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Accumulated fatigue damage on mechanical components due to random stress 

loads eventually causes failure. Therefore products with lower failure rates are more 

desirable. Testing mechanical components for their intended purpose under 

predetermined working conditions is a common practice used by industries to prevent 

failures. Fatigue tests are categorized as Time Truncated or Failure Truncated, known in 

the literature as Type I and Type II tests, respectively. In failure truncated tests, the 

mechanical components are tested until the desired number of results is obtained. The 

parameters of a typical failure truncated test include the capacity of the test facility, the 

actual number of components placed on the test, the termination of the test once a 

predetermined number of test results has been collected and the duration of the test. Also, 

important is the cost for test time and components as well as the desired confidence in the 

results. The investigation of varying Type II testing strategies to determine optimal test 

methods is the essence of this research. Also, in this research a new failure truncated test 

is investigated. This research considers two different Type II test strategies. The 

strategies are termed: the Modified Sudden Death Test (MSDT) and the Classified 

Sudden Death Test (CSDT). In this study, the time and cost domains for MSDT and 

CSDT are investigated. The theoretical research in test completion time for the MSDT 

and CSDT is done to establish the most advantageous testing strategy from both a time 

and cost perspective. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction and Problem Statement 

Reliability is defined as the probability that the product will be able to perform its 

intended function in a specified working environment for a specified time. To evaluate 

the product reliability, companies execute reliability tests. In reliability tests, a random 

sample of the product is tested under assigned conditions. The test conditions are adjusted 

as closely as possible to the product working environment. Based on the results of the 

reliability test, statistical inference is used to estimate the product's reliability. Generally, 

two major testing procedures exist, termed "Time Truncated" and "Failure Truncated" 

tests. 

In "Time Truncated" tests, the products are tested to a predetermined time limit. Whereas 

in "Failure Truncated" tests, the test is terminated once the predetermined test results are 

collected. In the literature, "Time Truncated" tests are known as Type I tests and "Failure 

Truncated" tests, as Type II tests. 

Time and cost are inseparable parts of a reliability test. The cost and the time might be 

categorized as follows: 

Cost 

Components cost 

Unit testing time cost 

Total testing time cost 

Supervision cost 

Test equipment cost 

Operational cost 

Etc. 
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Time 

Run time or time to finish the test 

Total accumulated time or sum of times for all results 

Total failing time 

Total unfailing time 

Etc. 

Companies use specialized testing laboratories to perform the tests, where the capacity of 

the test stations is limited. This is a major restriction for reliability tests. Different testing 

strategies will vary in cost and time, so an optimum strategy for the reliability test would 

be desirable, to obtain the list expensive and fastest results. 

The parameters of a Type II test include the capacity of the test facility, the actual 

number of components placed on test, the termination of the test once a predetermined 

number of test results have been collected and the duration of the test. Also, important is 

the cost for test time and components as well as the desired confidence in the results. 

The investigation of varying test strategies to determine optimal test methods is the 

essence of this research. The efficiency of the test from a cost and time stand point will 

be considered in this research. 

This research will consider different Type II test strategies. The strategies are termed: 

the Modified Sudden Death Test and the Classified Sudden Death Test. 

Definition: A Modified Sudden Death Test (MSDT) is a failure (Type II) test, where the 

components are divided into Groups, and each Group is tested without replacement until 

a predetermined number of failures occur. Once there is the predetermined number of 

failures in a Group, the test is terminated for that Group and the next Group can be tested. 

The predetermined number of failures in each group is the same. 

2 



Definition: A Classified Sudden Death Test (CSDT) is defined herein as a failure (Type 

II) test where the components are randomly divided into Groups and all of the Groups are 

tested simultaneously until the predetermined number of failures is collected from each 

Group. The predetermined number of failures for each Group is the same. 

1.2 The Research Objectives 

The goals of the research are: 

1. To develop a simulation study in the time domain for the MSDT and CSDT to 

compare the total test duration. 

2. To do theoretical research in time duration for the MSDT and CSDT to 

analytically determine the total test duration. 

3. To compare the simulation study results as a validation for the theoretical results. 

4. To develop cost models as a basis for comparing the MSDT and CSDT. 

5. To determine optimum test strategies from a cost perspective for the MSDT and 

CSDT. 

6. From the cost models, establish optimum test strategies, considering number of 

components for the test and number of groups, as well as number of test results in 

each group under the budget limitation and with the desired confidence level. 

For this research the following assumptions will be made: 

• The components under consideration are mechanical and non-repairable. 

• The component life will be modeled by a two-parameter Weibull distribution, 

with a shape parameter greater than one. 

• For the sake of the comparison of MSDT and CSDT, the available testing 

facilities utilization and the number of test results collected by either test 

strategies will be the same. 

• The predetermined number of failures for each Group is the same for either test 

strategy. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Failure of Mechanical Components 

In real life, mechanical components fail due to unpredictable stress loads, where each 

load affects the material's molecular-microscopic strength by an amount proportional to 

the loads' stress level and duration. Each load contributes to the history of the molecules' 

bond damage or fatigue. As time passes, the history of progressive damage produces 

crack propagation at the highest stress concentrated point, which eventually causes 

failure. It is important to notice that mechanical components retain a fatigue history. 

The failed mechanical components sometimes may cause million-dollar projects to crash 

and shake the companies' shares in the financial market. E.g., "Suzlon Energy Ltd.", the 

largest wind-turbine maker, faced a 39% drop in share value in 2008. The cause was a 

breakage of one of the three 140 feet long wind-turbines, which was installed by 

"Suzlon" in Illinois.1 

Freudental and Gumbel (Freudenthal & Gumbel, 1953) discussed the fatigue 

phenomenon and showed that fatigue life has a Weibull distribution. The disruption 

produced by random stress cycles of the same amplitude S is inversely proportional to the 

number of stress cycles. Also, they showed that the probability density function p(N)s of 

the number of load cycles with constant stress amplitude S has a Weibull distribution. 

2.2 Weibull Distribution 

In 1951 the Swedish engineer Waloddi Weibull (Weibull, 1951) published an article 

entitled "A Statistical Distribution Function of Wide Applicability", which was a 

fundamental manuscript defining the essence of the Weibull distribution. In this article 

' "The Wall Street Journal", October 25-26, 2008, pp-B4A. 
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W. Weibull suggested that the model of the system, consisted of n subsystems, and that 

the system will fail when any one of the n subsystems fails to function. It was assumed 

that all subsystems fail independently. If one denotes the probability that the subsystem 

will fail by P and the probability that the system will fail by Pn, then the probability that 

the system will function would be the probability of the event that all nth subsystems are 

functioning. So, the probability that the system will function would be 

Equation 1 (1 - Pn) = (1 - P)(l - P)L{\ - P) 

Let the random variable X have a cumulative probability function F(X), which can be 

written in the form 

Equation 2 F(x) = 1 - e~"M 

where <p(x) is a function of x and F(x)~P(X<=x) or this is the probability of the event 

that the random variable X will be less than or equal to the threshold x. 

If the cumulative probability function of each subsystem to fail has a form 

Equation 3 F{x) = \-e"pix) 

then the cumulative probability function for the system to fail would be 

Equation 4 Pn = F(x) = 1 - e~Mx) 

The function <p(x) must be positive and nondecreasing, and does not necessarily have to 

equal zero. Also, the function <p(x) has a relationship to the F(x) in the following way 

Equation 5 cp(x) = Ln , 0 < F(x) < 1 
l~F(x) 
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and 

Equation 6 n<p{x) - nLn , 0 < F(x) < 1 
l -F(x) 

Thus, the simplest function, satisfying those conditions, has the following equation 

Equation 7 (*-*») 
XQ 

where xu ,x0 and m are constants and could be described as location, scale and shape 

parameters, respectively. 

So, the cumulative probability function for the system to fail would be 

Equation 8 F(x) = l-e x° 

This is the Weibull distribution function as given in Equation 8. The Weibull distribution 

is useful for many engineering component-reliability analyses. 

The cumulative probability function for the system failure, based on Weibull's article, is 

Equation 9 F(x) = \-e x" 

where xu -location parameter, x0 - scale parameter and m-shape parameter. 

One may write F(x) in the form of 

-f-T 
Equation 10 F(x) = l-eye) 
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where the location parameter is zero and the scale and shape parameters are 9 and p, 

respectively. (See Appendix A for Weibull distribution function). 

2.3 Distribution of the r* Ordered Statistic Out of n 

"Definition: Order Statistics is the technical name given to the items in a collection of 

data when they have been arranged in numerical order from the smallest value to the 

largest value." 

When dealing with random samples, those samples come in a random fashion. To answer 

particular questions like "What is a likelihood that in the random sample of size n, the rl 

in magnitude random variable would be less than or equal to any defined threshold ?", it 

is necessary to know what would be the cumulative probability or probability distribution 

functions of the r* out of n ordered random variable. In life test a group of products are 

all tested at the same time and the failure time data is always ordered. 

If the random variable "t" has the cumulative distribution function (cdf) F(t) and 

probability density functions (pdf) f{t), then the r* out of n ordered random variable trn 

has the cumulative distribution function Grn(t) and probability density functions gr„(t) 

(See Appendix B) which may be represented by: 

Equation 11 Grn (t) = P(trn < t) = £ rn\ 
,=r V l J 

F(ty(i-F(t)y-' 

Equation 12 grn{t) = n 
'n-W _.,,_, 
yr-ij 

F{tr\\-F{t)rrf{t) 
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2.5 Background for Sudden Death Test Strategy 

Johnson (Johnson, 1964a; Johnson, 1964b) discussed the procedure of running 

simultaneously more specimens than one intends to fail. Such a test is called an 

incomplete test. He showed that the testing time required to fail r specimens out of n 

would be significantly less than to fail r out of r. 

In fact, for a Weibull distributed failure time with the slope equal to 1, the median time to 

fail 10 specimens out of 20 is about 23.86% of the median time required to fail 10 out of 

10. If the slope is equal to 2, then it is about 48.85%, and if the slope is 0.5 then it is 

about 5.69%. 

This means that running more specimens than one intends to fail, reduces testing time, 

but logically increases the cost of the test by the cost of the unfailed specimens, as well as 

the need for more testing capacity. 

Johnson described the testing technique and called it a "Sudden Death" test. This is a test 

where specimens to be tested are grouped into sets of two or more and run 

simultaneously until the first failure occurs in each set. Once there is a first failure in a 

set, the test is terminated for that set. The first failure in each set is the first Order Statistic 

of the set. Looking upon each set as an assembly where the assembly fails if any one of 

the k specimens in it fails with Weibull failure distribution W{6, /?), then the assembly 

has a cumulative distribution function of the form: 

F =1-)*' Equation 13 assembl>' 

where 0X = —-

k1 
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Thus, the specimen's characteristic life is equal to the Sudden Death characteristic life 

times kvp. 

If the probability that the assembly fails by the time x is FasSembiy then 

\_ 
Equation 14 x = 6x(-\n{\-Fassembly)y 

So, the median time to fail 1 out of k is 

6 -
Equation 15 x = -T(\n(2))p 

For example, if the assembly consist of 8 specimens, k=8, then x in Equation 15 is an 

estimate of Bs.3 of the population. (B83 is equivalent to 91.7% reliability of the 

specimens). 

And the median time required for the r series Sudden Death failures is 

6 — 
Equation 16 (prx = (pr—p(ln(2))^ 

where <p converts the sum of medians into the median of the sum and is an empirical 

function, suggested by Johnson to be 

. ,„ (r- l )!r( l + l//?)(r-l + i:n2)1//? 

Equation 17 <p = ± '—y-—r-f^ '-— 
{Ln2fpT(r + \ip) 

The median time required to fail n out of n specimens is 

9 



Equation 18 x{=0(-ln(l-An(n))/> 

where the proportion of the population below the n* out of n ordered random variable is 

Kin). 

So the proportion of the median time of r series Sudden Death failures to the n out of n 

median time becomes 

Equations ^ = ^ 

* 1? 

ln(2) 
i 

-ln(l-4,(«) 

Johnson gave an example of having 80 specimens for the test and compared the median 

time to fail 80 out of 80 with the median time required for 10 Sudden Death sets of 8 

specimens each. He pointed out that 

(OYX 

"For a Weibull slope=l, the ratio —— reduces to 25.54% of the time required to fail 80 

out of 80, assuming the sets of eight are tested serially"2. 

Sudden Death testing is useful when the early deaths are inferior to the later ones because 

it is a point estimate of the 1st failure time out of k rank (e.g., in bearing applications one 

is interested in early failures rather than in later ones). 

2.6 Background for Modified Sudden Death Test Strategy and Related Works 

In 1998 Pascual and Meeker (Pascual & Meeker, 1998) compared sample sizes and the 

corresponding cumulative testing time estimators for a technique, which they termed 

Modified Sudden Death Test (MSDT). The comparison was to the traditional experiment 

2 Johnson, Leonard, The Statistical Treatment of Fatigue Experiments, 1964, 115, Elsevier Publishing 
Company, New York, pg.105. 
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test, assuming the life is Weibull distributed. They assumed that the traditional 

experiment test is a sequential test to a predetermined time length. 

The Sudden Death Test is a special case of the Modified Sudden death test when the 

number of failures in each set is equal to one. In the MSDT the number of failures in each 

set may be less than or equal to the number of components in the set. If r is the number of 

failures in the set and n is the number of components in the set, then r < n holds. 

Pascual and Meeker assumed that in the MSDT the total testing time is the sum of the 

times for each set. 

Let Ygr be the gth-set testing time with r number of failures in it, then the total testing time 

of the MSDT might be expressed as: 

g 

Equation 20 £ = Z X 

In order to estimate the mean and variance of the Yjr, the moment generating function of 

the Weibull order statistic was used. After which, the standardized version of the testing 

time L was given as L' and cumulants of L' were calculated. The standardized testing 

time L' was used to compute the q quantiles of L' by the Cornish-Fisher expansion 

approximation. Subsequently, these q quantiles of L' were used to compute q quantiles of 

L. 

The maximum likelihood estimators Y for the q quantiles of the Yir and the asymptotic 

variance of the maximum likelihood estimators of the Log(Jq) were computed. They 

found that the MSDT plans required a shorter time to estimate small quantiles than do 

traditional plans. 
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Vlcek, Hendricks and Zaretsky (Vlcek, 2004) in 2003 did a simulation study for virtual 

bearing life. The virtual bearings under examination were 50-mm bore deep-groove ball 

bearings. A total of 30,960 bearings were assessed in 33 sudden death test strategies 

comprising of 36, 72 and 144 bearing groups. Based on the Lunderberg-Palmgren work 

(Lundberg G., Palmgren A., 1949), it was assumed that bearing life was a two-parameter 

Weibull distributed, with the slope parameter equal to 1.11. Results from past studies 

have shown that most bearings with rolling elements have a slope parameter between one 

and two. 

The simulation study results were compared to the calculated theoretical results, based on 

the Lunderberg-Palmgren equations and Zaretsky's rule. The comparison was done 

between Bjo and slope parameter of simulated and calculated results, respectively. Based 

on the authors' previous work, the maximum and minimum variation equations for the 

Bio life and slope parameter were introduced. Also, simulated results were compared to 

these maximum and minimum variation lines. 

To achieve the predetermined results, the sudden death test requires less testing time than 

the sequential test (failure of the entire population by multiple testers). Nevertheless, in 

comparison to the variation lines, the trustworthiness of the results from the sudden death 

test were not as precisely descriptive for the entire population as those from the 

sequential test. However, the sudden death test, with some assurance, will provide the 

predetermined number of failures and/or test results. It was concluded that the variations 

in slope and shape parameters were functions of failed bearings, rather than number of 

bearings tested. Also, the authors stated that approximately 40% of testing time could be 

saved for achieving a predetermined number of test results, in comparison to the sudden 

death testing, provided that each subgroup is tested to failure or B5o (whichever comes 

first) and the test is terminated when the predetermined number of test results is 

collected. 

Jun, Balamurali and Lee (Jun & Balamurali, 2006) considered single and double 

sampling plans for lot acceptance, in which sudden death was the test strategy. They 

12 



assumed that the failure time was Weibull distributed and the shape parameter was 

known. They proposed a lot acceptability criteria under sudden death testing with fixed 

test positions and selectable number of groups. If one allocates n components to g groups 

of r, so that n=g*r holds, and by letting Yj be the time to the first failure from the i* group 

(i=l,..,g), under the assumption that the failure time is Weibull distributed with shape 

parameter /? and scale parameter X then they proved that: 

Equation 21 2X0rv ~ %2 

g 

where v = ^(3^) 
/=i 

For the single sampling plan, the lot acceptability criterion was suggested to be v > klf, 

g 

where v = ̂  Y? and Yt is the first failure time in the / group, L is the lower 

specification limit and the constant k is calculated based on either consumer or producer 

risk levels. 

The number of groups, which one may select, could be determined independently from 

the group size and the shape parameter. 

Arizono and Kawamura (Arizono & Kawamura, 2008) discussed a reliability test for the 

Weibull distribution with variation shape parameter based on sudden death lifetime data, 

where the Weibull distribution had the following form: 

Equation 22 / ( / ) = 
a J-

—tp~le e ,when t>0 
6 

0, when t <= 0 

They developed the sudden death reliability test, assuming that under given first and 

second type errors, the shape parameters of the acceptable and rejectable distributions did 

not match and belong to different intervals. They assumed that there were N testing 
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facilities, and each of them might run n specimens and all N testing facilities could run 

simultaneously. From each testing facility the first failure was collected and based on 

these N first failures the acceptance or rejection criterion was developed. The average, 

based on these N first failures, was computed and compared to the acceptance limit. 

The economical plan for the proposed reliability test was considered, in which the 

expected testing time was assumed to be equal to the largest value out of the first N 

failures. 

Motyka (Motyka, 2007) did a simulation study to compare a sudden death testing time 

with one from a traditional time terminated life test. Two sets of a hundred random 

samples from the same Weibull distribution were generated. One of them was assigned 

for the sudden death test, another one was assigned for the time terminated life test. The 

number of groups and sample sizes under the investigation for the sudden death test were 

the following: {25, 4}, {20, 5}, {14, 7}, {10, 10}, {7, 14} and {5, 20}. For each set of 

group and sample size, the random sample designated for the sudden death test was used. 

The lowest number from each subgroup was the time duration of the test for that 

particular subgroup. The maximum time from these lowest times in each subgroup 

represented the sudden death test duration, for the assigned set of groups and sample size. 

Based on these lowest times in each group, the Weibull parameters were estimated by a 

probability plot. The sudden death test duration was used as a cut off for the time 

terminated life test. Based on this cut off point, all the lowest random variables from the 

second generated random sample were selected. The Weibull parameters were estimated 

from the selected random variables. One of the findings of this study was that the shape 

parameter estimator has better properties than the scale parameter estimator, regardless of 

the test method. 
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CHAPTER 3 

PILOT STUDY AND METHODS 

3.1 MSDT and CSDT Testing Plans Simulation in Time and Cost Domains 

3.1.1 Number of Grouping Combinations 

The number of arrangements from the "N" elements, taken "n" at a time, without 

repetitions is known as the combination of "N chosen n". So, the combination of "N 

chosen n" is the number of sets that can be made up from the "N" elements, such that in 

each set there are exactly "n" elements, and no two sets are the same. 

The number of sets, where each set has exactly "k" subsets made up from the N elements, 

such that in each subset exactly "n" elements, where no two subsets are the same, is 

defined herein as the "Number of Grouping Combinations". 

The Number of Grouping Combinations is computed by: 

JV! 
Equation 23 G - -

(/!!)* 

For example, from the 6 elements ({1, 2, 3, 4, 5, 6}), it is possible to arrange 20 not-

repeating grouping combinations, such that each grouping combination is made up from 

2 subgroups where exactly 3 elements in each subgroup (see Table 1). 
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Table 1: All possible grouping combinations from six elements in two groups. 

# of Combinations 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Sub! 

2 
2 
2 
2 
2-
2 
3 
3 -
3 
4 

'roup 1 
2 
2 
2 
2 
3 
3 
3 
4 
4 
5 
3 
3 
3 
4 
4 
;5 
4 
,4 
•5 

5 

3 
4 

"5 
6 
4 
5 
6 
5 
6 
6 
4 
5 
6 
5 
6 
6 
5 
6 
6 
6 

Subgroup 2 
4 
3 
3 
3 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

5 
5 
4 
4 
5 
4 
4 
3 
3 
3 
5 
4 
4 
3 
3 
3 
2 
2 
2 
2 

6 
6 
6 
5 
6 
6 
5 
6 
5 
4 
6 
6 
5 
6 
5 
4 
6 
5 
4 
3 

3.1.2 Run Time for the Failure Test 

The run time or time to finish the test is the completion time for the reliability test. For 

the failure truncated tests the run time depends on the mode of the test. 

3.1.2.1 Run time for the serial failure tests 

If k Groups of n components are tested serially until the r* failure in each Group, then the 

run time for the test will be the sum of the rth failure-times in each Group. 

Let tr:n,k be the rth failure-time out of n components in the kth Group, then the time to 

finish the test serially is computed by the following: 

Equation 24 7 > Z W 
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3.1.2.2 Run time for the parallel failure tests 

If k Groups of n components are tested in parallel until the r failure in each Group, then 

the time to finish the test will be the maximum time out of the r* failure-times of each 

Group. 

Let tr:n,k would be the rth failure-time out of n components in the kth Group, then the time 

to finish the parallel test is computed by the following: 

Equation 25 Tp = max{trnl...trnr..trnk} 

3.1.3 Total Accumulated Time for the Failure Test 

The total accumulated time or Total time on test is the total observed testing times for 

both the failed and survived components in the test. 

If n components are tested simultaneously until the r* failure, then the accumulated time 

for the test is a summation of the all "r" failures plus "n-r" survived components testing 

times. 

Let tr:n would be the rth failure time for a Group of n components, then the accumulated 

time for the Group is computed by the following: 

Equation 26 Tac = £ t ,„ +(n-r)*trn 

If k Groups of n components are tested serially or in parallel until the r* failure in each 

Group, then the total accumulated time for the test is the sum of the accumulated times in 

each Group. 
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Let tr:njk would be the r failure time out of n components in the k Group, then the total 

accumulated time for the test (parallel or serially) is computed by the following: 

Equation27 Tles, ac = £ r j =f\ £/,:ilJ+(n-r)*trnJ 

3.1.4 Run Time Cost or Supervision/Technician Cost 

Run time cost or Supervision/ Technician Cost associated with how long the test was run 

and depend on the test mode. 

If C3 is the technician cost per unit testing time and Ts or Tp is the run time for the test in 

serial and parallel modes, then Supervision/Technician Cost is computed by 

Equation 28 Cs=c3*T, 

or 

Equation 29 Cs=c3*Tp 

3.1.5 Total Accumulated Time Cost 

Total accumulated time cost or Total testing time cost is the cost related to the facilities 

or equipment usage during the reliability test. The facilities and equipment costs might 

also be expressed proportional to the unit testing time. 

Total accumulated time cost for the serially or parallel tests is equal to the total 

accumulated time of the test multiplied by the unit testing time cost. 
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If ci is unit testing time cost and Ttest_ac is total accumulated time for the test, then the 

total testing time cost is computed by the following: 

Equation 30 CTTC = c, * Tlesl_ac 

3.1.6 Total Components Cost 

Total Components Cost, associates with the tested components, is the cost of all 

components used in the reliability test. 

If during the reliability test, a total of N components were used, disregarding the number 

of results collected, and the cost for the unit component is C2, then the total cost for the 

components is calculated by the following: 

Equation 31 Cc -c2*N 

3.1.7 Total Operational Cost 

If Cs is the supervision cost (run time cost), CTTC is total testing time cost (total 

accumulated time cost), Cc is total components cost and for the reliability test, then total 

operational cost is the sum of these costs. 

Equation 32 C0P - Cs + CTTC + Cc 

If k Groups of n components are tested serially until the r* failure in each Group, then 

total operational cost could be computed by: 
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(k 

Equation 33 COP = c, 
k f r \ \ k 

\J= V'=i J 

If k Groups of n components are tested parallel until the r111 failure in each Group, then 

total operational cost could be computed by: 

Equation 34 

^OP ~ c\ 

3.1.8 Computational Formulas Discussion 

The time to finish the test Ts or Tp could be computed by Equation 24 or Equation 25. 

Also, this depends on the number of components in the test, the predetermined number of 

results for the test and the testing mode (either a serially or parallel test). 

The time to finish the test in serial mode, is a random variable, which is the summation of 

the ordered random variables. Time to finish the test in parallel mode, is another random 

variable, which is the maximum value of these ordered random variables. 

In the cost domain, the operational cost Equation 32 is constituted from three major 

components: total testing time cost Equation 30, total components cost Equation 31 and 

run time cost Equation 28 or Equation 29. 

Total components cost could be computed by Equation 31 and it primarily depends on the 

unit cost of a component and the total number of components tested during the test. 

The total component cost is a part of the variable cost or operational cost, but it is not 

affected by any random variability pattern. 
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Total accumulated time is a random variable and total testing time cost depends on the 

total accumulated time, because total accumulated time comes from the ordered random 

variables. 

Supervision cost primarily depends on the run time, which is also constituted from 

random variables. 

In this research, the investigation to the "supervision cost" and "total accumulated time 

cost" as random variables would be done. Also, by the desired confidence, the easiest and 

fastest way to estimate a Bp life for the time to finish the test will be investigated. 

3.1.9 Simulation Study for MSDT and CSDT in Time and Cost Domains 

The goal of this simulation study is to compare MSDT and CSDT in the time and cost 

domains. 

In the time domain the emphasis is given to the "Time to Finish the Test" category by 

using Equation 24 and Equation 25. In cost domain the emphasis is given to the "Total 

Testing Time Cost" category by using the Equation 30. 

Let us assume that the component under the investigation is a coupling3, which has a 

Weibull failure distribution with scale parameter equal to 2.5 and shape parameter equal 

to 75,000. 

The parameters of the tests are the following: 

• Number of available testing facilities is sixteen (A=16) 

• Number of components in the test is sixteen (N=16) 

3 Source: http://www.barringerl.com/wdbase.htm 
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• Predetermined number of failures for the test is twelve (R=12) 

• Number of Groups is four (k=4) 

• Number of components in the Group for MSDT is sixteen (n=16) 

• Number of components in the Group for CSDT is four (n=4) 

• Designated number of failures for any Group in MSDT and CSDT is three (r=3) 

• Unit testing time cost is one dollar (ci= $1) 

Single Simulation Run Steps Description for of MSDT. 

Step 1: Draw k random samples of size 16. 

Step 2: Put each random sample in ascending order. 

Step 3: For each random sample, choose the rth element in magnitude as a time to finish 

the test for the Group. 

Step 4: For each random sample, compute Accumulated Time by using Equation 26. 

Step 5: Sum all k results in Step 3 as a Total Time to Finish the Test. 

Step 6: Sum all k results in Step 4 as a total accumulated time. 

Single Simulation Run Steps Description for CSDT. 

Step 1: Draw k random samples of size 4. 

Step 2: Put each random sample in ascending order. 

Step 3: For each random sample, choose the r* element in magnitude as a time to finish 

the test for the Group. 

Step 4: For each random sample, compute Accumulated Time by using Equation 26. 

Step 5: Choose maximum of all k results in Step 3 as a Total Time to Finish the Test. 

Step 6: Sum all k results in Step 4 as a total accumulated time. 

Results of the Simulation Study for 20,000 Runs. 

Figure 1 shows "Time to Finish the Test" histograms for MSDT and CSDT for 20,000 

runs. 
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Figure 1: "Run time" histograms for MSDT and CSDT. 
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Figure 2 shows "Total accumulated time cost" histograms for MSDT and CSDT for 

20,000 runs. 

Figure 2: "Total accumulated time cost" histograms for MSDT and CSDT. 
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Figure 3: 
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Figure 3 shows the Empirical cumulative distribution functions for MSDT and CSDT 

Cost and Time Domains, if Time is in ascending order. 

Figure 4: "Time to finish the test" and "Total testing time cost" values by ascending 
order. 
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Figure 4 shows "Time to finish the test" and "Total testing time cost" plots by ascending 

order. 
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3.1.10 Simulation Study Discussion 

Based on the Figure land Figure 2, the cost of the test and time to finish the test for 

CSDT are superior to MSDT. 

From Figure 3 with 97% of assurance it can be claimed that the time to finish the test for 

CSDT is smaller than the MSDT. For the first type error of 3% , corresponding second 

type error is about 4.2%. 

From Figure 3, with 99.83% of assurance it could be claimed that the cost to finish the 

test for CSDT is smaller than for the MSDT. For the first type error of 0.17% , 

corresponding second type error is about 0%. 

Based on the Figure 4, there is a positive correlation between the time to finish the test 

and the cost of the test for CSDT and MSDT. Generally, based on the simulation results 

the proposed CSDT is superior to the MSDT. 

3.2 Derivation and Development of the Computational Formulas and Methods 

3.2.1 An Approach to Calculate the r* Out of n Ordered Random Variable 
Quantiles 

3.2.1.1 The rank distribution 

If one wants to know "What is the percentage of the population below the r* out of n 

ordered random variable", one may answer this question by using the rank distribution. 

Given that the probability distribution and density functions of the r* ordered statistic out 

of n are known and may be represented by Equation 11 and Equation 12: 

GrJ,(.t) = P(trjl<t) = fi . |F(0'(1-F(/))" 
' / ^ 

i=r V ' J 
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Let pc be the percentage of the population below some time tc, that is pc = P(t <tc). 

If tc - trn then prn - P(t < trn) would be the percentage of population below the time 

of the rth out of n ordered statistic (Lamberson & Kapur, 1977, 297-303). 

Note that, if Prn =P(t< trn) then trn = F'1 {prn). 

Also, 

Equation 35 GrM = ?«,-, <O = P{F-\prn)<tc) = P(pnn <pe) = Qr.„(pc) 

From Equation 11 and Equation 12 we know that 

n-\ 
GrM = J grn{t)dt =\n\ F{tT\\-F(t)Trf{t)dt 

r-\ 

Let p = P{T <t) = F(t), then dp = f{t)dt, also when t = -oo; p = 0 and t = tc;p = pc 

So, 

Equation 36 Qrn(Pc) = P(Prn ^Pc)=\n 

K'-h 
p'-\\-pTrdp 

And 

Equation 37 qr„(Pc) =
 n 

pr^-Pc)™ ( f - l ) ! ( / i - r ) ! prv-pcr
r 

where Qr„(pc) and qr„(pc) are the CDF and PDF of the random variable prn, and pc is 

defined within 0 < pc < 1. 
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One could recognize that qr.n(Pc)
 ls t n e w e ^ known Beta distribution: 

Equation 38 f(x) = T^a + f3) / - ' (1 - x)^ 

where 0 < x < 1 

Equation 39 F(x) = f T(a + W ua-\\-u)p-xdu 

Equation 40 E(x) = 

Equation 41 Var{x) = 

a + P 

aj3 

(a + j3y(a + j3 + \) 

Let 

r - a and n-r + \ = jB and using the fact that r(n)=(n-l)! 

Then 

Equation 42 qrn{pc) = — — -pj \\-pJ =-f— - £ / > / ' ( 1 - / 0 
( r - l ) ! (n-r ) ! r ( r ) r ( « - r + l) 

where 0 < pc < 1 

p. r(r + « - r +1) r_, 
Equation 43 Q,M= f ' , * j ^ ' a - " ) " " ^ 

o r ( r ) r ( / i - r + l) 

A" A" 

Equation 44 is(/7c.) = • r+n-r+\ n+\ 
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Equation 45 Far(pc) = ^= - = —K—7 — 
c (r + n-r + \)2(r + n-r + \ + \) (n + \f{n + 2) 

3.2.1.2 Technique of computing the ordered statistic time for a desired quantile 

Recall from Equation 11 that the probability distribution function of the r* order statistic 

out of n has the following form: 

Gr„{tc) = P{trn<Q = Yj 

fn\ 

\1J 
F{tj{\-F{tc)r 

If one would like to know the ( 1 - a ) level quantile of the time tc, then the inverse 

transformation of Equation 1 can be applied: 

Equation 46 tc = G;l (1 - a) 

This calculation is difficult to do manually and is more suitable to a computer algorithm. 

Recall that Equation 42 is a Beta distribution and pc can be computed for a (1-or) 

quantile level if we apply an inverse transformation of Equation 43: 

Equation 47 P c = 0 ^ ( l - t f ) 

but pc = P{t <tc), therefore the inverse of it will be 

Equation 48 tc=F-\pc) 

and because of the relationship in Equation 36, this is the ( 1 - a ) level quantile of the 

time L. 
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3.2.1.3 The results verification for the suggested approach 

In this Section the following steps will be accomplished: 

• By computer algorithms the time for the desired level quantile by Equation 11 

will be calculated. 

• Next, the same time for the same desired quantile by Equation 47 and Equation 48 

will be found. 

• Then the results from both techniques will be compared. 

Let's assume that the r.v. t has a Weibull parent distribution with the scale parameter 100 

and shape parameter 1.5. Our goal is to find the 95% level quantile of the 5th out of 10 

ordered random variable. 

By Equation 11 and a computer algorithm, the empirical cumulative distribution function 

(CDF) was calculated for the values of abscissa from 0 to 200 with 0.5 increments. Then, 

based on the closest values to 0.95 the linear interpolated value for "tc" was found, which 

is 112.44 (see Figure 5). 

By Equation 47 and Equation 48 the value of "tc" was calculated at 0.95 level quantile, 

which is 112.43. 

Microsoft Office Excel 20034 has a spreadsheet function for the Beta distribution, this 

Excel function can be applied for our example to find the value for the pc as 

"=BETAINV(0.95,5,6)", which yields pc= 0.6964. Since, the parent distribution is 

Weibull (1.5; 100), the inverse of it at the point 0.6964 will be 

tc = 100 (-Ln(l- 0.6964))^, which yields tc = 112.43 . 

4 Trademark, Microsoft Corporation, Redmond, WA, 98052 
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The slight difference in values of "tc" was noticed, between the suggested method and 

interpolated one. As the increment of abscissa is decreasing, the interpolated value gets 

closer to the suggested method value. 

Figure 5: 95% quantile level value for the 5th out of 20 ordered random variable, 
assuming the parent distribution is Weibull with shape parameter 1.5 and scale parameter 

100. 

1 

0.8 

0.6 

0 .4 

0 .2 

0 
C 

0.02 

0.015 

0.01 

0.005 

-

-

-

) 

0 

, 
2 0 

2 0 

0.95 

^^^ 
4 0 

4 0 

/ 

6 0 

6 0 

CDF of 5 out of 20 

80 100 120 

PDF of 5 out of 20 

\ 

\ 

T£|L 

80 100 120 

o 

, 
1 4 0 

1 4 0 

CDF 
Interpolated 
Suggested method 

. 
160 180 200 

160 180 200 

In Figure 5 the values of interpolated and suggested methods are depicted. 

3.2.1.4 For the suggested quantile levels, the interval limits for the rth out ofn ordered 
random variable 

Let's assume that the r.v. t has a Weibull parent distribution with the scale parameter 100 

and shape parameter 1.5. Our goal is to find the interval limits for the 5th out of 10 

ordered random variable, where it lies in the interval with probability 0.90. So we have to 

find P(L < r5:10 < U) = 0.90. Which means L and U are 0.05 and 0.95 level quantiles. 

Using the suggested method the limits were found to be L= 39.85 and U=l 12.44 (see 

Figure 6). 
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Figure 6: 5% and 95% quantile level values for the 5th out of 20 ordered random 
variable, assuming the parent distribution is Weibull with shape parameter 1.5 and scale 

parameter 100. 
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Please note that the Upper and Lower limits do not depend on 5th out of 10 ordered 

random variable value. This means that 5th out of 10 ordered random variable value, from 

Weibull parent distribution with shape parameter 1.5 and scale parameter 100, will be 

within the interval limits by 0.90 probability. 

3.2.1.5 Illustrative example 

Assume the failure distribution of a roller bearing is a Weibull distribution with shape 

parameter 1.7 and scale parameter 100,000. There is a mechanism, consisting of 20 such 

bearings and it is functioning, if at least any 5 bearings are working. Quote the limits 

within which the mechanism will fail, with 90% of probability (proportionally tailed)? 
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The mechanism will function until the 15 failure out of 20, where parent distribution is 

Weibull with shape parameter 1.7 and scale parameter 100,000. So we have to find the 

5% and 95% quantiles of the 15th out of 20 ordered random variable. 

For 5% quantile: by Equation 11, the pc =0.54442, where Beta distribution parameters 

are a =15 and /?=6. Using Equation 12 for Weibull distribution, tc = 86,804. 

For 95% quantile: by Equation 11, the pc =0.86045, where or =15 and 0=6. Using 

Equation 12 for Weibull distribution, tc= 148,979. 

So, the mechanism will fail with 90% probability between 86,804 and 148,979. 

3.2.1.6 Verification of the proposed approach, using computer algorithm assuming the 
parent distribution is Weibull, Normal or Uniform 

In this Section a computer algorithm will be used to verify the proposed method for 

several distribution functions, commonly used in reliability testing. In this numerical 

analysis, the 10% and 90% quantile times for the r=13 out of n=20 ordered random 

variable for each of the following parent distribution will be computed. 

• Weibull, with the shape parameter 5 and scale parameter 10,000, 

• Normal with mean 10,000 and standard deviation 500, or 

• Uniform within the interval [8,500; 11,500]. 

Using Equation 1 the empirical CDF will be constructed for the following fixed points in 

time: 

• For the Weibull parent distribution, the abscissa values vary from 0 to 15,000 

with increments of 1. 
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• For the Normal parent distribution, the abscissa values vary from 8,000 to 12,000 

with increments of 1. 

• For the Uniform parent distribution, the abscissa values vary from 8,500 to 11,500 

with increments of 1. 

Then, a linear approximation will be applied to find the 10% and 90% quantile times. 

The interpolated results will be compared with the proposed method, using Equation 47 

and Equation 48. Figure 7, Figure 8 and Figure 9 depict the interpolated and proposed 

method values for the 10% and 90% quantile times of the 13th out of 20 ordered random 

variable, from Weibull, Normal and Uniform parent distributions, respectively. It was 

noticed that as the increment of abscissa is decreasing, the interpolated value gets closer 

to the proposed method. 

Figure 7: 10% and 90% quantile level values for the 13th out of 20 ordered random 
variable, assuming the parent distribution is Weibull with shape parameter 5 and scale 

parameter 10,000. 
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Figure 8: 10% and 90% quantile level values for the 13th out of 20 ordered random 
variable, assuming the parent distribution is Normal with mean 10,000 and standard 

deviation 500. 
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Figure 9: 10% and 90% quantile level values for the 13th out of 20 ordered random 
variable, assuming the parent distribution is Uniform within the interval [8,500; 11,500] 
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As we see in Figures 7,8 and 9, the proposed method is accurate and theoretically proved. 
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3.2.1.7 The r out ofn ordered random variable behavior under a Weibull parent 
distribution, with shape parameter greater than unity 

In this Section, we will investigate the distributional behavior of the ordered random 

variable for a Weibull parent distribution, where the shape parameter is greater than 

unity. We will use the previously developed method for the quantile time computation. 

The following assumptions will be made: 

• Number of components on the test is 20 (n=20). 

• Number of failures varies from 1 until n. (r=l :n). 

• The shape parameter is increasing by 0.2 increments, starting from 1 until 6. 

• The scale parameter is 100. 

• The 0.10 and 0.90 level quantiles limits are of interest. 

Figure 10: 10% quantile times depending on the shape and r order random variable. 
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Figure 10 shows the 10% quantile limits depending on r* ordered random variable and 

the shape parameter beta, respectively. 

For the fixed beta, an increase in the r* ordered random variable out of 20 results in an 

increase of the 10% level quantile times. But for a fixed rth ordered random variable out 

of 20, an increase in beta results in an increase of the 10% quantile times until the 16th 

ordered random variable out of 20. 

Figure 11: 90% quantile times depending on the shape and rth order random variable. 
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Figure 11 shows the 90% quantile limits depending on rth ordered random variable and 

shape parameter beta, respectively. 

For a fixed beta, an increase in the rl ordered random variable out of 20 results in an 

increase of the 90% level quantile times. But for a fixed rth ordered random variable out 
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of 20, an increase in beta results in an increase of the 90% quantile times until the 11 

ordered random variable out of 20. 

Figure 12: 63.2121% quantile times depending on the shape and rth order random 
variable. 

Figure 12 shows the 63.21% quantile limits depending on r ordered random variable and 

shape parameter beta, respectively. 

For a fixed beta, an increase in the r* ordered random variable out of 20 results in an 

increase of the 63.21% level quantile times. But for a fixed rth ordered random variable 

out of 20, an increase in beta results in an increase of the 63.21% quantile times until the 

13th ordered random variable out of 20. 
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Figure 13: 50% quantile times depending on the shape and r* order random variable. 
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Figure 13 shows the 50% quantile limits depending on rm ordered random variable and 

shape parameter beta, respectively. 

For a fixed beta, an increase in the r* ordered random variable out of 20 results in an 

increase of the 50% level quantile times. But for a fixed r* ordered random variable out 

of 20, an increase in beta results in an increase of the 50% quantile times until the 14th 

ordered random variable out of 20. 
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Figure 14: 10% and 90% quantiles depending on the shape and rth order random variable 
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Figure 14 depicts both the 10% and 90% levels quantile times for the rl out of 20 ordered 

random variable in one plot. 

The difference in these surfaces is the 80% range for the rth out of 20 ordered random 

variable, from the 10% quantile to 90% quantile times. 

As the range lowers, the variability for the rth out 20 ordered random variable lowers. 
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Figure 15: Quantile range depending on the shape and r^ order random variable 
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Figure 15 illustrates the 80% range surface, from 10% quantile to 90% quantile times, 

depending on the r* out of 20 ordered random variable and beta values. 

Figure 16: Contour plot of quantile ranges. 
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Figure 16 is the contour plot for the 80% ranges, from 10% quantile to 90% quantile 

times. The lowest ranges were observed for the following cases: 

• Case 1. Beta between 1 and 1.1 and r is 1. 

• Case 2. Beta between 5.8 to 6 and r between 10 and 17. 

Another way to interpret this: these are the cases where the variability of the rth ordered 

random variable out of 20 is the lowest, in the possible ranges. 

3.2.1.8 Conclusion 

The proposed technique uses the beta distribution to find the proportion of the population 

that is less than the rth out of n ordered random variable, for any desired quantile. Then, 

by using the inverse of the parent distribution at the designated proportion, the time could 

be found. It is shown that this time corresponds to the r"1 out of n ordered random 

variable quantile. 

The proposed technique is easy, straight forward and theoretically sound. Using the 

proposed technique, the time for the rth out of n ordered random variable for the desired 

level quantile could be found. It is shown that the developed method is accurate and 

could be applied to any continuous type parent distribution. 

Moreover, in reliability testing the rth out of n ordered random variable time corresponds 

to the Type II testing time (Failure truncated testing time). So, by the proposed method 

the test completion time by the desired probability could be computed, assuming the 

parent distribution and its parameters are known. 

If the parent distribution is Weibull, then an increase in the rth ordered random variable 

out of n for a fixed shape parameter greater than unity, will increase the time of the rth out 

of n ordered random variable. 
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If the parent distribution is Weibull, then an increase in shape parameter, starting from 

unity, for the rth out of n ordered random variable, will not always affect an increase in 

the time of the rth out of n ordered random variable. 

The behavior of the r* out of 20 ordered random variable time, with the increase of the 

shape parameter starting from unity and the Weibull parent distribution where scale 

parameter is 100, is summarized in Table 2. 

Table 2: rth out of 20 ordered random variable behavior. 

Until r* failure Increases 
After rth failure Decreases 

Quantile Levels 

10% 
15 
16 

50% 
13 
14 

63% 
12 
13 

90% 
10 
11 

3.2.2 Maximum Ordered Random Variable from the Sample Size k 

3.2.2.1 Derivation of the CDF and PDF for the maximum ordered random variable from 
the sample size k 

Time to finish the test for the CSDT approach to the life testing is a random variable 

defined as a maximum of all k times, which are r* out of n ordered random variables. 

Based on CSDT definition, the test will be terminated when the r* failure occurs in each 

of k groups, comprehended from n components. 

In this Section we will develop CDF and PDF for the time to finish the test under CSDT 

approach. 

Given that the probability distribution and density functions of the r' ordered statistic out 

of n are known and may be represented by Equation 11 and Equation 12: 

G„,(t) = P(t„*t) = fi 
^ 

\lJ 
F(0'(1-F(0)" 
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8r.M = r 
fn\ 

\rJ 
F{tT\\-F(t))-r+x-xf(t) 

Let the sample of size &ofthe reordered statistic out of n be: trnl;trn2;...;trnk. 

The random variable f™"t will be formed from the klh sample in the following way: 

Equation 49 /™ = max{tr.ny,trn2;...;trnk} 

This random variable describes the termination time of a CSDT with n components in k 

groups. 

Also, let us define the CDF and PDF for the random variable f™„" as Mrnk{t) and 

mrnk{t), respectively. 

By definition from Equation 49, it follows that: 

Equation 50 
= P(trMil <t)P(tr:na<t)-P(trn<k <t) = {P(trn<t))k=(Grn(t))k 

Equation 51 r"-k{l) dt dt r" lu™WJ 

= k*mJt)*Mr:n,_l(t) 

Please note that: 

Equation 52 Mrn,{t) = Grn{t) 
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And 

Equation 5 3 m,„, (/) = mrn (t) 

Based on Equation 50 and Equation 51, Mrnk(t) = (Grn(t)) and 

\ * - l 

From Equation 50 and Equation 52 follows that: 

Equation 54 MrnM (t) = (Grn (Of ' * GrM (t) = Mrn^ (t) * MrnA (t) 

From Equation 54, it is noticed that CFD for t^k is a recursive function. 

Substituting Mrn k_x(t) from Equation 54 into the Equation 51 we will get: 

Equation 55 m {t) = k*g {ty^i!iM 

Let the function Ornk(t) be defined as: 

Equation 56 0 ( 0 = 3 a * ^ 

From Equation 55 and Equation 56 follows that: 

orn.k(0 
Equation 57 k = 

or,..(0 
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Please note that: 

Equation 58 Orn (/) = = -f1— 

So function 0,.n(t(7)is proportional to the number of groups (k) and mrnk(t)could be 

expressed as: 

Equation 59 mrj,J[(t) = k*Orj,il(t)*{Gr.J,(t))
k 

The tables for the different values of r and n for the function Ornl(t) might be provided. 

So the PDF mrnk(t) might be evaluated for any number of groups (k). 

Time to finish the test under CSDT approach as a random variable, the PDF mrnk{t) and 

CDF Mrnk{t) are derived. These might be computed by Equation 50and Equation 59. 

3.2.2.2 Quantile limits for the maximum ordered random variable 
from the sample size k 

Let p be the percentage of the population below some time tc, such that/?c = P(T <tc). 

If tc = trn then prn - P(t < trn) would be percentage of population below the time of the 

r'h out of n ordered statistic and trn - F~l(prn). 

If tc = t™k then prnk =P(t<t^k) would be the percentage of population below the 

maximum time of the r'h out of n ordered statistic from sample size k and 
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From Equation 50, 

Equation 60 Mrnk{tc) = P(t™ <tc) = P(F-\prnk)<tc) = P(prn,k <pc) 

Also 

Equation 61 

Mr,M = P(t™ S K) = (P(f„ < tc))
k = (P(F-\prn) < Of = {P{pr„ < pc))

k 

From Equation 60 and Equation 61 follows: 

Equation 62 Mr:„_k(tc) = P ( Q * O - P(pr,,k * Pc) = (P(Pr, * Pc))* = {QnWf 

In Section 3.2.1 it was shown that the random variable prn has a Beta distribution 

function Qr„(pc) with a = r and /? = n-r + l parameters, where the CDF is defined as: 

Equation 63 Qrn(Pc) = j ^ " ~ r + 1)
n ^ ( 1 - «)"du 

If one would like to know the ( 1 - a ) level quantile of the time t™™k, then for fixed points 

of time t, the Mrnk{t) must be computed using the relationship in Equation 50. After 

which, using the interpolation technique the (1 -a ) level quantile could be determined. 

This calculation is very hard to do manually and it is more suitable to use a computer 

algorithm to do the computation. 

Herein, a novel approach is proposed to find the (1-or) level quantile of the time t™™k by 

using the rank distribution. 
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Recall that Equation 63 is a Beta distribution with parameters a - r and /3 = n-r + l and 

\_ 
pc can be computed for (\-a)k quantile level if we apply an inverse transformation of 

Equation 63: 

Equation 64 pc = (£}„ ((l - or)*) 

but pc = P(t <tc), therefore the inverse of it will be 

Equation 65 tc = F~\pc) 

and because of the relationship in Equation 14, this is the (I-a) level quantile of the 

time / - . 

3.2.2.3 Verification of the proposed approach, using computer algorithm assuming the 
parent distribution is Weibull, Normal or Uniform 

Verification of the proposed method for the several distribution functions (Weibull, 

Normal and Uniform) by using a computer algorithm was done. In this numerical 

analysis, the 10% and 90% quantile times for the r=13 out of n=20 ordered random 

variable from the sample size of k=30 for each of the following parent distribution will be 

computed. 

• Weibull, with the shape parameter 5 and scale parameter 10,000, 

• Normal with mean 10,000 and standard deviation 500, or 

• Uniform within the interval [8,500; 11,500]. 

Using Equation 50 the empirical CDF will be constructed for the following fixed points 

in time: 

47 



• For the Weibull parent distribution, the abscissa values vary from 0 to 15,000 

with increments of 1. 

• For the Normal parent distribution, the abscissa values vary from 8,000 to 12,000 

with increments of 1. 

• For the Uniform parent distribution, the abscissa values vary from 8,500 to 11,500 

with increments of 1. 

Then, a linear approximation will be applied to find the 10% and 90% quantile times. 

The interpolated results will be compared with the proposed method, using Equation 64 

and Equation 65. 

Figure 17, Figure 18 and Figure 19 depict the interpolated and proposed method values 

for the 10% and 90% quantile times of the maximum 13th out of 20 ordered random 

variable from the sample size 30, from Weibull, Normal and Uniform parent 

distributions, respectively. It was noticed that as the increment of abscissa is decreasing, 

the interpolated value gets closer to the proposed method. 

Figure 17: 10% and 90% quantile level values for the 13th out of 20 ordered random 
variable from the sample size 30, assuming the parent distribution is Weibull with shape 

parameter 5 and scale parameter 10,000. 
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Figure 18: 10% and 90% quantile level values for the 13th out of 20 ordered random 
variable from the sample size 30, assuming the parent distribution is Normal with mean 

10,000 and standard deviation 500. 
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O Interpolated 
* Proposed method 

6.9 0.92 0.94 0.96 0.9! 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 L IB 

PDF of the Maximum 13lh out of 20 from Sample Size 30, parenl distribution Nonnal(10,000;5CO) 

PDF 

O Interpolated 
* Proposed method 

0.9 0.92 0.94 0.96 0.91 1.02 1.04 1.06 1.06 1.1 1.12 1.14 1.16 1.16 1.2 

Figure 19: 10% and 90% quantile level values for the 13th out of 20 ordered random 
variable from the sample size 30, assuming the parent distribution is Uniform within the 

interval [8,500; 11,5001. 
CDF of the Maximum 13lh out of 20 from Sample Size 30. parent distribution Unrform[B,500:11500| 

PDF of the Maximum 13th out of 20 from Sample Size 30, parent distribution Unrfomij8,500:11,500] 
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3.2.2.4 Conclusion 

The pdf and cdf for the Maximum Ordered Random Variable from the Sample Size k 

were derived. It was noticed that cdf is a recursive function. 

Also, a new approach to calculate quantile for the Maximum Ordered Random Variable 

from the Sample Size k was proposed. The proposed method is accurate and theoretically 

proofed. The proposed method is fast, easy and straightforward in calculation. 

3.2.3 k* Sum of the Order Statistics 

3.2.3.1 Background: the sums of the ordered random variables 

Definition: Let X and Y be two independent continuous random variables with density 

functions f(x) and g(y), respectively. Assume that both f(x) and g(y) are defined for all 

real numbers. Then the convolution f * g of f and g is the function given by: 

+inf +inf 

Equation 66 (f * g)(z) = j f(z-y)g(y)dy = J g(z-x)f(x)& 
-inf -inf 

If the CDF and PDF of the Weibull distribution are defined as: 

F(t) 

0 -H 
Equation 67 /(f) = -^-/""'e {e) 

where t,0,0>O 

then the PDF of the rth out of n ordered random variable, with the Weibull parent 

distribution, will be: 
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Equation 68 W,:„(0 = H 
n-V 

r-\ 
\-e I JTi,«J 

d" 
t" 'e 

The convolution function for two independent r* out of n order random variables, with 

the same parent Weibull distribution is defined as: 

Equation 69 

Zr:„,2<» = 

AT! 

' rn-\\p^ 
yr-\j ep 

1 
•«\M 

\-e l-e {imA^TL-ii) 
) 

( r-rv 

; 

e 

\ J 
( ( * -< ) ' ) 

fl-i WM dt 

where z is a random variable defined as sum of the two r* out of n order random 

variables, with the same parent Weibull distribution. 

An extended research of the literature did not reveal the explicit form for the PDF of the 

sum of the more than one ordered random variables with the same parent Weibull 

distribution. As we see from Equation 69 the integration is complicated and becomes 

more complicated when the sum is defined for more random variables. 

As we mentioned in the literature review, the sums of the random variables also could be 

approximated by the Cornish Fisher expansion. This is a complicated and hard approach, 

where computer software has to be used. To extend this approach for the ordered random 

variable in order to find an approximate quantile value, the mean and variances of the 

ordered random variable are required (It should be mentioned that mean and variances of 

the ordered random variable with the Weibull parent distribution might be computed by 

the Equation ). Then it might be assumed that the kth sum of the ordered random variable 

distribution is approximately normal and by using the standardization technique to find 

the quantile values. 
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3.2.3.2 Simulation study of the convolution of the ordered random variables from the 
Weibull distribution and the comparison with the \ — a level quantile limit sums 

Let's assume k groups of n components are tested in series to the rth failure in a group. 

So, once the rth failure from the first group is obtained the second group will be tested. If 

the same logic will be extended for the k groups, then the time to finish the test will be 

the k* sum of the rth out of n ordered random variables. 

In the previous Section we develop the technique, to find the I-a level quantile limit for 

the rth out of n ordered random variable, from any continuous type PDF parent 

distribution. 

For the parent distribution, if the parameters of the parent distribution, the number of 

components in the test (n) and the number of the results from each group ( r) are the 

same, then for the same 1 - a level quantile the limits are going to be the same for the all 

k groups. Adding these limits together or just multiplying the I-a level quantile limit by 

the number of groups (k) and comparing the result with the \-a level quantile limit 

from the empirical distribution is the goal of this chapter. 

Let's assume that the two groups of twenty components are tested in a series mode until 

the fifth failure, from a Weibull parent distribution with shape parameter equal to 1.5 and 

scale parameter equal to 100. So, 

• Number of Groups is 2 (k=2). 

• Number of components in a Group is 20 (n=20). 

• Number of failures per Group is 5 (r=5). 

• The shape parameter is 1.5. 

• The scale parameter is 100. 

• 0.10 and 0.90 level quantile limits are of interest. 

• Number of runs, 20,000. 
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Figure 20: Empirical CDF of 2 sums of 5th out 20. 
Empirical CDF, 2 Groups in Series, 5 out 20 each 

Figure 21: Empirical CDF of 2 sums of 5th out 20 and 10% and 90% quantiles multiplied 
by the number of groups (k). 

Empirical CDF. 2 Groups in Series. 5 out 20 each 

2-60.4898 a 116.9796 

Figure 20 shows the empirical CDF of sums of the two, 5 out of 20 ordered random 

variables and interpolated 0.1 and 0.9 quantile levels. The 0.1 quantile level limit is 

approximately 61.48 and the 0.9 quantile level limit is approximately 107.27. 
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In the previous chapter we showed how to calculate the \-a level quantile limit by 

using the rank distribution. For 5 out of 20 ordered random variable, with the assumed 

Weibull distribution parameters, the 0.1 quantile limit is 26.41 and 0.9 quantile level limit 

is 58.48. If we multiply the quantile limits by the number of groups (k=2) we will get 

52.82 for the 0.1 quantile and 116.97 for the 0.9 quantile (see Figure 21). 

Let us assume that the interpolated values for 0.1 and 0.9 quantiles (from Figure 20) are 

the true quantile values for the 2 groups in series mode test, terminated at the 5th out of 20 

failures. So by 80% probability the test will be terminated within the interval (61.48 and 

107.27). 

If we find the 5th out of 20 failure time at 0.1 and 0.9 quantiles and multiply them by 2, 

we will get the wider interval than the true one. In this case we got [52.82:116.97]. 

So, it seems that the interval [52.82:116.97] includes in it the true [61.48:107.27] interval 

and one might be able to use [52.82:116.97] interval as an approximate 80% probability 

interval. Moreover, the approximate interval always contains the true interval. This claim 

is proved in the next Section. 

3.2,3.3 Claim 

If X and Y are iid and have a continuous PDF f(x) and random variable S is constructed 

such as S=X+Y and has s(S) continuous PDF, then for the random variable S the 

following is always true: 

If P(L < X < U) = P(L < Y < U) = 1 - a, where L and U are a/2 quantile limits from 

f(x), and P(L_true<S<U_true)-\-a and Ltrue and Utrue are a 12 quantile 

limits from s(S), then: 

P(2L<S<2U)>P(L_true <S<U Jrue). 
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3.2.3.4 Proof 

Let there exist r.v. Z that has zero and one, as the mean and standard deviation, also has a 

continuous PDF z(Z). 

Let X and Y have mean fj,x and standard deviation o~x, 

then 

E(S)=2^X and Var(S)=2o^. 

Given that: 

P(L < X < U) = 1 - a, it follows that P\ L-MX<Z<UZBL = \-a 
•x J 

From another hand we have that: 

P(2L <S<2U) = P 

and it is given that: 

( T .. \ 

V2" 
L-M 

v ^ v "A- j y/2{ <yx j j 
>\-a (1) 

P(L Jrue < S <U Jrue) = \-a (2) 

So from (1) and (2) follows that: 

'' L-/ux^ 

S 
<Z< 

V ^ v "x j 4i 
ru-Mx^ 
V ax J J 

>P(L Jrue <S<U Jrue) 

The claim could be extended for the random variable S for k sums. 

55 



Figure 22: Empirical CDF of 2 sums of 5th out 20 and quantiles multiplied by the number 
of groups (k). 
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Figure 22 shows the empirical CDF of the time to complete the test in 2 groups under 

series mode with 20 components each, terminated at the 5th failure for each group. We 

see that the approximated ranges always contain the true ranges for the different levels. 

This is a one way to approximate the desired quantile ranges under series mode. In next 

Section we will develop another approximation method for the quantiles in series mode 

test. That will be used for the different configuration tests comparison. 

3.2.3.5 Approximate quantile limits for the U sum of the ordered random variables 

Given in Equation 11 and Equation 12 that the probability distribution and density 

functions of the r* ordered statistic out of n are known and may be represented by: 

Gr.n{t)=p(trn<t)=Y\.ko'a-F(o) 
i=r \ 
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gr,(t) = r 
fn\ 

\rJ 
F{ty-\\-F{tyrr+"f{t) 

Let the sample of size k of the r' ordered statistic out of n be: trny,trn2;..:,trnk. 

The random variable s{r, n, k) will be formed from the sample in the following way: 

s(r,n,k) = trnl +tr.„i2+... + trnk^
tr.n,i • 

Let's assume that there exists some random variable b(r,n,k) that could define s(r, n, k) in 

the following way: 

Equation 70 s{r, n,k)& k* b(r, n, k) 

And has Fb(rnk)(t) and / 6 ( r „ t ) ( 0 a s an CDF and PDF, where the PDF has the following 

form: 

Equation 71 fH,^(t)= ffi" + 1) ^ A]F (1)^(1-F(t))k<"-^ f(t) 

where, t > 0 

or 

Equation 72 /6(,,»,*)(0 = ^ 

where, t >0 

kr 
F{tf-\\-F{t))k{^r*l>-lf{t) 
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Let p be the percentage of the population below some time tc, such that/?c = P(T < tc). If 

tc= b(r,n,k) then p(r nk) = P(T < b(r, n, k)) would be the percentage of population below 

the b(r,n,k) and b(r,n,k) = F~\p(rnk)). 

Equation 73 

* W ) ( 0 = P(b{r,n,k) < tc) = P(F-\p(r^k)) < tc) = P(p(r^k) < pc) = H^nJc){pc) 

From Equation 71 we know that 

^.(o=|/^(«)*-)(fr_g^;1
+

)l)-,),
f<')"<'-f(')) ,<^HA')* 

Let 

p = P(T<t) = F(t) then dp = f(f)dt 

when t = -oo; p = 0 and t = tc; p = pc 

So 

Equation 74 

(*(w + l ) - l ) ! 
-pYK"-r+1>-'dp 

(k(n + \)-l)\ 

Equation 75 
K,n,k)(Pc) (Ar_1),( i fc(„_r + 1 ) _ 1 ) ! 

/ '-1(l- jp)* ("- ,+1H = 

= yb-
'(*(« + l ) - l ) ' 

where 0 < pc < 1 

Ai-pr 

One can recognize that h(rnk)(pc) as a Beta distribution of the form: 
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= H« + /?) x*-\(1 _xy-\ w h e r e 0<x<\. 

F(x)=\na+(3) ua-\\-uy-idu 

E(x) = a 
a + p 

Var(x)= 
aj3 

{a + py(a + P + \) 

Let kr = a and k(n-r + 1) = /3 and using the fact that r(n)=(n-l)! 

Then 

Equation 76 

h(r,n,k)(Pc) = 
(Jfc(w + 1)-1)! 

(kr-\)l(k(n-r + l)-l)\ 
pkr-\l-p)k^-r+l^ = 

T(k(n + Y)) D*r-1n _ „\i("-'-+i)-i 
T(kr)Y(k(n-r + \)) 

where, 0 < pc < 1 

Equation 77 H(rnk)(pc) = J r(*(/i+i)) M^-i (1_M)*(»-i)-vM 

J o r (* r ) r (* (n- r + l» 

Equation 78 E{Pc) = 
kr 

k(n + l) n + l 

Equation 79 

Var(pc) = 
kr*k(n-r + \) 

(kr + k(n-r +1))2 (kr + k(n - r +1) +1) 

r(n — r + Y) 

(n + iy(k(n + l) + V) 
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From Equation 76 the "pc" could be computed for ( 1 - a ) quantile level if we apply an 

inverse transformation of the Equation 76 for the desired r, n and k, 

where a = kr and /3 = k(n - r +1). 

So, 

Equation 80 p^^H^^X-a) 

and as far as p{r nk) = P(T <b(rnk)), then taking the inverse of it will be 

Equation 81 b(r,n,k) = F~]{p(r n k)) 

and using Equation 70, the s{r,n,k) approximately would bek*b(r,n,k), which is 

claimed herein to be the approximate (I-a) level quantile for the random variable 

s(r,n,k). 

In summary: to find an approximate ( 1 - a ) level quantile for the k sum of the rth out of 

n ordered random variable, first the p(r n k) should be computed from Equation 80, next 

the b{r,n,k) by Equation 81 and k*b(r,n,k) would be an approximate (I-a) level 

quantile. 

The logic for defining the Equation 70 and Equation 71 as they are described is the 

following. 

The random variable s(r,n,k) was defined as: 

k 

s(r,n,k) = trnX + trn2 +... + trnM = Yjr»* • 
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Also, it was assumed that there exists some random variable b(r,n,k) that could define 

s{r,n,k) in the following way: 

s{r, n,k)& k* b(r, n, k) 

If prn will be defined as prn = P(t < trn) (see Section 3.2.1.1), then for some r.v. S we 

will have the following: 

P(S < s(r,n,k)) = Prni + prn2 +... + Prnk 

So, 

E(P(S < s(r, n, k))) = k * E(prn) = — , (see Equation 44). 
n + \ 

It follows that we have to formulate fb(r n k) (t) so that k * E(P(T < b(r, n, k)) would be 

equal to the E(P(S< s(r, n, k))) . 

The only possible way to formulate fb(r „k)(t) so that 

E(P(S < s(r,n,k)))=k*E(P(T <b(r,n,k))) is the formulation in Equation 71. 

Indeed: 

k*E(P(T<b(r,n,k)) = k*E(plr„k)) = k*-L-r (see 

Equation 78 ) 
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3.2.3.6 Verification of the proposed approach, using computer simulation algorithm 
assuming the parent distribution is Weibull, Normal or Uniform 

In this Section a computer algorithm will be used to verify the proposed method for 

several distribution functions, commonly used in reliability testing. In this numerical 

analysis, 10% and 90% quantile times for the k* sum of the ordered random variable for 

each of the following parent distribution will be computed. 

• Uniform within the interval [8,500; 11,500], 

• Normal with mean 10,000 and standard deviation 500, 

• Weibull, with the shape parameter 5 and scale parameter 10,000. 

The following assumption will be made: 

• Number of Groups is 5 (k=5). 

• Number of components in a Group is 20 (n=20). 

• Number of failures per Group varies from 1 until n (r=l :n). 

Five rth out of 20 order random variables will be generated and added together, the 

procedure will be repeated 1000 times. Then, based on these 1000 points, the empirical 

cumulative function will be constructed and a linear approximation will be applied to find 

the 10% and 90% quantile times. 

The interpolated results will be compared with the proposed method, using Equation 80, 

Equation 81 and Equation 70. 

Figure 23, Figure 24 and Figure 25 show the approximation method values (red asterixis) 

compared with the interpolated values (blue circles). 
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Figure 23: CDF for the k=5, r-th out of 20 ordered random variables, assuming parent 
distribution is Uniform. 

Empirical CDfsforthe5 sums of the r-th out of 20 ordered random variables, parent dietribution is Uniform [0,500:11.900]. 

sums of the 20th out of 20 

Figure 24: CDF for the k=5, r-th out of 20 ordered random variables, assuming parent 
distribution is Normal. 

Empirical CDFs for the 5 sums of (he r-lh out of 20 ordered random variables, parent distribution is Norma! (10,000; 500) 
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Figure 25: CDF for the k=5, r-th out of 20 ordered random variables, assuming parent 
distribution is Weibull. 

Empirical COFs (or the 5 sums of the r-thoul of 20 ordered random variables, parent distribution is Weibull (5,10,000). 

It was noticed that when the parent distribution is Uniform, the proposed method is very 

precise for any number kth sum of the r1*1 out of n ordered random variable. For the 

Normal and Weibull parent distributions, some "distribution recollection adjustment 

factor" could be used. Besides the Uniform parent distribution, this adjustment factor 

should be a function of the parent distribution, in a way when: 

E{pc) = 
n + \ 

• is close to 0.5 then the adjustment factor should be 1, 

• is less than 0.5 then the adjustment factor should be less than 1, 

• is grater than 0.5 then the adjustment factor should be greater than 1. 
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3.2.3.7 Comparison of the proposed method quantile times with the approximate quantile 
times by the Cornish-Fisher expansion 

In 1960 Fisher and Cornish developed the asymptotic expansions, which allow 

expressing desired quantile points of the distributions in terms of the known cumulants. 

Later, in 1998, Pascual and Meeker used this approach for their study5. 

Particularly, they computed and published 5%, 50% and 95% approximate quantile times 

for a series test that consisted of 10 (k=10) groups with 5 (n=5) components in each 

group and varying the number of failures per test from 1 to 5 (r=l:5). They assumed that 

failure has a Weibull distribution with scale 19.59 and shape 2.35. 

I have commuted, by the presented method, the quantile limits for the mentioned levels 

for the series tests with the same parameters as Pascual and Meeker did. The results are 

summarized in Table 3. 

Table 3: Comparison of the approximate quantile times by the proposed method and the 
Cornish-Fisher expansion. 

r 

1 
2 
3 
4 
5 

n 

5 
5 
5 
5 
5 

k 

10 
10 
10 
10 
10 

Approximate Quantile Times based 
on the Cornish-Fisher Expansion by 

Escobar and Meeker*. 
5% 
67 
110 
147 
186 
239 

50% 
87 
131 
169 
210 
269 

95% 
109 
153 
192 
236 
301 

Calculated Quantile Times by 
the Proposed Method 

5% 
73.46 
i 12.35 
146.09 
181.02 
224.81 

50% j 95% 
93.96 
133.02 
167.61 
204.34 
252.42 

115.54 
154.49 
189.94 
228.69 
282.02 

*Source: Pascual, F., & Meeker, W. (1998). The modified sudden death test: Planning 

life tests with a limited number of test positions. Journal of Testing and Evaluation, 

26(5), 434. 

5 Pascual, F., & Meeker, W. (1998). The modified sudden death test: Planning life tests with a limited 

number of test positions. Journal of Testing and Evaluation, 26(5), 434. 
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As wee see in Table 3, the suggested approximation method deviates more on extreme 

ordered statistics, while for the rest ordered statistics the values are close enough. 

3.2.3.8 The distributional behavior of the tf sum of the ordered random variable from 
Weibull parent distribution, where the shape parameter is greater than unity 

Using the technique described in Section 3.2.3.5, we will use a computer software 

package to investigate the behavior of the k* sum of the ordered random variable, 

assuming a Weibull parent distribution with shape parameter greater than unity. 

The following assumptions will be made: 

• Number of Groups is varies from 1 until 5 (k=l:5). 

• Number of components in a Group is 20 (n=20). 

• Number of failures per Group varies from 1 until n (r=l :n). 

• The shape parameter is increasing by 0.2 increments, starting from 1 until 6. 

• The scale parameter is 100. 

• 0.10 and 0.90 level quantile limits are under the interest. 

• Number of runs, 10,000 for each combination. 

Figure 26: For k=l :5 number of groups, 10% and 90% quantiles depending on the shape 
and rth ordered random variable. 
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Figure 26 shows the 10% and 90% quantile times for the defined number of groups 

(k=l :5) depending on the rth out 20 and beta values. 

Figure 27: For r ordered random variable, 10% quantile depending on the shape and 
k=l:5 number of groups. 

10% Quantile Times 

_th Figure 28: For r ordered random variable, 10% quantile depending on the shape and 
k—1:5 number of groups. 

10% Quantile Tim 
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Figure 27 and Figure 28 depict the 10% quantile times for the different rl out 20 values, 

depending on beta and number of groups. It is not always true to assume that as beta 

increases the time to finish the test will increase too. As we see it depends on the r' 

value. 

Figure 29: For rth ordered random variable, 90% quantile depending on the shape and 
k=l :5 number of groups. 

90% Quantile Times 

Figure 30: For r ordered random variable, 90% quantile depending on the shape and 
k=l:5 number of groups. 
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Figure 29 and Figure 30 depict the 90% quantile times for the different rth out 20 values, 

depending on beta and number of groups. The beta effect was observed at 90% Quantile 

times also. 

Figure 31: For the shape parameters from 1 to 6, 10% quantile depending on k=l :5 
number of groups and r111 ordered random variable. 

10% Quantife Times 

™««c««W! 

Figure 32: For the shape parameters 1 and 6, 10% quantile depending on k=l:5 number 
of groups and r̂ 1 ordered random variable. 
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69 



Figure 31 and Figure 32 show the 10% quantile times for the different beta values, 

depending on rth out 20 and number of groups. There are cases where small beta will have 

a negative affect on the duration of the test. The truncated point was observed for the k=5 

and r=l 5 and as k decreases, r decreases too. 

Figure 33: For the shape parameters from 1 to 6, 90% quantile depending on k=l:5 
number of groups and rth ordered random variable. 

90% Quantile Times 

Figure 34: For the shape parameters 1 and 6, 90% quantile depending on k=l:5 number 
of groups and rth ordered random variable. 
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Figure 33 and Figure 34 show the 90% quantile times for the different beta values, 

depending on r* out 20 and number of groups. The truncated point was observed for the 

k=5 and r=12 and as k decreases r decreases too. 

3.2.3.9 Verification of the beta effect by the simulation study 

In this Section, we will verify that the beta effect exists. 

Let us assume the following: 

• Number of Groups is 5 (k=5). 

• Number of components in a Group is 20 (n=20). 

• Number of failures per Group is 20 (r=20). 

• The shape parameter is 1 and 6. 

• The scale parameter is 100. 

• Number of runs, 10,000 for each combination. 

From the Weibull distribution with the shape=l and scale=100, the 5 random samples of 

size 20 are taken and the maximum values from these 5 samples were added together. 

The procedure was repeated 10,000 times. Next, the same procedure was repeated for the 

shape=6. 

The results are depicted in Figure 35. 
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Figure 35: With two different parent distribution shape parameters, the 20th out 20 
ordered random variable histograms. 
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3.2.3.10 Conclusion 

I am proposing the approximation method of finding the kth Sum of the rth out of n 

ordered random variable quantile limits for any continuous parent distribution. The 

proposed method is distribution free, meaning that without knowing the PDF of the kth 

Sum as a random variable, the quantile of the k* Sum can be found. It is a 

computationally easy method and does not involve any complicated formulas. 

The proposed method is close enough to the simulated values; maximum deviations are 

observed for the extreme ordered statistics. 

For the Weibull parent distribution, the shape parameter has an affect on the series test 

times. It is not always true to assume that higher shape parameter would result in longer 

testing time. It depends on the number of groups, number of the components in each 

group and the number of results per group. 
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3.2.4 Total Accumulated Time 

3.2.4.1 Introduction 

Total accumulated time is described in Section 3.1.3 by Equation 26. This is the total run 

time for all devices on the test. 

Tac=it,n+(n-r)*trn 

Let a random variable wt be defined as: 

w, =n*tx 

w, =(n-i + \)*(ti-ti_l), i = 2,...,r 

Then 

Equation 82 ^ = i > , 

If the parent distribution is an exponential distribution with rate parameter \jG, then 

2Tac 16 has a chi-square distribution with 2r degrees of freedom 6'7'8. 

So, 

Equation 83 E(Tac) = r*0 

Lawless, J. (1982). Statistical models and methods for lifetime data. New York: Wiley, pg.-102. 
7 

Meeker, W., & Escobar, L. (1998). Statistical methods for reliability data. New York: Wiley, pg-167. 
Q 

Lamberson, L., & Kapur, K. (1977). Reliability in engineering design. New York: Wiley,pg.-285. 
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The total accumulated time for the test (parallel or serially) is given in Equation 27. 

Regardless of the testing strategy, the expected total accumulated time of the test will be 

Equation 84 E{Tteslac) = k* E{Tac) = k*r*e 

Note that k*r = R and this is the total results collected from the test. 

3.2.4.2 Another way to represent the total accumulated time 

Let assume that a random variable t has an exponential distribution with rate parameter 

ye. 

Let tln,t2.n,...,trn be an ordered statistics from this distribution and total accumulated 

time Twill be defined as: 

Equation 85 Tac =n*trn -£ ( / - l )*( f r -*,_,) 
1=2 

A random variable yi - ttn - fM:n has an exponential distribution9 with the rate 

parameter(n-i + \)/6. 

So, Tac in Equation 85 might be expressed as: 

Equation 86 Tac = n * £ y, - £ (/ -1) * y, 
i=\ i=2 

Noting thatE{yi) = 0/(n-i + \), it follows that E(Tac) in Equation 86 would be: 

9 Lamberson, L., & Kapur, K. (1977). Reliability in engineering design. New York: Wiley,pg-285. 
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E{Tac) = n*±-^—YJ(i-\r-^~ 
~(n-i + \ ~{ n-i + \ 

= 0 
' , n n n ( 1 2 r-\ ^ 

1 + + + ••• + + + ••• + n-\ n-2 n-r+\ \n-\ n-2 n-r+\JJ 

= 0(JL + r-\) = 0r 

If k groups of n components are tested until the r* failure in series or parallel, then the 

expected total accumulated time for the test will be: 

Equation 87 E(Tac lesl) = k*r*0 = R*0 

3.2.4.3 Total accumulated time for the test, assuming Weibull parent distribution 

Total accumulated time is described in Section 3.1.3 by Equation 26. 

Techniques described in Sections 3.2.4.1 and Sections 3.2.4.2 are applicable if a parent 

distribution is an exponential distribution. 

In this research the simulation technique will be used to evaluate the total accumulated 

time for the MSDT and CSDT with respect to the increase in a shape parameter. 
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CHAPTER 4 

RESULTS 

4.1 Results Comparison between MSDT and CSDT in Time Domain 

4.1.1 Run Time 

4.1.1.1 Introduction 

In this chapter we will do a pilot study to compare MSDT and CSDT in the time domain. 

It is assumed that the components under investigation are non-repairable and have a 

Weibull failure distribution with the shape parameter greater than unity. 

For a fixed shape parameter of the parent distribution, the underlying hypothesis is as 

follows: 

Run time for the CSDT plan with a specific kl, rl, and nl is equal to the run time for the 

MSDT plan with a specific k2, r2, and n2. 

Ho: CSDT(kl,rl,nl) = MSDT(k2,r2,n2) 

Ha: CSDT(kl,rl,nl) < MSDT(k2,r2,n2) 

Ha: CSDT(kl,rl,nl) * MSDT(k2,r2,n2) 

Ha: CSDT(kl,rl,nl) > MSDT(k2,r2,n2) 

The run times as random variables for MSDT and CSDT were given in Equation 24 and 

Equation 25. To find the 10% and 90% quantiles of these random variables, the 

techniques described in Section 3.2 will be used. 
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4.1.1.2 Logic of the comparison 

Assume for the arbitrary kl.rl.nl for CSDT and k2,r2,n2 for the MSDT, the 10% and 

90% quantile values for the run time are given in Table 4. 

Table 4: 10% and 90% quantile values for CSDT and MSDT 
Quantile CSDT(kl,rl,nl) MSDT(k2,r2,n2) 

10% 
90% 

47.2 
132 

235 
473 

So, we will accept the null hypothesis if and only if there is no overlapping between these 

regions. See Figure 36. 

Figure 36 
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If one would like to know the second type error value for this specific example, then it 

might be calculated by finding the area 132 from the MSDT(k2,r2,n2) distribution, 

(which is approximately zero). 
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4.1.1.3 Run time comparison of CSDT and MSDT 

The following assumptions will be made: 

• Number of testing facilities available is 50 (N=50). 

• Number of results required is 20 (R=20). 

• The shape parameter is increasing by 0.2 increments, starting from 1 until 6. 

• The scale parameter is 75,000. 

Based on above mentioned assumptions on the number of testing facilities and number of 

results required, the following testing configurations could be formed to perform CSDT 

or MSDT, respectively (see Table 5 and Table 6). 

Table 5: CSDT possible configurations. 

Number of 
groups(k) 

1 
2 
5 
10 

Number of 
components 
per group (n) 

50 
25 
10 
5 

Number of 
results per 
group (r) 

20 
10 
4 
2 

Total results 
Collected from 

the test (R) 
20 
20 
20 
20 

Total 
components 

used in the test 
50 
50 
50 
50 

Table 6: MSDT possible configurations. 

Number of 
groups(k) 

1 
2 
4 
5 
10 
20 

Number of 
components 
per group (n) 

50 
50 
50 
50 
50 
50 

Number of 
results per 
group (r) 

20 
10 
5 
4 
2 
1 

Total results 
Collected from 

the test (R) 
20 
20 
20 
20 
20 
20 

Total 
components 

used in the test 
50 
100 
200 
250 
500 
1000 

For a shape parameter increased by 0.2 increments, starting from 1 to 6, and a scale 

parameter of 75,000, for each CSDT configuration with 10% and 90% quantile times, the 

approximate 10% and 90% quantile times for each MSDT configuration were computed. 

(See Figure 37-Figure 62). 
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Figure 37: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 1. 

- S — 10% Qusnlile for MSDT 
- « — 90% Qusnlile for MSDT 
~ e — 1 0 % Quanlile (or CSDT 

-30%OuanlileforCSDT 

Number of Results per Group, r 
Number of Groups, k 

By increasing number of groups in a way so that the number of collected results are the 

same from each group and the total collected results from the tests is 20, the 10% and 

90% quantiles of CSDT tends to increase when shape parameter is one (see Figure 37). 

The lowest 10% and 90% quantiles are observed when number of groups is one. 

By increasing number of groups in a way so that the number of collected results are the 

same from each group and the total collected results from the tests is 20, the 10% and 

90% quantiles of MSDT tends to decrease when shape parameter is one (see Figure 37). 

The lowest 10% and 90% quartiles are observed when number of groups is twenty and 

number of results collected from each group is one (Sudden Death Test). As far as this is 

a special case of MSDT when r=l, then the results from the Jun and Balamurali's work10 

might be applied to calculate and compare the exact 10% and 90% quantiles (also, this 

work is summarized in literature review section). 

Jun, C, & Balamurali, S. (2006). Variables sampling plans for Weibull distributed lifetimes under 
sudden death testing. IEEE Transactions on Reliability, 55(1), 53. 
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Table 7: For the MSDT(k=20, r=l, n=50) test mode, the 10% and 90% quantiles exact 
and suggested approximation method values. 

MSDT(k=20,n=50,r=l) 

Quantiles 

Exact Quantile Values (Jun and Balamurali) 

Suggested Approximation Method Quantile Values 
(derived in Section 3.2.3) 

Suggested Approximation Method Quantile Values 
deviation from the Exact Quantile Values 

(in percentage, about) 

10% 

21,788 

21,583 

0.9% 

90% 

38,854 

38,490 

0.9% 

Table 8: For the CSDT(k=l,r=20, n=50) test mode, the 10% and 90% quantiles exact 
values based on derived method. 

CSDT(k=l,n=50,r=20) 

Quantiles 

Exact Quantile Values (derived in Section 3.2.2) 

10% 

27,375 

90% 

49,098 

It was noticed that for the MSDT (k=20, r=l, n=50) test mode, the suggested 

approximation method 10% and 90% quantile values deviate from the exact 10% and 

90% quantile values by no more than 1% (see Table 7). 

Also, it might be concluded that MSDT(k=20,n=50,r=l) test mode completion time and 

CSDT(k=l,n=50,r=20) test mode completion time are not significantly different at 80% 

confidence. 



Figure 38: For the all possible configurations of MSDT and CSDT, 10% and 90% 
. quantiles, shape is 1.2. 

Shape parameter 
1.2 

Number of Results pei Group, r 
Number of Groups, k 

By increasing number of groups in a way so that the number of collected results are the 

same from each group and the total collected results from the tests is 20, the 10% and 

90% quantiles of CSDT tends to increase when shape parameter is 1.2 (see Figure 38). 

The lowest 10% and 90% quartiles are observed when the number of groups is one. 

By increasing the number of groups in a way so that the number of collected results are 

the same from each group and the total collected results from the tests is 20, the 10% and 

90% quantiles of MSDT tends to increase when the shape parameter is 1.2 (see Figure 

38). The lowest 10% and 90% quartiles are observed when number of groups is one. 

For both MSDT and CSDT testing modes, when the number of groups is one it implies 

that the testing mode is a Classical Test (CT). So when the shape parameter is 1.2, the 

classical test is preferable. 
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Figure 39: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 1.4. 

- 10% Quanlile (or MSDT 
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- 1 0 % Quanlile for CSDT 
- 9 0 % Quanlile for CSDT 
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Number of Groups, k 

By increasing number of groups in a way so that the number of collected results are the 

same from each group and the total collected results from the tests is 20, the 10% and 

90% quantiles of CSDT tends to increase when shape parameter is 1.4 (see Figure 39). 

The lowest 10% and 90% quartiles are observed when number of groups is one. 

By increasing number of groups in a way so that the number of collected results are the 

same from each group and the total collected results from the tests is 20, the 10% and 

90% quantiles of MSDT tends to increase when shape parameter is 1.4 (see Figure 39). 

The lowest 10% and 90% quartiles are observed when number of groups is one. 

For both MSDT and CSDT testing modes, when the number of groups is one it implies 

that the testing mode is a Classical Test (CT). So when the shape parameter is 1.4, the 

classical test is preferable. The same patter was observed for the rest of the comparisons, 

when the shape parameter is increasing until 6 ( see Figure 40 - Figure 62). 
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Figure 40: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 1.6. 

&— 10% Ouanlile for MSDT 
G 90% Ouanlile for MSOT 

10% Ouanlile for CSDT 
90% Ouanlile far CSDT 

Number of Results per Group, r 
Number of Groups, k 

Figure 41: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 1.8. 
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Number of Groups, k 
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Figure 42: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 2. 

—e~-10% Quantite for MSDT 
- - O — 90% Quanlile for MSDT 
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Number of Groups, k 

Figure 43: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 2.2. 

- S — 10% Quanlile for MSDT 
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Figure 44: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 2.4. 

Shape parameter 
2.4 

Number of Results per Group, r 
Number of Groups, k 

Figure 45: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 2.6. 

Shape parameter 
26 

Number of Results per Group, r 
Number of Groups, k 

85 



Figure 46: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 2.8. 

-10%QuantilnforMSDT 
~90%Quantile for MSDT 
-10%QuantileforCSDT 
-90%QuanlrleforCSOT 

Number of Results per Group, r 
Number or Groups, k 

Figure 47: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 3. 
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—O— 90% Quaniile for CSDT 

Number of Results per Group, r 
Number of Groups, k 

86 



Figure 48: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 3.2. 
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Figure 49: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 3.4. 
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Figure 50: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 3.6. 
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Figure 51: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 3.8. 

Shape parameter 
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Number of Groups, k 
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Figure 52: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 4. 
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Figure 53: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 4.2. 
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Figure 54: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 4.4. 
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Figure 55: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 4.6. 
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Figure 56: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 4.8. 
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Figure 57: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 5. 
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Figure 58: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 5.2. 
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Figure 59: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 5.4. 
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Figure 60: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 5.6. 
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Figure 61: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 5.8. 
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Figure 62: For the all possible configurations of MSDT and CSDT, 10% and 90% 
quantiles, shape is 6. 
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Under the assumption that: 

• Number of testing facilities available is 50 (N=50). 

• Number of results required is 20 (R=20). 

• The scale parameter is 75,000. 

When shape parameter is 2.4 or more and number of groups is different than one, by 80% 

of confidence might be claimed that any possible combination of parallel mode test run 

time CSDT(kl,nl,rl) is shorter than any possible combination of series mode test run 

time MSDT(k2,n2,r2), see Figure 44 - Figure 62. 
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4.1.1.4 Conclusion 

In Section 2.1 it was mentioned that the failure of mechanical components is well 

explained by Weibull distribution, with a shape parameter greater than unity. This was 

the main argument and reason to make this assumption in the early stages of the research. 

When the shape parameter is one, breaking into the groups affects on run time. That has 

the pattern to decrease the series tests (MSDT) and increase the parallel mode tests 

(CSDT) run times. 

When the shape parameter is greater than one, breaking into the groups affects both run 

times of the tests (MSDT and CSDT) and has an increasing pattern. 

The best testing strategy exists in the grouping combinations. For example, with the first 

type error of 20% and with shape parameter of 2.2, the testing combinations CSDT(k=5, 

r=4, n=10) and CSDT(k=10, r=2, n=5) are better than MSDT(k=4, r=5, n=50), 

MSDT(k=5, r=4, n=50), MSDT(k=10, r=2, n=50) and MSDT(k=20, r=l, n=50) , see 

Figure 43. 

The CSDT test mode expected run time tends to increase as well as its variance by the 

increase of the shape parameter starting from one. Among the all possible values of the 

shape parameter (starting from one to six) and the all possible CSDT mode 

configurations, the shortest expected run time was observed when the number of groups 

is equal to one. So, this is a special case of CSDT testing strategy, which is a Classical 

Test. 

The MSDT test mode expected run time tends to increase as well as its variance by the 

increase of the shape parameter starting but not equal to one. Among the all possible 

values of the shape parameter (starting but not equal to one till six) and the all possible 

MSDT mode configurations, the shortest expected run time was observed when the 
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number of groups is equal to one. So, this is a special case of MSDT testing strategy, 

which is a Classical Test. 

Generally, if the shape parameter is greater than unity, for either testing mode the shortest 

expected run time was observed for the testing strategies where the number of groups is 

one. So, this testing strategy becomes a Classical Test. 

From the run time prospective the Sudden Death test is not reasonable if the shape 

parameter is greater than unity. As far as expected runt time and variance of Sudden 

Death tend to increase. 

4.1.2 Total Accumulated Time Comparison of CSDT and MSDT 

The following assumptions will be made: 

• Number of testing facilities available is 50 (N=50). 

• Number of results required is 20 (R=20). 

• The shape parameter is increasing by 0.2 increments, starting from 1 until 3. 

• The shape parameter is increasing by 1 increments, starting from 4 until 6. 

• The scale parameter is 75,000. 

• Number of runs for each testing combination is 10,000. 

• 10%, 5 0% and 90% quantiles are of interest. 

Based on the assumptions on the number of testing facilities and the number of results 

required, the following testing configurations could be formed to perform CSDT or 

MSDT, respectively (see Table 9 and 

Table 10). 
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Number of 
groups (k) 

1 
2 
5 
10 

Table 9: CSDT possible 
Number of 
components 
per group (n) 

50 
25 
10 
5 

Number of 
results per 
group (r ) 

20 
10 
4 
2 

configurations. 
Total results 

Collected from 
the test (R) 

20 
20 
20 
20 

Total 
components 

used in the test 
50 
50 
50 
50 

Table 10: MSDT possible configurations. 

Number of 
groups (k) 

1 
2 
4 
5 
10 
20 

Number of 
components 
per group (n) 

50 
50 
50 
50 
50 
50 

Number of 
results per 
group (r) 

20 
10 
5 
4 
2 
1 

Total results 
Collected from 

the test (R) 
20 
20 
20 
20 
20 
20 

Total 
components 

used in the test 
50 
100 
200 
250 
500 
1000 

Figure 63: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 1. 
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Shape parameter 

Figure 64: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 1. 
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As we have noticed, there in no change in total accumulated time when shape parameter 

is one for any MSDT and CSDT possible configurations. This result also noticeable form 

the Equation 87, as far as the total accumulated time for either MSDT or CSDT depends 

on the number of the results (R ). Based on the definitions of MSDT and CSDT the 

number of results (R ) is the same for either testing strategy, so the expected total 

accumulated time will not change. 
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Figure 65: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 1.2. 
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Figure 66: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 1.2. 
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When the shape parameter is 1.2, the increase in number of groups under MSDT strategy 

affects in increase of the total accumulated time. Nevertheless, dividing into the groups 

for the CSDT strategy does not have any significant effect on the total accumulated time. 

Figure 67: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 1.4. 
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Figure 68: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 1.4. 
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It was noticed that the increase in shape parameter from 1.2 to 1A affects in increase of 

both the centering and variability of the total accumulated time under MSDT strategy. 

When shape parameter in 1.4, the total accumulated time within any possible CSDT 

configuration strategy doesn't change significantly. But the shape parameter increase 

from 1.2 to 1.4 increases the centering of the total accumulated time. 

Figure 69: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 1.6. 
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Figure 70: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 1.6. 
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Figure 71: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 1.8. 
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Figure 72: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 1.8. 
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Figure 73: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 2. 
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Figure 74: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 2. 
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Figure 75: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 2.2. 
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Figure 76: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 2.2. 
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Figure 77: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 2.4. 
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Figure 78: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 2.4. 
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Figure 79: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 2.6. 
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Figure 80: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 2.6. 
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Figure 81: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 2.8. 
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Figure 82: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 2.8. 
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Figure 83: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 3. 
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Figure 84: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 3. 
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Figure 85: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 4. 
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Figure 86: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 4. 
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Figure 87: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 5. 
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Figure 88: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 5. 
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Figure 89: For the all possible configurations of MSDT and CSDT, histogram of 10,000 
runs, shape is 6. 
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Figure 90: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles, shape is 6. 
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Figure 91: For the all possible configurations of CSDT, histogram of 10,000 runs, shape 
from 1 to 3 by 0.2 increment. 
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Increase in shape parameter affects in increase of the centering of the total accumulated 

time for the fixed CSDT strategy. Increase in number of groups affects in slightly 

decrease of the centering of the total accumulated time for the fixed shape parameter. 

4.1.3 Conclusion 

An increase in shape parameter, starting from one, affects in an increase of the variability 

as well as centering of the total accumulated time for the MSDT. When the number of 

groups is one, the total accumulated time is the lowest from the all possible configuration 

of the MSDT. 

An increase in shape parameter increases the total accumulated time for CSDT strategy, 

but there is no significant change on the total accumulated time, among any CSDT 

combination for the fixed shape parameter. Nevertheless, it was noticed that there are a 

trend that total accumulated time is decreasing by the increase of the number of groups, 

which is more visible at high shape parameters. 
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When shape parameter is one, then total accumulate time for MSDT and CSDT are not 

different. 

4.2 Results Comparison between MSDT and CSDT in Cost Domain 

4.2.1 Total Components Cost 

Based on the Equation 31 in Section 3.1.6, the total component cost was defined as 

Cc=c2*N. 

Where, N is the total components used during the test and c2 is the unit cost of them. 

For a fixed number of testing facilities and number of test results, the total number of 

components under MSDT(kl,rl,nl) will not exceed, but be equal to the total number of 

components in CSDT(k2,r2,n2) only if kl=l (See the definitions in Chapter 1, Section 

1.1). 

If kl>l, the total number of components under MSDT will be larger than the total 

number of components for the CSDT (See example in Chapter 4, Section 4.1.2). 

4.2.2 Run Time Cost 

As defined in Section 3.1.4 by Equation 28 and Equation 29, the supervision cost 

depends on the testing mode. Particularly, it depends on the run time. Based on the results 

in Section 4.1, for a fixed number of both testing facilities and number of results, a run 

time depends on the shape parameter. Run time, for the CSDT and MSDT, increases as 

shape parameter increases. Rate of an increase for MSDT is higher than that in the CSDT 

and this will affect on a supervision cost, causing an increase in MSDT. The shortest 

expected run time was observed when the number of groups is one for either testing 

mode (Classical Test). 
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4.2.3 Total Accumulated Time Cost 

In Section 3.1.5 by Equation 30 the total testing time cost is defined, which depends on 

the total accumulated time. Assuming unit cost is a constant, total accumulated time 

depends on the shape and test configuration. 

For the fixed shape parameter, the lowest total accumulated time from the all possible 

configurations of MSDT is the same for the total accumulated time from any CSDT 

configuration. 

4.2.4 Total Operational Cost 

Total operational cost is given in Section 3.1.7 by Equation 32. For the CSDT expected 

Component Cost (Cc), Run time (supervision) Cost (Cs ), Total accumulated time Cost 

(CTTC) are lower for those at MSDT. 

4.3 Illustrative Example 

Supposedly the component under the investigation is a coupling11, which has a Weibull 

failure distribution with scale parameter equal to 2.5 and shape parameter equal to 

75,000. 

The following assumptions will be made: 

• Number of testing facilities available is 50 (N=50). 

• Number of results required is 20 (R=20). 

11 Source: http://www.barringerl.com/wdbase.htm 
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• Unit testing time cost is $1 (cx). 

• Unit component cost is $1 (c2). 

• Unit supervision/technician cost is $1 (c3). 

Table 11: For the all CSDT possible configurations, 50% quantile run time, 50% quantile 
total accumulated time and total component cost. 

Number 
of 

Groups 
(k) 

1 
2 
5 
10 

*the larg 

Number of 
Components 
per Group 

(n) 

50 
25 
10 
5 

est interpolal 

Number 
of 

Results 
per 

Group (r 
) 

20 
10 
4 
2 

ed value f 

Total 
Collected 
Results 

(R) 

20 
20 
20 
20 

rom the al 

Total Used 
Components 

50 
50 
50 
50 

Run time 

50% 
Quantile 

56,634 
59,921 
66,894 
74,701 

Total 
accumulated 

time 

50% 
Quantile 

*2,492,000 
2,492,000 
2,492,000 
2,492,000 

possible CSDT configurations. 

Total 
Cost 

2,548,684 
2,551,971 
2,558,944 
2,566,751 

Table 12 

Number 
of 

Groups 
(k) 

1 
2 
4 
5 
10 
20 

.: For the all MSDT possible configurations, 50% quantile run time, 50% quantile 
total accumulated time and total component cost. 

Number of 
Components 

per Group 
(n) 

50 
50 
50 
50 
50 
50 

Number 
of 

Results 
per 

Group (r 
) 

20 
10 
5 
4 
2 
1 

Total 
Collected 
Results 

(R) 

20 
20 
20 
20 
20 
20 

Total Used 
Components 

50 
100 
200 
250 
500 
1000 

Run time 

50% 
Quantile 

56,634 
81,226 
120,250 
136,870 
205,670 
310,420 

Total 
accumulated 

time 

50% 
Quantile 

2,492,000 
3,825,100 
5,792,200 
6,588,900 
9,717,700 
13,917,000 

Total Cost 

2,548,684 
3,906,426 
5,912,650 
6,726,020 
9,923,870 
14,228,420 

As we see from, Table 11, Table 12, Figure 92 and Figure 93 the medians of the run time 

and the total accumulated time are lower at CSDT than at MSDT. This does affect on the 

median run time cost and median total accumulated time cost. Also, the total number of 

components at CSDT is almost constant to the changes in the number of groups. In 

addition, the total number of components at MSDT is increasing by the increase of the 

number of groups, this will magnify the increasing cost effect at MSDT. 
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Figure 92: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles of run time, shape is 2.5. 
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Figure 93: For the all possible configurations of MSDT and CSDT, 10%, 50% and 90% 
quantiles of total accumulated time, shape is 2.5. 
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From the both MSDT and CSDT plans, the cheapest and fastest strategy is 

CSDT(k=l,r=20,n=50) or MSDT(k=l,r=20,n=50). This is an exactly the classical failure 
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truncated test. Meaning that by utilizing the maximum capability of the testing facility 

and truncated the test at the desired number of failure is the cheapest and fastest testing 

configuration from the all possible configurations. 
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CHAPTER 5 

CONCLUSION 

In the Introduction Section the goals of the research were defined. We will bring the 

answers and conclusions to them here. 

1. To develop a simulation study in the time domain for the MSDT and CSDT to 

compare the total test duration. 

In Section 3.19 the simulation study for MSDT and CSDT in Time domain was 

conducted. We came to the conclusion that different testing strategies have different run 

time as well as total accumulated time. Also, we saw that the results primarily depend on 

the shape parameter. 

2. To do theoretical research in time duration for the MSDT and CSDT to 

analytically determine the total test duration. 

In Section 3.2.1.1, another approach was considered to prove that the probability of the rth 

out of n ordered random variable be less than some threshold, has a Beta distribution with 

the shape parameters r and n-r+1. 

In Section 3.2.2.1, run time for CSDT was researched. The exact PDF and CDF for the 

maximum ordered random variable from the sample size k were derived. It was proven 

that the CDF is a recursive function. With the same analogy as in Section 3.2.1.1, a new 

method to calculate the quantiles for the Maximum Ordered Random Variable from the 

sample size k was developed. 

In Section 3.2.3, run time for MSDT was researched. Two approaches to approximate the 

quantiles were considered. In Section 3.2.3.5, a new approach to approximate quantiles 
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for the k sum of the r out of n ordered random variable was derived. The suggested 

method is fast and easy to calculate. 

3. To compare the simulation study results as a validation for the theoretical results. 

In Section 3.2.2.3, verification of the exact PDF and CDF values for the maximum 

ordered random variable from the sample size k were accomplished. The derived 

formulas are correct and theoretically proven. 

In Section 3.2.3.6, verification to the proposed approach in Section 3.2.2.3 was 

conducted. If the parent distribution is Uniform, the suggested approach is accurate and 

exact. If the parent distribution is Weibull or Normal, then a slight difference was 

observed for the extreme order statistics. 

4. To develop cost models as a basis for comparing the MSDT and CSDT. 

In Section 3.1.4, Section 3.1.5, Section 3.1.6 and Section 3.1.7 the cost models were 

defined. In a study of the cost model, the run time cost, component cost and total 

accumulated time cost are the main cost categories. 

5. To determine optimum test strategies from a cost perspective for the MSDT and 

CSDT. 

The component cost is always less for CSDT approach. This is based on the definitions of 

the MSDT and CSDT. 

Run time cost is proportional to the run time as a random variable. When the shape 

parameter is one, breaking into groups affects run time. This is causing run time to 

decrease in the series tests (MSDT) and increase in the parallel mode tests (CSDT). 

When the shape parameter is greater than one, breaking into the groups affects both run 

times of the tests (MSDT and CSDT) and has an increasing pattern. 
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The CSDT mode expected run time tends to increase as well as its variance by the 

increase of the shape parameter starting from one. Among the all possible values of the 

shape parameter and the all possible CSDT mode configurations, the shortest expected 

run time was observed when the number of groups is equal to one. 

The MSDT test mode expected run time tends to increase as well as its variance by the 

increase of the shape parameter starting but not equal to one. Among all possible values 

of the shape parameter and all possible MSDT mode configurations, the shortest expected 

run time and its variance was observed when the number of groups is equal to one. 

For the total accumulated time cost the simulation study was done (Section 4.1.2). The 

total accumulated time cost primarily depends on the total accumulated time. The total 

accumulated time increases by the increase of the shape parameter and the number of 

groups at MSDT mode. For CSDT mode, the total accumulated time is increases by the 

increase of the shape parameter and has a minor trend to decrease by the increase of the 

number of groups at the fixed shape parameter value. This minor trend is very small and 

doesn't have any significant effect. 

6. From the cost models, establish optimum test strategies, considering number of 

components for the test and number of groups, as well as number of test results in 

each group under the budget limitation and with the desired confidence level. 

If the shape parameter is greater than unity, for either testing mode the shortest expected 

run time was observed for the testing strategies where the number of groups is one. So, 

this testing strategy becomes a Classical Test. 

If the shape parameter is greater than unity, for either testing mode the shortest expected 

total accumulated time was observed for the testing strategies where the number of 

groups is one. So, this testing strategy becomes a Classical Test. 
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The Classical Test is the cheapest among all possible testing configurations when the 

shape parameter is greater than unity. 
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CHAPTER 6 

DISCUSSION AND FURTHER RESEARCH 

6.1 Reliability Levels from the MSDT and CSDT Testing Strategies 

In practice, there are many methods for estimating the Weibull distribution parameters 

from test results. 

The Maximum Likelihood Estimation (MLE) is a widely used technique for estimating 

the Weibull distribution parameters. It is well know that MLE is asymptotically unbiased 

and asymptotically efficient. In 1965, Cohen (Cohen, 1965) showed shape and scale 

parameters MLEs from complete and Type II censored datum for the Weibull 

distribution.(see Appendix A for derivation). 

The derived MLEs are a function of the collected results and sample size. Later on, in 

1974, Rockette (Rockette, Antle, & Klimko, 1974), showed that if the shape parameter is 

known, then the MLEs for the scale and location parameters exist and are unique. The 

MLE is not the only technique for estimating the parameters. For example, in 1966, 

Downton (Downton, 1966) derived linear estimates for the parameters of the extreme 

value distribution, which can easily be converted to the Weibull. 

For reliability tests, when the sample sizes are small or different, the estimated 

parameters by MLE methods have some biases. This can be a major problem. So many 

methods and bias correction factors were proposed to deal with this issue, (see (Hirose, 

1999)). In 2009, Cousineau (Cousineau, 2009) suggested using the weights for estimating 

MLEs for the Weibull parameters from complete data. Also, the author showed that by 

using the suggested weights, the estimated parameters are nearly unbiased. 

For the MSDT and CSDT, the total number of components in the tests are different, 

while the test results are the same. For the reliability tests in series or parallel tests, the 
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likelihood function was defined and showed that the MLEs for Weibull parameters are 

consistent to the single group for complete and Type II censored datum results, (see 

Appendix ). So, to estimate the parameters by MLEs from MSDT or CSDT data, the 

weighted MLEs can be used, based on the logic by Cousineau did. Another approach 

could be to use some bias correction factor method. 

6.2 Sudden Death Testing 

Leonard Johnson in his book showed and proved that time to finish the test is smaller if 

one puts on the test more components than intended to be failed. This was the main 

argument that more components on the test will lead to the faster results. This is true and 

we are not arguing this point. 

But if the test in series mode, this argument is false. 

Let's assume there are 50 testing facilities and 200 components available. Also 100% of 

the testing facility utilization is required. 

Then 1st failure out of 50 will be the Sudden Death Test in a first group and so on. So the 

time to finish the test or run time will be the sum of all four 1st out of 50 ordered random 

variables, or it is MSDT(k=4,n=50,r=l). By this testing strategy 4 results will be 

collected. 

Now consider that if one puts 50 components at the all available testing facility and run 

the test until the 4th failure out of 50. So this is CSDT(k=l,n=50,r=4) or Classical Test 

(n=50,r=4). Again, by this strategy we will collect 4 results. But in this case we will use 

only 50 components against 200. 

If we compare these two strategies we will come to the conclusion that no doubt 1st out of 

50 will have shorter time than 4th out of 50. But the sum of the all four 1st out of 50 will 
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be higher than 4 out of 50 (if the shape parameter is greater than 1). As we see this 

result in Section 4. This is the main inaccuracy and to claim that Sudden Death Test is 

faster regardless the shape parameter value is not justified. 

In contrast, our results reveals that Classical Test or CSDT with number of groups equal 

to unity is the most shortest and fastest testing strategy for the failure truncated tests, if 

the shape parameter is greater than unity. Besides, it is much cheaper in the component 

and run time costs domains. 

Generally, a recipe of the failure truncated test for the industrial usage is the following: 

If you are testing mechanical components or you do believe that the tested product failure 

distribution is Weibull with the shape parameter greater than unity, then utilize testing 

facilities up to 100% and truncate the test on the predetermined number of failures. 

If the shape parameter is exactly one, then Sudden Death Test is reasonable testing 

strategy. But we have to mention that not rational justification for the shape parameter 

will cost a money and time12. 

6.3 Total Accumulated Time 

When shape parameter is one, the total accumulates time depends on the number the 

number of failures. When the shape parameter is grater than one, we believe that the 

distribution for the Total accumulated time should not only depend on the number of 

failures but also on the number of the components placed on the test. This is an attractive 

research topic for the further study. 

2 Meeker, W., & Escobar, L. (1998). Statistical methods for reliability data. New York: Wiley, pg-80. 
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Appendix A 

Weibull Distribution 

Probability density functions of the form: 

f(0 •gpt^e e , when _ t > 0 ̂  Weibull _ demity _ function 

0,when_t <=0 

It is easy to check that 

F(t)- o " 
0, i /_>'<=0 

/ef: Z = M> => /?y-ty = 0' du, => rfy = 0^M 

when: 

y = 0;u = 0 

y = <x>\u = 00 

So 

o 

o v#y 

F(0 = 

i?(0 = 

1 - e ,if _t>0 — Weibull _ cumulativ _ ditribution _ function 

0,if_t<=0 

' > 0 — Weibull _ Survival _ Function 

0,if_t<=0 
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Hazard _ function 

p^eii\ 
Kt)= no 

R(t) 

ep 

Of 
= -^tfi-\if t>0 

0,if_t<=0 

E(xk) = ]yk-^y^<iy 
0 

let: 1} =U!=>j3y^ay = 0/}du^>dy = -^T 0) ' Pyp'x 

y = 0uvp 

when: 

y = 0;u = 0 

y = 00; w = 00 

So 

E(X
k) = ]yk±y^e^ ir 0 i + * - i 

^ 
-rTdu=[ekupe-udu = ek\u f e~udu = 0kT(\ + -) 

k = \ 

M\O) = E(x1) = 0]F(l + ^) 

k = 2 

M'\O) = E{x2) = 02Y{\ + —) 

Var(x) = M "(0) - M '(0) = E(x2) - (E(x))2 = 02T(\ + —)- (6T(1 + — ))2 

= d2r(\+—)-e2 (r(i+-))2 = e2 (r(i+—) - (r ( i+-» 2 ) => 
P P 

_2, 

P' 

_2, 

J_ 
P' 

P 

Var{x) = 02{T{\ + ±-)-(T{\ + ±-))2) _2. 

/? 

£(x) = ̂ r(l + i ) 

or 
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E{x) = )yjJy^e^ dy 

let:UX =u,=> Py^dy = dfidu, => dy = j ^ 

when: 

y = 0;u = 0 

y = 00; u = 00 

So 

M'(0) = E{x) = ]y-^yp~le'^ -^du = ]ei?e-udu = eju^e^du = 6T(1 + —) 
0 ^ AV 0 0 " 
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Appendix B 

Derivation of the Cumulative Probability or Probability 
fther t hO 
Variable 

Distribution Functions of the r Out of n Ordered Random 

Let the random sample of size n be ti;t2..Jn where all t{'s are independent, identically 

distributed and continuous random variables with f(t) probability density and F(t) 

cumulative distribution functions, respectively. 

Consider the vector tVn;t2n...tnn of random variables, which is composed of the ti random 

variables, where ti:n is the /"* in magnitude, so that tVn<t2.n<...<tn.n. Then the 

tVn;t2n...tnn random variables would have Gr:n(t) cumulative distribution and gr:n(t) 

probability density functions, respectively. 

Where 

Grn(t) = P(tr„<t),r<n. 

If the condition is trn < t, so "r" or more elements from tl;t2...tn sample should satisfy the 

condition t, < t and since each t, < t has a binomial distribution with the probability of 

success of F(t)=P(/, < t) one would be able to state: 

^ 
F{tT{\-F{t)T GrJt) = P(trn<t) = Z 

To find gr:n(t), we have to take the derivative of Gr:n(t) with respect to t, using the 

property that: 

dF(t) , duv du dv 
/ ( / ) = — ^ and = v — + u—. 

dt dx dx dx 
So we would get that 
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'n^ 'n^ gr.it)=x wF(tr\i-F(t)rwf(t)-Y\ F(tnn-w)(\-F(orw-'f(t)= 
W = r V W / 

fn^ 
=X wF(tr-\\-F(t)rwf(t)-Z 

»-\{ n \ 

-\yvj 
F(ty{n-w)(\-F{t)T^f(t) 

Note that for the second term "w=r:n-l", the variable "w" can be changed to "v", so that 

"v=H-l:n". 

r„\ f n ^ 

v v - l , 

f n > 

v v - l , 

F(o,-i(/»-v+i)(i-F(orv+,-7(o= =X ^(o^a-Fcorvco-E 
\v=r\W J v=r+l 

=Z|" Wr'o-^corvw- I 
=Z ,/ ! „wF(oiv-'(i-F(orv(o- S , 1W

W!—-F(ov-1(»-v+i)(i-F(orv 

~w!(n -w) ! vt^i(v-l)!(«-v + l)! 

|F(0*-1(»-v + l ) ( l - F ( 0 r v / ( 0 = 

! 

= 1 «! 
^r(w-\)\(n-w)\ 

F(0"-1(1-F(0)"-V(0-Z 

(r- l )!( / i -r)! 
F(O r - 1 ( l -F(0)- r / (0 = « 

7t,(v-l)!(n-v)! 
:F (0 v - , ( l -F (0 r v / ( 0 = 

So, 

8^(0 = n 
v r - l y 

Fw-'a-^corvco 

To summarize the above statement, if tl;t2...tn are each independent, identically 

distributed and continuous random variables with f(t) probability density and F(t) 

cumulative distribution functions respectively, then the tr:n ordered random variable 

would have gr:n(t) probability density and Gr:n(t) cumulative distribution functions.13 

V - l y 
Sr,{t) = n 

and 

GrSt) = P{trn<t) = fj 

F(ty-\\-F(t)y-rf{t) 

'n^ 

KWj 
F{tT{\-F{t)Y 

13 Niewiadomska-Bugaj, M., & Bartoszynski, R. (1996). Probability and statistical inference. New York: Wiley. 
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Appendix C 

Derivation of the Weibull and Exponential Random Variables 
Relationship 

If a random variable t has a Weibull distribution with a shape parameter /? and scale 

parameter 6>, then the random variable tphas an exponential distribution with rate 

parameter 9~p. 

Proof: 

Let t has a pdf: 

f(t) = 
0 -W 

-S-f'-'e w ,when t>0 

0, -when t <- 0 

Let y = tp, then / = yp and dt = — yp dy 

then 

/00 = 
« l - l - X 1 ±-l 1 -JL 

0, when _ y <= 0 
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Appendix D 

Maximum Likelihood Estimation for the Weibull Distribution 
Parameters 

D.l Maximum Likelihood Estimation for the Weibull Distribution Parameters 
in a Group with Complete Data 

Let xl,x2,...,xn be the realization of the test of n components. Then the likelihood 

function will be defined as: 

Equation 88 rT_£.v/»vi«J - ^ T 7 v * v 5 W mpix,)=Yi^xre^ =-^n*re 
1=1 1=1 

Taking the natural logarithm of the likelihood function (Ln LF) we will have: 

n n 

Equation 89 Ln(L(0,j31xi)) = nLn{/3)-n(3Ln{9) + fi^LnixJ-^Lnix,)-
2X 
i=l 

/ = ! <=1 e" 

Differentiating of the Ln LF with respect to 9 and equating to zero will lead to: 

d(Ln(L(0,j3/Xi)))_ np 

d6 
+ P 

Z* 
e ^ ep+x 

r » \ 

I 
9 

z* 
1=1 

~n + 
V a J 9P 

Z* 
:0=> 0fi=-& => 

n 

Equation 90 9 = 

( « \ 
I.*? 

\ n J 
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Differentiating of the Ln LF with respect to /?, dividing by n, substituting the Equation 

89 and equating to zero will lead to: 

d(Ln(L(0,/3/x,))) n - » ( x f (XA 

p 

--Ln{P) + -&— 
p n 

- + -/=! i=l 

1 
p n 

n6p ' n6p 

|>(x,) 2KM*,)) Ln(9)±(x?) 
- + -

Ik) IK) 
j=i 

- + 
J^Lnix.) £(x?Ln{Xi)) 
i=\ J=l 

J3 n 

/=1 

—+-^— • = 0 = > 

ZW) 

Equation 91 I=I = -is! 

" " ZW) 3 

So, MLEs for /? and 6 are given in Equation 90 and Equation 91. One should use 

Equation 91 to find the closest value for the MLE of /?, then using Equation 90 to find 

theMLEof 9. 
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D.2 Maximum Likelihood Estimation for the Weibull Distribution Parameters 
in a Group with Type II Censored Data 

Let x1,x1,...,xr be the "r" realization of the test of "n" components. Rearranging the 

realizations in order of magnitude the xVn,x2.n,...,xrn sample will be denoted. 

Then the likelihood function will be defined as: 

( 
Equation 92 L(0,j3/xi) = 

(n-r)\ $fr />-ie i* 
,»\ 

(i-^(or 

Taking the natural logarithm of the likelihood function (Ln LF) we will have: 

Ln(L(0,pi x,)) = rLn(P)-rpLn(0) + p^Lnix,)-

Equation 93 

- ^ Z « ( x , ) -
I* 
;=i . —(n-r) —^ + const. 

QP QP 

Differentiating of the Ln LF with respect to 6 and equating to zero will lead to: 

d(Ln{L{e,pixt))) rp _ § * ' , a(n-r)xf 

dd 
+ PJ^T + P- oP+x 6 ^ 6P+ ep+x 

I 
e 

z*? 
- r + -M-=- + 

(n - r)xp 

ep ep = 0=> 

£xf+(»-r)x? 
QP=J1 
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Y,xf + (n-r)xf 

i 

Equation 94 0 = \ 

If ^ * y i = ^£jyi +(n-r)yr then Equation 94 becomes 
i = l i = l 

Equation 95 6-
\ r J 

Differentiating of the Ln LF with respect to (3, dividing by n, substituting the Equation 

94 and equating to zero will lead to: 

dj3 j3 t r ' ttep ve) -t
n-r^Ln 

--Ln(0) + ^— 
P r 

$ > ( * , ) YxfLn(x,) Ln(0)J^xf 
+ - i=i 

-(n-r)-^Ln{xr)Hn-r)-^Ln{e) = 
r0P rOp 

p r 

^Ln(x,) YjXfLnixi) 

Ln(e) 

r9p 

( r 

<n-r^LnM+-
Y,xf +(n~r)x'r 

Vi=l 

rd" 
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P r 

j^Ln(Xi) YjX?Ln{xi) 

Ln{6) 

rGp 

f r 

-(n-r^Ln(Xr) + -

J^xf + (n-r)xf 
V'=i 

YsX?+{n-r)xtr 

YjLnix,) Y,xf'Ln{xt) + {n-r)xfLn(xr) 

= —+ -
P 

= 0 
j^xf+C-rtf 

Equation 96 
2 Ln(x,) ]T xfLn(x, ) + (n- r)xp

rLn(xr) 
1=1 1=1 

Y.xf+in-^xf P 

If ]T > , = Yjyi +(n-r)yr then 
/=i i=i 

Equation 96 becomes: 

Equation 97 
£l/i(*,) j]VM*<) 

I**/ 3 P 
/=i 

So, MLEs for /? and # are given in Equation 94 and 

Equation 96. One should use 

Equation 96 to find the closest value for the MLE of P, then using Equation 94 to find 

the MLE of 0. 
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D.3 Maximum Likelihood Estimation for the Weibull Distribution Parameters 
in "k" Groups with Complete Data 

The Likelihood function depends on the collected results, regardless of the test strategy 

(parallel or series). 

Let xlw,x2W,...,xn{k) be the realization of the test of n components in the kth group, 

where k=l :k Then the likelihood function will be defined as: 

Equation 98 L(0,/3/xl) = Y[ 

So, the rest will be the same as for Equation 89, and the MLE for J3 and 6 are given in 

Equation 90 and Equation 91. 

With the same logic, the MLE of the /? and 6 for the Type II censored data are given in 

Equation 94 and Equation 96. 

n U*r< w 
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