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Hodgkin-Huxley type conductance-based models can simulate the effect of time-varying

injected stimulus currents on the neuron membrane voltage. The dynamics simulated by

these model types enables investigation of the biophysical basis of neuronal activity which is

fundamental to higher level function. Broadened understanding the basis of nervous system

function could lead to development of effective treatment for related diseases, disorders, and

the effects of trauma. In this dissertation, optimal control is used with conductance-based

neuron models to develop a “Reduced Energy Input Stimulus Discovery Method.” Within

the method, an objective function balances two competing criteria: tracking a reference

membrane voltage resulting from a stimulus current and reducing the squared input stimu-

lus current ‘energy’ of that stimulus current. The technique enables computation of optimal

input current stimuli that provide differing emphasis on either reference membrane potential

tracking or input stimulus current energy reduction. Differences between mathematically

optimal and reference stimulus-response signal pairs serve as a source of investigation for

furthering understanding of neural dynamics. The method is applied to investigations in-

cluding four fundamental bifurcation types in a reduced-order, conductance-based neuron

model as well as the classical Hodgkin-Huxley model. Experimental feasibility of the ap-

proach is demonstrated by applying optimal current stimuli to neurons of the leech Hirudo

verbana using single cell intracellular stimulation and recording techniques with sharp micro-

electrodes. Applicability may include finding reduced energy current stimuli for treatment

of neurological diseases and prosthesis control.
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1 Introduction

Neurons are cells which are highly specialized for rapid development of electrical mem-

brane potentials [8][9, p. 3]. Selective permeability of the cellular membrane to positively

and negatively charged ions enables neurons to generate electrical signals that encode infor-

mation essential for organism function at many levels, from sensing to muscle control. Thus

encoding and processing of information enables the nervous system to play its fundamental

role in interactions between an organism and the environment in which it lives.

Deficiencies or disorders of the nervous system can greatly impair abilities of an organism

to perform tasks critical for life and health. Examples of neurological diseases include

Alzheimer’s and Parkinson’s. Disorders such as epilepsy and effects of trauma are further

examples of impairments to nervous system function.

A broad range of approaches have been utilized to further understanding of the nervous

system and develop methods for prevention and treatment of neurological diseases. One

approach is to investigate the biophysical basis of neuronal activity which is fundamental

to higher level function. The pioneering work of Hodgkin and Huxley is foundational to all

biophysically derived neuron models [10, p. 41]. Furthermore, convergence of computational

neuroscience with control theory has produced increased interest in studying how the ranges

of dynamical behavior vary in response to changes in various parameters. These bifurcations

of neuron dynamics are fundamental properties of individual neurons [10, p. 2][1, p. xv].

Within this dissertation, single cells are modeled using conductance-based Hodgkin-

Huxley type models. Optimal control theory, which provides a mathematical framework

for minimization of performance objectives, is used to develop a “Reduced Energy Input

Stimulus Discovery Method,” that enables computation of optimal input stimuli which bal-

ance reduced squared integral ‘energy’ of the input stimulus against accurate tracking of

a desired membrane potential [2, 3]. Nonlinear neuron dynamics are investigated for four

bifurcation types considered to be fundamental to neurocomputational properties of neu-

rons [1], as a precursor. Differences between optimal and reference stimulus-response signal

pairs provides insight into neuron function.
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The relationship between energy efficient input stimuli and development of a desired

time-varying neural membrane response is relevant to neural prostheses and electrical stim-

ulation therapies involved in spinal cord and Parkinson’s treatments [11, 12, 13]. In these

cases, chronic over-stimulation is problematic, and decreased energy input stimuli improves

longevity of implanted devices and reduces damage to associated tissues [14, 15].

Various toxins and pharmacological blockers have long been used in electrophysiological

studies due to their impact on ion channel function and neural responses [8, 16]. Model-

based tracking of neural signals, including membrane potential, has been shown to be an

effective tool for studying the effect of toxins or pharmaceuticals on neuron function, and

estimating changes in model parameters [17, 18, 10].

The method presented within this dissertation has several advantages when considering

applicability of theoretical methods ‘at the bench.’ All simulations presented have been per-

formed on a personal laptop computer with simulation times sufficient to enable computation

and application of optimal input stimulus currents within a single experimental preparation.

Furthermore, measurement and stimulation of the signals required for the computation and

application method does not require continuous feedback of neuron states [14].

When speaking of the present state of the art, one researcher states that “implementa-

tion of this research program is still a pipe dream,” lamenting the separation of experimental

neurobiologists and practitioners of theoretical computational neuroscience [1, p. 20]. The

framework presented within this dissertation takes into account the theoretical system dy-

namics underpinning neural system functionality and exhibits characteristics favorable for

experimental application at the rig [14]. The method published within this dissertation,

along with its broadly extensible paradigm, is intended to be a step toward realization of

the “pipe dream”.

1.1 Dissertation Overview

Analysis and optimal control of nonlinear system dynamics in conductance-based Hodgkin-

Huxley type neuron models enables discovery of reduced energy input stimuli. In this section

an overview of topics necessary for development of the “Reduced Energy Input Stimulus Dis-
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covery Method” is provided [2, 3].

1.1.1 Neuron Modeling

Understanding conductance-based models is essential when studying single neuron dy-

namics, or networks of a small number of neurons, and the Hodgkin-Huxley model is founda-

tional to all biophysically-based models [1, p. 320][10, p. 41]. All models considered within

this dissertation are conductance-based models of the Hodgkin-Huxley formalism.

Scope is a primary decision encountered when modeling any dynamical process, and

consequently neuronal models exist at every level, from individual ion channels to organism

behavior. Theoretical and experimental research pertinent to individual ion channels has

developed alongside whole cell approaches [8, p. 33][16]. As scope increases, simplified

models are often employed to investigate behavior in networks of neurons. In some cases

action potentials, or spikes, are treated as atomic events where timing of the event is the only

concern [19]. In other cases, it is assumed that the neuron is in a repetitive spiking mode,

and phase models can be used to explore delay times and frequency characteristics of the

neural response [11, 20]. In other cases large scale simulations are created without sacrificing

the fidelity of conductance-based models, necessitating the use of supercomputers [21, 22].

The family of conductance-based models utilized within this dissertation represent a

range of complexity from minimal, second-order models to a sixth-order model experimen-

tally validated in the research literature [1, 17]. Scope of the models is limited such that

all simulations presented can be performed on a personal laptop computer with reason-

able simulation times. When taken as a group, the family of models facilitates analysis

in lower-dimensional cases, and incorporates more complex neural dynamics in the higher-

dimensional models.

For further details on the biophysical basis of neuronal signals or their modeling within

this dissertation, reference Chapter 2.
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1.1.2 Nonlinear Systems Analysis and Bifurcation Dynamics

Considering bifurcation dynamics of system fixed points in neuronal models, in addition

to the electrophysiological properties of individual cells, is essential for understanding the

computational properties of the neuron [1]. Attempts to precisely estimate values for model

parameters in isolation, without considering the composite nonlinear dynamics of the model,

often results in the need for “fine tuning” to reproduce the dynamics of the neuron type

under investigation [1, p. 7].

A framework for investigation of system dynamics is presented in Chapter 3 which in-

cludes determining the number and location of system fixed points, classification of system

fixed points, and examination of bifurcation type, based in large part on [1]. Using this

framework, the “Reduced Energy Input Stimulus Discovery Method” is introduced that

finds optimal stimulation currents that can track a reference membrane potential [2, 3].

The framework is applied to reduced-order conductance-based neuron models for discov-

ery of reduced energy input stimuli in Chapter 4. These models are conducive to geometric

analysis techniques due to their low-dimension, but have sufficient fidelity to demonstrate

the four bifurcation types fundamental to neural behavior [1, 6].

Higher-order models allow incorporation of a greater range of dynamical behavior, but

are not as readily analyzed. Information related to system fixed points and dynamics is

not as readily analyzed graphically [3]. The classical Hodgkin-Huxley model is examined in

Chapter 5 and results from a six-dimensional conductance-based model have been previously

published in [3].

1.1.3 Optimal Control

Through optimization of different performance objectives, previous research has demon-

strated the utility of applying optimal control theory to neuronal models. Within this

dissertation, optimal control theory is used to study a family of conductance-based neuron

models from an energy efficiency perspective. While energy efficiency of the nervous sys-

tem has been studied for a variety of reasons [23, 24, 25, 26], development of an objective
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function which balances two competing criteria, tracking a reference membrane voltage and

reducing the squared input stimulus current (input current ‘energy’) enables discovery of

optimal stimulus signals [2, 3]. A set of optimal input stimuli can be computed for any given

reference membrane voltage by adjusting the user prescribed balance between emphasis of

accurately tracking the reference signal and reducing the input current energy.

Any difference between the reference membrane voltage and the membrane voltage gen-

erated by the optimal input stimulus signal is tracking error. In contrast, differences between

the originally applied input stimulus current and the optimal input current is a source of

investigation for furthering understanding of neural dynamics.

It is well known that many biological systems operate in an oscillatory manner which is

often represented by phase models [27]. Optimal control has been applied to phase models

for computing input stimulus signals to alter spike timing, including causing a neuron to

spike at a prescribed time [28], maximizing neuron firing rate [11], or breaking unwanted

synchronization of neural activity [11, 29]. The technique presented in this dissertation

has also been extended for application to phase models [30]. Tracking and control of neural

dynamics and model parameter estimation in conductance-based neuron models was studied

in [31] using Kalman filter-based technique.

Chapter 3 further develops details of the control objective and methodology used within

this dissertation. Chapters 4 and 5 present results from application of the technique to a

family of conductance-based neuron models.

1.1.4 Experimental Feasibility

A preliminary feasibility study has been conducted via single cell intracellular stimulation

and recording using sharp microelectrodes. Recordings were taken from P and N-cell types

in mid-body segment ganglia of the leech Hirudo verbana.

Based on the known properties of P-cells, a saddle-node on invariant circle (SNIC) bi-

furcation type was selected for the model. A non-smooth square stimulus pulse of sufficient

amplitude to generate an action potential was applied to the cell of interest. The ampli-

tude and duration of the square wave was used as a reference for scaling the theoretically
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computed optimal input stimulus signals. A family of optimal input stimulus signals, with

increasing emphasis on reduced input stimulus energy, was then applied to the same neuron.

The cell fired action potentials in response to the optimal input stimuli, validating experi-

mental feasibility of the approach. Results from application of optimal input stimuli to an

N-cell are also presented.

Further details regarding the experimental preparation, signal processing, and prelimi-

nary data from the feasibility study is presented in Chapter 6.

1.1.5 Dissertation Structure

The dissertation proceeds as follows. The biophysical basis of signals in an individual

neuron, and associated mathematical models used, are presented in Chapter 2. Chapter 3

incorporates conductance-based neuronal models, analysis of bifurcation dynamics, and op-

timal control theory into a framework for investigation of energy efficiency in modeled indi-

vidual neurons. The framework will serve as a template for theoretical simulations presented

in Chapters 4 and 5. Chapter 4 demonstrates applicability of the method to a reduced-order

Hodgkin-Huxley type model capable of producing the four bifurcations deemed essential for

most neural computational properties [1]. Chapter 5 applies the method to the classi-

cal Hodgkin-Huxley model. Chapter 6 provides an initial demonstration of experimental

applicability of the method with single cellular stimulation and recording via sharp micro-

electrodes. Conclusions are presented in Chapter 7.
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2 Neuron Modeling

This section provides an overview of the biophysical basis of neural signals pertinent to

this dissertation and an introduction to electronic circuit and dynamical system models.

Reviewing these topics together provides a context to relate relevant properties of neuronal

excitable membranes to the electronic circuit models and dynamical systems which model

them.

All models considered in this dissertation are conductance-based, Hodgkin-Huxley type

neuron models. Neurons are modeled as isopotential entities, with membrane potential

represented by a single voltage. The family of models examined consists of a reduced-order,

two-dimensional model, the classical four-dimensional Hodgkin-Huxley model and a six-

dimensional model. Other means of neuron modeling including phase models and stochastic

techniques are not considered here.

This section begins with an overview of the biophysical basis of selected neural signals

in Section 2.1. Fundamental concepts of ion channel conductance and equilibrium poten-

tial are explained and incorporated into a circuit model which describes resting membrane

potential in terms of concentration gradients and relative permeability of multiple ionic

species. Variation of the relative permeability of ionic species is shown to sway the resting

membrane potential toward the equilibrium potential of the ionic species with the great-

est permeability, allowing for rapid modulation of membrane potential through primarily

passive means.

The classical Hodgkin-Huxley model is examined in Section 2.2. Specifically, the circuit

model developed in Section 2.1 is extended to incorporate injected current stimulus signals

and capacitive properties of the cell membrane. Inclusion of ion channel dynamics relates

the representative circuit to the classical Hodgkin-Huxley model, a dynamical system of

equations.

Section 2.3 provides a cursory overview of a reduced-order, two-dimensional model which

is based on the classical Hodgkin-Huxley.

Section 2.4 highlights the quandary of parameter estimation when seeking to apply
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results in models to experimental preparations.

2.1 Biophysical Basis of Neural Signals

Neurons are exceptionally functionally and morphologically diverse. A working definition

of a neuron is a cell which is highly specialized for rapid communication of information over

varying distance through rapid modulation of membrane voltage [8].

This section provides an overview of the biophysical basis of selected neural signals.

For a thorough review, see [8]. Some figures and text within this section were previously

presented in [5].

2.1.1 Excitable Membranes

Chemical concentrations can vary greatly at different locations within a living organism,

and are often different than those which are necessary to sustain life inside a cell. Cellular

membranes enable the interior of a cell to consist of a different chemical composition than the

environment in which it resides. The majority of the cellular membrane is composed of a lipid

bilayer. Lipids consist of a hydrophilic head region, which is attracted to aqueous solutions,

and long hydrophobic tails, which are repelled from them [32]. Due to these fundamental

properties lipids naturally form micelles (Figure 1a) and lipid bilayers (Figure 1b) when

placed in aqueous solutions [32].

(a) (b) (c)

Figure 1: Lipid formations, directly from [5]

In addition to a lipid bilayer the excitable cell membrane of a neuron contains membrane-
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spanning proteins (Figure 1c) called ion channels. Ion channels are often selectively perme-

able to specific ionic species and are capable of opening and closing in response to membrane

voltage or ligands, which are ions that selectively bind to receptors [8]. Although ion chan-

nels control the permeability of the cell membrane to various ions, the driving force for the

movement of ions into or out of the cell is an electro-chemical gradient created by differing

ion concentrations and electromagnetic forces related to membrane voltage and ion valence.

In addition to the passive flow of ions according to their electro-chemical gradient, neu-

rons also have active transport mechanisms for moving ions across the cell membrane against

their gradient. The sodium-potassium pump is an example of active transport, using energy

from hydrolysis of ATP to transport sodium and potassium ions against their respective

electro-chemical gradients [8, p. 62].

Through selective permeability of embedded ion channels and energy consuming pro-

cesses for active transport of ions, a cell is able to maintain a consistent internal environment

which is distinct from the extracellular solution [32].

2.1.2 Resting Potential

Many essential factors combine for generation of an electrical potential across the cell

membrane. As described in Section 2.1.1, a concentration gradient exists between the cy-

toplasm and the extracellular solution and ions diffuse across the membrane with different

relative permeability. Additionally, the cell must remain in osmotic balance and both inte-

rior and exterior solutions must both be electrically neutral [8]. Based on these biophysical

properties, this subsection describes the equations which enable calculation of ion specific

equilibrium potentials and the resting membrane potential for a cell.

2.1.2.1 Nernst Equation

Both diffusion and electromotive forces act upon ions, to influence their movement be-

tween the cytoplasm inside the cell membrane and the extracellular solution. Diffusion

forces equilibrate concentration gradients across the membrane. The electromotive force

acts with respect to the membrane potential and ion valence.
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Consider a cell with a negative resting potential Vm, as illustrated in Figure 2. Since

potassium is at a higher concentration inside the cell, diffusion drives potassium out of the

cell, depicted by the arrow on the left. Due to the negative membrane potential positively

charged potassium ions are driven into the cell by the electromagnetic force, depicted by

the arrow on the right.

Figure 2: Depiction of forces acting on a potassium ion, directly from [5]

There is a membrane voltage at which the diffusion force will be equal to the electro-

magnetic force. That voltage is defined as the equilibrium potential for that specific ion,

often designated as Eion, and can be calculated using the Nernst equation [8]

Eion =
RT

zF
ln

[ionic concentration]extracellular
[ionic concentration]intracellular

= 58 ∗ log
[ion]ext
[ion]int

mV (1)

where [ion]ext and [ion]int are the external and internal ion concentrations, respectively.

Originally formulated by Walther Nernst, equation (1) computes the equilibrium poten-

tial according to the universal gas constant (R), absolute temperature (T ), ion valence (z),

Faraday’s constant (F ), and ionic concentration gradient across the membrane [16, 8]. The

constant value of 58 is computed at room temperature (20◦C) for univalent positive ions

(z = 1).

The equilibrium potential for each ionic species is significant since it indicates the voltage

at which the net ionic current across the membrane, Iion, will be equal to zero. Using Ohm’s
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law and the equilibrium potential defined by the Nernst equation, the relationship between

membrane voltage Vm and ionic current Iion is

Iion = gion(Vm − Eion) (2)

where gion is the ion specific conductance.

As early as 1902, long before it was possible to actually measure the resting potential of

a cell, Julius Bernstein, in his famous hypothesis, recognized that membrane potential was

the result of unequal distribution of potassium [8]. Specifically, Bernstein hypothesized that

if the cell was permeable to potassium alone, then the resting potential must be equal to the

equilibrium potential of potassium, as calculated by the Nernst equation [8]. By the time

Hodgkin and Huxley were performing their experiments on the giant axon of Loligo in the

early 1950s, scientists believed that the cell membrane of a neuron was typically permeable

to more than one ionic species, thus the Nernst equation was unable to accurately predict

the resting membrane potential of a cell.

2.1.2.2 Goldman-Hodgkin-Katz Equation

Derivation of the equation, which is able to predict the electric potential of a cell mem-

brane permeable to more than one ionic species, was discovered independently by Goldman,

Hodgkin, and Katz [8]. As an example, the resting membrane potential for a cell which is

permeable to only sodium, potassium, and chloride is calculated using the GHK equation

as

Vm =
gKEK + gNaENa + gClECl

gK + gNa + gCl
= 58 ∗ log

pK [K]ext + pNa[Na]ext + pCl[Cl]int
pK [K]int + pNa[Na]int + pCl[Cl]ext

mV (3)

where [K], [Na], and [Cl] are ionic concentrations.

Due to the opposite ionic valence, the interior and exterior concentration values for

chloride are transposed compared to those of sodium and potassium . Also, the units of the

GHK equation produce a membrane potential which is in millivolts. When written in terms

of permeability and concentration gradients, it is helpful to think of the GHK equation as
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a Nernst equation with multiple terms weighted by the relative permeability of each ionic

species.

The GHK equation is often modeled by an electric circuit, in which a parallel branch of

the circuit is associated with each conductance term. Often sodium, potassium, and chloride

have the most significant impact on resting membrane potential. Remaining currents, if

included, are often lumped in the model as ‘leak currents’, resulting in an additional term

to the equation.

Figure 3: Circuit model of a neuron membrane

The circuit model of Figure 3 corresponds to the terms of GHK equation (3), neglecting

any additional leak currents. Summing the ion species specific currents, Kirchoff’s current

law yields

IK + INa + ICl = 0. (4)

Using Ohm’s law each conductance is substituted using equation (2) yielding

gK(Vm − EK) + gNa(Vm − ENa) + gCl(Vm − ECl) = 0. (5)

Rearranging terms and solving for Vm reproduces the GHK equation (3)

Vm =
gKEK + gNaENa + gClECl

gK + gNa + gCl
. (6)

Breaking out individual terms of the equation as in [33] produces equation (7), highlight-
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ing the resting membrane potential Vm as the weighted average of equilibrium potentials

for each permeant ion

Vm =
gK
gT
EK +

gNa

gT
ENa +

gCl

gT
ECl (7)

where gT = gK + gNa + gCl.

One potentially confusing aspect of the circuit model as commonly presented in other

sources is that the battery polarity in the circuit model schematic is often reversed for

any ion with a negative equilibrium potential [33]. Polarity of the equilibrium potentials

is discussed further in Section 2.1.2. For this section it is noted that the polarity of the

battery for all equilibrium potentials will be oriented in the same direction, in contrast to

the classical presentation of the circuit model.

2.1.3 Action Potential

The circuit model in Figure 3 depicts the cell at rest. Static values for each equilib-

rium potential, conductance, and associated ionic concentrations enable computation of the

membrane resting potential via equation (3). Generation of an action potential requires

introduction of dynamics to the circuit model.

As discussed in Section 2.1.1, a cell is able to regulate membrane potential through selec-

tive permeability of embedded ion channels and as well as active transport mechanisms [32].

Yet, active transport mechanisms generally constitute less than 10% of the resting mem-

brane potential [8, p. 88]. Furthermore, net ionic movement across the membrane during

an action potential is minuscule in terms of the overall ionic concentration in either the

cytoplasm or extracellular solution [8, p. 93]. Thus ionic concentrations can be considered

constant.

Therefore, it is correct to heavily emphasize ion channel dynamics as the essential com-

ponent in both resting membrane potential and action potential generation.

In fact, a significant contribution of the work of Hodgkin and Huxley involved quantifying

activation and inactivation dynamics of ion channel populations as described in Section 2.2.2.

For now, consider each resistor in Figure 3 as a variable. The conductance for each ion
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channel can vary according to membrane potential, ligand binding, or another characteristic

of the cell or environment.

Since the overall membrane potential is a result of each equilibrium potential, weighted by

the relative permeability of the membrane to each ionic species, any increase in permeability

to a specific ion will sway the membrane potential toward the equilibrium potential of that

ion. As an example, consider the following equilibrium potentials, representative of a typical

mammalian cell [8]:

EK = 58 ∗ log
[K]ext
[K]int

= 58 ∗ log
[10]ext
[165]int

= −70.61 mV; (8)

ENa = 58 ∗ log
[Na]ext
[Na]int

= 58 ∗ log
[175]ext
[20]int

= 54.64 mV; and (9)

ECl = 58 ∗ log
[Cl]int
[Cl]ext

= 58 ∗ log
[4]int

[97]ext
= −80.31 mV. (10)

Resting membrane potential can be computed for the hypothetical cell using the GHK

equation (3). Assuming relative permeability values of pK = 5.0, pNa = 0.0005, and pCl =

0.5 the membrane potential is computed according to equation (11) as

Vm = 58 ∗ log
pKKext + pNaNaext + pClClint
pKKint + pNaNaint + pClClext

, (11)

= 58 ∗ log
(5.0)[10]ext + (0.0005)[175]ext + (0.5)[4]int
(5.0)[165]int + (0.0005)[20]int + (0.5)[97]ext

= −71.02 mV. (12)

Presently the resting membrane potential is closest to the equilibrium potential of potas-

sium. This is the result of potassium having the highest relative permeability. If the relative

permeability of sodium increases to pNa = 50 in response to some input stimulus, the resting

membrane potential is forced toward the equilibrium potential of sodium. Since the equi-

librium potential of sodium is equal to 54.64 mV, as computed in equation (9), this results

in an increased membrane potential, often referred to as depolarization of the membrane,
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computed as

Vm = 58 ∗ log
(5.0)[10]ext + (50)[175]ext + (0.5)[4]int
(5.0)[165]int + (50)[20]int + (0.5)[97]ext

= 38.97 mV. (13)

The increase in sodium permeability is due to a portion of the population of sodium

channels opening, allowing sodium ions to flow into the cytoplasm according to their con-

centration gradient. These computations exemplify how the resting membrane potential

can be varied toward any of the equilibrium potentials through primarily passive means.

An amazing aspect of cellular neurobiology is the efficiency with which neurons maintain

the environment necessary for continued life of the cell. Much of what the cell requires is

achieved using existing energy gradients [8]. During the time course of an action potential

the conductance of populations of ion channels change in a concerted fashion to produce

the stereotypical waveform commonly known as an action potential or ‘spike.’

A stereotypical description of the signal cascade leading to generation of a classical action

potential begins at the dendritic arbor. Depending on their function, dendrites respond

to different types of stimulus, including touch, heat, light, or the presence of chemicals.

The stimulus produces a response in the dendrite which influences the probability that ion

channels will open or close. Changes in the state of the ion channels produces a localized

change in membrane potential. If the inputs from the dendrites arrive close enough to each

other in time and position at the cell body, they create momentary positive feedback when

voltage gated sodium channels open in response to the stimulus. Positively charged sodium

ions flow into the cell through the opened sodium channels, raising the membrane voltage

further still. Elevated membrane voltage in turn causes more sodium channels to open, with

the net effect resulting in the rising phase of a stereotypical action potential.

Potassium channels are voltage gated as well, but respond more slowly than sodium

channels. When potassium channels open, positively charged potassium ions flow out of the

cell into the extracellular solution according to their concentration gradient, reducing the

membrane voltage. Although potassium channel activation is slower than sodium channels,

potassium channel activation is persistent. Sodium channels are inactivated in the presence
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of a positive membrane voltage. This results in a reduction in the sodium conductance, and

the net membrane voltage begins to move toward the equilibrium potential of potassium.

Thus, the persistent potassium current, simultaneous with inactivation of the sodium cur-

rent, accounts for the falling phase and undershoot of membrane voltage beyond the resting

potential [8]. Figure 11 on page 26 portrays a classical action potential as generated by the

Hodgkin-Huxley model.

The generalized behavior of a hypothetical neuron is able to qualitatively describe the

form of a classical action potential, but greater detail is required to understand more quanti-

tative features of a spike. Continuous time waveforms demonstrating the quantitative values

for each conductance according to Hodgkin-Huxley dynamics, along with corresponding ionic

currents and membrane voltage, will be explored in Section 2.2.2.

2.2 Classical Hodgkin-Huxley Model

In late 1951 and early 1952 Alan Hodgkin and Andrew Huxley published a series of arti-

cles which mathematically and experimentally characterized the squid axon action potential

in terms of ionic concentrations and variable membrane permeability [34, 35, 36, 37, 38].

Using a mathematical model, coupled with experimental application of feedback amplifiers

and voltage clamp techniques, Hodgkin and Huxley were able to quantify the role of individ-

ual ionic species during an action potential within the giant axon of Loligo. Their work was,

in many ways, the culmination of centuries of work centered on understanding the “nervous

impulse” and earned the Nobel Prize in Physiology or Medicine in 1963 [19, p. 2][39].

Since its publication, the Hodgkin-Huxley model has been studied and used from nu-

merous perspectives. The original model has been extended to account for neural dynamics

found in different experimental preparations [40, 17]. It has been reduced, demonstrating

that simplified models can accurately describe neural behavior from a dynamical systems

perspective [1]. It has been used to study energy efficiency of neural tissues [23]. It can ex-

hibit chaotic behavior [41] and has been combined with optimal control techniques [2, 3, 31].

Even though its continued relevance has been questioned, the model still remains as a foun-

dation of neuron electrophysiology [42].
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For the purposes of research presented in this dissertation, the Hodgkin-Huxley model

has two important characteristics. First, it has been shown that using the Hodgkin-Huxley

formalism as a starting point, a reduced model of two dimensions can exhibit the four bifur-

cations fundamental to most neural behavior with proper selection of parameter values [1].

Second, it is a biophysically-derived model. That is, model parameters are clearly related

to properties of the cell membrane commonly measured ‘on the rig’ by electrophysiologists.

2.2.1 Equivalent Circuit Model

It is common practice to model the electrical properties of neurons, with an equivalent

circuit model. The giant axon of Loligo, as originally modeled by Hodgkin and Huxley,

was determined to consist primarily of three currents: a voltage gated potassium current, a

voltage gated sodium current, and a leak current [1, p. 37]. Specifically, the initial upswing in

membrane voltage was quantifiably related to the influx of a rapid, transient sodium current,

with a decrease in membrane voltage related to a slower, persistent potassium current [8].

Capacitive properties of the membrane are also accounted for in the model, resulting in an

equivalent circuit model depicted in Figure 4. Each branch consists of a battery, set to the

Figure 4: Circuit model of a neuron membrane with membrane capacitance

equilibrium potential for that ionic species, and a conductance which can be dynamic or

Ohmic. The membrane voltage Vm is across the parallel branches.

Beginning with summation of the defined currents via Kirchoff’s Current Law, analysis
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of the model produces

IK + INa + IL + CV̇ = 0. (14)

Substitution of each ionic conductance and equilibrium potential via equation (2) yields

gK(Vm − EK) + gNa(Vm − ENa) + gL(Vm − EL) + CV̇ = 0. (15)

Another parallel branch can be added to the circuit to account for an injected current,

which may be used by electrophysiologists to stimulate neural activity and tease out neuron

dynamics.

Figure 5: Circuit model of a neuron membrane with injected current stimulus

As drawn, the injected current is opposite in sign as compared to the ionic currents,

resulting in

gK(Vm − EK) + gNa(Vm − ENa) + gL(Vm − EL) + CV̇ = IStim. (16)

Rearranging terms produces

CV̇ = IStim − gK(Vm − EK)− gNa(Vm − ENa)− gL(Vm − EL). (17)

Equation (17) very closely resembles the equation for membrane voltage from the Hodgkin-

Huxley model, but ion channel dynamics neglected. Ion channel dynamics associated with
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changes in potassium and sodium conductance were modeled by Hodgkin and Huxley using

gating variables, n, m, and h. Adding activation and inactivation variables reproduces the

Hodgkin-Huxley equation for membrane voltage results in

CV̇ = IStim − gKn4(Vm − EK)− gNam
3h(Vm − ENa)− gL(Vm − EL). (18)

Originally Hodgkin and Huxley accounted for negative equilibrium potentials by revers-

ing battery polarity in the circuit model. While this inconsistency has been addressed by

researchers in some cases, the convention of reversing the battery of any ion with a nega-

tive equilibrium potential has persisted in literature [33]. From a historical and biophysical

perspective there are a number of salient features of the model which must be maintained.

When the membrane voltage is equal to the equilibrium potential of an ionic species, as cal-

culated by the Nernst equation, the net ionic current is equal to zero [8]. It is advantageous

to retain the original form of the Hodgkin-Huxley equations rather than alter the polarity

of the equilibrium potential on a term by term basis. The simplest means of achieving

these goals is to avoid reversing the battery in the circuit model, and orient all equilibrium

potentials polarities in the same direction. The neuron circuit model equations used here

are consistent with the passive sign convention.

2.2.2 Hodgkin-Huxley Equations

The Hodgkin-Huxley model, as originally published, consists of a nonlinear system of

four differential equations [1, p. 37][38]. State variables are the neuron membrane voltage

(V ), a potassium activation variable (n), a sodium activation variable (m), and a sodium

inactivation variable (h).

The Hodgkin-Huxley model is

CV̇ = IStim − gKn4(Vm − EK)− gNam
3h(Vm − ENa)− gL(Vm − EL), (19)

ṅ = αn(V )(1− n)− βn(V )n, (20)
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ṁ = αm(V )(1−m)− βm(V )m, and (21)

ḣ = αh(V )(1− h)− βh(V )h. (22)

Equations correspond to the circuit diagram in Figure 5. The constants C, gK , gNa, and

gL are cell membrane capacitance and maximal conductances for potassium and sodium and

the leak term conductance, respectively. Nernst equilibrium potentials are represented by

the constants EK , ENa, and EL. The injected stimulus current, I, can be a constant value,

step, pulse, ramp, or other waveform. Nonlinear, voltage dependent modulation of specific

ionic conductance values is accomplished via dimensionless gating variables n, m, and h.

The potassium current is considered to have four activation gates. The sodium current

has three activation gates and one inactivation gate. Presence of the inactivation gate is

what causes the sodium current to be transient. The number of activation or inactivation

gates is accounted for in the equations by the exponent on each term (i.e. n4, m3, and h) [1].

Gating variables are not to be confused with conformal state of ion channels. See [1, p. 33]

for a discussion of activation and inactivation gates.

From a physical perspective activation increases the probability of an ion channel opening

while deactivation decreases the probability of a channel opening [8]. Thus, conductance

of both potassium and sodium increases in response to increased membrane potential due

to the activation variables n and m, respectively. Inactivation describes a state where

ion channel activation is inhibited even though the activating stimulus may be present [8,

p. 28]. Inactivation of sodium channels in the response to positive membrane voltage due

to inactivation variable h causes a reduction in sodium conductance.

Values for all gating variables are bounded between zero and one. As the value for a

gating variable approaches one the associated conductance approaches the maximal con-

ductance for associated ionic species. For example, as the value for n approaches one the

term gKn
4 approaches gK , which is aptly named the maximal conductance for potassium.

Likewise, the term m3h modulates the conductance of sodium.
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The leak current is Ohmic, or constant, and is therefore represented by a constant

conductance, gL.

Functions denoted by α(V ) and β(V ) describe the rate at which associated ion channels

transition between open and closed states. The functions for α and β, which depend only

on membrane potential, are:

αn(V ) = 0.01
10− V

e
10−V

10 − 1
; (23)

βn(V ) = 0.125e−
V
80 ; (24)

αm(V ) = 0.1
25− V

e
25−V

10 − 1
; (25)

βm(V ) = 4e−
V
18 ; (26)

αh(V ) = 0.07e−
V
20 ; and (27)

βn(V ) =
1

e
30−V

10 + 1
. (28)

It is now common practice to present differential equations for gating variables in terms

of their steady-state value and time constant. Thus, equations (20) through (22) can be

rewritten as

ṅ =
n∞(V )− n
τn(V )

, (29)

ṁ =
m∞(V )−m

τm(V )
, and (30)

ḣ =
h∞(V )− h
τh(V )

. (31)
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Equations of the form shown in (29) through (31) can be found for each gating variable

by a substitution, where

n∞(V ) =
αn(V )

αn(V ) + βn(V )
, and (32)

τn(V ) =
1

αn(V ) + βn(V )
. (33)

Similar substitutions can be performed to solve for steady-state values and time constants

of m and h.

When written in terms of steady-state values and time constants interpretation of gating

variable effects is simplified. For any given membrane potential, V , the gating variable will

converge to the steady-state value, given sufficient time. The speed with which it converges

is governed by its time constant, τ .

In Figures 6 through 8, steady-state values for gating variables have been plotted, along

with their associated functions α and β.
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Figure 6: Potassium channel activation variable, n
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Although the form of potassium (n∞(V )) and sodium (m∞(V )) steady-state values is

similar, the functions α and β are much steeper for sodium. Furthermore, since there is
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an inactivation variable for the sodium current (h), the current is only transiently present

where as the potassium current is persistent [8]. The steady-state values for n, m, and h

are plotted on a single axis in Figure 9 for comparison, with corresponding time constants

plotted in Figure 10.
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Figure 9: Steady-state activation variables
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Figure 10: Activation variable time constants

From the perspective of time constant alone it is readily apparent why the sodium current

is called “fast” as compared to the potassium current. The activation variable of the sodium

current is approximately an order of magnitude faster than that of potassium. This aspect of

the classical Hodgkin-Huxley model is exploited to provide a reduced-order approximation

of model behavior, as described in Section 2.3.

Thus, in the original Hodgkin-Huxley model, rates at which ion channels are opening

and closing are functions of membrane voltage, as modeled by functions α and β for each

ionic species. These functions drive activation and inactivation variables which modulate

conductance of a given ion channel between zero and its maximal conductance. At any point

in time the ionic current is a product of the conductance and the difference between mem-

brane potential and the Nernst equilibrium potential for the given ionic species. Summation

of the ionic currents enables computation of the membrane voltage.

An elegant means of portraying this relationship is through time aligned plots of the

described signals. Figure 11, after [1, p. 40], depicts both a subthreshold perturbation, as

well as an action potential generated by the classical Hodgkin-Huxley model described in

this section.
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Figure 11: Hodgkin-Huxley model action potential, after [1, p. 40]

As shown in Figure 11, the originally published parameters shifted the resting membrane

potential to zero volts [38][1, p. 37]. It is now common practice to have the resting membrane

potential of the model align with the experimentally observed resting membrane potential.

2.3 Reduced-Order Hodgkin-Huxley Model

The fact that the described Hodgkin-Huxley model is inherently a dynamical system was

not lost on researchers at the time of its publication. Notably, Richard Fitzhugh quickly

embraced studying neural models from a dynamical systems point of view, proving as early

as 1955 that neither threshold or all-or-none spikes are properties of the Hodgkin-Huxley

model, and publishing a simplified model in 1961 [1]. Since that time, the computational

neuroscience community has continued to explore neuronal dynamics from a variety of per-
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spectives, including phase plane analysis and simplified neuron models. More recently,

Eugene Izhikevich has published a book dedicated to furthering study of neuroscience from

a dynamical systems perspective, claiming that most neurocomputational properties can be

related to four fundamental bifurcation types [1].

Furthermore, these four fundamental bifurcation types can be exhibited by a second-

order simplification of the original Hodgkin-Huxley model. Reduction to two dimensions

enables phase plane analysis and simplifies visualization of system dynamics. The reduced

neuron model described in [1, p. 133] is

CV̇ = I − gKn(V − EK)− gNam∞(V )(V − ENa)− gL(V − EL), (34)

ṅ =
n∞(V )− n

τ(V )
. (35)

The basis for reducing the dimensionality of the original model lies in the difference in

the time scale between sodium and potassium activation variables described in Section 2.2.2.

Since the sodium channel dynamics are significantly faster than those of the potassium chan-

nel, considering them instantaneous introduces very little error to the model as a whole [1,

p. 133].

As described in Chapter 4, with proper selection of parameters, this reduced-order model

can exhibit the four bifurcation types of interest, and is an excellent means of exploring

neurocomputational dynamics.

2.4 Model Parameter Estimation

A goal of system modeling is to determine variables which influence the behavior of in-

terest so that the simulation environment produces results that match observed data to the

degree required. In practice, it is often difficult or impossible to accurately quantify all vari-

ables of interest. Furthermore, increasing model fidelity is often at odds with computational

efficiency or simplified mathematical analysis. Agreement between behavior of the model

and the original organism must be established, determining the domain of applicability of
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the model [43].

This section investigates philosophies for deriving parameter values that are as accurate

as possible while producing models with behavior that can be deemed equivalent to the

biological neuron it represents. Section 2.4.1 describes techniques for quantifying specific

model parameters. Section 2.4.2 describes methods for verifying the model has correct

bifurcation dynamics at the system level.

2.4.1 Empirically Derived Parameter Values

When determining parameter values for conductance-based models, researchers often

employ a combination of pharmacological and electrical techniques. Pharmacological block-

ers with known effect on specific ion channels are used to determine the type and number

of ionic currents present [1, p. 6]. Specific stimulation profiles are then used to characterize

the dynamics of the populations of ion channels.

While researchers have success modeling neuron behavior in this way, a number of lim-

itations, practical and theoretical, complicate the task. For instance, effects of some phar-

macological blockers are irreversible (e.g. tetrodotoxin (TTX)). Furthermore, many electro-

physiological techniques, such as intracellular recording, greatly limit the future viability of

an experimental preparation, prohibiting long term trials. Thus, it is usually not possible

to experimentally characterize all parameters of interest within a single trial or preparation

and then perform the experiment of interest.

Some progress has been made using continuous time techniques for estimating model

parameters more accurately [44]. Optimal state estimation is also used to overcome practi-

cal limitations related to variable measurement or reduced trial size [10]. Yet, at the root

of system modeling and simulation of neural systems is the inherent variability of the sys-

tem, and researchers are forced to rely on a combination of theoretical and experimental

techniques.

The prevailing opinion is that behavior of interest must be characterized over a statisti-

cally significant sample of trials within the environment or organism of interest, or as close

as possible. Any results from In vitro or simulated environments must be characterized in
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terms of their relationship to the original system behavior before they can be accepted as

valid. Some of the difficulties encountered are well documented in [1, p. 6]. The necessity

of a coherent systems-based approach is also advocated in [10].

2.4.2 Bifurcation Dynamics

An approach for producing neuron models which are more likely to produce behavior

equivalent to the neuron under investigation is outlined in [1, p. 20]. Emphasis is placed on

correct system dynamics over, or in addition to, correct parameter values. The approach is

analogous to that advocated by Poincare for nonlinear system analysis in the late 1800s [6,

p. 2]. The resulting analysis, both in the case of Poincare and Izhikevich is a geometric one.

The approach advocated by Izhikevich begins with qualitative system dynamics such as

bifurcation type, and progresses through description of necessary kinetics [1, p. 20]. The

approach can be thought of as a top-down modeling methodology, beginning with simple

questions regarding neuron dynamics, rather than a bottom-up approach beginning with

individual parameter values. For example, the most fundamental questions highlighted by

the Izikevich paradigm revolve around the presence/absence of sub-threshold oscillations,

and coexistence of resting and spiking states [1, p. 14].

Under the proposed research paradigm, a tight-knit, multi-disciplinary understanding

is required. The capabilities and limitations of each facet of the research approach must

be understood, with a common vocabulary to unite the work done in simulation with that

accomplished experimentally at the rig.
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3 Methods and Analysis

This section describes techniques used for nonlinear analysis and optimal control of math-

ematical models used throughout this dissertation. The techniques and methods provided in

this section are a set of tools to aid in understanding, troubleshooting, and increasing execu-

tion efficiency of mathematical neuron models. This section presents a consistent framework

for varying inputs and parameters of conductance-based Hodgkin-Huxley type models.

The framework considered here for nonlinear analysis and optimal control of neuron

models is depicted in Figure 12. The process has the following steps: define the neuron

model, determine the location of system fixed points, classify behavior of the fixed points,

determine fixed point bifurcation types, and perform optimal control of the neuron model.

Following the framework eases initial implementation and investigation of neuron models

and selection of their parameters.

In Chapter 4, a set of reduced-order, two-dimensional models are analyzed. Two-

dimensional phase space is readily graphed, providing opportunities to graphically present

the number, location, and stability of fixed points, as well as the shape of limit cycle attrac-

tors. A two-dimensional phase space enables use of simplified analysis techniques for fixed

point location and classification. These techniques (fixed point location via nullclines and

fixed point classifier) are presented in the left-hand column of Figure 12 and are described

in Sections 3.1.1.1 and 3.1.2.1. By modifying one or more parameters of the second-order

model, a range of system behavior can be considered, including the four fundamental bifur-

cation types that underlay many neurocomputational properties [1, p. 17].

When higher dimensional models are considered, such as the fourth-order system in

Chapter 5 and sixth-order system studied in [3], graphical portrayal of the phase space or

classification of system fixed points is impeded. For the higher-order models, alternative

techniques are utilized for locating and classifying system fixed points, depicted in the right-

hand column of Figure 12 and described in Sections 3.1.1.2 and 3.1.2.2. For the considered

models, a single function f(v) is derived, the roots of which provide the location of system

fixed points, thereby avoiding the need to graphically portray high dimension phase space.
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Fixed point behavior can often be classified based on the values of the eigenvalues.

Figure 12: Framework for nonlinear analysis and optimal control of neuron models

Once the nonlinear system is characterized, an optimal control technique can be used

to investigate differences between an originally applied input current stimulus and optimal

input stimulus currents computed as the result of a user-selected balance between the input

current ‘energy’ and the tracking error between the achieved and original membrane voltages.
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Following Figure 12 from top to bottom, neuron models used within this dissertation

were described in Chapter 2. Within this chapter, Section 3.1 describes the nonlinear analy-

sis methods employed within this dissertation in further detail and Section 3.2 describes the

developed optimal control technique and its application. Section 3.3 highlights specific ap-

plication level nuances which are employed for efficiency of computation or troubleshooting

purposes.

3.1 Nonlinear Systems Analysis Primer

It is often impossible to analytically solve all but the most trivial of nonlinear systems.

As a result, the analysis of nonlinear systems typically involves analysis of system dynamics

using numerical techniques [6, p. 2]. For a thorough review of nonlinear system analysis

techniques see [6]. This section will describe techniques for locating, classifying, and deter-

mining bifurcation types of system fixed points for mathematical models considered in this

dissertation.

3.1.1 Fixed Point Location

An important starting point for analysis of system dynamics is to determine the number

and location of system fixed points. Fixed points, or equilibria, are locations in the phase

space where the rate of change for all system states is zero.

When it is not possible to solve the system of equations analytically, a number of methods

exist for determining approximate fixed point location [6]. Two such techniques will be

presented in this section. In both cases, the technique results in an approximate location

of the system fixed point which will be used as the initial condition for a numerical solver,

fsolve, which is part of the library of functions within MATLAB R©, to provide a more

accurate estimate.

The first method, applicable to second-order systems, consists of plotting and looking for

intersections of the nullclines. Nullclines are the set of points where the differential equation

for one of the state variables is equal to zero [6]. For a second-order system, the nullclines

indicate the areas in the phase space where movement is either purely vertical or purely
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horizontal. This technique is described in Section 3.1.1.1.

A second method, described in 3.1.1.2, is extensible to higher-order systems, and involves

solving for roots of a derived function, f(v) [3]. Plotting the nullclines in the two dimensional

phase space and finding the roots of f(v) are redundant tasks, and only one technique is

typically used for analysis based on the order of a given model. Both techniques will be

described to provide a means of developing intuition for understanding dynamics of higher-

order systems where graphical representation is not possible.

Geometric analysis of the phase space via intersection of the nullclines, in conjunction

with associated time domain plots, is preferable when possible since this facilitates both

qualitative and quantitative understanding. Solving for roots of f(v) is a more general

approach, applicable to the entire family of models considered in this dissertation; however,

this method provides little information other than approximate location of system fixed

points. Plotting f(v) does not provide any information regarding specific trajectories, and

interpretation of the system dynamics is easily lost in the generality of the approach. Thus,

the second-order system of Section 4.2.1 will be analyzed using both the two dimensional

phase plane and f(v) to develop an intuitive grasp of system dynamics. This will facilitate

interpretation of higher-order results back to the neurocomputational properties as they

relate to system bifurcation type as presented in [1].

3.1.1.1 Location of System Equilibria Using Nullclines

To find nullclines for the second-order Hodgkin-Huxley model of Section 2.3, each state

derivative is set equal to zero, and solved for n [1, p. 92]:

V̇ = 0⇒ n =
I − gNam∞(v)(v − ENa)− gL(v − EL)

gK(v − EK)
; and (36)

ṅ = 0⇒ n = n∞(v) =
1

1 + e(Vn−v
kn

)
. (37)

The resulting curves can then be plotted on the phase plane, sweeping V through the

applicable range of membrane potential values.
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Figure 13: Example reduced-order Hodgkin-Huxley model nullclines

From the plot an approximate value for each state variable at the fixed point location can

be deduced directly. For example, the curves plotted in Figure 13 intersect at V ≈ −61 mV,

n ≈ 0.07. These values can be used as initial conditions to compute a numerical solution

for the location of the system fixed point.

Additionally, equation (36) reveals that changing the injected current I results in a shift

in the V-nullcline. Due to the term gK(V − EK) in the denominator, and its dependence

on membrane potential, the V-nullcline does not shift in a purely vertical fashion. As seen

in Figure 23 of Section 4.2.1.1.1, changes in the injected current result in changes of the

system fixed point location. Equation (37) shows that the n-nullcline is dependent on only

the membrane potential, V , with no shape or position change as the injected current is

varied.
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3.1.1.2 Location of System Equilibria Using f(v)

To find f(v) for the second-order Hodgkin-Huxley model of Section 2.3, ṅ is set equal to

zero and solved for n. The result is back-substituted into the equation for V̇ . This function,

designated f(v), is

f(v) =
I − gKn∞(V )(V − EK)− gNam∞(V )(V − ENa)− gL(V − EL)

C
(38)

and roots of the function correspond to fixed points of the system.

The derived function f(v) can then be plotted by sweeping V through the applicable

range of membrane potential values, as shown in Figure 14.
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Figure 14: Example reduced-order Hodgkin-Huxley model f(v)

From the plot an approximate value for the equilibrium potential of the system fixed

35



point can be deduced by estimating the voltage at which f(v) is equal to zero. The ap-

proximate equilibrium potential can then be used to compute the approximate value of n

by substituting value for V into n∞(V ), producing an estimate of the fixed point. Notice in

Figure 13 the value for n can be estimated from the phase plane graphically, where Figure 14

does not provide a graphical indication of the value for n.

Like the V-nullcline in Figure 13, f(v) is shifted vertically with changes in the injected

stimulus. Additionally, the shape of the plot is informative of the possible number of fixed

points for any value of I [3]. In Figure 14, since f(v) is monotonic, it is directly observable

that no value of I will result in more than one system fixed point.

3.1.1.3 Results Comparison

The intersection of the nullclines in Figure 13 and the root of f(v) in Figure 14 approx-

imate the same equilibrium membrane potential. That is, the two techniques produce the

same result. Plotting the nullclines in the two dimensional phase space and finding the roots

of f(v) are redundant tasks with different benefits for system analysis.

The n-V phase plane enables plotting system trajectories and approximation of equilib-

rium values for both n and V directly; however, plotting the phase space, which is easy to

draw in two dimensions, can become more complicated in three dimensions, and is difficult

or impossible to portray graphically in high dimensional space. It is also not immediately

clear from Figure 13 how many fixed points the system will have for all values of I.

Finding the roots of f(v) is a more general method for determining the number and

approximate location of fixed points as the dimensionality of the system increases, and the

results can be displayed on a single plot. It is a fortunate consequence that the structure

of conductance-based models often results in a straightforward calculation of f(v) which

depends only on membrane potential. However, the plot for f(v) does not enable plot-

ting system trajectories, and back-substitution of the approximate equilibrium potential is

required for approximation of the system fixed point.

When these two techniques are used together, it becomes possible to understand system

dynamics in the framework of [1], and to interpret applicable neurocomputational properties

36



for higher-order models.

3.1.2 Fixed Point Classification

Once the location of a fixed point has been computed, it can be classified according

to behavior of system trajectories in its immediate vicinity. Following the technique pre-

sented in [6, pp. 137, 150], the phase plane will be linearized in the region surrounding the

fixed point using the system Jacobian. Eigenvalues of the Jacobian are indicative of local

stability of the system fixed point, depending on their value. As shown in Figure 12, two

techniques will be described for analyzing results of the linearized system. Once classifica-

tion has been achieved by linearization of the system of equations, it is essential to verify

the localized behavior of the linear system is equivalent to the original nonlinear system for

both techniques.

As described in Section 3.1.2.1, for two-dimensional systems, it is possible to classify

stability and localized behavior on a single diagram [6, p. 137]. A parallel method, described

in Section 3.1.2.2, consists of examining the locus of eigenvalues as the injected current is

varied. The classification diagram is explicit and informative, but limited to use in second-

order systems. The locus of eigenvalues can be generated for a higher-order system, but

requires interpretation for relating results to the neural computational properties identified

in [1]. For instance, stability requires the real part of all eigenvalues to be negative, and

oscillation requires eigenvalues with complex conjugate pairs.

3.1.2.1 Fixed Point Classification for Two-Dimensional Systems

Once the location of the system fixed points has been determined, they can be classified

according to local stability. Properties of the nonlinear system can then be related to

neurocomputational properties of the model. For example, in the context of neuron models

a stable fixed point indicates a stable resting membrane potential of the cell. Local dynamics

also provide details for confirming neurocomputational properties such as the presence of

subthreshold oscillations [1].

Following [6, p. 150], linearization of the system proceeds by substitution of the fixed
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point, plus a small perturbation, into the system of equations. If higher-order terms are

neglected, linearization of the second-order Hodgkin-Huxley model of Section 2.3 yields

V̇
ṅ

 =

∂f1
∂V

∂f1
∂n

∂f2
∂V

∂f2
∂n


V
n

 (39)

where V̇ = f1(), ṅ = f2(), and the matrix of partial derivatives comprise the Jacobian

matrix. Values for state variables, in this case V and n, as well as the corresponding in-

jected current value, are substituted into the Jacobian, allowing computation of eigenvalues.

Eigenvalues of the linearized system, evaluated at the location of a fixed point, are indicative

of expected qualitative system behavior and stability of the linear system in the vicinity of

the fixed point.

It should be noted that classification of the fixed point via linearization is not always

robust. The question remains as to whether linear system with neglected higher-order

terms accurately approximates the original nonlinear system. According to the Hartman-

Grobman theorem, the phase plane for a nonlinear system near a hyperbolic fixed point is

topologically equivalent to the linearized system in the neighborhood of the fixed point [6,

p. 155][1, p. 103]. A fixed point is hyperbolic when the Jacobian does not have eigenvalues

which are equal to zero or with real parts equal to zero [6, 1].

In the context of the fixed point classification diagram, fixed points which exist within

the regions corresponding to saddle points, nodes, and spirals constitute hyperbolic fixed

points. In these regions classification of fixed points of the linearized system accurately

represent classification of fixed points of the original, nonlinear system.

For cases where the classification lies on the borderline between two regions, classification

of fixed points for the linearized system are not guaranteed to be topologically equivalent to

those of the nonlinear system, and higher-order terms must be taken into account. These

cases correspond to the bifurcation point of the system [1, p. 103].

After computing eigenvalues for the linearized system in the vicinity of the fixed point

for each injected current value, the trace (τ) and determinant (∆) for each fixed point is
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Figure 15: Graphical fixed point classification, after [6]

calculated as described in [6]. Namely,

τ = λ1 + λ2 (40)

and

∆ = λ1 ∗ λ2 (41)

where λ1 and λ2 are the eigenvalues of the linearized two dimensional system of equations.

Classification of each fixed point is represented on the classification diagram by a single

point. This process must be carried out for each injected current value under investigation.

The result is a set of points plotted on top of the fixed point classification diagram with one

point representing each injected current value as shown in Figure 25 of Chapter 4.

The goal of fixed point classification is to determine the range of injected current levels

39



which elicit qualitatively different behavior from the model (i.e. rest, subthreshold oscilla-

tion, repetitive spiking). The boundaries between those ranges are levels of injected current

which cause the system fixed point to undergo bifurcation. Determining values for these

boundaries allows proper selection of injected current stimulus values for application of the

optimal control to the neuron model.

If a specific level of injected current produces a fixed point which is classified as an

unstable spiral, and another level of injected current produces a fixed point which is classified

as a stable spiral then, by continuity, the fixed point undergoes a bifurcation for some value

of injected current in between these two values. Again, Figure 25 of Chapter 4 provides

an example. For I = 10µA/cm2 the fixed point is classified as a stable spiral, and for

I = 20µA/cm2 the fixed point is classified as an unstable spiral. By continuity, at some value

in between these two injected current levels, the system fixed point undergoes a bifurcation.

Classification of the system fixed point according to Figure 15 provides two important

pieces of information for interpretation of system dynamics. First, the stability of the fixed

point is determined. Any fixed point which has a negative trace (τ) and positive determinant

(∆) is stable. A fixed point with a negative determinant or positive trace is unstable.

Second, any fixed point which is classified as a spiral exhibits oscillation. The existence of

subthreshold oscillations allows categorization of the neural model as a resonator according

to the classification scheme of [1, p. 14]. Further investigation is required to determine the

coexistence of repetitive spiking and resting states.

3.1.2.2 Fixed Point Classification for Higher-Order Systems

Examination of eigenvalues of the Jacobian is also informative of stability and behavior

of the system in the immediate vicinity of a system fixed point for a higher-order system.

Analysis proceeds along the same lines as Section 3.1.2.1. First the Jacobian is calculated,

and values for the system fixed point and injected current level are substituted into the

linearized system. Eigenvalues are then calculated and plotted on the complex plane rather

than computing the trace and determinant.

As in Section 3.1.2.1, so long as none of the eigenvalues are zero valued, or have real
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parts equal to zero, the linearized system is topologically equivalent to the original nonlinear

system by the Hartman-Grobman theorem [6, p. 155][1, p. 103]. If any eigenvalues are equal

to zero, or have real parts equal to zero, the fixed point is not hyperbolic, and higher-order

terms must be taken into account to determine if the linear system accurately represents

the original nonlinear system.

If all eigenvalues exist on the left hand plane with negative real parts, the fixed point is

stable. If any eigenvalue has a positive real part the fixed point is unstable. Furthermore, if

all eigenvalues exist on the real axis the system will not exhibit local oscillation. Eigenvalues

which exist in complex conjugate pairs are indicative of a system which will oscillate.

To create a locus of eigenvalues this process is repeated for each injected current value I.

When eigenvalues transition from the left to right hand plane loss of stability is indicative

of a bifurcation of the fixed point. Likewise, when eigenvalues break away or collapse to the

real axis, a qualitative change in system dynamics has occurred related to the ability of the

system to oscillate.

3.1.2.3 Results Comparison

Using the fixed point classification diagram of [6] or the eigenvalues of the Jacobian

allows determination of fixed point stability, including the presence of oscillatory behavior.

Classification of the system fixed point must be carried out for each fixed point of the

system, at every injected current value. Depending on the order of the model only one of

these techniques is typically used for any given analysis.

Classification of the fixed point according to the scheme presented in [6] aligns nicely with

the neurocomputational properties in [1], but is limited to two dimensional systems. The

results from plotting eigenvalues on the complex plane are not limited to two dimensional

systems, but require further interpretation for relating the results to [1].

Thus the results from both techniques will be presented for a two-dimensional model in

Chapter 4 to demonstrate interpretation of the resulting data.
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3.1.3 Bifurcations

To select appropriate injected current values, and properly classify neurocomputational

properties, it is essential to know the approximate injected current value at which a bi-

furcation of the system fixed point occurs, and what type of bifurcation the fixed point

undergoes. In fact, determination of bifurcation types are the primary means of identifying

the neurocomputational properties of the neuron or neuron model under investigation [1].

Information gleaned in the analysis process thus far provides an approximation of the

value at which the bifurcation occurs. For the purposes of this dissertation, it will not be

necessary to determine the exact value at which the bifurcation occurs. It will be sufficient

to understand the type of bifurcation and the approximate bifurcation point.

Section 3.1.3.1 will describe the method for determining bifurcation type, and Sec-

tion 3.1.3.2 will describe methods for determining bifurcation value where required.

3.1.3.1 Bifurcation Type

For conductance-based neuron models considered in this dissertation the primary goal is

to determine which of the four primary bifurcations identified in [1] have occurred. The

four bifurcation types are saddle-node, saddle-node on an invariant circle, supercritical

Andronov-Hopf, and subcritical Andronov-Hopf. A number of criteria, both empirical and

theoretical, will be presented in this section for determination of the bifurcation type exhib-

ited by a system fixed point.

Identification of the bifurcation type can be made by answering two questions regarding

qualitative neural activity [1]. Does the neuron, or neuron model, exhibit subthreshold

oscillations? Does the neuron, or neuron model, demonstrate coexistence of resting and

repetitive spiking states? Answering these two questions relates observed properties of the

neural dynamics (i.e. integrator, resonator, bistability, or monostability) to the type of

bifurcation the system dynamics undergo (i.e. saddle-node, saddle-node on invariant circle

(SNIC), subcritical Andronov-Hopf, or supercritical Andronov-Hopf). Additionally, rigorous

definition of bifurcation criteria can be investigated when required [1].
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Table 1: Determination of Bifurcation Type, after [1, p. 14, 229-230]

Using theoretical information from the analysis presented in Sections 3.1.2.1 and 3.1.2.2,

it is possible to determine if a neuron is capable of subthreshold oscillations directly. For

two-dimensional systems, classification of a system fixed point as a spiral is indicative of

the ability to produce subthreshold oscillations. For higher-order systems the presence

of complex conjugate eigenvalue pairs is indicative of a neuron model which is capable

of oscillation. Models capable of subthreshold oscillation are defined as resonators and

likely undergo Andronov-Hopf bifurcation types. Also, occurrence of either Andronov-Hopf

bifurcation type results in a change in stability of a system fixed point. Thus, a change in

stability of a system fixed point is also indicative of an Andronov-Hopf bifurcation.

Models which cannot oscillate are defined as integrators and likely undergo saddle-node

bifurcation types. In terms of the classification diagram for two-dimensional systems pre-

sented in Section 3.1.2.1, a saddle-node can be identified based on a negative valued deter-

minant. A fixed point which undergoes an Andonov-Hopf bifurcation will have a positive

determinant and be classified as a node or spiral. Using the technique presented in Sec-

tion 3.1.2.2 for higher-order systems, a fixed point which is a saddle-node consists of one

stable, and one unstable eigenvalue. Also, saddle-node bifurcation types always result in

creation or disappearance of a pair of fixed points via coalescence [1]. Therefore, any system

which exhibits a saddle-node bifurcation of either type will gain or lose a pair of fixed points.

Thus, observation of subthreshold oscillations enables classification of neural dynamics
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between integrators (saddle-node) and resonators (Andronov-Hopf). Determination of the

exact bifurcation type among the four classes described in [1, p. 14] then depends on whether

or not there is a coexistence of resting and spiking states. When resting and repetitive

spiking states exist simultaneously, the neural dynamics are referred to as bistable due to

the presence of a stable fixed point along with a stable limit cycle attractor.

As shown in Figure 15, saddle-node and subcritical Andronov-Hopf bifurcation types

are bistable and saddle-node on invariant circle and supercritical Aronov-Hopf bifurcation

types are monostable.

The most recognizable trait when there is a coexistence of resting and spiking states is

hysteresis. By applying a ramp current which increases above the bifurcation point and then

ramps back to zero, the presence of hysteresis behavior can be tested. If the repetitive spiking

ceases when the injected current returns to zero the neuron is likely monostable. Another

empirical test which can be conducted ‘at the rig’ or in simulation is to apply transient

injected current pulses. If it is possible to change the behavior of neural dynamics between

rest and repetitive spiking with appropriately timed transient injected current pulses the

neuron is likely bistable [1].

It is noteworthy that distinction between supercritical and subcritical Andronov-Hopf

bifurcation types can be made through application of different levels of injected current. If

the action potential amplitude is able to be modulated by the level of injected current it is

a supercritical bifurcation type. Otherwise it is a subcritical Andronov-Hopf bifurcation [1,

p. 12].

3.1.3.2 Bifurcation Value

If required, it is often possible to compute a numerical solution for the bifurcation value

using the information provided by the analysis method outlined in this section.

A saddle-node bifurcation occurs for the injected current value at which the one stable

and one unstable fixed point coalesce. A numerical solution for the point at which the two

equilibria are equal is indicative of the bifurcation value. A fixed point exhibits an Andonov-

Hopf bifurcation when the real part of the eigenvalues are equal to zero as the fixed point
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changes stability. A numerical solution for the bifurcation point can be developed using this

criteria.

3.2 Optimal Control Primer

Optimal control theory provides a framework for mathematical optimization of system

performance according to a selected objective function. Given a mathematical model of

the system dynamics, an objective function is developed either to maximize a performance

index or minimize a system cost [45, p. 1]. The technique developed in this dissertation uses

an objective function which balances two competing criteria: tracking accuracy and input

‘energy’ usage. For a thorough review of optimal control see [46].

The objective function described has been previously published in two different forms [2,

3]. As published in [2], the objective function consists of three independently weighted

terms: a P-term, which is the squared error between a reference membrane voltage and

actual membrane voltage at the end of the interval of interest; a Q-term, which is the

squared error between a reference membrane voltage and actual membrane voltage over the

interval of interest; and lastly, an R-term, which is the squared amplitude of the injected

current (input current ‘energy’), that is,

J [i(t)] =
P

2
[v(T )− r(T )]2 +

Q

2

∫ T

0

[v(t)− r(t)]2dt+
R

2

∫ T

0

[i(t)]2dt. (42)

Choosing values of P and Q which are large compared to R results in a solution for i(t)

which minimizes error between the desired reference signal, r(t), and the actual membrane

voltage, v(t). This solution will however often require an injected current i(t) with a higher

‘energy’ in comparison to optimal currents with lower weighting on P and Q. Conversely,

selecting a value of R which is large in relation to P and Q results in a reduced amount

of injected current ‘energy’, likely at the expense of increased differences between r(t) and

v(t).

In most cases, the value chosen for P and Q are equal since both terms relate to the

difference between the desired and actual membrane voltage. However, since P specifically

45



penalizes error at the end of the time interval, the objective function can be used to investi-

gate optimal injected current for generation of an action potential at a specified time, where

the end of the simulation interval, T , is chosen to align with the peak of an action potential,

v(t) [2]. In this case, intermediate values of the membrane voltage are unimportant (Q = 0),

and P should be large in comparison to R.

Since the P-term specifies a value for the membrane potential at the end of the time inter-

val, and the signals of interest are functions of continuous time, T , optimal control problems

of this form are called Continuous-Time, Final State Fixed, Optimal Controllers [46].

Although the criteria of interest (tracking accuracy and ‘energy’ usage) were not changed,

two modifications were made to the objective function as published in [3]. The P-term was

removed, and the method for specifying Q and R was modified. The objective function, as

published in [3] is

J [i(t)] =
1− α

2

∫ T

0

[v(t)− r(t)]2dt+
α

2

∫ T

0

[i(t)]2dt. (43)

With the objective function defined in equation (43), adjusting the balance between

tracking accuracy and input ‘energy’ requires changing only a single variable, α. As α

is increased, ‘energy’ efficiency is emphasized. As α is decreased, tracking accuracy is

improved. Choosing a value for α within the range α ∈ (0, 1] balances these two competing

criteria.

The objective function (43) enables varying a single variable over a given range to balance

two competing aspects of system performance; however, the fixed final state implementation

of equation (42) provides the capability of investigating action potential timing. Within this

dissertation an objective function in the form of equation (42) will be used.
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The Hamilton associated with equation (42) for the two-dimensional case is

H(v, n, λ1, λ2) =
Q

2
[v(t)− r(t)]2 +

R

2
[i(t)]2

+
λ1(t)

C
[i(t)− gNam∞(v)(v(t)− ENa)− gKn(t)(v(t)− EK)− gL(v(t)− EL)]

+
λ2(t)

τ
[n∞(v)− n(t)] (44)

where λ1 and λ2 are the co-state variables. Following [46, p. 134], the “Continuous Nonlinear

Optimal Controller with Function of Final State Fixed” yields

v̇ =
∂H

∂λ1

=
1

C
[i(t)− gNam∞(v)(v(t)− ENa)− gKn(t)(v(t)− EK)− gL(v(t)− EL)]

(45)

ṅ =
∂H

∂λ2
=

1

τ
[n∞(v)− n(t)] (46)

λ̇1 = −∂H
∂v

= −Q(v(t)− r(t))

+
λ1(t)

C
[gNam∞(v) + gKn(t) + gL + gNa(v(t)− ENa)

∂m∞(v)

∂v
]

− λ2(t)

τ

∂n∞(v)

∂v
(47)

λ̇2 = −∂H
∂n

=
gK
C
λ1(t)(v(t)− EK) +

λ2(t)

τ
(48)

with boundary conditions

v(0) = v0 (49)

n(0) = n0 (50)

λ1(T ) = P (v(T )− r(T )) (51)

λ2(T ) = 0 (52)
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The input stimulus current i(t) can be removed by substitution using the stationarity

condition. Using the stationarity condition,

∂H

∂i
= Ri(t) +

λ1(t)

C
= 0, (53)

and solving for i(t) yields

i(t) = − 1

RC
λ1(t). (54)

The derivatives in equation (47) are

∂m∞(v)

∂v
=

1

km

e(Vm−v
km

)(
1 + e(Vm−v

km
)
)2 (55)

∂n∞(v)

∂v
=

1

kn

e(Vn−v
kn

)(
1 + e(Vn−v

kn
)
)2 (56)

Solving the boundary value problem (BVP) of equations (45) through (48), resulting

from the system dynamical model of equations (34) and (35) and objective function (42),

yields v(t), n(t), λ1(t), and λ2(t) specific to the selected balance of tracking error and

‘energy’ according to P , Q, and R along with initial conditions. The optimal input stimulus

current, designated i∗(t), can be computed via equation (54). A range of injected current

waveforms, i(t), and weighting coefficients, P , Q, and R, form the basis of an investigation

into neuron dynamics.

This section continues with a high level overview of the technique in Section 3.2.1 with

example results in Section 3.2.2.

3.2.1 Technique Overview

The developed optimal control technique is a general method that enables investiga-

tion of mathematical optimality between the input provided and the output produced. In

general, an arbitrary signal could be chosen for the reference signal r(t) (constant, step

function, sine wave, etc.). Since the model under investigation is a nonlinear neuron model
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certain waveforms are of particular interest. Specifically, signals of interest include pertur-

bations from the resting potential with subthreshold oscillations, single action potentials,

and repetitive spiking. Furthermore, it is especially informative to relate these signals to

injected stimuli traditionally applied ‘at the bench’ by electrophysiologists.

More pragmatically, considering the nonlinear, highly sensitive dynamics of the mathe-

matical models under investigation it also greatly increases the likelihood and efficiency of

convergence of numerical methods when the typical domain and behavior of the model is

taken into account. One method, for example, involves using a membrane voltage generated

by the model as the reference voltage.

Table 2 outlines a series of steps for computation of a reduced ‘energy’ input stimulus.

1. Select an arbitrary i(t) over an interval [0, T ] and initial conditions v0 = v(0) and
n0 = n(0) (often set to resting values).

2. Compute the resulting membrane voltage, v(t), produced by the mathematical
model.

3. Use the computed membrane voltage, v(t), from step 2 as the reference signal, r(t).

4. Select values for the weighting coefficients P , Q, and R to reflect the desired balance
between tracking error and injected current stimulus ‘energy’.

5. Minimize the corresponding objective function using a two point boundary value
problem solver to find i∗(t) [46, 47].

6. Verify the optimal current found in step 5 by computing the membrane voltage,
v∗(t), resulting from application of i∗(t) to the mathematical model.

Table 2: Reduced Energy Input Stimulus Discovery Method, adapted from [2, 3]

In practice, a family of results is generated by iterating on steps 4 through 6 of Table 2 for

different values of P , Q, and R. Values of P , Q, and R are selected to represent a spectrum of

results, with emphasis ranging from tracking accuracy to input stimulus ‘energy’ reduction.

Next a different input signal can be selected, often either a step input of different am-

plitude or a ramp input, and the entire process repeated.
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Although the objective function (43) selected emphasizes a relationship between the

reference and actual membrane voltage, no relationship is specified with respect to the

initial injected stimulus current i(t) and the optimal current i∗(t). In fact, examination of

the differences between the original input current i(t) and the optimal input current i∗(t)

provides insight into neuron model function.

As demonstrated in Chapter 4, the described method is effective in producing reduced

‘energy’ input stimuli for a range of conductance-based, Hodgkin-Huxley type models, with

a variety of reference signals and weighting coefficient values.

Further description of each step of the process outlined in Table 2 is provided below.

3.2.1.1 Selecting an Input Current and Initial Conditions

Often it is desirable to select initial conditions as close to resting values as possible. This

reduces transients at the beginning of the time interval. Large transients, or even action

potentials, can result from initial conditions which are too far from the resting values.

A good method for determining initial conditions is to perform step 2 of Table 2 with

quiescent input current, that is I = 0. If the simulation interval is long enough all transients

should decay, and the values for all state variables at the end of the simulation can be used

as initial conditions to prevent transients.

The process of selecting an input current is informed by the process described in Sec-

tion 3.1. Of special interest are values of the input current at which bifurcations of the fixed

point occur as described in Section 3.1.3.

For example, as published in [2], the fixed point of the reduced-order Hodgkin-Huxley

model undergoes a supercritical Andronov-Hopf bifurcation at I ≈ 14.66µA/cm2. As a

result, values of I = 10µA/cm2 and I = 35µA/cm2 were chosen for constant input currents.

This demonstrated the qualitatively different behavior of the model.

3.2.1.2 Compute the Membrane Potential Waveform

Once initial conditions and a stimulus waveform have been selected, it is possible to

compute the time varying membrane potential, v(t). Using the MATLAB R© routine ode45,
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computation of v(t) is generally a straight-forward process which is not computationally

intensive; however, properly defining tolerances of the solution is essential. Further details

on this topic are presented in Section 3.3.1.

3.2.1.3 Define the Reference Signal

In general, steps 3.2.1.1 and 3.2.1.1 could be ignored and any arbitrary signal could be

used as the reference signal in this step. In the case of neuron models, there are two reasons

why these steps are important.

First, the models are inherently nonlinear and numerically sensitive. Forcing the model

to track an arbitrary reference signal r(t) is outside the applicable domain for some or all of

the state variables, often resulting in non-convergence of the numerical optimization tech-

niques. Furthermore, neurons have specific behaviors of interest, such as action potentials

or subthreshold oscillations, which are difficult to specify arbitrarily.

Consequently, it is often useful to use the model itself to generate a membrane potential,

v(t) with characteristics of interest and to set the reference signal r(t) equal to v(t).

3.2.1.4 Select Weighting Coefficient Values

Understanding the system dynamics and impact of optimal control will require a spec-

trum of values, with emphasis ranging from tracking accuracy to input stimulus ‘energy’

reduction. Yet it is often the simulations with extreme emphasis on one of the two criteria

which are the most sensitive and time intensive to run. A good starting point is to set

P = Q = 100 and R = 1. Once a baseline understanding of the execution efficiency and

results are understood, more extreme values can be investigated.

3.2.1.5 Minimize the Objective Function

Computation of the optimal stimulus input current, i∗(t), for the selected reference signal

r(t) and weighting coefficients P , Q, and R consists of minimizing the defined objective

function by solving a two point boundary value problem (BVP) [46]. An essential tool for

computing the numerical solution is a collocation-based boundary value problem solver such
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as bvp4c in MATLAB R© [47]. Boundary value problem solvers based on the shooting method

have been ineffective with the neuron models used in this dissertation. Further details on

this topic are presented in Section 3.3.3.

The numerical solution to the two point boundary value problem consists of a set of points

that approximate the time varying solution to each state and costate of the system. The

optimal input current and resulting membrane potential are part of the resulting solution.

3.2.1.6 Verify the Optimal Input Current

One method to verify the computed optimal input current is repeat step 2, applying i∗(t)

as described in Section 3.2.1.2. After simulating the system, verify the membrane potential

generated by ode45 is approximately equal to that generated by bvp4c.

3.2.1.7 Iterate

After generating results as described by Table 2, it is often necessary to change the values

of the weighting coefficients and repeat steps 4 through 6. Once a spectrum of results have

been produced, it can be informative to select a new input current, i(t), as defined in step

1, and repeat the entire process again, creating another spectrum of results.

Generating results for all of the qualitatively different system behaviors, as determined

through the analysis process of Section 3.1, provides insight into neural model function.

As described in [3], a higher level simulation was written which automated the process.

By choosing a range of values for α and running the simulation, a spectrum of results is

produced. The numerical solution for each successful run was provided to bvp4c as the

initial approximation of the solution for the next value of α. Automated adaptation of α

was a more efficient means of simulating the system, and also included the ability to adapt

changes in α based on the convergence of numerical algorithms. This also resulted in more

convergent solutions than choosing values arbitrarily.
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3.2.2 Example Results

Example results will be generated to demonstrate the Reduced Energy Stimulus Discov-

ery Method. The results presented in this section mirror plots presented in [2, 3].

Section 3.2.2.1 proceeds by demonstrating the method when selecting a constant input

current, and Section 3.2.2.2 uses a ramp input current.

3.2.2.1 Example 1: Constant Input Current Stimulus

3.2.2.1.1 Step 1: Select a stimulus current waveform i(t) and initial conditions

For this example, a constant value stimulus input current is selected that is below the

bifurcation value. As published in [2], the system fixed point undergoes a bifurcation at

I ≈ 14.66µA/cm2, so the selected input current of i(t) = 10µA/cm2 produces damped,

subthreshold oscillations.

Previous simulations with quiescent input current have enabled identification of resting

values for the membrane potential, V , and the gating variable, n, which will be used as

initial conditions. In this example v0 ≈ −60.86 mV and n0 ≈ 0.04.

3.2.2.1.2 Step 2: Compute the membrane voltage v(t) produced by the model

Using ode45, the constant value input current selected in step 1 was applied to the model

to produce the time varying membrane voltage pictured in Figure 16.
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Figure 16: Constant stimulus current and reference membrane voltage signals

3.2.2.1.3 Step 3: Use the computed membrane voltage v(t) as the reference

signal r(t)

In the simulation, the set of points constituting the numerical solution for the membrane

potential v(t) was set equal to the reference signal r(t).

3.2.2.1.4 Step 4: Select values for the weighting coefficients P , Q, and R

Values were selected for P , Q, and R which reflect an emphasis on reducing tracking

error between the reference signal and resulting membrane potential. Weighting coefficients

which relate to tracking accuracy were set to P = 100 and Q = 100 and the coefficient

which emphasizes reduced input ‘energy’ was set to R = 1.
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3.2.2.1.5 Step 5: Minimize the corresponding objective function

Using bvp4c, the two point boundary value problem was solved numerically, producing

the optimal input current i∗(t) and the resulting time varying membrane voltage v∗(t)

pictured in Figure 17. For comparison the reference signals are also included in Figure 17.

Figure 17: Comparison of reference and optimal signals for a constant stimulus

3.2.2.1.6 Step 6: Verify the optimal current i∗(t) found in step 5 by computing

the membrane voltage

For verification purposes, the optimal input current i∗(t) computed in step 5 is applied

to the original model using ode45. The resulting membrane potential v∗(t) is plotted in

Figure 18, along with the membrane potential computed by bvp4c. Figure 18 shows that

these two signals plot directly on top of one another, qualitatively verifying the numerical
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solution.

Figure 18: Verification of optimal input current for a constant stimulus

As a result of the process, a stimulus current input has been computed with a lower

‘energy’ content than the originally applied constant current of I = 10µA/cm2. Figure 17

shows that initial weighting coefficient values provide a noticeable reduction in stimulus

input energy with minimal tracking error. If improved tracking accuracy is desired, steps 4

through 6 can be repeated with increased P and Q. If a further reduction in stimulus input

energy is required, steps 4 through 6 can be repeated with a larger value for R.
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3.2.2.2 Example 2: Ramp Input Current Stimulus

3.2.2.2.1 Step 1: Select a stimulus current waveform I(T ) and initial conditions

For this example, a ramp stimulus input current is selected which increases through the

bifurcation value. The system fixed point undergoes a bifurcation at I ≈ 14.66µA/cm2, so

the final value of the ramp input current of I ≈ 46µA/cm2 produces a spike [2].

As in Section 3.2.2.1, initial conditions of v0 ≈ −60.86 mV and n0 ≈ 0.04 eliminate

transients at the beginning of the simulation interval.

3.2.2.2.2 Step 2: Compute the membrane voltage v(t) produced by the model

Using ode45, the ramp input current selected in step 1 was applied to the model, pro-

ducing the time varying membrane voltage pictured in Figure 19.

Figure 19: Ramp stimulus current and reference membrane voltage signals
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3.2.2.2.3 Step 3: Use the computed membrane voltage v(t) as the reference

signal r(t)

In the simulation, the set of points constituting the numerical solution for the membrane

potential v(t) was set equal to the reference signal r(t).

3.2.2.2.4 Step 4: Select values for the weighting coefficients P , Q, and R

In this example, weighing coefficients values are P = 100, Q = 100, and R = 1. This

choice reflects an emphasis on reducing tracking error between the reference signal and

resulting membrane potential because P and Q are both greater than R.

3.2.2.2.5 Step 5: Minimize the corresponding objective function

Using bvp4c, the two point boundary value problem was solved numerically to produce

the optimal input current i∗(t) and the resulting time varying membrane voltage v∗(t)

pictured in Figure 20. For comparison the reference signals are included in Figure 20.
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Figure 20: Comparison of reference and optimal signals for a ramp stimulus

3.2.2.2.6 Step 6: Verify the optimal current i∗(t) found in step 5 by computing

the membrane voltage

For verification purposes, the optimal input current i∗(t) computed in step 5 is applied to

the original model using ode45. The membrane potential is plotted in Figure 21, along with

the resulting membrane potential v∗(t) computed by bvp4c. Figure 21 shows that these two

signals plot directly on top of one another, qualitatively verifying the numerical solution.
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Figure 21: Verification of optimal input current for a ramp stimulus

As a result of the process, a stimulus current input has been computed with a lower

‘energy’ content than the originally applied ramp current. Figure 20 shows that initial

weighting coefficient values provide a noticeable reduction in stimulus input energy with

minimal tracking error. If improved tracking accuracy is desired, steps 4 through 6 can be

repeated with values for P and Q increased. If a further reduction in stimulus input energy

is required, steps 4 through 6 can be repeated with a larger value for R.

3.3 Numerical Considerations

This section contains implementation level nuances that increase likelihood of conver-

gence of numerical algorithms and improve execution efficiency. Topics in this section are

presented in order of importance.

60



3.3.1 ode45 Settings and Tolerances

All conductance-based, Hodgkin-Huxley type models in this dissertation are amenable

to standard ordinary differential equation solvers. Numerical solutions were computed in

MATLAB R©using ode45 with execution times on the order of one minute.

However, low tolerances are required of ode45 solutions to enable convergence of bvp4c

calculations. The MATLAB R©routine odeset was used to apply relative tolerance and abso-

lute tolerance settings of 10−13. Default values for relative and absolute tolerance settings

are 10−3 and 10−6, respectively.

Although these low tolerances did not provide qualitative differences in the corresponding

numerical solution, they were required for successful computation by bvp4c. This observation

indicates numerical sensitivity of the solutions using the bvp4c routine.

3.3.2 Initial Solution Estimation

Use of the bvp4c routine requires initial estimates of the solution for each variable. It is

possible to provide either constant valued, or time varying estimates of the solution. Both

likelihood of convergence and execution efficiency were improved when bvp4c was provided

with continuous-time estimates of the solution over the time interval.

Following the steps provided in Table 2 produces a series of values for all states of the

original differential equations based on the numerical solution computed by ode45. The

MATLAB R©subroutine interp1 was then used to allow interpolation at any time within the

given interval.

Due to the structure of the optimal control problem, each state of the original differential

equations requires a co-state, doubling the dimension of the problem. For each costate

variable, a constant valued guess was set equal to zero.

3.3.3 Choice of Boundary Value Problem Solver

MATLAB R©includes routines which implement both the bvp4c and bvp5c formulas for

solving boundary value problems for ordinary differential equations. An extension to these
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techniques has been published, providing implementation in the form of a MATLAB R©subroutine,

bvp5c [48]. The routines included within the MATLAB R©environment can be used inter-

changeably without modification to function parameters.

3.3.4 Vectorization

Many operations within MATLAB R©can be written in the form of iterative, loop-based

operations or in terms of matrix or vector operations. Although loop-based code is common

to most programming languages, writing code to take advantage of optimization within

MATLAB R©via vectorization of code can greatly improve execution efficiency [49].

Efficiency gains are especially prevalent in subroutines called repeatedly by ode45 or

bvp4c. Specifically, vectorization of code related to the ordinary differential equations uti-

lized by bvp4c provides a significant reduction in the number of function calls required. A

flag must be set using bvpset to inform the MATLAB R©environment that the code is opti-

mized for vectorization [50]. In practice, these routines are called thousands, or hundreds

of thousands of times, and larger simulation runs can last in the range of 20 minutes.

Use of the MATLAB R©Profiler greatly assists optimization of program execution [51]. It

is informative to run the same simulation with the vecorization flag both true and false to

verify the reduction in execution time and number of function calls.
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4 Reduced-Order Hodgkin-Huxley Models

This chapter applies the nonlinear analysis and optimal control techniques depicted in

Chapter 3, Figure 12 to the reduced-order, Hodgkin-Huxley type neuron model defined in

Section 2.3.

Reduced-dimensionality, as compared to the classical Hodgkin-Huxley model, facilitates

analysis since two-dimensional phase space is readily graphed. With proper selection of

parameter values, the chosen model is able to produce the four fundamental bifurcation

types that underlay many neurocomputational properties [1, p. 17].

Section 4.1 defines the neuron model, provides derivation of the system nullclines, and

defines the Hamiltonian with associated state and co-state equations. Since the form of

the model and objective function remain unchanged within this chapter, the derivations

of Section 4.1 are common to all four bifurcation types presented in Section 4.2. Sec-

tion 4.2 demonstrates applicability of the defined optimal control techniques to supercritical

Andronov-Hopf, subcritical Andronov-Hopf, saddle-node, and saddle-node on invariant cir-

cle bifurcation types in Sections 4.2.1 through 4.2.4, respectively.

4.1 Model Definition

Following Chapter 3, Figure 12, this section corresponds to the first row of the figure,

definition of the conductance-based neuron model. This includes definition of the reduced-

order, Hodgkin-Huxley model, and all symbolic equations required for nonlinear analysis

and optimal control techniques.

4.1.1 Reduced-Order Hodgkin-Huxley Type Model Definition

Following [1], the reduced-order, Hodgkin-Huxley model consists of a persistent potas-

sium current, transient sodium current, ohmic leak current, injected stimulus current, and

cellular membrane capacitance. Presented as Figure 5 in Chapter 2, an equivalent circuit

for the neuron model is reproduced here for completeness.

63



Figure 22: Equivalent circuit of a reduced-order conductance-based neuron model

Differential equations for the reduced-order, Hodgkin-Huxley model are

CV̇ = I − gKn(V − EK)− gNam∞(V )(V − ENa)− gL(V − EL) (57)

ṅ =
(n∞(V )− n)

τ(V )
(58)

where

m∞(V ) =
1

1 + e(Vm−v
km

)
(59)

n∞(V ) =
1

1 + e(Vn−v
kn

)
. (60)

Modulation of potassium and sodium conductance values is achieved using gating vari-

ables n and m∞, respectively. System dynamics can be modified to produce four funda-

mental bifurcations of the system fixed point(s) by changing constant valued parameters in

equations (57) through (60). Parameter values to achieve the four bifurcation types under

investigation are provided in Table 3 [1].

After defining the qualitative system behavior via model parameters, the injected current

stimulus is used to cause bifurcations of the system fixed point.

64



Table 3: Model parameters [1]

4.1.2 Fixed Point Location

As described in Sections 3.1.1.1 and 3.1.1.2, two methods are used within this dissertation

to compute the location of system fixed points. For two-dimensional models equations

for nullclines are derived and plotted. Intersections of the nullclines indicate the location

of a system fixed point. For higher-dimensional models the form of conductance-based

models enable derivation of a function f(v), the roots of which are indicative of fixed points.

In Section 4.2.1 both methods will be utilized to demonstrate their equivalence. For the

remaining three bifurcation types in Sections 4.2.2 through 4.2.4, only the intersection of

system nullclines will be used.

4.1.2.1 Derivation of Nullclines

To solve for nullclines of the two-dimensional, reduced-order, Hodgkin-Huxley model set

each differential equation equal to zero

0 =

(
1

C

)
(I − gKn(V − EK)− gNam∞(V )(V − ENa)− gL(V − EL)) (61)
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0 =
(n∞(V )− n)

τ(V )
(62)

The nullclines are obtained by solving equations (61) and (62) for n, yielding

n =
1

CgK(V − EK)
(I − gNam∞(V )(V − ENa)− gL(V − EL)) (63)

n = n∞(V ) (64)

where m∞(V ) and n∞(V ) are described by equations (59) and (60).

Equation (63) is the v-nullcline, representing purely vertical motion on the (v, n) phase

plane. Equation (64) is the n-nullcline, representing purely horizontal motion on the (v, n)

phase plane. Each injected current value I will produce a different curve for the v-nullcline.

The n-nullcline does not depend on the injected current, as shown in equation (64), and

thus will not change as a function of stimulus current I. An appropriate set of injected

current values will be determined for each bifurcation type to demonstrate the qualitatively

different behaviors of the system for each set of parameters in Table 3.

4.1.2.2 Derivation of f(v)

As an alternative means to find fixed point locations, the form of equations (57) and (58)

make it possible to derive a single function, f(v), the roots of which are system fixed

points. The function f(v) is obtained by setting dotn = 0, and solving for n as shown in

equation (64). The result is substituted into equation (63) yielding

f(v) =

(
1

C

)
(I − gKn∞(V − EK)− gNam∞(V )(V − ENa)− gL(V − EL)) (65)

with m∞(V ) and n∞(V ) described by equations (59) and (60), respectively. The function

f(v) will be plotted for each injected current value, with the roots of the function indicating

the location of the system fixed point.
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4.1.3 System Linearization

Once the number and location of system fixed points has been determined, they can

be classified according to their localized behavior. Classification of system fixed points

proceeds as described in Section 3.1.2, beginning with linearization of the phase plane using

the system Jacobian [6].

For the two-dimensional model under investigation the Jacobian is

V̇
ṅ

 =

∂f1
∂V

∂f1
∂n

∂f2
∂V

∂f2
∂n


V
n

 (66)

where V̇ = f1(), ṅ = f2(), and

∂f1
∂V

=

(
1

C

)
(−gL− gNa

1 + e( vm−V
km

) + V
km

e( vm−V
km

)(
1 + e( vm−V

km
)
)2 − e( vm−V

km
)

k
(

1 + e( vm−V
km

)
)2
− gKn) (67)

∂f1
∂n

= −gKV + gKEK (68)

∂f2
∂V

=
1

τ(V )

 e( vn−V
kn

)

k
(

1 + e( vn−V
kn

)
)2
 (69)

∂f2
∂n

= − 1

τ(V )
(70)

As described in Sections 3.1.2.1 and 3.1.2.2, two methods are used within this disser-

tation for classification of behavior in the immediate vicinity of system fixed points. Both

methods utilize the linearized system produced by the Jacobian. Values from Table 3 for

the model parameters, the injected current value, and the location of the system fixed point

are substituted into the Jacobian, allowing computation of eigenvalues.

For second-order systems, the eigenvalues of the Jacobian are used to compute the trace

and determinant for each injected current value, and they are plotted on the classification
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diagram. For higher-order models, the eigenvalues for each injected current value are plotted

on the complex plane. In Section 4.2.1 both methods will be utilized to demonstrate their

equivalence. In Sections 4.2.2 through 4.2.4 only the fixed point classification diagram will

be used.

4.1.4 Objective Function Definition

The objective function, previously published in [2], is

J [i(t)] =
P

2
(v(T )− r(T ))2 +

Q

2

∫ T

0

(v(t)− r(t))2dt+
R

2

∫ T

0

(i(t))2dt. (71)

A user prescribed balance between tracking error and minimization of ‘energy’ is used in

the computation of the optimal input current i∗(t). Making P and Q large with respect to R

penalizes differences between the chosen reference signal r(t) and the computed membrane

voltage v(t), resulting in a solution which emphasizes tracking accuracy. Conversely, a large

value for R, in comparison to P and Q, emphasizes a solution which seeks to minimize the

‘energy’ content of i∗(t), likely at the expense of reduced agreement between reference and

membrane potential signals.

The Hamilton associated with equation (71) is

H(v, n, λ1, λ2) =
Q

2
(v(t)− r(t))2 +

R

2
(i(t))2

+
λ1(t)

C
(i(t)− gKn(t)(v(t)− EK)− gNam∞(v)(v(t)− ENa)− gL(v(t)− EL))

+
λ2(t)

τ
(n∞(v)− n(t)) (72)

where λ1 and λ2 are the co-state variables. Following [46, p. 134], the “Continuous Nonlinear

Optimal Controller with Function of Final State Fixed” yields

v̇ =
∂H

∂λ1

=
1

C
[i(t)− gNam∞(v)(v(t)− ENa)− gKn(t)(v(t)− EK)− gL(v(t)− EL)] (73)
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ṅ =
∂H

∂λ2
=

1

τ
[n∞(v)− n(t)] (74)

λ̇1 = −∂H
∂v

= −Q(v(t)− r(t))

+
λ1(t)

C
[gNam∞(v) + gKn(t) + gL + gNa(v(t)− ENa)

∂m∞(v)

∂v
]

− λ2(t)

τ

∂n∞(v)

∂v
(75)

λ̇2 = −∂H
∂n

=
gK
C
λ1(t)(v(t)− EK) +

λ2(t)

τ
(76)

with boundary conditions

v(0) = v0 (77)

n(0) = n0 (78)

λ1(T ) = P (v(T )− r(T )) (79)

λ2(T ) = 0. (80)

The input stimulus current i(t) can be removed by substitution using the stationarity con-

dition

∂H

∂i
= Ri(t) +

λ1(t)

C
= 0, (81)

and solving for i(t) yields

i(t) = − 1

RC
λ1(t). (82)

Typically, a numerical solution to the two-point boundary value problem is computed

using the MATLAB R©routine bvp4c, yielding i∗(t) for each choice of injected current stimulus

and objective function constants P , Q, and R.
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4.2 Nonlinear Analysis and Optimal Control

Sections 4.2.1 through 4.2.4 examine system dynamics of the four fundamental bifurca-

tion types presented in [1] using nonlinear analysis and optimal control techniques presented

in Chapter 3. As shown in Figure 12 of Chapter 3, location and classification of system

equilibria can be achieved by two complementary techniques. In Section 4.2.1 the super-

critical Andronov-Hopf bifurcation type is analyzed using both techniques to demonstrate

their equivalence. In the remaining sections subcritical Andronov-Hopf, saddle-node, and

saddle-node on invariant circle bifurcation types are investigated with techniques presented

in Sections 3.1.1.1 and 3.1.2.1.

4.2.1 Super Critical Andronov-Hopf

Supercritical Andronov-Hopf bifurcations occur when a stable equilibrium becomes un-

stable, yielding a limit cycle attractor [1, p. 12]. The size of the limit cycle attractor increases

as the injected current is increased beyond the bifurcation value.

Neuron models near a supercritical Andronov-Hopf bifurcation exhibit subthreshold os-

cillations and are thus categorized as resonators in the classification scheme presented by

Izhikevich [1, p. 12]. This means that system trajectories, even with injected currents below

the bifurcation value, will exhibit damped oscillation.

Neuron models near a supercritical Andronov-Hopf bifurcation do not exhibit coexistence

of resting and repetitive spiking states [1].

During repetitive spiking the limit cycle attractor determines the size and shape of

action potentials. Since the level of injected current determines the size of the limit cycle

attractor in a supercritical Andronov-Hopf bifurcation, the resulting neuron model is capable

of producing graded action potentials, as opposed to all or none spikes.

Parameterization and analysis of the reduced-order Hodgkin-Huxley model as shown in

Table 3 will validate the expected system behaviors, quantify bifurcation values, and apply

optimal control to compute reduced energy input stimuli capable of tracking a reference

membrane voltage.
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4.2.1.1 Fixed Point Location

Within this section location of the system fixed point will be determined using both the

system nullclines and the derived function f(v).

4.2.1.1.1 Fixed Point Location Using Nullclines

Using equations (63) and (64) for the nullclines, and varying the injected stimulus current

I from −100µA/cm2 to 100µA/cm2 by increments of 10µA/cm2, a family of curves is

generated in Figure 23. Since the n-nullcline does not change it is represented by a single

sigmoidal line on the plot. Each injected current value I produces a different curve for the

v-nullcline.

Figure 23: Supercritical Andronov-Hopf fixed point location using nullclines

Notice each v-nullcline intersects the n-nullcline at a single point in the phase plane for

all considered values of I, indicating the presence of a single fixed point. The membrane

voltage of fixed points range between approximately −85 to −50 mV, and the gating variable

ranges between 0 and 0.4.

Stability of the fixed point cannot be ascertained directly from the figure and requires

further analysis per Section 4.2.1.2. For cases where the fixed point is stable, the value of
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the membrane voltage at the intersection of the nullclines is the resting membrane potential.

4.2.1.1.2 Fixed Point Location Using f(v)

Using equation (65) for f(v) and the same range of injected current values, a family of

curves is plotted in Figure 24. A fixed point of the system is indicated by each location

where f(v) = 0.

Figure 24: Supercritical Andronov-Hopf fixed point locations using derived function f(v)

Again, the system has a single fixed point for all considered values of I. Furthermore,

since f(v) is monotonic and the injected current translates the curve vertically, it is observ-

able from Figure 24 that the system will have a single fixed point for all injected current

values.

As in Figure 23, an approximate value for the membrane voltage of the system fixed

point is directly observable in Figure 24. However, approximation of the gating variable

n is not directly observable from Figure 24, and the value for membrane voltage must be

back-substituted into equation (64) to estimate a value for n.
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4.2.1.1.3 Comparison of Fixed Point Location Results

For each injected current level, the system fixed point location has been computed in two

ways, by the intersection of the nullclines and by the root of f(v). The primary difference

between these two methods is that plotting the fixed point location using the intersection

of the nullclines is only feasible with a reduced-order systems while the roots of f(v) can be

plotted for systems of any dimension, given an amenable structure to the state equations.

Both plots provide qualitative information regarding the number of fixed points and

their approximate location. To verify the two techniques identify the same fixed point

location for each injected current level the MATLAB R©routine fsolve was used to compute

the quantitative fixed point location. Table 4 shows that the values produced match for all

injected current levels considered.

The approximate value of both state variables is directly observable on the phase plane in

Figure 23. In contrast, when determining the system fixed point using f(v), it is necessary to

observe the value for membrane voltage, v, and back-substitute this value into equation (64)

to determine the equilibrium value for n. The phase plane is also informative when studying

system trajectories for determination of bifurcation type and application of the optimal

control technique.

For the remainder of this dissertation, system fixed point location will be determined

for all second-order models via intersection of the nullclines, and the (v, n) phase plane will

be utilized. For higher-order models system, fixed point location will be determined by

computing the roots of f(v).

4.2.1.2 Fixed Point Classification

Within this section fixed points will be classified both graphically and according to

eigenvalues of the linearized system.
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Table 4: Fixed point locations

4.2.1.2.1 Fixed Point Classification for Two-Dimensional Systems

Qualitative information from Section 4.2.1.1 greatly informs the process of fixed point

classification as it provides insight as to the number and approximate location of system

fixed points for any given injected current level.

Using fsolve, the numerical solution for the location of the fixed point is computed.

The values for the state variables, in this case v and n, are substituted into the Jacobian,

allowing computation of eigenvalues according to equations (66) through (70).

Eigenvalues of the linearized system, evaluated at the location of a fixed point, are

74



immensely informative regarding expected qualitative system behavior and stability of the

fixed point. For two-dimensional systems, fixed points are readily classified using a graphical

classification scheme once the eigenvalues have been computed [6, p. 137].

When classifying system fixed points via linearization, it is necessary to verify the lin-

ear system, with neglected higher-order terms, faithfully represents the original nonlinear

system. As described in Section 3.1.2.1, graphical categorization of fixed points of two-

dimensional systems is robust for saddles, nodes, and spirals. Further techniques are re-

quired for analysis of “borderline” cases [6, p. 151-155].

Analysis of the reduced-order Hodgkin-Huxley model proceeds with calculation of eigen-

values for the linearized system for each injected current value used to generate the family of

curves in Section 4.2.1.1. Borderline cases, representing a bifurcation in system dynamics,

are considered in Section 4.2.1.3.

After computing eigenvalues for the linearized system in the vicinity of the fixed point

for each injected current level, the trace (τ) and determinant (∆) for each fixed point is

calculated as described in [6]. Namely,

τ = λ1 + λ2 (83)

and

∆ = λ1 ∗ λ2 (84)

where λ1 and λ2 are the eigenvalues of the linearized two-dimensional system of equations.

A single point is generated on the classification diagram for each fixed point at each injected

current value. The plotted locus represents the varying classification of the system fixed

point as the injected current is increased from −100µA/cm2 to 100µA/cm2 by increments

of 10µA/cm2.

The data point indicated with an asterisk denotes zero injected current. Bifurcations,

or qualitative changes in system dynamics, occur when the classification of the fixed point

transitions from one region of the classification diagram to another [6, p. 44]. In this case,

one bifurcation occurs when the fixed point changes from a stable node to a stable spiral,
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Figure 25: Graphical classification of reduced-order Hodgkin-Huxley supercritical
Andronov-Hopf system fixed point

and another bifurcation occurs when the fixed point changes from a stable spiral to an

unstable spiral.

The bifurcation of interest, as presented in [1], occurs as the injected current is increased

from zero, corresponding to the transition from stable spiral to unstable spiral, along with

the creation of a stable limit cycle attractor. Classification of the fixed point as a spiral is in-

dicative of system dynamics which include oscillation, and is consistent with the description

of the supercritical Andronov-Hopf bifurcation type as a resonator in [1].

For injected current values where the system fixed point is classified as a stable spiral,

zero injected current and 10µA/cm2 as shown above, damped oscillations are expected.

For injected currents, 20µA/cm2 and above undamped oscillations, or repetitive spiking,

is produced with the size and shape of the action potentials determined by the limit cycle

attractor. Since the size of the limit cycle attractor is related to the level of injected current,

action potential size is expected to vary with injected current levels.

Inclusion of negative injected currents provides a second bifurcation of the system fixed

point from stable spiral to stable node. The transition from spiral to node is expected to

result in cessation of subthreshold membrane voltage oscillations.

76



Bifurcation points and verification of the described qualitative system behavior via time

domain plots and phase plane trajectories will be demonstrated in Section 4.2.1.3.

The presented classification diagram, although incredibly informative, is not readily ex-

tended to higher-dimensional systems. Fortunately, investigation of the eigenvalues them-

selves, in parallel with the classification diagram, provides the ability to intuit system dy-

namics in a manner extensible to higher-dimensional system.

4.2.1.2.2 Fixed Point Classification for Higher-Dimensional Systems

Using the graphical classification diagram of the previous section, the fixed point is

represented by a single point for each injected current level. When the fixed point is classified

for higher-order systems, eigenvalues are plotted directly on the complex plain. For the

second-order system currently under investigation, two eigenvalues, λ1 and λ2, are plotted

for each injected current value.

Like the previous section, the plotted locus of eigenvalues corresponds to injected cur-

rent increasing from −100µA/cm2 to 100µA/cm2 by increments of 10µA/cm2, with ad-

ditional data points for injected current levels of −12µA/cm2, −14µA/cm2, −16µA/cm2,

and −18µA/cm2. These values were added to clarify movement of the eigenvalues at the

point where they break away from the real axis. In this region the eigenvalues are mov-

ing rapidly, and the addition of these injected current levels provides improved resolution.

Again, the eigenvalues indicated with an asterisk denote zero injected current.
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Figure 26: Classification of reduced-order Hodgkin-Huxley system fixed point using eigen-
values

With I = −100µA/cm2 the eigenvalues are purely real, and distributed distantly from

each other on the real axis. As the injected current is increased, eigenvalues move toward

each other until they collide and break away from the real axis. After breaking away from

the real axis, the eigenvalues proceed away from the real axis and to the right, with the real

part of the eigenvalues increasing. At some level of injected current, the imaginary pair of

eigenvalues cross into the right hand plane.

Systems with purely real eigenvalues do not exhibit oscillation. In the case of the plot

shown here, all of the purely real eigenvalues exist on the left hand plane. Thus, all injected

current values which produce eigenvalues on the real axis correspond to system dynamics

with stable fixed points, classified as stable nodes.

When eigenvalues appear in complex conjugate pairs, the system will exhibit oscillations.

Less damped oscillations will be produced with greater imaginary content of the eigenvalues,

or eigenvalues closer to the right hand plane. Once the real part of the complex conjugate

pair of eigenvalues becomes positive the fixed point has become unstable.
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4.2.1.2.3 Comparison of Fixed Point Classification Results

Graphical classification of the fixed point as presented in Figure 25 can be correlated

with the trajectories of the eigenvalues on the complex plane as presented in Figure 26.

All injected current values which produce eigenvalues on the real axis, in the left-hand

plane indicate system dynamics of stable fixed points without oscillation. This corresponds

to the region of the graphical classifier described as stable nodes. For the reduced-order

Hodgkin-Huxley model under investigation a stable node is produced for injected current

values from −100µA/cm2 to −20µA/cm2.

Complex conjugate pair eigenvalues in the left-hand plane are representative of a stable

fixed point and oscillatory dynamics. Using the graphical classifier, the presence of damped

oscillation results in classification of the system fixed point as a stable node. For the reduced-

order Hodgkin-Huxley model under investigation a stable spiral is produced for injected

current values from −10µA/cm2 to 10µA/cm2.

Complex conjugate pairs of eigenvalues in the right-hand plane exhibit undamped os-

cillation. However, unlike a linear system, the creation of a stable limit cycle attractor at

the transition of the fixed point from stable to unstable prevents system trajectories from

diverging. Thus, crossing into the right hand plane is related to the classification diagram

where the trace (τ) is equal to zero. For injected current values of 20µA/cm2 or more

eigenvalues exist in complex conjugate pairs in the right-hand plane, and are classified as

unstable spirals. Pictorially, the results within the two figures can be correlated in the

following manner.
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Figure 27: Categorization of reduced-order Hodgkin-Huxley system fixed points

Figure 28: Eigenvalue categorization of reduced-order Hodgkin-Huxley system fixed points

Information gained about the stability of the fixed point for each injected current value

can now be incorporated into Figures 23 and 24 from Section 4.2.1.1. Fixed point stability

will be demarcated on the phase plane and the plot of f(v) by filled and open dots where

the fixed point is stable and unstable, respectively.
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Figure 29: Supercritical Andronov-Hopf fixed point location and stability with nullclines

Figure 30: Supercritical Andronov-Hopf fixed point location and stability with derived
function f(v)

4.2.1.3 Bifurcations

Information from Section 4.2.1.2 provides insight into the injected current levels for

which qualitatively different system behaviors occur. Investigations related to bifurcation of
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the system fixed point in this section serves two purposes. One purpose is to demonstrate

qualitatively different behaviors of the system using time domain plots along with the phase

plane. The second purpose is to verify bifurcation type according to criteria provided in [1]

which has been reproduced as Figure 26 in Chapter 3.

For example, investigation of Figure 31 indicates that three distinct classes behavior can

be expected from the reduced-order Hodgkin-Huxley model using parameters selected to

produce the supercritical Andronov-Hopf bifurcation type. From the graph, it is evident

that at least three classes of behavior exist for injected current values below −20µA/cm2,

between −10µA/cm2 and 10µA/cm2, and above 20µA/cm2. Using this information, in-

jected current values will be selected which demonstrate the behavior of the system above

and below any bifurcations.

Figure 31: Bifurcations of the system fixed point as indicated by the graphical classifier

For the purposes of this dissertation, it is generally not necessary to determine the exact

value of injected current at which a bifurcation of the fixed point occurs. Furthermore,

when system dynamics at the bifurcation point are of interest, it must be verified that the

linearized system is topologically equivalent to the original nonlinear system, as described

in Section 3.1.3.
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As an example, Section 4.2.1.3.1 demonstrates computation of the bifurcation point of

the system. Sections 4.2.1.3.2 through 4.2.1.3.4 provide analysis of the three classes of

behavior which are possible for the selected range of injected stimulus current.

4.2.1.3.1 Computation of System Bifurcation Points

When a more precise value of injected current at which the bifurcation occurs is required,

fsolve can be used to compute a numerical solution. Using the graphical classifier in

Figure 31 or the locus of eigenvalues plotted in Figure 32 greatly informs this process, by

providing initial conditions for use with fsolve.

As shown, there are two bifurcations which occur at different injected current levels.

Bifurcation 1 occurs at some injected current value between −10µA/cm2 and −20µA/cm2.

Bifurcation 2 occurs at some injected current value between 10µA/cm2 and 20µA/cm2.

Bifurcation 2 of Figure 31 is a supercritical Andronov-Hopf bifurcation considered in [1].

For bifurcation 1, three equations must be satisfied simultaneously to find the bifurcation

point. Namely, v̇ must equal zero, ṅ must equal zero, and the eigenvalues should cause the

trace (τ) and determinant (∆) to be equal to the borderline case between a stable node and

a stable spiral. That is,

τ2 − 4∆ = 0. (85)

If an injected current value is found which satisfies all three of these conditions, then

the value for v and n at which this occurs is a fixed point of the system, and the value of

injected current is a bifurcation point. As described in Section 3.1.3, topological equivalence

of the fixed point for linearized system is not guaranteed for boundaries between regions of

the graphical classifier, and further investigation is required to confirm details of the system

dynamics. Likewise for bifurcation 2 three equations must be satisfied simultaneously. In

the case of the second bifurcation point v̇ must equal zero, ṅ must equal zero, and the trace

(τ) must equal zero.

The fixed point classification diagram presented in [6] is not easily extensible to higher-
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dimensions. Fortunately, for the purposes of determining the bifurcation point, the same

information can be gleaned from the locus of eigenvalues presented in Figure 32. Bifurcation

1 is the point at which the eigenvalues break away from the real axis. Bifurcation 2 is the

point at which the eigenvalues loose stability, crossing into the right hand plane. These

two conditions are when an eigenvalue, or the real part of the eigenvalues are equal to zero.

Again, this is indicative of the point at which topological equivalence of the linearized system

is not guaranteed to match that of the original nonlinear system.

Figure 32: Bifurcations of the system fixed point as indicated by the locus of eigenvalues

For bifurcation 1 the value for the coordinates of the fixed point and injected current

near the bifurcation point were given as initial conditions and fsolve found a solution

at (v, n) ≈ (−67.6723, 0.0106) with I ≈ −17.1356. To verify this result the computed

bifurcation value for the injected current will be used as an input, and the eigenvalues of

the linearized system will be computed. The fixed point classification diagram predicts

τ2 − 4∆ will equal zero, and the locus of eigenvalues predicts the two eigenvalues should be

a repeated root with zero imaginary content.

As verified in MATLAB R©, an injected current of I ≈ −17.1356 produces a repeated pair

of eigenvalues on the real axis at λ1,2 ≈ −1.684944 ± 0i. The imaginary content of the

eigenvalues is zero out to the seventh decimal place with the present fsolve configuration.
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Using the computed eigenvalues τ ≈ −3.36989 and ∆ ≈ 2.83904, which agrees with the

boundary between a stable node and a stable spiral as computed by τ2 − 4∆.

For bifurcation 2 the value for the coordinates of the fixed point and injected current were

given as initial conditions and fsolve found a solution at (v, n) ≈ (−56.4815, 0.0914) and I ≈

14.6590. Again, to verify this result the computed bifurcation value for the injected current

will be used as an input, and the eigenvalues of the linearized system will be computed. In

this case, the fixed point classification diagram predicts the trace (τ) will equal zero, and

the locus of eigenvalues predicts the two eigenvalues should be a complex conjugate pair

with zero real content.

As verified in MATLAB R©, an injected current of I ≈ 14.6590 produces eigenvalues on

the imaginary axis at λ1,2 ≈ 0± 2.13748i and τ ≈ 0. Both the real part of the eigenvalues

and the trace are approximately equal to zero to fourteen decimal places.

4.2.1.3.2 Supercritical Andronov-Hopf Dynamics in the Stable Spiral Region

Injected currents in the form of step inputs are used to investigate qualitatively different

system dynamics. In each case the length of the simulation is 40 ms. The neuron model is

initially quiescent at the resting membrane potential, followed by application of a step input

at 10 ms.

Initial conditions for membrane voltage (v) and gating variable (n) were chosen by

running a simulation with zero injected current, allowing any transients in the state variables

to decay. This ensures a quiescent response prior to application of the step input. With the

neuron model parameterized for the supercritical Andronov-Hopf bifurcation type, initial

conditions are v0 ≈ −60.8648 mV and n0 ≈ 0.0402.

Three different injected current values of 10µA/cm2, 40µA/cm2, and −40µA/cm2 were

chosen to exemplify the three qualitatively different behaviors of the model neuron. As

shown in Figures 31 and 32, and confirmed by computation of the bifurcation values in this

section, these values demonstrate the different classification categories of the system fixed

point. It is expected that any injected current values in the ranges I > 14.6590µA/cm2,

−17.1356µA/cm2 < I < 14.6590µA/cm2, and I < −17.1356µA/cm2 would be sufficient.
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For injected current values where −17.1356µA/cm2 < I < 14.6590µA/cm2, damped

oscillations are expected based on fixed point classification as a stable spiral. Both time

domain and phase plots are provided.

Figure 33: Supercritical Andronov-Hopf stable spiral time domain plot

Figure 34: Supercritical Andronov-Hopf stable spiral phase plane

The time domain plot, showing both injected current and membrane voltage response,
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is a plot representative of what could be measured experimentally. Additional traces can be

added to this plot, including current contributions for each ion accounted for by the model,

any gating variables, and time dependent ionic conductance values. Some of these traces

are accessible experimentally, which can aid in verification of modeled neuron dynamics.

Another way to depict the same information is through the phase plane. For two-

dimensional systems the phase plane is particularly informative since repetitive spiking,

directly related to the presence of a limit cycle, is very clearly depicted in the phase plane.

In this case, the phase plane shows the system transitioning from one point in the phase

plane to a second point in the phase plane. The path by which the system transitions

between the two stable resting potentials is indicative of the naming convention provided

by the fixed point classification diagram, a stable spiral [6].

Time is not explicitly indicated on the phase plane. Time is represented only by the speed

at which the states are moving along the trajectory. This means that a resting membrane

potential is actually only a single point on the phase plane. One means of displaying

time along with the phase plane is to plot the trajectory in three-dimensions, allowing the

simulation time to evolve along the vertical axis.

Figure 35: Supercritical Andronov-Hopf stable spiral phase plane plus time
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Now the first 10 ms of the simulation, which was previously a single point in the phase

plane, is represented by the purely vertical line at v ≈ −60.8648. In the two-dimensional

phase plot the largest oscillations dominate the figure. By including time as the third axis, it

is evident that the system spends the vast majority of the simulation time in the immediate

vicinity of the two stable fixed points.

When viewed directly from above, the three-dimensional phase plane reproduces the

two-dimensional phase plane of Figure 34. Rotating Figure 35 to a different orientation it

is possible to view only the voltage and time axes, allowing the three-dimensional picture

to reproduce the time domain plot of Figure 33. When taken as a set, these three figures

are extremely informative of the overall system state.

Furthermore, the behavior exhibited is exactly as predicted by the fixed point classi-

fication diagram and locus of eigenvalues. With higher-dimensional neuron models, it is

not possible to succinctly depict system state graphically. By understanding the dynamics

of reduced-order models graphically, it is possible to intuit system dynamics in higher-

dimensions not extensible to graphical schemes.

4.2.1.3.3 Supercritical Andronov-Hopf Dynamics in the Unstable Spiral Re-

gion

For injected current values above I ≈ 14.6590µA/cm2, it is expected that the system

fixed point becomes unstable, yielding a stable limit cycle attractor [1].
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Figure 36: Supercritical Andronov-Hopf unstable spiral time domain plot

Figure 37: Supercritical Andronov-Hopf unstable spiral phase plane
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Figure 38: Supercritical Andronov-Hopf unstable spiral phase plane plus time

As expected, the first 10 ms of the simulation is still characterized by quiescence, and

upon application of the step injected current the neuron model responds with an upswing in

membrane voltage. However, rather than damped oscillation like the previous case, now the

neuron model exhibits repetitive spiking. The limit cycle, displayed in the two-dimensional

phase plane, determines the size and shape of the action potentials seen in the time domain.

When plotted as a three-dimensional phase plot the limit cycle looks like a spring, coiling

upward at a regular interval.

Again, the behavior exhibited is exactly as predicted by the fixed point classification

diagram and locus of eigenvalues.

System behavior described thus far aligns with the bifurcation of interest in [1]. At

the occurrence of a supercritical Andronov-Hopf bifurcation a single system fixed point

looses stability, yielding a stable limit cycle attractor which changes size in relation to the

amplitude of injected current [1, p. 15]. Plots for an injected current of I = 20µA/cm2

demonstrate a smaller limit cycle attractor.

From a neuroscience perspective, this behavior represents a neuron capable of repetitive

spiking and encoding stimulus strength as graded action potentials.
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Figure 39: Supercritical Andronov-Hopf unstable spiral time domain plot, I = 20µA/cm2

Figure 40: Supercritical Andronov-Hopf unstable spiral phase plane, I = 20µA/cm2
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Figure 41: Supercritical Andronov-Hopf unstable spiral phase plane plus time, I =
20µA/cm2

4.2.1.3.4 Supercritical Andronov-Hopf Dynamics in the Stable Node Region

As indicated by the fixed point classification diagram, another bifurcation of the fixed

point is possible with negative injected current values. Negative injected current simply

represents a reversal in direction of the electrical current. The transition should occur at

all injected current levels less than I ≈ −17.1356µA/cm2.

According to the definition of a stable node, system trajectories should not exhibit oscil-

lation. Included time domain and phase plots verify this expectation, without oscillations

associated with system trajectories for positive injected current.
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Figure 42: Supercritical Andronov-Hopf stable node time domain plot

Figure 43: Supercritical Andronov-Hopf stable node phase plane
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Figure 44: Supercritical Andronov-Hopf stable node phase plane plus time

There is a small amount of overshoot evident in the time domain plot. When the slope of

the injected current step input is reduced, the overshoot vanishes, as depicted in Figure 45.

Figure 45: Supercritical Andronov-Hopf stable node time domain plot, without overshoot

The plotted results verify qualitative behaviors predicted in parallel by the fixed point

classification diagram and the locus of eigenvalues. Two and three-dimensional phase plane
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plots, when viewed in conjunction with time domain plots, paint a thorough picture of system

dynamics for two-dimensional systems, and establish sound intuition for higher-dimensional

neuron models.

4.2.1.4 Optimal Control

In Sections 4.2.1.2 and 4.2.1.3, three qualitatively different system behaviors of the

reduced-order Hodgkin-Huxley model, parameterized for a supercritical Andronov-Hopf bi-

furcation, were identified. In this section, optimal input stimuli will be computed for each

category of system behavior.

4.2.1.4.1 Optimal Control of Supercritical Andronov-Hopf Dynamics in the

Stable Spiral Region

Application of injected current I = 10µA/cm2 results in system behavior identified as a

stable spiral. Using the membrane voltage generated by a I = 10µA/cm2 step input as the

reference voltage, the optimal input stimuli is calculated for three different sets of values for

P , Q, and R.

The first plot, with P = Q = 1 and R = 10, represents an emphasis on reduction of

input stimuli energy at the expense of membrane voltage tracking accuracy. The third plot,

with P = Q = 1000 and R = 1, represents the opposite end of the spectrum, emphasizing

tracking accuracy. The remaining plot, with P = Q = 100, and R = 1, provides a balance

of these two competing objectives.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 46: Optimal control of supercritical Andronov-Hopf stable spiral
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As shown in Figure 46a, the exaggerated emphasis on reduction of input stimuli energy

results in a membrane voltage is hardly disturbed from rest. Figure 46b, with P = Q = 100

and R = 1, displays quite accurate tracking of the reference membrane potential, even

with a steady state value of injected current that is reduced from the originally applied

input. Further increasing emphasis on tracking in Figure 46c produces reduced error between

the reference and optimally generated membrane potential at the expense of greater input

stimuli energy. The same values of P , Q, and R will be used for computation of optimal input

stimuli for unstable spiral and stable node dynamics of the reduced-order Hodgkin-Huxley

model.

4.2.1.4.2 Optimal Control of Supercritical Andronov-Hopf Dynamics in the

Unstable Spiral Region

Application of injected current I = 40µA/cm2 results in system behavior identified as

an unstable spiral. Bifurcation of the system fixed point, along with the birth of a limit

cycle attractor, enables the neuron model to produce repetitive spiking behavior.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 47: Optimal control of supercritical Andronov-Hopf unstable spiral
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Optimal inputs computed for a repetitively spiking reference membrane potential demon-

strate “characteristic dips” which have been identified in previous publications [2, 3]. The

dips are most noticeable when P = Q = 100 and R = 1, providing a marked decrease

in the injected current ‘energy’ which clearly correlates with the generation of each action

potential. That is, the optimal control methodology computes a reduced need for injected

current once generation of an action potential is under-way.

Again, further improved accuracy of tracking can be achieved at the expense of stimulus

energy with P = Q = 1000 and R = 1.

4.2.1.4.3 Optimal Control of Supercritical Andronov-Hopf Dynamics in the

Stable Node Region

Application of injected current I = −40µA/cm2 results in system behavior identified as

a stable node.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 48: Optimal control of supercritical Andronov-Hopf stable node
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The third behavior, representative of a stable node, lacks any action potentials or os-

cillation. However, performance of the optimal input stimuli is similar to the previous two

simulations. That is, when P = Q = 1 and R = 10 in Figure 48a, the neuron model is hardly

disturbed from rest. When P = Q = 100 and R = 1, as seen in Figure 48b, a reduction of

input stimulus energy is present, but tracking accuracy is lower than when P = Q = 1000

in Figure 48c.

The first and most important commonality across all computed inputs is that as the

emphasis on tracking increases the optimal input current converges to more closely represent

the original input signal. Furthermore, the trade-off between reduction of injected current

energy and tracking accuracy has an asymptotic characteristic indicating a potential sweet

spot for acceptable tracking accuracy with significantly reduced injected current energy.

4.2.1.5 Discussion of Supercritical Andronov-Hopf Bifurcation Dynamics

This section utilized a reduced-order Hodgkin-Huxley model with parameters selected

for demonstration of supercritical Andronov-Hopf bifurcation dynamics [1]. The framework

for nonlinear analysis and optimal control, presented as Figure 12 in Chapter 3, was the

basis for investigating system dynamics.

For the remainder of this dissertation, one of two companion techniques will be utilized

for locating and classifying system fixed points depending on the dimension of the neuron

model. Within this section, the equality of these techniques was demonstrated.

The selected range of input stimuli produced three qualitatively different behaviors:

stable spiral, unstable spiral, and stable node. For each behavior, system dynamics were

investigated using the time domain as well as the phase plane. A spectrum of optimal

input stimuli, ranging from emphasis on input ‘energy’ reduction to tracking accuracy, were

computed injected current values representative of each qualitatively different behavior.

Section 4.1.2 demonstrated that, when required, it is often possible to compute the

injected current value at the bifurcation point. As described in Section 3.1.3, the dynamics

of the linearized system are not guaranteed to be topologically equivalent to those of the

original nonlinear system when eigenvalues, or the real part of eigenvalues, are equal to zero,
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which is the case at both bifurcations investigated in this section.

In all cases, application of the optimal control technique to supercritical Andronov-Hopf

dynamics of the reduced-order Hodgkin-Huxley model resulted in a consistent spectrum of

results, ranging from reduced stimulus energy to tracking of the reference membrane voltage

with a high degree of accuracy.

4.2.2 Subcritical Andronov-Hopf

Subcritical Andronov-Hopf bifurcations occur when an unstable limit cycle converges on

a stable equilibrium, causing the fixed point to become unstable [1, p. 12].

Neuron models near a subcritical Andronov-Hopf bifurcation exhibit subthreshold os-

cillations, and are therefore resonators [1, p. 14]. System trajectories for inputs below the

bifurcation value will exhibit damped oscillation. This is similar to system dynamics pre-

sented for supercritical Andronov-Hopf bifurcations.

Neuron models near a subcritical Adronov-Hopf bifurcation are bistable, exhibiting coex-

istence of resting and repetitive spike states [1]. This behavior is in contrast to the dynamics

of the monostable supercritical Andronov-Hopf case. Bistability is often demonstrated via

hysteresis, but is also brought out through appropriate selection of initial conditions. Sys-

tem behavior can be altered between rest and repetitive spiking through application of an

appropriately timed transient pulse.

4.2.2.1 Fixed Point Location

Using equations (63) and (64) for the nullclines, and varying the injected stimulus cur-

rent I from −10µA/cm2 to 70µA/cm2 by increments of 5µA/cm2, a family of curves was

generated in Figure 49. Since the n-nullcline did not change, it is represented by a single

sigmoidal line on the plot. Each injected current value I produces a different curve for the

v-nullcline.
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Figure 49: Subcritical Andronov-Hopf fixed point location using nullclines

Notice each v-nullcline intersects the n-nullcline at a single point in the phase plane for

all considered values of I, indicating the presence of a single fixed point. The membrane

voltage of fixed points range between approximately −85 to −50 mV, and the gating variable

ranges between 0 and 0.4.

Stability of the fixed point cannot be ascertained directly from the figure and requires

further analysis per Section 4.2.2.2. For cases where the fixed point is stable, the value of

the membrane voltage at the intersection of the nullclines is the resting membrane potential.

4.2.2.2 Graphical Fixed Point Classification

Using the approximate values for v and n from Section 4.2.2.1 as initial conditions, a

numerical solution for the system fixed point is computed for each injected current value

using fsolve. The values for the state variables are substituted into the Jacobian, allowing

computation of eigenvalues according to equations (66) through (70).

After computing eigenvalues for the linearized system for each injected current level, the

trace (τ) and determinant (∆) are computed according to equations (83) and (84). These

two values allow classification of the fixed point as shown in Figure 35, with a single point
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for each injected current value.

Figure 50: Graphical classification of reduced-order Hodgkin-Huxley subcritical Andronov-
Hopf system fixed point

For negative and smaller injected current values, the fixed point classification clusters

against the boundary between stable node and stable spiral regions. For values of injected

current greater than approximately 50µA/cm2, a bifurcation of the fixed point has occurred,

and the behavior is classified as an unstable spiral.

Information regarding stability of the fixed point can be added to each intersection of

the nullclines as shown in Figure 51. Filled dots indicate a stable fixed point and open dots

indicate an unstable fixed point for each injected current level.
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Figure 51: Subcritical Andronov-Hopf fixed point location and stability with nullclines

4.2.2.3 Bifurcations

Figure 50 reveals that injected current levels above 50µA/cm2 produce qualitative sys-

tem behavior classified as an unstable spiral. Values between 0µA/cm2 and 45µA/cm2

produce behavior classified as a stable spiral.

As described in Chapter 3, when considering the major regions of Figure 50 no additional

analysis is required to verify the linearized system is topologically equivalent to the original

nonlinear system. Furthermore, if all eigenvalues are non-zero, with non-zero real parts, the

linearized system is topologically equivalent to the nonlinear system.

Injected current values of 25µA/cm2 and 60µA/cm2 have been selected to demonstrate

system dynamics for injected current levels above and below the subcritical Andronov-Hopf

bifurcation.

4.2.2.3.1 Subcritical Andronov-Hopf Dynamics in the Stable Spiral Region

Injected currents in the form of step inputs are used to investigate qualitatively different

system dynamics. In each case the length of the simulation is 40 ms. The neuron model is

initially quiescent at the resting membrane potential, followed by application of a step input
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at 10 ms.

Initial conditions for membrane voltage (v) and gating variable (n) were chosen by

running a simulation with zero injected current, allowing any transients in the state variables

to decay. This ensures a quiescent response prior to application of the step input. With

the neuron model parameterized for the subcritical Andronov-Hopf bifurcation type, initial

conditions are v0 ≈ −77.4513 mV and n0 ≈ 0.0015.

Figure 52: Subcritical Andronov-Hopf stable spiral time domain plot
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Figure 53: Subcritical Andronov-Hopf stable spiral phase plane

Figures 52 and 53 exhibit damped oscillations in the time domain and a collapsing spiral

in the phase plane, consistent with expected behavior of a stable spiral. Figure 51 includes

time as the vertical axis of the phase plane.

Figure 54: Subcritical Andronov-Hopf stable spiral phase plane plus time

The first 10 ms of the simulation are a purely vertical line, depicted in Figure 53 as a
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single point in the phase plane. The damped oscillation, a seeping arc in the phase plane,

quickly decays to a steady state voltage, which agrees with the time domain plot of Figure 52

and the expected behavior for a stable spiral.

4.2.2.3.2 Subcritical Andronov-Hopf Dynamics in the Unstable Spiral Region

For injected current values above I ≈ 50µA/cm2, it is expected that the system fixed

point becomes unstable, at which point the system trajectory approaches a stable limit

cycle attractor [1]. A defining feature of the subcritical Andronov-Hopf dynamics is the

coexistence of resting and repetitively spiking states. This is in contrast to the supercritical

Andronov-Hopf case, where a bifurcation of the system fixed point births the stable limit

cycle attractor.

Figure 55: Subcritical Andronov-Hopf unstable spiral time domain plot
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Figure 56: Subcritical Andronov-Hopf unstable spiral phase plane

Behavior depicted in Figures 55 and 56 is characteristic of a stable limit cycle attractor.

Rather than damped oscillation as shown in Figures 52 and 53, application of an injected

current of 65µA/cm2 causes loss of stability of the system fixed point, with the system

trajectory following a stable limit cycle attractor.

Figure 57: Subcritical Andronov-Hopf unstable spiral phase plane plus time
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4.2.2.4 Optimal Control

In Sections 4.2.2.2 and 4.2.2.3, it was demonstrated that qualitatively different system

behaviors could be induced when injected currents between 0µA/cm2 and 45µA/cm2 and

above 50µA/cm2 are applied to the model neuron. For current values in the range 0 −

45µA/cm2, the system behavior was consistent with classification as a stable spiral. For

values of injected current above 50µA/cm2, a bifurcation of the system fixed point occurs

and behavior is consistent with classification as an unstable spiral, with characteristic limit

cycle attractor, as expected for the subcritical Andronov-Hopf bifurcation. In this section

optimal input stimuli will be computed for each category of system behavior.

4.2.2.4.1 Optimal Control of Subcritical Andronov-Hopf Dynamics in the Sta-

ble Spiral Region

Application of injected current I = 25µA/cm2 results in system behavior identified as a

stable spiral. Using the membrane voltage generated by a I = 25µA/cm2 step input as the

reference voltage, the optimal input stimuli is calculated for three different sets of values for

P , Q, and R.

The first plot, with P = Q = 1 and R = 10, represents an emphasis on reduction of

input stimuli energy at the expense of membrane voltage tracking accuracy. The third plot,

with P = Q = 1000 and R = 1, represents the opposite end of the spectrum, emphasizing

tracking accuracy. The remaining plot, with P = Q = 100 and R = 1, provides a balance

of these two competing objectives.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 58: Optimal control of subcritical Andronov-Hopf stable spiral
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Figures 58a through 58c demonstrate a typical spectrum for application of the optimal

control methodology, with an emphasis on reduced energy of input stimuli with relatively

large values or R and improved tracking accuracy for large values of P and Q. Weighting

terms of the objective function can be adjusted depending on the control objective.

4.2.2.4.2 Optimal Control of Subcritical Andronov-Hopf Dynamics in the Un-

stable Spiral Region

Application of injected current I = 60µA/cm2 results in system behavior identified as

an unstable spiral. The system fixed point loses of stability and the system trajectory

approaches a coexistent stable limit cycle attractor.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 59: Optimal control of subcritical Andronov-Hopf unstable spiral
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Optimal inputs produce the expected range of behavior from energy reduction in Fig-

ure 59a to tracking accuracy in Figure 59c. As seen in Figure 59b, when simulations contain

repetitive spiking “characteristic dips” in the optimal input current are often present as

emphasis on tracking is reduced [2, 3]. The amplitude of these dips typically decreases, with

the optimal current approaching the originally applied current, as emphasis on tracking is

further increased.

4.2.2.5 Discussion of Subcritical Andronov-Hopf Bifurcation Dynamics

This section utilized a reduced-order Hodgkin-Huxley model with parameters selected for

demonstration of subcritical Andronov-Hopf bifurcation dynamics [1]. Nonlinear analysis

enables categorization of system fixed point behavior for a range of injected current values. It

was determined that two classes of behavior, consistent with the subcritical Andronov-Hopf

bifurcation type, could be elicited for ranges of injected input current between 0µA/cm2

and 45µA/cm2 and above 50µA/cm2.

Using injected input currents of I = 25µA/cm2 and I = 60µA/cm2 stable spiral and un-

stable spiral system dynamics were highlighted. The subcritical Andonrov-Hopf bifurcation

occurs as a transition between these qualitatively different system behaviors.

Results were presented using time domain and phase plane plots, along with a three-

dimensional portrayal of the phase plane to enable inclusion of time in the phase plane. A

spectrum of optimal input currents was also computed for both stable and unstable spiral

dynamics.

4.2.3 saddle-node

Saddle-node bifurcations occur when two fixed points, one stable and one unstable,

converge and annihilate each other [1, p. 12]. When a saddle-node bifurcation occurs with

the bifurcation parameter varied in the opposite direction, two fixed points, one stable and

one unstable, appear and diverge away from each other. Thus, saddle-node bifurcations are

responsible for creation and destruction of system fixed points [6, p. 45].

Since the stable fixed point involved in the saddle-node bifurcation is classified as a node,
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with purely real eigenvalues, subthreshold oscillations do not occur [1, p. 14].

When referring to the saddle-node bifurcation type in the context of the four bifurcations

fundamental to neural behavior, the system is parameterized such that a third, unstable

fixed point exists inside of a limit cycle attractor [1, p. 13]. Since the limit cycle attractor

is coexistent with stable fixed point prior to the saddle-node bifurcation, neuron models

defined as a saddle-node in this context are bistable. This also means system trajectories

will transition from stable to repetitive spiking after the bifurcation.

As mentioned in Section 4.2.2, bistability is often demonstrated via hysteresis, but is

also brought out through appropriate selection of initial conditions. System behavior can

be altered between rest and repetitive spiking through application of an appropriately timed

transient pulse.

4.2.3.1 Fixed Point Location

Using equations (63) and (64) for the nullclines, and varying the injected stimulus current

I from −80µA/cm2 to 100µA/cm2 by increments of 10µA/cm2, a family of curves is

generated in Figure 60. Since the n-nullcline does not change it is represented by a single

sigmoidal line on the plot. Each injected current value I produces a different curve for the

v-nullcline.
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Figure 60: Saddle-node fixed point location using nullclines

Notice that the v-nullcline has a distinct local minimum. For values of injected current

where I ≤ 0µA/cm2 there are three intersections of the nullclines for each trace. At some

value of injected current between I = 0µA/cm2 and I = 10µA/cm2, the two fixed points

just below −50 mV coalesce. For v-nullclines where the injected current is greater than or

equal to 10µA/cm2 there is one intersection of the nullclines, corresponding to one fixed

point, for each injected current value.

Stability of the fixed point cannot be ascertained directly from the figure and requires

further analysis per Section 4.2.3.2. For cases where the fixed point is stable, the value of

the membrane voltage at the intersection of the nullclines is the resting membrane potential.

4.2.3.2 Graphical Fixed Point Classification

Using the approximate values for v and n from Section 4.2.3.1 as initial conditions, a

numerical solution for the system fixed point is computed for each injected current value

using fsolve. The values for the state variables are substituted into the Jacobian, allowing

computation of eigenvalues according to equations (66) through (70).

After computing eigenvalues for the linearized system for each injected current level the
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trace (τ) and determinant (∆) are computed according to equations (83) and (84). These

two values allow classification of each fixed point as shown in Figure 61. Three sets of points

are plotted on the bifurcation diagram, one for each fixed point. Each data point on the

diagram represents the classification of a given fixed point for a single injected current value.

Each point containing an asterisk indicates zero injected current.

Figure 61: Graphical classification of reduced-order Hodgkin-Huxley saddle-node system
fixed point

Since the fixed point classified as a saddle point coalesces with the fixed point classified

as a stable node, the traces for these fixed points does not exist for injected current values

above 0µA/cm2. For the range of injected current values shown, −80µA/cm2 to 0µA/cm2,

one fixed point is classified as a stable node and the second fixed point is classified as a

saddle point.

The third fixed point is classified as an unstable spiral for injected current values from

−80µA/cm2 to 40µA/cm2. A bifurcation of this fixed point does occur at higher injected

current values, but will not be considered as a part of the neural dynamics.

Information regarding stability of the fixed point can be added to each intersection of

the nullclines as shown in Figure 62. Filled dots indicate a stable fixed point and open dots

indicate an unstable fixed point for each injected current level.
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Figure 62: Saddle-node fixed point location and stability with nullclines

4.2.3.3 Bifurcations

Figure 61 reveals that for injected current levels between −80µA/cm2 and 0µA/cm2,

classification of the three system fixed points is robust to the major regions of the classifica-

tion diagram, with one saddle point, one stable node, and one unstable spiral. Additionally,

the fixed point classified as an unstable spiral does not undergo a bifurcation for injected

currents up to 40µA/cm2.

As described in Chapter 3, when considering the major regions of Figure 61 no additional

analysis is required to verify the linearized system is topologically equivalent to the original

nonlinear system. Furthermore, if all eigenvalues are non-zero, with non-zero real parts, the

linearized system is topologically equivalent to the nonlinear system.

For consistency with analysis of other bifurcation types it is desirable to determine two

positive injected current values, one below and one above the bifurcation of interest. Since

the bifurcation of interest occurs between 0µA/cm2 and 10µA/cm2, further investigation

is required to determine a positive injected current value below the bifurcation current. As

shown in Figure 63, an injected current value of 3µA/cm2 satisfies this criteria.
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Figure 63: Saddle-node nullcline plot, I = 3µA/cm2

Injected current values of 3µA/cm2 and 10µA/cm2 have been selected to demonstrate

system dynamics for injected current levels above and below the saddle-node bifurcation.

4.2.3.3.1 saddle-node Dynamics in the Stable Node Region

Injected currents in the form of step inputs are used to investigate qualitatively different

system dynamics. In each case, the length of the simulation is 40 ms. The neuron model

is initially quiescent at the resting membrane potential, followed by application of a step

input at 10 ms.

Initial conditions for membrane voltage (v) and gating variable (n) were chosen by

running a simulation with zero injected current, allowing any transients in the state variables

to decay. This ensures a quiescent response prior to application of the step input. With

the neuron model parameterized for the saddle-node bifurcation type, initial conditions are

v0 ≈ −65.9529 mV and n0 ≈ 0.00027.
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Figure 64: Saddle-node stable node time domain plot

Figure 65: Saddle-node stable node phase plane

Figures 64 and 65 exhibit a change from one resting potential to another without oscil-

lation, consistent with expected behavior of a stable node. Figure 66 includes time as the

vertical axis of the phase plane.
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Figure 66: Saddle-node stable node phase plane plus time

The first 10 ms of the simulation are a purely vertical line, depicted in Figure 65 as a

single point in the phase plane. The state of the model transitions from one stable point

to another by an exponential, without overshoot in both the time and phase plane, which

agrees with the time domain plot of Figure 64 and the expected behavior for a stable node.

4.2.3.3.2 saddle-node Dynamics in the Unstable Spiral Region

For injected current values at or above I ≈ 10µA/cm2, it is expected that the unstable

saddle point and stable node coalesce, at which point the system trajectory approaches

a stable limit cycle attractor [1]. A defining feature of the saddle-node dynamics is the

coexistence of resting and repetitively spiking states.
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Figure 67: Saddle-node unstable spiral time domain plot

Figure 68: Saddle-node unstable spiral phase plane

Behavior depicted in Figures 67 and 68 is characteristic of a stable limit cycle attractor.

Rather than the exponential transition from one stable resting potential to another as shown

in Figures 64 and 65 application of an injected current of 10µA/cm2 causes annihilation

of the stable fixed point, resulting in the system trajectory transitioning to the limit cycle
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attractor.

Figure 69: Saddle-node unstable spiral phase plane plus time

Although qualitatively similar to other bifurcation types, notice the higher spike fre-

quency of the saddle-node dynamics.

4.2.3.4 Optimal Control

In Sections 4.2.3.2 and 4.2.3.3, it was demonstrated that qualitatively different system

behaviors could be induced when injected currents between −80µA/cm2 and 3µA/cm2,

and at or above 10µA/cm2 are applied to the model neuron. For current values in the

range −80µA/cm2 to 3µA/cm2 the system behavior was consistent with classification as a

stable node. For values of injected current at or above 10µA/cm2 a bifurcation of the stable

system fixed point occurs and behavior is consistent with classification as an unstable spiral,

with characteristic limit cycle attractor, as expected for the saddle-node bifurcation. In this

section, optimal input stimuli will be computed for each category of system behavior.

Due to the high spike frequency, the simulation time has been reduced from 40 ms to

20 ms to better depict inter-spike oscillations, or ‘characteristic dips’, present in the optimal

injected current signal.
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4.2.3.4.1 Optimal Control of saddle-node Dynamics in the Stable Node Region

Application of injected current I = 3µA/cm2 results in system behavior identified as a

stable node. Using the membrane voltage generated by a I = 3µA/cm2 step input as the

reference voltage, the optimal input stimuli is calculated for three different sets of values for

P , Q, and R.

The first plot, with P = Q = 1 and R = 10, represents an emphasis on reduction of

input stimuli energy at the expense of membrane voltage tracking accuracy. The third plot,

with P = Q = 1000 and R = 1, represents the opposite end of the spectrum, emphasizing

tracking accuracy. The remaining plot, with P = Q = 100 and R = 1, provides a balance

of these two competing objectives.

124



(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 70: Optimal control of saddle-node stable node
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Figures 70a through 70c demonstrate a typical spectrum for application of the optimal

control methodology, with an emphasis on reduced energy of input stimuli with relatively

large values or R and improved tracking accuracy for large values of P and Q. Weighting

terms of the objective function can be adjusted depending on the control objective.

4.2.3.4.2 Optimal Control of saddle-node Dynamics in the Unstable Spiral Re-

gion

Application of injected current I = 10µA/cm2 results in system behavior identified as

an unstable spiral. The saddle point and stable node fixed points coalesce and the system

trajectory approaches a coexistent limit cycle attractor.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 71: Optimal control of saddle-node unstable spiral
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Optimal inputs produce the expected range of behavior from energy reduction to tracking

accuracy. As seen in Figure 71b, when simulations contain repetitive spiking, “characteristic

dips” in the optimal input current are often present as emphasis on tracking is reduced [2, 3].

The amplitude of these dips typically decreases, with the optimal current approaching the

originally applied current, as emphasis on tracking is further increased.

4.2.3.5 Discussion of saddle-node Bifurcation Dynamics

This section utilized a reduced-order Hodgkin-Huxley model with parameters selected

for demonstration of saddle-node bifurcation dynamics [1]. Nonlinear analysis enables cat-

egorization of system fixed point behavior for a range of injected current values. It was

determined that two classes of behavior, consistent with the saddle-node bifurcation type,

could be elicited for ranges of injected input current between −80µA/cm2 and 3µA/cm2

and at or above 10µA/cm2.

Using injected input currents of I = 3µA/cm2 and I = 10µA/cm2, stable node and

unstable spiral system dynamics were highlighted. The saddle-node bifurcation occurs as a

transition between these qualitatively different system behaviors.

Results were presented using time domain and phase plane plots, along with a three-

dimensional portrayal of the phase plane to enable inclusion of time in the phase plane. A

spectrum of optimal input currents were also computed for both stable node and unstable

spiral dynamics.

4.2.4 saddle-node on Invariant Circle

The saddle-node on invariant circle bifurcation type exhibits the same bifurcation char-

acteristics as the saddle-node of Section 4.2.3. Two fixed points, one stable and one unstable,

converge and annihilate each other [1, p. 12]. The main difference is that in this case, the

two fixed points exist on an invariant circle, which becomes a limit cycle attractor. This is

different from the system dynamics of Section 4.2.3 where the limit cycle coexists with the

stable fixed point and can thus exhibit bistable behavior.

Since the stable fixed point involved in the saddle-node bifurcation is classified as a node,
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with purely real eigenvalues, subthreshold oscillations do not occur [1, p. 14].

saddle-node on invariant circle system dynamics, in the context of neural behavior, have

a third, unstable fixed point inside the invariant circle [1, p. 13]. Since the stable fixed point

exists on the invariant circle, this bifurcation type does not exhibit bistability.

4.2.4.1 Fixed Point Location

Using equations (63) and (64) for the nullclines, and varying the injected stimulus current

I from −80µA/cm2 to 100µA/cm2 by increments of 10µA/cm2, a family of curves is

generated in Figure 72. Since the n-nullcline does not change it is represented by a single

sigmoidal line on the plot. Each injected current value I produces a different curve for the

v-nullcline.

Figure 72: Saddle-node on invariant circle fixed point location using nullclines

Notice that the v-nullcline has a distinct local minimum. For values of injected current

where I ≤ 0µA/cm2, there are three intersections of the nullclines for each trace. At some

value of injected current between I = 0µA/cm2 and I = 10µA/cm2, the two fixed points

just below −50 mV coalesce. For v-nullclines where the injected current is greater than or

equal to 10µA/cm2, there is one intersection of the nullclines, corresponding to one fixed
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point, for each injected current value.

Stability of the fixed point cannot be ascertained directly from the figure and requires

further analysis per Section 4.2.4.2. For cases where the fixed point is stable, the value of

the membrane voltage at the intersection of the nullclines is the resting membrane potential.

4.2.4.2 Graphical Fixed Point Classification

Using the approximate values for v and n from Section 4.2.4.1 as initial conditions, a

numerical solution for the system fixed point is computed for each injected current value

using fsolve. The values for the state variables are substituted into the Jacobian, allowing

computation of eigenvalues according to equations (66) through (70).

After computing eigenvalues for the linearized system for each injected current level, the

trace (τ) and determinant (∆) are computed according to equations (83) and (84). These

two values allow classification of each fixed point as shown in Figure 73. Three sets of points

are plotted on the bifurcation diagram, one for each fixed point. Each data point on the

diagram represents the classification of a given fixed point for a single injected current value.

Each point containing an asterisk indicates zero injected current.

Figure 73: Graphical classification of reduced-order Hodgkin-Huxley saddle-node on invari-
ant circle system fixed point
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Since the fixed point classified as a saddle point coalesces with the fixed point classified

as a stable node, the traces for these fixed points does not exist for injected current values

above 0µA/cm2. For the range of injected current values shown, −80µA/cm2 to 0µA/cm2,

one fixed point is classified as a stable node and the second fixed point is classified as a

saddle point.

The third fixed point is classified as an unstable node for injected current values from

−80µA/cm2 to −40µA/cm2. A bifurcation of this fixed point occurs between −40µA/cm2

and −50µA/cm2. For all injected current values considered where I ≥ −50µA/cm2, the

fixed point is classified as an unstable spiral. Since all injected current values chosen for

analysis are greater than −50µA/cm2, this bifurcation will not be considered as a part of

the neural dynamics.

Information regarding stability of the fixed point can be added to each intersection of

the nullclines as shown in Figure 74. Filled dots indicate a stable fixed point and open dots

indicate an unstable fixed point for each injected current level.

Figure 74: Saddle-node on invariant circle fixed point location and stability with nullclines
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4.2.4.3 Bifurcations

Figure 73 reveals that for injected current levels between −80µA/cm2 and 0µA/cm2,

classification of saddle point and stable node fixed points is robust to the major regions of

the classification diagram. Additionally, the fixed point classified as an unstable spiral does

not undergo a bifurcation for injected currents above −50µA/cm2.

As described in Chapter 3, when considering the major regions of Figure 73, no additional

analysis is required to verify the linearized system is topologically equivalent to the original

nonlinear system. Furthermore, if all eigenvalues are non-zero, with non-zero real parts, the

linearized system is topologically equivalent to the nonlinear system.

For consistency with analysis of other bifurcation types, it is desirable to determine two

positive injected current values, one below and one above the bifurcation of interest. Since

the bifurcation of interest occurs between 0µA/cm2 and 10µA/cm2, further investigation

is required to determine a positive injected current value below the bifurcation current. As

shown in Figure 75, an injected current value of 3µA/cm2 satisfies this criteria.

Figure 75: Saddle-node on invariant circle nullclines plot, I = 3µA/cm2

Injected current values of 3µA/cm2 and 10µA/cm2 have been selected to demonstrate

system dynamics for injected current levels above and below the saddle-node bifurcation.
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4.2.4.3.1 saddle-node on Invariant Circle Dynamics in the Stable Node Region

Injected currents in the form of step inputs are used to investigate qualitatively different

system dynamics. In each case, the length of the simulation is 40 ms. The neuron model

is initially quiescent at the resting membrane potential, followed by application of a step

input at 10 ms.

Initial conditions for membrane voltage (v) and gating variable (n) were chosen by

running a simulation with zero injected current, allowing any transients in the state variables

to decay. This ensures a quiescent response prior to application of the step input. With the

neuron model parameterized for the saddle-node on invariant circle bifurcation type, initial

conditions are v0 ≈ −65.9529 mV and n0 ≈ 0.00027.

Figure 76: Saddle-node on invariant circle time domain plot
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Figure 77: Saddle-node on invariant circle phase plane

Figures 76 and 77 exhibit a change from one resting potential to another without oscil-

lation, consistent with expected behavior of a stable node. Figure 78 includes time as the

vertical axis of the phase plane.

Figure 78: Saddle-node on invariant circle phase plane plus time

The first 10 ms of the simulation are a purely vertical line, depicted in Figure 77 as a
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single point in the phase plane. The state of the model transitions from one stable point

to another by an exponential, without overshoot in both the time and phase plane, which

agrees with the time domain plot of Figure 76 and the expected behavior for a stable node.

4.2.4.3.2 saddle-node on Invariant Circle Dynamics in the Unstable Spiral Re-

gion

For injected current values at or above I ≈ 10µA/cm2, it is expected that the unstable

saddle point and stable node coalesce, at which point the invariant circle becomes a stable

limit cycle attractor [1].

Figure 79: Saddle-node on invariant circle time domain plot
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Figure 80: Saddle-node on invariant circle phase plane

Behavior depicted in Figures 79 and 80 is characteristic of a stable limit cycle attractor.

Rather than the exponential transition from one stable resting potential to another as shown

in Figures 76 and 77, application of an injected current of 10µA/cm2 causes annihilation

of the stable fixed point, resulting in repetitively spiking behavior after the invariant circle

becomes a limit cycle attractor.
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Figure 81: Saddle-node on invariant circle phase plane plus time

4.2.4.4 Optimal Control

In Sections 4.2.4.2 and 4.2.4.3, it was demonstrated that qualitatively different system

behaviors could be induced when injected currents between −50µA/cm2 and 3µA/cm2

and at or above 10µA/cm2 are applied to the model neuron. For current values in the

range −50µA/cm2 to 3µA/cm2, the system behavior was consistent with classification as

a stable node. For values of injected current at or above 10µA/cm2, a bifurcation of the

stable system fixed point occurs and behavior is consistent with classification as an unstable

spiral, with characteristic limit cycle attractor, as expected for the saddle-node on invariant

circle bifurcation. In this section, optimal input stimuli will be computed for each category

of system behavior.

4.2.4.4.1 Optimal Control of saddle-node on Invariant Circle Dynamics in the

Stable Node Region

Application of injected current I = 3µA/cm2 results in system behavior identified as a

stable node. Using the membrane voltage generated by a I = 3µA/cm2 step input as the

reference voltage, the optimal input stimuli is calculated for three different sets of values for
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P , Q, and R.

The first plot, with P = Q = 1, and R = 10, represents an emphasis on reduction of

input stimuli energy at the expense of membrane voltage tracking accuracy. The third plot,

with P = Q = 1000, and R = 1, represents the opposite end of the spectrum, emphasizing

tracking accuracy. The remaining plot, with P = Q = 100 and R = 1, provides a balance

of these two competing objectives.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 82: Optimal control of saddle-node on invariant circle stable node
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Figures 82a through 82c demonstrate a typical spectrum for application of the optimal

control methodology, with an emphasis on reduced energy of input stimuli with relatively

large values or R and improved tracking accuracy for large values of P and Q. Weighting

terms of the objective function can be adjusted depending on the control objective.

4.2.4.4.2 Optimal Control of saddle-node on Invariant Circle Dynamics in the

Unstable Spiral Region

Application of injected current I = 20µA/cm2, results in system behavior identified as

an unstable spiral. The saddle point and stable node fixed points coalesce and the invariant

circle becomes a limit cycle attractor.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 83: Optimal control of saddle-node on invariant circle unstable spiral
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Optimal inputs produce the expected range of behavior from energy reduction to tracking

accuracy. As seen in Figure 83b, when simulations contain repetitive spiking, “characteristic

dips” in the optimal input current are often present as emphasis on tracking is reduced [2, 3].

The amplitude of these dips typically decreases, with the optimal current approaching the

originally applied current, as emphasis on tracking is further increased.

4.2.4.5 Discussion of saddle-node on Invariant Circle Bifurcation Dynamics

This section utilized a reduced-order Hodgkin-Huxley model with parameters selected for

demonstration of saddle-node on invariant circle bifurcation dynamics [1, p. 17]. Nonlinear

analysis enables categorization of system fixed point behavior for a range of injected current

values. It was determined that two classes of behavior, consistent with the saddle-node

on invariant circle bifurcation type, could be elicited for ranges of injected input current

between −50µA/cm2 and 3µA/cm2 and at or above 10µA/cm2.

Using injected input currents of I = 3µA/cm2 and I = 20µA/cm2, stable node and

unstable spiral system dynamics were highlighted. The saddle-node on invariant circle

bifurcation occurs as a transition between these qualitatively different system behaviors.

Results were presented using time domain and phase plane plots, along with a three-

dimensional portrayal of the phase plane to enable inclusion of time in the phase plane. A

spectrum of optimal input currents were also computed for both stable node and unstable

spiral dynamics.

142



5 Classical Hodgkin-Huxley Model

This chapter applies the nonlinear analysis and optimal control techniques depicted in

Chapter 3, Figure 12 to the classical Hodgkin-Huxley neuron model defined in Section 2.2.

Since it is a fourth-order model, the function f(v) will be used to locate system fixed

points and eigenvalues will be used to classify stability. This is in contrast to the second-

order model of Chapter 4, where nullclines were used to locate the fixed point and the

graphical classifier was used to describe fixed point stability and localized behavior.

Section 5.1 defines the neuron model, provides derivation of f(v), and defines the Hamil-

tonian with associated state and co-state equations. Section 5.2 demonstrates nonlinear

analysis and optimal control of the classical Hodgkin-Huxley model, along with case studies

that highlight dynamics specific to the model.

5.1 Model Definition

Following Chapter 3, Figure 12, this section corresponds to the first row of the figure,

definition of the conductance-based neuron model. This includes definition of the classi-

cal Hodgkin-Huxley model and all symbolic equations required for nonlinear analysis and

optimal control techniques.

5.1.1 Classical Hodgkin-Huxley Model Definition

The classical Hodgkin-Huxley model has the same ionic currents as the reduced-order

model of Chapter 4. Like the reduced-order model, the classical Hodgkin-Huxley model

consists of persistent potassium current, transient sodium current, ohmic leak current, in-

jected stimulus current, and cellular membrane capacitance. The difference between the

reduced-order and classical model is the means by which sodium channel activation is mod-

eled. In the classical model, two state variables are dedicated to activation and inactivation

of sodium channel conductance. The reduced model approximates this behavior with an

instantaneous voltage dependent activation function m∞(v).
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Presented as Figure 5 in Chapter 2, an equivalent circuit for the neuron model is repro-

duced here for completeness.

Figure 84: Equivalent circuit of the classical Hodgkin-Huxley neuron model

Differential equations for the classical Hodgkin-Huxley model are

CV̇ = IStim − gKn4(Vm − EK)− gNam
3h(Vm − ENa)− gL(Vm − EL), (86)

ṅ = αn(V )(1− n)− βn(V )n, (87)

ṁ = αm(V )(1−m)− βm(V )m, and (88)

ḣ = αh(V )(1− h)− βh(V )h, (89)

with ancillary functions defined in Section 2.2.2 [1, p. 37][38].

Modulation of potassium and sodium conductance values is achieved using gating vari-

ables n, m, and h. Parameters were chosen to reproduce the classical Hodgkin-Huxley

model [1, p. 37]. Parameters chosen in [4] produce qualitatively similar behavior over the

region of interest. Parameter values are provided in Table 5.

The injected current stimulus I is varied to demonstrate bifurcations in system dynamics.
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Table 5: Classical Hodgkin-Huxley model parameters [1, p. 37]

5.1.2 Derivation of f(v)

The form of equations (86) through (89) make it possible to derive a single function,

f(v), the roots of which are system fixed points. The function f(v) is obtained by setting

equations (87) through (89) equal to 0 and solving for the associated gating variable. The

result is substituted into equation (86) yielding

f(v) =
1

C
(I − gKn∞(v)4(V − EK)− gNam∞(v)3h∞(v)(V − ENa)− gL(V − EL)) (90)

with n∞(v), m∞(v), and h∞(v) representing steady state values for each gating variable

as described by equations (32). The function f(v) will be plotted for each injected current

value, with the roots of the function indicating the location of the system fixed point.

Once the membrane voltage of the system fixed point is found using f(v) the value for v

can be back substituted into n∞(v), m∞(v), and h∞(v). This yields the value for all state

variables at the system fixed point.

5.1.3 System Linearization

Once the number and location of system fixed points has been determined, they can

be classified according to their localized behavior. Classification of system fixed points

proceeds as described in Section 3.1.2, beginning with linearization of the phase plane using
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the system Jacobian [Str].

For the classical Hodgkin-Huxley model the Jacobian is



V̇

ṅ

ṁ

ḣ


=



∂f1
∂V

∂f1
∂n

∂f1
∂m

∂f1
∂h

∂f2
∂V

∂f2
∂n

∂f2
∂m

∂f2
∂h

∂f3
∂V

∂f3
∂n

∂f3
∂m

∂f3
∂h

∂f4
∂V

∂f4
∂n

∂f4
∂m

∂f4
∂h





V

n

m

h


(91)

where for V̇ = f1(), ṅ = f2(), ṁ = f3(), and ḣ = f4().

As described in Section 3.1.2.2, classification of behavior in the immediate vicinity of

system fixed points is described based on the location of eigenvalues of the Jacobian.

Values from Table 5 for the model parameters, the injected current value, and the lo-

cation of the system fixed point are substituted into the Jacobian, allowing computation

of eigenvalues. The eigenvalues for each injected current value are plotted on the complex

plane to predict localized system behavior.

5.1.4 Objective Function Definition

The objective function, previously published in [2], is

J [i(t)] =
P

2
(v(T )− r(T ))2 +

Q

2

∫ T

0

(v(t)− r(t))2dt+
R

2

∫ T

0

(i(t))2dt. (92)

A user prescribed balance between tracking error and minimization of ‘energy’ is used in

the computation of the optimal input current i∗(t). Making P and Q large with respect to R

penalizes differences between the chosen reference signal r(t) and the computed membrane

voltage v(t), resulting in a solution which emphasizes tracking accuracy. Conversely, a large

value for R, in comparison to P and Q, emphasizes a solution which seeks to minimize the

‘energy’ content of i∗(t), likely at the expense of reduced agreement between reference and

membrane potential signals.
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The Hamilton associated with equation (92) is

H(v, n,m, h, λ1, λ2, λ3, λ4) =
Q

2
(v(t)− r(t))2 +

R

2
(i(t))2

+
λ1(t)

C
(i(t)− gKn(t)4(v(t)− EK)− gNam(t)3h(t)(v(t)− ENa)− gL(v(t)− EL))

+
λ2(t)

τn
(n∞(v)− n(t)) +

λ3(t)

τm
(m∞(v)−m(t))

+
λ4(t)

τh
(h∞(v)− h(t)) (93)

where λ1, λ2, λ3 and λ4 are the co-state variables. Following [46, p. 134], the “Continuous

Nonlinear Optimal Controller with Function of Final State Fixed” yields

v̇ =
∂H

∂λ1

=
1

C
[i(t)− gKn(t)4(v(t)− EK)− gNam(t)3h(t)(v(t)− ENa)− gL(v(t)− EL)]

(94)

ṅ =
∂H

∂λ2
=

1

τn
[n∞(v)− n(t)] (95)

ṁ =
∂H

∂λ3
=

1

τm
[m∞(v)−m(t)] (96)

ḣ =
∂H

∂λ4
=

1

τh
[h∞(v)− h(t)] (97)

λ̇1 = −∂H
∂v

= −Q(v(t)− r(t))

+
λ1(t)

C
(gKn(v)4 + gNam(v)3h(v) + gL)

− λ2(t)(
∂αn(v)

∂v
(1− n)− ∂βn(v)

∂v
(n))

− λ3(t)(
∂αm(v)

∂v
(1−m)− ∂βm(v)

∂v
(m))

− λ4(t)(
∂αh(v)

∂v
(1− h)− ∂βh(v)

∂v
(h))

(98)
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λ̇2 = −∂H
∂n

=
λ1(t)

C
(4gKn(v)3)(v(t)− EK) + λ2(t)(αn(v) + βn(v)) (99)

λ̇3 = −∂H
∂m

=
λ1(t)

C
(3gNam(v)2h(v))(v(t)− ENa) + λ3(t)(αm(v) + βm(v)) (100)

λ̇4 = −∂H
∂h

=
λ1(t)

C
(3gNam(v)3)(v(t)− ENa) + λ4(t)(αh(v) + βh(v)) (101)

with boundary conditions

v(0) = v0 (102)

n(0) = n0 (103)

m(0) = m0 (104)

h(0) = h0 (105)

λ1(T ) = P (v(T )− r(T )) (106)

λ2(T ) = 0 (107)

λ3(T ) = 0 (108)

λ4(T ) = 0 (109)

The input stimulus current i(t) can be removed by substitution using the stationarity con-

dition,

∂H

∂i
= Ri(t) +

λ1(t)

C
= 0, (110)

and solving for i(t) yields

i(t) = − 1

RC
λ1(t). (111)

Typically a numerical solution to the two-point boundary value problem is computed

using the MATLAB R©routine bvp4c, yielding i∗(t) for each choice of injected current stimulus

and objective function constants P , Q, and R.
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5.2 Nonlinear Analysis and Optimal Control

Sections 5.2.1 through 5.2.4 examine system dynamics using nonlinear analysis and op-

timal control techniques presented in Chapter 3. Since the classical Hodgkin-Huxley model

is a fourth-order system, techniques presented for higher-order models will be used. Specif-

ically, fixed point locations will be computed using a derived function f(v) and localized

behavior will be classified according to the eigenvalues of the linearized system in the im-

mediate vicinity of system fixed points.

5.2.1 Fixed Point Location Using f(v)

Using equation (90) for f(v), the injected stimulus current I is varied from 2µA/cm2

to 15µA/cm2. Plotting f(v) for each value of I generates the family of curves plotted in

Figure 85. A fixed point of the system is indicated by each location where f(v) = 0.

Since each curve for f(v) has a single root, the system has a single fixed point for

all considered values of I. Furthermore, since f(v) is monotonic and the injected current

translates the curve vertically, it is observable from Figure 85 that the system will have a

single fixed point for all injected current values.

An approximate value for the membrane voltage of the system fixed point is directly

observable in Figure 85, and can be computed using fsolve to find the root of f(v) for

each injected current value. The value computed for v is then back-substituted into n∞(v),

m∞(v), and h∞(v) to find the values of the remaining state variables at the system fixed

point.
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Figure 85: Classical Hodgkin-Huxley fixed point location using derived function f(v)

Stability of the fixed point cannot be ascertained directly from the figure and requires

further analysis per Section 5.2.2.

5.2.2 Fixed Point Classification Using Eigenvalues

Within this section, fixed points will be classified according to eigenvalues of the lin-

earized system. Qualitative information from Section 5.2.1 greatly informs the process of

fixed point classification as it provides insight as to the number and approximate location

of system fixed points for any given injected current level.

Using fsolve, the numerical solution for the location of the fixed point is computed. The

values for the state variables, in this case v, n, m, and h, are substituted into the Jacobian,

allowing computation of eigenvalues according to equation (91).

When classifying system fixed points via linearization, it is necessary to verify the lin-
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ear system, with neglected higher-order terms, faithfully represents the original nonlinear

system. See Section 3.1.2.1 for further details.

Analysis of the classical Hodgkin-Huxley model proceeds with calculation of eigenvalues

for the linearized system for each injected current value used to generate the family of curves

in Section 5.2.1.

Each eigenvalue is plotted directly on the complex plane for each injected current value

from 2µA/cm2 to 15µA/cm2. The chosen injected current values are I = 2, 3, 5, 7, and

15µA/cm2. The data point indicated with an asterisk denotes an injected current of

2µA/cm2.

Figure 86: Classification of classical Hodgkin-Huxley model fixed points using eigenvalues

Figure 86 shows that for all selected injected current values, there are two eigenvalues

on the real axis and a pair of complex conjugate eigenvalues. For some injected current
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value between 5µA/cm2 and 7µA/cm2, the system fixed point becomes unstable based on

movement into the right hand plane by the complex conjugate pair of eigenvalues, indicating

a bifurcation of the system fixed point.

Information gained about the stability of the fixed point for each injected current value

can now be incorporated into Figure 85 from Section 5.2.1. Fixed point stability will be

indicated on the plot of f(v) by filled and open dots where the fixed point is stable and

unstable, respectively.

Figure 87: Classical Hodgkin-Huxley fixed point location and stability with derived function
f(v)

5.2.3 Bifurcations

Information from Section 5.2.2 provides insight into the injected current levels for which

qualitatively different system behaviors occur, especially related to the number and stability
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of system fixed points. However, bifurcation dynamics can exist, especially in higher-order

nonlinear systems, which are not related to changes in the stability and number of system

fixed points.

The classical Hodgkin-Huxley model is known to exhibit the inactive, single spike, and

repetitive spiking behavior depending on the applied input stimulus [52]. When model

parameters are set according to Table 6 it was found in [52, 4] that the transition to repetitive

spiking occurs when I ≈ 6.44µA/cm2 and the system fixed point loses stability when the

stimulus current is further increased.

Table 6: Classical Hodgkin-Huxley model parameters [4]

The bifurcation dynamics published in [4] have been qualitatively verified with the clas-

sical Hodgkin-Huxley parameters shown in Table 5, and in this section, system dynamics

will be illustrated using time domain plots for each injected current level.

Injected currents in the form of step inputs are used to investigate qualitatively different

system dynamics. In each case the length of the simulation is 80 ms. The neuron model is

initially quiescent at the resting membrane potential, followed by application of a step input

at 15 ms.

Initial conditions for membrane voltage, v and gating variables n, m, and h were chosen

by running a simulation with zero injected current, allowing any transients in the state

variables to decay. This ensures a quiescent response prior to application of the step input.

With the neuron model parameterized according to 5 initial conditions are v0 ≈ 0.04626 mV,
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n0 ≈ 0.3184, m0 ≈ 0.0532, and h0 ≈ 0.5944.

Injected current values of I = 2, 3, 5, 7, and 15µA/cm2 were chosen to exemplify the

qualitatively different behaviors of the model neuron.

5.2.3.1 Dynamics in the Inactive Region

When a step current of I = 2µA/cm2 is applied, the model neuron remains inactive,

exhibiting subthreshold oscillations.

Figure 88: Classical Hodgkin-Huxley model, inactive response, I = 2µA/cm2

The time domain plot, showing both injected current and membrane voltage response,

is a plot representative of what could be measured experimentally. Additional traces can be

added to this plot, including current contributions for each ion accounted for by the model,

any gating variables, and time dependent ionic conductance values. Some of these traces
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are accessible experimentally, which can aid in verification of modeled neuron dynamics.

5.2.3.2 Dynamics in the Single Spike Region

Application of an injected current of I = 3µA/cm2 results in a single action potential.

Increasing the injected current to I = 5µA/cm2 does not qualitatively change the response

of the model neuron, but subthreshold oscillations following the action potential become

pronounced.

Figure 89: Classical Hodgkin-Huxley model, single spike response, I = 3µA/cm2
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Figure 90: Classical Hodgkin-Huxley model, single spike response, I = 5µA/cm2

Defining the neural response in terms of all or none spikes with a unique threshold

has been largely replaced by the concept of action potentials as a dynamical response [1,

52]. However, when the boundary between qualitatively different behaviors is sufficiently

narrow, as in the classical Hodgkin-Huxley model, the concept of threshold remains useful

for practical discussion.

5.2.3.3 Dynamics in the Repetitive Spiking Region

Application of an injected current of I = 7µA/cm2 results in repetitive spiking. Raising

the injected current further to I = 10µA/cm2 and I = 15µA/cm2 results in an increased

spike frequency. Referring back to Figure 87, the system fixed point loses stability in the

injected current range of 6µA/cm2 < I < 10µA/cm2, which qualitatively agrees with the

analysis of [4].
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Figure 91: Classical Hodgkin-Huxley model, repetitive spiking response, I = 7µA/cm2
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Figure 92: Classical Hodgkin-Huxley model, repetitive spiking response, I = 10µA/cm2
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Figure 93: Classical Hodgkin-Huxley model, repetitive spiking response, I = 15µA/cm2

The threshold between “single spike” and “repetitive spiking” regions, much like the

concept of unique threshold for a single action potential, is not an all or none transition.

Carefully chosen injected current values can cause the neuron model to exhibit a finite

number of action potentials. An injected current of I = 5.15µA/cm2, for example, causes

the neuron model to elicit two action potentials as shown in Figure 94.
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Figure 94: Classical Hodgkin-Huxley model, multiple spike response, I = 5.15µA/cm2

The plotted results verify qualitative behaviors published in [4] and predicted by the

locus of eigenvalues.

5.2.4 Optimal Control

In Sections 5.2.2 and 5.2.3, three qualitatively different system behaviors of the classical

Hodgkin-Huxley model were identified. These behaviors were the inactive, single spike, and

repetitive spiking regions. In this section, optimal input stimuli will be computed for each

category of system behavior.

5.2.4.1 Optimal Control in the Inactive Region

Application of a step current of I = 2µA/cm2 results in system behavior identified as the

inactive region [52]. No action potential is generated, and the membrane potential exhibits
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subthreshold oscillations. Using the membrane voltage generated by a I = 2µA/cm2 step

input as the reference voltage, the optimal input stimuli is calculated for three different sets

of values for P , Q, and R.

The first plot, with P = Q = 1, and R = 10, represents an emphasis on reduction of

input stimuli energy at the expense of membrane voltage tracking accuracy. The third plot,

with P = Q = 1000, and R = 1, represents the opposite end of the spectrum, emphasizing

tracking accuracy. The remaining plot, with P = Q = 100 and R = 1, provides a balance

of these two competing objectives.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 95: Optimal control in the inactive region
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As shown in Figure 95a, the exaggerated emphasis on reduction of input stimuli energy

results in a membrane voltage is hardly disturbed from rest. Figure 95b, with P = Q = 100,

and R = 1, displays quite accurate tracking of the reference membrane potential, but

the optimal input current closely resembles the original input current. Further increasing

emphasis on tracking in Figure 95c produces results which are not qualitatively different

than those of Figure 95b.

The same values of P , Q, and R will be used for computation of optimal input stimuli

for single spike and repetitive spiking regions of the classical Hodgkin-Huxley model.

5.2.4.2 Optimal Control in the Single Spike Region

Application of injected current I = 3µA/cm2 results in system behavior identified as

the single spike region [52]. Using the membrane voltage generated by a I = 3µA/cm2 step

input as the reference voltage, the optimal input stimuli is calculated for three different sets

of values for P , Q, and R.

The first plot, with P = Q = 1, and R = 10, represents an emphasis on reduction of

input stimuli energy at the expense of membrane voltage tracking accuracy. The third plot,

with P = Q = 1000, and R = 1, represents the opposite end of the spectrum, emphasizing

tracking accuracy. The remaining plot, with P = Q = 100 and R = 1, provides a balance

of these two competing objectives.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 96: Optimal control in the single spike region
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As shown in Figure 96a, even with an exaggerated emphasis on reduction of input stimuli

energy the membrane voltage still tracks the reference signal reasonably well. An action

potential is generated, with noticeable errors existing mostly in the oscillations after in

the range of 25 − 55 ms. Figure 96b, with P = Q = 100, and R = 1, displays quite

accurate tracking of the reference membrane potential over the entire simulation interval

with a marked characteristic dip during the course of the action potential. Further increasing

emphasis on tracking in Figure 96c produces further reduced error between the reference and

optimally generated membrane potential at the expense of greater input stimuli energy. A

dip in the input stimulus still exists during action potential generation, but in other regions

of the simulation interval the optimal input current i∗(t) closely resembles the original input

current i(t).

5.2.4.3 Optimal Control in the Repetitive Spiking Region

Application of injected current I = 7µA/cm2 results in system behavior identified as the

repetitive spiking region [52]. Using the membrane voltage generated by a I = 7µA/cm2

step input as the reference voltage, the optimal input stimuli is calculated for three different

sets of values for P , Q, and R. As described in [4] birth of a limit cycle attractor, enables

the neuron model to produce repetitive spiking behavior.
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(a) P = Q = 1, R = 10 (b) P = Q = 100, R = 1 (c) P = Q = 1000, R = 1

Figure 97: Optimal control in the repetitive spiking region
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For Figure 97a, notice that the first 20 ms of the optimal input current very closely

resembles the optimal input current computed for the single spike case in Figure 96a. For

the remainder of the simulation interval, a continued reduction in input stimulus amplitude

exists, but unlike Figure 96a, small appropriately timed pulses of current enable generation

of action potentials which track the reference membrane voltage. Noticeable error is present

between action potentials.

Characteristic dips in the optimal input current have been identified in previous publi-

cations [2, 3], and are prominent in both Figure 97b and 97c. The dips provide a marked

decrease in the injected current ‘energy’ which clearly correlates with the generation of each

action potential.

Looking at Figures 97a through 97c as a set reveals that tracking is quite accurate during

each action potential in all cases. Emphasizing reference membrane voltage tracking with

higher values of P and Q has the greatest impact on portions of the simulation interval

outside of the action potentials.

5.2.5 Case Studies

Within this section, two additional case studies are performed to highlight characteristics

of optimal input stimulus signals computed for the classical Hodgkin-Huxley model. The

first case study in Section 5.2.5.1 investigates differences in optimal input stimuli when

pulse width of the original reference signal is varied. The second case study in Section 5.2.5.2

investigates differences in the optimal input stimuli when amplitude of the original reference

signal is varied. In both case studies the stimulus signal generates a response from the single

spike region [4].

5.2.5.1 Case Study 1 - Pulse Width Study

Within this case study, two different input stimuli were selected of equal amplitude

and different pulse widths. Both signals elicit a single action potential from the classical

Hodgkin-Huxley model. Using the membrane voltage generated by each input stimulus as

the reference signal r(t), the optimal input stimuli i∗(t) is calculated for three different sets
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of values for P , Q, and R.

The first plot, with P = Q = 1, and R = 10, represents an emphasis on reduction of

input stimuli energy at the expense of membrane voltage tracking accuracy. The third plot,

with P = Q = 100, and R = 1, represents the opposite end of the spectrum, emphasizing

tracking accuracy. The remaining plot, with P = Q = 10 and R = 1, provides a balance of

these two competing objectives.
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(a) (b)

Figure 98: Optimal control pulse width case study, P = Q = 1, R = 10

(a) (b)

Figure 99: Optimal control pulse width case study, P = Q = 10, R = 1

(a) (b)

Figure 100: Optimal control pulse width case study, P = Q = 100, R = 1
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For Figures 98 through 100, all of the left-hand plots represent simulations with an input

stimulus of I = 3µA/cm2 and a stimulus duration of 3 ms. Right-hand plots in Figures 98

through 100 represent simulations with an input stimulus of I = 3µA/cm2 and a stimulus

duration of 10 ms. In all cases, a single action potential is generated. Qualitatively, the

plots are very similar with a small difference in the shape and timing of the action potential

between 15− 18 ms.

The most striking feature of the set of simulations is that optimal input stimuli are

nearly identical in Figure 98a and 98b and the optimal stimuli more closely represent the

original input stimulus in Figure 100. Figure 101 depicts the optimal input stimulus of for

the 10 ms pulse width input when P = Q = 1000 and R = 1.

Figure 101: Optimal control pulse width case study, P = Q = 1000, R = 1

When the values chosen for P , Q, and R emphasize reduction in input stimulus ampli-
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tude, the computed optimal input stimulus is capable of recreating the qualitative features

of the reference signal r(t), and the resulting i∗(t) is independent of the originally applied

pulse width. When the values chosen for P , Q, and R emphasize accurate tracking of the

reference signal r(t), the resulting optimal input stimulus is effected by small differences in

the reference signal, and the optimal input stimulus recaptures general characteristics of the

original input signal, along with a characteristic dip in i∗(t). Figures 102a through 102c fur-

ther highlight these characteristics by plotting the membrane voltage and optimal stimulus

current for each set of values P , Q, and R on a single plot.
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(a) P = Q = 1, R = 10 (b) P = Q = 10, R = 1 (c) P = Q = 100, R = 1

Figure 102: Optimal control pulse width input comparison
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5.2.5.2 Case Study 2 - Pulse Amplitude Study

Within this case study, two different input stimuli were selected of different amplitude

and equal pulse widths. Both signals elicit a single action potential from the classical

Hodgkin-Huxley model. Using the membrane voltage generated by each input stimulus as

the reference signal r(t), the optimal input stimuli i∗(t) is calculated for three different sets

of values for P , Q, and R.

The first plot, with P = Q = 1, and R = 10, represents an emphasis on reduction of

input stimuli energy at the expense of membrane voltage tracking accuracy. The third plot,

with P = Q = 100, and R = 1, represents the opposite end of the spectrum, emphasizing

tracking accuracy. The remaining plot, with P = Q = 10 and R = 1, provides a balance of

these two competing objectives.
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(a) (b)

Figure 103: Optimal control pulse amplitude case study, P = Q = 1, R = 10

(a) (b)

Figure 104: Optimal control pulse amplitude case study, P = Q = 10, R = 1

(a) (b)

Figure 105: Optimal control pulse amplitude case study, P = Q = 100, R = 1
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For Figures 103 through 105 all of the left-hand plots represent simulations with an input

stimulus of I = 3µA/cm2 and a stimulus duration of 3 ms. Right-hand plots in Figures 103

through 105 represent simulations with an input stimulus of I = 5µA/cm2 and a stimulus

duration of 3 ms. In all cases a single action potential is generated. Qualitatively the plots

are very similar with a small difference in the shape and timing of the action potential

between 15− 18 ms.

Optimal input stimuli are nearly identical in Figure 103a and 103b and the optimal

stimuli more closely represent the original input stimulus in Figure 105. These results

mirror those found in the pulse width case study in Section 5.2.5.1.

When the values chosen for P , Q, and R emphasize reduction in input stimulus ampli-

tude, the computed optimal input stimulus is capable of recreating the qualitative features

of the reference signal r(t), and the resulting i∗(t) is independent of the originally applied

pulse amplitude. When the values chosen for P , Q, and R emphasize accurate tracking of

the reference signal r(t), the resulting optimal input stimulus is effected by small differences

in the reference signal, namely timing of the action potential, and the optimal input stimulus

recaptures features of the original input signal.

Figures 106a through 106c further highlight these findings by plotting the membrane

voltage and optimal stimulus current for each set of values P, Q, and R on a single plot.
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(a) P = Q = 1, R = 10 (b) P = Q = 10, R = 1 (c) P = Q = 100, R = 1

Figure 106: Optimal control pulse amplitude input comparison
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The most noticeable difference between the plotted signals in Figures 106a through 106c

is the apparent time shift between the action potentials. The action potential computed as

a result of the larger amplitude input stimulus occurs approximately 2− 3 ms earlier in the

simulation.

In Figure 106a, the optimal input stimuli emphasizing reduced stimulus amplitude are

very similar, with a time shift between the two input stimuli. In Figures 106b and 106c the

time shift becomes less noticeable as the optimal stimuli more closely represent the originally

applied input stimuli.

In Section 5.2.5.1, as emphasis on reference signal tracking was increased, the optimal

input signal recovered the wider pulse width of the originally applied input signal. Here

as tracking accuracy is emphasized the optimal input signal more closely approximates the

original input stimulus amplitude.

5.2.6 Discussion of Results

This section utilized the classical Hodgkin-Huxley model with parameters selected ac-

cording to [1, p. 38]. The framework for nonlinear analysis and optimal control, presented

as Figure 12 in Chapter 3, was the basis for investigating system dynamics.

The selected range of input stimuli produced three qualitatively different behaviors:

inactive, single spike, and repetitive spiking [4]. A spectrum of optimal input stimuli were

computed, ranging from emphasis on input ‘energy’ reduction to tracking accuracy, for

injected current values representative of each qualitatively different behavior. Resulting

bifurcation dynamics qualitatively agree with previously published dynamics [4, 52]. Minor

quantitative differences are a result of different parameter values selected for EL and ENa

as shown in Tables 5 and 6.

Two case studies demonstrated the commonality and divergence of computed optimal in-

put stimuli when the originally applied input stimulus pulse width and amplitude are varied.

The first and most important commonality across all computed inputs is that as emphasis

on tracking increases the optimal input current i∗(t) more closely represents the original

input signal, with characteristic dips at the occurrence of action potentials. Conversely,
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Figures 102a and 106a demonstrate that as energy reduction is emphasized the computed

signals for i∗(t) become increasingly similar, demonstrating a lack of dependence on the

pulse width or amplitude of the originally applied input stimulus.

Another interesting characteristic of all simulations which emphasized energy reduction,

where P = Q = 1, and R = 10, is the presence of a negative pre-pulse dip in the optimal

input stimulus. The general form of the solution is reminiscent of input signals applied

to exhibit post inhibitory rebound spikes or negative pre-step values often applied experi-

mentally [1, p. 5, 52, 96, 243, 252]. This type of behavior was not witnessed in any of the

reduced-order solutions, regardless of bifurcation type or values chosen for P , Q, and R.

Also, for all simulations presented as the trade-off between reduction of injected current

energy and tracking accuracy is varied, an asymptotic characteristic indicates that through

appropriate choice of P , Q, and R values, a sweet spot will exist for an acceptable balance

of tracking accuracy and input stimulus energy reduction can be found.

In summary, the optimal input stimulus calculation technique has sufficient generality

to capture qualitative system dynamics with a marked reduction in input stimulus energy,

along with enough fidelity to recover nuanced changes in the reference signal when tracking

accuracy is emphasized. As an example, reference Figures 100b and 101 in the 22 − 25 ms

time frame. Although there is not a noticeable difference between the membrane potentials

in Figure 100a and 100b, further emphasis on tracking accuracy enables the wider input

pulse to be recovered.
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6 Experimental Feasibility

This chapter presents results which demonstrate experimental feasibility of the “Reduced

Energy Input Stimulus Discovery Method” [2, 3]. Single cell intracellular stimulation and

recordings using sharp microelectrodes enables injection of stimulus currents and measure-

ment of resulting neuron membrane voltages. Experiments were conducted in neurons from

the central nervous system (CNS) of the leech Hirudo verbana.

Prior to performing the experiment the reduced-order Hodgkin-Huxley type model of

Chapter 4 was configured based on a qualitative estimate of the bifurcation type. A smooth

input current pulse was applied in simulation to generate a single action potential and sets

of optimal input current stimuli were computed for the modeled neuron.

Using sharp microelectrode recording techniques a non-smooth input current stimulus

pulse was applied to neurons of the leech sufficient to generate an action potential. The

amplitude and width of the experimentally applied pulse were used to scale the set of time-

varying input stimuli which are optimal for the model neuron.

The scaled optimal input current stimuli was applied to the neuron. The resulting ex-

perimentally obtained membrane voltage waveform was compared to the original membrane

voltage which was obtained in response to the square wave input stimulus.

The results demonstrate experimental feasibility of the “Reduced Energy Input Stim-

ulus Discovery Method”, largely merging the theoretical approach published in [2, 3] and

electrophysiology techniques performed at the rig. Specifically, the feasibility of computing

and applying time-varying current stimuli which are optimal for the modeled neuron to

biological neurons is validated. The last step not completed here is to use experimentally

measured membrane voltages for the computation of optimal currents.

Some parameters of the experimental preparation are unique to each trial. Resting po-

tential of the cell, resistance of the microelectrode, and the presence of any leakage currents

resulting from sharp microelectrode recording are examples of variables not incorporated

into this feasibility study.

This chapter proceeds as follows: An overview of the setup required to perform the
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experiment is provided in Section 6.1, including rationale for selection of the experimental

preparation, electrophysiology rig configuration, and application of the optimal control tech-

nique. Section 6.2 provides results from the feasibility analysis, describing the experimental

method and results. Results of the experiment are discussed in Section 6.3.

6.1 Experiment Setup

This section describes preparatory work required prior to performing the feasibility study.

An overview is provided, including why the nervous system of the leech Hirudo verbana was

selected for this study, configuration of the electrophysiology rig, and computation of reduced

energy optimal input stimuli.

6.1.1 Experiment Preparation

The leech Hirudo verbana was the focus of this feasibility study for the following reasons:

1. leeches possess a well-documented, segmentally organized, and consistent nervous sys-

tem [53];

2. leeches exhibit complex behaviors; and

3. local expertise is available via the John Jellies laboratory [54, 7, 55].

180



Figure 107: Leech Hirudo verbana. Photograph: John Jellies. Image appears in [7] and is
c© 2014 The Company of Biologists Ltd.

The nervous system of the leech Hirudo verbana is organized in repeated segments, with

each segment containing a ganglion with approximately 200 neurons. Ganglia are the small

white spheres along the nerve cord at the center of the animal shown in Figure 108. Segments

9, 10, and 11 in the mid-body region of the leech will be utilized for this experiment.

Figure 109 depicts three mid-body segments and the ventral nerve cord after removal.
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Figure 108: Exposed nervous system of the leech. Photograph: John Jellies.

Figure 109: Three mid-body ganglia and ventral nerve cord. Photograph: John Jellies.

Once the dissection and removal of mid-body ganglia are complete, the dish containing

the experimental preparation is transferred to the microscope stand on the rig. P, N, and
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T-cells are primary mechanosensory neurons, which are identifiable within each ganglion. A

broad range of functionality is exhibited by P, N, and T-cells, ranging from low-threshold

phasic response in T-cells to high-threshold tonic behavior in N-cells.

Since the model parameters were set a priori based on known properties of P and N-

cells reliable identification of these cells in each preparation is essential. Future experiments

will require sufficient sample size to exhibit statistical significance of the results prior to

publication. The preparation is sufficiently robust to withstand experimentation on the rig

upwards of one hour. This allows time for any required computations in the simulation

environment. Repeatability and robustness of the leech preparation is an essential feature

for this feasibility study.

6.1.2 Electrophysiology Rig

An electrophysiology rig has been assembled to support experimental application of

the “Reduced Energy Input Stimulus Discovery Method” by Western Michigan University

faculty [2, 3]. The main functional requirements for the rig is the capability to apply

arbitrary injected stimulus currents and the ability to measure membrane voltage using

sharp microelectrodes.
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Figure 110: Electrophysiology rig utilized in the described experiments

Figure 110 shows the rig which is composed of the following components:

• Laptop computer running a custom graphical user interface built using LabVIEW R©software;

• National Instruments (NI) USB 6211 Multifunction data acquisition (DAQ) unit;

• Tektronix Dual Channel Oscilloscopes;

• World Precision Instruments (WPI) Duo 773 Electrometer;

• Audio Speakers;

• Anti-vibration table;

• Microscope with light source; and a

• Micromanipulator.
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A graphical user interface (GUI) provides (1) specification of current stimuli, and (2)

acquisition and visualization of neuron stimulus and response signals. The laptop computer

interfaces to the NI 6211 via standard universal serial bus (USB). The NI 6211 connects to

the oscilloscope and the WPI Duo 773 using coaxial cables. The WPI Duo 773 is connected

to audio speakers and the microelectrode head stage. The micromanipulator and microscope

are somewhat isolated from vibration using an anti-vibration table. The microscope and

light source enable visualizing the preparation. Figure 111 provides a block diagram of the

described connections.

Figure 111: Electrophysiology rig block diagram

Visualization and control of electrical signals is accomplished using a GUI on the laptop.

The GUI serves three purposes. It provides a convenient interface for the user while working

at the rig, reads data files produced by MATLAB R©simulations which are the time varying

input stimulus signals, and controls the NI USB 6211 which is the electrical interface to the

rig.

The NI USB 6211 is used to:

1. Generate a voltage signal proportional to the desired input current stimulus signal

with sensitivity 1 nA/20 mV;

2. Monitor the actual stimulation current delivered by the WPI Duo 773;

3. Monitor the neuron membrane voltage at a rate of 40kHz; and

4. Generate a trigger signal.
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Oscilloscopes provide additional monitoring of these key signals. The WPI Duo 773

interfaces with the neuron via the head stage and sharp microelectrode.

The membrane voltage measured by the WPI Duo 773 is fed back into the NI USB 6211.

Analog signals applied to the NI USB 6211 are sampled at a rate of 40 kHz and transmitted

to the laptop over USB for storage.

6.1.3 Application of Optimal Control Technique

Qualitative properties of the P and N-cells were assessed according to Table 1 of Chap-

ter 3 to determine which of the four fundamental bifurcation types presented in [1] reason-

ably describe the behavior of these cell types. Using a a reduced-order Hodgkin-Huxley type

model and known neurocomputational properties of leech P and N-cells, it was determined

that the transition from rest to a single action potential could be modeled by the saddle

node on invariant circle bifurcation type. Section 4.2.4 provides a theoretical description of

the nonlinear analysis and optimal control of the saddle node on invariant circle bifurcation

type.

Prior to performing the experiment, a set of reference and optimal injected stimulus

current waveforms were computed. Three different pulse widths were chosen, and in all

cases the pulse amplitude was sufficient to generate a single action potential in the model

cell. The three cases are a pulse with duration of 5 ms with amplitude of 6µA/cm2, 10 ms

with amplitude of 5µA/cm2, and 20 ms with amplitude of 4.75µA/cm2. For each of these

three input signals, a set of three optimal injected currents were generated with emphasis

ranging from energy reduction to tracking accuracy. Pre-computed waveforms are included

as Figures 112 through 114.

While closed-loop application of the ”Reduced Energy Input Stimulus Discovery Method”

is the ultimate goal, this set of pre-computed waveforms provided a preliminary assessment

of experimental feasibility [2, 3]. Previous experiments with P and N-cell types reveals

that the timing of the action potential varies with the choice of stimulus pulse width and

amplitude. The three pre-computed input signals provide a qualitative range of behavior.

Short duration 5 ms pulses provide an action potential occurring near the falling edge of the
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stimulus pulse. The 10 ms pulse results in a slightly longer membrane depolarization prior

to the action potential with a peak nearly coincident with the falling edge of the stimulus

pulse. Lastly, a longer 20 ms pulse causes the cell to fire an action potential during the stim-

ulus pulse. Experimentally obtained stimulus response pairs were qualitatively analyzed to

determine the best match for the timing of the action potential in relation to the square

wave stimulus pulse.

The pre-computed optimal injected current stimuli were used in an experimental set-

ting as follows. After establishing a reliable sharp microelectrode recording for a cell, a

non-smooth injected current pulse was applied. The injected current pulse amplitude was

increased gradually until a single action potential was reliably received. Next, timing of

the injected current pulse in relation to the action potential, as measured by the WPI Duo

773, are observed. It was qualitatively determined which of the pre-computed signals most

accurately represented timing of the experimentally recorded action potential.

After determining which pulse width to use, the smooth injected current pulse of the

pre-computed waveform is scaled in time and amplitude to match the experimentally applied

injected current stimulus. The scale factor between the square wave pulses was used as a

baseline for scaling the pre-computed optimal input stimulus i∗(t) as shown in Figures 112

through 114.

This approach results in determining a square wave pulse with sufficient in amplitude to

generate an action potential, and then applying a family of optimal injected stimuli. If the

resulting membrane voltage of the cell approximates the originally recorded action potential,

the utility of the optimal stimuli has been experimentally demonstrated.
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(a) P = Q = 1, R = 1 (b) P = Q = 5, R = 1 (c) P = Q = 10, R = 1

Figure 112: Optimal input stimuli with 6µA/cm2 and 5 ms pulse width
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(a) P = Q = 1 , R = 1 (b) P = Q = 5 , R = 1 (c) P = Q = 10, R = 1

Figure 113: Optimal input stimuli with 5µA/cm2 and 10 ms pulse width
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(a) P = Q = 1, R = 1 (b) P = Q = 5, R = 1 (c) P = Q = 10, R = 1

Figure 114: Optimal input stimuli with 4.75µA/cm2 and 20 ms pulse width
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6.1.4 Experiment Overview

The following steps were followed to conduct the described experiment:

1. Leech Preparation

A leech is dissected, exposing the nervous system, as shown in Figure 108. The mid-

body portion of the nervous system is removed and pinned into a separate dish, in

saline solution, for use on the electrophysiology rig, as shown in Figure 109.

2. Microelectrode Preparation

Using a Sutter Flaming-Brown micropipette puller, a sharp microelectrode is pulled

to approximately 50 MΩ, and backfilled with 4 M potassium acetate.

3. Microelectrode Balance

The micropipette is then installed on the head stage, with a sodium chloride coated

sliver wire immersed in the potassium acetate inside the micropipette. The position

and angle of the head stage is adjusted and the microelectrode is lowered into the

saline solution on the microscope stage.

The WPI Duo 773 is used to balance the electrode, and resistance is verified between

40 and 60 MΩ.

4. Poke Cell

Using the microscope and micromanipulator, the microelectrode is positioned and

inserted into the selected P or N-cell. Before stimulating the neuron, a good seal

between the midcroelectrode and cell membrane and the resting membrane potential

were verified.

5. Stimulate Neuron with a Non-Smooth Current Pulse

Apply a stimulus current to the neuron, beginning with a moderate pulse width and low

pulse amplitude of approximately 25 ms and 0.5 nA. Gradually increase the amplitude

until an action potential is generated by the neuron.
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6. Scale Optimal Input Stimuli

Use a MATLAB R©script and the values for pulse width and amplitude from step 5 to

scale the pre-computed optimal input stimuli. The output of the MATLAB R©script

is a range of optimal input stimuli with differing emphasis on tracking accuracy and

input stimulus energy reduction and uniform sample times that are able to be read by

LabVIEW R©for transmission to the USB 6211 and application to the target tissue.

7. Apply Scaled Optimal Input Stimuli to Neuron

First, determine the pulse width which most accurately aligns the action potential

with the square wave stimulus pulse as compared to the experimental results in step 5.

Using the 5, 10, or 20 ms pulse apply optimal input stimulus which most emphasizes

tracking, P = Q = 10, R = 1. Verify the neuron still generates an action potential.

If the neuron consistently fires action potentials, apply the optimal input stimulus

where P = Q = 5, R = 1, and verify the neuron still fires and action potential.

If the neuron consistently fires action potentials, apply the optimal input stimulus

where P = Q = 1, R = 1, and verify the neuron still fires and action potential.

8. Compare Recorded Membrane Voltages

To compare the presence and timing of action potentials, the recorded data was com-

pared on a single plot using MATLAB R©.

6.2 Experimental Feasibility Analysis Results

This section describes the experiment conducted to analyze the feasibility of applying

reduced energy optimal injected stimuli to P and N-cell neuron types in the leech central

nervous system. An overview of the experimental results are provided.

The results presented within this section were recorded from one P-cell and one N-cell

within a leech mid-body ganglion. Steps 1 through 3 of Section 6.1.4 were performed for

the preparation. Next step 4 was performed for an identified P-cell. Results from the P-cell

are presented in Section 6.2.1. Following application of baseline and optimal input stimuli
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to the P-cell, an N-cell was identified and steps 4 through 7 were repeated. Results from

the N-cell are presented in Section 6.2.2.

6.2.1 Experimental Results in Leech P-Cell

Before applying optimal input stimuli, it is necessary to identify a square wave stimulus

pulse which is of sufficient amplitude to generate an action potential as described in step

5 of Section 6.1.4. A plot containing 16 injected current stimulus and response traces is

shown in Figure 115. As shown in Figure 116, timing of individual action potentials is quite

consistent within the baseline data set.

Figure 115: Leech P-cell action potentials and input current stimuli (Baseline: Non-smooth
current pulse)(16 curves)
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Figure 116: Leech P-cell peak action potential timing variation (Baseline: Non-smooth
current pulse)(16 curves)

The original stimulus pulse is approximately 0.75 nA and has a duration of approximately

25 ms. The amplitude and duration of the injected stimulus is used to scale a predefined

set of optimal input stimuli signals. Three sets of optimal input stimuli were generated for

5 ms, 10 ms, and 20 ms pulse widths. Time alignment between the original injected stimulus

current and the resulting action potential was observed. Then, pre-computed optimal input

stimuli having similar time alignment from the 10 ms and 20 ms waveform sets were applied

to the P-cell under investigation.

6.2.1.1 Application of 10 ms Optimal Injected Currents in Leech P-Cell

To verify the scaling of optimal input signals, a 10 ms pulse was applied to the P-cell as

pictured in Figure 117. The plot consists of 7 injected current stimulus and response traces.
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Again the timing of individual action potentials is quite consistent.

Figure 117: Leech P-cell action potentials and reference input current stimuli (Smooth 10 ms
reference current pulse)(7 curves)

Application of an optimal injected current with P = Q = 5 and R = 1 is shown in

Figure 118. The plot consists of 14 injected current stimulus and response traces.
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Figure 118: Leech P-cell action potentials and 10 ms optimal input current stimuli (Low
energy reduction with P = Q = 5 and R = 1)(14 curves)

Application of an optimal injected current with P = Q = 1 and R = 1 is shown in

Figure 119. The plot consists of 18 injected current stimulus and response traces. Even

with a significantly reduced energy content between the 10 ms non-smooth current pulse

and the optimal injected current in Figure 119, the neuron generates a consistently timed

action potential in all cases. However, there is a change in the shape of the membrane

potential around 30 ms preceding the action potential. This change represents a lack of

tracking between the original membrane potential and the response to the neuron to the

optimal input current.
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Figure 119: Leech P-cell action potentials and 10 ms optimal input current stimuli (High
energy reduction with P = Q = 1 and R = 1)(18 curves)

Comparing the results plotted in Figures 117 through 119 to each other provides an

experimental example of the trade-off between membrane voltage tracking accuracy and

input stimulus energy reduction. Figure 120 plots the 10 ms square wave stimulus and

response as the reference signal, as compared to the optimal 10 ms stimulus with P = Q = 5

and R = 1. Figure 121 plots the 10 ms square wave stimulus and response as the reference

signal, as compared to the optimal 10 ms stimulus with P = Q = 1 and R = 1.
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Figure 120: Reference vs. low energy reduction case with P = Q = 5 and R = 1

Within Figure 120, the reference data is the set of 7 traces presented in Figure 117. The

optimal data is the set of 14 traces presented in Figure 118. As shown in Figure 120, there is

very little difference between the membrane voltage response to reference and optimal input

stimulus signals. A slight difference is noticeable in the membrane potentials immediately

before and after the action potential, but action potential timing is well aligned between

the two data sets.
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Figure 121: Reference vs. high energy reduction case with P = Q = 1 and R = 1

Within Figure 121, the reference data is the set of 7 traces presented in Figure 117.

The optimal data is the set of 18 traces presented in Figure 119. As shown in Figure 121,

the main difference between the membrane voltage response to reference and optimal input

stimulus signals is in timing of the action potentials. A noticeable difference in the membrane

voltage waveform preceding the action potential results in delayed action potential timing

in response to the optimal input stimulus. However, it is noteworthy that in all cases, the

neuron still exhibits an action potential in response to the optimal input stimulus.

6.2.1.2 Application of 20 ms Optimal Injected Currents in Leech P-Cell

After application of the optimal waveforms presented in Section 6.2.1.1, optimal wave-

forms related to the 20 ms pulse width were applied to the same P-cell. Figure 122 corre-

sponds to application of an optimal input stimulus with 20 ms pulse width, P = Q = 10
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and R = 1. Figure 123 corresponds to application of an optimal input stimulus with 20 ms

pulse width, P = Q = 5 and R = 1. Viability of the P-cell became questionable before

application of the case with P = Q = 1 and R = 1 was performed.

Figure 122: Leech P-cell action potentials and 20 ms optimal input current stimuli (Lowest
energy reduction with P = Q = 10 and R = 1)(29 curves)

Figure 122 consists of 29 injected current stimulus and response traces. Again, timing of

all action potentials is consistent. Ideally, if the experiment design was more closely linked

with the preparation of this trial, the dip in the optimal stimulus current at approximately

37 ms would be more closely timed with the arrival of the action potential. However, the

shape of the action potential, including the membrane potential before the action potential

and the depolarization corresponding with the increased stimulus current at 40 ms, does

resemble the theoretical reference membrane potential presented in Figure 114c.
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Figure 123: Leech P-cell action potentials and 20 ms optimal input current stimuli (Low
energy reduction with P = Q = 5 and R = 1)(11 curves)(Note outlier)

Figure 123 consists of 11 injected current stimulus and response traces. The optimal

input stimulus represents a further reduction in energy at the expense of membrane potential

tracking accuracy. Notice that one action potential occurred outside the consistent arrival

time of the other 10 traces. However, in Figure 123, the action potential is more closely

aligned with the characteristic dip in the optimal input stimulus. Also, the shape of the 10

action potential waveforms does resemble that shown in Figure 114b.

6.2.2 Experimental Results in Leech N-Cell

Steps 4 and 5 were conducted in an identified N-cell within a leech mid-body ganglion.

Scaled optimal input signals of a 20 ms pulse were applied to the N-cell, as pictured in

Figures 124 through 126. Figure 124 represents application of an optimal input stimulus
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with P = Q = 10 and R = 1, an emphasis on tracking the reference membrane potential.

Figure 124: Leech N-cell action potentials and 20 ms optimal input current stimuli (Lowest
energy reduction with P = Q = 10 and R = 1)(8 curves)

Figure 124 consists of 8 injected current stimulus and response traces. Timing of in-

dividual action potentials is quite consistent and even with the open-loop nature of the

experiment, the action potential is consistent with the characteristic dip in the optimal

input stimulus.

Figure 125 represents application of an optimal input stimulus with P = Q = 5 and

R = 1, a reduced emphasis on tracking the reference membrane potential with greater

emphasis on reduction in input stimulus energy, consisting of 8 injected current stimulus

and response traces. Notice the significant variation in action potential timing.
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Figure 125: Leech N-cell action potentials and 20 ms optimal input current stimuli (Low
energy reduction with P = Q = 5 and R = 1)(8 curves)

Figure 126 represents application of an optimal input stimulus with P = Q = 1 and

R = 1, an emphasis on reduction in input stimulus energy, consisting of 11 injected current

stimulus and response traces. In all cases, the neuron does not fire an action potential in

response to the optimal input stimulus. Still, lack of subthreshold oscillations is a key obser-

vation when attempting to classify the bifurcation dynamics of the cell under investigation.
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Figure 126: Leech N-cell action potentials and 20 ms optimal input current stimuli (High
energy reduction with P = Q = 1 and R = 1)(11 curves)

6.3 Discussion of Results

The results presented in this chapter demonstrate feasibility of the “Reduced Energy

Input Stimulus Discovery Method” in P and N-cell of the leech central nervous system [2, 3].

Results for the P-cell present greater agreement between reference and optimal membrane

potentials over a wider range of objective functions. However, as demonstrated in Chapter 4,

when emphasis on reduction of input stimulus energy is increased the theoretical results of

all four bifurcation types lacked action potentials in the repetitive spiking cases.

Results of the experiment confirm application of optimal control based techniques at the

rig is a feasible approach. The leech P and N-cells provide a robust and reliable preparation

for the experiment. The technique holds promise for investigating the biophysical basis
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of functionality in the nervous system that integrates mathematical modeling, optimally

balancing competing performance objectives, and relation to bifurcations of system fixed

points fundamental to neurocomputation.
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7 Conclusions

This chapter provides an overview of results, recommendations for further application

and extension of the developed optimal control technique, and a discussion of the contribu-

tions of this work.

7.1 Results

The pioneering work of Hodgkin and Huxley is foundational to biophysically-based neu-

ron models [1, p. 320][10, p. 41]. It has been demonstrated in [1] that a reduced-order

conductance-based model is capable of producing the four bifurcation types fundamental to

many neurocomputational properties. If dynamics under investigation depend upon addi-

tional ionic currents or activation properties, conductance-based models can be extended or

modified to include the behavior of interest [3, 40].

Optimal control theory provides a mathematical framework for maximization or mini-

mization of performance objectives. For the investigations presented in this dissertation, an

objective function was developed which balances two competing criteria: tracking a reference

membrane voltage and reducing the squared input stimulus current ‘energy’. A framework

has been provided which facilitates application of the technique to conductance-based neu-

ron models and provides guidance for interpretation of results.

The technique has been applied to the reduced-order conductance-based model of [1]

which was also published in [2]. Within this dissertation, the technique has also been

applied to the classical Hodgkin-Huxley model and a previous publication demonstrated its

utility in a higher-order conductance-based model [3]. Reduced-order models offer facilitated

analysis and reduced computation times while higher-order models enable incorporation of

neural dynamics that may be of interest in specific investigations.

When applying this method, choice of the order of the model, as well as parameter value

selection, should be considered carefully taking into account the dynamics of interest and

computation time of the simulation. Increased complexity of the model comes at the expense

of increased simulation time and more complex analysis of model results. If experimental
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application is needed at the rig, the simulation time needs to be considered preparation

viability.

Application of the “Reduced Energy Input Stimulus Discovery Method” in theoretical

simulations was successful in all cases, which included a variety of neuron responses [2, 3].

Emphasis on tracking accuracy increased the match between optimal input stimulus cur-

rent and the original input stimulus. As reduction of input stimulus energy is emphasized

it is common to see the resulting membrane potential track the original reference mem-

brane potential to a lesser degree. How rapidly and dramatically the resulting and reference

membrane potential diverge depends on the model dynamics. In all cases, when comparing

original stimuli to optimal input stimulus currents, an optimal input with noticeably reduced

energy has been found which enables acceptable membrane voltage tracking accuracy. Mod-

els with a more defined threshold tend to enable accurate tracking of the reference membrane

potential with a greater reduction of input stimulus energy. The membrane voltage response

of the classical Hodgkin-Huxley model in Chapter 5 is particularly striking. Figure 96a of

Section 5.2.4.2 demonstrates that for the case with greatest emphasis on energy reduction,

the “Reduced Energy Input Stimulus Discovery Method” computes a negative going pre-

pulse which enables exceptionally accurate tracking of the reference membrane voltage with

a dramatic decrease in input stimulus energy [2, 3]. It is interesting that this is essentially

a mathematical discovery of a technique researchers commonly use at the rig to investigate

the ability of neurons to fire post inhibitory rebound action potentials [1, p. 5]. The presence

of ‘characteristic dips’ in the optimal injected stimulus current is another feature which is

common to all repetitive spiking simulations within this dissertation.

A feasibility study has been conducted using neurons in the central nervous system of

the leech Hirudo verbana. The reduced-order conductance-based model presented in [1] was

used in the feasibility study. Model parameters were selected to cause a saddle node on

invariant circle bifurcation of the system fixed point based on known properties of the cells

under investigation. It was found that application of optimal input stimuli were capable

of driving a neuron to fire action potentials in a manner consistent with the theoretical

approach. In the leech P-cell, action potentials of consistent timing were produced for
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the two selected performance indices applied with a 10 ms pulse width, as well as two

selected performance indices with a 20 ms pulse width. Application of optimal injected

stimulus signals into leech N-cell produced results which demonstrated consistent timing

when tracking of reference membrane potential was emphasized, reduced consistency with

increased emphasis on reduction in input stimulus energy, and no action potentials when

emphasis on energy reduction was highest.

7.2 Contributions of this Work

Contributions of this work, including those presented within this dissertation are as

follows:

• Successful implementation of the Reduced Energy Input Stimulus Discovery Method

by using a membrane voltage naturally produced by the neuron model as the reference

signal to be tracked. This enabled convergence of the boundary value problem solver

required for practical application of this method [2].

• Extension of the Reduced Energy Input Stimulus Discovery Method to a sixth-order

conductance-based Hodgkin-Huxley type model [3].

• Application of the Reduced Energy Input Stimulus Discovery Method to the classical

Hodgkin-Huxley model (Chapter 5). The case studies of Section 5.2.5 are of particular

interest. Reference Figures 103 through 105. When reduction of input stimulus current

energy is emphasized, the optimal input stimuli in these two cases are remarkably

similar to each other. Yet, even with very little difference between the two reference

membrane potentials, the optimal control algorithm has sufficient fidelity to recover

the original, wider pulse width when tracking accuracy is emphasized, as highlighted

in Figure 97c.

• The “Reduced Energy Input Stimulus Discovery Method” substantiates use of neg-

ative going pre-pulse injected currents is similar to waveforms used by electrophys-

iologists for investigation of post inhibitory rebound spikes [2, 3]. The underlying
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systems dynamics of the classical Hodgkin-Huxley model which cause optimal input

current stimuli of this shape warrant further investigation since this characteristic is

not present in the reduced-order models.

• The steps required for nonlinear system analysis and application of optimal control

to Hodgkin-Huxley type conductance-based neuron models has been organized into a

coherent framework, as summarized in Figure 12 of Chapter 3. The approach presented

in this dissertation extends previous work by providing phase plane and eigenvalue

analysis for classification of system fixed points and controlling initial transients of

the state variables for improved presentation of results.

• Utilizing smoothed input current pulses extended previously published results which

was essential for the transition to experimental applicability of the technique. A set of

simulations including smooth input current pulses was the initial point of discussion for

design of the experiment leading toward the demonstrated experimental feasibility of

the technique as presented in Chapter 6. The utility of pre-computed wave forms along

with a non-smooth current pulse was an essential simplification for initial application of

optimal input current stimuli, and resulted in successful demonstration within neurons

of the leech.

• Merging of theoretical simulations with preliminary experimental trials. Successful

application of the technique results in a spectrum of results ranging from accurate

reference membrane voltage tracking at one end reduction of input stimulus energy

is at the other. The technique is effective for reduced-order models and is extensible

to higher-order models. The conductance-based neuron models have sufficient fidelity

to respond to small changes in post action potential membrane voltage levels while

maintaining broad features of the neuron dynamics in energy reduction cases. A

preliminary study has confirmed the experimental feasibility of using optimal injected

current stimuli to drive neurons within the leech central nervous system to fire action

potentials very similar to those produced using standard smooth input current pulses.
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7.3 Future Work

Two directions to extend this work are to refine experimental techniques and investigate

other objective functions.

7.3.1 Refined Experimental Techniques

The method used for the experimental feasibility study was a preliminary effort to

demonstrate the application of this technique in a laboratory setting. Further refinement is

required to streamline application of the technique.

Refining the experimental protocol primarily relates to “closing the loop” on more of the

experimental variables. More specifically, rather than using pre-computed, scaled versions

of the reference membrane potentials and optimal input stimuli it, would be a dramatic

improvement in the technique to use the actual recorded membrane potential as the reference

signal as the input to the reduced stimulus computation.

More tightly closing the loop in the experimental setting does not comprise continual

incorporation of all experimental variables. Remembering the “pipe dream” described in [1,

p. 20] can aid in deciding which variables are of significance. Variables which do not relate

to the dynamical behavior of interest should be disregarded.

The electrophysiology rig employed for use in this dissertation is highly customizable

in terms of application of electrical signals and graphical user interface. A more pragmatic

aspect of refining the experimental techniques is related to automation of the routine aspects

of the experiment. A simple example from this dissertation is that the number of traces

captured for each trial was based simply on how long the rig was allowed to run. It would be

simple to add a small number of buttons to the graphical interface to automate application

and recording of 10 stimulus pulses. Additional features of this type which are aligned

with the experiment of interest will promote simplified and consistent application of the

technique.
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7.3.2 Development of Additional Objective Functions

Using the Reduced Energy Input Stimulus Discovery Method” presented in this disser-

tation enabled demonstration of the feasibility of using optimal control with conductance-

based neuron models [2, 3]. The objective function developed within this dissertation only

represents a single application of a more general method. Development of different objective

functions will allow investigation of other neural system functionality.

Developing objective functions which seek to optimize the activity of gating variables

seems particularly promising since many disorders of the nervous system relate to improper

function of a set of ion channels or neurorecpetors. Likewise, many pharmaceuticals which

seek to alleviate neural conditions modify neural receptor or ion channel behavior. Op-

timization of performance indices related to gating variables and ion conductance could

elucidate the biophysical basis of neural disorders and pharmacological treatments in this

area of study.

7.4 Conclusions

The feasibility of this technique in an experimental setting, combined with the general-

ity of its approach, is a novel and promising combination of theoretical and experimental

techniques from the fields of neurobiology, control systems, and optimal control theory.

211



References

[1] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability

and Bursting, The MIT Press, Cambridge, MA, 2007.

[2] M. Ellinger, M. E. Koelling, D. A. Miller, F. L. Severance, and J. Stahl, “Exploring

optimal current stimuli that provide membrane voltage tracking in a neuron model”,

Biological Cybernetics, vol. 104, no. 3, pp. 185–195, 2011.

[3] M. E. Koelling, D. A. Miller, M. Ellinger, F. L. Severance, and J. Stahl, “Current

stimuli that provide membrane voltage tracking in a six dimensional neuron model”,

Journal of Dynamic Systems, Measurement, and Control, vol. 135, no. 4, July 2013.

[4] H. C. Tuckwell, J. Jost, and B. S. Gutkin, “Inhibition and modulation of rhythmic

neuronal spiking by noise”, Phys. Rev. E, vol. 80, 2009.

[5] M. Ellinger, “Acquisition and analysis of biological neural network action potential

sequences”, Master’s thesis, Western Michigan University, Kalamazoo, MI, 2009.

[6] S. H. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books Publishing, LLC, 1994.

[7] J. Jellies, “Detection and selective avoidance of near ultraviolet radiation by an aquatic

annelid: the medicinal leech”, The Journal of Experimental Biology, vol. 217, pp. 974–

985, 2014.

[8] John G. Nicholls, A. Robert Martin, Bruce G. Wallace, and Paul A. Fuchs, From

Neuron to Brain, Sinauer, fourth edition edition, 2001.

[9] Peter Dayan and L. F. Abbott, Theoretical Neuroscience, Computational and Math-

ematical Modeling of Neural Systems, Computational Neuroscience. The MIT Press,

2005.

[10] Steven J. Schiff, Neural Control Engineering, The Emerging Intersection between Con-

trol Theory and Neuroscience, Computational Neuroscience. The MIT Press, 2012.

212



[11] P. Danzl, A. Nabi, and J. Moehlis, “Charge-balanced spike timing control for phase

models of spiking neurons”, Discrete and Continuous Dynamical Systems, vol. 28, no. 4,

pp. 1413–1435, December 2010.

[12] P. Gorzelic, S. J. Schiff, and A. Sinha, “Model-based rational feedback controller

design for closed-loop deep brain stimulation of Parkinson’s disease”, Journal of Neural

Engineering, vol. 10, no. 2, 2013.

[13] E. Waltz, “Spinal stimulation gets paralyzed patients moving: Implanted electrodes

can reach where the brain cannot”, IEEE Spectrum, October 2013, Available

online http://spectrum.ieee.org/biomedical/devices/spinal-stimulation-gets-paralyzed-

patients-moving.

[14] D. A. Miller, M. E. Koelling, J. Jellies, and C. L. Linn, Experimental validation of

optimal control current stimuli for tracking leech neuron membrane voltages, National

Science Foundation proposal (unfunded), 2014.

[15] D. Tuninetti and D. Graupe, “Adaptive closed-loop control of deep brain stimulation

for movement disorders”, National Science Foundation, 2011, Miller NSF Grant 10.

[16] B. Hille, Ion Channels of Excitable Membranes, Sinauer, second edition, 1992.

[17] C. W. Huang, J. J. Tsai, C. C. Huang, and S. N. Wu, “Experimental and simula-

tion studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier

potassium current (KV3.1) : Contribution to the firing of action potentials”, Journal

of Physiology and Pharmacology, vol. 60 (4), pp. 37–47, 2009.

[18] D. K. Mohan, P. Molnar, and J. J. Hickman, “Toxin detection based on action potential

shape analysis using a realistic mathematical model of differentiated NG108-15 cells”,

Biosensors and Bioelectronics, vol. 21, pp. 1804–1811, 2006.

[19] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek, Spikes: Exploring

the Neural Code, The MIT Press, Cambridge, MA, paperback edition, 1999.

213



[20] A. Nabi, T. Stigen, J. Moehlis, and T. Netoff, “Minimum energy control for in vitro

neurons”, Journal of Neural Engineering, vol. 10, no. 3, June 2013.

[21] H. Markram, “The blue brain project”, Nature Reviews Neuroscience, vol. 7, pp. 153–

160, February 2006, Website: www.nature.com/reviews/neuro.

[22] C. Daniel Meliza, M. Kostuk, H. Huang, A. Nogaret, D. Margoliash, and H. D. I. Abar-

banel, “Estimating parameters and predicting membrane voltages with conductance-

based neuron models”, Biological Cybernetics, vol. 108, pp. 495–516, 2014.

[23] B. Sengupta, M. Stemmler, S. B. Laughlin, and J. E. Niven, “Action potential energy

efficiency varies among neuron types in vertebrates and invertebrates”, PLoS Comput

Biol, vol. 6, no. 7, e1000840 2010.

[24] K. Harmon, “Earlier model of human brain’s energy usage underestimated its effi-

ciency”, Scientific American, September 2009, Available at scientificamerican.com.

[25] J. E. Niven and S. B. Laughlin, “Energy limitation as a selective pressure on the

evolution of sensory systems”, The Journal of Experimental Biology, vol. 211, pp. 1792–

1804, 2008.

[26] D. Atwell and S. B. Laughlin, “An energy budget for signaling in the grey matter of the

brain”, Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 10, pp. 1133–1145,

2001.

[27] A. T. Winfree, The Geometry of Biological Time, Springer-Verlag, 1980.

[28] J. Moehlis, E. Shea-Brown, and H. Rabitz, “Optimal inputs for phase models of spiking

neurons”, Journal of Computational and Nonlinear Dynamics, vol. 1, no. 4, pp. 358–

367, October 2006.

[29] P. A. Tass, “Effective desynchronization by means of double-pulse phase resetting”,

Europhysics Letters, vol. 53, no. 1, pp. 15–21, 2000.

214



[30] J. Anyalebechi, M. E. Koelling, and D. A. Miller, “Computation of reduced energy

input current stimuli for neuron phase models”, in Proc. of the Intl. Conf. of the IEEE

Engineering in Medicine and Biology Society, 2014.

[31] G. Ullah and S. J. Schiff, “Tracking and control of neuronal Hodgkin-Huxley dynamics”,

Physical Review E, vol. 79, no. 4, April 2009.

[32] S. Freeman, Biological Science, Pearson Education, third edition, 2008.

[33] W. O. Friesen and J. A. Friesen, NeuroDynamix II, Oxford University Press, second

edition, 2009.

[34] A.L. Hodgkin, A.F. Huxley, and B. Katz, “Measurement of current-voltage relations

in the membrane of the giant axon of Loligo”, The Journal of Physiology, vol. 116,

pp. 424–448, 1952.

[35] A.L. Hodgkin and A.F. Huxley, “Current carried by sodium and potassium ions through

the membrane of the giant axon of Loligo”, The Journal of Physiology, vol. 116, pp. 449–

472, 1952.

[36] A.L. Hodgkin and A.F. Huxley, “The components of membrane conductance in the

giant axon of Loligo”, The Journal of Physiology, vol. 116, pp. 473–496, 1952.

[37] A.L. Hodgkin and A.F. Huxley, “The dual effect of membrane potential on sodium

conductance in the giant axon of Loligo”, The Journal of Physiology, vol. 116, pp. 497–

506, 1952.

[38] A.L. Hodgkin and A.F. Huxley, “A quantitative description of membrane current and

its application to conduction and excitation in nerve”, The Journal of Physiology,

vol. 117, pp. 500–544, 1952.

[39] L.F. Abbott, “Lapicques introduction of the integrate-and-fire model neuron (1907)”,

Brain Research Bulletin, vol. 50, no. 5/6, pp. 303–304, 1999.

215



[40] R.E. Plant and M. Kim, “Mathematical description of a bursting pacemaker neuron by

a modification of the hodgkin-huxley equations”, Biophysical Journal, vol. 16, pp. 227–

244, 1976.

[41] J. Guckenheimer and R.A. Oliva, “Chaos in the hodgkin-huxley model”, SIAM Journal

on Applied Dynamical Systems, vol. 1, no. 1, pp. 105–114, 2002.

[42] C. Meunier and I. Segev, “Playing the devil’s advocate: is the Hodgkin-Huxley model

useful?”, Trends in Neurosciences, vol. 25, no. 11, pp. 558–563, 2002.

[43] F.L. Severance, System modeling and simulation, An introduction, John Wiley & Sons,

Ltd., 2001.

[44] A.R. Willms, “An improved parameter estimation method for hodgkin-huxley models”,

Journal of Comutational Neuroscience, vol. 6, pp. 145–168, 1999.

[45] R.F. Stengel, Optimal Control and Estimation, Dover Publications, 1994.

[46] F. L. Lewis and V. L. Syrmos, Optimal Control, John Wiley & Sons, Inc., 2nd edition,

1995.

[47] L. F. Shampine, J. Kierzenka, and M. W. Reichelt, Solving Boundary Value Prob-

lems for Ordinary Differential Equations in MATLAB with bvp4c, Downloaded from

http://www.mathworks.com, still available January 2013.

[48] N.P. Hale, “A sixth-order extension to the MATLAB bvp4c software of J. Kierzenka

and L. Shampine”, Master’s thesis, Imperial College London, 2006.

[49] MathWorks, Inc., “Vectorization”, http://www.mathworks.com/help/matlab/matlab prog

/vectorization.html?refresh=true, accessed May, 2015.

[50] MathWorks, Inc., “bvpset”, http://www.mathworks.com/help/matlab/ref/bvpset.html,

accessed May, 2015.

[51] MathWorks, Inc., “profile”, http://www.mathworks.com/help/matlab/ref/profile.html,

accessed May, 2015.

216



[52] W. Gerstner and W. M. Kistler, Spiking Neuron Models. Single Neurons, Popula-

tions, Plasticity, Cambridge University Press, August 2002, Book in HTML format:

http://lcn.epfl.ch/ gerstner/SPNM/SPNM.html.

[53] K. J. Muller, J. G. Nicholls, and G. S. Stent, editors, Neurobiology of the Leech, Cold

Spring Harbor Laboratory Press, 2010, http://www.amazon.com/Neurobiology-Leech-

Kenneth-J-Muller/dp/1936113090.

[54] J. Jellies, “Which way is up? Asymmetric spectral input along the dorsal-ventral

axis influences postural responses in an amphibious annelid”, Journal of Comparative

Physiology A, vol. 200, pp. 923–938, 2014.

[55] J. Jellies and D. Kueh, “Centrally patterned rhythmic activity integrated by a periph-

eral circuit linking multiple oscillators”, Journal of Comparative Physiology A, vol. 198,

no. 8, pp. 567–582, 2012.

217


	Exploration of Stimulus Current Energy Reduction and Bifurcation Dynamics in Conductance-Based Neuron Models Using Optimal Control Theory
	Recommended Citation

	Introduction
	Dissertation Overview
	Neuron Modeling
	Nonlinear Systems Analysis and Bifurcation Dynamics
	Optimal Control
	Experimental Feasibility
	Dissertation Structure


	Neuron Modeling
	Biophysical Basis of Neural Signals
	Excitable Membranes
	Resting Potential
	Nernst Equation
	Goldman-Hodgkin-Katz Equation

	Action Potential

	Classical Hodgkin-Huxley Model
	Equivalent Circuit Model
	Hodgkin-Huxley Equations

	Reduced-Order Hodgkin-Huxley Model
	Model Parameter Estimation
	Empirically Derived Parameter Values
	Bifurcation Dynamics


	Methods and Analysis
	Nonlinear Systems Analysis Primer
	Fixed Point Location
	Location of System Equilibria Using Nullclines
	Location of System Equilibria Using f(v)
	Results Comparison

	Fixed Point Classification
	Fixed Point Classification for Two-Dimensional Systems
	Fixed Point Classification for Higher-Order Systems
	Results Comparison

	Bifurcations
	Bifurcation Type
	Bifurcation Value


	Optimal Control Primer
	Technique Overview
	Selecting an Input Current and Initial Conditions
	Compute the Membrane Potential Waveform
	Define the Reference Signal
	Select Weighting Coefficient Values
	Minimize the Objective Function
	Verify the Optimal Input Current
	Iterate

	Example Results
	Example 1: Constant Input Current Stimulus
	Example 2: Ramp Input Current Stimulus


	Numerical Considerations
	ode45 Settings and Tolerances
	Initial Solution Estimation
	Choice of Boundary Value Problem Solver
	Vectorization


	Reduced-Order Hodgkin-Huxley Models
	Model Definition
	Reduced-Order Hodgkin-Huxley Type Model Definition
	Fixed Point Location
	Derivation of Nullclines
	Derivation of f(v)

	System Linearization
	Objective Function Definition

	Nonlinear Analysis and Optimal Control
	Super Critical Andronov-Hopf
	Fixed Point Location
	Fixed Point Classification
	Bifurcations
	Optimal Control
	Discussion of Supercritical Andronov-Hopf Bifurcation Dynamics

	Subcritical Andronov-Hopf
	Fixed Point Location
	Graphical Fixed Point Classification
	Bifurcations
	Optimal Control
	Discussion of Subcritical Andronov-Hopf Bifurcation Dynamics

	saddle-node
	Fixed Point Location
	Graphical Fixed Point Classification
	Bifurcations
	Optimal Control
	Discussion of saddle-node Bifurcation Dynamics

	saddle-node on Invariant Circle
	Fixed Point Location
	Graphical Fixed Point Classification
	Bifurcations
	Optimal Control
	Discussion of saddle-node on Invariant Circle Bifurcation Dynamics



	Classical Hodgkin-Huxley Model
	Model Definition
	Classical Hodgkin-Huxley Model Definition
	Derivation of f(v)
	System Linearization
	Objective Function Definition

	Nonlinear Analysis and Optimal Control
	Fixed Point Location Using f(v)
	Fixed Point Classification Using Eigenvalues
	Bifurcations
	Dynamics in the Inactive Region
	Dynamics in the Single Spike Region
	Dynamics in the Repetitive Spiking Region

	Optimal Control
	Optimal Control in the Inactive Region
	Optimal Control in the Single Spike Region
	Optimal Control in the Repetitive Spiking Region

	Case Studies
	Case Study 1 - Pulse Width Study
	Case Study 2 - Pulse Amplitude Study

	Discussion of Results


	Experimental Feasibility
	Experiment Setup
	Experiment Preparation
	Electrophysiology Rig
	Application of Optimal Control Technique
	Experiment Overview

	Experimental Feasibility Analysis Results
	Experimental Results in Leech P-Cell
	Application of 10 ms Optimal Injected Currents in Leech P-Cell
	Application of 20 ms Optimal Injected Currents in Leech P-Cell

	Experimental Results in Leech N-Cell

	Discussion of Results

	Conclusions
	Results
	Contributions of this Work
	Future Work
	Refined Experimental Techniques
	Development of Additional Objective Functions

	Conclusions

	References

