 0.1 4.2 0.6 4.8 4.8 4.8 4.0 

1 0.8696 0.13045 0.03 1.9 0.3 0.9 0.95 2.2 4.8 

0.66 0.5739 0.08610 0.02 1.6 0.2 0.5 0.58 1.8 4.4 

0.266 0.2313 0.03470 0.01 1.0 0.1 0.1 0.10 1.1 3.8 

0.120 0.1043 0.01565 0.003 0.7 0.09 0.002 0.002 0.8 4.0 

0.053 0.0461 0.00691 0.001 0.5 0.06 1.106x10–7 1.254x10–7 0.5 1.0 

0.0489 0.0425 0.00638 0.001 0.4 0.06 2.449x10–8 2.777x10–8 0.5 1.3 

0.0168 0.0146 0.00219 0.0004 0.3 0.04 6.243x10–25 7.080x10–25 0.3 0.6 

0.0057 0.0049 0.00074 0.0001 0.2 0.02 9.892x10–76 1.122x10–75 0.2 4.2 

0.0040 0.0035 0.00052 0.0001 0.1 0.02 1.915x10–107 2.172x10–107 0.1 1.2 

0.0030 0.0026 0.00039 0.0001 0.1 0.02 1.074x10–143 1.217x10–143 0.1 1.3 

 

When this situation arises, the next step is to typically compare sample size 

requirements between these margins. If the sample size estimates for both margins are 

financially feasible, the more conservative margin may be used. If the sample size based 

on one margin is too large, the other margin should be used. After a margin is identified 

for use, it should be determined if it is clinically or scientifically reasonable with respect 

to the impact of the study endpoint. This subjective determination is beyond the scope of 
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this study. For this study, all equivalence analyses were based on an arbitrary equivalence 

margin of 10%. 

Equivalence Analysis  

Table 31 (p. 168) and Table 32 (p. 169) present the equivalence analyses for 

comparing the AE Predisposition (θ) IRFs in Figure 53 (p. 157). Before the hypothesis 

test results are discussed for n = 30, the coverage (%) or observed confidence level was 

inspected for each type of estimation. For the linear trapezoid approximation to the exact 

AUC, the minimum coverage for the bootstrap, jackknife, and partial batch mean 

estimation approaches was 91.74%, >99.99%, and 99.90%, respectively. The minimum 

coverage for the bootstrap, jackknife, and partial batch median estimation approaches was 

94.35%, 50.00%, and 94.26%, respectively. For the spline approximation to the exact 

AUC, the minimum coverage for the bootstrap, jackknife, and partial batch mean 

estimation approaches was 80.08%, 91.15%, and 73.30%, respectively. The minimum 

coverage for the bootstrap, jackknife, and partial batch median estimation approaches was 

96.41%, 50.00%, and 94.34%, respectively. 

These results demonstrated that minimum coverage achieved 95% for the 

jackknife and partial batch approaches based on the mean and the bootstrap approach 

based on the median. The distribution of the lower and upper effects was consistently 

non-normal. As a result, the bootstrap approach based on the median will be highlighted 

in the next section for the spline approximation to the exact area under IRFs. The above 

analyses for each AE type are repeated in Appendix K. 
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Table 31 

Equivalence Analysis: Linear Trapezoid Approximation (n = 30) 

Type of 
Estimation 

 

Estimator Effect 
Difference 

(SE) 

95% (2-sided) 
CI on 

Difference 
Coverage 

(%) 
Tstat 

(p-value) 
S–W1 Stat  
(p-value) 

Lower –1.335E–02 
(6.017E–03) 

(–2.561E–02,  
–1.095E–03) 

92.66 –5.973E+00 
(0.147) 

0.5053 
(<0.0001) 

Mean 

Upper 1.365E–02 
(6.680E–03) 

(4.530E–05, 
2.726E–02) 

91.74 3.849E+00 
(0.165) 

0.4818 
(<0.0001) 

Lower –9.168E–12 
(4.511E–12) 

(–2.169E–11, 
3.285E–12) 

94.49 –2.046E+00 
(0.110) 

N/A 

Bootstrap2 

Median 

Upper 9.329E–12 
(4.640E–12) 

(–3.554E–12, 
3.125E–11) 

94.35 2.023E+00 
(0.113) 

N/A 

Lower –1.334E–02 
(1.668E–03) 

(–1.674E–02,  
–9.941E–03) 

>99.99 –7.989E+00 
(<0.001) 

0.5100 
(<0.0001) 

Mean 

Upper 1.363E–02 
(1.670E–03) 

(1.023E–02, 
1.703E–02) 

>99.99 8.205E+00 
(<0.001) 

0.4848 
(<0.0001) 

Lower –9.164E–12 
(1.317E–02) 

(–3.657E–02, 
3.657E–02) 

50.00 –7.037E–10 
(>0.999) 

N/A 

Jackknife3 

Median 

Upper 1.389E–11 
(1.342E–02) 

(–3.725E–02, 
3.725E–02) 

50.00 1.020E–09 
(>0.999) 

N/A 

Lower –1.334E–02 
(2.593E–03) 

(–1.862E–02,  
–8.056E–03) 

99.98 –5.764E+00 
(<0.001) 

0.5102 
(<0.0001) 

Mean 

Upper 1.363E–02 
(3.771E–03) 

(5.952E–03, 
2.131E–02) 

99.90 3.820E+00 
(0.002) 

0.4851 
(<0.0001) 

Lower –9.168E–12 
(4.511E–12) 

(–2.169E–11, 
3.356E–12) 

94.41 –2.033E+00 
(0.112) 

N/A 

Partial 
Batch4 

Median 

Upper 9.329E–12 
(4.640E–12) 

(–3.554E–12, 
2.221E–11) 

94.26 2.011E+00 
(0.115) 

N/A 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas; 3 Program 31.sas; 4 Program 32.sas 

 
 For the bootstrap approach in Table 32 (p. 169), the median (SE) of the lower 

effect was –9.162x10–12 (3.654x10–12). The 97.5% (one-sided) UCL on this effect was 

3.437x10–13. The test statistic (p-value) on this effect was –2.681 (0.055) for a one-

sample t-distribution. The median (SE) of the upper effect was 9.294x10–12 (4.597x10–12). 

The 97.5% (one-sided) LCL on this effect was –3.435x10–12. The test statistic (p-value) 

on this effect was 2.433 (0.072) for a one-sample t-distribution. In agreement with the 
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confidence limits, these p-values demonstrated that Treatment A was not statistically 

equivalent to Treatment B at ∆ = 10% for 95% confidence (two-sided). This lack of 

significance was likely due to insufficient statistical power. This means that the desired 

effect was numerically demonstrated to be within ∆ = 10%, but the sample size caused 

the confidence limits to exceed this margin. 

 
Table 32 

Equivalence Analysis: Spline Approximation (n = 30) 

Type of 
Estimation 

 

Estimator Effect 
Difference 

(SE) 
95% (2-sided) 

CI on Difference 
Coverage 

(%) 
Tstat 

(p-value) 
S–W1 Stat  
(p-value) 

Lower –2.290E–02 
(1.091E–02) 

(–4.513E–02, 
–6.668E–04) 

86.48 –2.875E+00 
(0.270) 

0.4050 
(<0.0001) 

Mean 

Upper 5.947E–03 
(1.182E–02) 

(–1.814E–02, 
3.003E–02) 

80.08 2.214E+00 
(0.398) 

0.4479 
(<0.0001) 

Lower –9.162E–12 
(3.654E–12) 

(–1.899E–11, 
3.437E–13) 

97.24 –2.681E+00 
(0.055) 

N/A 

Bootstrap2 

Median 

Upper 9.294E–12 
(4.597E–12) 

(–3.435E–12, 
2.213E–11) 

96.41 2.433E+00 
(0.072) 

N/A 

Lower –2.291E–02 
(4.187E–03) 

(–3.143E–02, 
–1.438E–02) 

>99.99 –5.471E+00 
(<0.001) 

0.2931 
(<0.0001) 

Mean 

Upper 5.887E–03 
(4.196E–03) 

(–2.659E–03, 
1.443E–02) 

91.15 1.404E+00 
(0.177) 

0.4437 
(<0.0001) 

Lower –9.139E–12 
(2.258E–02) 

(–6.268E–02, 
6.268E–02) 

50.00 –4.054E–10 
(>0.999) 

N/A 

Jackknife3 

Median 

Upper 9.311E–12 
(5.778E–03) 

(–1.604E–02, 
1.604E–02) 

50.00 1.601E–09 
(>0.999) 

N/A 

Lower –2.291E–02 
(6.582E–03) 

(–3.631E–02, 
–9.499E–03) 

99.91 –3.487E+00 
(0.002) 

0.2815 
(<0.0001) 

Mean 

Upper 5.887E–03 
(9.494E–03) 

(–1.345E–02, 
2.523E–02) 

73.30 6.359E–01 
(0.534) 

0.4441 
(<0.0001) 

Lower –9.162E–12 
(4.818E–14) 

(–9.293E–12, 
–9.030E–12) 

>99.99 –1.906E+02 
(<0.001) 

N/A 

Partial 
Batch4 

Median 

Upper 9.294E–12 
(4.597E–12) 

(–3.469E–12, 
2.206E–11) 

94.34 2.023E+00 
(0.113) 

N/A 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas; 3 Program 31.sas; 4 Program 32.sas 
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Table 33 (p. 171) and Table 34 (p. 172) present the equivalence analyses for 

comparing the AE Predisposition (θ) IRFs in Figure 54 (p. 164). Before the hypothesis 

test results are discussed for n = 250, the coverage (%) was inspected for each type of 

estimation. For the linear trapezoid approximation to the exact AUC, the minimum 

coverage for the bootstrap, jackknife, and partial batch mean estimation approaches was 

74.43%, >99.99%, and 77.47%, respectively. The minimum coverage for the bootstrap, 

jackknife, and partial batch median estimation approaches was >99.99%, 50.00%, and 

>99.99%, respectively. For the spline approximation to the exact AUC, the minimum 

coverage for the bootstrap, jackknife, and partial batch mean estimation approaches was 

72.62%, 99.93%, and 53.39%, respectively. The minimum coverage for the bootstrap, 

jackknife, and partial batch median estimation approaches was >99.99%, 50.00%, and 

>99.99%, respectively. These results demonstrated that minimum coverage achieved 95% 

for the jackknife approach for the mean and the bootstrap and partial batch approaches for 

the median. The distribution of the lower and upper effects was consistently non-normal. 

As a result, the bootstrap approach based on the median will be highlighted in the next 

section for the spline approximation to the exact AUC. The above analyses for each AE 

type are repeated in Appendix K. 

For the bootstrap approach, the median (SE) of the lower paired effect was  

–9.273x10–12 (2.882x10–14). The 97.5% (one-sided) UCL on this effect was –9.195x10–12. 

The test statistic (p-value) on this effect was –3.130x102 (<0.001) for the one-sample 

t-distribution. The median (SE) of the upper paired effect was 9.189x10–12 (2.096x10–14). 

The 97.5% (one-sided) LCL on this effect was 9.150x10–12. The test statistic (p-value) on 

this effect was 4.444x102 (<0.001) for the one-sample t-distribution. In agreement with 
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the confidence limits, these p-values demonstrated that Treatment A was statistically 

equivalent to Treatment B for a 10% equivalence margin with 95% confidence (two-

sided). That is, the upper confidence limit was less than zero for the lower paired effect 

and the lower confidence limit was greater than zero for the upper paired effect. 

 
Table 33 

Equivalence Analysis: Linear Trapezoid Approximation (n = 250) 

Type of 
Estimation 

 

Estimator Effect 
Difference 

(SE) 
95% (2-sided) 

CI on Difference 
Coverage 

(%) 
Tstat 

(p-value) 
S–W1 Stat  
(p-value) 

Lower –2.117E–03 
(2.220E–03) 

(–6.490E–03, 
2.256E–03) 

90.12 –1.992E+00 
(0.198) 

0.3575 
(<0.0001) 

Mean 

Upper 1.887E–03 
(3.363E–03) 

(–4.737E–03, 
8.511E–03) 

74.43 8.754E–01 
(0.511) 

0.1783 
(<0.0001) 

Lower –9.272E–12 
(2.882E–14) 

(–9.336E–12, 
–9.195E–12) 

>99.99 –3.103E+02 
(<0.001) 

N/A 

Bootstrap2 

Median 

Upper 9.190E–12 
(2.123E–14) 

(9.179E–12, 
9.239E–12) 

>99.99 4.428E+02 
(<0.001) 

N/A 

Lower –2.117E–03 
(4.828E–05) 

(–2.212E–03, 
–2.022E–03) 

>99.99 –4.388E+01 
(<0.001) 

0.2791 
(<0.0001) 

Mean 

Upper 1.887E–03 
(4.953E–05) 

(1.789E–03, 
1.984E–03) 

>99.99 3.810E+01 
(<0.001) 

0.1177 
(<0.0001) 

Lower –9.272E–12 
(2.136E–03) 

(–4.581E–03, 
4.581E–03) 

50.00 –4.374E–09 
(>0.999) 

N/A 

Jackknife3 

Median 

Upper 9.208E–12 
(1.857E–03) 

(–3.983E–03, 
3.983E–03) 

50.00 4.904E–09 
(>0.999) 

N/A 

Lower –2.117E–03 
(1.104E–03) 

(–4.291E–03, 
5.623E–05) 

97.02 –1.938E+00 
(0.060) 

0.2783 
(<0.0001) 

Mean 

Upper 1.887E–03 
(2.499E–03) 

(–3.035E–03, 
6.809E–03) 

77.47 7.561E–01 
(0.451) 

0.1177 
(<0.0001) 

Lower –9.272E–12 
(3.191E–14) 

(–9.341E–12, 
–9.195E–12) 

>99.99 –2.892E+02 
(<0.001) 

N/A 

Partial 
Batch4 

Median 

Upper 9.190E–12 
(2.123E–14) 

(9.144E–12, 
9.235E–12) 

>99.99 4.410E+02 
(<0.001) 

N/A 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas; 3 Program 31.sas; 4 Program 32.sas 
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Table 34 

Equivalence Analysis: Spline Approximation (n = 250) 

Type of 
Estimation 

 

Estimator Effect 
Difference 

(SE) 
95% (2-sided) 

CI on Difference 
Coverage 

(%) 
Tstat 

(p-value) 
S–W1 Stat  
(p-value) 

Lower –5.731E–03 
(1.337E–02) 

(–3.207E–02, 
2.061E–02) 

72.62 –7.370E–01 
(0.548) 

0.1465 
(<0.0001) 

Mean 

Upper –1.284E–03 
(9.898E–03) 

(–2.078E–02, 
1.821E–02) 

78.14 –6.444E–02 
(0.437) 

0.1512 
(<0.0001) 

Lower –9.273E–12 
(2.882E–14) 

(–9.337E–12, 
–9.195E–12) 

>99.99 –3.130E+02 
(<0.001) 

N/A 

Bootstrap2 

Median 

Upper 9.189E–12 
(2.096E–14) 

(9.150E–12, 
9.239E–12) 

>99.99 4.444E+02 
(<0.001) 

N/A 

Lower –5.733E–03 
(5.366E–04) 

(–6.790E–03,  
–4.677E–03) 

>99.99 –1.069E+01 
(<0.001) 

0.0793 
(<0.0001) 

Mean 

Upper –1.274E–03 
(5.080E–04) 

(–2.274E–03,  
–2.733E–04) 

99.33 –2.508E+00 
(0.013) 

0.0915 
(<0.0001) 

Lower –9.273E–12 
(5.741E–03) 

(–1.231E–02, 
1.231E–02) 

50.00 –1.619E–09 
(>0.999) 

N/A 

Jackknife3 

Median 

Upper 9.189E–12 
(1.292E–03) 

(–2.771E–03, 
2.771E–03) 

50.00 7.024E–09 
(>0.999) 

N/A 

Lower –5.733E–03 
(1.536E–02) 

(–3.598E–02, 
2.451E–02) 

64.54 –3.734E–01 
(0.709) 

0.0793 
(<0.0001) 

Mean 

Upper –1.274E–03 
(1.300E–02) 

(–2.688E–02, 
2.433E–02) 

53.90 –9.801E–02 
(0.922) 

0.0916 
(<0.0001) 

Lower –9.273E–12 
(3.144E–14) 

(–9.342E–12, 
–9.195E–12) 

>99.99 –2.889E+02 
(<0.001) 

N/A 

Partial 
Batch4 

Median 

Upper 9.189E–12 
(1.847E–14) 

(9.150E–12, 
9.229E–12) 

>99.99 4.974E+02 
(<0.001) 

N/A 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas; 3 Program 31.sas; 4 Program 32.sas 

 

 The above analyses were based on the rates of AE occurrence. The following 

analyses were intended to represent subgroup analyses on these AEs. Specifically, AE 

locations were compared on the characteristics severity, relation to treatment, and 

seriousness. Data patterns 1–4 assumed various levels of these characteristics. Analysis 

was performed with the 2-PL EX model based on Gibbs sampling iterations 11,500 to 

50,000 with the lags θ = 695, A = 365, and B = 430 for paired treatment groups with n = 
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250 patients. Results were generated with the nonparametric bootstrap estimation 

approach for the median of the spline approximation to the exact AUC.  

Analyses on AE Characteristics 

 The previous analyses were based on fixed historical rate data. The following 

sections repeated this analysis, but for a different type of data. Instead of being concerned 

with the occurrence of AEs as a totality, this section focuses on AE subgroup analyses. 

Specifically, these analyses were constructed to determine if IRT is able to correctly 

characterize the relations between treatment groups on characteristics of the AEs. With 

this characterization, a more thorough understanding of safety can be developed by 

physicians. 

 Four data patterns of AE characteristics were investigated, and these 

characteristics were arbitrarily classified as locations. As the characteristics increased in 

the magnitude of medical consequences, the location of the AE increased as well. These 

locations were provided in Table 4 (p. 84). Data Pattern 1 represented non-serious AEs 

that were not related to treatment and were non-severe. For both treatment groups, the AE 

was assigned a location of 1. Data Pattern 2 represented non-serious AEs that were 

possibly related to treatment and were severe for Treatment A and non-serious AEs that 

were doubtfully related to treatment and were non-severe for Treatment B. The location 

was 3 and 6, respectively, for treatments A and B. Data Pattern 3 represented serious AEs 

that were definitely related to treatment and were severe for Treatment A and non-serious 

AEs that were not related to treatment and were non-severe for Treatment B. The location 
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was 1 and 20, respectively, for treatments A and B. Data Pattern 4 consisted of randomly 

allocated locations for both treatment groups. 

Data Pattern 1 (Same Characteristics). For treatments A and B, AE Location 1 

was simulated to approximately occur 20% and 10%, respectively, of the time. This 

simulation was designed so that Treatment A was visually different from and not 

statistically equivalent (∆ = 10%) to Treatment B in AE Predisposition (θ). Figure 55 

presents the IRF for treatments A and B. For Treatment A, the spline approximation 

(bias) was 5.127 (–0.093) for the exact area under the IRF (5.220). For Treatment B, the 

spline approximation (bias) was 3.854 (–0.037) for the exact area under the IRF (3.891). 
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Figure 55. PPI Plot for Data Pattern 1 AE Location 1 

 

Table 35 (p. 175) presents the results for evaluating superiority and equivalence 

for AE Location 1. Results demonstrated that AE Predisposition (θ) was statistically 
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different between treatments (p-value = 0.018). For the equivalence objective, the results 

on the lower effect (p-value = 0.109) and upper effect (p-value = 0.005) did not result in 

statistically equivalent treatment groups for a margin of 10% with 95% confidence (two-

sided). 

 
Table 35 

Superiority and Equivalence Analysis: Data Pattern 1 AE Type 1 

Type of 
Analysis Effect 

Difference 
(SE) 

95% (2-sided) 
CI on Difference 

Coverage 
(%) 

Tstat 
(p-value) 

S–W1 Stat  
(p-value) 

Superiority N/A 4.107E–04 
(1.418E–04) 

(8.300E–05, 
7.120E–04) 

99.11 2.685E+00 
(0.018) 

0.1741 
(<0.0001) 

Lower 3.327E–04 
(1.539E–04) 

(–7.017E–05, 
6.505E–04) 

94.56 1.706E+00 
(0.109) 

0.1768 
(<0.0001) 

Equivalence 

Upper 4.482E–04 
(1.373E–04) 

(1.633E–04, 
7.530E–04) 

99.74 3.312E+00 
(0.005) 

0.1640 
(<0.0001) 

 

1 Shapiro–Wilk test for normality of the effect. 

 
 Data Pattern 2 (Comparable Characteristics). For Treatment B, AE Location 3 

was simulated with approximate occurrence 20%. For Treatment A, AE Location 6 was 

simulated with approximate occurrence 10%. The occurrence of all other AE locations 

was 0%. This simulation was designed so that Treatment A was visually different from 

and not statistically equivalent (∆ = 10%) to Treatment B in AE Predisposition (θ) for AE 

Locations 3 and 6. 

 Figures 56–57 (p. 177) present the IRF for AE Locations 3 and 6. For Treatment 

A and AE Location 3, the spline approximation (bias) was 5.128 (–0.095) for the exact 

area under the IRF (5.22337). For Treatment B, the spline approximation (bias) was 5.095 

(–0.089) for the exact area under the IRF (5.184). For Treatment A and AE Location 6, 
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the spline approximation (bias) was 4.014 (–0.039) for the exact area under the IRF 

(4.053). For Treatment B, the spline approximation (bias) was 5.080 (–0.091) for the 

exact area under the IRF (5.170). 

 Tables 36–37 (p. 178) present the results for evaluating superiority and 

equivalence for AE Locations 3 and 6. For AE Location 3, the AE Predisposition (θ) 

parameter was not statistically different between treatments (p-value = 0.491), nor 

statistically equivalent for ∆ = 10% (p-value for lower effect = 0.141; p-value for upper 

effect = 0.497). For AE Location 6, AE Predisposition (θ) was not statistically different 

between treatments (p-value = 0.184), nor statistically equivalent at ∆ = 10% (p-value for 

lower effect = 0.062; p-value for upper effect = 0.426). The results for AE Location 3 and 

6 were unexpected. Exploratory analysis revealed that lack of statistical power resulted in 

the insignificance for these superiority analyses. This means that a sample size of n = 250 

was too small to demonstrate a statistically significant difference between treatment 

groups for these data. 

Data Pattern 3 (Extreme Characteristics). For Treatment B, AE Location 1 was 

simulated with approximate occurrence 5%. For Treatment A, AE Location 20 was 

simulated with approximate occurrence 20%. The occurrence of all other AE locations 

was 0%. The simulation was designed so that Treatment A was visually different from 

and not statistically equivalent (∆ = 10%) to Treatment B in AE Predisposition (θ) for AE 

Locations 1 and 20. 
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Figure 56. PPI Plot for Data Pattern 2 AE Location 3 
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Figure 57. PPI Plot for Data Pattern 2 AE Location 6 
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Table 36 

Superiority and Equivalence Analysis: Data Pattern 2 AE Location 3 

Type of 
Analysis2 Effect 

Difference 
(SE) 

95% (2-sided) 
CI on Difference 

Coverage 
(%) 

Tstat 
(p-value) 

S–W1 Stat  
(p-value) 

Superiority N/A –1.601E–05 
(9.134E–05) 

(–2.043E–04, 
1.660E–04) 

75.46 –1.843E–01 
(0.491) 

0.2616 
(0.0001) 

Lower –1.338E–04 
(9.430E–05) 

(–3.291E–04, 
5.449E–05) 

92.93 –1.556E+00 
(0.141) 

0.2537 
(0.0001) 

Equivalence 

Upper 5.683E–05 
(9.088E–05) 

(–1.262E–04, 
2.438E–04) 

75.16 6.350E–01 
(0.497) 

0.2377 
(0.0001) 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas 

 

Table 37 

Superiority and Equivalence Analysis: Data Pattern 2 AE Location 6 

Type of 
Analysis2 Effect 

Difference 
(SE) 

95% (2-sided) 
CI on Difference 

Coverage 
(%) 

Tstat 
(p-value) 

S–W1 Stat  
(p-value) 

Superiority N/A –1.653E–04 
(1.052E–04) 

(–3.605E–04, 
8.751E–05) 

90.81 –1.394E+00 
(0.184) 

0.1798 
(0.0001) 

Lower –2.487E–04 
(1.085E–04) 

(–4.512E–04, 
1.407E–05) 

96.91 –2.031E+00 
(0.062) 

0.1736 
(0.0001) 

Equivalence 

Upper –6.916E–06 
(1.000E–04) 

(–2.380E–04, 
1.874E–04) 

78.72 –6.628E–02 
(0.426) 

0.1890 
(0.0001) 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas 

 
 Figures 58–59 (p. 179) present the IRF for AE Locations 1 and 20. For Treatment 

A and AE Location 1, the spline approximation (bias) was 5.125 (–0.086) for the exact 

area under the IRF (5.212). For Treatment B, the spline approximation (bias) was 3.884 

(–0.044) for the exact area under the IRF (3.928). For Treatment A and AE Location 20, 

the spline approximation (bias) was 5.139 (–0.092) for the exact area under the IRF  
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Figure 58. PPI Plot for Data Pattern 3 AE Location 1 
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Figure 59. PPI Plot for Data Pattern 3 AE Location 20 
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(5.231). For Treatment B, the spline approximation (bias) was 5.164 (–0.091) for the 

exact area under the IRF (5.255). 

Table 38 (below) and Table 39 (p. 181) present the results for evaluating 

superiority and equivalence for AE Location 1 and 20, respectively. For AE Location 1, 

AE Predisposition (θ) was not statistically different between treatment groups (p-value = 

0.161), nor statistically equivalent for ∆ = 10% (lower effect p-value = 0.402; upper 

effect p-value = 0.098). For AE Location 20, AE Predisposition (θ) was not statistically 

different between treatment groups (p-value = 0.535), nor statistically equivalent for 

∆ = 10% (lower effect p-value = 0.269; upper effect p-value = 0.135). For AE Location 1, 

it was evident from Figure 58 that the treatment groups were different, and lack of 

significance was a function of statistical power. The results for AE Location 20 were 

unexpected. Exploratory analysis did not reveal any anomalies in the performed analysis, 

and further investigation may be warranted. 

 
Table 38 

Superiority and Equivalence Analysis: Data Pattern 3 AE Location 1 

Type of 
Analysis2 Effect 

Difference 
(SE) 

95% (2-sided) 
CI on Difference 

Coverage 
(%) 

Tstat 
(p-value) 

S–W1 Stat  
(p-value) 

Superiority N/A 2.194E–04 
(1.502E–04) 

(–1.052E–04, 
5.249E–04) 

91.95 1.457E+00 
(0.161) 

0.1748 
(0.0001) 

Lower 8.633E–05 
(1.454E–04) 

(–2.077E–04, 
3.903E–04) 

79.91 5.779E–01 
(0.402) 

0.1815 
(0.0001) 

Equivalence 

Upper 2.698E–04 
(1.574E–04) 

(–6.337E–05, 
6.513E–04) 

95.10 1.772E+00 
(0.098) 

0.1669 
(0.0001) 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas 



 181 

 

Table 39 

Superiority and Equivalence Analysis: Data Pattern 3 AE Location 20 

Type of 
Analysis2 Effect 

Difference 
(SE) 

95% (2-sided) 
CI on Difference 

Coverage 
(%) 

Tstat 
(p-value) 

S–W1 Stat  
(p-value) 

Superiority N/A 1.763E–07 
(8.981E–05) 

(–1.990E–04, 
1.812E–04) 

73.27 1.675E–03 
(0.535) 

0.2911 
(0.0001) 

Lower –1.516E–04 
(1.336E–04) 

(–4.780E–04, 
1.358E–04) 

86.56 –1.112 
(0.269) 

0.2940 
(0.0001) 

Equivalence 

Upper 1.180E–04 
(7.143E–05) 

(–3.930E–05, 
2.587E–04) 

93.24 1.585E+00 
(0.135) 

0.2744 
(0.0001) 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas 

 
 Data Pattern 4 (Random Characteristics). Simulations resulted in AE Locations 

1–20 having occurrence 15.6% to 22.0% for Treatment A and 14.0% to 22.0% for 

Treatment B. The simulations were constructed to mimic an unsafe medical product that 

would unlikely be approved for market use by a regulatory agency such as the Food and 

Drug Administration. 

 Figure 60 (p. 182) presents the IRF across AE Locations 1–20. For Treatment A, 

the spline approximation (bias) was 3.413 (–0.025) for the exact area under the overall 

IRF (3.438). For Treatment B, the spline approximation (bias) was 3.412 (–0.0158) for 

the exact area under the overall IRF (3.427).  

 Table 40 (p. 182) presents the results for evaluating superiority and equivalence 

across all AE locations. Results demonstrated that AE Predisposition (θ) was not 

statistically different between treatment groups (p-value = 0.343), nor statistically 

equivalent for ∆ = 10% (lower effect p-value = 0.286; upper effect p-value = 0.190). 

Figure 60 reveals that an equivalence assumption between treatment groups may be more 
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reasonable than superiority. Regardless, the equivalence analysis did not have sufficient 

power for n = 250 at 95% confidence (two-sided).  
P

(T
he

ta
)

Theta

Blue: Treatment A
Red: Treatment B0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5 0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

Figure 60. PPI Plot for Data Pattern 4 Across All AE Locations 
 
 
Table 40 

Superiority and Equivalence Analysis: Data Pattern 4 All AE Locations 

Type of 
Analysis2 Effect 

Difference 
(SE) 

95% (2-sided) 
CI on Difference 

Coverage 
(%) 

Tstat 
(p-value) 

S–W1 Stat  
(p-value) 

Superiority N/A 1.193E–04 
(1.592E–04) 

(–2.327E–04, 
3.961E–04) 

82.83 7.200E–01 
(0.343) 

0.4278 
(0.0001) 

Lower –2.246E–04 
(1.872E–04) 

(–5.778E–04, 
2.521E–04) 

85.71 –9.884E–01 
(0.286) 

0.5300 
(0.0001) 

Equivalence 

Upper 3.064E–04 
(1.949E–04) 

(–1.553E–04, 
6.980E–04) 

90.50 1.372E+00 
(0.190) 

0.3374 
(0.0001) 

 

1 Shapiro–Wilk test for normality of the effect; 2 Program 30.sas 
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In summary, exploratory analyses did not statistically demonstrate superiority for 

Data Patterns 2–3 and equivalence for Data Pattern 4. The sample size of n = 250 patients 

did not have sufficient power for substantiating study objectives. In order to avoid such 

an issue in future studies, the obtained results could be used as historical data for properly 

powering such a study. This exercise would result in the minimum number of patients 

required to demonstrate either superiority or equivalence between the treatment groups. 

Furthermore, the results from investigating the 7 equivalence margin definitions (Table 

30, p. 166) should be considered for equivalence studies. This study arbitrarily used a 

margin of 10%. Other studies may require a different equivalence margin. 

Research Question 3 Results 

This section compares superiority and equivalence sample size results between the 

available existing methods for paired binomial endpoints and the power function derived 

by the author on IRT results.  Sample size results were based on the simulated AE data 

assuming historical rates.  

Existing Methodology Superiority Power Analysis 

Each Monte Carlo simulation resulted in a 2 × 2 contingency table for N =500,000 

patients. The average cell count (proportion) of AEs that occurred for both treatment 

groups was 642.14 (0.001284287). The average cell count (proportion) of AEs that 

occurred for Treatment A and not Treatment B was 10.7134 (0.00002143). The average 

cell count (proportion) of AEs that occurred for Treatment B and not Treatment A was 

11.1368 (0.00002227). The average cell count (proportion) of AEs that did not occur for 
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both treatment groups was 499336.01 (0.99867). Table 41 presents the superiority sample 

sizes for the existing methods that are based on the difference or ratio of discordant 

probabilities. These sample size requirements ranged from 174,451 to 522,548,365.  

 
Table 41 

Superiority Sample Size Requirements for Existing Methods 

Method1 Computed Power Observed Type I 
Error 

Required Sample Size 

Existing Method 1 0.80000 0.025001 478,108,748 

Existing Method 2 0.80007 0.025000 174,451 

Existing Method 3 0.80000 0.025001 478,108,748 

Existing Method 4 0.80000 0.025001 522,548,365 

Existing Method 5 0.80000 0.025001 478,054,794 

Existing Method 6 0.80000 0.025001 478,149,214 

Existing Method 7 0.80000 0.025001 478,108,748 

Existing Method 8 0.80000 0.025001 478,108,750 
 

1 Program 34.sas 

IRT Superiority Power Analysis 

According to Table 27 (p. 161), the nonparametric bootstrap approach based on 

the spline approximation to the exact AUC resulted in a median (SE) of 1.088 × 10–13 

(2.163 × 10–13). For the superiority IRT power function derived by the author in Chapter 

III, the non-central parameter and critical value were computed as 7.87049 and 3.85063, 

respectively (Program 35.sas). With these values and the nonparametric bootstrap results, 

a minimum of 933 patients were required to demonstrate that the treatment groups were 

statistically different for 97.5% confidence (one-sided) and at least 80% power. The 

analyses for this study were based on n = 30 and 250. 
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Existing Methodology Equivalence Power Analysis 

For the existing approaches for computing a sample size for an equivalence study 

objective using paired treatment groups, the effect was based on the difference in 

discordant probabilities (p10 – p01). For the 1,000 simulated AE datasets, the average of 

p10 and p01, respectively, was 0.000021427 and 0.000022274. Using these results, the first 

existing method (Wald approach) required 95 patients for demonstrating equivalence for 

a 10% equivalence margin between treatment groups with 95% confidence (two-sided) 

and at least 80% power. The second existing method (RMLE approach) required 73,300 

patients for demonstrating equivalence for a 10% equivalence margin between treatment 

groups with 95% confidence (two-sided) and at least 80% power (Program 34.sas). 

IRT Equivalence Power Analysis  

According to Table 32 (p. 169), the nonparametric bootstrap approach based on 

the spline approximation to the exact AUC resulted in a median (SE) of –9.162 × 10–12 

(3.654 × 10–12) for the lower effect and 9.294 × 10–12 (4.597 × 10–12) for the upper effect. 

For the equivalence IRT power function derived by the author in Chapter III, the non-

central parameter and critical value were computed as 12.3644 and 4.00687, respectively, 

for the lower effect. These values were 8.1750 and 4.00398, respectively, for the upper 

effect (Program 35.sas). With these values and the nonparametric bootstrap results, 59 

patients (lower effect) and 60 patients (upper effect) were required to demonstrate that the 

treatment groups were statistically equivalent for 95% confidence (two-sided) and at least 

80% power.  
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Summary of Results 

This study investigated three research questions surrounding the use of Item 

Response Theory (IRT) for modeling rare binary events. The first research question 

pertained to whether or not IRT could be used to sufficiently model this type of data. 

Bayesian IRT models were assessed for multiple chains, convergence of parameter means 

and standard deviations, autocorrelation, and goodness-of-fit (GoF). The second research 

question pertained to determining the best statistical inference for evaluating superiority 

and equivalence study objectives. For each approximation to the exact area under paired 

Item Response Functions (IRFs), the standard error (SE), bias, and coverage were 

investigated. The last research question pertained to investigating sample size 

requirements for rare binary events. The Bayesian IRT approach derived by the author 

was compared to existing methods.  

Research Question 1 

The first section of this study investigated the adequacy of three IRT approaches 

for modeling rare binary event data. These data were illustrated in terms of transfusion-

related adverse events (AEs). These models assumed different probability density 

functions (PDFs) of the discrimination parameter. Monte Carlo simulations (1,000) were 

used to investigate nine types of AEs. Each analysis was performed with simple random 

samples (SRS) of sizes n = 30 and 250 patients.  

Multiple Chains of Starting Values. Three different chains of starting values were 

investigated to determine if the study results were an artifact of the data. If these starting 
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values resulted in substantial differences between these IRT parameters, IRT would not 

be a sufficient approach for modeling rare binary events. Study results demonstrated that 

the mean and SD of these parameters were comparable between the three IRT models, 

and this consistency was not substantially affected by sample size. In conclusion, the 

2-PL, 2-PL EX, and 2-PL MEX IRT models were capable of modeling rare binary events.  

Stationary State. Assessment of the stationary state and rate of estimator 

convergence was the next step for evaluating the IRT models under investigation. For the 

2-PL IRT model, across the three chains of starting values, the mean of the AE 

Predisposition (θ), discrimination, and difficulty parameters converged from 25,000 to 

30,000 Gibbs sampler iterations (GSI) for n = 30 and from 10,000 to 25,000 GSI for n = 

250. The SD of the IRT parameters converged from 10,000 to 25,000 GSI for n = 30 and 

from 30,000 to 35,000 GSI for n = 250. For the 2-PL EX IRT model, across the three 

chains of starting values, the mean of the IRT parameters converged from 15,000 to 

30,000 GSI for n = 30 and from 10,000 to 25,000 GSI for n = 250. The SD of the IRT 

parameters converged from 10,000 to 20,000 GSI for n = 30 and from 15,000 to 20,000 

GSI for n = 250. For the 2-PL MEX IRT model, across the three chains of starting values, 

the mean of the discrimination and difficulty parameters converged for 7,000 GSI for 

n = 30 and 6,000 GSI for n = 250. The AE Predisposition (θ) parameter did not converge 

for n = 30 and 250. The SD of the discrimination and difficulty parameters converged 

from 6,000 to 7,000 GSI for n = 30 and for 7,000 for n = 250. The mean and SD of the 

AE Predisposition (θ) parameter did not converge for n = 30 and 250. 

Summary. This section demonstrated that both the 2-PL and 2-PL EX IRT models 

achieved stationary states. The latter IRT model had a faster rate of convergence than the 
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former model. For the 2-PL MEX IRT model, some of the estimators failed to converge. 

This lack of convergence may have occurred due to a combination of computational 

limitations and the sampling algorithm efficiency of the Gibbs sampler. As a result, this 

model was removed as a viable option for modeling rare binary event data. Furthermore, 

because all three chains converged to the same location, although at a different rate, the 

remaining results in this section were limited to the chain of starting values A(i) = –1 and 

θ
(i) = –1. 

Autocorrelation. The next step in evaluating the 2-PL and 2-PL EX IRT models 

involved identifying the lag function that removed serial autocorrelation data from the 

stationary state. The lag function was computed for the AE Predisposition (θ), 

discrimination, and difficulty parameters for sample sizes of n = 30 and 250. For the 2-PL 

IRT model, the maximum lag of the discrimination parameter was 185 for n = 30 and 350 

for n = 250. The maximum lag of the difficulty parameter was 90 for n = 30 and 350 for 

n = 250. The lag function of the AE Predisposition (θ) parameter was 330 for n = 30 and 

565 for n = 250. For the 2-PL EX IRT model, the maximum lag of the discrimination 

parameter was 95 for n = 30 and 365 for n = 250. The maximum lag of the difficulty 

parameter was 210 for n = 30 and 430 for n = 250. The lag function of the AE 

Predisposition (θ) parameter was 180 for n = 30 and 695 for n = 250.  

Goodness-of-Fit. GoF was the last Bayesian IRT model assumption evaluated. 

This study evaluated GoF with posterior probability interval (PPI) plots, residual plots, 

and the asymptotic chi-square Bock’s Index (BI). PPI plots did not exhibit and exhibited 

patient discriminatory power for the 2-PL and 2-PL EX IRT models, respectively. The 

discrimination or slope parameter was consistently close to zero for 2-PL and above 0.75 
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for 2-PL EX. The residual plots demonstrated relatively small errors for both of these 

models. Next, all IRFs were monotonic for 2-PL EX. Last, as would be predicted by 

Toribio (2006), the BI results were inconsistent with the PPI plots. As the discriminatory 

power of AE Predisposition (θ) increased, the BI also increased. This statistic would have 

proven to be useful if it demonstrated a negative correlation with patient discriminatory 

power. As a result, the BI has limited value for IRT GoF of rare binary event data. In 

summary, the 2-PL IRT model did not demonstrate sufficient discriminatory power (i.e., 

discrimination < 0.75 for all AE types). For the 2-PL EX IRT model, discrimination was 

greater than 0.75 for all AE types. As a result, this model was recommended for statistical 

inference and power analysis application. 

Research Question 2 

The second section of this study investigated statistical inference and its 

components for the three IRT models. Analysis was performed on simulated data for 

historical AE rates and four different patterns of AE characteristics. Discussion of results 

in this section was limited to the former type of data modeled with 2-PL EX.  

Linear trapezoid and spline approximations of the exact area under paired IRFs 

were computed for each parametric and nonparametric estimator. The bootstrap, 

jackknife, and partial batch approaches were used to compute the statistical inference of 

these effects for superiority and equivalence study objectives. These components were 

SE, bias, test statistic, p-value, confidence interval, and coverage. 

Area Under IRFs. IRFs for treatments A and B were simulated to be comparable 

for historical AE rates. The median linear trapezoid and spline approximations to the 
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exact area under IRFs were 4.688 (–0.221) and 4.841 (–0.069), respectively, across 

treatment groups and sample sizes. These results demonstrated that the spline approach 

more closely approximated the exact area than the linear trapezoid approximation. As a 

result, the remainder of this section was limited to a discussion of statistical inference 

based on the spline approximation.  

The bootstrap, jackknife, and partial batch estimation approaches were used to 

perform statistical inference on the parametric and nonparametric estimators. These 

estimators were compared for superiority and equivalence study objectives. 

Superiority Analyses. Shapiro–Wilk results consistently demonstrated that the 

distribution of the paired effects was not statistically normal. As a result, statistical 

inference was limited to nonparametric analysis in this section. Next, adequate coverage 

was achieved for the bootstrap and partial batch estimation approaches for n = 30 

and 250. A claim of superiority was not statistically substantiated for both the bootstrap 

and partial-batch estimation approaches. This result was expected because the IRFs were 

simulated to be comparable. The CIs on the median of the paired difference contained 

zero, but the sample size n = 250 resulted in a significant p-value . This abnormal result 

was verified to be a function of sample size in conjunction with the test statistic.  

Equivalence Analyses. Shapiro–Wilk results consistently demonstrated that the 

distribution of the lower and upper equivalence paired effects was not statistically normal. 

As a result, statistical inference was limited to nonparametric analysis in this section. 

Next, adequate coverage was achieved for the bootstrap estimation approach. For the 

sample size n = 30, this approach did not result in the statistical substantiation of 

equivalence for ∆ = 10% at 95% confidence (two-sided). Exploratory analysis found that 
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this result was due to insufficient statistical power. For n = 250, this approach resulted in 

the statistical substantiation of equivalence for the same margin and confidence level. 

This result was expected because the IRFs were simulated to be comparable. 

Research Question 3 

The last section of this study was concerned with computing sample size 

requirements on simulated paired binomial endpoints for superiority and equivalence 

study objectives. IRT sample size approaches derived by the author were compared to the 

available existing methods. Sample size estimation was performed for the nonparametric 

bootstrap estimation approach. 

 Superiority. The bootstrap approach for the median required a minimum of 933 

patients for two paired treatment groups with 95% confidence (two-sided) and at least 

80% power. The discordance rate of 0.000044 resulted in a minimum sample size 

requirement of 174,451 for two paired treatment groups with 95% confidence (two-sided) 

and at least 80% power. All of these approaches achieved the target Type I error. These 

large sample sizes were expected because the IRFs were simulated to be comparable. 

Designing a study that is powered to statistically differentiate treatment groups that are 

comparable is rarely financially feasible. Equivalence was demonstrated to be a viable 

solution to this problem. 

Equivalence. The nonparametric bootstrap approach for the median required a 

minimum of 60 patients for paired treatment groups for a 10% equivalence margin with 

95% confidence (two-sided) and at least 80% power. The discordance rate of 0.000044 

resulted in a minimum sample size requirement of 95 for two paired treatment groups 
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with the same margin, confidence level, and power. All of these approaches achieved the 

target Type I error. 

Equivalence Margin. As previously discussed, the 10% equivalence margin was 

arbitrarily chosen. If real historical data were available prior to the start of this study, a 

more exact margin would have been computed and utilized. Given that such data were 

unavailable, a section was dedicated to equivalence margin computation for rare and 

more frequent AEs. Researchers should consult this section for designing equivalence 

studies. The scientific validity of the computed equivalence margin should then be 

assessed. 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

Discussion 

This study investigated various data scenarios common to the transfusion 

medicine industry. Specifically, regulatory authorities across the world are very 

conscientious and conservative about the transfusion of blood products such as platelets, 

red blood cells, and plasma. Various companies are tasked with developing medical 

devices and technology that work as intended and pose minimal safety risk to the patient. 

The responsibility of regulatory authorities is protection of the public by making sure that 

such risk is truly minimal. 

The difficulty for both of these parties pertains to their ability to accurately 

quantify the precision of such risk. The first step in this decision-making process is 

quantifying acceptable patient risk. With this definition, trials can then be properly 

designed and powered so that clinically relevant hypotheses about patient risk may be 

statistically substantiated. This process may improve the rigor and generalizability of 

safety conclusions to patient populations and decisions from medical stakeholders. 

One of the key issues that complicates these inferential safety conclusions pertains 

to data type. The transfusion of blood products infrequently results in adverse events 

(AEs). That is, the occurrence of AEs is very low in blood transfusion settings. Although 

these events are rare, the transfusion-related AEs that do occur typically have serious 
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medical consequences for the patient. As a result, being able to make reliable conclusions 

and decisions regarding the transfusion of blood products may be benefited with the rigor 

of inferential treatment comparisons in AE occurrence. 

Existing methods are available for designing studies for these comparisons, but 

these methods have one common limitation. They require sample sizes that are not 

financially feasible in a rare event setting. Furthermore, reliable and monitored clinical 

trial data are expensive, and may cost upwards of $10,000–$12,000 per patient. As a 

result, the concept of statistically substantiated safety of rare events is desired but not 

currently practical.  

The purpose of this study was to determine if a different type of statistical 

approach presented a viable solution to this financial dilemma. This study appeared to be 

the first study to investigate AE hypotheses with the psychometric approach Item 

Response Theory (IRT) in an industry clinical trial (ICT) setting. This study developed 

the statistical inference and power analysis capabilities of this approach for the paired or 

k-sample matched study design. Hypothesis testing was based on the comparing the area 

under IRFs between paired treatment groups for superiority and equivalence study 

objectives. 

Rare binary event data were also used in terms of a larger scope of application. 

These data were used as a worst-case scenario to stress the limits of IRT capability. 

Results demonstrated that when a gamma probability density function was used to model 

the discrimination parameter, the applicable IRT model (2-PL EX) reliably modeled these 

data. As a result, statistical inference and power functions based on the IRT model results 
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were trustworthy. This means that this study developed a new approach for designing 

studies on planned treatment comparisons of most rare binary event variables.  

DIF versus EIF 

In the ICT setting, these objectives are known as superiority and equivalence. 

Hypotheses for these objectives are designed to demonstrate minimum and maximum 

effects, respectively. In other words, superiority is used to demonstrate that groups are 

statistically different in a response variable when such a difference is expected. When it is 

desired to demonstrate that groups behave comparably, equivalence is recommended. 

Superiority has been commonly employed in IRT application, but it typically has 

been referred to as Differential Item Functioning (DIF). DIF has been used to determine if 

groups (e.g., males and females) are statistically different on latent trait parameters. The 

findings from these analyses may then be used to appropriately modify or improve a test 

instrument. In an ICT, DIF or superiority may be used to determine if a new treatment is 

statistically better than another group in an efficacy parameter (e.g., plasma hemoglobin). 

Clinical trial statisticians may argue that DIF or superiority is only one of two key 

types of objectives needed for comparing treatment groups on response variables. In some 

study settings, a placebo may not be available, legal, or moral. In these cases, a new 

treatment is typically compared to an existing treatment with an objective other than 

superiority. For this comparison, the objective is to demonstrate that a new treatment is 

comparable to an existing treatment on a response variable. If this comparability is 

statistically substantiated, the treatment groups are said to be equivalent. 
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Unfortunately, there is some confusion about these two objectives in the literature, 

and is evident in the testing of hypotheses for evaluating data distributions. This 

confusion stems from interpreting a nonsignificant p-value from a superiority analysis as 

to indicate that the groups are equivalent. In terms of data distributions, nonsignificant 

p-values represent the desired data distribution.  

This logic is incorrect for two key reasons. The effects for these two objectives are 

computed differently. This means that one objective cannot be the inverse of the other. 

Second, the structure of the hypothesis sets is different. Superiority can be based on a 

single one-sided hypothesis or a single two-sided hypothesis. Equivalence is always based 

on two one-sided hypotheses. 

Given this new information, equivalence appears to be a new tool in IRT 

application, and the author defined it as the Equivalence Item Function (EIF). DIF is 

recommended for use when groups are expected to differ on latent trait parameters. EIF is 

recommended for use when groups are expected to be comparable on these parameters. 

As a result, access to both DIF and EIF may provide IRT researchers and statisticians a 

more complete set of tools for comparing groups on scientifically relevant parameters. 

This, in turn, may lead to more reliable study decisions. Clinical trials that compare a new 

treatment to both an existing treatment and a placebo is an example of the need for both 

DIF and EIF in a single study. 

Advantages of Study 

In addition to the development of EIF, this study was valuable in several respects. 

The methodological tools developed in this study have wide application outside of the 
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study parameters. The statistical inference and power functions derived by the author are 

not limited to the paired study design. Although this study performed analyses on paired 

treatment groups, the statistical inference and power functions are readily adaptable to 

independent treatment groups. The researcher would simply need to appropriately modify 

the covariances and degrees of freedom for the confidence intervals and test statistics. 

Next, the IRT statistical inference and power functions developed in this study are 

universal to all types of data concerned with a response function. This is the case because 

the statistic used for analysis was the area under Item Response Functions. These 

functions are commonly used in IRT application. Third, the latent trait was assumed to be 

unidimensional. The developed statistical inference and power functions were invariant to 

this data structure. In multidimensional data structures, the same analysis could be 

performed within each trait, or performed as an aggregation of traits. Last, this study 

focused on the two-parametric logistic IRT model because of its ability to differentiate 

patients on AE Predisposition (θ). In that most if not all IRT methodology follows a 

comparable path, the developed statistical inference and power functions are not limited 

to any specific type of IRT model that is concerned with a response function. 

New IRT Knowledge Base 

This study investigated rare binary event data with three Bayesian forms of the 

two-parameter logistic IRT model. These data were characterized in terms of transfusion-

related AEs. All of these models assumed a normal distribution for the latent trait Z, AE 

Predisposition (θ), and difficulty (B) parameters. The 2-PL model (common approach) 

assumed a standard normal density for the discrimination parameter (A). The 2-PL EX 
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model (exchangeable approach) assumed a gamma density for A. The 2-PL MEX model 

(mixed-exchangeable approach) assumed a mixture of two normal densities for A, and 

used the beta PDF for removing outliers from analysis.  

The empirical distribution of the incidence of AEs readily followed gamma and 

beta densities. 2-PL failed because of its normality requirement for A. Parameter 

convergence was not consistent for 2-PL MEX, and this lack of convergence may have 

resulted from computational limitations due to the inefficiency of the Gibbs sampling 

algorithm. As anticipated and supported, 2-PL EX IRT adequately modeled rare binary 

event data. 

After a determination was made as to which IRT model, if any, was adequate for 

modeling rare binary event data, statistical inference and power analysis was investigated 

for 2-PL EX. The area-under-the-curve (AUC) statistic was used for these analyses, 

because of its nonparametric property. AUC can be equally computed for known and 

unknown data distributions. In IRT application, many inferential decisions are based on 

the IRF, which may or may not have known form. As a result, the AUC statistic was 

assumed to be sufficient for statistical inference and power analysis on the area under 

IRFs.  

Two AUC approximations were compared to the exact area under paired IRFs. 

Spline approximations were found to be slightly closer to the exact areas than the linear 

trapezoid approximation. This finding was expected because the spline is more robust for 

nonlinear functions and optimal for cubic polynomials. This result means that statistical 

inference based on the spline approximation will be more reliable, and sample size 

requirements will be less. The investigation of the spline was considered especially 
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important in regards to IRT application. In order for test instruments to be of value, they 

need to be able to differentiate respondents on latent trait parameters. The greater the 

patient discriminatory power of the IRFs, the more nonlinear the IRF. For the logistic IRT 

model, the IRF is theoretically cubic.  

Last, statistical analysis was performed using parametric and nonparametric 

estimators using the bootstrap, jackknife, and partial batch approaches. The 

nonparametric estimator (i.e., median) for the bootstrap approach resulted in consistently 

better properties than the mean. The former finding was expected in that the distribution 

of the paired effects was non-normal for all analyses. This conclusion was based on the 

standard errors being consistently smaller and the coverage being consistently higher for 

the median.  

The author did not have any preconceived expectations about these three 

approaches. The study found that the bootstrap approach resulted in better statistical 

inference properties than the jackknife and partial batch approaches. As a result, the 

nonparametric bootstrap approach was recommended for statistical inference. As a result, 

decisions regarding AUC comparisons based on findings from this combination of 

approaches were considered reliable because the inference correctly characterized 

superiority and equivalence data scenarios.  

This methodology was then incorporated into the derived IRT power functions. 

Two important factors were investigated to understand the sensitivity of these functions. 

Simulations were performed to intentionally mimic superiority and equivalence data 

scenarios. Sample size requirements for superiority consistently increased as the two IRFs 

approximated each other. The same trend occurred for equivalence when the IRFs were 
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simulated to be different. These results demonstrated that the derived IRT power 

functions were sound.  

The IRT sample size requirements were then compared to existing methods for 

superiority and equivalence study objectives. The IRT sample sizes for both of these 

objectives were consistently smaller than the existing methods. More importantly, the 

IRT approach for equivalence resulted in a sample size that may be financially feasible in 

an ICT. This sample size requirement may be further reduced by taking advantage of 

findings from the research topics recommended in the next section. 

Directions for Future Research 

Data Pattern Anomalies 

This study investigated 2-PL EX IRT model results for four patterns of AE 

characteristics. Two of the simulations were designed so that IRFs would be noticeably 

different between treatment groups. Treatment A possessed a higher rate of AE 

occurrence, and vice versa for Treatment B. An unexplained anomaly occurred for two of 

these analyses. When simulating a superiority data scenario where the occurrence of 

Treatment B (Control group) was larger than Treatment A (Test group), the IRFs showed 

notable separation. But when this rate of occurrence was reversed, the IRFs did not 

separate. They unexpectedly represented an equivalence data scenario. Exploratory 

analysis was performed, and no sources of this anomaly could be identified. Future 

research pertaining to the sensitivity of the 2-PL EX IRT model is warranted. 
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Goodness-of-Fit 

Inferential methods that correctly characterize goodness-of-fit (GoF) is a 

weakness of Bayesian IRT methodology. Future methods that are a function of the 

predicted and observed values associated with patient discriminatory power may prove to 

be valuable. As this power increases while residuals remain relatively small, the test 

statistic for the GoF method should theoretically decrease. The development of such a 

statistic would enable more accurate conclusions regarding posterior probability and 

residual plots. 

Bayesian Sampling Algorithms 

This study used the inverse cumulative distribution function (CDF) transformation 

method for the Bayesian sampling algorithm. This algorithm was used to generate 

sequences of Gibbs samplers. The AE Predisposition (θ), discrimination, and difficulty 

parameters converged slowly for the 2-PL and 2-PL EX IRT models. This convergence 

did not consistently occur for 2-PL MEX.  

The 2-PL MEX findings may have been a result of computational limitations from 

the sampling algorithm. Future research may demonstrate that other sampling algorithms 

such as Metropolis–Hastings (Johnson & Albert, 1999), Adaptive Rejection Sampling 

(Gilks & Wild, 1992), and Slice Sampling (Neal, 2003) converge faster for 2-PL and 

2-PL EX, and converge sufficiently for 2-PL MEX.  



 202 

 

Nonlinear Measurement Error 

The ability to correctly diagnose an AE could play a role in statistical inference 

findings and sample size requirements. Several studies have demonstrated that the 

reliability of these diagnoses may not always be high (Cowell, Dawid, Hutchinson, & 

Spiegelhalter, 1991; Hutchison, 1986, 1991; Hutchison, Dawid, Spiegelhalter, Cowell, & 

Roden, 1991; Kane-Gill, Kirisci, & Pathak, 2005; Lanctôt, 1989; Lanctôt, Kwok, & 

Naranjo, 1995; Macdeo, Marques, Ribeiro, & Teixeira, 2005; Naranjo et al., 1981; Pere, 

Begaud, Haramburu, & Albin, 1986). Ignoring this form of measurement error could 

potentially confound statistical inference findings and sample size requirements. If this 

measurement error could be accounted for in the IRT model, then this contamination 

could be minimized or even prevented. ICTs have a solution for addressing this concern 

with reliable AE diagnosis.  

In ICTs, study physicians record the occurrence of any adverse events experienced 

by the patient on a Case Report Form. These physicians may either be blinded to or aware 

of the treatment they administered to their patient. A Data Safety Monitoring Board 

(DSMB) may then be used to evaluate the accuracy of the diagnoses from the study 

physician. The DSMB commonly consists of a panel of physicians who are 

knowledgeable about the study indication, independent of the study, and blinded to 

patient treatment (Dixon, 2008). These parameters are in place to minimize concerns 

regarding decision bias. Over the course of an ICT, the DSMB adjudicates each reported 

AE. The study database may then contain the AE diagnosed by the study physician as 

well as the DSMB. With both of these data sources available, the reliability of AE 
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diagnosis can be computed and incorporated into estimation. For the logistic IRT model 

investigated in this study, reliability would be characterized as nonlinear measurement 

error. Newly developed methods are available for integrating this type of error into 

Bayesian nonlinear mixed regression models (Mallick, 2011; Sinha, Mallick, Kipnis, & 

Carroll, 2010). 

Concluding Remarks 

This study began with a discussion of the requirements regulatory authorities such 

as the FDA use to approve medical products for market use. Product efficacy must be 

statistically substantiated, but this requirement is infrequent for AEs. This study 

attempted to present a viable solution to this problem. If this study was able to develop 

such a solution, the pharmaceutical industry would have the ability to appropriately power 

their ICTs on both efficacy and AE hypotheses. Also, regulatory authorities, such as the 

FDA, would have access to a new way of thinking about investigating product safety in 

terms of AEs and other safety parameters. Being able to change an industry standard may 

prove to be very valuable to the community. 

This ability may allow the pharmaceutical industry to generalize clinical safety 

findings on a small sample of patients to target populations. This may mean that a 

medical product’s safety profile would be more thoroughly understood before its release 

to the market, not thereafter. Furthermore, a tremendous advantage of this study was that 

the derived group-level statistical inference and power analysis was readily applicable to 

the patient in terms of the Patient Response Function. With the advent of Risk Prediction 

Algorithms, this methodology may be a viable option for differentiating and identifying 
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patients who are most predisposed (“at-risk”) to experiencing a particular type of AE. 

Known and reliable probabilities that correctly characterize clinically relevant 

predisposition may help physicians customize or modify treatment regimens so that the 

AE effects are minimized or negated all together. 
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Figure A-1. Trace and G–R Plot for Mean Discrimination (n = 30): A(i) = 7, θ(i) = 0 
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Figure A-2. Trace and G–R Plot for Mean Difficulty (n = 30): A(i) = 7, θ(i) = 0 
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Figure A-3. Trace and G–R Plot for Mean AE Predisposition (θ) (n = 30): A(i) = 7, θ(i) = 0 
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Figure A-4. Trace and G–R Plot for SD Discrimination (n = 30): A(i) = 7, θ(i) = 0 
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Figure A-5. Trace and G–R Plot for SD Difficulty (n = 30): A(i) = 7, θ(i) = 0 
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Figure A-6. Trace and G–R Plot for AE Predisposition (θ) (n = 30): A(i) = 7, θ(i) = 0 
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Figure A-7. Trace and G–R Plot for Mean Discrimination (n = 30): A(i) = 2, θ(i) = 1 
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Figure A-8. Trace and G–R Plot for Mean Difficulty (n = 30): A(i) = 2, θ(i) = 1 
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Figure A-9. Trace and G–R Plot for Mean AE Predisposition (θ) (n = 30): A(i) = 2, 
θ

(i) = 1 
 

SD
 o

f P
ar

am
et

er

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

SD
 o

f G
el

m
an

-R
ub

in

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

Figure A-10. Trace and G–R Plot for SD Discrimination (n = 30): A(i) = 2, θ(i) = 1 
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Figure A-11. Trace and G–R Plot for SD Difficulty (n = 30): A(i) = 2, θ(i) = 1 
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Figure A-12. Trace and G–R Plot for SD AE Predisposition (θ) (n = 30): A(i) = 2, θ(i) = 1 
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Figure A-13. Trace and G–R Plot for Mean Discrimination (n = 250): A(i) = 7,  
θ

(i) = 0 
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Figure A-14. Trace and G–R Plot for Mean Difficulty (n = 250): A(i) = 7, θ(i) = 0 
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Figure A-15. Trace and G–R Plot for Mean AE Predisposition (θ) (n = 250): A(i) = 7,  
θ

(i) = 0 
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Figure A-16. Trace and G–R Plot for SD Discrimination (n = 250): A(i) = 7, θ(i) = 0 
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Figure A-17. Trace and G–R Plot for SD Difficulty (n = 250): A(i) = 7, θ(i) = 0 
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Figure A-18. Trace and G–R Plot for SD AE Predisposition (θ) (n = 250): A(i) = 7,  

θ
(i) = 0 



 232 

 

M
ea

n 
of

 P
ar

am
et

er

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

M
ea

n 
of

 G
el

m
an

-R
ub

in
Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

-0.14

-0.09

-0.04

0.01

0.06

0.11

0.16

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

0

1

2

3

4

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

Figure A-19. Trace and G–R Plot for Mean Discrimination (n = 250): A(i) = 2, θ(i) = 1 
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Figure A-20. Trace and G–R Plot for Mean Difficulty (n = 250): A(i) = 2, θ(i) = 1 



 233 

 

M
ea

n 
of

 P
ar

am
et

er

Iterations
M

ea
n 

of
 G

el
m

an
-R

ub
in

Iterations

-0.0038
-0.0033
-0.0028
-0.0023
-0.0018
-0.0013
-0.0008
-0.0003
0.0002
0.0007
0.0012
0.0017

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

 

Figure A-21. Trace and G–R Plot for Mean AE Predisposition (θ) (n = 250): A(i) = 2,  
θ

(i) = 1 
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Figure A-22. Trace and G–R Plot for SD Discrimination (n = 250): A(i) = 2, θ(i) = 1 
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Figure A-23. Trace and G–R Plot for SD Difficulty (n = 250): A(i) = 2, θ(i) = 1 
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Figure A-24. Trace and G–R Plot for SD AE Predisposition (θ) (n = 250): A(i) = 2,  

θ
(i) = 1 
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Appendix B 

Additional Convergence Plots for 2-PL EX IRT Model 



 236 

 

 

M
ea

n 
of

 P
ar

am
et

er

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

M
ea

n 
of

 G
el

m
an

-R
ub

in

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995
0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

Figure B-1. Trace and G–R Plot for Mean Discrimination (SRS = 30): A(i) = 7, θ(i) = 0 
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Figure B-2. Trace and G–R Plot for Mean Difficulty (SRS = 30): A(i) = 7, θ(i) = 0 
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Figure B-3. Trace and G–R Plot for Mean AE Predisposition (θ) (SRS = 30): A(i) = 7,  

θ
(i) = 0 
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Figure B-4. Trace and G–R Plot for SD Discrimination (SRS = 30): A(i) = 7, θ(i) = 0 
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Figure B-5. Trace and G–R Plot for SD Difficulty (SRS = 30): A(i) = 7, θ(i) = 0 
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Figure B-6. Trace and G–R Plot for SD AE Predisposition (θ) (SRS = 30): A(i) = 7,  

θ
(i) = 0 
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Figure B-7. Trace and G–R Plot for Mean Discrimination (SRS = 30): A(i) = 2, θ(i) = 1 
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Figure B-8. Trace and G–R Plot for Mean Difficulty (SRS = 30): A(i) = 2, θ(i) = 1 

 



 240 

 

M
ea

n 
of

 P
ar

am
et

er

Iterations
M

ea
n 

of
 G

el
m

an
-R

ub
in

Iterations

-0.569
-0.564

-0.559

-0.554
-0.549

-0.544

-0.539
-0.534

-0.529

-0.524
-0.519

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

 
Figure B-9. Trace and G–R Plot for Mean AE Predisposition (θ) (SRS = 30): A(i) = 2,  

θ
(i) = 1 
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Figure B-10. Trace and G–R Plot for SD Discrimination (SRS = 30): A(i) = 2, θ(i) = 1 
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Figure B-11. Trace and G–R Plot for SD Difficulty (SRS = 30): A(i) = 2, θ(i) = 1 
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Figure B-12. Trace and G–R Plot for SD AE Predisposition (θ) (SRS = 30): A(i) = 2,  

θ
(i) = 1 
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Figure B-13. Trace and G–R Plot for Mean Discrimination (SRS = 250): A(i) = 7, θ(i) = 0 
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Figure B-14. Trace and G–R Plot for Mean Difficulty (SRS = 250): A(i) = 7, θ(i) = 0 
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Figure B-15. Trace and G–R Plot for Mean AE Predisposition (θ) (SRS = 250): A(i) = 7, 

θ
(i) = 0 
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Figure B-16. Trace and G–R Plot for SD Discrimination (SRS = 250): A(i) = 7, θ(i) = 0 
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Figure B-17. Trace and G–R Plot for SD Difficulty (SRS = 250): A(i) = 7, θ(i) = 0 
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Figure B-18. Trace and G–R Plot for SD AE Predisposition (θ) (SRS = 250): A(i) = 7,  

θ
(i) = 0 
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Figure B-19. Trace and G–R Plot for Mean Discrimination (SRS = 250): A(i) = 2, θ(i) = 1 
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Figure B-20. Trace and G–R Plot for Mean Difficulty (SRS = 250): A(i) = 2, θ(i) = 1 
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Figure B-21. Trace and G–R Plot for Mean AE Predisposition (θ) (SRS = 250): A(i) = 2, 

θ
(i) = 1 

 

SD
 o

f P
ar

am
et

er

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

SD
 o

f G
el

m
an

-R
ub

in

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

 

Figure B-22. Trace and G–R Plot for SD Discrimination (SRS = 250): A(i) = 2, θ(i) = 1 
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Figure B-23. Trace and G–R Plot for SD Difficulty (SRS = 250): A(i) = 2, θ(i) = 1 
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Figure B-24. Trace and G–R Plot for SD AE Predisposition (θ) (SRS = 250): A(i) = 2,  

θ
(i) = 1 
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Appendix C 

Additional Convergence Plots for 2-PL MEX IRT Model 



 249 

 

M
ea

n 
of

 P
ar

am
et

er

Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

M
ea

n 
of

 G
el

m
an

-R
ub

in
Iterations

AE1: Blue; AE2: Red; AE3: Green
AE4: Cyan; AE5: Orange; AE6: Black
AE7: Brown; AE8: Olive; AE9: Gold

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

0

1

2

3

4

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

Figure C-1. Trace and G–R Plot for Mean Discrimination (SRS = 30): A(i) = 7, θ(i) = 0 
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Figure C-2. Trace and G–R Plot for Mean Difficulty (SRS = 30): A(i) = 7, θ(i) = 0 
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Figure C-3. Trace and G–R Plot for Mean AE Predisposition (θ) (SRS = 30): A(i) = 7,  

θ
(i) = 0 
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Figure C-4. Trace and G–R Plot for SD Discrimination (SRS = 30): A(i) = 7, θ(i) = 0 
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Figure C-5. Trace and G–R Plot for SD Difficulty (SRS = 30): A(i) = 7, θ(i) = 0 
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Figure C-6. Trace and G–R Plot for SD AE Predisposition (θ) (SRS = 30): A(i) = 7,  

θ
(i) = 0 
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Figure C-7. Trace and G–R Plot for Mean Discrimination (SRS = 30): A(i) = 2, θ(i) = 1 
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Figure C-8. Trace and G–R Plot for Mean Difficulty (SRS = 30): A(i) = 2, θ(i) = 1 
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Figure C-9. Trace and G–R Plot for Mean AE Predisposition (θ) (SRS = 30): A(i) = 2,  

θ
(i) = 1 
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Figure C-10. Trace and G–R Plot for SD Discrimination (SRS = 30): A(i) = 2, θ(i) = 1 
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Figure C-11. Trace and G–R Plot for SD Difficulty (SRS = 30): A(i) = 2, θ(i) = 1 
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Figure C-12. Trace and G–R Plot for SD AE Predisposition (θ) (SRS = 30): A(i) = 2,  
θ

(i) = 1 
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Figure C-13. Trace and G–R Plot for Mean Discrimination (SRS = 250): A(i) = 7, θ(i) = 0 
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Figure C-14. Trace and G–R Plot for Mean Difficulty (SRS = 250): A(i) = 7, θ(i) = 0 
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Figure C-15. Trace and G–R Plot for Mean AE Predisposition (θ) (SRS = 250): A(i) = 7, 

θ
(i) = 0 
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Figure C-16. Trace and G–R Plot for SD Discrimination (SRS = 250): A(i) = 7, θ(i) = 0 
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Figure C-17. Trace and G–R Plot for SD Difficulty (SRS = 250): A(i) = 7, θ(i) = 0 
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Figure C-18. Trace and G–R Plot for SD AE Predisposition (θ) (SRS = 250): A(i) = 7,  

θ
(i) = 0 
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Figure C-19. Trace and G–R Plot for Mean Discrimination (SRS = 250): A(i) = 2, θ(i) = 1 
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Figure C-20. Trace and G–R Plot for Mean Difficulty (SRS = 250): A(i) = 2, θ(i) = 1 
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Figure C-21. Trace and G–R Plot for Mean AE Predisposition (θ) (SRS = 250): A(i) = 2, 

θ
(i) = 1 
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Figure C-22. Trace and G–R Plot for SD Discrimination (SRS = 250): A(i) = 2, θ(i) = 1 
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Figure C-23. Trace and G–R Plot for SD Difficulty (SRS = 250): A(i) = 2, θ(i) = 1 
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Figure C-24. Trace and G–R Plot for SD AE Predisposition (θ) (SRS = 250): A(i) = 2,  

θ
(i) = 1 
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Appendix D 

2-PL IRT Model: Goodness-of-Fit 
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Table D-1.  2-PL: Bock’s Index for AE Type 2 
 

n bock std LCL pval_low UCL pval_high 

 30 27.5250 3.54840 27.1146 .000275637 27.9353 .000193272 

 250 249.485 15.0607 247.744 0 251.227 0 
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Figure D-1.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 2 (n = 30) 
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Figure D-2.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 2 (n = 250) 
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Table D-2.  2-PL IRT Model – Bock’s Index for AE Type 3 

n bock std LCL pval_low UCL pval_high 

 30 25.7739 3.40284 25.3804 .000580570 26.1673 .000414428 

 250 162.588 10.8993 161.328 0 163.848 0 
 
 

P
(T

he
ta

)

Theta

R
es

id
ua

l

Patient

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5 0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

     -0.5400

     -0.4900

     -0.4400

     -0.3900

     -0.3400

     -0.2900

     -0.2400

     -0.1900

     -0.1400

0 5 10 15 20 25 30

 
Figure D-3.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 3 (n = 30) 
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Figure D-4.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 3 (n = 250)
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Table D-3.  2-PL IRT Model – Bock’s Index for AE Type 4 

n bock std LCL pval_low UCL pval_high 

 30 23.3383 3.65949 22.9152 .001650801 23.7615 .001155444 

 250 186.987 12.0271 185.596 0 188.377 0 
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Figure D-5.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 4 (n = 30) 
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Figure D-6.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 4 (n = 250)
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Table D-4.  2-PL IRT Model – Bock’s Index for AE Type 5 
 

n bock std LCL pval_low UCL pval_high 

 30 23.6638 3.25462 23.2874 .001411421 24.0401 .001026908 

 250 175.035 11.1706 173.744 0 176.327 0 
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Figure D-7.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 5 (n = 30) 
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Figure D-8. 2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 5 (n = 250)
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Table D-5.  2-PL IRT Model – Bock’s Index for AE Type 6 

n bock std LCL pval_low UCL pval_high 

 30 22.0738 3.39111 21.6817 .002765245 22.4660 .001993130 

 250 221.405 13.8203 219.807 0 223.003 0 
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Figure D-9. 2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 6 (n = 30) 
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Figure D-10. 2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 6 (n = 250)
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Table D-6.  2-PL IRT Model – Bock’s Index for AE Type 7 

n bock std LCL pval_low UCL pval_high 

 30 30.5827 3.45697 30.1830 .000072563 30.9825 .000051090 

 250 238.304 14.1529 236.667 0 239.941 0 
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Figure D-11.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 7 (n = 30) 
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Figure D-12. 2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 7 (n = 250)
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Table D-7.  2-PL IRT Model – Bock’s Index for AE Type 8 

n bock std LCL pval_low UCL pval_high 

 30 24.0098 3.40132 23.6165 .001228466 24.4031 .000880368 

 250 241.944 15.2118 240.185 0 243.703 0 
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Figure D-13.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 8 (n = 30) 
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Figure D-14. 2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 8 (n = 250)
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Table D-8.  2-PL IRT Model – Bock’s Index for AE Type 9 

n bock std LCL pval_low UCL pval_high 

 30 22.8545 3.86330 22.4077 .002042336 23.3012 .001403258 

 250 169.275 12.3739 167.844 0 170.706 0 
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Figure D-15.  2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 9 (n = 30) 
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Figure D-16. 2-PL IRT Model – Bayesian PPI and Residual Plot for AE Type 9 (n = 250)
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Appendix E 

2-PL IRT Model: AE Predisposition Estimates 
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Table E-1.  AE Predisposition Parameter for n = 30 Patients 

Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

1 0.07 (0.023) 0.07 (0.04, 0.10) 16 0.16 (0.015) 0.16 (0.14, 0.18) 

2 0.03 (0.039) 0.05 (–0.02, 0.08) 17 0.19 (0.012) 0.19 (0.18, 0.21) 

3 0.21 (0.011) 0.21 (0.20, 0.23) 18 0.05 (0.014) 0.05 (0.03, 0.07) 

4 0.07 (0.006) 0.07 (0.06, 0.07) 19 0.04 (0.007) 0.04 (0.03, 0.05) 

5 0.11 (0.077) 0.15 (0.02, 0.21) 20 0.09 (0.017) 0.09 (0.07, 0.11) 

6 –0.04 (0.016) –0.05 (–0.06, –0.02) 21 –0.20 (0.014) –0.20 (–0.22, –0.18) 

7 0.01 (0.013) 0.00 (–0.01, 0.02) 22 0.29 (0.016) 0.30 (0.27, 0.31) 

8 0.07 (0.004) 0.07 (0.06, 0.07) 23 0.13 (0.018) 0.12 (0.10, 0.15) 

9 –0.03 (0.012) –0.03 (–0.04, –0.01) 24 –0.02 (0.019) –0.02 (–0.04, 0.01) 

10 0.06 (0.013) 0.06 (0.05, 0.08) 25 0.08 (0.019) 0.08 (0.06, 0.11) 

11 –0.01 (0.015) –0.02 (–0.03, 0.01) 26 0.02 (0.014) 0.01 (0.00, 0.04) 

12 0.15 (0.010) 0.15 (0.14, 0.16) 27 0.03 (0.028) 0.02 (–0.01, 0.06) 

13 0.06 (0.026) 0.05 (0.03, 0.09) 28 –0.04 (0.095) –0.01 (–0.16, 0.08) 

14 –0.01 (0.013) –0.01 (–0.03, 0.00) 29 –0.16 (0.023) –0.17 (–0.19, –0.13) 

15 0.01 (0.010) 0.02 (0.00, 0.02) 30 –0.10 (0.006) –0.10 (–0.11, –0.09) 
 

 

Table E-2.  AE Predisposition Parameter for n = 250 Patients 

Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

1 –0.02 (0.026) –0.02 (–0.05, 0.01) 126 0.10 (0.008) 0.11 (0.09, 0.11) 

2 –0.08 (0.026) –0.08 (–0.11, –0.04) 127 –0.01 (0.029) –0.02 (–0.05, 0.03) 

3 –0.22 (0.003) –0.22 (–0.22, –0.22) 128 –0.05 (0.021) –0.05 (–0.07, –0.02) 

4 –0.11 (0.014) –0.11 (–0.13, –0.09) 129 –0.11 (0.013) –0.11 (–0.12, –0.09) 

5 –0.19 (0.032) –0.17 (–0.23, –0.15) 130 –0.07 (0.022) –0.06 (–0.10, –0.04) 

6 0.19 (0.024) 0.18 (0.16, 0.22) 131 –0.08 (0.015) –0.08 (–0.10, –0.06) 

7 –0.10 (0.015) –0.11 (–0.12, –0.09) 132 –0.11 (0.016) –0.11 (–0.13, –0.09) 

8 0.01 (0.075) –0.01 (–0.08, 0.10) 133 –0.07 (0.022) –0.07 (–0.09, –0.04) 

9 –0.12 (0.019) –0.12 (–0.15, –0.10) 134 –0.04 (0.009) –0.04 (–0.06, –0.03) 

10 0.11 (0.010) 0.10 (0.09, 0.12) 135 –0.18 (0.005) –0.18 (–0.19, –0.17) 

11 –0.13 (0.006) –0.13 (–0.13, –0.12) 136 0.27 (0.012) 0.27 (0.26, 0.29) 

12 –0.24 (0.014) –0.25 (–0.26, –0.22) 137 0.02 (0.008) 0.02 (0.01, 0.03) 

13 –0.08 (0.021) –0.08 (–0.11, –0.05) 138 –0.00 (0.006) 0.00 (–0.01, 0.01) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

14 –0.18 (0.004) –0.18 (–0.19, –0.18) 139 0.28 (0.017) 0.29 (0.26, 0.31) 

15 –0.11 (0.015) –0.11 (–0.12, –0.09) 140 –0.08 (0.008) –0.09 (–0.09, –0.07) 

16 –0.06 (0.023) –0.06 (–0.09, –0.03) 141 0.02 (0.018) 0.02 (–0.00, 0.04) 

17 –0.31 (0.015) –0.31 (–0.33, –0.29) 142 –0.02 (0.016) –0.01 (–0.04, 0.00) 

18 0.00 (0.012) 0.00 (–0.01, 0.02) 143 0.01 (0.016) 0.02 (–0.01, 0.03) 

19 0.13 (0.012) 0.13 (0.12, 0.14) 144 –0.05 (0.015) –0.05 (–0.07, –0.03) 

20 0.03 (0.017) 0.03 (0.00, 0.05) 145 –0.11 (0.018) –0.11 (–0.13, –0.09) 

21 –0.19 (0.012) –0.19 (–0.21, –0.18) 146 0.06 (0.100) 0.03 (–0.07, 0.18) 

22 –0.18 (0.022) –0.18 (–0.21, –0.15) 147 –0.20 (0.014) –0.21 (–0.22, –0.19) 

23 0.16 (0.015) 0.16 (0.14, 0.18) 148 –0.11 (0.015) –0.11 (–0.13, –0.09) 

24 0.03 (0.013) 0.03 (0.02, 0.05) 149 0.07 (0.018) 0.07 (0.05, 0.10) 

25 –0.33 (0.009) –0.33 (–0.34, –0.32) 150 0.16 (0.021) 0.16 (0.13, 0.18) 

26 0.10 (0.013) 0.10 (0.09, 0.12) 151 –0.00 (0.009) 0.00 (–0.01, 0.01) 

27 –0.23 (0.017) –0.23 (–0.25, –0.21) 152 –0.18 (0.010) –0.18 (–0.19, –0.16) 

28 –0.12 (0.014) –0.13 (–0.14, –0.10) 153 –0.03 (0.019) –0.03 (–0.05, –0.01) 

29 –0.11 (0.024) –0.12 (–0.14, –0.08) 154 –0.02 (0.011) –0.02 (–0.04, –0.01) 

30 –0.12 (0.010) –0.11 (–0.13, –0.10) 155 –0.01 (0.108) –0.05 (–0.14, 0.13) 

31 –0.01 (0.028) 0.01 (–0.04, 0.02) 156 –0.24 (0.014) –0.25 (–0.26, –0.22) 

32 –0.04 (0.036) –0.03 (–0.08, 0.01) 157 0.00 (0.015) 0.00 (–0.01, 0.02) 

33 0.16 (0.006) 0.16 (0.16, 0.17) 158 0.14 (0.019) 0.15 (0.11, 0.16) 

34 –0.06 (0.020) –0.06 (–0.09, –0.04) 159 0.12 (0.004) 0.12 (0.12, 0.13) 

35 –0.06 (0.012) –0.06 (–0.07, –0.04) 160 –0.08 (0.024) –0.09 (–0.11, –0.05) 

36 0.29 (0.031) 0.27 (0.25, 0.32) 161 –0.29 (0.014) –0.30 (–0.31, –0.28) 

37 0.11 (0.012) 0.11 (0.09, 0.12) 162 0.11 (0.007) 0.11 (0.11, 0.12) 

38 0.18 (0.013) 0.18 (0.16, 0.19) 163 –0.01 (0.030) –0.01 (–0.05, 0.02) 

39 0.15 (0.026) 0.16 (0.12, 0.19) 164 0.14 (0.012) 0.13 (0.12, 0.15) 

40 –0.00 (0.018) 0.01 (–0.02, 0.02) 165 –0.03 (0.023) –0.03 (–0.06, –0.00) 

41 –0.17 (0.097) –0.22 (–0.29, –0.05) 166 0.24 (0.108) 0.18 (0.11, 0.38) 

42 0.07 (0.019) 0.07 (0.05, 0.10) 167 –0.07 (0.016) –0.07 (–0.09, –0.05) 

43 –0.22 (0.019) –0.22 (–0.25, –0.20) 168 0.19 (0.027) 0.20 (0.16, 0.22) 

44 –0.23 (0.013) –0.23 (–0.25, –0.21) 169 –0.05 (0.009) –0.05 (–0.06, –0.04) 

45 –0.16 (0.026) –0.16 (–0.19, –0.13) 170 –0.12 (0.026) –0.13 (–0.15, –0.09) 

46 0.16 (0.017) 0.16 (0.14, 0.19) 171 –0.09 (0.006) –0.08 (–0.09, –0.08) 

47 0.41 (0.026) 0.41 (0.38, 0.44) 172 –0.15 (0.028) –0.15 (–0.19, –0.12) 

48 0.13 (0.086) 0.10 (0.03, 0.24) 173 0.00 (0.006) 0.00 (–0.00, 0.01) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

49 –0.28 (0.015) –0.28 (–0.30, –0.26) 174 –0.10 (0.017) –0.10 (–0.12, –0.07) 

50 –0.05 (0.018) –0.05 (–0.07, –0.02) 175 0.04 (0.025) 0.03 (0.01, 0.07) 

51 –0.15 (0.025) –0.15 (–0.18, –0.12) 176 0.12 (0.015) 0.12 (0.10, 0.14) 

52 0.12 (0.022) 0.12 (0.09, 0.15) 177 –0.26 (0.112) –0.31 (–0.40, –0.12) 

53 0.10 (0.017) 0.10 (0.08, 0.12) 178 –0.19 (0.028) –0.18 (–0.22, –0.15) 

54 0.22 (0.013) 0.22 (0.21, 0.24) 179 0.05 (0.081) 0.03 (–0.05, 0.15) 

55 –0.06 (0.017) –0.06 (–0.08, –0.04) 180 0.12 (0.025) 0.12 (0.09, 0.15) 

56 0.15 (0.020) 0.14 (0.12, 0.17) 181 –0.04 (0.012) –0.04 (–0.06, –0.03) 

57 –0.10 (0.015) –0.10 (–0.12, –0.08) 182 –0.20 (0.116) –0.25 (–0.34, –0.05) 

58 0.15 (0.014) 0.14 (0.13, 0.16) 183 –0.06 (0.016) –0.06 (–0.08, –0.04) 

59 –0.07 (0.016) –0.07 (–0.09, –0.05) 184 –0.02 (0.027) –0.03 (–0.06, 0.01) 

60 –0.06 (0.009) –0.06 (–0.07, –0.05) 185 0.08 (0.020) 0.09 (0.05, 0.10) 

61 –0.02 (0.018) –0.02 (–0.04, 0.00) 186 –0.17 (0.012) –0.16 (–0.18, –0.15) 

62 –0.12 (0.012) –0.12 (–0.13, –0.10) 187 0.18 (0.009) 0.18 (0.17, 0.19) 

63 –0.10 (0.009) –0.10 (–0.11, –0.08) 188 –0.07 (0.009) –0.07 (–0.08, –0.06) 

64 –0.17 (0.018) –0.17 (–0.19, –0.14) 189 –0.12 (0.029) –0.13 (–0.16, –0.08) 

65 0.15 (0.018) 0.15 (0.12, 0.17) 190 0.13 (0.012) 0.13 (0.11, 0.14) 

66 0.22 (0.024) 0.22 (0.19, 0.25) 191 –0.12 (0.020) –0.12 (–0.14, –0.09) 

67 0.22 (0.010) 0.23 (0.21, 0.24) 192 –0.11 (0.028) –0.10 (–0.14, –0.07) 

68 0.16 (0.016) 0.17 (0.14, 0.18) 193 0.18 (0.012) 0.18 (0.17, 0.20) 

69 –0.14 (0.014) –0.15 (–0.16, –0.12) 194 –0.01 (0.020) –0.01 (–0.04, 0.01) 

70 –0.27 (0.011) –0.26 (–0.28, –0.26) 195 –0.29 (0.014) –0.30 (–0.31, –0.27) 

71 –0.10 (0.008) –0.10 (–0.11, –0.09) 196 –0.18 (0.009) –0.19 (–0.20, –0.17) 

72 0.03 (0.016) 0.03 (0.01, 0.05) 197 –0.06 (0.027) –0.07 (–0.09, –0.03) 

73 –0.05 (0.019) –0.06 (–0.07, –0.02) 198 0.14 (0.008) 0.14 (0.13, 0.15) 

74 –0.28 (0.018) –0.28 (–0.31, –0.26) 199 –0.01 (0.015) –0.02 (–0.03, 0.00) 

75 –0.00 (0.022) 0.00 (–0.03, 0.02) 200 –0.17 (0.015) –0.17 (–0.18, –0.15) 

76 –0.01 (0.007) –0.02 (–0.02, –0.01) 201 0.06 (0.006) 0.06 (0.05, 0.06) 

77 –0.13 (0.018) –0.13 (–0.15, –0.11) 202 0.12 (0.026) 0.11 (0.09, 0.15) 

78 0.17 (0.009) 0.17 (0.16, 0.18) 203 0.03 (0.017) 0.03 (0.01, 0.05) 

79 –0.01 (0.029) –0.01 (–0.04, 0.03) 204 0.23 (0.024) 0.23 (0.20, 0.26) 

80 –0.13 (0.034) –0.12 (–0.18, –0.09) 205 –0.10 (0.020) –0.11 (–0.13, –0.08) 

81 0.25 (0.017) 0.24 (0.23, 0.27) 206 0.11 (0.009) 0.11 (0.09, 0.12) 

82 –0.17 (0.038) –0.18 (–0.22, –0.12) 207 0.11 (0.019) 0.10 (0.08, 0.13) 

83 0.13 (0.018) 0.13 (0.10, 0.15) 208 0.33 (0.022) 0.32 (0.30, 0.36) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

84 0.06 (0.065) 0.05 (–0.02, 0.14) 209 –0.04 (0.023) –0.05 (–0.07, –0.01) 

85 –0.04 (0.014) –0.05 (–0.06, –0.03) 210 0.17 (0.007) 0.17 (0.16, 0.17) 

86 0.07 (0.030) 0.07 (0.03, 0.11) 211 –0.16 (0.023) –0.15 (–0.19, –0.13) 

87 0.11 (0.020) 0.11 (0.09, 0.14) 212 0.15 (0.018) 0.14 (0.12, 0.17) 

88 0.16 (0.036) 0.15 (0.11, 0.20) 213 0.02 (0.012) 0.01 (–0.00, 0.03) 

89 0.19 (0.032) 0.20 (0.15, 0.23) 214 0.16 (0.008) 0.16 (0.15, 0.17) 

90 –0.09 (0.010) –0.08 (–0.10, –0.07) 215 –0.19 (0.005) –0.19 (–0.20, –0.18) 

91 –0.16 (0.016) –0.17 (–0.18, –0.14) 216 –0.21 (0.011) –0.21 (–0.22, –0.20) 

92 0.27 (0.014) 0.27 (0.26, 0.29) 217 –0.04 (0.020) –0.05 (–0.07, –0.02) 

93 0.38 (0.018) 0.38 (0.36, 0.40) 218 –0.08 (0.011) –0.08 (–0.10, –0.07) 

94 –0.31 (0.012) –0.30 (–0.32, –0.29) 219 –0.38 (0.007) –0.38 (–0.39, –0.37) 

95 0.07 (0.109) 0.04 (–0.06, 0.21) 220 0.14 (0.016) 0.14 (0.13, 0.16) 

96 –0.22 (0.011) –0.22 (–0.24, –0.21) 221 –0.09 (0.008) –0.09 (–0.10, –0.08) 

97 0.02 (0.012) 0.02 (0.01, 0.04) 222 –0.21 (0.020) –0.20 (–0.23, –0.18) 

98 –0.22 (0.019) –0.23 (–0.25, –0.20) 223 –0.09 (0.025) –0.09 (–0.12, –0.06) 

99 –0.29 (0.018) –0.29 (–0.32, –0.27) 224 –0.06 (0.007) –0.06 (–0.07, –0.05) 

100 –0.13 (0.017) –0.13 (–0.15, –0.11) 225 0.16 (0.009) 0.16 (0.15, 0.17) 

101 0.03 (0.015) 0.03 (0.01, 0.05) 226 0.18 (0.015) 0.18 (0.16, 0.20) 

102 0.06 (0.012) 0.06 (0.05, 0.08) 227 –0.02 (0.007) –0.02 (–0.03, –0.01) 

103 0.22 (0.073) 0.19 (0.13, 0.31) 228 0.28 (0.018) 0.28 (0.26, 0.30) 

104 –0.13 (0.015) –0.13 (–0.15, –0.11) 229 0.04 (0.093) –0.00 (–0.08, 0.15) 

105 –0.24 (0.009) –0.24 (–0.25, –0.23) 230 0.00 (0.020) 0.00 (–0.03, 0.03) 

106 0.03 (0.016) 0.02 (0.01, 0.05) 231 –0.18 (0.018) –0.18 (–0.20, –0.16) 

107 –0.13 (0.016) –0.13 (–0.15, –0.11) 232 –0.10 (0.006) –0.10 (–0.10, –0.09) 

108 0.11 (0.007) 0.11 (0.10, 0.11) 233 –0.22 (0.021) –0.22 (–0.24, –0.19) 

109 0.06 (0.018) 0.05 (0.03, 0.08) 234 –0.25 (0.010) –0.24 (–0.26, –0.23) 

110 0.18 (0.016) 0.17 (0.15, 0.20) 235 –0.03 (0.010) –0.03 (–0.04, –0.02) 

111 0.11 (0.016) 0.12 (0.10, 0.13) 236 –0.04 (0.004) –0.04 (–0.04, –0.03) 

112 –0.21 (0.018) –0.21 (–0.23, –0.18) 237 –0.10 (0.007) –0.10 (–0.11, –0.09) 

113 0.11 (0.008) 0.11 (0.09, 0.12) 238 –0.16 (0.005) –0.16 (–0.16, –0.15) 

114 –0.18 (0.037) –0.19 (–0.23, –0.14) 239 0.17 (0.011) 0.17 (0.15, 0.18) 

115 –0.03 (0.020) –0.02 (–0.05, –0.00) 240 0.03 (0.022) 0.03 (0.00, 0.06) 

116 0.02 (0.021) 0.01 (–0.00, 0.05) 241 –0.05 (0.010) –0.05 (–0.06, –0.04) 

117 0.02 (0.021) 0.02 (–0.01, 0.04) 242 0.07 (0.010) 0.07 (0.05, 0.08) 

118 0.10 (0.021) 0.09 (0.07, 0.13) 243 –0.08 (0.026) –0.09 (–0.11, –0.05) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

119 0.03 (0.007) 0.03 (0.02, 0.04) 244 –0.11 (0.012) –0.11 (–0.12, –0.09) 

120 –0.08 (0.024) –0.08 (–0.11, –0.05) 245 –0.03 (0.017) –0.04 (–0.05, –0.01) 

121 –0.08 (0.014) –0.08 (–0.10, –0.06) 246 –0.20 (0.064) –0.23 (–0.28, –0.12) 

122 0.05 (0.009) 0.04 (0.04, 0.06) 247 0.17 (0.011) 0.16 (0.15, 0.18) 

123 0.19 (0.011) 0.19 (0.17, 0.20) 248 –0.08 (0.017) –0.09 (–0.10, –0.06) 

124 –0.00 (0.015) –0.01 (–0.02, 0.02) 249 0.12 (0.015) 0.12 (0.10, 0.13) 

125 –0.19 (0.016) –0.19 (–0.21, –0.17) 250 –0.05 (0.035) –0.05 (–0.10, –0.01) 
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Appendix F 

2-PL EX IRT Model: Goodness-of-Fit 
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Table F-1.  2-PL EX IRT Model – Bock’s Index for AE Type 2 

n bock std LCL pval_low UCL pval_high 

 30 304.872 22.1060 302.316 0 307.428 0 

 250 1832.65 430.811 1782.84 0 1882.47 0 
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Figure F-1. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 2 

(n = 30) 
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Figure F–2. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 2 

(n = 250) 
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Table F-2.  2-PL EX IRT Model – Bock’s Index for AE Type 3 

n bock std LCL pval_low UCL pval_high 

 30 312.073 23.4702 309.359 0 314.787 0 

 250 1852.79 439.699 1801.95 0 1903.64 0 
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Figure F3. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 3 (n = 30) 
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Figure F-4. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 3 

(n = 250) 
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Table F-3.  2-PL EX IRT Model – Bock’s Index for AE Type 4 
 

n bock std LCL pval_low UCL pval_high 

 30 297.410 22.7412 294.780 0 300.040 0 

 250 1957.21 477.150 1902.04 0 2012.39 0 
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Figure F-5. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 4 

(n = 30) 
 

P
(T

he
ta

)

Theta

R
es

id
ua

l

Patient

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5 0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

     -0.9400

     -0.9300

     -0.9200

     -0.9100

     -0.9000

     -0.8900

     -0.8800

     -0.8700

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

 
Figure F-6. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 4 

(n = 250) 
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Table F-4. 2-PL EX IRT Model – Bock’s Index for AE Type 5 
 

n bock std LCL pval_low UCL pval_high 

 30 322.988 23.6490 320.253 0 325.722 0 

 250 1974.52 485.198 1918.41 0 2030.62 0 
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Figure F-7. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 5 

(n = 30) 
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Figure F-8. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 5 
(n = 250) 
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Table F-5. 2-PL EX IRT Model – Bock’s Index for AE Type 6 
 

n bock std LCL pval_low UCL pval_high 

 30 306.324 23.2735 303.633 0 309.015 0 

 250 1949.95 493.234 1892.91 0 2006.98 0 
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Figure F-9. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 6 

(n = 30) 
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Figure F-10. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 6 

(n = 250) 
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Table F-6. 2-PL EX IRT Model – Bock’s Index for AE Type 7 
 

n bock std LCL pval_low UCL pval_high 

 30 318.149 23.0358 315.485 0 320.813 0 

 250 1954.26 520.646 1894.06 0 2014.47 0 
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Figure F-11. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 7 

(n = 30) 
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Figure F-12. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 7 

(n = 250) 
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Table F-7. 2–PL IRT Model – Bock’s Index for AE Type 8 

n bock std LCL pval_low UCL pval_high 

 30 317.932 23.5544 315.208 0 320.656 0 

 250 1966.65 467.881 1912.54 0 2020.75 0 
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Figure F-13. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 8 

(n = 30) 
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Figure F-14. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 8 

(n = 250) 
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Table F-8.  2-PL IRT Model – Bock’s Index for AE Type 9 
 

n bock std LCL pval_low UCL pval_high 

 30 320.999 23.8895 318.237 0 323.762 0 

 250 1986.06 480.036 1930.55 0 2041.56 0 
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Figure F-15. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 9 

(n = 30) 
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Figure F-16. 2-PL EX IRT Model – Bayesian PPI and Residual Plot for AE Type 9 

(n = 250)
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Appendix G 

2-PL EX IRT Model: AE Predisposition Parameter Estimates 
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Table G-1.  AE Predisposition Parameter for n = 30 Patients 

Patient Mean (SD) Median 95% CI on 
Mean 

Patient Mean (SD) Median 95% CI on 
Mean 

1 –0.55 (0.056) –0.55 (–0.62, –0.48) 16 –0.59 (0.043) –0.57 (–0.65, –0.54) 

2 –0.59 (0.068) –0.55 (–0.67, –0.51) 17 –0.60 (0.033) –0.62 (–0.64, –0.56) 

3 –0.55 (0.070) –0.53 (–0.64, –0.46) 18 –0.58 (0.060) –0.57 (–0.66, –0.51) 

4 –0.56 (0.075) –0.52 (–0.65, –0.46) 19 –0.57 (0.074) –0.60 (–0.66, –0.48) 

5 –0.54 (0.039) –0.54 (–0.59, –0.49) 20 –0.60 (0.049) –0.60 (–0.67, –0.54) 

6 –0.56 (0.031) –0.56 (–0.60, –0.52) 21 –0.61 (0.077) –0.62 (–0.70, –0.51) 

7 –0.55 (0.070) –0.55 (–0.63, –0.46) 22 –0.54 (0.063) –0.53 (–0.62, –0.46) 

8 –0.63 (0.044) –0.62 (–0.68, –0.57) 23 –0.55 (0.028) –0.55 (–0.59, –0.52) 

9 –0.60 (0.099) –0.60 (–0.72, –0.48) 24 –0.57 (0.032) –0.58 (–0.61, –0.53) 

10 –0.56 (0.031) –0.54 (–0.60, –0.52) 25 –0.57 (0.072) –0.56 (–0.66, –0.48) 

11 –0.55 (0.047) –0.56 (–0.61, –0.49) 26 –0.57 (0.037) –0.59 (–0.61, –0.52) 

12 –0.59 (0.059) –0.60 (–0.67, –0.52) 27 –0.57 (0.079) –0.59 (–0.66, –0.47) 

13 –0.56 (0.047) –0.56 (–0.62, –0.50) 28 –0.55 (0.066) –0.56 (–0.64, –0.47) 

14 –0.54 (0.039) –0.57 (–0.59, –0.50) 29 –0.59 (0.032) –0.59 (–0.63, –0.55) 

15 –0.51 (0.071) –0.48 (–0.60, –0.42) 30 –0.38 (0.358) –0.53 (–0.82, 0.07) 
 
 
 

Table G-2. AE Predisposition Parameter for n = 250 Patients 

Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

1 –0.05 (0.240) –0.08 (–0.12, 0.02) 126 –0.06 (0.235) –0.10 (–0.12, 0.01) 

2 –0.04 (0.297) –0.08 (–0.12, 0.04) 127 –0.14 (0.111) –0.16 (–0.17, –0.11) 

3 –0.11 (0.114) –0.11 (–0.15, –0.08) 128 –0.09 (0.204) –0.10 (–0.15, –0.03) 

4 –0.11 (0.131) –0.08 (–0.15, –0.08) 129 –0.08 (0.319) –0.12 (–0.17, 0.01) 

5 –0.09 (0.130) –0.08 (–0.12, –0.05) 130 –0.14 (0.148) –0.13 (–0.18, –0.10) 

6 –0.06 (0.218) –0.06 (–0.12, 0.00) 131 –0.11 (0.140) –0.13 (–0.15, –0.07) 

7 –0.12 (0.133) –0.13 (–0.16, –0.08) 132 –0.10 (0.307) –0.15 (–0.19, –0.01) 

8 –0.06 (0.226) –0.07 (–0.13, 0.00) 133 –0.08 (0.213) –0.11 (–0.14, –0.02) 

9 –0.09 (0.212) –0.09 (–0.15, –0.03) 134 –0.01 (0.352) –0.10 (–0.11, 0.09) 

10 –0.14 (0.179) –0.10 (–0.19, –0.09) 135 –0.10 (0.131) –0.10 (–0.14, –0.06) 

11 –0.08 (0.247) –0.09 (–0.15, –0.01) 136 –0.10 (0.129) –0.10 (–0.13, –0.06) 

12 –0.11 (0.113) –0.12 (–0.14, –0.08) 137 –0.03 (0.325) –0.07 (–0.12, 0.06) 

13 –0.09 (0.261) –0.12 (–0.16, –0.01) 138 –0.08 (0.128) –0.09 (–0.11, –0.04) 

14 –0.03 (0.326) –0.09 (–0.12, 0.07) 139 –0.09 (0.186) –0.12 (–0.14, –0.03) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

15 –0.09 (0.125) –0.11 (–0.13, –0.06) 140 –0.07 (0.219) –0.07 (–0.13, –0.01) 

16 –0.07 (0.241) –0.09 (–0.13, 0.00) 141 –0.10 (0.133) –0.09 (–0.14, –0.06) 

17 –0.08 (0.122) –0.08 (–0.12, –0.05) 142 –0.10 (0.299) –0.14 (–0.19, –0.02) 

18 –0.09 (0.150) –0.09 (–0.13, –0.05) 143 –0.12 (0.123) –0.13 (–0.16, –0.09) 

19 –0.07 (0.223) –0.10 (–0.14, –0.01) 144 –0.07 (0.142) –0.07 (–0.11, –0.03) 

20 –0.07 (0.241) –0.10 (–0.14, –0.00) 145 –0.09 (0.220) –0.11 (–0.15, –0.02) 

21 –0.11 (0.121) –0.11 (–0.15, –0.08) 146 –0.07 (0.268) –0.11 (–0.15, 0.01) 

22 –0.12 (0.118) –0.12 (–0.16, –0.09) 147 –0.12 (0.122) –0.12 (–0.16, –0.09) 

23 –0.10 (0.261) –0.13 (–0.17, –0.03) 148 –0.09 (0.231) –0.13 (–0.15, –0.02) 

24 –0.08 (0.245) –0.10 (–0.15, –0.01) 149 –0.10 (0.115) –0.10 (–0.14, –0.07) 

25 –0.05 (0.280) –0.09 (–0.13, 0.02) 150 –0.13 (0.123) –0.13 (–0.16, –0.09) 

26 –0.09 (0.134) –0.09 (–0.13, –0.05) 151 –0.05 (0.287) –0.09 (–0.13, 0.03) 

27 –0.10 (0.143) –0.09 (–0.14, –0.05) 152 –0.05 (0.222) –0.07 (–0.11, 0.01) 

28 –0.12 (0.124) –0.13 (–0.15, –0.08) 153 –0.11 (0.123) –0.11 (–0.15, –0.08) 

29 –0.05 (0.311) –0.09 (–0.14, 0.04) 154 –0.03 (0.320) –0.11 (–0.12, 0.06) 

30 –0.10 (0.233) –0.14 (–0.17, –0.04) 155 –0.12 (0.127) –0.12 (–0.16, –0.09) 

31 –0.11 (0.212) –0.14 (–0.17, –0.05) 156 –0.07 (0.130) –0.07 (–0.11, –0.04) 

32 –0.09 (0.108) –0.11 (–0.12, –0.06) 157 –0.08 (0.130) –0.06 (–0.12, –0.04) 

33 –0.11 (0.153) –0.10 (–0.15, –0.06) 158 –0.03 (0.289) –0.08 (–0.12, 0.05) 

34 –0.10 (0.134) –0.12 (–0.14, –0.07) 159 –0.10 (0.233) –0.13 (–0.17, –0.04) 

35 –0.10 (0.131) –0.08 (–0.14, –0.06) 160 –0.10 (0.137) –0.10 (–0.14, –0.06) 

36 –0.05 (0.348) –0.12 (–0.15, 0.05) 161 –0.10 (0.126) –0.12 (–0.13, –0.06) 

37 –0.10 (0.147) –0.13 (–0.14, –0.06) 162 –0.11 (0.119) –0.10 (–0.14, –0.07) 

38 –0.09 (0.123) –0.12 (–0.13, –0.06) 163 –0.04 (0.248) –0.07 (–0.11, 0.03) 

39 –0.05 (0.296) –0.11 (–0.13, 0.04) 164 –0.15 (0.145) –0.14 (–0.19, –0.11) 

40 –0.14 (0.146) –0.13 (–0.18, –0.09) 165 –0.09 (0.125) –0.08 (–0.12, –0.05) 

41 –0.10 (0.228) –0.13 (–0.17, –0.04) 166 –0.11 (0.140) –0.11 (–0.15, –0.07) 

42 –0.10 (0.145) –0.11 (–0.15, –0.06) 167 –0.13 (0.120) –0.14 (–0.17, –0.10) 

43 –0.08 (0.132) –0.08 (–0.12, –0.05) 168 –0.09 (0.222) –0.12 (–0.16, –0.03) 

44 –0.08 (0.231) –0.10 (–0.14, –0.01) 169 –0.11 (0.124) –0.09 (–0.15, –0.08) 

45 –0.10 (0.149) –0.11 (–0.14, –0.06) 170 –0.10 (0.130) –0.11 (–0.14, –0.07) 

46 –0.09 (0.231) –0.10 (–0.16, –0.02) 171 –0.06 (0.147) –0.09 (–0.10, –0.02) 

47 –0.11 (0.134) –0.12 (–0.14, –0.07) 172 –0.09 (0.120) –0.11 (–0.12, –0.05) 

48 –0.06 (0.248) –0.07 (–0.13, 0.02) 173 –0.08 (0.307) –0.12 (–0.16, 0.01) 

49 –0.12 (0.117) –0.09 (–0.15, –0.09) 174 –0.08 (0.231) –0.10 (–0.15, –0.02) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

50 –0.11 (0.160) –0.09 (–0.16, –0.07) 175 –0.08 (0.220) –0.12 (–0.15, –0.02) 

51 –0.04 (0.308) –0.10 (–0.13, 0.05) 176 –0.12 (0.236) –0.14 (–0.19, –0.05) 

52 –0.07 (0.125) –0.05 (–0.11, –0.04) 177 –0.08 (0.217) –0.10 (–0.14, –0.02) 

53 –0.12 (0.151) –0.11 (–0.16, –0.08) 178 –0.08 (0.244) –0.10 (–0.15, –0.01) 

54 –0.11 (0.215) –0.14 (–0.18, –0.05) 179 –0.13 (0.126) –0.11 (–0.17, –0.10) 

55 –0.06 (0.255) –0.11 (–0.13, 0.01) 180 –0.08 (0.239) –0.08 (–0.15, –0.01) 

56 –0.10 (0.231) –0.13 (–0.17, –0.04) 181 –0.08 (0.241) –0.10 (–0.14, –0.01) 

57 –0.07 (0.203) –0.09 (–0.13, –0.01) 182 –0.06 (0.234) –0.10 (–0.13, 0.00) 

58 –0.11 (0.144) –0.12 (–0.15, –0.07) 183 –0.03 (0.281) –0.07 (–0.11, 0.05) 

59 –0.11 (0.158) –0.10 (–0.16, –0.07) 184 –0.12 (0.104) –0.11 (–0.15, –0.09) 

60 –0.11 (0.248) –0.12 (–0.18, –0.04) 185 –0.09 (0.149) –0.09 (–0.14, –0.05) 

61 –0.05 (0.233) –0.05 (–0.12, 0.01) 186 –0.11 (0.132) –0.14 (–0.15, –0.08) 

62 –0.11 (0.118) –0.10 (–0.15, –0.08) 187 –0.11 (0.133) –0.13 (–0.15, –0.08) 

63 –0.06 (0.279) –0.11 (–0.14, 0.02) 188 –0.12 (0.124) –0.13 (–0.15, –0.08) 

64 –0.06 (0.234) –0.08 (–0.13, 0.00) 189 –0.12 (0.155) –0.12 (–0.16, –0.07) 

65 –0.10 (0.125) –0.10 (–0.14, –0.07) 190 –0.08 (0.245) –0.11 (–0.15, –0.01) 

66 –0.10 (0.228) –0.13 (–0.17, –0.04) 191 –0.12 (0.125) –0.13 (–0.15, –0.08) 

67 –0.10 (0.143) –0.10 (–0.14, –0.06) 192 –0.10 (0.144) –0.12 (–0.14, –0.06) 

68 –0.04 (0.220) –0.08 (–0.10, 0.02) 193 –0.07 (0.210) –0.10 (–0.13, –0.01) 

69 –0.14 (0.124) –0.13 (–0.18, –0.11) 194 –0.09 (0.132) –0.07 (–0.13, –0.05) 

70 –0.13 (0.139) –0.16 (–0.17, –0.09) 195 –0.08 (0.223) –0.08 (–0.14, –0.01) 

71 –0.10 (0.133) –0.09 (–0.13, –0.06) 196 –0.10 (0.123) –0.12 (–0.13, –0.06) 

72 –0.05 (0.283) –0.08 (–0.13, 0.03) 197 –0.11 (0.144) –0.12 (–0.15, –0.07) 

73 –0.07 (0.237) –0.09 (–0.14, –0.00) 198 –0.10 (0.119) –0.10 (–0.13, –0.06) 

74 –0.10 (0.124) –0.10 (–0.13, –0.06) 199 –0.09 (0.201) –0.10 (–0.14, –0.03) 

75 –0.04 (0.362) –0.11 (–0.14, 0.07) 200 –0.09 (0.203) –0.10 (–0.14, –0.03) 

76 –0.09 (0.128) –0.11 (–0.12, –0.05) 201 –0.12 (0.113) –0.14 (–0.15, –0.08) 

77 –0.02 (0.418) –0.13 (–0.13, 0.10) 202 –0.04 (0.248) –0.09 (–0.11, 0.03) 

78 –0.01 (0.378) –0.09 (–0.12, 0.10) 203 –0.10 (0.125) –0.08 (–0.13, –0.06) 

79 –0.10 (0.135) –0.12 (–0.14, –0.06) 204 –0.10 (0.220) –0.10 (–0.16, –0.03) 

80 –0.11 (0.133) –0.13 (–0.15, –0.07) 205 –0.11 (0.126) –0.11 (–0.14, –0.07) 

81 –0.12 (0.136) –0.10 (–0.16, –0.08) 206 –0.10 (0.138) –0.07 (–0.14, –0.06) 

82 –0.08 (0.223) –0.09 (–0.15, –0.02) 207 –0.10 (0.121) –0.08 (–0.13, –0.06) 

83 –0.09 (0.128) –0.10 (–0.13, –0.06) 208 –0.10 (0.231) –0.12 (–0.17, –0.04) 

84 –0.04 (0.283) –0.09 (–0.12, 0.04) 209 –0.10 (0.128) –0.07 (–0.13, –0.06) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

85 –0.09 (0.252) –0.12 (–0.16, –0.02) 210 –0.16 (0.153) –0.15 (–0.20, –0.11) 

86 –0.05 (0.291) –0.08 (–0.14, 0.03) 211 –0.00 (0.320) –0.05 (–0.09, 0.09) 

87 –0.12 (0.144) –0.08 (–0.16, –0.08) 212 –0.11 (0.150) –0.11 (–0.15, –0.07) 

88 –0.10 (0.236) –0.14 (–0.17, –0.03) 213 –0.09 (0.241) –0.12 (–0.15, –0.02) 

89 –0.06 (0.211) –0.06 (–0.12, –0.00) 214 –0.11 (0.210) –0.15 (–0.17, –0.05) 

90 –0.10 (0.199) –0.12 (–0.15, –0.04) 215 –0.12 (0.139) –0.13 (–0.16, –0.08) 

91 –0.11 (0.123) –0.13 (–0.15, –0.08) 216 –0.08 (0.140) –0.09 (–0.12, –0.04) 

92 –0.01 (0.295) –0.05 (–0.10, 0.07) 217 –0.11 (0.142) –0.11 (–0.15, –0.07) 

93 –0.08 (0.133) –0.08 (–0.12, –0.04) 218 –0.07 (0.259) –0.08 (–0.14, 0.00) 

94 –0.08 (0.258) –0.09 (–0.16, –0.01) 219 –0.09 (0.226) –0.10 (–0.16, –0.03) 

95 –0.07 (0.129) –0.05 (–0.11, –0.04) 220 –0.06 (0.282) –0.12 (–0.14, 0.02) 

96 –0.09 (0.234) –0.12 (–0.15, –0.02) 221 –0.09 (0.137) –0.11 (–0.13, –0.05) 

97 –0.16 (0.133) –0.17 (–0.20, –0.12) 222 –0.12 (0.118) –0.11 (–0.15, –0.08) 

98 –0.15 (0.136) –0.16 (–0.19, –0.11) 223 –0.06 (0.219) –0.07 (–0.12, –0.00) 

99 –0.08 (0.120) –0.08 (–0.11, –0.04) 224 –0.11 (0.117) –0.10 (–0.15, –0.08) 

100 –0.10 (0.121) –0.08 (–0.13, –0.06) 225 –0.08 (0.236) –0.11 (–0.15, –0.02) 

101 –0.08 (0.229) –0.11 (–0.15, –0.02) 226 –0.07 (0.209) –0.10 (–0.13, –0.01) 

102 –0.09 (0.131) –0.11 (–0.13, –0.05) 227 –0.11 (0.128) –0.09 (–0.15, –0.07) 

103 –0.06 (0.128) –0.05 (–0.10, –0.02) 228 –0.11 (0.238) –0.13 (–0.18, –0.05) 

104 –0.04 (0.319) –0.08 (–0.13, 0.05) 229 –0.04 (0.244) –0.07 (–0.11, 0.03) 

105 –0.13 (0.147) –0.12 (–0.18, –0.09) 230 –0.07 (0.242) –0.11 (–0.14, –0.00) 

106 –0.12 (0.130) –0.11 (–0.16, –0.09) 231 –0.05 (0.304) –0.09 (–0.14, 0.03) 

107 –0.05 (0.299) –0.12 (–0.13, 0.04) 232 –0.10 (0.256) –0.12 (–0.17, –0.03) 

108 –0.10 (0.250) –0.14 (–0.17, –0.03) 233 –0.11 (0.124) –0.11 (–0.15, –0.08) 

109 –0.15 (0.124) –0.17 (–0.18, –0.11) 234 –0.09 (0.131) –0.07 (–0.13, –0.06) 

110 –0.07 (0.137) –0.09 (–0.11, –0.03) 235 –0.09 (0.216) –0.11 (–0.16, –0.03) 

111 –0.12 (0.127) –0.15 (–0.16, –0.09) 236 –0.13 (0.140) –0.13 (–0.17, –0.09) 

112 –0.08 (0.253) –0.13 (–0.15, –0.01) 237 –0.11 (0.124) –0.13 (–0.15, –0.08) 

113 –0.10 (0.107) –0.09 (–0.14, –0.07) 238 –0.10 (0.119) –0.11 (–0.13, –0.06) 

114 –0.11 (0.105) –0.10 (–0.14, –0.08) 239 –0.13 (0.147) –0.12 (–0.17, –0.09) 

115 –0.09 (0.121) –0.09 (–0.12, –0.05) 240 –0.08 (0.237) –0.11 (–0.15, –0.01) 

116 –0.09 (0.124) –0.08 (–0.12, –0.05) 241 –0.09 (0.208) –0.09 (–0.15, –0.03) 

117 –0.13 (0.123) –0.15 (–0.17, –0.10) 242 –0.09 (0.144) –0.09 (–0.13, –0.05) 

118 –0.07 (0.227) –0.10 (–0.13, –0.00) 243 –0.11 (0.146) –0.11 (–0.15, –0.07) 

119 –0.11 (0.138) –0.11 (–0.15, –0.07) 244 –0.06 (0.215) –0.08 (–0.12, 0.00) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

120 –0.07 (0.144) –0.07 (–0.11, –0.03) 245 –0.06 (0.294) –0.11 (–0.14, 0.03) 

121 –0.08 (0.216) –0.09 (–0.14, –0.01) 246 –0.10 (0.232) –0.13 (–0.16, –0.03) 

122 –0.16 (0.102) –0.18 (–0.18, –0.13) 247 –0.05 (0.292) –0.09 (–0.13, 0.04) 

123 –0.10 (0.139) –0.10 (–0.14, –0.06) 248 –0.14 (0.135) –0.16 (–0.18, –0.10) 

124 –0.08 (0.145) –0.06 (–0.12, –0.03) 249 0.00 (0.349) –0.04 (–0.09, 0.10) 

125 –0.11 (0.135) –0.12 (–0.15, –0.07) 250 –0.09 (0.219) –0.13 (–0.15, –0.03) 
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Appendix H 

2-PL MEX IRT Model: Goodness-of-Fit 
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Table H-1. 2-PL MEX IRT Model – Bock’s Index for AE Type 2 

n bock std LCL pval_low UCL pval_high 

 30 712.68 48.7713 707.04 0 718.32 0 

 250 250.043 13.4557 248.487 0 251.599 0 
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Figure H-1. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 2 

(n = 30) 
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Figure H-2. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 2 

(n = 250) 
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Table H-2.  2-PL MEX IRT Model – Bock’s Index for AE Type 3 

n bock std LCL pval_low UCL pval_high 

 30 647.43 44.3890 642.30 0 652.56 0 

 250 276.252 14.1271 274.618 0 277.885 0 
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Figure H-3. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 3 
(n = 30) 
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Figure H-4. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 3 

(n = 250) 
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Table H-3.  2-PL MEX IRT Model – Bock’s Index for AE Type 4 

n bock std LCL pval_low UCL pval_high 

 30 710.43 53.5561 704.24 0 716.62 0 

 250 190.655 12.2736 189.235 0 192.074 0 
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Figure H-5. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 4 

(n = 30) 
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Figure H-6. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 4 

(n = 250) 
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Table H-4.  2-PL MEX IRT Model – Bock’s Index for AE Type 5 

n bock std LCL pval_low UCL pval_high 

 30 843.64 61.9682 836.47 0 850.81 0 

 250 321.880 15.3734 320.102 0 323.658 0 
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Figure H-7. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 5 

(n = 30) 
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Figure H-8. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 5 

(n = 250) 
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Table H-5. 2-PL MEX IRT Model – Bock’s Index for AE Type 6 
 

n bock std LCL pval_low UCL pval_high 

 30 867.10 64.2757 859.67 0 874.54 0 

 250 247.677 13.8742 246.073 0 249.282 0 
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Figure H-9. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 6 

(n = 30) 
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Figure H-10. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 6 

(n = 250) 
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Table H-6. 2-PL MEX IRT Model – Bock’s Index for AE Type 7 
 

n bock std LCL pval_low UCL pval_high 

 30 1095.01 78.0469 1085.98 0 1104.03 0 

 250 282.358 14.4640 280.686 0 284.031 0 
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Figure H-11. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 7 

(n = 30) 
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Figure H-12. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 7 

(n = 250) 
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Table H-7. 2-PL MEX IRT Model – Bock’s Index for AE Type 8 
 

n bock std LCL pval_low UCL pval_high 

 30 848.69 62.8318 841.43 0 855.96 0 

 250 235.861 12.9578 234.363 0 237.360 0 
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Figure H-13. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 8 

(n = 30) 
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Figure H-14. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 8 

(n = 250) 
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Table H-8. 2-PL MEX IRT Model – Bock’s Index for AE Type 9 
 

n bock std LCL pval_low UCL pval_high 

 30 823.69 64.3222 816.25 0 831.13 0 

 250 258.818 14.6508 257.124 0 260.512 0 
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Figure H-15. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 9 

(n = 30) 
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Figure H-16. 2-PL MEX IRT Model – Bayesian PPI and Residual Plot for AE Type 9 

(n = 250)
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Appendix I 

2-PL MEX IRT Model: AE Predisposition Parameter Estimates 
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Table I-1. AE Predisposition Parameter for n = 30 Patients 

Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

1 –0.57 (0.324) –0.71 (–0.98, –0.17) 16 –0.59 (0.371) –0.62 (–1.05, –0.12) 

2 –0.73 (0.442) –0.79 (–1.28, –0.18) 17 –0.61 (0.354) –0.78 (–1.05, –0.17) 

3 –0.53 (0.334) –0.55 (–0.94, –0.11) 18 –0.56 (0.331) –0.64 (–0.97, –0.15) 

4 –0.71 (0.417) –0.83 (–1.22, –0.19) 19 –0.55 (0.332) –0.62 (–0.97, –0.14) 

5 –0.50 (0.487) –0.68 (–1.10, 0.10) 20 –0.58 (0.350) –0.68 (–1.02, –0.15) 

6 –0.55 (0.354) –0.70 (–0.99, –0.11) 21 –0.68 (0.451) –0.81 (–1.24, –0.12) 

7 –0.68 (0.394) –0.82 (–1.17, –0.19) 22 –0.69 (0.419) –0.91 (–1.21, –0.17) 

8 –0.69 (0.432) –0.79 (–1.23, –0.16) 23 –0.78 (0.448) –0.88 (–1.34, –0.22) 

9 –0.70 (0.429) –0.93 (–1.23, –0.17) 24 –0.59 (0.361) –0.67 (–1.04, –0.14) 

10 –0.79 (0.446) –0.96 (–1.35, –0.24) 25 –0.66 (0.437) –0.73 (–1.21, –0.12) 

11 –0.57 (0.368) –0.70 (–1.03, –0.12) 26 –0.64 (0.403) –0.75 (–1.14, –0.14) 

12 –0.75 (0.442) –0.89 (–1.30, –0.20) 27 –0.67 (0.409) –0.74 (–1.18, –0.16) 

13 –0.68 (0.414) –0.75 (–1.20, –0.17) 28 –0.72 (0.409) –0.87 (–1.23, –0.21) 

14 –0.50 (0.477) –0.64 (–1.09, 0.09) 29 –0.73 (0.439) –0.83 (–1.28, –0.19) 

15 –0.54 (0.319) –0.68 (–0.94, –0.14) 30 –0.65 (0.375) –0.80 (–1.12, –0.19) 
 

 

Table I-2. AE Predisposition Parameter for n = 250 Patients 

Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

1 –0.32 (0.449) –0.33 (–0.87, 0.24) 126 –0.19 (0.452) –0.09 (–0.75, 0.37) 

2 0.07 (0.531) –0.00 (–0.59, 0.73) 127 0.12 (0.312) 0.22 (–0.27, 0.51) 

3 –0.21 (0.647) –0.05 (–1.01, 0.60) 128 –0.11 (0.265) –0.08 (–0.44, 0.22) 

4 0.08 (0.418) –0.16 (–0.44, 0.60) 129 –0.06 (0.547) –0.11 (–0.74, 0.62) 

5 –0.16 (0.224) –0.27 (–0.43, 0.12) 130 –0.09 (0.491) –0.05 (–0.70, 0.52) 

6 –0.35 (0.110) –0.37 (–0.49, –0.22) 131 0.26 (0.429) 0.04 (–0.27, 0.80) 

7 0.25 (0.532) 0.30 (–0.42, 0.91) 132 0.17 (0.442) 0.27 (–0.38, 0.72) 

8 –0.12 (0.229) –0.05 (–0.40, 0.17) 133 –0.16 (0.323) –0.13 (–0.56, 0.24) 

9 –0.24 (0.445) –0.35 (–0.79, 0.31) 134 0.29 (0.310) 0.34 (–0.10, 0.67) 

10 –0.01 (0.381) 0.06 (–0.48, 0.46) 135 –0.15 (0.302) –0.16 (–0.52, 0.23) 

11 –0.04 (0.275) 0.00 (–0.38, 0.30) 136 0.16 (0.432) 0.12 (–0.38, 0.69) 

12 0.01 (0.258) 0.10 (–0.31, 0.33) 137 0.09 (0.049) 0.07 (0.03, 0.15) 

13 –0.11 (0.121) –0.13 (–0.26, 0.04) 138 0.14 (0.422) –0.03 (–0.38, 0.67) 

14 –0.14 (0.344) –0.23 (–0.57, 0.28) 139 0.09 (0.353) 0.07 (–0.35, 0.52) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

15 0.04 (0.306) 0.01 (–0.34, 0.42) 140 –0.07 (0.531) –0.19 (–0.73, 0.59) 

16 0.15 (0.243) 0.07 (–0.15, 0.45) 141 0.24 (0.545) 0.08 (–0.43, 0.92) 

17 0.10 (0.192) 0.10 (–0.14, 0.34) 142 –0.22 (0.372) 0.01 (–0.68, 0.24) 

18 –0.12 (0.420) 0.08 (–0.64, 0.41) 143 0.23 (0.366) 0.36 (–0.23, 0.68) 

19 0.05 (0.361) –0.09 (–0.40, 0.49) 144 –0.01 (0.209) –0.03 (–0.27, 0.25) 

20 –0.01 (0.235) 0.02 (–0.30, 0.28) 145 –0.01 (0.316) –0.18 (–0.40, 0.39) 

21 –0.01 (0.206) –0.00 (–0.27, 0.25) 146 –0.37 (0.424) –0.48 (–0.90, 0.15) 

22 –0.02 (0.410) 0.07 (–0.53, 0.49) 147 0.09 (0.460) 0.21 (–0.49, 0.66) 

23 –0.24 (0.520) –0.20 (–0.89, 0.41) 148 0.14 (0.247) 0.04 (–0.16, 0.45) 

24 –0.07 (0.274) 0.02 (–0.41, 0.27) 149 0.09 (0.122) 0.08 (–0.06, 0.25) 

25 0.14 (0.439) 0.31 (–0.41, 0.68) 150 –0.09 (0.386) –0.23 (–0.56, 0.39) 

26 –0.18 (0.355) –0.05 (–0.62, 0.26) 151 0.18 (0.197) 0.20 (–0.07, 0.42) 

27 0.06 (0.215) 0.09 (–0.21, 0.32) 152 0.08 (0.176) 0.07 (–0.14, 0.29) 

28 0.02 (0.297) 0.06 (–0.35, 0.38) 153 0.03 (0.297) –0.04 (–0.34, 0.40) 

29 –0.17 (0.474) –0.32 (–0.76, 0.42) 154 –0.09 (0.197) –0.19 (–0.33, 0.16) 

30 –0.04 (0.438) –0.11 (–0.58, 0.51) 155 –0.20 (0.125) –0.18 (–0.35, –0.04) 

31 –0.04 (0.450) –0.33 (–0.60, 0.52) 156 –0.24 (0.404) –0.27 (–0.74, 0.26) 

32 0.19 (0.181) 0.22 (–0.03, 0.42) 157 0.02 (0.570) –0.01 (–0.69, 0.73) 

33 0.00 (0.273) 0.01 (–0.34, 0.34) 158 –0.05 (0.427) 0.01 (–0.58, 0.48) 

34 –0.21 (0.387) –0.28 (–0.69, 0.27) 159 0.04 (0.522) –0.07 (–0.61, 0.69) 

35 –0.07 (0.574) 0.13 (–0.78, 0.64) 160 0.09 (0.436) –0.02 (–0.45, 0.63) 

36 –0.12 (0.231) –0.17 (–0.41, 0.16) 161 –0.08 (0.284) –0.18 (–0.43, 0.27) 

37 –0.09 (0.182) –0.05 (–0.32, 0.14) 162 0.09 (0.169) 0.09 (–0.12, 0.30) 

38 –0.27 (0.244) –0.21 (–0.57, 0.04) 163 –0.04 (0.526) 0.09 (–0.69, 0.61) 

39 –0.24 (0.303) –0.31 (–0.62, 0.13) 164 0.11 (0.545) 0.11 (–0.57, 0.78) 

40 –0.05 (0.339) –0.05 (–0.47, 0.37) 165 0.08 (0.367) 0.13 (–0.37, 0.54) 

41 0.03 (0.519) –0.16 (–0.62, 0.67) 166 –0.02 (0.431) 0.07 (–0.55, 0.52) 

42 0.01 (0.278) –0.07 (–0.34, 0.35) 167 –0.15 (0.441) –0.11 (–0.70, 0.39) 

43 0.11 (0.231) 0.16 (–0.17, 0.40) 168 0.17 (0.327) 0.08 (–0.24, 0.57) 

44 0.03 (0.474) 0.01 (–0.55, 0.62) 169 0.08 (0.452) 0.09 (–0.48, 0.65) 

45 –0.14 (0.218) –0.02 (–0.41, 0.13) 170 –0.04 (0.386) –0.13 (–0.52, 0.44) 

46 –0.11 (0.221) –0.01 (–0.38, 0.16) 171 –0.08 (0.276) 0.01 (–0.43, 0.26) 

47 0.03 (0.627) –0.03 (–0.75, 0.81) 172 0.35 (0.256) 0.35 (0.04, 0.67) 

48 –0.11 (0.316) 0.02 (–0.50, 0.28) 173 0.02 (0.370) 0.01 (–0.44, 0.48) 

49 –0.06 (0.533) –0.01 (–0.72, 0.60) 174 0.03 (0.375) 0.11 (–0.43, 0.50) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

50 0.02 (0.402) –0.10 (–0.48, 0.52) 175 0.14 (0.338) 0.26 (–0.28, 0.56) 

51 0.31 (0.606) 0.53 (–0.44, 1.06) 176 0.15 (0.310) 0.17 (–0.23, 0.54) 

52 –0.06 (0.282) 0.00 (–0.41, 0.29) 177 –0.19 (0.347) –0.21 (–0.62, 0.24) 

53 0.18 (0.259) 0.20 (–0.14, 0.50) 178 0.01 (0.299) –0.14 (–0.36, 0.38) 

54 0.06 (0.198) –0.01 (–0.19, 0.30) 179 –0.06 (0.373) 0.04 (–0.52, 0.40) 

55 –0.06 (0.170) –0.02 (–0.27, 0.15) 180 0.15 (0.384) 0.13 (–0.33, 0.62) 

56 –0.02 (0.419) 0.23 (–0.54, 0.50) 181 –0.23 (0.268) –0.30 (–0.56, 0.10) 

57 0.10 (0.434) 0.17 (–0.44, 0.64) 182 –0.32 (0.248) –0.37 (–0.63, –0.01) 

58 –0.00 (0.685) 0.11 (–0.85, 0.85) 183 0.01 (0.412) –0.13 (–0.50, 0.52) 

59 –0.10 (0.378) –0.14 (–0.57, 0.37) 184 0.23 (0.074) 0.19 (0.14, 0.32) 

60 –0.01 (0.345) –0.12 (–0.44, 0.42) 185 0.11 (0.172) 0.17 (–0.10, 0.32) 

61 –0.36 (0.599) –0.43 (–1.11, 0.38) 186 –0.21 (0.467) –0.32 (–0.79, 0.36) 

62 –0.07 (0.329) –0.23 (–0.48, 0.33) 187 –0.01 (0.272) 0.07 (–0.35, 0.33) 

63 0.15 (0.458) 0.22 (–0.42, 0.72) 188 0.03 (0.376) –0.02 (–0.43, 0.50) 

64 0.20 (0.292) 0.15 (–0.17, 0.56) 189 –0.14 (0.406) 0.09 (–0.65, 0.36) 

65 –0.09 (0.325) –0.06 (–0.49, 0.32) 190 –0.26 (0.270) –0.27 (–0.59, 0.08) 

66 –0.15 (0.298) –0.17 (–0.52, 0.22) 191 0.09 (0.273) 0.10 (–0.25, 0.42) 

67 –0.11 (0.329) –0.08 (–0.52, 0.30) 192 –0.31 (0.398) –0.27 (–0.80, 0.19) 

68 0.25 (0.234) 0.30 (–0.04, 0.54) 193 –0.22 (0.405) –0.06 (–0.73, 0.28) 

69 0.19 (0.358) 0.31 (–0.25, 0.64) 194 –0.14 (0.524) –0.03 (–0.79, 0.52) 

70 –0.18 (0.251) –0.12 (–0.49, 0.13) 195 –0.14 (0.363) –0.16 (–0.59, 0.31) 

71 –0.03 (0.272) 0.16 (–0.36, 0.31) 196 0.02 (0.305) 0.00 (–0.36, 0.40) 

72 –0.09 (0.361) –0.01 (–0.54, 0.36) 197 –0.03 (0.223) –0.15 (–0.31, 0.25) 

73 –0.19 (0.186) –0.18 (–0.43, 0.04) 198 0.40 (0.395) 0.44 (–0.09, 0.89) 

74 –0.04 (0.315) 0.12 (–0.43, 0.35) 199 0.01 (0.206) –0.06 (–0.25, 0.26) 

75 0.20 (0.253) 0.31 (–0.12, 0.51) 200 0.07 (0.322) 0.13 (–0.33, 0.47) 

76 0.06 (0.508) –0.14 (–0.57, 0.69) 201 –0.05 (0.173) 0.00 (–0.27, 0.16) 

77 –0.18 (0.467) –0.09 (–0.76, 0.40) 202 –0.38 (0.385) –0.47 (–0.86, 0.09) 

78 –0.10 (0.469) –0.05 (–0.68, 0.48) 203 0.08 (0.549) –0.04 (–0.60, 0.76) 

79 –0.03 (0.212) –0.05 (–0.29, 0.24) 204 –0.12 (0.301) –0.01 (–0.49, 0.26) 

80 –0.17 (0.330) –0.15 (–0.58, 0.24) 205 –0.07 (0.255) –0.14 (–0.39, 0.24) 

81 0.13 (0.357) 0.09 (–0.31, 0.57) 206 –0.16 (0.183) –0.17 (–0.38, 0.07) 

82 0.23 (0.403) 0.39 (–0.27, 0.73) 207 –0.21 (0.393) –0.19 (–0.69, 0.28) 

83 0.01 (0.297) –0.04 (–0.35, 0.38) 208 –0.06 (0.322) 0.13 (–0.46, 0.34) 

84 –0.14 (0.545) –0.32 (–0.82, 0.54) 209 –0.10 (0.469) 0.03 (–0.68, 0.49) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

85 0.03 (0.367) 0.15 (–0.43, 0.48) 210 –0.26 (0.266) –0.28 (–0.59, 0.07) 

86 –0.32 (0.516) –0.10 (–0.96, 0.32) 211 0.07 (0.338) 0.08 (–0.35, 0.49) 

87 –0.12 (0.294) –0.23 (–0.48, 0.25) 212 –0.24 (0.414) –0.16 (–0.75, 0.28) 

88 –0.20 (0.237) –0.22 (–0.49, 0.10) 213 0.01 (0.331) –0.01 (–0.40, 0.42) 

89 –0.04 (0.218) –0.00 (–0.31, 0.23) 214 –0.00 (0.393) –0.12 (–0.49, 0.49) 

90 0.26 (0.324) 0.46 (–0.14, 0.66) 215 –0.01 (0.433) –0.15 (–0.55, 0.53) 

91 0.07 (0.242) 0.09 (–0.23, 0.37) 216 –0.00 (0.190) –0.05 (–0.24, 0.23) 

92 0.04 (0.432) 0.20 (–0.50, 0.57) 217 –0.02 (0.196) –0.07 (–0.26, 0.22) 

93 –0.03 (0.492) –0.02 (–0.64, 0.59) 218 –0.27 (0.300) –0.15 (–0.65, 0.10) 

94 0.13 (0.177) 0.17 (–0.09, 0.35) 219 –0.16 (0.360) –0.27 (–0.60, 0.29) 

95 –0.16 (0.445) 0.00 (–0.71, 0.39) 220 0.09 (0.122) 0.05 (–0.06, 0.24) 

96 0.38 (0.537) 0.17 (–0.28, 1.05) 221 –0.07 (0.428) 0.00 (–0.60, 0.46) 

97 0.02 (0.392) –0.07 (–0.47, 0.50) 222 –0.16 (0.416) –0.16 (–0.68, 0.35) 

98 0.24 (0.510) 0.56 (–0.40, 0.87) 223 –0.19 (0.382) –0.12 (–0.67, 0.28) 

99 0.24 (0.244) 0.22 (–0.06, 0.54) 224 0.04 (0.379) –0.04 (–0.43, 0.51) 

100 –0.01 (0.524) 0.20 (–0.66, 0.64) 225 0.01 (0.298) 0.06 (–0.36, 0.38) 

101 –0.14 (0.315) –0.15 (–0.53, 0.25) 226 –0.13 (0.456) –0.20 (–0.69, 0.44) 

102 0.03 (0.507) 0.24 (–0.60, 0.66) 227 0.18 (0.337) 0.32 (–0.24, 0.60) 

103 –0.10 (0.511) 0.22 (–0.74, 0.53) 228 0.14 (0.354) 0.23 (–0.30, 0.58) 

104 0.05 (0.342) 0.13 (–0.37, 0.47) 229 0.07 (0.315) –0.10 (–0.32, 0.46) 

105 –0.45 (0.291) –0.53 (–0.81, –0.09) 230 0.11 (0.290) 0.14 (–0.25, 0.47) 

106 –0.17 (0.283) –0.26 (–0.52, 0.19) 231 –0.00 (0.504) 0.16 (–0.63, 0.62) 

107 –0.17 (0.266) –0.27 (–0.50, 0.16) 232 –0.03 (0.689) 0.24 (–0.88, 0.83) 

108 –0.01 (0.317) –0.14 (–0.41, 0.38) 233 0.02 (0.368) –0.04 (–0.43, 0.48) 

109 0.03 (0.264) –0.08 (–0.30, 0.36) 234 0.01 (0.208) 0.02 (–0.25, 0.27) 

110 0.07 (0.465) –0.08 (–0.51, 0.64) 235 –0.06 (0.309) –0.23 (–0.45, 0.32) 

111 –0.11 (0.270) –0.10 (–0.44, 0.23) 236 –0.02 (0.270) –0.03 (–0.36, 0.31) 

112 0.15 (0.232) 0.26 (–0.13, 0.44) 237 0.08 (0.577) –0.00 (–0.64, 0.80) 

113 –0.07 (0.430) –0.06 (–0.61, 0.46) 238 0.16 (0.207) 0.18 (–0.10, 0.42) 

114 –0.08 (0.412) –0.11 (–0.59, 0.43) 239 –0.02 (0.331) –0.03 (–0.43, 0.39) 

115 –0.12 (0.388) –0.27 (–0.60, 0.36) 240 0.11 (0.312) 0.05 (–0.28, 0.49) 

116 0.02 (0.395) 0.01 (–0.47, 0.51) 241 0.10 (0.218) 0.02 (–0.17, 0.37) 

117 0.08 (0.204) 0.10 (–0.17, 0.34) 242 –0.03 (0.480) –0.28 (–0.63, 0.57) 

118 0.08 (0.417) 0.06 (–0.43, 0.60) 243 0.11 (0.308) –0.06 (–0.27, 0.50) 

119 0.08 (0.281) 0.10 (–0.27, 0.43) 244 –0.23 (0.153) –0.17 (–0.42, –0.04) 
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Patient Mean (SD) Median 
95% CI 
on Mean Patient Mean (SD) Median 

95% CI 
on Mean 

120 –0.09 (0.413) 0.01 (–0.61, 0.42) 245 –0.12 (0.309) –0.21 (–0.50, 0.27) 

121 –0.12 (0.265) –0.15 (–0.45, 0.20) 246 –0.01 (0.228) –0.14 (–0.30, 0.27) 

122 –0.02 (0.329) –0.14 (–0.43, 0.39) 247 –0.03 (0.333) –0.02 (–0.44, 0.38) 

123 –0.18 (0.468) –0.25 (–0.77, 0.40) 248 0.07 (0.223) 0.05 (–0.21, 0.34) 

124 0.19 (0.420) 0.08 (–0.33, 0.71) 249 –0.39 (0.261) –0.44 (–0.71, –0.07) 

125 0.11 (0.294) 0.09 (–0.25, 0.48) 250 0.19 (0.368) 0.13 (–0.27, 0.65) 
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Table J-1. Final AE Predisposition Parameter for n = 30 Patients 

Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

1 –0.55 (0.056) –0.55 (–0.62, –0.48) –0.60 (0.042) –0.58 (–0.65, –0.54) 

2 –0.59 (0.068) –0.55 (–0.67, –0.51) –0.56 (0.066) –0.57 (–0.64, –0.48) 

3 –0.55 (0.070) –0.53 (–0.64, –0.46) –0.59 (0.007) –0.59 (–0.60, –0.59) 

4 –0.56 (0.075) –0.52 (–0.65, –0.46) –0.57 (0.078) –0.56 (–0.67, –0.47) 

5 –0.54 (0.039) –0.54 (–0.59, –0.49) –0.55 (0.025) –0.56 (–0.58, –0.52) 

6 –0.56 (0.031) –0.56 (–0.60, –0.52) –0.55 (0.052) –0.56 (–0.61, –0.48) 

7 –0.55 (0.070) –0.55 (–0.63, –0.46) –0.57 (0.018) –0.56 (–0.59, –0.55) 

8 –0.63 (0.044) –0.62 (–0.68, –0.57) –0.59 (0.060) –0.58 (–0.66, –0.51) 

9 –0.60 (0.099) –0.60 (–0.72, –0.48) –0.59 (0.029) –0.58 (–0.62, –0.55) 

10 –0.56 (0.031) –0.54 (–0.60, –0.52) –0.58 (0.057) –0.58 (–0.66, –0.51) 

11 –0.55 (0.047) –0.56 (–0.61, –0.49) –0.60 (0.084) –0.59 (–0.70, –0.49) 

12 –0.59 (0.059) –0.60 (–0.67, –0.52) –0.60 (0.068) –0.61 (–0.68, –0.51) 

13 –0.56 (0.047) –0.56 (–0.62, –0.50) –0.44 (0.412) –0.59 (–0.95, 0.07) 

14 –0.54 (0.039) –0.57 (–0.59, –0.50) –0.40 (0.384) –0.56 (–0.88, 0.08) 

15 –0.51 (0.071) –0.48 (–0.60, –0.42) –0.60 (0.057) –0.60 (–0.67, –0.53) 

16 –0.59 (0.043) –0.57 (–0.65, –0.54) –0.55 (0.020) –0.54 (–0.57, –0.52) 

17 –0.60 (0.033) –0.62 (–0.64, –0.56) –0.62 (0.050) –0.61 (–0.68, –0.55) 

18 –0.58 (0.060) –0.57 (–0.66, –0.51) –0.60 (0.076) –0.63 (–0.70, –0.51) 

19 –0.57 (0.074) –0.60 (–0.66, –0.48) –0.57 (0.057) –0.58 (–0.64, –0.50) 

20 –0.60 (0.049) –0.60 (–0.67, –0.54) –0.54 (0.076) –0.51 (–0.64, –0.45) 

21 –0.61 (0.077) –0.62 (–0.70, –0.51) –0.60 (0.045) –0.60 (–0.65, –0.54) 

22 –0.54 (0.063) –0.53 (–0.62, –0.46) –0.58 (0.044) –0.60 (–0.63, –0.52) 

23 –0.55 (0.028) –0.55 (–0.59, –0.52) –0.56 (0.061) –0.56 (–0.64, –0.49) 

24 –0.57 (0.032) –0.58 (–0.61, –0.53) –0.58 (0.088) –0.55 (–0.69, –0.47) 

25 –0.57 (0.072) –0.56 (–0.66, –0.48) –0.57 (0.057) –0.60 (–0.64, –0.50) 

26 –0.57 (0.037) –0.59 (–0.61, –0.52) –0.55 (0.029) –0.54 (–0.58, –0.51) 

27 –0.57 (0.079) –0.59 (–0.66, –0.47) –0.54 (0.042) –0.53 (–0.59, –0.49) 

28 –0.55 (0.066) –0.56 (–0.64, –0.47) –0.36 (0.369) –0.52 (–0.82, 0.10) 

29 –0.59 (0.032) –0.59 (–0.63, –0.55) –0.55 (0.034) –0.55 (–0.59, –0.51) 

30 –0.38 (0.358) –0.53 (–0.82, 0.07) –0.58 (0.059) –0.55 (–0.65, –0.51) 
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Table J-2. Final Discrimination Parameter for n = 30 Patients 

Test Control 

AE Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

1 0.99 (0.245) 0.99 (0.97, 1.02) 0.99 (0.249) 0.98 (0.96, 1.01) 

2 0.98 (0.239) 0.97 (0.95, 1.00) 0.99 (0.249) 0.99 (0.96, 1.01) 

3 0.98 (0.243) 0.98 (0.96, 1.01) 0.99 (0.242) 0.99 (0.96, 1.01) 

4 0.97 (0.238) 0.97 (0.95, 0.99) 0.99 (0.242) 0.98 (0.96, 1.01) 

5 0.98 (0.239) 0.98 (0.96, 1.01) 0.98 (0.249) 0.98 (0.96, 1.01) 

6 0.98 (0.247) 0.98 (0.96, 1.01) 0.99 (0.251) 0.99 (0.96, 1.01) 

7 0.99 (0.245) 0.98 (0.96, 1.01) 0.98 (0.247) 0.98 (0.95, 1.00) 

8 0.98 (0.252) 0.98 (0.95, 1.00) 0.97 (0.243) 0.97 (0.95, 1.00) 

9 0.99 (0.250) 0.99 (0.96, 1.02) 0.99 (0.246) 0.99 (0.96, 1.01) 

 

 

Table J-3. Final Difficulty Parameter for n = 30 Patients 

Test Control 

AE Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

1 1.82 (0.495) 1.78 (1.75, 1.90) 1.76 (0.501) 1.74 (1.69, 1.84) 

2 1.90 (0.532) 1.88 (1.82, 1.98) 1.97 (0.547) 1.92 (1.88, 2.05) 

3 1.92 (0.536) 1.89 (1.83, 2.00) 1.83 (0.519) 1.80 (1.75, 1.91) 

4 1.89 (0.548) 1.85 (1.80, 1.97) 1.91 (0.545) 1.86 (1.82, 1.99) 

5 1.94 (0.513) 1.90 (1.86, 2.01) 1.88 (0.529) 1.86 (1.80, 1.96) 

6 1.89 (0.538) 1.86 (1.81, 1.98) 1.87 (0.548) 1.83 (1.79, 1.96) 

7 1.91 (0.538) 1.88 (1.83, 1.99) 1.92 (0.558) 1.88 (1.83, 2.01) 

8 1.94 (0.554) 1.86 (1.85, 2.02) 1.93 (0.542) 1.89 (1.84, 2.01) 

9 1.92 (0.533) 1.90 (1.84, 2.00) 1.92 (0.572) 1.88 (1.83, 2.01) 
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Table J-4. Final AE Predisposition Parameter for n = 250 Patients 

Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

1 –0.05 (0.240) –0.08 (–0.12, 0.02) –0.04 (0.069) –0.05 (–0.12, 0.05) 

2 –0.04 (0.297) –0.08 (–0.12, 0.04) –0.11 (0.147) –0.06 (–0.30, 0.07) 

3 –0.11 (0.114) –0.11 (–0.15, –0.08) –0.21 (0.157) –0.17 (–0.40, –0.02) 

4 –0.11 (0.131) –0.08 (–0.15, –0.08) –0.16 (0.173) –0.13 (–0.38, 0.05) 

5 –0.09 (0.130) –0.08 (–0.12, –0.05) –0.21 (0.116) –0.18 (–0.35, –0.06) 

6 –0.06 (0.218) –0.06 (–0.12, 0.00) –0.07 (0.143) –0.02 (–0.25, 0.10) 

7 –0.12 (0.133) –0.13 (–0.16, –0.08) –0.27 (0.095) –0.27 (–0.39, –0.15) 

8 –0.06 (0.226) –0.07 (–0.13, 0.00) –0.13 (0.130) –0.17 (–0.29, 0.03) 

9 –0.09 (0.212) –0.09 (–0.15, –0.03) –0.09 (0.102) –0.11 (–0.22, 0.04) 

10 –0.14 (0.179) –0.10 (–0.19, –0.09) 0.08 (0.698) –0.21 (–0.78, 0.95) 

11 –0.08 (0.247) –0.09 (–0.15, –0.01) –0.17 (0.118) –0.20 (–0.32, –0.03) 

12 –0.11 (0.113) –0.12 (–0.14, –0.08) –0.17 (0.176) –0.22 (–0.38, 0.05) 

13 –0.09 (0.261) –0.12 (–0.16, –0.01) –0.16 (0.243) –0.23 (–0.46, 0.15) 

14 –0.03 (0.326) –0.09 (–0.12, 0.07) –0.07 (0.102) –0.03 (–0.19, 0.06) 

15 –0.09 (0.125) –0.11 (–0.13, –0.06) –0.08 (0.094) –0.12 (–0.20, 0.03) 

16 –0.07 (0.241) –0.09 (–0.13, 0.00) –0.11 (0.137) –0.09 (–0.28, 0.06) 

17 –0.08 (0.122) –0.08 (–0.12, –0.05) –0.17 (0.094) –0.19 (–0.29, –0.05) 

18 –0.09 (0.150) –0.09 (–0.13, –0.05) –0.13 (0.094) –0.13 (–0.24, –0.01) 

19 –0.07 (0.223) –0.10 (–0.14, –0.01) –0.08 (0.102) –0.06 (–0.21, 0.05) 

20 –0.07 (0.241) –0.10 (–0.14, –0.00) –0.09 (0.078) –0.08 (–0.19, 0.00) 

21 –0.11 (0.121) –0.11 (–0.15, –0.08) –0.06 (0.044) –0.06 (–0.11, –0.00) 

22 –0.12 (0.118) –0.12 (–0.16, –0.09) –0.03 (0.117) –0.00 (–0.18, 0.12) 

23 –0.10 (0.261) –0.13 (–0.17, –0.03) –0.04 (0.213) –0.04 (–0.31, 0.22) 

24 –0.08 (0.245) –0.10 (–0.15, –0.01) –0.18 (0.123) –0.14 (–0.34, –0.03) 

25 –0.05 (0.280) –0.09 (–0.13, 0.02) –0.16 (0.134) –0.13 (–0.33, 0.01) 

26 –0.09 (0.134) –0.09 (–0.13, –0.05) –0.14 (0.099) –0.13 (–0.26, –0.01) 

27 –0.10 (0.143) –0.09 (–0.14, –0.05) –0.09 (0.046) –0.11 (–0.14, –0.03) 

28 –0.12 (0.124) –0.13 (–0.15, –0.08) –0.23 (0.140) –0.24 (–0.40, –0.05) 

29 –0.05 (0.311) –0.09 (–0.14, 0.04) –0.05 (0.135) –0.11 (–0.22, 0.11) 

30 –0.10 (0.233) –0.14 (–0.17, –0.04) –0.11 (0.119) –0.14 (–0.26, 0.04) 

31 –0.11 (0.212) –0.14 (–0.17, –0.05) –0.09 (0.079) –0.07 (–0.19, 0.01) 

32 –0.09 (0.108) –0.11 (–0.12, –0.06) 0.03 (0.137) 0.07 (–0.14, 0.20) 

33 –0.11 (0.153) –0.10 (–0.15, –0.06) –0.13 (0.140) –0.11 (–0.30, 0.05) 
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Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

34 –0.10 (0.134) –0.12 (–0.14, –0.07) –0.07 (0.177) –0.13 (–0.29, 0.15) 

35 –0.10 (0.131) –0.08 (–0.14, –0.06) –0.06 (0.129) –0.10 (–0.22, 0.10) 

36 –0.05 (0.348) –0.12 (–0.15, 0.05) –0.14 (0.166) –0.20 (–0.34, 0.07) 

37 –0.10 (0.147) –0.13 (–0.14, –0.06) –0.11 (0.035) –0.11 (–0.15, –0.06) 

38 –0.09 (0.123) –0.12 (–0.13, –0.06) –0.17 (0.150) –0.21 (–0.36, 0.02) 

39 –0.05 (0.296) –0.11 (–0.13, 0.04) –0.08 (0.094) –0.11 (–0.19, 0.04) 

40 –0.14 (0.146) –0.13 (–0.18, –0.09) –0.01 (0.115) 0.01 (–0.15, 0.14) 

41 –0.10 (0.228) –0.13 (–0.17, –0.04) –0.02 (0.214) –0.02 (–0.29, 0.24) 

42 –0.10 (0.145) –0.11 (–0.15, –0.06) –0.15 (0.099) –0.18 (–0.27, –0.03) 

43 –0.08 (0.132) –0.08 (–0.12, –0.05) –0.13 (0.206) –0.13 (–0.38, 0.13) 

44 –0.08 (0.231) –0.10 (–0.14, –0.01) –0.19 (0.128) –0.23 (–0.35, –0.03) 

45 –0.10 (0.149) –0.11 (–0.14, –0.06) –0.02 (0.138) –0.06 (–0.19, 0.15) 

46 –0.09 (0.231) –0.10 (–0.16, –0.02) –0.13 (0.179) –0.12 (–0.35, 0.10) 

47 –0.11 (0.134) –0.12 (–0.14, –0.07) –0.11 (0.051) –0.11 (–0.17, –0.04) 

48 –0.06 (0.248) –0.07 (–0.13, 0.02) –0.10 (0.112) –0.10 (–0.24, 0.04) 

49 –0.12 (0.117) –0.09 (–0.15, –0.09) 0.15 (0.661) –0.08 (–0.67, 0.97) 

50 –0.11 (0.160) –0.09 (–0.16, –0.07) –0.16 (0.246) –0.25 (–0.47, 0.14) 

51 –0.04 (0.308) –0.10 (–0.13, 0.05) 0.06 (0.521) –0.15 (–0.58, 0.71) 

52 –0.07 (0.125) –0.05 (–0.11, –0.04) –0.13 (0.102) –0.19 (–0.26, –0.00) 

53 –0.12 (0.151) –0.11 (–0.16, –0.08) –0.01 (0.045) –0.01 (–0.07, 0.05) 

54 –0.11 (0.215) –0.14 (–0.18, –0.05) –0.18 (0.093) –0.16 (–0.29, –0.06) 

55 –0.06 (0.255) –0.11 (–0.13, 0.01) –0.05 (0.075) –0.06 (–0.15, 0.04) 

56 –0.10 (0.231) –0.13 (–0.17, –0.04) –0.07 (0.066) –0.04 (–0.15, 0.02) 

57 –0.07 (0.203) –0.09 (–0.13, –0.01) –0.07 (0.113) –0.08 (–0.21, 0.07) 

58 –0.11 (0.144) –0.12 (–0.15, –0.07) –0.14 (0.132) –0.09 (–0.30, 0.03) 

59 –0.11 (0.158) –0.10 (–0.16, –0.07) –0.13 (0.154) –0.16 (–0.32, 0.06) 

60 –0.11 (0.248) –0.12 (–0.18, –0.04) –0.15 (0.116) –0.17 (–0.29, –0.00) 

61 –0.05 (0.233) –0.05 (–0.12, 0.01) –0.14 (0.092) –0.14 (–0.25, –0.02) 

62 –0.11 (0.118) –0.10 (–0.15, –0.08) –0.01 (0.243) –0.06 (–0.31, 0.29) 

63 –0.06 (0.279) –0.11 (–0.14, 0.02) –0.13 (0.121) –0.09 (–0.28, 0.02) 

64 –0.06 (0.234) –0.08 (–0.13, 0.00) –0.17 (0.115) –0.18 (–0.32, –0.03) 

65 –0.10 (0.125) –0.10 (–0.14, –0.07) –0.14 (0.118) –0.14 (–0.29, 0.01) 

66 –0.10 (0.228) –0.13 (–0.17, –0.04) –0.06 (0.223) –0.12 (–0.33, 0.22) 

67 –0.10 (0.143) –0.10 (–0.14, –0.06) –0.12 (0.180) –0.05 (–0.34, 0.11) 
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Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

68 –0.04 (0.220) –0.08 (–0.10, 0.02) –0.05 (0.081) –0.03 (–0.15, 0.05) 

69 –0.14 (0.124) –0.13 (–0.18, –0.11) –0.18 (0.129) –0.17 (–0.34, –0.02) 

70 –0.13 (0.139) –0.16 (–0.17, –0.09) –0.21 (0.126) –0.26 (–0.37, –0.05) 

71 –0.10 (0.133) –0.09 (–0.13, –0.06) –0.06 (0.107) –0.08 (–0.19, 0.07) 

72 –0.05 (0.283) –0.08 (–0.13, 0.03) 0.01 (0.110) –0.02 (–0.13, 0.14) 

73 –0.07 (0.237) –0.09 (–0.14, –0.00) –0.10 (0.098) –0.11 (–0.22, 0.02) 

74 –0.10 (0.124) –0.10 (–0.13, –0.06) –0.25 (0.120) –0.32 (–0.40, –0.10) 

75 –0.04 (0.362) –0.11 (–0.14, 0.07) –0.01 (0.073) 0.03 (–0.10, 0.08) 

76 –0.09 (0.128) –0.11 (–0.12, –0.05) –0.13 (0.215) –0.14 (–0.40, 0.14) 

77 –0.02 (0.418) –0.13 (–0.13, 0.10) –0.03 (0.103) –0.03 (–0.16, 0.10) 

78 –0.01 (0.378) –0.09 (–0.12, 0.10) –0.09 (0.189) –0.17 (–0.33, 0.14) 

79 –0.10 (0.135) –0.12 (–0.14, –0.06) 0.12 (0.466) –0.13 (–0.46, 0.70) 

80 –0.11 (0.133) –0.13 (–0.15, –0.07) –0.10 (0.140) –0.09 (–0.28, 0.07) 

81 –0.12 (0.136) –0.10 (–0.16, –0.08) –0.18 (0.113) –0.16 (–0.32, –0.04) 

82 –0.08 (0.223) –0.09 (–0.15, –0.02) –0.10 (0.106) –0.12 (–0.23, 0.03) 

83 –0.09 (0.128) –0.10 (–0.13, –0.06) –0.09 (0.126) –0.12 (–0.25, 0.06) 

84 –0.04 (0.283) –0.09 (–0.12, 0.04) –0.06 (0.083) –0.08 (–0.16, 0.04) 

85 –0.09 (0.252) –0.12 (–0.16, –0.02) –0.11 (0.087) –0.10 (–0.22, 0.00) 

86 –0.05 (0.291) –0.08 (–0.14, 0.03) 0.11 (0.635) –0.17 (–0.68, 0.90) 

87 –0.12 (0.144) –0.08 (–0.16, –0.08) –0.09 (0.126) –0.14 (–0.25, 0.06) 

88 –0.10 (0.236) –0.14 (–0.17, –0.03) –0.03 (0.182) –0.02 (–0.25, 0.20) 

89 –0.06 (0.211) –0.06 (–0.12, –0.00) –0.09 (0.131) –0.11 (–0.26, 0.07) 

90 –0.10 (0.199) –0.12 (–0.15, –0.04) –0.10 (0.140) –0.14 (–0.27, 0.07) 

91 –0.11 (0.123) –0.13 (–0.15, –0.08) 0.06 (0.519) –0.13 (–0.58, 0.71) 

92 –0.01 (0.295) –0.05 (–0.10, 0.07) 0.00 (0.188) 0.04 (–0.23, 0.24) 

93 –0.08 (0.133) –0.08 (–0.12, –0.04) –0.16 (0.111) –0.18 (–0.29, –0.02) 

94 –0.08 (0.258) –0.09 (–0.16, –0.01) –0.21 (0.073) –0.19 (–0.30, –0.12) 

95 –0.07 (0.129) –0.05 (–0.11, –0.04) –0.04 (0.187) –0.08 (–0.27, 0.19) 

96 –0.09 (0.234) –0.12 (–0.15, –0.02) –0.05 (0.116) –0.01 (–0.19, 0.10) 

97 –0.16 (0.133) –0.17 (–0.20, –0.12) –0.12 (0.204) –0.16 (–0.37, 0.14) 

98 –0.15 (0.136) –0.16 (–0.19, –0.11) 0.02 (0.120) –0.02 (–0.13, 0.16) 

99 –0.08 (0.120) –0.08 (–0.11, –0.04) –0.17 (0.210) –0.06 (–0.43, 0.10) 

100 –0.10 (0.121) –0.08 (–0.13, –0.06) –0.11 (0.186) –0.07 (–0.34, 0.12) 

101 –0.08 (0.229) –0.11 (–0.15, –0.02) –0.14 (0.133) –0.07 (–0.30, 0.03) 
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Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

102 –0.09 (0.131) –0.11 (–0.13, –0.05) –0.06 (0.061) –0.08 (–0.14, 0.02) 

103 –0.06 (0.128) –0.05 (–0.10, –0.02) –0.08 (0.066) –0.07 (–0.16, 0.00) 

104 –0.04 (0.319) –0.08 (–0.13, 0.05) –0.19 (0.101) –0.19 (–0.31, –0.06) 

105 –0.13 (0.147) –0.12 (–0.18, –0.09) –0.09 (0.157) –0.09 (–0.29, 0.10) 

106 –0.12 (0.130) –0.11 (–0.16, –0.09) –0.09 (0.032) –0.10 (–0.13, –0.05) 

107 –0.05 (0.299) –0.12 (–0.13, 0.04) –0.06 (0.133) –0.06 (–0.23, 0.11) 

108 –0.10 (0.250) –0.14 (–0.17, –0.03) –0.13 (0.108) –0.18 (–0.26, 0.01) 

109 –0.15 (0.124) –0.17 (–0.18, –0.11) –0.05 (0.100) –0.05 (–0.17, 0.08) 

110 –0.07 (0.137) –0.09 (–0.11, –0.03) –0.15 (0.193) –0.22 (–0.39, 0.09) 

111 –0.12 (0.127) –0.15 (–0.16, –0.09) –0.13 (0.061) –0.11 (–0.20, –0.05) 

112 –0.08 (0.253) –0.13 (–0.15, –0.01) –0.17 (0.079) –0.16 (–0.27, –0.07) 

113 –0.10 (0.107) –0.09 (–0.14, –0.07) –0.06 (0.123) –0.09 (–0.21, 0.09) 

114 –0.11 (0.105) –0.10 (–0.14, –0.08) –0.23 (0.079) –0.24 (–0.32, –0.13) 

115 –0.09 (0.121) –0.09 (–0.12, –0.05) –0.15 (0.065) –0.15 (–0.23, –0.07) 

116 –0.09 (0.124) –0.08 (–0.12, –0.05) –0.02 (0.171) –0.07 (–0.24, 0.19) 

117 –0.13 (0.123) –0.15 (–0.17, –0.10) –0.11 (0.211) –0.17 (–0.37, 0.15) 

118 –0.07 (0.227) –0.10 (–0.13, –0.00) –0.04 (0.120) –0.07 (–0.19, 0.11) 

119 –0.11 (0.138) –0.11 (–0.15, –0.07) –0.10 (0.176) –0.07 (–0.32, 0.12) 

120 –0.07 (0.144) –0.07 (–0.11, –0.03) –0.09 (0.148) –0.08 (–0.28, 0.09) 

121 –0.08 (0.216) –0.09 (–0.14, –0.01) –0.13 (0.123) –0.09 (–0.28, 0.02) 

122 –0.16 (0.102) –0.18 (–0.18, –0.13) –0.09 (0.214) –0.15 (–0.35, 0.18) 

123 –0.10 (0.139) –0.10 (–0.14, –0.06) –0.14 (0.156) –0.13 (–0.33, 0.05) 

124 –0.08 (0.145) –0.06 (–0.12, –0.03) –0.09 (0.097) –0.06 (–0.21, 0.03) 

125 –0.11 (0.135) –0.12 (–0.15, –0.07) –0.07 (0.094) –0.09 (–0.19, 0.04) 

126 –0.06 (0.235) –0.10 (–0.12, 0.01) –0.15 (0.104) –0.12 (–0.28, –0.02) 

127 –0.14 (0.111) –0.16 (–0.17, –0.11) –0.04 (0.076) –0.02 (–0.13, 0.06) 

128 –0.09 (0.204) –0.10 (–0.15, –0.03) –0.17 (0.211) –0.12 (–0.43, 0.09) 

129 –0.08 (0.319) –0.12 (–0.17, 0.01) –0.03 (0.122) –0.03 (–0.18, 0.12) 

130 –0.14 (0.148) –0.13 (–0.18, –0.10) –0.11 (0.165) –0.12 (–0.32, 0.09) 

131 –0.11 (0.140) –0.13 (–0.15, –0.07) –0.15 (0.118) –0.19 (–0.30, –0.00) 

132 –0.10 (0.307) –0.15 (–0.19, –0.01) –0.22 (0.145) –0.29 (–0.40, –0.04) 

133 –0.08 (0.213) –0.11 (–0.14, –0.02) –0.06 (0.046) –0.04 (–0.12, –0.01) 

134 –0.01 (0.352) –0.10 (–0.11, 0.09) –0.13 (0.112) –0.09 (–0.27, 0.01) 

135 –0.10 (0.131) –0.10 (–0.14, –0.06) –0.13 (0.164) –0.17 (–0.33, 0.08) 
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Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

136 –0.10 (0.129) –0.10 (–0.13, –0.06) –0.05 (0.096) –0.03 (–0.17, 0.07) 

137 –0.03 (0.325) –0.07 (–0.12, 0.06) –0.10 (0.067) –0.09 (–0.18, –0.01) 

138 –0.08 (0.128) –0.09 (–0.11, –0.04) –0.03 (0.090) –0.04 (–0.15, 0.08) 

139 –0.09 (0.186) –0.12 (–0.14, –0.03) –0.06 (0.154) –0.04 (–0.25, 0.13) 

140 –0.07 (0.219) –0.07 (–0.13, –0.01) –0.20 (0.040) –0.17 (–0.24, –0.15) 

141 –0.10 (0.133) –0.09 (–0.14, –0.06) –0.06 (0.093) –0.06 (–0.18, 0.05) 

142 –0.10 (0.299) –0.14 (–0.19, –0.02) –0.06 (0.127) –0.00 (–0.22, 0.10) 

143 –0.12 (0.123) –0.13 (–0.16, –0.09) –0.10 (0.113) –0.11 (–0.24, 0.04) 

144 –0.07 (0.142) –0.07 (–0.11, –0.03) –0.14 (0.111) –0.13 (–0.28, –0.01) 

145 –0.09 (0.220) –0.11 (–0.15, –0.02) 0.15 (0.636) –0.11 (–0.64, 0.94) 

146 –0.07 (0.268) –0.11 (–0.15, 0.01) –0.05 (0.206) –0.03 (–0.30, 0.21) 

147 –0.12 (0.122) –0.12 (–0.16, –0.09) –0.06 (0.173) –0.03 (–0.28, 0.15) 

148 –0.09 (0.231) –0.13 (–0.15, –0.02) –0.02 (0.098) 0.01 (–0.14, 0.10) 

149 –0.10 (0.115) –0.10 (–0.14, –0.07) –0.07 (0.045) –0.08 (–0.12, –0.01) 

150 –0.13 (0.123) –0.13 (–0.16, –0.09) –0.15 (0.157) –0.08 (–0.35, 0.04) 

151 –0.05 (0.287) –0.09 (–0.13, 0.03) –0.19 (0.161) –0.11 (–0.39, 0.01) 

152 –0.05 (0.222) –0.07 (–0.11, 0.01) –0.07 (0.098) –0.10 (–0.19, 0.05) 

153 –0.11 (0.123) –0.11 (–0.15, –0.08) 0.11 (0.600) –0.08 (–0.64, 0.85) 

154 –0.03 (0.320) –0.11 (–0.12, 0.06) –0.20 (0.039) –0.20 (–0.25, –0.15) 

155 –0.12 (0.127) –0.12 (–0.16, –0.09) –0.02 (0.062) –0.06 (–0.10, 0.06) 

156 –0.07 (0.130) –0.07 (–0.11, –0.04) –0.14 (0.071) –0.17 (–0.23, –0.05) 

157 –0.08 (0.130) –0.06 (–0.12, –0.04) 0.16 (0.554) –0.05 (–0.53, 0.85) 

158 –0.03 (0.289) –0.08 (–0.12, 0.05) –0.13 (0.123) –0.08 (–0.29, 0.02) 

159 –0.10 (0.233) –0.13 (–0.17, –0.04) –0.03 (0.125) 0.05 (–0.18, 0.13) 

160 –0.10 (0.137) –0.10 (–0.14, –0.06) –0.10 (0.117) –0.07 (–0.25, 0.04) 

161 –0.10 (0.126) –0.12 (–0.13, –0.06) –0.23 (0.091) –0.22 (–0.34, –0.12) 

162 –0.11 (0.119) –0.10 (–0.14, –0.07) –0.10 (0.123) –0.16 (–0.25, 0.05) 

163 –0.04 (0.248) –0.07 (–0.11, 0.03) –0.15 (0.111) –0.12 (–0.29, –0.01) 

164 –0.15 (0.145) –0.14 (–0.19, –0.11) –0.06 (0.123) –0.04 (–0.22, 0.09) 

165 –0.09 (0.125) –0.08 (–0.12, –0.05) –0.09 (0.129) –0.15 (–0.25, 0.07) 

166 –0.11 (0.140) –0.11 (–0.15, –0.07) –0.14 (0.123) –0.16 (–0.29, 0.01) 

167 –0.13 (0.120) –0.14 (–0.17, –0.10) 0.21 (0.621) –0.10 (–0.56, 0.98) 

168 –0.09 (0.222) –0.12 (–0.16, –0.03) –0.01 (0.207) 0.09 (–0.27, 0.25) 

169 –0.11 (0.124) –0.09 (–0.15, –0.08) –0.09 (0.073) –0.11 (–0.18, 0.00) 
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Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

170 –0.10 (0.130) –0.11 (–0.14, –0.07) –0.22 (0.056) –0.19 (–0.28, –0.15) 

171 –0.06 (0.147) –0.09 (–0.10, –0.02) –0.11 (0.082) –0.13 (–0.21, –0.01) 

172 –0.09 (0.120) –0.11 (–0.12, –0.05) –0.13 (0.142) –0.07 (–0.30, 0.05) 

173 –0.08 (0.307) –0.12 (–0.16, 0.01) –0.12 (0.105) –0.11 (–0.25, 0.01) 

174 –0.08 (0.231) –0.10 (–0.15, –0.02) 0.23 (0.584) –0.01 (–0.49, 0.96) 

175 –0.08 (0.220) –0.12 (–0.15, –0.02) 0.16 (0.549) –0.03 (–0.52, 0.84) 

176 –0.12 (0.236) –0.14 (–0.19, –0.05) –0.07 (0.095) –0.04 (–0.19, 0.05) 

177 –0.08 (0.217) –0.10 (–0.14, –0.02) –0.14 (0.068) –0.12 (–0.22, –0.06) 

178 –0.08 (0.244) –0.10 (–0.15, –0.01) 0.01 (0.222) 0.13 (–0.27, 0.29) 

179 –0.13 (0.126) –0.11 (–0.17, –0.10) –0.16 (0.115) –0.21 (–0.30, –0.01) 

180 –0.08 (0.239) –0.08 (–0.15, –0.01) –0.16 (0.136) –0.17 (–0.32, 0.01) 

181 –0.08 (0.241) –0.10 (–0.14, –0.01) –0.10 (0.114) –0.08 (–0.25, 0.04) 

182 –0.06 (0.234) –0.10 (–0.13, 0.00) 0.15 (0.604) –0.07 (–0.60, 0.90) 

183 –0.03 (0.281) –0.07 (–0.11, 0.05) –0.14 (0.067) –0.15 (–0.23, –0.06) 

184 –0.12 (0.104) –0.11 (–0.15, –0.09) –0.12 (0.193) –0.17 (–0.36, 0.12) 

185 –0.09 (0.149) –0.09 (–0.14, –0.05) –0.15 (0.178) –0.13 (–0.37, 0.07) 

186 –0.11 (0.132) –0.14 (–0.15, –0.08) –0.07 (0.070) –0.09 (–0.16, 0.02) 

187 –0.11 (0.133) –0.13 (–0.15, –0.08) –0.10 (0.163) –0.12 (–0.30, 0.10) 

188 –0.12 (0.124) –0.13 (–0.15, –0.08) –0.13 (0.158) –0.11 (–0.33, 0.07) 

189 –0.12 (0.155) –0.12 (–0.16, –0.07) –0.08 (0.120) –0.14 (–0.23, 0.07) 

190 –0.08 (0.245) –0.11 (–0.15, –0.01) 0.23 (0.582) 0.00 (–0.49, 0.95) 

191 –0.12 (0.125) –0.13 (–0.15, –0.08) –0.12 (0.084) –0.12 (–0.22, –0.01) 

192 –0.10 (0.144) –0.12 (–0.14, –0.06) –0.10 (0.211) 0.01 (–0.36, 0.17) 

193 –0.07 (0.210) –0.10 (–0.13, –0.01) –0.04 (0.126) –0.02 (–0.20, 0.12) 

194 –0.09 (0.132) –0.07 (–0.13, –0.05) –0.06 (0.072) –0.04 (–0.15, 0.03) 

195 –0.08 (0.223) –0.08 (–0.14, –0.01) –0.10 (0.091) –0.13 (–0.21, 0.02) 

196 –0.10 (0.123) –0.12 (–0.13, –0.06) –0.06 (0.112) –0.09 (–0.20, 0.08) 

197 –0.11 (0.144) –0.12 (–0.15, –0.07) –0.09 (0.122) –0.10 (–0.25, 0.06) 

198 –0.10 (0.119) –0.10 (–0.13, –0.06) –0.10 (0.187) –0.09 (–0.33, 0.13) 

199 –0.09 (0.201) –0.10 (–0.14, –0.03) –0.25 (0.143) –0.22 (–0.43, –0.07) 

200 –0.09 (0.203) –0.10 (–0.14, –0.03) –0.13 (0.164) –0.14 (–0.34, 0.07) 

201 –0.12 (0.113) –0.14 (–0.15, –0.08) –0.13 (0.202) –0.02 (–0.38, 0.12) 

202 –0.04 (0.248) –0.09 (–0.11, 0.03) –0.08 (0.119) –0.09 (–0.23, 0.06) 

203 –0.10 (0.125) –0.08 (–0.13, –0.06) –0.05 (0.116) –0.05 (–0.20, 0.09) 
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Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

204 –0.10 (0.220) –0.10 (–0.16, –0.03) –0.07 (0.137) –0.08 (–0.24, 0.10) 

205 –0.11 (0.126) –0.11 (–0.14, –0.07) –0.09 (0.219) 0.04 (–0.36, 0.18) 

206 –0.10 (0.138) –0.07 (–0.14, –0.06) –0.02 (0.116) –0.02 (–0.16, 0.13) 

207 –0.10 (0.121) –0.08 (–0.13, –0.06) –0.09 (0.061) –0.12 (–0.17, –0.02) 

208 –0.10 (0.231) –0.12 (–0.17, –0.04) 0.28 (0.636) 0.03 (–0.51, 1.06) 

209 –0.10 (0.128) –0.07 (–0.13, –0.06) –0.13 (0.165) –0.20 (–0.33, 0.08) 

210 –0.16 (0.153) –0.15 (–0.20, –0.11) –0.10 (0.088) –0.10 (–0.21, 0.01) 

211 –0.00 (0.320) –0.05 (–0.09, 0.09) –0.17 (0.216) –0.15 (–0.44, 0.10) 

212 –0.11 (0.150) –0.11 (–0.15, –0.07) –0.04 (0.096) –0.04 (–0.16, 0.08) 

213 –0.09 (0.241) –0.12 (–0.15, –0.02) –0.09 (0.065) –0.08 (–0.17, –0.01) 

214 –0.11 (0.210) –0.15 (–0.17, –0.05) –0.13 (0.094) –0.19 (–0.24, –0.01) 

215 –0.12 (0.139) –0.13 (–0.16, –0.08) –0.13 (0.101) –0.14 (–0.26, –0.01) 

216 –0.08 (0.140) –0.09 (–0.12, –0.04) –0.11 (0.093) –0.09 (–0.23, 0.00) 

217 –0.11 (0.142) –0.11 (–0.15, –0.07) –0.08 (0.146) –0.10 (–0.26, 0.11) 

218 –0.07 (0.259) –0.08 (–0.14, 0.00) –0.10 (0.073) –0.13 (–0.19, –0.01) 

219 –0.09 (0.226) –0.10 (–0.16, –0.03) –0.18 (0.094) –0.22 (–0.30, –0.07) 

220 –0.06 (0.282) –0.12 (–0.14, 0.02) –0.06 (0.083) –0.08 (–0.17, 0.04) 

221 –0.09 (0.137) –0.11 (–0.13, –0.05) –0.13 (0.140) –0.19 (–0.30, 0.05) 

222 –0.12 (0.118) –0.11 (–0.15, –0.08) –0.07 (0.131) –0.09 (–0.23, 0.09) 

223 –0.06 (0.219) –0.07 (–0.12, –0.00) 0.02 (0.101) –0.00 (–0.11, 0.14) 

224 –0.11 (0.117) –0.10 (–0.15, –0.08) –0.13 (0.205) –0.15 (–0.39, 0.12) 

225 –0.08 (0.236) –0.11 (–0.15, –0.02) –0.07 (0.142) –0.05 (–0.25, 0.11) 

226 –0.07 (0.209) –0.10 (–0.13, –0.01) –0.07 (0.193) –0.07 (–0.31, 0.17) 

227 –0.11 (0.128) –0.09 (–0.15, –0.07) –0.13 (0.185) –0.06 (–0.36, 0.10) 

228 –0.11 (0.238) –0.13 (–0.18, –0.05) –0.07 (0.084) –0.04 (–0.17, 0.04) 

229 –0.04 (0.244) –0.07 (–0.11, 0.03) –0.03 (0.184) –0.04 (–0.26, 0.20) 

230 –0.07 (0.242) –0.11 (–0.14, –0.00) –0.06 (0.184) –0.08 (–0.29, 0.17) 

231 –0.05 (0.304) –0.09 (–0.14, 0.03) –0.15 (0.052) –0.15 (–0.21, –0.09) 

232 –0.10 (0.256) –0.12 (–0.17, –0.03) –0.10 (0.110) –0.08 (–0.24, 0.03) 

233 –0.11 (0.124) –0.11 (–0.15, –0.08) –0.13 (0.079) –0.16 (–0.23, –0.03) 

234 –0.09 (0.131) –0.07 (–0.13, –0.06) –0.15 (0.138) –0.13 (–0.32, 0.02) 

235 –0.09 (0.216) –0.11 (–0.16, –0.03) 0.01 (0.114) 0.05 (–0.14, 0.15) 

236 –0.13 (0.140) –0.13 (–0.17, –0.09) –0.11 (0.081) –0.16 (–0.21, –0.01) 

237 –0.11 (0.124) –0.13 (–0.15, –0.08) 0.25 (0.684) –0.06 (–0.60, 1.10) 
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Test Control 

Patient Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

238 –0.10 (0.119) –0.11 (–0.13, –0.06) –0.12 (0.097) –0.14 (–0.24, –0.00) 

239 –0.13 (0.147) –0.12 (–0.17, –0.09) –0.06 (0.272) –0.12 (–0.40, 0.27) 

240 –0.08 (0.237) –0.11 (–0.15, –0.01) –0.10 (0.069) –0.12 (–0.19, –0.02) 

241 –0.09 (0.208) –0.09 (–0.15, –0.03) –0.07 (0.073) –0.04 (–0.16, 0.02) 

242 –0.09 (0.144) –0.09 (–0.13, –0.05) –0.04 (0.251) 0.04 (–0.35, 0.28) 

243 –0.11 (0.146) –0.11 (–0.15, –0.07) –0.10 (0.101) –0.12 (–0.22, 0.03) 

244 –0.06 (0.215) –0.08 (–0.12, 0.00) –0.10 (0.095) –0.15 (–0.22, 0.02) 

245 –0.06 (0.294) –0.11 (–0.14, 0.03) 0.09 (0.600) –0.16 (–0.66, 0.83) 

246 –0.10 (0.232) –0.13 (–0.16, –0.03) –0.16 (0.137) –0.15 (–0.33, 0.01) 

247 –0.05 (0.292) –0.09 (–0.13, 0.04) –0.04 (0.168) 0.02 (–0.24, 0.17) 

248 –0.14 (0.135) –0.16 (–0.18, –0.10) –0.19 (0.060) –0.19 (–0.27, –0.12) 

249 0.00 (0.349) –0.04 (–0.09, 0.10) 0.14 (0.523) 0.04 (–0.51, 0.79) 

250 –0.09 (0.219) –0.13 (–0.15, –0.03) –0.07 (0.198) –0.02 (–0.31, 0.18) 

 

 

Table J-5. Final Discrimination Parameter for n = 250 Patients 

Test Control 

AE Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

1 0.82 (0.226) 0.82 (0.77, 0.86) 0.83 (0.228) 0.84 (0.78, 0.88) 

2 0.79 (0.222) 0.78 (0.74, 0.83) 0.80 (0.222) 0.80 (0.75, 0.84) 

3 0.77 (0.225) 0.78 (0.73, 0.82) 0.76 (0.219) 0.77 (0.72, 0.81) 

4 0.77 (0.220) 0.78 (0.73, 0.82) 0.77 (0.225) 0.77 (0.72, 0.82) 

5 0.77 (0.227) 0.77 (0.73, 0.82) 0.78 (0.238) 0.79 (0.73, 0.82) 

6 0.77 (0.221) 0.76 (0.72, 0.81) 0.76 (0.232) 0.76 (0.72, 0.81) 

7 0.77 (0.222) 0.77 (0.72, 0.81) 0.77 (0.227) 0.76 (0.72, 0.81) 

8 0.77 (0.223) 0.77 (0.73, 0.82) 0.76 (0.209) 0.77 (0.72, 0.81) 

9 0.77 (0.222) 0.77 (0.72, 0.81) 0.78 (0.225) 0.78 (0.73, 0.83) 
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Table J-6. Final Difficulty Parameter for n = 250 Patients 

Test Control 

AE Mean (SD) Median 
95% CI 
on Mean Mean (SD) Median 

95% CI 
on Mean 

1 2.82 (0.356) 2.80 (2.74, 2.90) 2.78 (0.365) 2.75 (2.70, 2.86) 

2 3.05 (0.403) 3.02 (2.96, 3.14) 2.96 (0.387) 2.93 (2.87, 3.05) 

3 3.11 (0.415) 3.09 (3.02, 3.20) 3.14 (0.442) 3.12 (3.05, 3.24) 

4 3.18 (0.435) 3.15 (3.09, 3.28) 3.13 (0.415) 3.10 (3.04, 3.22) 

5 3.15 (0.427) 3.13 (3.06, 3.25) 3.19 (0.427) 3.16 (3.10, 3.28) 

6 3.18 (0.432) 3.14 (3.08, 3.27) 3.20 (0.453) 3.15 (3.10, 3.30) 

7 3.20 (0.434) 3.16 (3.10, 3.29) 3.22 (0.474) 3.19 (3.12, 3.33) 

8 3.20 (0.441) 3.16 (3.11, 3.30) 3.19 (0.449) 3.15 (3.09, 3.29) 

9 3.21 (0.433) 3.17 (3.11, 3.30) 3.21 (0.444) 3.17 (3.12, 3.31) 
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Appendix K 

2-PL EX IRT Model: Superiority and Equivalence Analyses 
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Table K-1. Superiority Analyses Using Partial Batch Estimation to Linear Trapezoid 
Approximation for n = 30 Patients 

AE Estimator 

Paired Diff 
Mean/Med 

(SE) 95% CI on Paired Difference Coverage (%) 
Tstat  

(p–value) 
S–W Stat (p–

value) 

Mean 9.583E–04 
(2.636E–03) 

(–4.411E–03, 6.328E–03) 64.07 3.635E–01 
(0.719) 

1 

Median 7.927E–13 
(2.862E–13) 

(–1.962E–15, 1.587E–12) 97.48 2.770E+00 
(0.050) 

0.5883 
(<0.0001) 

Mean –1.389E–03 
(2.252E–03) 

(–5.976E–03, 3.198E–03) 72.91 –6.168E–01 
(0.542) 

2 

Median –1.120E–12 
(3.195E–13) 

(–2.007E–12, –2.329E–13) 98.76 –3.505E+00 
(0.025) 

0.5788 
(<0.0001) 

Mean 1.377E–03 
(3.047E–03) 

(–4.829E–03, 7.583E–03) 67.28 4.520E–01 
(0.654) 

3 

Median 8.193E–13 
(6.837E–13) 

(–1.079E–12, 2.718E–12) 85.16 1.198E+00 
(0.297) 

0.5923 
(<0.0001) 

Mean –6.193E–04 
(1.488E–03) 

(–3.650E–03, 2.412E–03) 66.00 –4.162E–01 
(0.680) 

4 

Median –5.889E–13 
(3.464E–14) 

(–6.850E–13, –4.927E–13) >99.99 –1.700E+01 
(<0.001) 

0.5540 
(<0.0001) 

Mean 9.426E–04 
(2.570E–03) 

(–4.293E–03, 6.178E–03) 64.19 3.667E–01 
(0.716) 

5 

Median 7.256E–13 
(3.373E–13) 

(–2.108E–13, 1.662E–12) 95.11 2.151E+00 
(0.098) 

0.5891 
(<0.0001) 

Mean 1.638E–04 
(1.393E–03) 

(–2.673E–03, 3.000E–03) 54.65 1.177E–01 
(0.907) 

6 

Median –3.730E–14 
(3.753E–14) 

(–1.415E–13, 6.688E–14) 81.18 –9.941E–01 
(0.376) 

0.5751 
(<0.0001) 

Mean –1.808E–04 
(1.403E–03) 

(–3.038E–03, 2.677E–03) 55.09 –1.289E–01 
(0.898) 

7 

Median 1.101E–13 
(1.710E–14) 

(6.266E–14, 1.576E–13) 99.85 6.442E+00 
(0.003) 

0.5394 
(<0.0001) 

Mean 1.684E–04 
(1.761E–03) 

(–3.419E–03, 3.756E–03) 53.78 9.561E–02 
(0.924) 

8 

Median 2.589E–13 
(5.773E–14) 

(9.862E–14, 4.192E–13) 99.45 4.485E+00 
(0.011) 

0.5597 
(<0.0001) 

Mean –9.689E–05 
(1.361E–03) 

(–2.869E–03, 2.675E–03) 52.82 –7.119E–02 
(0.944) 

9 

Median 0.000E+00 
(3.553E–14) 

(–9.864E–14, 9.864E–14) 50.00 0.000E+00 
(>0.999) 

0.5536 
(<0.0001) 

Mean 1.471E–04 
(1.990E–03) 

(–3.906E–03, 4.201E–03) 61.20 1.805E–02 
(0.776) 

Overall 

Median 1.101E–13 
(5.773E–14) 

(–1.415E–13, 1.576E–13) 97.48 1.198E+00 
(0.050) 

0.5700 
(<0.0001) 
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Table K-2. Superiority Analyses Using Bootstrap Estimation to Linear Trapezoid 
Approximation for n = 30 Patients 

AE Estimator 
Paired Diff 

Mean/Med (SE) 95% CI on Paired Difference Coverage (%) Tstat (p–value) 
S–W Stat  
(p–value) 

Mean 1.001E–03 
(5.726E–03) 

(–1.066E–02, 1.266E–02) 77.79 4.149E–01 
(0.444) 

1 

Median 7.927E–13 
(2.862E–13) 

(–1.962E–15, 1.477E–12) 97.48 2.770E+00 
(0.050) 

0.5730 
(<0.0001) 

Mean –1.447E–03 
(5.635E–03) 

(–1.293E–02, 1.003E–02) 79.89 –6.174E–01 
(0.402) 

2 

Median –1.120E–12 
(2.285E–13) 

(–1.752E–12, –2.259E–13) 98.72 –3.472E+00 
(0.026) 

0.5807 
(<0.0001) 

Mean 1.353E–03 
(6.263E–03) 

(–1.141E–02, 1.411E–02) 76.97 4.723E–01 
(0.461) 

3 

Median 8.193E–13 
(5.225E–13) 

(–4.480E–13, 2.452E–12) 93.94 1.963E+00 
(0.121) 

0.5675 
(<0.0001) 

Mean –6.324E–04 
(4.964E–03) 

(–1.074E–02, 9.478E–03) 83.83 –3.680E–01 
(0.323) 

4 

Median –5.889E–13 
(2.642E–13) 

(–1.297E–12, 5.291E–14) 95.57 –2.240E+00 
(0.089) 

0.5585 
(<0.0001) 

Mean 8.923E–04 
(5.883E–03) 

(–1.109E–02, 1.288E–02) 78.74 3.945E–01 
(0.425) 

5 

Median 7.256E–13 
(2.665E–13) 

(–5.959E–14, 1.442E–12) 96.16 2.370E+00 
(0.077) 

0.5714 
(<0.0001) 

Mean 2.129E–04 
(4.771E–03) 

(–9.505E–03, 9.930E–03) 84.70 2.818E–01 
(0.306) 

6 

Median –3.730E–14 
(3.775E–14) 

(–2.123E–13, 6.688E–14) 93.08 –9.941E–01 
(0.138) 

0.5727 
(<0.0001) 

Mean –2.151E–04 
(4.771E–03) 

(–9.932E–03, 9.502E–03) 84.80 –5.934E–02 
(0.304) 

7 

Median 1.101E–13 
(5.551E–14) 

(–4.522E–14, 2.643E–13) 94.09 1.984E+00 
(0.118) 

0.5429 
(<0.0001) 

Mean 2.016E–04 
(5.255E–03) 

(–1.050E–02, 1.091E–02) 81.78 1.827E–01 
(0.364) 

8 

Median 2.589E–13 
(1.008E–13) 

(4.591E–15, 5.187E–13) 97.59 2.812E+00 
(0.048) 

0.5646 
(<0.0001) 

Mean –1.328E–04 
(4.934E–03) 

(–1.018E–02, 9.917E–03) 85.01 5.827E–02 
(0.300) 

9 

Median 0.000E+00 
(3.553E–14) 

(–9.908E–14, 2.882E–14) 50.12 –1.573E–03 
(0.998) 

0.5589 
(<0.0001) 

Mean 1.371E–04 
(5.356E–03) 

(–1.077E–02, 1.105E–02) 81.50 8.440E–02 
(0.370) 

Overall 

Median 1.101E–13 
(2.285E–13) 

(–9.908E–14, 2.643E–13) 95.57 1.963E+00 
(0.089) 

0.5656 
(<0.0001) 
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Table K-3. Superiority Analyses Using Jackknife Estimation to Linear Trapezoid 
Approximation for n = 30 Patients 

AE Estimator 

Paired Diff 
Mean/Med 

(SE) 95% CI on Paired Difference Coverage (%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean 9.583E–04 
(6.844E–04) 

(–4.357E–04, 2.352E–03) 91.45 1.400E+00 
(0.171) 

1 

Median 7.319E–13 
(9.437E–04) 

(–2.620E–03, 2.620E–03) 50.00 7.755E–10 
(>0.999) 

0.5865 
(<0.0001) 

Mean –1.389E–03 
(6.688E–04) 

(–2.751E–03, –2.655E–05) 97.70 –2.077E+00 
(0.046) 

2 

Median –9.355E–13 
(1.368E–03) 

(–3.797E–03, 3.797E–03) 50.00 –6.840E–10 
(>0.999) 

0.5767 
(<0.0001) 

Mean 1.377E–03 
(7.147E–04) 

(–7.889E–05, 2.833E–03) 96.85 1.927E+00 
(0.063) 

3 

Median 7.487E–13 
(1.356E–03) 

(–3.765E–03, 3.765E–03) 50.00 5.522E–10 
(>0.999) 

0.5904 
(<0.0001) 

Mean –6.193E–04 
(6.593E–04) 

(–1.962E–03, 7.237E–04) 82.27 –9.393E–01 
(0.355) 

4 

Median –5.558E–13 
(6.098E–04) 

(–1.693E–03, 1.693E–03) 50.00 –9.114E–10 
(>0.999) 

0.5519 
(<0.0001) 

Mean 9.426E–04 
(6.903E–04) 

(–4.635E–04, 2.349E–03) 90.92 1.365E+00 
(0.182) 

5 

Median 6.701E–13 
(9.282E–04) 

(–2.577E–03, 2.577E–03) 50.00 7.220E–10 
(>0.999) 

0.5872 
(<0.0001) 

Mean 1.638E–04 
(6.668E–04) 

(–1.194E–03, 1.522E–03) 59.63 2.457E–01 
(0.807) 

6 

Median –5.240E–14 
(1.613E–04) 

(–4.480E–04, 4.480E–04) 50.00 –3.248E–10 
(>0.999) 

0.5731 
(<0.0001) 

Mean –1.808E–04 
(6.586E–04) 

(–1.522E–03, 1.161E–03) 60.73 –2.745E–01 
(0.785) 

7 

Median 1.097E–13 
(1.781E–04) 

(–4.944E–04, 4.944E–04) 50.00 6.161E–10 
(>0.999) 

0.5370 
(<0.0001) 

Mean 1.684E–04 
(6.634E–04) 

(–1.183E–03, 1.520E–03) 59.94 2.538E–01 
(0.801) 

8 

Median 2.589E–13 
(1.658E–04) 

(–4.604E–04, 4.604E–04) 50.00 1.561E–09 
(>0.999) 

0.5576 
(<0.0001) 

Mean –9.689E–05 
(6.623E–04) 

(–1.446E–03, 1.252E–03) 55.77 –1.463E–01 
(0.885) 

9 

Median –2.220E–16 
(9.541E–05) 

(–2.649E–04, 2.649E–04) 50.00 –2.327E–12 
(>0.999) 

0.5514 
(<0.0001) 

Mean 1.471E–04 
(6.743E–04) 

(–1.226E–03, 1.521E–03) 77.25 1.950E–01 
(0.455) 

Overall 

Median 1.097E–13 
(6.098E–04) 

(–1.693E–03, 1.693E–03) 50.00 5.522E–10 
(>0.999) 

0.5680 
(<0.0001) 
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Table K-4. Superiority Analyses Using Partial Batch Estimation to Spline Approximation 
for n = 30 Patients  

AE Estimator 

Paired Diff 
Mean/Med 

(SE) 95% CI on Paired Difference Coverage (%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –7.697E–03 
(7.615E–03) 

(–2.321E–02, 7.813E–03) 84.02 –1.011E+00 
(0.320) 

1 

Median 7.931E–13 
(2.864E–13) 

(–2.135E–15, 1.588E–12) 97.48 2.769E+00 
(0.050) 

0.4214 
(<0.0001) 

Mean –1.011E–02 
(5.138E–03) 

(–2.057E–02, 3.570E–04) 97.11 –1.967E+00 
(0.058) 

2 

Median –7.514E–13 
(1.872E–13) 

(–1.271E–12, –2.317E–13) 99.20 –4.014E+00 
(0.016) 

0.4003 
(<0.0001) 

Mean –7.229E–03 
(6.221E–03) 

(–1.990E–02, 5.443E–03) 87.31 –1.162E+00 
(0.254) 

3 

Median 8.193E–13 
(6.839E–13) 

(–1.079E–12, 2.718E–12) 85.15 1.198E+00 
(0.297) 

0.4253 
(<0.0001) 

Mean –9.323E–03 
(5.383E–03) 

(–2.029E–02, 1.642E–03) 95.35 –1.732E+00 
(0.093) 

4 

Median –5.889E–13 
(3.486E–14) 

(–6.857E–13, –4.921E–13) >99.99 –1.689E+01 
(<0.001) 

0.4084 
(<0.0001) 

Mean –7.669E–03 
(5.832E–03) 

(–1.955E–02, 4.211E–03) 90.11 –1.315E+00 
(0.198) 

5 

Median 7.256E–13 
(3.375E–13) 

(–2.114E–13, 1.663E–12) 95.10 2.150E+00 
(0.098) 

0.4229 
(<0.0001) 

Mean –8.502E–03 
(5.728E–03) 

(–2.017E–02, 3.166E–03) 92.62 –1.484E+00 
(0.148) 

6 

Median –3.730E–14 
(3.775E–14) 

(–1.421E–13, 6.750E–14) 81.05 –9.882E–01 
(0.379) 

0.4159 
(<0.0001) 

Mean –8.838E–03 
(5.410E–03) 

(–1.986E–02, 2.182E–03) 94.39 –1.634E+00 
(0.112) 

7 

Median 1.088E–13 
(3.597E–14) 

(8.930E–15, 2.087E–13) 98.05 3.025E+00 
(0.039) 

0.4134 
(<0.0001) 

Mean –8.468E–03 
(5.525E–03) 

(–1.972E–02, 2.786E–03) 93.24 –1.533E+00 
(0.135) 

8 

Median 2.585E–13 
(5.795E–14) 

(9.755E–14, 4.194E–13) 99.44 4.460E+00 
(0.011) 

0.4168 
(<0.0001) 

Mean –8.750E–03 
(5.489E–03) 

(–1.993E–02, 2.430E–03) 93.96 –1.594E+00 
(0.121) 

9 

Median 0.000E+00 
(3.553E–14) 

(–9.864E–14, 9.864E–14) 50.00 0.000E+00 
(>0.999) 

0.4144 
(<0.0001) 

Mean –8.509E–03 
(5.816E–03) 

(–2.036E–02, 3.337E–03) 92.01 –1.492E+00 
(0.160) 

Overall 

Median 1.088E–13 
(5.795E–14) 

(–1.421E–13, 2.087E–13) 97.48 1.198E+00 
(0.050) 

0.4154 
(<0.0001) 
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Table K-5. Superiority Analyses Using Bootstrap Estimation to Spline Approximation for 
n = 30 Patients  

AE Estimator 

Paired Diff 
Mean/Med 

(SE) 95% CI on Paired Difference Coverage (%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –7.705E–03 
(9.024E–03) 

(–2.609E–02, 1.068E–02) 86.59 –1.353E+00 
(0.268) 

1 

Median 7.931E–13 
(2.862E–13) 

(–2.135E–15, 1.478E–12) 97.48 2.769E+00 
(0.050) 

0.4345 
(<0.0001) 

Mean –1.009E–02 
(6.225E–03) 

(–2.277E–02, 2.592E–03) 89.99 –3.767E+00 
(0.200) 

2 

Median –7.514E–13 
(2.163E–13) 

(–1.632E–12, –2.317E–13) 98.80 –3.540E+00 
(0.024) 

0.4354 
(<0.0001) 

Mean –7.203E–03 
(7.138E–03) 

(–2.174E–02, 7.337E–03) 88.50 –2.250E+00 
(0.230) 

3 

Median 8.193E–13 
(5.225E–13) 

(–4.471E–13, 2.453E–12) 93.91 1.958E+00 
(0.122) 

0.4342 
(<0.0001) 

Mean –9.452E–03 
(6.210E–03) 

(–2.210E–02, 3.198E–03) 90.05 –3.743E+00 
(0.199) 

4 

Median –5.889E–13 
(2.647E–13) 

(–1.296E–12, 1.429E–13) 95.51 –2.228E+00 
(0.090) 

0.4330 
(<0.0001) 

Mean –7.366E–03 
(6.552E–03) 

(–2.071E–02, 5.980E–03) 89.05 –3.262E+00 
(0.219) 

5 

Median 7.256E–13 
(2.660E–13) 

(–6.020E–14, 1.441E–12) 96.18 2.374E+00 
(0.076) 

0.4357 
(<0.0001) 

Mean –8.148E–03 
(6.760E–03) 

(–2.192E–02, 5.621E–03) 88.87 –2.757E+00 
(0.223) 

6 

Median –3.730E–14 
(3.819E–14) 

(–2.143E–13, 6.750E–14) 92.81 –9.941E–01 
(0.144) 

0.4354 
(<0.0001) 

Mean –8.666E–03 
(6.413E–03) 

(–2.173E–02, 4.396E–03) 89.52 –4.461E+00 
(0.210) 

7 

Median 1.088E–13 
(3.664E–14) 

(–4.399E–14, 2.100E–13) 93.93 1.960E+00 
(0.121) 

0.4363 
(<0.0001) 

Mean –8.512E–03 
(6.412E–03) 

(–2.157E–02, 4.548E–03) 89.38 –3.873E+00 
(0.212) 

8 

Median 2.585E–13 
(1.010E–13) 

(3.974E–15, 5.194E–13) 97.58 2.807E+00 
(0.048) 

0.4352 
(<0.0001) 

Mean –8.875E–03 
(6.349E–03) 

(–2.181E–02, 4.057E–03) 89.48 –3.660E+00 
(0.210) 

9 

Median 0.000E+00 
(3.553E–14) 

(–9.864E–14, 3.005E–14) 50.00 0.000E+00 
(>0.999) 

0.4350 
(<0.0001) 

Mean –8.446E–03 
(6.787E–03) 

(–2.227E–02, 5.379E–03) 89.05 –3.236E+00 
(0.219) 

Overall 

Median 1.088E–13 
(2.163E–13) 

(–9.864E–14, 2.100E–13) 95.51 1.958E+00 
(0.090) 

0.4350 
(<0.0001) 
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Table K-6. Superiority Analyses Using Jackknife Estimation to Spline Approximation for 
n = 30 Patients  

AE Estimator 

Paired Diff 
Mean/Med 

(SE) 95% CI on Paired Difference Coverage (%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –7.697E–03 
(3.133E–03) 

(–1.408E–02, –1.316E–03) 99.02 –2.457E+00 
(0.020) 

1 

Median 7.321E–13 
(7.580E–03) 

(–2.105E–02, 2.105E–02) 50.00 9.658E–11 
(>0.999) 

0.4216 
(<0.0001) 

Mean –1.011E–02 
(3.016E–03) 

(–1.625E–02, –3.964E–03) 99.90 –3.351E+00 
(0.002) 

2 

Median –9.330E–13 
(9.954E–03) 

(–2.764E–02, 2.764E–02) 50.00 –9.374E–11 
(>0.999) 

0.4032 
(<0.0001) 

Mean –7.229E–03 
(3.159E–03) 

(–1.366E–02, –7.955E–04) 98.56 –2.289E+00 
(0.029) 

3 

Median 7.492E–13 
(7.119E–03) 

(–1.977E–02, 1.977E–02) 50.00 1.052E–10 
(>0.999) 

0.4251 
(<0.0001) 

Mean –9.323E–03 
(3.069E–03) 

(–1.558E–02, –3.071E–03) 99.76 –3.038E+00 
(0.005) 

4 

Median –5.560E–13 
(9.181E–03) 

(–2.549E–02, 2.549E–02) 50.00 –6.056E–11 
(>0.999) 

0.4102 
(<0.0001) 

Mean –7.669E–03 
(3.116E–03) 

(–1.402E–02, –1.322E–03) 99.03 –2.461E+00 
(0.019) 

5 

Median 6.699E–13 
(7.552E–03) 

(–2.097E–02, 2.097E–02) 50.00 8.871E–11 
(>0.999) 

0.4231 
(<0.0001) 

Mean –8.502E–03 
(3.093E–03) 

(–1.480E–02, –2.201E–03) 99.51 –2.748E+00 
(0.010) 

6 

Median –5.218E–14 
(8.372E–03) 

(–2.324E–02, 2.324E–02) 50.00 –6.233E–12 
(>0.999) 

0.4169 
(<0.0001) 

Mean –8.838E–03 
(3.043E–03) 

(–1.504E–02, –2.639E–03) 99.67 –2.904E+00 
(0.007) 

7 

Median 9.348E–14 
(8.703E–03) 

(–2.416E–02, 2.416E–02) 50.00 1.074E–11 
(>0.999) 

0.4149 
(<0.0001) 

Mean –8.468E–03 
(3.059E–03) 

(–1.470E–02, –2.238E–03) 99.54 –2.769E+00 
(0.009) 

8 

Median 2.587E–13 
(8.339E–03) 

(–2.315E–02, 2.315E–02) 50.00 3.102E–11 
(>0.999) 

0.4178 
(<0.0001) 

Mean –8.750E–03 
(3.060E–03) 

(–1.498E–02, –2.518E–03) 99.63 –2.860E+00 
(0.007) 

9 

Median 0.000E+00 
(8.617E–03) 

(–2.392E–02, 2.392E–02) 50.00 0.000E+00 
(>0.999) 

0.4157 
(<0.0001) 

Mean –8.509E–03 
(3.083E–03) 

(–1.479E–02, –2.229E–03) 99.40 –2.764E+00 
(0.012) 

Overall 

Median 9.348E–14 
(8.372E–03) 

(–2.324E–02, 2.324E–02) 50.00 1.074E–11 
(>0.999) 

0.4165 
(<0.0001) 
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Table K-7. Superiority Analyses Using Partial Batch Estimation to Linear Trapezoid 
Approximation for n = 250 Patients 

AE Estimator 
Paired Diff Mean/Med 

(SE) 
95% CI on Paired 

Difference 
Coverage 

(%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –9.372E–05 (2.256E–03) (–4.537E–03, 4.349E–03) 51.66 –4.155E–02 
(0.967) 

1 

Median –9.592E–14 (3.131E–14) (–1.631E–13, –2.877E–14) 99.58 –3.064E+00 
(0.008) 

0.1978 
(<0.0001) 

Mean 4.127E–06 (2.089E–03) (–4.109E–03, 4.117E–03) 50.08 1.976E–03 
(0.998) 

2 

Median 1.732E–13 (2.998E–14) (1.089E–13, 2.375E–13) >99.99 5.778E+00 
(<0.001) 

0.1855 
(<0.0001) 

Mean –1.486E–04 (2.177E–03) (–4.437E–03, 4.139E–03) 52.72 –6.827E–02 
(0.946) 

3 

Median –4.130E–14 (6.661E–16) (–4.273E–14, –3.987E–14) >99.99 –6.200E+01 
(<0.001) 

0.2086 
(<0.0001) 

Mean –3.705E–05 (2.052E–03) (–4.079E–03, 4.005E–03) 50.72 –1.805E–02 
(0.986) 

4 

Median 1.594E–13 (2.753E–14) (1.004E–13, 2.185E–13) >99.99 5.790E+00 
(<0.001) 

0.1918 
(<0.0001) 

Mean –2.359E–04 (1.938E–03) (–4.052E–03, 3.580E–03) 54.84 –1.217E–01 
(0.903) 

5 

Median –5.334E–13 (1.554E–15) (–5.367E–13, –5.300E–13) >99.99 –3.431E+02 
(<0.001) 

0.2185 
(<0.0001) 

Mean –1.281E–04 (2.160E–03) (–4.383E–03, 4.126E–03) 52.36 –5.931E–02 
(0.953) 

6 

Median 1.732E–14 (6.661E–16) (1.589E–14, 1.875E–14) >99.99 2.600E+01 
(<0.001) 

0.2055 
(<0.0001) 

Mean –1.633E–04 (2.040E–03) (–4.181E–03, 3.855E–03) 53.19 –8.005E–02 
(0.936) 

7 

Median –2.047E–13 (8.882E–16) (–2.066E–13, –2.028E–13) >99.99 –2.305E+02 
(<0.001) 

0.2089 
(<0.0001) 

Mean –7.377E–05 (2.154E–03) (–4.316E–03, 4.169E–03) 51.36 –3.425E–02 
(0.973) 

8 

Median 1.732E–13 (2.665E–14) (1.160E–13, 2.303E–13) >99.99 6.500E+00 
(<0.001) 

0.1980 
(<0.0001) 

Mean –1.623E–04 (1.922E–03) (–3.948E–03, 3.623E–03) 53.36 –8.442E–02 
(0.933) 

9 

Median –3.193E–13 (2.465E–14) (–3.722E–13, –2.664E–13) >99.99 –1.295E+01 
(<0.001) 

0.2070 
(<0.0001) 

Mean –1.154E–04 (2.088E–03) (–4.227E–03, 3.996E–03) 52.25 –5.618E–02 
(0.955) 

Overall 

Median –4.130E–14 (2.465E–14) (–4.273E–14, –2.877E–14) >99.99 –3.064E+00 
(<0.001) 

0.2024 
(<0.0001) 
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Table K-8. Superiority Analyses Using Bootstrap Estimation to Linear Trapezoid 
Approximation for n = 250 Patients 

AE Estimator 
Paired Diff Mean/Med 

(SE) 
95% CI on Paired 

Difference 
Coverage 

(%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –8.031E–05 (3.270E–03) (–6.520E–03, 6.359E–03) 61.87 2.946E–02 
(0.763) 

1 

Median –9.592E–14 (3.131E–14) (–1.626E–13, –2.877E–14) 99.58 –3.064E+00 
(0.008) 

0.2731 
(<0.0001) 

Mean –1.027E–05 (3.093E–03) (–6.102E–03, 6.082E–03) 63.11 6.753E–02 
(0.738) 

2 

Median 1.732E–13 (2.975E–14) (1.127E–13, 2.375E–13) >99.99 6.077E+00 
(<0.001) 

0.2643 
(<0.0001) 

Mean –1.515E–04 (3.148E–03) (–6.351E–03, 6.048E–03) 61.78 –9.953E–04 
(0.764) 

3 

Median –4.130E–14 (2.687E–14) (–9.893E–14, 1.544E–14) 92.98 –1.563E+00 
(0.140) 

0.2790 
(<0.0001) 

Mean –3.438E–05 (3.033E–03) (–6.007E–03, 5.938E–03) 63.28 5.802E–02 
(0.734) 

4 

Median 1.594E–13 (2.731E–14) (1.014E–13, 2.185E–13) >99.99 5.917E+00 
(<0.001) 

0.2682 
(<0.0001) 

Mean –2.359E–04 (2.954E–03) (–6.053E–03, 5.581E–03) 62.80 –4.086E–02 
(0.744) 

5 

Median –5.334E–13 (2.442E–14) (–5.857E–13, –4.822E–13) >99.99 –2.174E+01 
(<0.001) 

0.2895 
(<0.0001) 

Mean –1.108E–04 (3.120E–03) (–6.256E–03, 6.034E–03) 62.07 1.742E–02 
(0.759) 

6 

Median 1.732E–14 (2.598E–14) (–3.840E–14, 7.215E–14) 74.57 6.667E–01 
(0.509) 

0.2750 
(<0.0001) 

Mean –1.387E–04 (3.026E–03) (–6.098E–03, 5.821E–03) 62.64 7.048E–03 
(0.747) 

7 

Median –2.047E–13 (2.509E–14) (–2.585E–13, –1.519E–13) >99.99 –8.212E+00 
(<0.001) 

0.2795 
(<0.0001) 

Mean –6.939E–05 (3.082E–03) (–6.138E–03, 6.000E–03) 62.41 3.629E–02 
(0.752) 

8 

Median 1.732E–13 (2.665E–14) (1.175E–13, 2.303E–13) >99.99 6.667E+00 
(<0.001) 

0.2693 
(<0.0001) 

Mean –1.492E–04 (2.930E–03) (–5.919E–03, 5.621E–03) 63.23 4.804E–03 
(0.735) 

9 

Median –3.193E–13 (2.442E–14) (–3.717E–13, –2.669E–13) >99.99 –1.295E+01 
(<0.001) 

0.2794 
(<0.0001) 

Mean –1.089E–04 (3.073E–03) (–6.161E–03, 5.943E–03) 62.58 1.986E–02 
(0.748) 

Overall 

Median –4.130E–14 (2.665E–14) (–9.893E–14, 1.544E–14) >99.99 –1.563E+00 
(<0.001) 

0.2753 
(<0.0001) 
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Table K-9. Superiority Analyses Using Jackknife Estimation to Linear Trapezoid 
Approximation for n = 250 Patients 

AE Estimator 
Paired Diff Mean/Med 

(SE) 
95% CI on Paired 

Difference 
Coverage 

(%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –9.372E–05 (6.629E–05) (–2.243E–04, 3.683E–05) 92.07 –1.414E+00 
(0.159) 

1 

Median –9.592E–14 (9.354E–05) (–2.006E–04, 2.006E–04) 50.00 –1.026E–09 
(>0.999) 

0.1984 
(<0.0001) 

Mean 4.127E–06 (7.136E–05) (–1.364E–04, 1.447E–04) 52.30 5.784E–02 
(0.954) 

2 

Median 1.743E–13 (4.119E–06) (–8.834E–06, 8.834E–06) 50.00 4.232E–08 
(>0.999) 

0.1861 
(<0.0001) 

Mean –1.486E–04 (6.357E–05) (–2.738E–04, –2.343E–05) 98.99 –2.338E+00 
(0.020) 

3 

Median –4.130E–14 (1.483E–04) (–3.182E–04, 3.182E–04) 50.00 –2.784E–10 
(>0.999) 

0.2091 
(<0.0001) 

Mean –3.705E–05 (6.932E–05) (–1.736E–04, 9.947E–05) 70.32 –5.344E–01 
(0.594) 

4 

Median 1.594E–13 (3.697E–05) (–7.930E–05, 7.930E–05) 50.00 4.312E–09 
(>0.999) 

0.1923 
(<0.0001) 

Mean –2.359E–04 (6.060E–05) (–3.552E–04, –1.165E–04) 99.99 –3.892E+00 
(<0.001) 

5 

Median –5.334E–13 (2.354E–04) (–5.049E–04, 5.049E–04) 50.00 –2.266E–09 
(>0.999) 

0.2191 
(<0.0001) 

Mean –1.281E–04 (6.482E–05) (–2.558E–04, –4.728E–07) 97.54 –1.977E+00 
(0.049) 

6 

Median 1.732E–14 (1.279E–04) (–2.743E–04, 2.743E–04) 50.00 1.354E–10 
(>0.999) 

0.2060 
(<0.0001) 

Mean –1.633E–04 (6.370E–05) (–2.888E–04, –3.789E–05) 99.45 –2.564E+00 
(0.011) 

7 

Median –2.047E–13 (1.630E–04) (–3.496E–04, 3.496E–04) 50.00 –1.256E–09 
(>0.999) 

0.2094 
(<0.0001) 

Mean –7.377E–05 (6.735E–05) (–2.064E–04, 5.887E–05) 86.28 –1.095E+00 
(0.274) 

8 

Median 1.734E–13 (7.363E–05) (–1.579E–04, 1.579E–04) 50.00 2.355E–09 
(>0.999) 

0.1985 
(<0.0001) 

Mean –1.623E–04 (6.416E–05) (–2.886E–04, –3.590E–05) 99.40 –2.529E+00 
(0.012) 

9 

Median –3.193E–13 (1.619E–04) (–3.473E–04, 3.473E–04) 50.00 –1.972E–09 
(>0.999) 

0.2075 
(<0.0001) 

Mean –1.154E–04 (6.568E–05) (–2.448E–04, 1.396E–05) 88.48 –1.810E+00 
(0.230) 

Overall 

Median –4.130E–14 (1.279E–04) (–2.743E–04, 2.743E–04) 50.00 –2.784E–10 
(>0.999) 

0.2029 
(<0.0001) 
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Table K-10. Superiority Analyses Using Partial Batch Estimation to Spline 
Approximation for n = 250 Patients 

AE Estimator 
Paired Diff Mean/Med 

(SE) 
95% CI on Paired 

Difference 
Coverage 

(%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –3.501E–03 (1.428E–02) (–3.163E–02, 2.463E–02) 59.67 –2.451E–01 
(0.807) 

1 

Median –9.592E–14 (3.153E–14) (–1.635E–13, –2.830E–14) 99.56 –3.042E+00 
(0.009) 

0.0876 
(<0.0001) 

Mean –3.389E–03 (1.412E–02) (–3.120E–02, 2.443E–02) 59.47 –2.400E–01 
(0.811) 

2 

Median 1.741E–13 (2.975E–14) (1.103E–13, 2.379E–13) >99.99 5.851E+00 
(<0.001) 

0.0882 
(<0.0001) 

Mean –3.540E–03 (1.397E–02) (–3.106E–02, 2.398E–02) 59.99 –2.533E–01 
(0.800) 

3 

Median –4.174E–14 (2.665E–14) (–9.889E–14, 1.540E–14) 93.02 –1.567E+00 
(0.140) 

0.0878 
(<0.0001) 

Mean –3.423E–03 (1.399E–02) (–3.097E–02, 2.412E–02) 59.66 –2.447E–01 
(0.807) 

4 

Median 1.590E–13 (2.753E–14) (9.993E–14, 2.180E–13) >99.99 5.774E+00 
(<0.001) 

0.0882 
(<0.0001) 

Mean –3.621E–03 (1.374E–02) (–3.069E–02, 2.345E–02) 60.38 –2.634E–01 
(0.792) 

5 

Median –5.338E–13 (2.531E–14) (–5.881E–13, –4.795E–13) >99.99 –2.109E+01 
(<0.001) 

0.0877 
(<0.0001) 

Mean –3.513E–03 (1.389E–02) (–3.086E–02, 2.384E–02) 59.97 –2.530E–01 
(0.801) 

6 

Median 1.688E–14 (2.576E–14) (–3.837E–14, 7.212E–14) 73.85 6.552E–01 
(0.523) 

0.0880 
(<0.0001) 

Mean –3.545E–03 (1.378E–02) (–3.069E–02, 2.360E–02) 60.14 –2.572E–01 
(0.797) 

7 

Median –2.043E–13 (2.487E–14) (–2.576E–13, –1.509E–13) >99.99 –8.214E+00 
(<0.001) 

0.0880 
(<0.0001) 

Mean –3.457E–03 (1.393E–02) (–3.089E–02, 2.397E–02) 59.79 –2.482E–01 
(0.804) 

8 

Median 1.741E–13 (2.620E–14) (1.179E–13, 2.303E–13) >99.99 6.644E+00 
(<0.001) 

0.0882 
(<0.0001) 

Mean –3.543E–03 (1.375E–02) (–3.061E–02, 2.353E–02) 60.16 –2.577E–01 
(0.797) 

9 

Median –3.189E–13 (2.431E–14) (–3.710E–13, –2.667E–13) >99.99 –1.311E+01 
(<0.001) 

0.0880 
(<0.0001) 

Mean –3.504E–03 (1.394E–02) (–3.096E–02, 2.395E–02) 59.91 –2.514E–01 
(0.802) 

Overall 

Median –4.174E–14 (2.620E–14) (–9.889E–14, 1.540E–14) >99.99 –1.567E+00 
(<0.001) 

0.0880 
(<0.0001) 
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Table K-11. Superiority Analyses Using Bootstrap Estimation to Spline Approximation 
for n = 250 Patients 

AE Estimator 
Paired Diff Mean/Med 

(SE) 
95% CI on Paired 

Difference Coverage (%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –3.624E–03 (1.105E–02) (–2.539E–02, 1.814E–02) 77.24 –9.775E–01 
(0.455) 

1 

Median –9.592E–14 (3.131E–14) (–1.630E–13, –2.925E–14) 99.56 –3.042E+00 
(0.009) 

0.1477 
(<0.0001) 

Mean –3.425E–03 (1.111E–02) (–2.530E–02, 1.845E–02) 76.81 –7.462E–01 
(0.464) 

2 

Median 1.741E–13 (2.931E–14) (1.131E–13, 2.379E–13) >99.99 6.125E+00 
(<0.001) 

0.1481 
(<0.0001) 

Mean –3.462E–03 (1.155E–02) (–2.621E–02, 1.929E–02) 75.36 –6.046E–01 
(0.493) 

3 

Median –4.174E–14 (2.665E–14) (–9.913E–14, 1.540E–14) 93.02 –1.567E+00 
(0.140) 

0.1503 
(<0.0001) 

Mean –3.421E–03 (1.139E–02) (–2.585E–02, 1.901E–02) 75.69 –6.187E–01 
(0.486) 

4 

Median 1.590E–13 (2.709E–14) (1.018E–13, 2.180E–13) >99.99 5.967E+00 
(<0.001) 

0.1484 
(<0.0001) 

Mean –3.585E–03 (1.125E–02) (–2.573E–02, 1.856E–02) 75.88 –6.659E–01 
(0.482) 

5 

Median –5.338E–13 (2.442E–14) (–5.881E–13, –4.822E–13) >99.99 –2.185E+01 
(<0.001) 

0.1493 
(<0.0001) 

Mean –3.688E–03 (1.146E–02) (–2.626E–02, 1.888E–02) 75.77 –6.554E–01 
(0.485) 

6 

Median 1.688E–14 (2.576E–14) (–3.837E–14, 7.212E–14) 73.85 6.552E–01 
(0.523) 

0.1493 
(<0.0001) 

Mean –3.495E–03 (1.126E–02) (–2.567E–02, 1.868E–02) 75.80 –6.228E–01 
(0.484) 

7 

Median –2.043E–13 (2.487E–14) (–2.576E–13, –1.527E–13) >99.99 –8.286E+00 
(<0.001) 

0.1482 
(<0.0001) 

Mean –3.285E–03 (1.145E–02) (–2.583E–02, 1.926E–02) 75.43 –5.751E–01 
(0.491) 

8 

Median 1.741E–13 (2.620E–14) (1.179E–13, 2.303E–13) >99.99 6.644E+00 
(<0.001) 

0.1492 
(<0.0001) 

Mean –3.496E–03 (1.141E–02) (–2.597E–02, 1.898E–02) 75.71 –6.408E–01 
(0.486) 

9 

Median –3.189E–13 (2.442E–14) (–3.712E–13, –2.673E–13) >99.99 –1.305E+01 
(<0.001) 

0.1517 
(<0.0001) 

Mean –3.498E–03 (1.133E–02) (–2.580E–02, 1.881E–02) 75.97 –6.786E–01 
(0.481) 

Overall 

Median –4.174E–14 (2.620E–14) (–9.913E–14, 1.540E–14) >99.99 –1.567E+00 
(<0.001) 

0.1491 
(<0.0001) 
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Table K-12. Superiority Analyses Using Jackknife Estimation to Spline Approximation 
for n = 250 Patients 

AE Estimator 
Paired Diff Mean/Med 

(SE) 
95% CI on Paired 

Difference 
Coverage 

(%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Mean –3.501E–03 (4.802E–04) (–4.447E–03, –2.555E–03) >99.99 –7.291E+00 
(<0.001) 

1 

Median –9.592E–14 (3.494E–03) (–7.494E–03, 7.494E–03) 50.00 –2.745E–11 
(>0.999) 

0.0876 
(<0.0001) 

Mean –3.389E–03 (4.778E–04) (–4.330E–03, –2.448E–03) >99.99 –7.093E+00 
(<0.001) 

2 

Median 1.741E–13 (3.382E–03) (–7.255E–03, 7.255E–03) 50.00 5.147E–11 
(>0.999) 

0.0881 
(<0.0001) 

Mean –3.540E–03 (4.714E–04) (–4.468E–03, –2.611E–03) >99.99 –7.509E+00 
(<0.001) 

3 

Median –4.174E–14 (3.533E–03) (–7.577E–03, 7.577E–03) 50.00 –1.182E–11 
(>0.999) 

0.0878 
(<0.0001) 

Mean –3.423E–03 (4.736E–04) (–4.356E–03, –2.490E–03) >99.99 –7.227E+00 
(<0.001) 

4 

Median 1.590E–13 (3.416E–03) (–7.327E–03, 7.327E–03) 50.00 4.654E–11 
(>0.999) 

0.0882 
(<0.0001) 

Mean –3.621E–03 (4.681E–04) (–4.543E–03, –2.699E–03) >99.99 –7.735E+00 
(<0.001) 

5 

Median –5.338E–13 (3.614E–03) (–7.751E–03, 7.751E–03) 50.00 –1.477E–10 
(>0.999) 

0.0877 
(<0.0001) 

Mean –3.513E–03 (4.699E–04) (–4.438E–03, –2.587E–03) >99.99 –7.475E+00 
(<0.001) 

6 

Median 1.688E–14 (3.506E–03) (–7.519E–03, 7.519E–03) 50.00 4.814E–12 
(>0.999) 

0.0880 
(<0.0001) 

Mean –3.545E–03 (4.686E–04) (–4.468E–03, –2.622E–03) >99.99 –7.565E+00 
(<0.001) 

7 

Median –2.043E–13 (3.538E–03) (–7.588E–03, 7.588E–03) 50.00 –5.774E–11 
(>0.999) 

0.0880 
(<0.0001) 

Mean –3.457E–03 (4.712E–04) (–4.385E–03, –2.529E–03) >99.99 –7.337E+00 
(<0.001) 

8 

Median 1.741E–13 (3.451E–03) (–7.401E–03, 7.401E–03) 50.00 5.045E–11 
(>0.999) 

0.0881 
(<0.0001) 

Mean –3.543E–03 (4.688E–04) (–4.466E–03, –2.620E–03) >99.99 –7.557E+00 
(<0.001) 

9 

Median –3.189E–13 (3.536E–03) (–7.584E–03, 7.584E–03) 50.00 –9.018E–11 
(>0.999) 

0.0880 
(<0.0001) 

Mean –3.504E–03 (4.722E–04) (–4.433E–03, –2.574E–03) >99.99 –7.421E+00 
(<0.001) 

Overall 

Median –4.174E–14 (3.506E–03) (–7.519E–03, 7.519E–03) 50.00 –1.182E–11 
(>0.999) 

0.0879 
(<0.0001) 
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Table K-13. Parametric Equivalence Analyses for ∆ = 10% Using Partial Batch 
Estimation to Linear Trapezoid Approximation for n = 30 Patients 

AE Effect 
Paired Difference Mean 

(SE) 
95% CI on Paired 

Difference Coverage (%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Lower –1.334E–02 (2.593E–03) (–1.862E–02, –8.056E–03) 99.98 –5.764E+00 
(<0.001) 

0.5102 
(<0.0001) 

Overall 

Upper 1.363E–02 (3.771E–03) (5.952E–03, 2.131E–02) 99.90 3.820E+00 
(0.002) 

0.4851 
(<0.0001) 

Lower –1.231E–02 (1.420E–03) (–1.520E–02, –9.417E–03) >99.99 –8.669E+00 
(<0.001) 

0.5202 
(<0.0001) 

1 

Upper 1.423E–02 (4.443E–03) (5.176E–03, 2.328E–02) 99.85 3.202E+00 
(0.003) 

0.4749 
(<0.0001) 

Lower –1.502E–02 (4.584E–03) (–2.436E–02, –5.684E–03) 99.87 –3.277E+00 
(0.003) 

0.4902 
(<0.0001) 

2 

Upper 1.224E–02 (2.132E–03) (7.901E–03, 1.659E–02) >99.99 5.743E+00 
(<0.001) 

0.5068 
(<0.0001) 

Lower –1.201E–02 (1.522E–03) (–1.511E–02, –8.912E–03) >99.99 –7.891E+00 
(<0.001) 

0.5220 
(<0.0001) 

3 

Upper 1.477E–02 (4.932E–03) (4.721E–03, 2.481E–02) 99.74 2.994E+00 
(0.005) 

0.4722 
(<0.0001) 

Lower –1.415E–02 (3.795E–03) (–2.188E–02, –6.417E–03) 99.96 –3.728E+00 
(0.001) 

0.5014 
(<0.0001) 

4 

Upper 1.291E–02 (2.549E–03) (7.717E–03, 1.810E–02) >99.99 5.064E+00 
(<0.001) 

0.4939 
(<0.0001) 

Lower –1.253E–02 (1.752E–03) (–1.609E–02, –8.957E–03) >99.99 –7.151E+00 
(<0.001) 

0.5197 
(<0.0001) 

5 

Upper 1.441E–02 (4.707E–03) (4.822E–03, 2.400E–02) 99.78 3.061E+00 
(0.004) 

0.4751 
(<0.0001) 

Lower –1.330E–02 (2.606E–03) (–1.860E–02, –7.987E–03) >99.99 –5.102E+00 
(<0.001) 

0.5113 
(<0.0001) 

6 

Upper 1.362E–02 (3.574E–03) (6.342E–03, 2.090E–02) 99.97 3.811E+00 
(0.001) 

0.4825 
(<0.0001) 

Lower –1.372E–02 (2.605E–03) (–1.902E–02, –8.412E–03) >99.99 –5.266E+00 
(<0.001) 

0.5070 
(<0.0001) 

7 

Upper 1.336E–02 (3.774E–03) (5.669E–03, 2.104E–02) 99.94 3.539E+00 
(0.001) 

0.4895 
(<0.0001) 

Lower –1.338E–02 (2.264E–03) (–1.799E–02, –8.764E–03) >99.99 –5.908E+00 
(<0.001) 

0.5113 
(<0.0001) 

8 

Upper 1.371E–02 (4.159E–03) (5.241E–03, 2.219E–02) 99.88 3.297E+00 
(0.002) 

0.4834 
(<0.0001) 

Lower –1.364E–02 (2.792E–03) (–1.933E–02, –7.955E–03) >99.99 –4.886E+00 
(<0.001) 

0.5083 
(<0.0001) 

9 

Upper 1.345E–02 (3.668E–03) (5.977E–03, 2.092E–02) 99.96 3.666E+00 
(0.001) 

0.4873 
(<0.0001) 
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Table K-14. Nonparametric Equivalence Analyses for ∆ = 10% Using Partial Batch 
Estimation to Linear Trapezoid Approximation for n = 30 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference Coverage (%) Tstat (p–value) 

Lower –9.168E–12 (4.511E–12) (–2.169E–11, 3.356E–12) 94.41 –2.033E+00 (0.112) Overall 

Upper 9.329E–12 (4.640E–12) (–3.554E–12, 2.221E–11) 94.26 2.011E+00 (0.115) 

Lower –8.706E–12 (4.254E–12) (–2.052E–11, 3.105E–12) 94.49 –2.046E+00 (0.110) 1 

Upper 9.584E–12 (4.777E–12) (–3.679E–12, 2.285E–11) 94.24 2.006E+00 (0.115) 

Lower –1.000E–11 (4.956E–12) (–2.376E–11, 3.755E–12) 94.32 –2.019E+00 (0.114) 2 

Upper 8.609E–12 (4.263E–12) (–3.228E–12, 2.045E–11) 94.32 2.019E+00 (0.114) 

Lower –8.748E–12 (4.275E–12) (–2.062E–11, 3.123E–12) 94.49 –2.046E+00 (0.110) 3 

Upper 9.645E–12 (4.812E–12) (–3.715E–12, 2.300E–11) 94.22 2.004E+00 (0.116) 

Lower –9.805E–12 (4.843E–12) (–2.325E–11, 3.642E–12) 94.35 –2.025E+00 (0.113) 4 

Upper 8.722E–12 (4.326E–12) (–3.289E–12, 2.073E–11) 94.30 2.016E+00 (0.114) 

Lower –8.814E–12 (4.316E–12) (–2.080E–11, 3.170E–12) 94.47 –2.042E+00 (0.111) 5 

Upper 9.618E–12 (4.795E–12) (–3.696E–12, 2.293E–11) 94.23 2.006E+00 (0.115) 

Lower –9.298E–12 (4.573E–12) (–2.199E–11, 3.398E–12) 94.41 –2.033E+00 (0.112) 6 

Upper 9.165E–12 (4.558E–12) (–3.489E–12, 2.182E–11) 94.27 2.011E+00 (0.115) 

Lower –9.168E–12 (4.511E–12) (–2.169E–11, 3.356E–12) 94.41 –2.033E+00 (0.112) 7 

Upper 9.329E–12 (4.640E–12) (–3.554E–12, 2.221E–11) 94.26 2.011E+00 (0.115) 

Lower –9.010E–12 (4.427E–12) (–2.130E–11, 3.281E–12) 94.42 –2.035E+00 (0.112) 8 

Upper 9.461E–12 (4.710E–12) (–3.615E–12, 2.254E–11) 94.25 2.009E+00 (0.115) 

Lower –9.295E–12 (4.576E–12) (–2.200E–11, 3.410E–12) 94.40 –2.031E+00 (0.112) 9 

Upper 9.238E–12 (4.594E–12) (–3.517E–12, 2.199E–11) 94.27 2.011E+00 (0.115) 
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Table K-15. Parametric Equivalence Analyses for ∆ = 10% Using Bootstrap Estimation 
to Linear Trapezoid Approximation for n = 30 Patients 

AE Effect 
Paired Difference Mean 

(SE) 
95% CI on Paired 

Difference 
Coverage 

(%) 
Tstat  

(p–value) 
S–W Stat  
(p–value) 

Lower –1.335E–02 (6.017E–03) (–2.561E–02, –1.095E–03) 92.66 –5.973E+00 (0.147) 0.5053 
(<0.0001) 

Overall 

Upper 1.365E–02 (6.680E–03) (4.530E–05, 2.726E–02) 91.74 3.849E+00 (0.165) 0.4818 
(<0.0001) 

Lower –1.214E–02 (4.750E–03) (–2.181E–02, –2.463E–03) 93.03 –9.316E+00 (0.139) 0.5129 
(<0.0001) 

1 

Upper 1.405E–02 (7.010E–03) (–2.290E–04, 2.833E–02) 90.98 3.324E+00 (0.180) 0.4731 
(<0.0001) 

Lower –1.500E–02 (8.071E–03) (–3.144E–02, 1.440E–03) 91.33 –3.353E+00 (0.173) 0.4879 
(<0.0001) 

2 

Upper 1.216E–02 (5.590E–03) (7.752E–04, 2.355E–02) 92.55 5.437E+00 (0.149) 0.4970 
(<0.0001) 

Lower –1.222E–02 (4.835E–03) (–2.207E–02, –2.372E–03) 93.48 –8.930E+00 (0.130) 0.5187 
(<0.0001) 

3 

Upper 1.491E–02 (7.421E–03) (–2.098E–04, 3.002E–02) 91.21 3.233E+00 (0.176) 0.4724 
(<0.0001) 

Lower –1.400E–02 (7.135E–03) (–2.854E–02, 5.307E–04) 91.82 –3.710E+00 (0.164) 0.4961 
(<0.0001) 

4 

Upper 1.282E–02 (5.687E–03) (1.234E–03, 2.440E–02) 92.70 4.956E+00 (0.146) 0.4867 
(<0.0001) 

Lower –1.252E–02 (5.277E–03) (–2.327E–02, –1.770E–03) 93.14 –7.404E+00 (0.137) 0.5131 
(<0.0001) 

5 

Upper 1.457E–02 (7.484E–03) (–6.692E–04, 2.982E–02) 91.24 3.225E+00 (0.175) 0.4739 
(<0.0001) 

Lower –1.345E–02 (5.959E–03) (–2.558E–02, –1.307E–03) 92.77 –5.108E+00 (0.145) 0.5066 
(<0.0001) 

6 

Upper 1.375E–02 (6.437E–03) (6.383E–04, 2.686E–02) 92.08 3.914E+00 (0.158) 0.4809 
(<0.0001) 

Lower –1.368E–02 (6.071E–03) (–2.604E–02, –1.311E–03) 92.73 –5.214E+00 (0.145) 0.5015 
(<0.0001) 

7 

Upper 1.333E–02 (6.739E–03) (–3.931E–04, 2.706E–02) 91.71 3.518E+00 (0.166) 0.4853 
(<0.0001) 

Lower –1.352E–02 (5.763E–03) (–2.525E–02, –1.779E–03) 93.12 –5.895E+00 (0.138) 0.5054 
(<0.0001) 

8 

Upper 1.381E–02 (7.059E–03) (–5.706E–04, 2.819E–02) 91.32 3.357E+00 (0.174) 0.4811 
(<0.0001) 

Lower –1.364E–02 (6.291E–03) (–2.645E–02, –8.264E–04) 92.54 –4.827E+00 (0.149) 0.5052 
(<0.0001) 

9 

Upper 1.346E–02 (6.691E–03) (–1.677E–04, 2.709E–02) 91.88 3.680E+00 (0.162) 0.4859 
(<0.0001) 
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Table K-16. Nonparametric Equivalence Analyses for ∆ = 10% Using Bootstrap 
Estimation to Linear Trapezoid Approximation for n = 30 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.168E–12 (4.511E–12) (–2.169E–11, 3.285E–12) 94.49 –2.046E+00 (0.110) Overall 

Upper 9.329E–12 (4.640E–12) (–3.554E–12, 3.125E–11) 94.35 2.023E+00 (0.113) 

Lower –8.706E–12 (4.254E–12) (–2.052E–11, 3.031E–12) 95.19 –2.166E+00 (0.096) 1 

Upper 9.584E–12 (4.777E–12) (–3.679E–12, 3.207E–11) 94.40 2.032E+00 (0.112) 

Lower –1.000E–11 (4.956E–12) (–2.376E–11, 3.659E–12) 94.41 –2.033E+00 (0.112) 2 

Upper 8.609E–12 (4.263E–12) (–3.228E–12, 2.871E–11) 94.34 2.023E+00 (0.113) 

Lower –8.748E–12 (4.275E–12) (–2.062E–11, 3.073E–12) 94.56 –2.057E+00 (0.109) 3 

Upper 9.645E–12 (4.812E–12) (–3.715E–12, 3.231E–11) 94.37 2.027E+00 (0.113) 

Lower –9.805E–12 (4.843E–12) (–2.325E–11, 3.556E–12) 94.44 –2.038E+00 (0.111) 4 

Upper 8.722E–12 (4.326E–12) (–3.289E–12, 2.079E–11) 94.33 2.021E+00 (0.113) 

Lower –8.814E–12 (4.316E–12) (–2.080E–11, 3.102E–12) 95.23 –2.174E+00 (0.095) 5 

Upper 9.618E–12 (4.795E–12) (–3.696E–12, 3.221E–11) 94.38 2.029E+00 (0.112) 

Lower –9.298E–12 (4.573E–12) (–2.199E–11, 3.326E–12) 94.49 –2.046E+00 (0.110) 6 

Upper 9.165E–12 (4.558E–12) (–3.482E–12, 3.009E–11) 94.35 2.023E+00 (0.113) 

Lower –9.168E–12 (4.511E–12) (–2.169E–11, 3.285E–12) 94.49 –2.046E+00 (0.110) 7 

Upper 9.329E–12 (4.640E–12) (–3.554E–12, 3.125E–11) 94.34 2.022E+00 (0.113) 

Lower –9.010E–12 (4.427E–12) (–2.130E–11, 3.217E–12) 94.50 –2.048E+00 (0.110) 8 

Upper 9.461E–12 (4.710E–12) (–3.615E–12, 3.170E–11) 94.34 2.023E+00 (0.113) 

Lower –9.295E–12 (4.576E–12) (–2.200E–11, 3.340E–12) 94.48 –2.044E+00 (0.110) 9 

Upper 9.238E–12 (4.594E–12) (–3.504E–12, 2.206E–11) 94.39 2.030E+00 (0.112) 
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Table K-17. Parametric Equivalence Analyses for ∆ = 10% Using Jackknife Estimation 
to Linear Trapezoid Approximation for n = 30 Patients 

AE Effect 
Paired Difference  

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –1.334E–02 (1.668E–03) (–1.674E–02, –9.941E–03) >99.99 –7.989E+00 (<0.001) 0.5100 
(<0.0001) 

Overall 

Upper 1.363E–02 (1.670E–03) (1.023E–02, 1.703E–02) >99.99 8.205E+00 (<0.001) 0.4848 
(<0.0001) 

Lower –1.231E–02 (1.567E–03) (–1.550E–02, –9.117E–03) >99.99 –7.854E+00 (<0.001) 0.5202 
(<0.0001) 

1 

Upper 1.423E–02 (1.572E–03) (1.102E–02, 1.743E–02) >99.99 9.051E+00 (<0.001) 0.4747 
(<0.0001) 

Lower –1.502E–02 (1.837E–03) (–1.876E–02, –1.128E–02) >99.99 –8.175E+00 (<0.001) 0.4900 
(<0.0001) 

2 

Upper 1.224E–02 (1.833E–03) (8.509E–03, 1.598E–02) >99.99 6.679E+00 (<0.001) 0.5063 
(<0.0001) 

Lower –1.201E–02 (1.546E–03) (–1.516E–02, –8.863E–03) >99.99 –7.768E+00 (<0.001) 0.5222 
(<0.0001) 

3 

Upper 1.477E–02 (1.552E–03) (1.161E–02, 1.793E–02) >99.99 9.515E+00 (<0.001) 0.4720 
(<0.0001) 

Lower –1.415E–02 (1.747E–03) (–1.771E–02, –1.059E–02) >99.99 –8.099E+00 (<0.001) 0.5012 
(<0.0001) 

4 

Upper 1.291E–02 (1.745E–03) (9.355E–03, 1.646E–02) >99.99 7.399E+00 (<0.001) 0.4936 
(<0.0001) 

Lower –1.253E–02 (1.589E–03) (–1.576E–02, –9.288E–03) >99.99 –7.881E+00 (<0.001) 0.5197 
(<0.0001) 

5 

Upper 1.441E–02 (1.594E–03) (1.116E–02, 1.766E–02) >99.99 9.039E+00 (<0.001) 0.4749 
(<0.0001) 

Lower –1.330E–02 (1.662E–03) (–1.668E–02, –9.910E–03) >99.99 –7.999E+00 (<0.001) 0.5112 
(<0.0001) 

6 

Upper 1.362E–02 (1.664E–03) (1.023E–02, 1.701E–02) >99.99 8.189E+00 (<0.001) 0.4823 
(<0.0001) 

Lower –1.372E–02 (1.701E–03) (–1.718E–02, –1.025E–02) >99.99 –8.062E+00 (<0.001) 0.5068 
(<0.0001) 

7 

Upper 1.336E–02 (1.703E–03) (9.887E–03, 1.683E–02) >99.99 7.841E+00 (<0.001) 0.4892 
(<0.0001) 

Lower –1.338E–02 (1.668E–03) (–1.677E–02, –9.980E–03) >99.99 –8.021E+00 (<0.001) 0.5111 
(<0.0001) 

8 

Upper 1.371E–02 (1.671E–03) (1.031E–02, 1.712E–02) >99.99 8.208E+00 (<0.001) 0.4832 
(<0.0001) 

Lower –1.364E–02 (1.695E–03) (–1.710E–02, –1.019E–02) >99.99 –8.047E+00 (<0.001) 0.5081 
(<0.0001) 

9 

Upper 1.345E–02 (1.697E–03) (9.992E–03, 1.691E–02) >99.99 7.925E+00 (<0.001) 0.4871 
(<0.0001) 
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Table K-18. Nonparametric Equivalence Analyses for ∆ = 10% Using Jackknife 
Estimation to Linear Trapezoid Approximation for n = 30 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.164E–12 (1.317E–02) (–3.657E–02, 3.657E–02) 50.00 –7.037E–10 (>0.999) Overall 

Upper 1.389E–11 (1.342E–02) (–3.725E–02, 3.725E–02) 50.00 1.020E–09 (>0.999) 

Lower –8.700E–12 (1.212E–02) (–3.365E–02, 3.365E–02) 50.00 –7.178E–10 (>0.999) 1 

Upper 1.428E–11 (1.401E–02) (–3.889E–02, 3.889E–02) 50.00 1.019E–09 (>0.999) 

Lower –1.000E–11 (1.479E–02) (–4.107E–02, 4.107E–02) 50.00 –6.763E–10 (>0.999) 2 

Upper 1.279E–11 (1.206E–02) (–3.347E–02, 3.347E–02) 50.00 1.061E–09 (>0.999) 

Lower –8.742E–12 (1.183E–02) (–3.284E–02, 3.284E–02) 50.00 –7.390E–10 (>0.999) 3 

Upper 1.438E–11 (1.454E–02) (–4.037E–02, 4.037E–02) 50.00 9.891E–10 (>0.999) 

Lower –9.803E–12 (1.393E–02) (–3.868E–02, 3.868E–02) 50.00 –7.037E–10 (>0.999) 4 

Upper 1.296E–11 (1.271E–02) (–3.529E–02, 3.529E–02) 50.00 1.020E–09 (>0.999) 

Lower –8.808E–12 (1.233E–02) (–3.424E–02, 3.424E–02) 50.00 –7.142E–10 (>0.999) 5 

Upper 1.434E–11 (1.419E–02) (–3.940E–02, 3.940E–02) 50.00 1.010E–09 (>0.999) 

Lower –9.294E–12 (1.309E–02) (–3.635E–02, 3.635E–02) 50.00 –7.099E–10 (>0.999) 6 

Upper 1.364E–11 (1.342E–02) (–3.725E–02, 3.725E–02) 50.00 1.017E–09 (>0.999) 

Lower –9.164E–12 (1.351E–02) (–3.751E–02, 3.751E–02) 50.00 –6.784E–10 (>0.999) 7 

Upper 1.389E–11 (1.315E–02) (–3.652E–02, 3.652E–02) 50.00 1.056E–09 (>0.999) 

Lower –9.006E–12 (1.317E–02) (–3.657E–02, 3.657E–02) 50.00 –6.837E–10 (>0.999) 8 

Upper 1.409E–11 (1.350E–02) (–3.749E–02, 3.749E–02) 50.00 1.044E–09 (>0.999) 

Lower –9.292E–12 (1.343E–02) (–3.730E–02, 3.730E–02) 50.00 –6.916E–10 (>0.999) 9 

Upper 1.375E–11 (1.324E–02) (–3.677E–02, 3.677E–02) 50.00 1.039E–09 (>0.999) 
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Table K-19. Parametric Equivalence Analyses for ∆ = 10% Using Partial Batch 
Estimation to Spline Approximation for n = 30 Patients 

AE Effect 
Paired Difference 

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –2.291E–02 
(6.582E–03) 

(–3.631E–02,  

–9.499E–03) 

99.91 –3.487E+00 (0.002) 0.2815 (<0.0001) Overall 

Upper 5.887E–03 
(9.494E–03) 

(–1.345E–02, 
2.523E–02) 

73.30 6.359E–01 (0.534) 0.4441 (<0.0001) 

Lower –2.187E–02 
(7.148E–03) 

(–3.643E–02,  

–7.308E–03) 

99.78 –3.059E+00 (0.004) 0.2928 (<0.0001) 1 

Upper 6.473E–03 
(6.974E–03) 

(–7.732E–03, 
2.068E–02) 

81.99 9.282E–01 (0.360) 0.4363 (<0.0001) 

Lower –2.466E–02 
(6.898E–03) 

(–3.871E–02,  

–1.061E–02) 

99.94 –3.575E+00 (0.001) 0.2639 (<0.0001) 2 

Upper 4.440E–03 
(1.093E–02) 

(–1.783E–02, 
2.671E–02) 

65.63 4.061E–01 (0.687) 0.4609 (<0.0001) 

Lower –2.153E–02 
(6.588E–03) 

(–3.495E–02,  

–8.108E–03) 

99.87 –3.268E+00 (0.003) 0.2980 (<0.0001) 3 

Upper 7.068E–03 
(8.800E–03) 

(–1.086E–02, 
2.499E–02) 

78.61 8.032E–01 (0.428) 0.4302 (<0.0001) 

Lower –2.376E–02 
(6.203E–03) 

(–3.640E–02,  

–1.113E–02) 

99.97 –3.831E+00 (0.001) 0.2733 (<0.0001) 4 

Upper 5.118E–03 
(9.555E–03) 

(–1.435E–02, 
2.458E–02) 

70.20 5.356E–01 (0.596) 0.4517 (<0.0001) 

Lower –2.205E–02 
(6.514E–03) 

(–3.532E–02,  

–8.777E–03) 

99.90 –3.384E+00 (0.002) 0.2905 (<0.0001) 5 

Upper 6.709E–03 
(9.545E–03) 

(–1.273E–02, 
2.615E–02) 

75.64 7.029E–01 (0.487) 0.4349 (<0.0001) 

Lower –2.287E–02 
(6.214E–03) 

(–3.553E–02,  

–1.021E–02) 

99.96 –3.681E+00 (0.001) 0.2813 (<0.0001) 6 

Upper 5.868E–03 
(9.059E–03) 

(–1.258E–02, 
2.432E–02) 

73.91 6.478E–01 (0.522) 0.4437 (<0.0001) 

Lower –2.329E–02 
(6.449E–03) 

(–3.642E–02,  

–1.015E–02) 

99.95 –3.611E+00 (0.001) 0.2765 (<0.0001) 7 

Upper 5.612E–03 
(1.005E–02) 

(–1.485E–02, 
2.608E–02) 

70.98 5.585E–01 (0.580) 0.4484 (<0.0001) 

Lower –2.293E–02 
(6.527E–03) 

(–3.622E–02,  

–9.632E–03) 

99.93 –3.513E+00 (0.001) 0.2798 (<0.0001) 8 

Upper 5.990E–03 
(1.009E–02) 

(–1.455E–02, 
2.653E–02) 

72.16 5.939E–01 (0.557) 0.4439 (<0.0001) 

Lower –2.321E–02 
(6.697E–03) 

(–3.685E–02,  

–9.569E–03) 

99.92 –3.466E+00 (0.002) 0.2778 (<0.0001) 9 

Upper 5.709E–03 
(1.044E–02) 

(–1.556E–02, 
2.698E–02) 

70.58 5.466E–01 (0.588) 0.4469 (<0.0001) 
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Table K-20. Nonparametric Equivalence Analyses for ∆ = 10% Using Partial Batch 
Estimation to Spline Approximation for n = 30 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference Coverage (%) Tstat (p–value) 

Lower –9.162E–12 (4.818E–14) (–9.293E–12, –9.030E–12) >99.99 –1.906E+02 (<0.001) Overall 

Upper 9.294E–12 (4.597E–12) (–3.469E–12, 2.206E–11) 94.34 2.023E+00 (0.113) 

Lower –8.695E–12 (5.667E–14) (–8.852E–12, –8.538E–12) >99.99 –1.534E+02 (<0.001) 1 

Upper 9.563E–12 (4.718E–12) (–3.535E–12, 2.266E–11) 94.37 2.027E+00 (0.113) 

Lower –1.000E–11 (3.966E–14) (–1.011E–11, –9.893E–12) >99.99 –2.522E+02 (<0.001) 2 

Upper 8.550E–12 (4.238E–12) (–3.215E–12, 2.032E–11) 94.31 2.018E+00 (0.114) 

Lower –8.735E–12 (5.491E–14) (–8.887E–12, –8.583E–12) >99.99 –1.591E+02 (<0.001) 3 

Upper 9.630E–12 (4.752E–12) (–3.564E–12, 2.282E–11) 94.37 2.027E+00 (0.113) 

Lower –9.801E–12 (4.463E–14) (–9.925E–12, –9.677E–12) >99.99 –2.196E+02 (<0.001) 4 

Upper 8.673E–12 (4.291E–12) (–3.242E–12, 2.059E–11) 94.33 2.021E+00 (0.113) 

Lower –8.803E–12 (5.209E–14) (–8.948E–12, –8.658E–12) >99.99 –1.690E+02 (<0.001) 5 

Upper 9.598E–12 (4.740E–12) (–3.562E–12, 2.276E–11) 94.36 2.025E+00 (0.113) 

Lower –9.292E–12 (4.874E–14) (–9.427E–12, –9.156E–12) >99.99 –1.906E+02 (<0.001) 6 

Upper 9.130E–12 (4.512E–12) (–3.398E–12, 2.166E–11) 94.35 2.023E+00 (0.113) 

Lower –9.162E–12 (4.730E–14) (–9.293E–12, –9.030E–12) >99.99 –1.937E+02 (<0.001) 7 

Upper 9.294E–12 (4.597E–12) (–3.469E–12, 2.206E–11) 94.34 2.022E+00 (0.113) 

Lower –9.002E–12 (4.818E–14) (–9.136E–12, –8.869E–12) >99.99 –1.868E+02 (<0.001) 8 

Upper 9.431E–12 (4.663E–12) (–3.514E–12, 2.238E–11) 94.34 2.023E+00 (0.113) 

Lower –9.289E–12 (4.632E–14) (–9.418E–12, –9.161E–12) >99.99 –2.006E+02 (<0.001) 9 

Upper 9.202E–12 (4.551E–12) (–3.434E–12, 2.184E–11) 94.34 2.022E+00 (0.113) 
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Table K-21. Parametric Equivalence Analyses for ∆ = 10% Using Bootstrap Estimation 
to Spline Approximation for n = 30 Patients 

AE Effect 
Paired Difference 

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –2.290E–02  

(1.091E–02) 

(–4.513E–02,  

–6.668E–04) 

86.48 –2.875E+00  

(0.270) 

0.4050 
(<0.0001) 

Overall 

Upper 5.947E–03  

(1.182E–02) 

(–1.814E–02,  

3.003E–02) 

80.08 2.214E+00  

(0.398) 

0.4479 
(<0.0001) 

Lower –2.170E–02  

(1.137E–02) 

(–4.487E–02,  

1.458E–03) 

85.00 –4.903E+00 
(0.300) 

0.4062 
(<0.0001) 

1 

Upper 6.507E–03  

(1.092E–02) 

(–1.574E–02,  

2.875E–02) 

82.95 1.033E+00  

(0.341) 

0.4430 
(<0.0001) 

Lower –2.473E–02  

(1.083E–02) 

(–4.680E–02,  

–2.661E–03) 

87.10 –2.545E+00 
(0.258) 

0.3953 
(<0.0001) 

2 

Upper 4.491E–03  

(1.253E–02) 

(–2.104E–02,  

3.002E–02) 

78.02 2.565E+00  

(0.440) 

0.4567 
(<0.0001) 

Lower –2.174E–02  

(1.118E–02) 

(–4.451E–02,  

1.035E–03) 

86.43 –2.768E+00 
(0.271) 

0.4078 
(<0.0001) 

3 

Upper 7.055E–03  

(1.167E–02) 

(–1.673E–02,  

3.084E–02) 

81.11 1.749E+00  

(0.378) 

0.4420 
(<0.0001) 

Lower –2.370E–02  

(1.066E–02) 

(–4.542E–02,  

–1.984E–03) 

86.49 –2.762E+00 
(0.270) 

0.4037 
(<0.0001) 

4 

Upper 5.202E–03  

(1.172E–02) 

(–1.866E–02,  

2.907E–02) 

79.66 2.034E+00  

(0.407) 

0.4506 
(<0.0001) 

Lower –2.215E–02  

(1.095E–02) 

(–4.446E–02,  

1.493E–04) 

86.81 –2.548E+00 
(0.264) 

0.4072 
(<0.0001) 

5 

Upper 6.797E–03  

(1.181E–02) 

(–1.725E–02,  

3.085E–02) 

80.55 2.364E+00  

(0.389) 

0.4435 
(<0.0001) 

Lower –2.274E–02  

(1.081E–02) 

(–4.476E–02,  

–7.244E–04) 

86.18 –2.809E+00 
(0.276) 

0.4047 
(<0.0001) 

6 

Upper 5.869E–03  

(1.158E–02) 

(–1.773E–02,  

2.947E–02) 

80.22 1.768E+00  

(0.396) 

0.4476 
(<0.0001) 

Lower –2.348E–02  

(1.066E–02) 

(–4.519E–02,  

–1.780E–03) 

86.89 –2.592E+00 
(0.262) 

0.4048 
(<0.0001) 

7 

Upper 5.833E–03  

(1.188E–02) 

(–1.837E–02,  

3.004E–02) 

79.72 2.886E+00  

(0.406) 

0.4497 
(<0.0001) 

Lower –2.246E–02  

(1.076E–02) 

(–4.437E–02,  

–5.413E–04) 

86.54 –2.483E+00 
(0.269) 

0.4091 
(<0.0001) 

8 

Upper 6.164E–03  

(1.189E–02) 

(–1.806E–02,  

3.038E–02) 

79.62 2.904E+00  

(0.408) 

0.4480 
(<0.0001) 

Lower –2.338E–02  

(1.101E–02) 

(–4.580E–02,  

–9.523E–04) 

86.86 –2.465E+00 
(0.263) 

0.4065 
(<0.0001) 

9 

Upper 5.606E–03  

(1.240E–02) 

(–1.965E–02,  

3.087E–02) 

78.82 2.625E+00  

(0.424) 

0.4502 
(<0.0001) 
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Table K-22. Nonparametric Equivalence Analyses for ∆ = 10% Using Bootstrap 
Estimation to Spline Approximation for n = 30 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.162E–12 (3.654E–12) (–1.899E–11, 3.437E–13) 97.24 –2.681E+00 (0.055) Overall 

Upper 9.294E–12 (4.597E–12) (–3.435E–12, 2.213E–11) 96.41 2.433E+00 (0.072) 

Lower –8.695E–12 (3.743E–12) (–1.899E–11, 1.704E–12) 95.97 –2.327E+00 (0.081) 1 

Upper 9.563E–12 (4.718E–12) (–3.514E–12, 2.269E–11) 96.50 2.457E+00 (0.070) 

Lower –1.000E–11 (3.116E–12) (–1.858E–11, –1.369E–12) 98.39 –3.221E+00 (0.032) 2 

Upper 8.550E–12 (4.238E–12) (–3.156E–12, 2.037E–11) 95.28 2.184E+00 (0.094) 

Lower –8.735E–12 (4.104E–12) (–2.003E–11, 2.679E–12) 94.99 –2.130E+00 (0.100) 3 

Upper 9.630E–12 (4.752E–12) (–3.548E–12, 2.284E–11) 96.51 2.458E+00 (0.070) 

Lower –9.801E–12 (3.654E–12) (–1.986E–11, 3.437E–13) 97.24 –2.681E+00 (0.055) 4 

Upper 8.673E–12 (4.291E–12) (–3.193E–12, 2.064E–11) 96.30 2.298E+00 (0.074) 

Lower –8.803E–12 (3.710E–12) (–1.901E–11, 1.464E–12) 96.19 –2.376E+00 (0.076) 5 

Upper 9.598E–12 (4.740E–12) (–3.543E–12, 2.278E–11) 96.50 2.456E+00 (0.070) 

Lower –9.292E–12 (3.704E–12) (–1.948E–11, 9.938E–13) 96.67 –2.502E+00 (0.067) 6 

Upper 9.130E–12 (4.512E–12) (–3.363E–12, 2.169E–11) 96.39 2.428E+00 (0.072) 

Lower –9.162E–12 (3.095E–12) (–1.767E–11, –5.602E–13) 97.91 –2.956E+00 (0.042) 7 

Upper 9.294E–12 (4.597E–12) (–3.435E–12, 2.213E–11) 95.38 2.202E+00 (0.092) 

Lower –9.002E–12 (3.188E–12) (–1.780E–11, –1.352E–13) 97.61 –2.819E+00 (0.048) 8 

Upper 9.431E–12 (4.663E–12) (–3.485E–12, 2.241E–11) 96.47 2.447E+00 (0.071) 

Lower –9.289E–12 (3.367E–12) (–1.855E–11, 3.863E–14) 97.44 –2.754E+00 (0.051) 9 

Upper 9.202E–12 (4.551E–12) (–3.399E–12, 2.187E–11) 96.41 2.433E+00 (0.072) 

 

 

 

 

 

 



 341 

 

Table K-23. Parametric Equivalence Analyses for ∆ = 10% Using Jackknife Estimation 
to Spline Approximation for n = 30 Patients 

AE Effect 
Paired Difference  

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –2.291E–02 (4.187E–03) (–3.143E–02, –1.438E–02) >99.99 –5.471E+00 (<0.001) 0.2931 
(<0.0001) 

Overall 

Upper 5.887E–03 (4.196E–03) (–2.659E–03, 1.443E–02) 91.15 1.404E+00 (0.177) 0.4437 
(<0.0001) 

Lower –2.187E–02 (4.193E–03) (–3.041E–02, –1.333E–02) >99.99 –5.215E+00 (<0.001) 0.3038 
(<0.0001) 

1 

Upper 6.473E–03 (4.192E–03) (–2.067E–03, 1.501E–02) 93.38 1.544E+00 (0.132) 0.4362 
(<0.0001) 

Lower –2.466E–02 (4.204E–03) (–3.322E–02, –1.609E–02) >99.99 –5.865E+00 (<0.001) 0.2754 
(<0.0001) 

2 

Upper 4.440E–03 (4.219E–03) (–4.153E–03, 1.303E–02) 84.98 1.052E+00 (0.300) 0.4599 
(<0.0001) 

Lower –2.153E–02 (4.193E–03) (–3.007E–02, –1.299E–02) >99.99 –5.134E+00 (<0.001) 0.3086 
(<0.0001) 

3 

Upper 7.068E–03 (4.199E–03) (–1.485E–03, 1.562E–02) 94.90 1.683E+00 (0.102) 0.4304 
(<0.0001) 

Lower –2.376E–02 (4.210E–03) (–3.234E–02, –1.519E–02) >99.99 –5.645E+00 (<0.001) 0.2855 
(<0.0001) 

4 

Upper 5.118E–03 (4.220E–03) (–3.478E–03, 1.371E–02) 88.30 1.213E+00 (0.234) 0.4509 
(<0.0001) 

Lower –2.205E–02 (4.176E–03) (–3.055E–02, –1.354E–02) >99.99 –5.280E+00 (<0.001) 0.3017 
(<0.0001) 

5 

Upper 6.709E–03 (4.185E–03) (–1.815E–03, 1.523E–02) 94.06 1.603E+00 (0.119) 0.4350 
(<0.0001) 

Lower –2.287E–02 (4.194E–03) (–3.141E–02, –1.433E–02) >99.99 –5.453E+00 (<0.001) 0.2930 
(<0.0001) 

6 

Upper 5.868E–03 (4.202E–03) (–2.691E–03, 1.443E–02) 91.39 1.397E+00 (0.172) 0.4433 
(<0.0001) 

Lower –2.329E–02 (4.169E–03) (–3.178E–02, –1.480E–02) >99.99 –5.586E+00 (<0.001) 0.2886 
(<0.0001) 

7 

Upper 5.612E–03 (4.180E–03) (–2.902E–03, 1.413E–02) 90.56 1.343E+00 (0.189) 0.4479 
(<0.0001) 

Lower –2.293E–02 (4.164E–03) (–3.141E–02, –1.444E–02) >99.99 –5.506E+00 (<0.001) 0.2917 
(<0.0001) 

8 

Upper 5.990E–03 (4.175E–03) (–2.515E–03, 1.449E–02) 91.95 1.435E+00 (0.161) 0.4436 
(<0.0001) 

Lower –2.321E–02 (4.179E–03) (–3.172E–02, –1.470E–02) >99.99 –5.554E+00 (<0.001) 0.2899 
(<0.0001) 

9 

Upper 5.709E–03 (4.191E–03) (–2.829E–03, 1.425E–02) 90.87 1.362E+00 (0.183) 0.4465 
(<0.0001) 
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Table K-24. Nonparametric Equivalence Analyses for ∆ = 10% Using Jackknife 
Estimation to Spline Approximation for n = 30 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.139E–12 (2.258E–02) (–6.268E–02, 6.268E–02) 50.00 –4.054E–10 (>0.999) Overall 

Upper 9.311E–12 (5.778E–03) (–1.604E–02, 1.604E–02) 50.00 1.601E–09 (>0.999) 

Lower –8.679E–12 (2.153E–02) (–5.979E–02, 5.979E–02) 50.00 –4.031E–10 (>0.999) 1 

Upper 9.574E–12 (6.374E–03) (–1.770E–02, 1.770E–02) 50.00 1.502E–09 (>0.999) 

Lower –9.969E–12 (2.428E–02) (–6.741E–02, 6.741E–02) 50.00 –4.106E–10 (>0.999) 2 

Upper 8.580E–12 (4.373E–03) (–1.214E–02, 1.214E–02) 50.00 1.962E–09 (>0.999) 

Lower –8.724E–12 (2.120E–02) (–5.886E–02, 5.886E–02) 50.00 –4.115E–10 (>0.999) 3 

Upper 9.637E–12 (6.960E–03) (–1.932E–02, 1.932E–02) 50.00 1.385E–09 (>0.999) 

Lower –9.773E–12 (2.340E–02) (–6.497E–02, 6.497E–02) 50.00 –4.176E–10 (>0.999) 4 

Upper 8.697E–12 (5.040E–03) (–1.399E–02, 1.399E–02) 50.00 1.726E–09 (>0.999) 

Lower –8.789E–12 (2.171E–02) (–6.028E–02, 6.028E–02) 50.00 –4.048E–10 (>0.999) 5 

Upper 9.608E–12 (6.607E–03) (–1.834E–02, 1.834E–02) 50.00 1.454E–09 (>0.999) 

Lower –9.269E–12 (2.252E–02) (–6.253E–02, 6.253E–02) 50.00 –4.115E–10 (>0.999) 6 

Upper 9.148E–12 (5.778E–03) (–1.604E–02, 1.604E–02) 50.00 1.583E–09 (>0.999) 

Lower –9.139E–12 (2.293E–02) (–6.367E–02, 6.367E–02) 50.00 –3.985E–10 (>0.999) 7 

Upper 9.311E–12 (5.526E–03) (–1.534E–02, 1.534E–02) 50.00 1.685E–09 (>0.999) 

Lower –8.983E–12 (2.258E–02) (–6.268E–02, 6.268E–02) 50.00 –3.979E–10 (>0.999) 8 

Upper 9.446E–12 (5.898E–03) (–1.638E–02, 1.638E–02) 50.00 1.601E–09 (>0.999) 

Lower –9.266E–12 (2.286E–02) (–6.346E–02, 6.346E–02) 50.00 –4.054E–10 (>0.999) 9 

Upper 9.220E–12 (5.622E–03) (–1.561E–02, 1.561E–02) 50.00 1.640E–09 (>0.999) 
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Table K-25. Parametric Equivalence Analyses for ∆ = 10% Using Partial Batch 
Estimation to Linear Trapezoid Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –2.117E–03 (1.104E–03) (–4.291E–03, 5.623E–05) 97.02 –1.938E+00 (0.060) 0.2783 (<0.0001) Overall 

Upper 1.887E–03 (2.499E–03) (–3.035E–03, 6.809E–03) 77.47 7.561E–01 (0.451) 0.1177 (<0.0001) 

Lower –2.048E–03 (1.261E–03) (–4.532E–03, 4.361E–04) 94.72 –1.624E+00 (0.106) 0.2817 (<0.0001) 1 

Upper 1.861E–03 (2.731E–03) (–3.517E–03, 7.238E–03) 75.19 6.814E–01 (0.496) 0.1178 (<0.0001) 

Lower –1.977E–03 (1.088E–03) (–4.119E–03, 1.657E–04) 96.48 –1.817E+00 (0.070) 0.2912 (<0.0001) 2 

Upper 1.985E–03 (2.514E–03) (–2.966E–03, 6.936E–03) 78.47 7.896E–01 (0.431) 0.1156 (<0.0001) 

Lower –2.150E–03 (1.203E–03) (–4.518E–03, 2.186E–04) 96.25 –1.788E+00 (0.075) 0.2755 (<0.0001) 3 

Upper 1.852E–03 (2.570E–03) (–3.209E–03, 6.914E–03) 76.41 7.207E–01 (0.472) 0.1183 (<0.0001) 

Lower –2.040E–03 (1.060E–03) (–4.128E–03, 4.827E–05) 97.23 –1.924E+00 (0.055) 0.2909 (<0.0001) 4 

Upper 1.966E–03 (2.439E–03) (–2.839E–03, 6.770E–03) 78.94 8.058E–01 (0.421) 0.1161 (<0.0001) 

Lower –2.253E–03 (9.720E–04) (–4.167E–03, –3.387E–04) 98.94 –2.318E+00 (0.021) 0.2555 (<0.0001) 5 

Upper 1.781E–03 (2.373E–03) (–2.892E–03, 6.454E–03) 77.32 7.507E–01 (0.454) 0.1199 (<0.0001) 

Lower –2.140E–03 (1.178E–03) (–4.461E–03, 1.806E–04) 96.47 –1.816E+00 (0.071) 0.2795 (<0.0001) 6 

Upper 1.884E–03 (2.547E–03) (–3.132E–03, 6.899E–03) 76.99 7.397E–01 (0.460) 0.1178 (<0.0001) 

Lower –2.182E–03 (1.062E–03) (–4.274E–03, –9.091E–05) 97.95 –2.055E+00 (0.041) 0.2715 (<0.0001) 7 

Upper 1.856E–03 (2.446E–03) (–2.962E–03, 6.673E–03) 77.56 7.586E–01 (0.449) 0.1184 (<0.0001) 

Lower –2.084E–03 (1.164E–03) (–4.376E–03, 2.083E–04) 96.27 –1.790E+00 (0.075) 0.2886 (<0.0001) 8 

Upper 1.936E–03 (2.531E–03) (–3.049E–03, 6.921E–03) 77.75 7.650E–01 (0.445) 0.1167 (<0.0001) 

Lower –2.183E–03 (9.450E–04) (–4.044E–03, –3.219E–04) 98.92 –2.310E+00 (0.022) 0.2706 (<0.0001) 9 

Upper 1.859E–03 (2.342E–03) (–2.754E–03, 6.471E–03) 78.59 7.935E–01 (0.428) 0.1184 (<0.0001) 
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Table K-26. Nonparametric Equivalence Analyses for ∆ = 10% Using Partial Batch 
Estimation to Linear Trapezoid Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.272E–12 (3.191E–14) (–9.341E–12, –9.195E–12) >99.99 –2.892E+02 (<0.001) Overall 

Upper 9.190E–12 (2.123E–14) (9.144E–12, 9.235E–12) >99.99 4.410E+02 (<0.001) 

Lower –9.276E–12 (3.757E–14) (–9.356E–12, –9.195E–12) >99.99 –2.469E+02 (<0.001) 1 

Upper 9.084E–12 (2.505E–14) (9.030E–12, 9.138E–12) >99.99 3.627E+02 (<0.001) 

Lower –9.048E–12 (3.575E–14) (–9.125E–12, –8.972E–12) >99.99 –2.531E+02 (<0.001) 2 

Upper 9.395E–12 (2.420E–14) (9.343E–12, 9.447E–12) >99.99 3.882E+02 (<0.001) 

Lower –9.272E–12 (3.206E–14) (–9.341E–12, –9.204E–12) >99.99 –2.892E+02 (<0.001) 3 

Upper 9.190E–12 (2.123E–14) (9.144E–12, 9.235E–12) >99.99 4.329E+02 (<0.001) 

Lower –9.090E–12 (3.293E–14) (–9.160E–12, –9.019E–12) >99.99 –2.760E+02 (<0.001) 4 

Upper 9.408E–12 (2.214E–14) (9.360E–12, 9.455E–12) >99.99 4.250E+02 (<0.001) 

Lower –9.835E–12 (2.907E–14) (–9.898E–12, –9.773E–12) >99.99 –3.384E+02 (<0.001) 5 

Upper 8.769E–12 (1.890E–14) (8.728E–12, 8.809E–12) >99.99 4.640E+02 (<0.001) 

Lower –9.245E–12 (3.073E–14) (–9.311E–12, –9.179E–12) >99.99 –3.008E+02 (<0.001) 6 

Upper 9.280E–12 (2.034E–14) (9.236E–12, 9.324E–12) >99.99 4.563E+02 (<0.001) 

Lower –9.500E–12 (2.995E–14) (–9.564E–12, –9.436E–12) >99.99 –3.172E+02 (<0.001) 7 

Upper 9.091E–12 (1.978E–14) (9.049E–12, 9.133E–12) >99.99 4.595E+02 (<0.001) 

Lower –9.084E–12 (3.191E–14) (–9.153E–12, –9.016E–12) >99.99 –2.847E+02 (<0.001) 8 

Upper 9.431E–12 (2.138E–14) (9.385E–12, 9.477E–12) >99.99 4.410E+02 (<0.001) 

Lower –9.631E–12 (2.947E–14) (–9.694E–12, –9.568E–12) >99.99 –3.269E+02 (<0.001) 9 

Upper 8.993E–12 (1.938E–14) (8.951E–12, 9.035E–12) >99.99 4.639E+02 (<0.001) 
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Table K-27. Parametric Equivalence Analyses for ∆ = 10% Using Bootstrap Estimation 
to Linear Trapezoid Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –2.117E–03 (2.220E–03) (–6.490E–03, 2.256E–03) 90.12 –1.992E+00 (0.198) 0.3575 
(<0.0001) 

Overall 

Upper 1.887E–03 (3.363E–03) (–4.737E–03, 8.511E–03) 74.43 8.754E–01 (0.511) 0.1783 
(<0.0001) 

Lower –2.064E–03 (2.483E–03) (–6.955E–03, 2.827E–03) 87.91 –1.622E+00 (0.242) 0.3522 
(<0.0001) 

1 

Upper 1.861E–03 (3.677E–03) (–5.381E–03, 9.103E–03) 73.13 7.797E–01 (0.537) 0.1811 
(<0.0001) 

Lower –1.974E–03 (2.245E–03) (–6.395E–03, 2.446E–03) 89.20 –1.835E+00 (0.216) 0.3491 
(<0.0001) 

2 

Upper 1.981E–03 (3.412E–03) (–4.740E–03, 8.701E–03) 75.03 9.106E–01 (0.499) 0.1772 
(<0.0001) 

Lower –2.150E–03 (2.322E–03) (–6.723E–03, 2.424E–03) 89.45 –1.806E+00 (0.211) 0.3610 
(<0.0001) 

3 

Upper 1.839E–03 (3.436E–03) (–4.927E–03, 8.606E–03) 73.86 8.262E–01 (0.523) 0.1804 
(<0.0001) 

Lower –2.043E–03 (2.137E–03) (–6.251E–03, 2.166E–03) 90.21 –1.992E+00 (0.196) 0.3565 
(<0.0001) 

4 

Upper 1.980E–03 (3.273E–03) (–4.467E–03, 8.426E–03) 75.27 9.436E–01 (0.495) 0.1760 
(<0.0001) 

Lower –2.252E–03 (2.049E–03) (–6.288E–03, 1.784E–03) 92.22 –2.447E+00 (0.156) 0.3517 
(<0.0001) 

5 

Upper 1.815E–03 (3.205E–03) (–4.498E–03, 8.127E–03) 74.48 8.858E–01 (0.510) 0.1776 
(<0.0001) 

Lower –2.142E–03 (2.203E–03) (–6.481E–03, 2.198E–03) 89.97 –1.871E+00 (0.201) 0.3638 
(<0.0001) 

6 

Upper 1.911E–03 (3.339E–03) (–4.665E–03, 8.486E–03) 74.33 8.645E–01 (0.513) 0.1756 
(<0.0001) 

Lower –2.170E–03 (2.211E–03) (–6.524E–03, 2.184E–03) 90.78 –2.108E+00 (0.184) 0.3616 
(<0.0001) 

7 

Upper 1.838E–03 (3.334E–03) (–4.729E–03, 8.405E–03) 74.41 8.736E–01 (0.512) 0.1809 
(<0.0001) 

Lower –2.078E–03 (2.260E–03) (–6.529E–03, 2.373E–03) 89.44 –1.821E+00 (0.211) 0.3635 
(<0.0001) 

8 

Upper 1.921E–03 (3.379E–03) (–4.734E–03, 8.576E–03) 74.43 8.795E–01 (0.511) 0.1777 
(<0.0001) 

Lower –2.182E–03 (2.072E–03) (–6.264E–03, 1.899E–03) 91.92 –2.421E+00 (0.162) 0.3579 
(<0.0001) 

9 

Upper 1.842E–03 (3.214E–03) (–4.488E–03, 8.173E–03) 74.88 9.156E–01 (0.502) 0.1786 
(<0.0001) 
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Table K-28. Nonparametric Equivalence Analyses for ∆ = 10% Using Bootstrap 
Estimation to Linear Trapezoid Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.272E–12 (2.882E–14) (–9.336E–12, –9.195E–12) >99.99 –3.103E+02 (<0.001) Overall 

Upper 9.190E–12 (2.123E–14) (9.179E–12, 9.239E–12) >99.99 4.428E+02 (<0.001) 

Lower –9.276E–12 (3.468E–14) (–9.350E–12, –9.195E–12) >99.99 –2.634E+02 (<0.001) 1 

Upper 9.084E–12 (2.525E–14) (9.073E–12, 9.141E–12) >99.99 3.616E+02 (<0.001) 

Lower –9.048E–12 (3.175E–14) (–9.116E–12, –8.972E–12) >99.99 –2.827E+02 (<0.001) 2 

Upper 9.395E–12 (2.420E–14) (9.387E–12, 9.447E–12) >99.99 3.900E+02 (<0.001) 

Lower –9.272E–12 (2.980E–14) (–9.336E–12, –9.204E–12) >99.99 –3.090E+02 (<0.001) 3 

Upper 9.190E–12 (2.123E–14) (9.179E–12, 9.239E–12) >99.99 4.346E+02 (<0.001) 

Lower –9.090E–12 (2.980E–14) (–9.153E–12, –9.019E–12) >99.99 –3.028E+02 (<0.001) 4 

Upper 9.408E–12 (2.214E–14) (9.399E–12, 9.459E–12) >99.99 4.268E+02 (<0.001) 

Lower –9.835E–12 (2.809E–14) (–9.895E–12, –9.773E–12) >99.99 –3.451E+02 (<0.001) 5 

Upper 8.769E–12 (1.910E–14) (8.757E–12, 8.817E–12) >99.99 4.608E+02 (<0.001) 

Lower –9.245E–12 (2.858E–14) (–9.307E–12, –9.179E–12) >99.99 –3.179E+02 (<0.001) 6 

Upper 9.280E–12 (2.054E–14) (9.270E–12, 9.327E–12) >99.99 4.536E+02 (<0.001) 

Lower –9.500E–12 (2.809E–14) (–9.560E–12, –9.436E–12) >99.99 –3.361E+02 (<0.001) 7 

Upper 9.091E–12 (1.978E–14) (9.080E–12, 9.139E–12) >99.99 4.612E+02 (<0.001) 

Lower –9.084E–12 (2.882E–14) (–9.146E–12, –9.016E–12) >99.99 –3.103E+02 (<0.001) 8 

Upper 9.431E–12 (2.138E–14) (9.422E–12, 9.478E–12) >99.99 4.428E+02 (<0.001) 

Lower –9.631E–12 (2.784E–14) (–9.690E–12, –9.568E–12) >99.99 –3.438E+02 (<0.001) 9 

Upper 8.993E–12 (1.938E–14) (8.982E–12, 9.038E–12) >99.99 4.656E+02 (<0.001) 
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Table K-29. Parametric Equivalence Analyses for ∆ = 10% Using Jackknife Estimation 
to Linear Trapezoid Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –2.117E–03 (4.828E–05) (–2.212E–03, –2.022E–03) >99.99 –4.388E+01 (<0.001) 0.2791 (<0.0001) Overall 

Upper 1.887E–03 (4.953E–05) (1.789E–03, 1.984E–03) >99.99 3.810E+01 (<0.001) 0.1177 (<0.0001) 

Lower –2.048E–03 (4.910E–05) (–2.145E–03, –1.951E–03) >99.99 –4.171E+01 (<0.001) 0.2823 (<0.0001) 1 

Upper 1.861E–03 (5.059E–05) (1.761E–03, 1.960E–03) >99.99 3.678E+01 (<0.001) 0.1178 (<0.0001) 

Lower –1.977E–03 (4.929E–05) (–2.074E–03, –1.880E–03) >99.99 –4.010E+01 (<0.001) 0.2917 (<0.0001) 2 

Upper 1.985E–03 (5.049E–05) (1.886E–03, 2.084E–03) >99.99 3.932E+01 (<0.001) 0.1156 (<0.0001) 

Lower –2.150E–03 (4.745E–05) (–2.243E–03, –2.056E–03) >99.99 –4.530E+01 (<0.001) 0.2763 (<0.0001) 3 

Upper 1.852E–03 (4.880E–05) (1.756E–03, 1.949E–03) >99.99 3.796E+01 (<0.001) 0.1183 (<0.0001) 

Lower –2.040E–03 (4.813E–05) (–2.135E–03, –1.945E–03) >99.99 –4.238E+01 (<0.001) 0.2915 (<0.0001) 4 

Upper 1.966E–03 (4.929E–05) (1.869E–03, 2.063E–03) >99.99 3.988E+01 (<0.001) 0.1161 (<0.0001) 

Lower –2.253E–03 (4.899E–05) (–2.350E–03, –2.157E–03) >99.99 –4.599E+01 (<0.001) 0.2564 (<0.0001) 5 

Upper 1.781E–03 (5.015E–05) (1.683E–03, 1.880E–03) >99.99 3.552E+01 (<0.001) 0.1199 (<0.0001) 

Lower –2.140E–03 (4.741E–05) (–2.233E–03, –2.047E–03) >99.99 –4.514E+01 (<0.001) 0.2803 (<0.0001) 6 

Upper 1.884E–03 (4.873E–05) (1.788E–03, 1.980E–03) >99.99 3.866E+01 (<0.001) 0.1178 (<0.0001) 

Lower –2.182E–03 (4.808E–05) (–2.277E–03, –2.088E–03) >99.99 –4.539E+01 (<0.001) 0.2723 (<0.0001) 7 

Upper 1.856E–03 (4.930E–05) (1.759E–03, 1.953E–03) >99.99 3.764E+01 (<0.001) 0.1185 (<0.0001) 

Lower –2.084E–03 (4.738E–05) (–2.177E–03, –1.991E–03) >99.99 –4.398E+01 (<0.001) 0.2893 (<0.0001) 8 

Upper 1.936E–03 (4.866E–05) (1.840E–03, 2.032E–03) >99.99 3.979E+01 (<0.001) 0.1168 (<0.0001) 

Lower –2.183E–03 (4.863E–05) (–2.279E–03, –2.087E–03) >99.99 –4.489E+01 (<0.001) 0.2715 (<0.0001) 9 

Upper 1.859E–03 (4.974E–05) (1.761E–03, 1.956E–03) >99.99 3.736E+01 (<0.001) 0.1184 (<0.0001) 
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Table K-30. Nonparametric Equivalence Analyses for ∆ = 10% Using Jackknife 
Estimation to Linear Trapezoid Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.272E–12 (2.136E–03) (–4.581E–03, 4.581E–03) 50.00 –4.374E–09 (>0.999) Overall 

Upper 9.208E–12 (1.857E–03) (–3.983E–03, 3.983E–03) 50.00 4.904E–09 (>0.999) 

Lower –9.276E–12 (2.044E–03) (–4.384E–03, 4.384E–03) 50.00 –4.538E–09 (>0.999) 1 

Upper 9.106E–12 (1.857E–03) (–3.983E–03, 3.983E–03) 50.00 4.904E–09 (>0.999) 

Lower –9.048E–12 (1.973E–03) (–4.231E–03, 4.231E–03) 50.00 –4.586E–09 (>0.999) 2 

Upper 9.417E–12 (1.981E–03) (–4.249E–03, 4.249E–03) 50.00 4.753E–09 (>0.999) 

Lower –9.272E–12 (2.145E–03) (–4.601E–03, 4.601E–03) 50.00 –4.322E–09 (>0.999) 3 

Upper 9.208E–12 (1.849E–03) (–3.965E–03, 3.965E–03) 50.00 4.981E–09 (>0.999) 

Lower –9.090E–12 (2.036E–03) (–4.366E–03, 4.366E–03) 50.00 –4.465E–09 (>0.999) 4 

Upper 9.428E–12 (1.962E–03) (–4.208E–03, 4.208E–03) 50.00 4.805E–09 (>0.999) 

Lower –9.835E–12 (2.249E–03) (–4.823E–03, 4.823E–03) 50.00 –4.374E–09 (>0.999) 5 

Upper 8.784E–12 (1.778E–03) (–3.813E–03, 3.813E–03) 50.00 4.941E–09 (>0.999) 

Lower –9.245E–12 (2.136E–03) (–4.581E–03, 4.581E–03) 50.00 –4.329E–09 (>0.999) 6 

Upper 9.298E–12 (1.880E–03) (–4.032E–03, 4.032E–03) 50.00 4.945E–09 (>0.999) 

Lower –9.500E–12 (2.178E–03) (–4.672E–03, 4.672E–03) 50.00 –4.362E–09 (>0.999) 7 

Upper 9.107E–12 (1.852E–03) (–3.972E–03, 3.972E–03) 50.00 4.917E–09 (>0.999) 

Lower –9.084E–12 (2.080E–03) (–4.461E–03, 4.461E–03) 50.00 –4.368E–09 (>0.999) 8 

Upper 9.450E–12 (1.933E–03) (–4.145E–03, 4.145E–03) 50.00 4.890E–09 (>0.999) 

Lower –9.631E–12 (2.179E–03) (–4.673E–03, 4.673E–03) 50.00 –4.421E–09 (>0.999) 9 

Upper 9.009E–12 (1.855E–03) (–3.978E–03, 3.978E–03) 50.00 4.857E–09 (>0.999) 
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Table K-31. Parametric Equivalence Analyses for ∆ = 10% Using Partial Batch 
Estimation to Spline Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –5.733E–03 (1.536E–02) (–3.598E–02, 2.451E–02) 64.54 –3.734E–01 (0.709) 0.0793 (<0.0001) Overall 

Upper –1.274E–03 (1.300E–02) (–2.688E–02, 2.433E–02) 53.90 –9.801E–02 (0.922) 0.0916 (<0.0001) 

Lower –5.684E–03 (1.553E–02) (–3.627E–02, 2.490E–02) 64.27 –3.660E–01 (0.715) 0.0794 (<0.0001) 1 

Upper –1.318E–03 (1.356E–02) (–2.802E–02, 2.539E–02) 53.87 –9.720E–02 (0.923) 0.0913 (<0.0001) 

Lower –5.598E–03 (1.547E–02) (–3.607E–02, 2.488E–02) 64.11 –3.618E–01 (0.718) 0.0800 (<0.0001) 2 

Upper –1.180E–03 (1.327E–02) (–2.731E–02, 2.495E–02) 53.54 –8.894E–02 (0.929) 0.0913 (<0.0001) 

Lower –5.769E–03 (1.544E–02) (–3.618E–02, 2.464E–02) 64.55 –3.736E–01 (0.709) 0.0790 (<0.0001) 3 

Upper –1.311E–03 (1.298E–02) (–2.687E–02, 2.425E–02) 54.02 –1.010E–01 (0.920) 0.0916 (<0.0001) 

Lower –5.654E–03 (1.544E–02) (–3.607E–02, 2.476E–02) 64.27 –3.661E–01 (0.715) 0.0797 (<0.0001) 4 

Upper –1.193E–03 (1.300E–02) (–2.680E–02, 2.441E–02) 53.65 –9.172E–02 (0.927) 0.0915 (<0.0001) 

Lower –5.866E–03 (1.516E–02) (–3.572E–02, 2.399E–02) 65.04 –3.869E–01 (0.699) 0.0786 (<0.0001) 5 

Upper –1.376E–03 (1.281E–02) (–2.661E–02, 2.386E–02) 54.27 –1.074E–01 (0.915) 0.0918 (<0.0001) 

Lower –5.752E–03 (1.536E–02) (–3.600E–02, 2.450E–02) 64.58 –3.745E–01 (0.708) 0.0792 (<0.0001) 6 

Upper –1.273E–03 (1.288E–02) (–2.664E–02, 2.410E–02) 53.93 –9.883E–02 (0.921) 0.0917 (<0.0001) 

Lower –5.792E–03 (1.523E–02) (–3.579E–02, 2.421E–02) 64.79 –3.802E–01 (0.704) 0.0790 (<0.0001) 7 

Upper –1.299E–03 (1.281E–02) (–2.653E–02, 2.393E–02) 54.03 –1.014E–01 (0.919) 0.0918 (<0.0001) 

Lower –5.695E–03 (1.541E–02) (–3.604E–02, 2.465E–02) 64.40 –3.697E–01 (0.712) 0.0795 (<0.0001) 8 

Upper –1.220E–03 (1.292E–02) (–2.666E–02, 2.422E–02) 53.76 –9.444E–02 (0.925) 0.0916 (<0.0001) 

Lower –5.791E–03 (1.517E–02) (–3.567E–02, 2.409E–02) 64.85 –3.817E–01 (0.703) 0.0791 (<0.0001) 9 

Upper –1.295E–03 (1.280E–02) (–2.650E–02, 2.391E–02) 54.02 –1.012E–01 (0.920) 0.0918 (<0.0001) 
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Table K-32. Nonparametric Equivalence Analyses for ∆ = 10% Using Partial Batch 
Estimation to Spline Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.273E–12 (3.144E–14) (–9.342E–12, –9.195E–12) >99.99 –2.889E+02 (<0.001) Overall 

Upper 9.189E–12 (1.847E–14) (9.150E–12, 9.229E–12) >99.99 4.974E+02 (<0.001) 

Lower –9.276E–12 (3.759E–14) (–9.356E–12, –9.195E–12) >99.99 –2.467E+02 (<0.001) 1 

Upper 9.084E–12 (2.229E–14) (9.036E–12, 9.132E–12) >99.99 4.075E+02 (<0.001) 

Lower –9.047E–12 (3.504E–14) (–9.123E–12, –8.972E–12) >99.99 –2.582E+02 (<0.001) 2 

Upper 9.396E–12 (2.198E–14) (9.348E–12, 9.443E–12) >99.99 4.274E+02 (<0.001) 

Lower –9.273E–12 (3.231E–14) (–9.342E–12, –9.203E–12) >99.99 –2.870E+02 (<0.001) 3 

Upper 9.189E–12 (1.847E–14) (9.150E–12, 9.229E–12) >99.99 4.974E+02 (<0.001) 

Lower –9.090E–12 (3.291E–14) (–9.160E–12, –9.019E–12) >99.99 –2.762E+02 (<0.001) 4 

Upper 9.407E–12 (2.023E–14) (9.364E–12, 9.451E–12) >99.99 4.651E+02 (<0.001) 

Lower –9.836E–12 (2.953E–14) (–9.899E–12, –9.772E–12) >99.99 –3.331E+02 (<0.001) 5 

Upper 8.768E–12 (1.541E–14) (8.735E–12, 8.801E–12) >99.99 5.690E+02 (<0.001) 

Lower –9.246E–12 (3.120E–14) (–9.313E–12, –9.179E–12) >99.99 –2.964E+02 (<0.001) 6 

Upper 9.280E–12 (1.823E–14) (9.241E–12, 9.319E–12) >99.99 5.090E+02 (<0.001) 

Lower –9.500E–12 (2.949E–14) (–9.563E–12, –9.436E–12) >99.99 –3.222E+02 (<0.001) 7 

Upper 9.091E–12 (1.668E–14) (9.055E–12, 9.127E–12) >99.99 5.452E+02 (<0.001) 

Lower –9.083E–12 (3.144E–14) (–9.151E–12, –9.016E–12) >99.99 –2.889E+02 (<0.001) 8 

Upper 9.432E–12 (1.907E–14) (9.391E–12, 9.472E–12) >99.99 4.945E+02 (<0.001) 

Lower –9.631E–12 (2.944E–14) (–9.694E–12, –9.568E–12) >99.99 –3.271E+02 (<0.001) 9 

Upper 8.993E–12 (1.599E–14) (8.959E–12, 9.027E–12) >99.99 5.625E+02 (<0.001) 
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Table K-33. Parametric Equivalence Analyses for ∆ = 10% Using Bootstrap Estimation 
to Spline Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –5.731E–03 (1.337E–02) (–3.207E–02, 2.061E–02) 72.62 –7.370E–01 (0.548) 0.1465 (<0.0001) Overall 

Upper –1.284E–03 (9.898E–03) (–2.078E–02, 1.821E–02) 78.14 –6.444E–02 (0.437) 0.1512 (<0.0001) 

Lower –5.657E–03 (1.285E–02) (–3.096E–02, 1.965E–02) 73.90 –8.720E–01 (0.522) 0.1450 (<0.0001) 1 

Upper –1.285E–03 (1.028E–02) (–2.153E–02, 1.896E–02) 78.10 2.973E–01 (0.438) 0.1496 (<0.0001) 

Lower –5.574E–03 (1.338E–02) (–3.193E–02, 2.078E–02) 72.91 –7.507E–01 (0.542) 0.1478 (<0.0001) 2 

Upper –1.139E–03 (1.023E–02) (–2.128E–02, 1.900E–02) 77.74 5.224E–01 (0.445) 0.1524 (<0.0001) 

Lower –5.891E–03 (1.364E–02) (–3.275E–02, 2.096E–02) 72.60 –7.252E–01 (0.548) 0.1482 (<0.0001) 3 

Upper –1.439E–03 (9.934E–03) (–2.100E–02, 1.813E–02) 78.18 –3.116E–01 (0.436) 0.1530 (<0.0001) 

Lower –5.571E–03 (1.355E–02) (–3.225E–02, 2.111E–02) 72.16 –6.958E–01 (0.557) 0.1471 (<0.0001) 4 

Upper –1.164E–03 (9.875E–03) (–2.061E–02, 1.828E–02) 78.04 –2.145E–01 (0.439) 0.1517 (<0.0001) 

Lower –5.830E–03 (1.331E–02) (–3.205E–02, 2.039E–02) 72.58 –7.409E–01 (0.548) 0.1473 (<0.0001) 5 

Upper –1.349E–03 (9.815E–03) (–2.068E–02, 1.798E–02) 78.18 6.992E–02 (0.436) 0.1521 (<0.0001) 

Lower –5.761E–03 (1.352E–02) (–3.240E–02, 2.087E–02) 72.31 –6.979E–01 (0.554) 0.1459 (<0.0001) 6 

Upper –1.315E–03 (9.792E–03) (–2.060E–02, 1.797E–02) 78.20 –3.842E–01 (0.436) 0.1506 (<0.0001) 

Lower –5.799E–03 (1.347E–02) (–3.233E–02, 2.073E–02) 72.36 –7.288E–01 (0.553) 0.1481 (<0.0001) 7 

Upper –1.361E–03 (9.823E–03) (–2.071E–02, 1.798E–02) 78.16 –2.457E–01 (0.437) 0.1527 (<0.0001) 

Lower –5.678E–03 (1.352E–02) (–3.231E–02, 2.095E–02) 72.08 –6.792E–01 (0.558) 0.1450 (<0.0001) 8 

Upper –1.206E–03 (9.768E–03) (–2.044E–02, 1.803E–02) 78.07 –3.653E–01 (0.439) 0.1496 (<0.0001) 

Lower –5.822E–03 (1.313E–02) (–3.167E–02, 2.003E–02) 72.69 –7.424E–01 (0.546) 0.1442 (<0.0001) 9 

Upper –1.293E–03 (9.567E–03) (–2.013E–02, 1.755E–02) 78.60 5.161E–02 (0.428) 0.1486 (<0.0001) 
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Table K-34. Nonparametric Equivalence Analyses for ∆ = 10% Using Bootstrap 
Estimation to Spline Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.273E–12 (2.882E–14) (–9.337E–12, –9.195E–12) >99.99 –3.130E+02 (<0.001) Overall 

Upper 9.189E–12 (2.096E–14) (9.150E–12, 9.239E–12) >99.99 4.444E+02 (<0.001) 

Lower –9.276E–12 (3.468E–14) (–9.350E–12, –9.195E–12) >99.99 –2.651E+02 (<0.001) 1 

Upper 9.084E–12 (2.522E–14) (9.037E–12, 9.141E–12) >99.99 3.619E+02 (<0.001) 

Lower –9.047E–12 (3.175E–14) (–9.114E–12, –8.972E–12) >99.99 –2.825E+02 (<0.001) 2 

Upper 9.396E–12 (2.398E–14) (9.349E–12, 9.448E–12) >99.99 3.936E+02 (<0.001) 

Lower –9.273E–12 (3.004E–14) (–9.337E–12, –9.203E–12) >99.99 –3.087E+02 (<0.001) 3 

Upper 9.189E–12 (2.163E–14) (9.150E–12, 9.239E–12) >99.99 4.266E+02 (<0.001) 

Lower –9.090E–12 (2.931E–14) (–9.152E–12, –9.019E–12) >99.99 –3.101E+02 (<0.001) 4 

Upper 9.407E–12 (2.216E–14) (9.365E–12, 9.457E–12) >99.99 4.263E+02 (<0.001) 

Lower –9.836E–12 (2.784E–14) (–9.895E–12, –9.774E–12) >99.99 –3.451E+02 (<0.001) 5 

Upper 8.768E–12 (1.932E–14) (8.735E–12, 8.815E–12) >99.99 4.555E+02 (<0.001) 

Lower –9.246E–12 (2.882E–14) (–9.308E–12, –9.179E–12) >99.99 –3.186E+02 (<0.001) 6 

Upper 9.280E–12 (2.096E–14) (9.242E–12, 9.328E–12) >99.99 4.444E+02 (<0.001) 

Lower –9.500E–12 (2.809E–14) (–9.559E–12, –9.436E–12) >99.99 –3.332E+02 (<0.001) 7 

Upper 9.091E–12 (1.976E–14) (9.056E–12, 9.137E–12) >99.99 4.620E+02 (<0.001) 

Lower –9.083E–12 (2.882E–14) (–9.145E–12, –9.016E–12) >99.99 –3.130E+02 (<0.001) 8 

Upper 9.432E–12 (2.096E–14) (9.391E–12, 9.478E–12) >99.99 4.517E+02 (<0.001) 

Lower –9.631E–12 (2.760E–14) (–9.689E–12, –9.568E–12) >99.99 –3.438E+02 (<0.001) 9 

Upper 8.993E–12 (1.941E–14) (8.959E–12, 9.039E–12) >99.99 4.650E+02 (<0.001) 
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Table K-35. Parametric Equivalence Analyses for ∆ = 10% Using Jackknife Estimation 
to Spline Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Mean (SE) 
95% CI on Paired 

Difference 
Coverage 

(%) Tstat (p–value) 
S–W Stat  
(p–value) 

Lower –5.733E–03 (5.366E–04) (–6.790E–03, –4.677E–03) >99.99 –1.069E+01 (<0.001) 0.0793 (<0.0001) Overall 

Upper –1.274E–03 (5.080E–04) (–2.274E–03, –2.733E–04) 99.33 –2.508E+00 (0.013) 0.0915 (<0.0001) 

Lower –5.684E–03 (5.434E–04) (–6.754E–03, –4.614E–03) >99.99 –1.046E+01 (<0.001) 0.0794 (<0.0001) 1 

Upper –1.318E–03 (5.183E–04) (–2.339E–03, –2.973E–04) 99.42 –2.543E+00 (0.012) 0.0912 (<0.0001) 

Lower –5.598E–03 (5.410E–04) (–6.664E–03, –4.533E–03) >99.99 –1.035E+01 (<0.001) 0.0800 (<0.0001) 2 

Upper –1.180E–03 (5.136E–04) (–2.192E–03, –1.687E–04) 98.88 –2.298E+00 (0.022) 0.0912 (<0.0001) 

Lower –5.769E–03 (5.368E–04) (–6.826E–03, –4.711E–03) >99.99 –1.075E+01 (<0.001) 0.0790 (<0.0001) 3 

Upper –1.311E–03 (5.067E–04) (–2.309E–03, –3.129E–04) 99.49 –2.587E+00 (0.010) 0.0916 (<0.0001) 

Lower –5.654E–03 (5.380E–04) (–6.713E–03, –4.594E–03) >99.99 –1.051E+01 (<0.001) 0.0798 (<0.0001) 4 

Upper –1.193E–03 (5.081E–04) (–2.193E–03, –1.918E–04) 99.01 –2.347E+00 (0.020) 0.0914 (<0.0001) 

Lower –5.866E–03 (5.327E–04) (–6.915E–03, –4.816E–03) >99.99 –1.101E+01 (<0.001) 0.0787 (<0.0001) 5 

Upper –1.376E–03 (5.050E–04) (–2.371E–03, –3.815E–04) 99.66 –2.725E+00 (0.007) 0.0917 (<0.0001) 

Lower –5.752E–03 (5.349E–04) (–6.806E–03, –4.699E–03) >99.99 –1.075E+01 (<0.001) 0.0792 (<0.0001) 6 

Upper –1.273E–03 (5.050E–04) (–2.268E–03, –2.785E–04) 99.38 –2.521E+00 (0.012) 0.0916 (<0.0001) 

Lower –5.792E–03 (5.332E–04) (–6.842E–03, –4.742E–03) >99.99 –1.086E+01 (<0.001) 0.0791 (<0.0001) 7 

Upper –1.299E–03 (5.044E–04) (–2.292E–03, –3.051E–04) 99.47 –2.574E+00 (0.011) 0.0917 (<0.0001) 

Lower –5.695E–03 (5.360E–04) (–6.751E–03, –4.640E–03) >99.99 –1.063E+01 (<0.001) 0.0796 (<0.0001) 8 

Upper –1.220E–03 (5.058E–04) (–2.216E–03, –2.236E–04) 99.17 –2.412E+00 (0.017) 0.0915 (<0.0001) 

Lower –5.791E–03 (5.329E–04) (–6.841E–03, –4.742E–03) >99.99 –1.087E+01 (<0.001) 0.0792 (<0.0001) 9 

Upper –1.295E–03 (5.049E–04) (–2.289E–03, –3.002E–04) 99.45 –2.564E+00 (0.011) 0.0917 (<0.0001) 
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Table K-36. Parametric Equivalence Analyses for ∆ = 10% Using Jackknife Estimation 
to Spline Approximation for n = 250 Patients 

AE Effect 
Paired Difference  

Median (SE) 95% CI on Paired Difference 
Coverage 

(%) Tstat (p–value) 

Lower –9.273E–12 (5.741E–03) (–1.231E–02, 1.231E–02) 50.00 –1.619E–09 (>0.999) Overall 

Upper 9.189E–12 (1.292E–03) (–2.771E–03, 2.771E–03) 50.00 7.024E–09 (>0.999) 

Lower –9.276E–12 (5.673E–03) (–1.217E–02, 1.217E–02) 50.00 –1.635E–09 (>0.999) 1 

Upper 9.084E–12 (1.315E–03) (–2.821E–03, 2.821E–03) 50.00 6.906E–09 (>0.999) 

Lower –9.047E–12 (5.587E–03) (–1.198E–02, 1.198E–02) 50.00 –1.619E–09 (>0.999) 2 

Upper 9.396E–12 (1.178E–03) (–2.526E–03, 2.526E–03) 50.00 7.977E–09 (>0.999) 

Lower –9.273E–12 (5.757E–03) (–1.235E–02, 1.235E–02) 50.00 –1.611E–09 (>0.999) 3 

Upper 9.189E–12 (1.308E–03) (–2.806E–03, 2.806E–03) 50.00 7.024E–09 (>0.999) 

Lower –9.090E–12 (5.643E–03) (–1.210E–02, 1.210E–02) 50.00 –1.611E–09 (>0.999) 4 

Upper 9.407E–12 (1.190E–03) (–2.553E–03, 2.553E–03) 50.00 7.904E–09 (>0.999) 

Lower –9.836E–12 (5.854E–03) (–1.256E–02, 1.256E–02) 50.00 –1.680E–09 (>0.999) 5 

Upper 8.768E–12 (1.373E–03) (–2.946E–03, 2.946E–03) 50.00 6.384E–09 (>0.999) 

Lower –9.246E–12 (5.741E–03) (–1.231E–02, 1.231E–02) 50.00 –1.611E–09 (>0.999) 6 

Upper 9.280E–12 (1.271E–03) (–2.725E–03, 2.725E–03) 50.00 7.303E–09 (>0.999) 

Lower –9.500E–12 (5.780E–03) (–1.240E–02, 1.240E–02) 50.00 –1.643E–09 (>0.999) 7 

Upper 9.091E–12 (1.296E–03) (–2.780E–03, 2.780E–03) 50.00 7.015E–09 (>0.999) 

Lower –9.083E–12 (5.684E–03) (–1.219E–02, 1.219E–02) 50.00 –1.598E–09 (>0.999) 8 

Upper 9.432E–12 (1.217E–03) (–2.611E–03, 2.611E–03) 50.00 7.748E–09 (>0.999) 

Lower –9.631E–12 (5.780E–03) (–1.240E–02, 1.240E–02) 50.00 –1.666E–09 (>0.999) 9 

Upper 8.993E–12 (1.292E–03) (–2.771E–03, 2.771E–03) 50.00 6.960E–09 (>0.999) 
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CDC Case Report Forms 
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Appendix M 

SAS Code 
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Appendix N 

Thrombocytopenia Phase III Clinical Trials 
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Rank 
Trial Status 

(Design): N per 
Treatment 

Study 

1 
Completed 

(Parallel): 60 
Not specified 

2 Completed 
(Parallel): 240  

Safety and Efficacy of (PN–152,243)/PN–196,444 in the Prevention of Thrombocytopenia  
Conditions: Non–Hodgkin Lymphoma;   Hodgkin Disease;   

Thrombocytopenia 
Intervention: Drug: (PN–152,243)/ PN–196,444  

3 Completed 
(Parallel): 120  

Safety and Efficacy of (PN–152,243)/PN–196,444 in the Prevention of Thrombocytopenia  
Condition: Sarcoma 

Intervention: Drug: PN–152,243)/PN–
196,444  

4 Recruiting (1 
Treatment): 20  

A Study Evaluating the Safety and Efficacy of Long–term Dosing of Romiplostim in 
Thrombocytopenic Pediatric Subjects With Immune (Idiopathic) Thrombocytopenia Purpura  

Condition: Thrombocytopenia in Pediatric Subjects With 
Immune (Idiopathic) Thrombocytopenic Purpura 
(ITP) 

Intervention: Biological: Romiplostim  

5 Terminated 
(Parallel): 292  

Eltrombopag To Reduce The Need For Platelet Transfusion In Subjects With Chronic Liver Disease 
And Thrombocytopenia Undergoing Elective Invasive Procedures  

Conditions: Non–alcoholic Steatohepatitis;   
Chronic Liver Disease;   HCV;   NASH.;   
HIV Infection;   Thrombocytopenia;   
Hepatitis C Virus;   Hepatitis B;   HIV Infections;   
Liver Diseases;   Hepatitis B Virus 

Interventions: Drug: Eltrombopag;   Drug: Placebo  

6 Completed (1 
Treatment): 50  

Anticoagulant Therapy With Bivalirudin in the Performance of Percutaneous Coronary Intervention in 
Patients With Heparin–Induced Thrombocytopenia (AT BAT, First Inning)  

Conditions: Heparin–Induced Thrombocytopenia;   
Thrombosis 

Intervention: Drug: bivalirudin  

7 Active, not 
recruiting (1 

Treatment): 50 

Angiomax in Patients With HIT/HITTS Type II Undergoing Off–Pump Coronary Artery Bypass 
Grafting (CABG) (CHOOSE)  

Conditions: Thrombocytopenia;   Thrombosis;   Cardiac Disease; 
  Coronary Artery Bypass Surgery 

Intervention: Drug: Angiomax (bivalirudin) anticoagulant  

8 Completed 
(Parallel): 63  

AMG 531 Treatment of Thrombocytopenic Subjects With Immune (Idiopathic) Thrombocytopenic 
Purpura (ITP) Refractory to Splenectomy  

Conditions: Thrombocytopenia;   
Idiopathic Thrombocytopenic Purpura 

Interventions: Drug: Placebo;   Biological: AMG 531  
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9 Completed 
(Parallel): 62  

AMG 531 Treatment of Thrombocytopenic Subjects With Immune (Idiopathic) Thrombocytopenic 
Purpura (ITP) Prior to Splenectomy  

Conditions: Thrombocytopenia;   
Idiopathic Thrombocytopenic Purpura 

Interventions: Biological: AMG 531;   Drug: Placebo  

10 Completed (1 
Treatment): 8  

Efficacy and Safety Study of Argatroban to Treat Heparin–Induced Thrombocytopenia  
Condition: Heparin–

Induced Thrombocytopenia 
Intervention: Drug: argatroban  

11 Recruiting (1 
Treatment): 340  

Clinical Trial for Non–responders Who Previously Participated in Eltrombopag Studies TPL 103922 
or TPL 108390  

Conditions: Hepatitis C;   
Thrombocytopaenia 

Intervention: Drug: Eltrombopag  

12 Active, not 
recruiting  

(Parallel): 750 

Eltrombopag To Initiate And Maintain Interferon Antiviral Treatment To Subjects With Hepatitis C 
Related Liver Disease  

Conditions: Hepatitis C, Chronic;   Hepatitis C;   
Thrombocytopenia 

Intervention: Drug: eltrombopag  

13 Active, not 
recruiting (Parallel): 

750  

Eltrombopag To Initiate And Maintain Interferon Antiviral Treatment To Benefit Subjects With 
Hepatitis C Liver Disease  

Conditions: Hepatitis C, Chronic;   Hepatitis C;   
Thrombocytopenia 

Intervention: Drug: eltrombopag  

14 Completed  (1 
Treatment): 131  

AMG 531 Versus Medical Standard of Care for Immune (Idiopathic) Thrombocytopenic Purpura  
Conditions: Thrombocytopenic Purpura;   

Idiopathic Thrombocytopenic Purpura;   
Thrombocytopenia;   Thrombocytopenia in Subjects 
With Immune (Idiopathic) Thrombocytopenic 
Purpura (ITP) 

Interventions: Biological: AMG531;   
Drug: Medical Standard of Care for ITP  

15 Completed (1 
Treatment): 50  

Angiomax in Patients With HIT/HITTS Type II Undergoing CPB  
Conditions: Cardiovascular Disease;   

Coronary Artery Bypass Surgery 
Intervention: Drug: Angiomax (bivalirudin)  

16 Recruiting (1 
Treatment): 400  

EXTEND (Eltrombopag Extended Dosing Study)  
Conditions: Idiopathic Thrombocytopenic Purpura;   

Purpura, Thrombocytopenic, Idiopathic 
Intervention: Drug: eltrombopag olamine (SB–497115–GR)  

17 Active, not 
recruiting (1 

Treatment): 500  

An Open Label Study of Romiplostim in Adult Thrombocytopenic Subjects With ITP  
Conditions: Idiopathic Thrombocytopenic Purpura;   

Thrombocytopenia;   Thrombocytopenic Purpura 
Intervention: Biological: Romiplostim  
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18 Completed 
(Parallel): 211  

Efficacy and Safety Study of Platelets Treated for Pathogen Inactivation and Stored for Up to Seven 
Days  

Condition: Thrombocytopenia 
Intervention: Device: Transfusion of Pathogen Inactivated Platelets 

stored for 6–7 days  

19 Completed (1 
Treatment): 313  

Open Label Extension Study of AMG 531 in Thrombocytopenic Subjects With Immune (Idiopathic) 
Thrombocytopenic Purpura (ITP)  

Conditions: Thrombocytopenia;   
Idiopathic Thrombocytopenic Purpura 

Intervention: Biological: AMG 531  

20 Active, not 
recruiting (1 

Treatment): 40  

Open Label Extension Study of AMG 531 in Japanese Subjects With ITP  
Condition: Thrombocytopenia in Subjects With Immune 

(Idiopathic) Thrombocytopenic Purpura (ITP) 
Intervention: Biological: AMG 531  

21 Recruiting 
(Parallel): 36  

A Randomized Study of IVIG vs. IVIG With High Dose Methylprednisolone in Childhood ITP.  
Condition: Immune Thrombocytopenic Purpura 

Intervention: Drug: Methylprednisolone and Intravenous Immune 
Globulin  

22 Completed (1 
Treatment): 60  

Treatment of Chronic Immune Thrombocytopenic Purpura (ITP) With Intravenous Immunoglobulin 
IgPro10  

Condition: Immune Thrombocytopenic Purpura 
Intervention: Drug: Immunoglobulin Intravenous (Human

)  

23 Terminated 
(Parallel): 27  

Safety of Fondaparinux as Routine VTE Prophylaxis in Medical ICU Patients  
Condition: Venous Thromboembolism 

Interventions: Drug: Fondaparinux;   
Drug: Enoxaparin  

24 Completed 
(Parallel): 197  

RAISE: Randomized Placebo–Controlled Idiopathic Thrombocytopenic Purpura (ITP) Study With 
Eltrombopag  

Condition: Idiopathic Thrombocytopenic Purpur
a 

Intervention: Drug: eltrombopag  

25 Completed  
(Parallel): 34  

P3 Study to Evaluate Efficacy and Safety of AMG 531 in Thrombocytopenic Japanese Subjects With 
Immune (Idiopathic) Thrombocytopenic Purpura  

Condition: Idiopathic Thrombocytopenic Purpur
a 

Interventions: Drug: Placebo;   Drug: AMG 531  

26 Completed 
(Parallel): 106  

The Use of Fondaparinux in Preventing Thromboembolism in High Risk Trauma Patients  
Condition: Venous Thromboembolism 

Interventions: Drug: fondaparinux sodium;   
Device: sequential compression devices  
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27 Recruiting (1 
Treatment): 75  

IGIV Study for Chronic ITP Patients Ages 3–70  
Condition: Idiopathic Thrombocytopenic Purpur

a 
Intervention: Drug: IGIV3I Grifols 10%  

28 Recruiting 
(Parallel): 500  

Karenitecin Versus Topotecan in Patients With Advanced Epithelial Ovarian Cancer  
Condition: Ovarian Cancer 

Interventions: Drug: Karenitecin;   
Drug: Topotecan  

29 Completed 
(Parallel): 120  

Study Comparing Desirudin With Heparin to Prevent Vein Clots After Heart and Lung Surgery  
Condition: Deep Venous Thrombosis 

Intervention: Drug: Desirudin (Iprivask™
)  

30 Completed  
(Parallel): 1329 

First Line IRESSA™ Versus Carboplatin/Paclitaxel in Asia  
Condition: Non–small Cell Lung Cancer 

Interventions: Drug: Gefitinib;   Drug: Carboplatin;   
Drug: Paclitaxel  

31 Recruiting 
(Parallel): 210  

Complementary Treatment of PG2 to Improve Clinical Benefit Response and Quality of Life in 
Fatigue  

Conditions: Quality of Life;   Fatigue;   Complementary
Intervention: Drug: PG2  

32 Completed 
(Parallel): 342  

Efficacy and Safety of Low–molecular Weight Heparin for Thromboprophylaxis in Acutely Ill 
Medical Patients  

Condition: Embolism 
Interventions: Drug: Certoparin;   

Drug: Heparin  

33 Completed  
(Parallel): 150  

Myfortic vs. Cellcept in Kidney Transplant Recipients  
Condition: End Stage Renal Disease 

Interventions: Drug: Mycophenolate Sodium Delayed Release 
Tablets;   Drug: Mycophenolate Mofetil  

34 Not yet recruiting  
(Parallel): 100  

Fondaparinux to Prevent Thrombotic Complications and Graft Failure in Patients Undergoing 
Coronary Artery Bypass Graft Surgery: The Fonda CABG Study  

Condition: Coronary Bypass Graft Failure/Occlusio
n 

Intervention: Drug: Fondaparinux  

35 Terminated (1 
Treatment): 112  

Safety and Efficacy Study To Compare Uniplas With Cryosupernatant Plasma In Thrombotic 
Thrombocytopenic Purpura (TTP)  

Condition: Thrombotic Thrombocytopenic Purpura (TTP
) 

Intervention: Drug: Uniplas  



 365 

 

36 Completed 
(Parallel): 23  

Clinical Evaluation of SB–497115–GR in Chronic Idiopathic Thrombocytopenic Purpura (ITP)  
Condition: Chronic Idiopathic Thrombocytopenic Purpura 

Interventions: Drug: SB–497115–GR 12.5mg tablet;   Drug: SB–
497115–GR 25mg tablet;   Drug: SB–497115–
GR 12.5mg matching placebo tablet  

37 Recruiting (1 
Treatment): 20  

Clinical Trial in Patients Diagnosed With Immune Thrombocytopenic Purpura  
Condition: Idiopathic Thrombocytopenic Purpur

a 
Intervention: Biological: IGIV3I Grifols  

38 Completed (1 
Treatment): 19  

Ig NextGen 10% in Idiopathic Thrombocytopenic Purpura (ITP) Patients  
Condition: Idiopathic Thrombocytopenic Purpura (ITP

) 
Intervention: Drug: IgNextGen 10%  

39 Active, not 
recruiting (1 

Treatment): 19  

Clinical Evaluation of Eltrombopag in Chronic Idiopathic Thrombocytopenic Purpura (ITP)  
Conditions: Idiopathic Thrombocytopenic Purpura;   

Purpura, Thrombocytopenic, Idiopathic 
Intervention: Drug: Eltrombopag oral tablets  

40 Completed 
(Parallel): 103  

A Study Evaluating the Addition of MabThera (Rituximab) to Standard Treatment in Patients With 
Idiopathic Thrombocytopenic Purpura (ITP)  

Condition: Idiopathic Thrombocytopenic Purpur
a 

Intervention: Drug: rituximab  

41 Completed (Paired 
Crossover): 100  

Rapid Infusion of Immune Globulin Intravenous (Human) In Primary Immunodeficiency Patients  
Conditions: Immunologic Deficiency Syndrome;   

Agammaglobulinemia;   
Severe Combined Immunodeficiency;   Wiskott–
Aldrich Syndrome;   
Common Variable Immunodeficiency 

Interventions: Drug: Immune Globulin Intravenous [Human], 10% 
Caprylate/Chromatography Purified;   
Drug: Dextrose, 5% in Water  

42 Completed (1 
Treatment): 116  

Clinical Study to Evaluate the Efficacy and Safety of Octagam 10% in Idiopathic Thrombocytopenic 
Purpura in Adults  

Condition: Idiopathic Thrombocytopenic Purpur
a 

Intervention: Drug: Octagam 10%  

43 Completed (Paired 
Crossover): NA  

Safety and Efficacy Study of a 10% Intravenous Immune Globulin Solution in Subjects With Primary 
Immunodeficiency Disorders  

Conditions: Primary Immunodeficiency Disorders;   
Immune Thrombocytopenic Purpura (ITP);   
Kawasaki Syndrome 

Intervention: Procedure: Immune Globulin Intravenous (Human), 
10%  
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44 Completed (NA): 
NA  

Study of Higher Dose of Rituxan Versus Standard Doses of Rituxan With Cyclophosphamide, 
Vincristine, and Prednisone in Subjects With Chronic ITP  

Condition: Immune Thrombocytopenic Purpura 
Interventions: Drug: Rituxan and Cyclophosphamide, Vincristine 

and Prednisone;   Drug: Higher Dose of Rituximab  

45 Terminated 
(Parallel): 2  

Evaluating the Effectiveness of Adding Rituximab to Standard Treatment for Thrombotic 
Thrombocytopenic Purpura (TTP) (The STAR Study)  

Condition: Thrombotic Thrombocytopenic Purpura 
Interventions: Drug: Rituximab;   Procedure: Plasma exchange;   

Drug: Corticosteroids  
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