12-2010

Dielectronic Recombination for Aluminum-Like Ions and Photoabsorption Cross Sections for Magnesium Ions at the K-Edge

Shahin Ahmed Abdel-Azim Abdel Naby

Western Michigan University

Follow this and additional works at: http://scholarworks.wmich.edu/dissertations

Part of the Physics Commons

Recommended Citation

Abdel-Azim Abdel Naby, Shahin Ahmed, "Dielectronic Recombination for Aluminum-Like Ions and Photoabsorption Cross Sections for Magnesium Ions at the K-Edge" (2010). Dissertations. 611.
http://scholarworks.wmich.edu/dissertations/611

This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
DIELECTRONIC RECOMBINATION FOR ALUMINUM-LIKE IONS AND
PHOTOABSORPTION CROSS SECTIONS FOR
MAGNESIUM IONS AT THE K-EDGE

by

Shahin Ahmed Abdel-Azim Abdel Naby

A Dissertation
Submitted to the
Faculty of The Graduate College
in partial fulfillment of the
requirements for the
Degree of Doctor of Philosophy
Department of Physics
Advisor: Thomas W. Gorczyca, Ph.D.

Western Michigan University
Kalamazoo, Michigan
December 2010
Accurate and reliable recombination data are needed for modeling the ions in the finite-density plasmas that may take place in solar flares and in divertors of magnetically confined fusion devices such as the International Thermonuclear Experimental Reactor (ITER). Dielectronic recombination (DR) is the dominant recombination mechanism in photoionized and collisionally-ionized plasmas. DR rate coefficients for M-shell argon ions have been calculated using a configuration-average approach. DR rate coefficients for the aluminum-like isoelectronic sequence are instead calculated using the state-of-the-art multiconfiguration Breit-Pauli (MCBP) atomic structure and collision code AUTOSTRUCTURE. Good agreement is obtained with the measurements from the Heidelberg heavy-ion Test Storage Ring facility. The Maxwellian-averaged DR rate coefficients are fitted into a simple formula for efficient dissemination of data and ease of use in plasma modeling codes.

K-shell photoabsorption cross sections are required for determining the chemical abundances of the interstellar medium. As a secondary project, K-shell photoabsorption cross sections for magnesium ions have been calculated using the Belfast R-matrix computer package.
Copyright by
Shahin Ahmed Abdel-Azim Abdel Naby
2010
ACKNOWLEDGMENTS

First and foremost, I would like to express my sincerest gratitude to my advisor, Prof. Thomas W. Gorczyca, who has supported me since I came to Western Michigan University (WMU). Without his support, patience, knowledge, and encouragement, this work would not see the light. I also like the way he treated me and for sure he is a role model for how supervisors can treat their students. Special thanks should go to the late Prof. Gaber Omar at Ain Shams University, Egypt who was the first one to introduce the topic to me and guided me through my Master’s program back home in Egypt. I would like to thank the atomic physics group at Auburn University specially Prof. Michael Pindzola, Prof. Francis Robicheaux, Prof. Eugene Oks, Prof. Allen Landers and Prof. Staurt Loch. Their discussions and collaborations deeply affected my research life. I really would like to thank Prof. Nigel Badnell at Strathclyde University, UK for his major role in the dielectronic recombination project. It is my pleasure to thank my dissertation committee for their valuable discussions and helpful suggestions. It is an honor to thank Prof. Dean Halderson for explaining the details behind many concepts in physics. I advise all new students to register for any course he will offer. I owe my deepest gratitude to Prof. Kirk Korista for his fruitful discussion, collaboration and suggesting to work on some projects of astrophysical importance. I am indebted to Prof. John Tanis for his continuous encouragement and reviewing my dissertation. Lots of thanks go to Prof. Manuel Bautista for his enthusiasm and his
encouragement. I would like to acknowledge Prof. John Miller for accepting to serve on my committee, his valuable discussions, and reviewing my dissertation. I cannot ignore the support from the department of physics at WMU and from the chair, Prof. Paul Pancella, and the great help from Kerry Cochran, Lori Krum, Robert Scherzer, and Benjamin Gaudio. Special thanks go to my office mates Dr. Dragan Nikolić and Dr. Fatih Hasoglu for their fruitful discussions and interesting comments. I should thank my back home physics department for being patient during my study abroad, especially Prof. Fayez Shahin and Prof. Hany Hamdy. Their encouragement is totally appreciated. Finally, I would like to thank my whole family, parents, brothers, and sisters for their continuous support. No word can express my gratitude to my lovely wife, Nahla, and to my kids, Ahmed, Minnah, Mohamed, and the new baby Ali, for their patience, encouragements, and support. Without them I couldn’t finish my degree.

Shahin Ahmed Abdel-Azim Abdel Naby
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ii

LIST OF TABLES ... vii

LIST OF FIGURES ... ix

CHAPTER

I INTRODUCTION ... 1

1.1 M-Shell Dielectronic Recombination for Argon Ions 14

1.2 Dielectronic Recombination for Aluminum-Like Ions 15

1.3 K-Shell Photoabsorption Cross Sections for Magnesium Ions 16

II THEORETICAL METHODOLOGY ... 19

2.1 Atoms With More Than One Electron 20

2.1.1 The Non-Relativistic Description 20

2.2 Approximate Wave Functions for N-Electron Systems 24

2.2.1 Antisymmetrization and Slater Determinants 24

2.2.2 The Variational Principle .. 25

2.2.3 Hartree-Fock (HF) Approximation 26

2.2.4 Hartree-Slater Method for Bound Orbitals 29

2.2.5 Configuration Interaction ... 30

2.2.6 Distorted Wave Approximation 31

2.3 Relativistic Corrections .. 32
Table of Contents – Continued

CHAPTER

2.4 MultiConfiguration Breit-Pauli Method .. 34
2.5 Transition Rates ... 36
 2.5.1 Radiative Transition Rates .. 36
 2.5.2 Auger Transition Rates ... 37
2.6 Electron-Ion Recombination ... 38
 2.6.1 Cross Sections ... 39
 2.6.2 Maxwellian Rate Coefficients .. 41
2.7 Non-Relativistic R-Matrix Method .. 43
 2.7.1 Auger Width Using Smith Time-Delay Method 48

III M-SHELL DIELECTRONIC RECOMBINATION FOR ARGON IONS 49
 3.1 Introduction .. 49
 3.2 Methodology ... 50
 3.3 Dielectronic Recombination for M-Shell Ions 52
 3.3.1 Dielectronic Recombination for Ar$^{7+}$ 52
 3.3.2 Dielectronic Recombination for Ar$^{6+}$ 54
 3.3.3 Dielectronic Recombination for Ar$^{+}$ − Ar$^{5+}$ 55

IV DIELECTRONIC RECOMBINATION FOR ALUMINUM-LIKE IONS 58
 4.1 Introduction ... 58
 4.2 Available Fitting Formulas for DR and RR Rate Coefficients 59
 4.3 Methodology ... 63
LIST OF TABLES

1.1 Direct electron-ion interaction processes and their inverse processes 2

4.1 RR and DR fitting coefficients for the Al-like isoelectronic sequence given by Mewe et al. ... 60

4.2 Available RR and DR fitting coefficients for the Al-like isoelectronic sequence. .. 61

4.3 RR and DR fitting coefficients for the Al-like ions. 63

4.4 Bases used to calculate Al-like DR cross sections and rate coefficients. A neon core was assumed for all these configurations and omitted for simplicity. 67

4.5 Lowest energy levels (in Rydbergs) for S^{3+} for $\Delta n_c = 0$. A neon core is assumed in all cases and omitted for simplicity. 68

4.6 Radial scaling parameters used in the present study for $\Delta n_c = 0$ core excitations for the Al-like isoelectronic sequence. 80

4.7 Comparisons of the lowest energy levels (in Rydbergs) for Al-like Cl$^{4+}$ and Ar$^{5+}$... 83

4.8 Comparisons of the lowest energy levels (in Rydbergs) for the Al-like K$^{6+}$, Ca$^{7+}$, Sc$^{8+}$, and Ti$^{9+}$. .. 87

4.9 Comparisons of the lowest energy levels (in Rydbergs) for the Al-like V$^{10+}$, Cr$^{11+}$, Mn$^{12+}$, and Fe$^{13+}$. .. 93

4.10 Comparisons of the lowest energy levels (in Rydbergs) for the Al-like Co$^{14+}$, Ni$^{15+}$, Cu$^{16+}$, and Zn$^{17+}$. .. 94

4.11 Fitting coefficients c_i and E_i for Eq. (4.6) for the total DR rate coefficients of the ground Al-like isoelectronic sequence forming the Si-like ions. 109

4.12 RR fitting coefficients for the ground and metastable initial levels ($m = 1 - 5$) for Al-like ions using Eq. (4.7). 110
List of Tables –Continued

5.1 Methodology of determining the physical 1s, 2s, and 2p orbitals and correlation (or pseudo) 3s, 3p, and 3d orbitals for Mg$^{7+}$. 115

5.2 Comparison of term energies (in Rydbergs) for Mg$^{6+}$ and Mg$^{7+}$ for the states included in my calculations relative to the 1s22s22p (2P) ground state of Mg$^{7+}$. ... 116

5.3 Comparison of Auger widths (in eV) for the 17 Mg$^{7+}$ autoionizing target states above the K-shell threshold. .. 118

5.4 Methodology of determining the physical 1s, 2s, and 2p orbitals and correlation (or pseudo) 3s, 3p, and 3d orbitals for Mg$^{4+}$. 119

5.5 Comparison of term energies (in Rydbergs) for Mg$^{3+}$ and Mg$^{4+}$ for the states included in my calculations relative to the 1s22s22p4 (3P) ground state of Mg$^{4+}$. ... 120

5.6 Methodology of determining the physical 1s, 2s, and 2p orbitals and correlation (or pseudo) 3s, 3p, and 3d orbitals for Mg$^{3+}$. 122

5.7 Methodology of determining the physical 1s, 2s, 2p, 3s, 3p, and 3d orbitals and correlation (or pseudo) 4s, 4p, and 4d orbitals for Mg$^{+}$. 126
LIST OF FIGURES

1.1 Schematic diagram of dielectronic recombination (DR) process.............. 4

1.2 Photoabsorption cross section results for the magnesium isonuclear series showing that the IP model does not include the important K-shell resonances. ... 18

2.1 Schematic diagram for the configuration space in the R-matrix theory. 44

3.1 Dielectronic recombination rate coefficients for Ar7+ 53

3.2 Dielectronic recombination rate coefficients for Ar6+ 54

3.3 Dielectronic recombination rate coefficients for M-shell argon ions (Ar+ -\textsuperscript{Ar5+}). ... 56

3.4 Equilibrium ion-stage balance for Ar- Ar8+ 56

4.1 Comparison of DR rate coefficients for S3+ in LS-coupling scheme. 70

4.2 Rate coefficients for S3+ in both LS- and IC-coupling schemes using basis B. 71

4.3 DR cross sections for S3+ in LS- and IC-coupling. 72

4.4 DR cross section of S3+ for the collision $e^{-} + 3s^23p\left(^2P_{1/2}\right) \rightarrow 3s3p^2\left(^2P_{1/2}, 3/2\right)n\ell$ in both LS- and IC-coupling schemes. 73

4.5 DR cross section for the series $3s^23p\left(^2P_{3/2}\right)n\ell$ of S3+ in the IC-coupling scheme convolved with FWHM of 1.2 meV. 74

4.6 DR rate coefficients for S3+ for the collision $e^{-} + 3s^23p\left(^2P_{1/2}\right) \rightarrow 3s^23d\left(^2D_{3/2}\right)n\ell$ in IC-coupling convolved with a Gaussian with FWHM of 1.2 meV. 75

4.7 Schematic diagram for N-and (N + 1)-electron systems with a continuum $e\ell$ or valance $n\ell$ orbital coupled to Al-like ionic states. 76
4.8 Study of the convergence of the angular momentum quantum number ℓ for the atomic collision $e^- + 3s^23p \ (^2P_{1/2}) \rightarrow 3s^23d \ (^2D_{3/2, 5/2})n\ell$ in IC-coupling. ... 77

4.9 Study of the convergence of the principal quantum number n or the collision $e^- + 3s^23p \ (^2P_{1/2}) \rightarrow 3s^23d \ (^2D_{3/2, 5/2})n\ell$ in IC-coupling. 77

4.10 Comparisons between previous and present DR rate coefficients for S^{3+}. 78

4.11 Comparison of available DR rate coefficients for Si^{++}. 81

4.12 Comparison of available DR rate coefficients for P^{2+}. 82

4.13 Comparison of available DR rate coefficients for Cl^{1+}. 84

4.14 Comparison of available DR rate coefficients for Ar^{5+}. 85

4.15 Comparison of available DR rate coefficients for K^{6+}. 88

4.16 Maxwellian-averaged DR rate coefficients for Ca^{7+}. 89

4.17 Comparison of available DR rate coefficients for Sc^{8+}. 91

4.18 Maxwellian-averaged rate coefficients for Ti^{9+}. 92

4.19 Maxwellian-averaged rate coefficients for V^{10+}. 95

4.20 Maxwellian-averaged rate coefficients for Cr^{11+}. 96

4.21 Comparison of available DR rate coefficients for Mn^{12+}. 97

4.22 Comparisons of the DR rate coefficients with the TSR measured merged-beams electron-ion recombination rate coefficient (MBRRC) for Fe^{13+} from intra-shell $\Delta n_e = 0$ transitions. 98

4.23 Same as Fig. 4.22, but for low energy. ... 99

4.24 Maxwellian-averaged DR and RR rate coefficients for Fe^{13+}. 100

4.25 Maxwellian-averaged rate coefficients for Co^{14+}. 102
4.26 Maxwellian-averaged DR rate coefficients for Ni$^{15+}$................. 103
4.27 Maxwellian-averaged DR rate coefficients for the iron peak elements for
$\Delta n_c = 0$ and $\Delta n_c = 1$ core excitations.............................. 104
4.28 Maxwellian-averaged DR and RR rate coefficients for Cu$^{16+}$........... 105
4.29 Maxwellian-averaged DR and RR rate coefficients for Zn$^{17+}$........... 106
4.30 Total ground state RR rate coefficients for the Al-like isoelectronic se-
quence using the AUTOSTRUCTURE package. Curves from Si to Zn are
shown from left to right.. 107
5.1 Comparisons of my calculated K-shell photoabsorption cross section for
Mg$^{6+}$, the results of Witthoeft et al. obtained by using the Breit Pauli R-
matrix method (BPRM), and the photoionization results of Verner et al. 115
5.2 Same as Fig. 5.1, but for the photon energy range 1270 – 1310 eV........ 117
5.3 Same as Fig. 5.1 but for Mg$^{3+}$... 120
5.4 Comparisons of my results for the K-shell photoabsorption cross section in
the length and velocity forms for the dipole operator for Mg$^{2+}$............ 122
5.5 K-shell photoabsorption with and without including the spectator Auger
decays (with broadening and without) in the length form of the dipole op-
erator Mg$^{2+}$.. 123
5.6 Comparisons of my calculated K-shell photoabsorption cross section for
Mg$^{2+}$, the results of Witthoeft et al. obtained by using the Breit Pauli R-
matrix (BPRM), and the photoionization results of Verner et al. 124
5.7 K-shell photoabsorption cross section for Mg and the photoionization re-
sults of Verner et al.. 126
Chapter I

Introduction

In astrophysical and laboratory plasmas, such as the International Thermonuclear Experimental Reactor (ITER), electrons, ions, and photons may interact with each other, transferring energy from one particle to another. These interactions result in many atomic processes such as excitation, ionization, de-excitation, and recombination. The photon-ion processes include resonant photoabsorption (PA) and photoionization (PI), with their inverse processes spontaneous decay and radiative recombination (RR), respectively. Let’s assume that electrons are denoted by e^-, ions with initial charge q are denoted by A^{q+}, and photons are denoted by their energy $h\nu$ where $h = 6.626068 \times 10^{-34}$ J.s is Planck’s constant and ν is the frequency of the photon in Hertz.

The resonant photoabsorption (PA) can be represented as

$$h\nu + A^{q+} \longrightarrow A^{(q+)*},$$ \hspace{1cm} (1.1)

where a photon with an energy $h\nu$ is absorbed by the ion A^{q+}. The ion is excited from a lower state into a higher excited state $A^{(q+)*}$ provided that the difference in energy between the initial and the excited states matches the incident photon energy. This process is the inverse of spontaneous decay.

Electron-ion interactions can be divided into direct and indirect processes. Direct processes include radiative recombination (RR), electron impact excitation (EIE), and electron impact ionization (EII), while the inverse of these direct processes are photoionization (PI),
electron impact de-excitation (EIDE), and the three-body recombination (TBR). Table 1.1 summarizes the direct processes accompanied by their inverse ones. Electrons with different energies are denoted by \(e^{-'} \) or \(e^{-''} \).

Table 1.1 Direct electron-ion interaction processes and their inverse processes

<table>
<thead>
<tr>
<th>Processes</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiative Recombination (RR)</td>
<td>(e^{-} + A^{q+} \rightarrow A^{(q-1)+} + h\nu)</td>
</tr>
<tr>
<td>Electron Impact Excitation (EIE)</td>
<td>(e^{-} + A^{q+} \rightarrow A^{q+*} + e^{-'})</td>
</tr>
<tr>
<td>Electron Impact Ionization (EII)</td>
<td>(e^{-} + A^{q+} \rightarrow A^{(q+1)+} + e^{-'} + e^{-''})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inverse processes</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoionization (PI)</td>
<td>(h\nu + A^{(q-1)+} \rightarrow A^{q+} + e^{-})</td>
</tr>
<tr>
<td>Electron Impact De-excitation (EIDE)</td>
<td>(e^{-} + A^{q+*} \rightarrow A^{q+} + e^{-'})</td>
</tr>
<tr>
<td>Three Body Recombination (TBR)</td>
<td>(e^{-} + e^{-} + A^{(q+1)+} \rightarrow A^{q+} + e^{-'})</td>
</tr>
</tbody>
</table>

As a result of these collisions, electrons can be excited from the ground state, which has the lowest energy, to higher excited states (or to states with higher principal quantum number \(n \), which we refer to as Rydberg states) leaving a hole (vacancy) behind. In the Al-like system, the ground state is \(3s^23p^2[2^P] \), whereas the \(3s3p^2[4^D, 2^P, 2^D] \) states are examples of excited states. The neon core \((1s^22s^22p^6)\) is omitted for simplicity. As a result of the EIE of the ground state of the Al-like ions, the \(3s3p^2n\ell \) state can be formed. This state is above the ionization limit of the Al-like ions, and we call it as Rydberg state. This state has two excited electrons, so we call it a doubly-excited state. Doubly-excited states are usually formed due to EIE, electron capture, photoexcitation, and electron-ion recombination. These doubly-excited states are unstable and there are two possible ways of stabilization, either by electron emission or by photon emission. The former is referred to as Auger emission (autoionization) and the latter is called radiative stabilization. In the case of Auger emission, the inner shell hole is filled with an outer shell electron and
the released energy causes another electron to be ejected. This increases the degree of ionization of the system by one. On the other hand, stabilization could happen by electron transitions from higher excited states to fill this vacancy with a photon being emitted. The rates for these two processes are denoted by A^a and A^r, respectively, and will be discussed in more detail in Sec. 2.5.

Electrons and ions may collide via an indirect (resonant) process called dielectronic recombination (DR), which plays an important role in plasma modeling and diagnostics of physical conditions. DR is a two step process in which a free electron, with kinetic energy E_k, collisionally excites the ion (with at least one electron) and is then captured into a Rydberg state, forming an intermediate doubly-excite state ($[A^{(q-1)+}]^{**}$). This doubly excited state is unstable and may autoionize or it can radiatively stabilize by emitting a photon. When stabilization happens via photon emission, the DR process is completed and it can be described as

$$e^- + A^q \rightleftharpoons [A^{(q-1)+}]^{**} \rightarrow A^{(q-1)+*} + h\nu.$$ \hspace{1cm} (1.2)

As a consequence of the DR process, the total energy of the recombined ion is reduced to below its ionization limit. Conservation of energy requires that $E_k = \Delta E - E_b$, where ΔE is the excitation energy of the initially bound electron and E_b is the binding energy.

In Fig. 1.1, the DR process for electron collision with S^{3+} is presented. Although many doubly-excited states can be formed during this collision, we present only the $3s3p^2[2^2P]n\ell$ states for simplicity. These doubly-excited states can either autoionize or they can stabilize by emitting a photon which completes the DR process. Photon emission can be obtained via
Figure 1.1 Schematic diagram of dielectronic recombination (DR) process. A free electron with kinetic energy E_k is captured by a target ion S^{3+} forming a doubly-excited state $[S^{2+}(3s3p^2\{^{2}P\}n\ell)]^{**}$. The unstable doubly-excited state may decay either by autoionization or by emitting a photon. For the latter, the DR process is completed.

core decay ($3p \rightarrow 3s$), which gives $3s^23pn\ell$, or by the decay of the Rydberg electron ($n\ell$), which gives $3s^23p^2$ or $3s3p^2n\ell'$. A schematic representation for this decay is presented as

$$e^- + S^{3+}(3s^23p\{^{2}P\}) \Rightarrow [S^{2+}(3s3p^2\{^{2}P\}n\ell)]^{**} \rightarrow S^{2+}(3s^23p^2) + h\nu$$

$$\rightarrow S^{2+}(3s^23p\ell)^+ + h\nu'$$

$$\rightarrow S^{2+}(3s3p^2n\ell')^+ + h\nu''$$

(1.3)
In the previous example, core excitations take place without changes in the principal quantum number (e.g., $3s \rightarrow 3p$), and this is what we call DR with $\Delta n_c = 0$ core excitation, where low-temperature DR occurs. On the other hand, high-temperature DR is obtained for $\Delta n_c \geq 1$. It is worth while to know that $\Delta E = E(3s3p^2 \left[2^P \right]) - E(3s^23p \left[2^P \right])$ and $E_b = E(3s3p^2 \left[2^P \right]) - E(3s3p^2 \left[2^P \right] n\ell)$.

A history of the theoretical work on DR can be found in the review article by Seaton and Storey [1]. During the early study of the Earth’s ionosphere, the disagreement between observations and theory based on RR alone led Sayers in 1939 (in a private communication to Seaton) to suggest that the inverse process of autoionization could be an additional mode of recombination and it might be important to the study of the ionosphere. This prompted Massey and Bates to introduce a new resonance mode of recombination and they called it dielectronic recombination (DR) [2]. However, these estimates of the rate coefficients of this process indicated that DR is not important for the ionosphere, where the temperatures are too low to excite the high energy Rydberg states.

In the study of ionization and recombination of the solar corona, the coronal temperatures deduced from collisional ionization equilibrium were significantly lower than the temperatures deduced from coronal gas density gradients and from the Doppler broadening of the spectral lines, implying that either the ionization rates were too large or the recombination rates were too low. In 1961, Unsöld sent a letter to Seaton suggesting that DR might account for this discrepancy in the solar corona. Seaton initially concluded that DR would not significantly increase the recombination in the solar corona. But this conclusion was incomplete because only the lower energy states were included, not the higher ones.
In 1964, Burgess showed that this discrepancy could be removed by including the higher Rydberg states [3], and since then the importance of the DR process has been recognized.

After the general formula of Burgess [3, 4], various formulas for calculating DR rate coefficients with many fitting parameters were introduced, mainly for H-like or He-like ions. In 1966, Tucker and Gould proposed a formula that depended on the energy difference between the states and some other fitting parameters [5]. However, their formula neglected the dependence of the Auger rates, A_a, on the angular momentum quantum number ℓ, so their work did not coincide with others. In 1968, Beigman et al. [6] introduced another formula by dividing the doubly-excited states into two groups for which either the radiative or the Auger rates (A_r, A_a) may be neglected. In 1970, the general formula was reproduced by Ansari et al. [7] in a simpler form depending on two parameters only and valid for low-lying states only. However, it soon became apparent that more sophisticated calculations for DR were required.

In 1969, Shore pointed out the importance of using accurate term energies rather than configuration-average energies in the calculations of DR rate coefficients [8]. However, he did not include the effect of channel coupling and exchange effects that may reduce the autoionization rates. In 1976, Burgess and Tworkowski [9] studied the effect of resonance overlap, exchange, and channel coupling, and obtained agreement to within 30% of the general formula for He-ions. In 1978, Gau and Hahn studied the dependence of the Auger and radiative transition probabilities of the high Rydberg states on their principal and orbital quantum numbers [10]. Also, Retter et al. showed that the dependence of Auger and radiative transition probabilities on the nuclear charge, Z, breaks down at high Z and a
polynomial expression in \(Z \) works better [11]. In 1980, Hahn calculated the DR rate coefficients for the Be and Ne sequences, which led him to introduce a formula for the DR rate coefficient as a function of the number of electrons in the target ion and the nuclear charge [12]. In 1981, LaGattuta and Hahn studied the contributions from the high Rydberg states to the DR process [13]. Moreover, they pointed out the importance of cascades to all excited levels of Mo\(^{31+}\) [14]. In 1983, McLaughlin and Hahn estimated the DR cross section for O\(^{5+}\) and studied the dependence of the DR cross section on the effective charge [15]. In 1986, LaGattuta et al. discussed the effect of the electric field on the high Rydberg states in the DR for Mg\(^+\) and Ca\(^+\) target ions [16]. In 1987, Omar and Hahn calculated the DR cross sections for Ca\(^{10+}\), Ca\(^{11+}\), and Ca\(^{12+}\) ions with K-shell excitations [17], while DR cross sections for Mo\(^{30+}\), Mo\(^{31+}\), and Mo\(^{32+}\) with L-shell excitations were calculated by Hahn et al. [18]. In 1988, Moussa et al. calculated DR cross sections and rate coefficients for the Ne-like Mg\(^{2+}\), P\(^{5+}\), and Cl\(^{7+}\) ions with L-shell excitations [19]. In 1989, Ramadan and Hahan calculated the DR cross sections and rate coefficients for ions in the B-like isoelectronic sequence for the \(2s \to 2p \) excitations [20]. DR cross sections and rate coefficients for the metastable states of O\(^{6+}\) and C\(^{4+}\) ions were studied by Hahn and Bellantone [21]. Also, the influence of metastable states and thermal equilibrium upon DR in low-density to moderate-density plasmas was studied by Roszman [22]. In 1993, Hahn introduced an improved rate formulas for DR by fitting all the existing DR data for ions with core charge \(Z_C < 50 \) and with number of electrons in the target \(N < 13 \) [23]. The review article by Dubau and Volonté discussed the importance of DR processes and its application in astronomy [24]. In 1997, the review article by Hahn summarized the improved
understanding of the basic physics involved in various recombination processes [25]. In 1995, Dasgupta calculated the DR rate coefficients for all fine structure levels of the \(n = 3 \) excited levels of Fe\(^{15+} \)-Fe\(^{18+} \) ions [26].

A state-of-the-art multiconfiguration Dirac-Fock (MCDF) method was used by Chen to calculate the DR rate coefficients for the He isoelectronic sequence with \(6 \leq Z \leq 42 \) for temperatures in the range \(0.1 \leq T \leq 12 \) keV [27]. He showed that the relativistic effects changed the allowed Auger and radiative rates by a factor of 3 and increased the transition energies for Mo\(^{40+} \) and this led to a reduction in the DR rate coefficient. In the case of \(LS \)-coupling calculations, the DR rate coefficient is dominated by only a few autoionizing states, while in the relativistic treatment the DR rate coefficient is redistributed among many states. Relativistic calculations of DR rate coefficients for the Ne isoelectronic sequence were carried out by Chen [28], while his DR calculations for F-like ions were limited to Se\(^{25+} \) [29]. The study by Chen of the effects of relativity and configuration interaction (CI) on DR rate coefficients of hydrogen-like ions showed that DR rate coefficients calculated in IC-coupling with CI may be sufficient for light ions. However, relativistic calculations in IC-coupling with CI are necessary for medium-heavy and heavy ions [30]. Total DR rate coefficients for the \(^2P_{1/2} \) and \(^2P_{3/2} \) states in B-like Ti\(^{17+} \), Fe\(^{21+} \), and Mo\(^{37+} \) ions were calculated by Chen et al. for the electron temperatures \(0.1 \leq T \leq 10^4 \) eV using the MCDF method in IC-coupling [31].

The importance of IC-coupling in the study of DR rate coefficients was discussed by Badnell in his calculations for the DR rate coefficients of Fe\(^{21+} \) and Fe\(^{22+} \) [32] using the state-of-the-art multi-configuration Breit-Pauli (MCBP) method. He used the same proce-
dure for calculating the DR rate coefficients for Be-like ions ranging from C$^{2+}$ to Mo$^{38+}$ [33]. In 1988, Badnell studied the influence of core fine structure interactions on DR at low temperatures for the B-like C, N, and O recombined ions, where he found stronger interactions were obtained for higher ionic charges [34]. DR rate coefficient calculations for the ground and metastable levels of carbon and oxygen ions in IC-coupling were studied by Badnell [35]. Badnell and Pindzola calculated $\Delta n_c = 0$ DR cross sections and rate coefficients for the B-like C$^+$, N$^{2+}$, O$^{3+}$, and F$^{4+}$ ions in both LS- and IC-coupling approximations [36]. Also, they calculated the $\Delta n_c = 0$ DR cross sections and rate coefficients for O$^{q+}$ ($q = 1 - 5$), in both LS- and IC-coupling approximations [37]. Moreover, they calculated DR cross sections and rate coefficients for the Ne-like P$^{5+}$ and Cl$^{7+}$ ions in configuration-average (CA), LS- and IC-coupling approximations [38].

DR cross sections for H-like ions were calculated by Pindzola et al. [39], where they studied the effect of fine structure and IC-coupling on the DR cross section of O$^{7+}$. Agreement with the Test Storage Ring (TSR) measurements in Heidelberg by Kilgus et al. [40] to better than 20% was obtained. The effect of the CI between resonances for DR and resonant transfer excitation (RTE) of Na-like ions were studied by Gorczyca and Badnell [41], where good agreement was obtained with the experimental measurements by Linkemann et al. [42].

Another-state-of-the-art method used for calculating the recombination rate is usually referred to as the unified method. In 1994, Nahar and Pradhan developed a method that combined both RR and DR into a unified rate coefficient for the electron-ion recombination [43]. It was used to calculate the electron-ion recombination rate coefficients for
silicon and sulfur ions by Nahar [44], but the effect of radiation damping was not considered. Thus the resonance widths included only the autoionization width Γ^a and missed the radiative width Γ^r, which is important for higher q (the residual charge). In 1995, Robicheaux et al. [45] included the effect of the radiation damping to their close-coupling approximation (radiation damped-R-matrix). DR cross section calculations for Ar$^{15+}$ using radiation damped-R-matrix were carried out and compared to perturbative calculations [32] for the same ion by Gorczyca et al. [46]. Good agreement between the two results were obtained, which suggested that radiation-damped R-matrix can be used to investigate systems where interference between RR and DR is expected. The study of the photorecombination of Fe$^{17+}$ by Gorczyca et al. [47] revealed the shortcomings of the R-matrix method for calculating DR cross sections. This method did not account accurately for the case of radiative decay followed by autoionization.

Many experimental techniques were used to study the DR process such as the Test Storage Ring (TSR) at Heidelberg University, the experimental Storage Ring (ESR) at GSI, the EN tandem accelerator in Aarhus, the electron-beam ion trap (EBIT) at Lawrence Livermore National Laboratory, the electron-beam ion source (EBIS) at Kansas State University, the Bevalac at Lawrence Berkeley Laboratory, and the CRYRING facility at Stockholm, Sweden. The TSR facility measures the resonance strengths and energies with higher accuracy and has the advantage of the negligible metastable content and low background. In 1978, Breton et al. [48] presented a new method for estimating DR rate coefficients for highly ionized ions of molybdenum from the effect of saw-tooth electron temperature relaxations in tokamak plasmas on the emission of impurity ions. In 1982, Isler et al. [49]
measured the concentrations of Fe14+, Fe15+, Fe17+, and Fe18+ ions to determine the ratios of recombination and ionization rate coefficients. DR measurements using EBIS were performed by Briand et al. for Ar12+-Ar15+ ions [50] and by Ali et al. for Ar16+ [51]. On the other hand, DR measurements using EBIT were studied by Knapp et al. [52] for Ni26+ and by Beiersdorfer et al. [53] for Fe24+. Tanis et al. introduced a new process for the ion-atom collisions which is similar to DR in the electron-ion collisions and they called it resonant capture with excitation [54]. They measured the K-shell X-ray emission following the electron capture for the collision Sq+ + Ar with q = 13 − 16. DR cross sections for C+ were measured by Mitchell et al. [55] using a merged electron-ion beam apparatus. The first measurements of DR rate coefficients associated with the 2s → 2p excitation in the B-like N2+, O3+, and F4+ ions were reported by Dittner et al. [56].

In 1995, DeWitt et al. [57] spectroscopically determined DR resonances for He+ using a cooled ion beam in the CRYRING Storage Ring. In 1997, Savin et al. [58] measured DR rate coefficients for Fe17+ and showed the importance of the fine structure core excitations. Uwira et al. [59] studied the recombination of Au49+-Au51+ ions at the TSR facility. Accurate measurements of ∆n\textsubscript{c} = 0 DR resonances with Ar15+ were performed at the CRYRING by Zong et al. [60]. In 1998, strong relativistic effects and natural line widths were observed in the DR spectrum of C3+ by Mannervik et al. [61]. In 1999, Savin et al. [62] measured the resonance strengths and energies for ∆n\textsubscript{c} = 0 DR of Fe17+ and Fe18+. DR measurements for F6+ were carried out by Glans et al. [63]. In 2001, the DR spectrum of N4+ was measured with high resolution and accuracy by Glans et al. [64]. The effect of crossed electric and magnetic fields on the DR of Ne7+ and O5+ was measured at the
CRYRING by Bohm et al. [65, 66]. In 2002, Savin et al. measured resonance strengths and energies of Fe$^{18+}$ and Fe$^{19+}$ [67, 68]. In 2003, DR rate coefficient measurements in addition to investigations of the effect of external electric fields on the DR of O$^{5+}$ were carried out at the CRYRING by Bohm et al. [69]. DR resonance strengths and energies were measured by Savin et al. of Fe$^{20+}$ and Fe$^{21+}$ [70]. Absolute RR and DR rate coefficients for Ni$^{17+}$ were measured at the CRYRING by Fogle et al. [71]. Experimental measurements for the electron-ion spectrum of Na$^{8+}$ were carried out by Nikolić et al. [72]. A summary of the the measurements of the DR spectra in the CRYRING facility of Li-like, Na-like, and Cu-like ions were presented by Glans et al. [73]. Absolute total recombination rate coefficients for C$^{2+}$, N$^{3+}$, and O$^{4+}$ were measured by Fogle et al. [74, 75]. DR rate coefficients for Fe$^{13+}$, Fe$^{7+}$, and Fe$^{8+}$ were measured by Schmidt et al. [76, 77, 78]. Electron-ion recombination of Si$^{3+}$ was measured at the TSR facility by Schmidt et al. [79]. Electron-ion recombination measurements for Fe$^{9+}$ and Fe$^{10+}$ using a merged beams apparatus at the TSR were carried out by Lestinsky et al. [80]. Recent review articles for DR processes include those by Hahn [81], Pindzola et al. [82], and Kallman and Palmeri [83].

Earlier DR calculations have been sufficiently summarized by Aldrovandi and Péquignot [84], Mewe et al. [85], Shull and Steenberg [86], and Arnaud and Raymond [87], along with extrapolations and interpolations by Landini and Fossi [88, 89], but these previous studies were performed using the single-configuration LS-coupling approximation or semi-empirical formulas or isoelectronic interpolations. Badnell and co-workers [90] recently began a program to compute accurate DR rate coefficients from both ground and metastable
initial states (hereafter referred to as the DR project). Following the initiation of this project, computations of DR cross sections and rate coefficients were completed for the hydrogen-like isoelectronic sequence by Badnell et al. [91], helium-like isoelectronic sequence by Bautista et al. [92], lithium-like isoelectronic sequence by Colgan et al. [93], beryllium-like isoelectronic sequence by Colgan et al. [94], boron-like isoelectronic sequence by Altun et al. [95], carbon-like isoelectronic sequence by Zatsarinny et al. [96], nitrogen-like isoelectronic sequence by Mitnik et al. [97], oxygen-like isoelectronic sequence by Zatsarinny et al. [98], fluorine-like isoelectronic sequence by Zatsarinny et al. [99], neon-like isoelectronic sequence by Zatsarinny et al. [100], sodium-like isoelectronic sequence by Altun et al. [101], magnesium-like isoelectronic sequence by Altun et al. [102], and argon-like isoelectronic sequence by Nikolić et al. [103]. Extended work for the more complicated, third row isoelectronic sequences has begun [104]. These data, along with the RR data [105], have been used to provide new ionization balance determinations for photoionized (lower electron temperatures) and collisionally-ionized (higher electron temperatures) plasmas of astrophysical and/or fusion-related interests. DR rate coefficients for all the previous isoelectronic sequences are benchmarked against CRYRING and TSR experiments [67, 68, 70, 106, 107, 108] with recent summarized DR measurements for iron ions [109]. DR rate coefficients for all isoelectronic sequences from H-like up to Mg-like can be accessed from the webpage of the University of Strathclyde Atomic Data and Analysis Structure (ADAS) database (http://amdpp.phys.strath.ac.uk/tamoc/DATA) or from the webpage for the Oak Ridge Controlled Fusion Atomic Data Center Data (http://www-cfadc.phy.orl.gov).
Another theoretical state-of-the-art method is the one based on the flexible atomic code (FAC) [110]. This method was used to calculate DR rate coefficients for the H-like through Ne-like isoelectronic sequences of Mg, Si, S, Ar, Ca, Fe and Ni, which showed good agreements with the results of the DR projects.

Another method is the relativistic many-body perturbation theory (RMBPT), which gives reliable low-energy DR data, but can only be used for one electron outside a closed shell. e.g. Na-like silicon by Orban et al. [111].

In the reminder of this Chapter, three projects are introduced: 1) M-shell DR rate coefficient for argon ions; 2) DR rate coefficients for Al-like ions; 3) K-shell photoabsorption for magnesium ions.

1.1 M-Shell Dielectronic Recombination for Argon Ions

Inside the magnetically confined fusion devices, such as ITER, the temperature may reach 1.5×10^8 K such that fusion can take place. The key design issue in ITER is to avoid the plasma disruption and besides other cooling methods, the divertor is designed to extract heat and impurities from the plasma. Argon has been used in the diagnostics of the plasmas [112, 113] as well as for mitigating the plasmas disruption [114]. In response to these applications, calculations for the ionization balance of argon are needed and this require previous knowledge of both ionization and recombination rate coefficients for argon isonuclear sequence. Since DR rate coefficients for Ar$^{6+}$- Ar$^{17+}$ are available from the DR project and there no state-of-the-art DR rate coefficient calculations for the rest of the argon isonuclear sequence. Calculations for M-shell DR cross sections and rate coefficients are
cumbersome and some approximations have to be done to make these calculations possible. New DR calculations for Al-like argon up to Cl-like argon (Ar$^{5+} - \text{Ar}^+$) are presented in Chapter III.

1.2 Dielectronic Recombination for Aluminum-Like Ions

Cosmic plasmas are divided into collisionally ionized and photoionized plasmas. The former are found, for example, in the Sun and Stars, and the latter are found in planetary nebulae and active galactic nuclei (AGN). In collisionally ionized plasmas, ionization occurs due to electrons. Hence, in the case of ionization equilibrium, ions are formed at temperatures of nearly half of their ionization potential and higher temperature DR is the dominant electron-ion recombination process [115]. On the other hand, ionization is caused by the radiation field in the photoionized plasmas, and ions are formed at lower temperature [116, 117]. DR is the dominant electron-ion recombination process for most of the ions in the low density photoionized and electron-ionized plasmas [87, 118, 119]. The codes devoted to modeling photoionized plasmas include CLOUDY by Ferland et al. [116] and XSTAR by Kallman and Bautista [117], whereas, CHIANTI by Landi et al. [120] is used to model X-ray emission for collisionally ionized plasmas. All these codes depend on the accuracy of the DR rate coefficients to calculate ionization balance, thermal structure, and line emissions of cosmic plasmas. Recent calculations for the collisional ionization equilibrium ionic fractions for iron ions by Dere et al. [121] based on the DR rate coefficients performed by Badnell [122] are found to be different than the calculations done by Mazzotta et al. [123] and this strongly shows the need for accurate DR rate coefficients.
using state-of-the-art MCBP results.

Some of the Al-like ions are abundant in the solar spectra. For example, Ca7+ lines were observed with high-resolution by the Solar and Heliospheric Observatory (SOHO) \cite{124}. Si+, Ar5+, and Ca7+ were observed by the solar ultraviolet measurements of the emitted radiation spectrograph on SOHO \cite{125, 126}, and still other lines are unidentified. So it is obvious that M-shell DR rate coefficients are needed, and calculations for Al-like DR rate coefficients are the next step for the DR project.

Although there are some pre-existing DR rate coefficient calculations for the Al-like isoelectronic sequence (e.g., S3+), they were performed within a nonrelativistic LS-coupling approximation and only for the high temperatures characteristic of electron-ionized gas \cite{84, 127, 128, 129, 130}. No data exist for the low temperatures characteristic of photoionized gas. In Chapter IV, new DR rate coefficient calculations for the Al-like isoelectronic sequence will be presented for all ions starting from Si+ up to Zn17+.

Astrophysicists and plasma modelers use the recommended data of Mazzotta et al. \cite{123} in their models. These fitting coefficients are sometimes based on extrapolations across or interpolations through isoelectronic sequences. For the Al-like isoelectronic sequence, it is not clear from which source(s) Mazzotta et al. acquired their recommended data. So, through this work, these sources will be determined.

1.3 K-Shell Photoabsorption Cross Sections for Magnesium Ions

Accurate data for the inner shell processes are required for modeling astrophysical plasmas, especially after the advances in the spectral resolutions of the launched X-ray tele-
scopes such as *Chandra* X-ray observatory (http://chandra.harvard.edu), XMM-Newton (http://xmm.vilspa.esa.es), and the future International X-ray observatory (IXO). Moreover, K-shell photoabsorption cross sections are important for interpreting the observed spectra from distant cosmic emitters and determining the elemental abundances of our Galaxy’s interstellar medium (ISM).

The observed flux density, \(I(\lambda) \), is related to the photoabsorption cross section \(\sigma^{PA}(E) \) and the emission flux density \(I_o(\lambda) \) by

\[
I(\lambda) = I_o(\lambda) \exp \left[-\sigma^{PA}(E)N \right],
\]

where \(E = hc/\lambda \) is the photon energy, \(c \) is the speed of light in the vacuum, \(\lambda \) is the wavelength, and \(N \) is the number of absorbers per unit area along the line of sight, known as the column density.

In 1979, Reilman and Manson [131] studied photoabsorption of all ionization stages of all astrophysically important elements within the independent-particle (IP) model. But, their results lack the important resonance absorption features that are so helpful in identifying elemental abundances (see Fig. 1.2). Previous K-shell photoabsorption cross sections for neon [132, 133] and oxygen [134, 135] ions were computed at Western Michigan University (WMU) and compared to high-resolution X-ray spectroscopy of ISM gas clouds [132, 136] to determine the abundances of oxygen and neon ions. Later, I was involved in a similar calculations for carbon ions [137].

K-shell photoabsorption calculations for magnesium ions are performed using the state-of-the-art \(R \)-matrix method (see Sec. 2.7). This technique has proved to be successful
in describing both experimental synchrotron measurements [133, 138, 139] and Chandra high-resolution spectroscopic observations [132, 134, 136]. Comparisons with the results of Witthoeft et al. [140] obtained by using the Breit Pauli R-matrix method (BPRM) will be presented in Chapter V.

The rest of the dissertation is organized as follows. In Chapter II, the theoretical methodologies are presented. Chapter III discusses the M-shell DR rate coefficients results for Argon ions using a configuration-average approximation. In Chapter IV, the study of DR rate coefficients for the Al-like isoelectronic sequence is presented. Chapter V contains the results of K-shell photoabsorption for Mg-ions and I conclude with a summary in Chapter VI.
CHAPTER II
THEORETICAL METHODOLOGY

This Chapter deals with the theoretical methodology we have used in the calculations of DR cross sections and rate coefficients for the Al-like isoelectronic sequence and K-shell photoabsorption cross sections for Mg isonuclear sequence. Two approaches have been used throughout this work. The first one is a pertubative technique, which we use for calculating DR cross sections using the-state-of-the-art multiconfiguration Breit-Pauli (MCBP) method. Particularly, the AUTOSTRUCTURE atomic structure package and collision code [32] (which incorporates the SUPERSTRUCTURE program [141]) is used for calculating energy levels and radiative and autoionization rates required in the DR cross sections and rate coefficients calculations. The second one is the-state-of-the-art R-matrix suit of codes, which is based on a close-coupling expansion [142, 143, 144]. This approach is used for the calculations of K-shell photoabsorption of Mg isonuclear ions. The R-matrix method is more accurate for describing the multichannel atomic problems [145, 146]. In particular, we have used the R-matrix codes [147] with some recent developments to take into account the elimination of the unphysical pseudoresonances [148] and spectator Auger decay broadening [138].

The rest of this Chapter is organized as follows. In Sec. 2.1, we describe the eigenvalue problem of an N-electron system in a non-relativistic framework followed by approximate wave functions for the N-electron system in Sec. 2.2. The relativistic corrections are discussed in Sec. 2.3, while the pertubative MCBP approximation is discussed in Sec. 2.4. In
Sec. 2.5, we present the radiative and Auger transition rates followed by a discussion of the DR cross section and rate coefficients in Sec. 2.6, and we conclude by introducing the R-matrix theory in Sec. 2.7.

2.1 Atoms With More Than One Electron

2.1.1 The Non-Relativistic Description

Armed with the study of the one-electron system [149, 150], we can proceed to deal with the N-electron systems ($N > 1$, and not necessarily equal to the atomic number Z).

The time-independent Schrödinger equation for this system can be written as [151]

$$H\psi(q_1, q_2, \cdots, q_N) = E\psi(q_1, q_2, \cdots, q_N),$$ \hspace{1cm} (2.1)

where H is the Hamiltonian operator, ψ is the wave function, E is the total energy of the system, and q_i represents the spatial and spin coordinates of electron i. Our wave function, ψ, is continuous and represents the solution of the above eigenvalue problem in Eq. (2.1).

For simplicity in notation and for convenience in numerical work, we shall now adopt *atomic units* (a.u.), i.e., we shall choose the basic units such that \hbar, m_e, e, and $4\pi\varepsilon_0$ all become equal to one except where explicitly specified (see Appendix A).

In the absence of external fields, if we treat the nucleus as a point charge of infinite mass, and neglect relativistic effects (they will be included later), then we can write the non-relativistic Hamiltonian for an N-electron system, in a.u., as

$$H_{nr} = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i}\right) + \sum_{i<j}^{N} \frac{1}{r_{ij}}.$$ \hspace{1cm} (2.2)

Here, the first two terms in the Hamiltonian are the sum of the kinetic and potential energies for the one-electron system, Z is the nuclear charge of the N-electron system, r_i is the
distance of electron i from the nucleus, the third term represents the Coulomb repulsion between electrons i and j, and r_{ij} is the relative distance between these two electrons. We avoided the double counting of the electron pairs by imposing the restriction $i < j$ on the second summation. This Hamiltonian is independent of the spin of the electrons and is invariant under an interchange of the coordinates of any two electrons [149]. Let us deal with the situation where the wave function has only spacial coordinates. As we may realize, the Shrödinger equation is not separable because of the term $\sum_{i<j}^{N} 1/r_{ij}$. Moreover, this term is too large to be treated by perturbation theory. Hartree and Slater introduced the central field approximation to deal with this problem which is based on the independent particle model. In this case, each electron moves independently in an effective potential due to the nucleus and the other $(N - 1)$-electrons.

If we add and subtract $\sum_{i=1}^{N} V(r_{i})$ to Eq. (2.2), then \mathcal{H}_{nr} can be written as an unperturbed (\mathcal{H}_{c}) and a perturbed parts (\mathcal{H}_{1}) as follows [152]

$$\mathcal{H}_{nr} = \mathcal{H}_{c} + \mathcal{H}_{1}. \quad (2.3)$$

The unperturbed term \mathcal{H}_{c} is the part due to the central field approximation $V(r_{i})$ and is given by

$$\mathcal{H}_{c} = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} + V(r_{i}) \right)$$

$$= \sum_{i=1}^{N} h_{i}, \quad h_{i} = -\frac{1}{2} \nabla_{i}^{2} + V(r_{i}), \quad (2.4)$$

and the remaining term of the Hamiltonian, \mathcal{H}_{1} is given by

$$\mathcal{H}_{1} = \sum_{i<j}^{N} \frac{1}{r_{ij}} - \sum_{i}^{N} \left(\frac{Z}{r_{i}} + V(r_{i}) \right). \quad (2.5)$$
The spacial part central field wave function \(\psi_c \) can be written as

\[
\psi_c = \phi_{n_1 \ell_1 m_{\ell_1}}(\mathbf{r}_1) \phi_{n_2 \ell_2 m_{\ell_2}}(\mathbf{r}_2) \cdots \phi_{n_N \ell_N m_{\ell_N}}(\mathbf{r}_N).
\]

(2.6)

Since, \(V(r) \) is central and spherically symmetric, \(\phi_{n\ell m}(r) \) can be written as the product of radial functions \(R_{n\ell}(r) \) times spherical harmonics \(Y_{\ell m}(\theta, \varphi) \), and the normalized spin orbitals \(\phi_{n\ell m_{s}}(q) \) can be written as

\[
\phi_{n\ell m_{s}}(q) = \phi_{n\ell}(r) \chi_{1/2,m_{s}}
\]

\[
= R_{n\ell}(r)Y_{\ell m}(\theta, \varphi)\chi_{1/2,m_{s}}
\]

\[
= \frac{P_{n\ell}}{r} Y_{\ell m}(\theta, \varphi)\chi_{1/2,m_{s}},
\]

(2.7)

with \(n, \ell, m_{\ell}, \text{ and } m_{s} \) are the principal, orbital, magnetic, and spin projection quantum numbers, respectively. The principal quantum number \(n \) takes values of \(n = 1, 2, 3, \ldots \), the orbital quantum number \(\ell \) takes values of \(\ell = 0, 1, 2, 3, \ldots , n - 1 \), which correspond to the spectroscopic notations \(s, p, d, f, \ldots \), respectively. The values for the magnetic quantum number \(m \) are \(m_{\ell} = -\ell, -\ell + 1, \ldots , +\ell \) and \(m_{s} \) takes values of \(m_{s} = \pm 1/2 \) with the positive sign for spin up and negative one for spin down. We should note that \(R_{n\ell}(r) \) is different than the radial (hydrogenic) functions for the one-electron system because of the form of the potential \(V(r) \). The radial orbitals \(P_{n\ell}(r) \) are solutions to radial equation

\[
\left[\frac{d^2}{dr^2} - \frac{\ell(\ell + 1)}{r^2} - 2V(r) + 2E \right] P_{n\ell}(r) = 0.
\]

(2.8)

The total energy \(E_c \), in the central field approximation, is the sum of the individual electron energies,

\[
E_c = \sum_{i=1}^{N} E_{n_i \ell_i}.
\]

(2.9)
We define the total spin and angular momentum operators as $S = \sum_{i=1}^{N} \hat{s}_i$ and $L = \sum_{i=1}^{N} \hat{\ell}_i$, respectively. When we couple L and S, we get the total angular momentum, $J = L + S$ and this is known as Russell-Saunders coupling, or LS-coupling. This coupling scheme is used when the electron-electron repulsion energy is greater than the spin-orbit interaction. So, the total spin and total orbital angular momenta are conserved separately. We may realize that both H_{nr} and H_c commute with the total momentum operators L, S, L_z, and S_z, where the last two operators are the orbital and spin angular momentum operators along the z-axis, respectively.

$$[H_c, L] = 0, \quad [H_c, S] = 0, \quad [H_c, J] = 0, \quad \text{and} \quad [L, S] = 0. \quad (2.10)$$

The commutation relations between the components of the spin and orbital angular momenta are given by

$$[L_i, L_j] = i\epsilon_{ijk} L_k \quad \text{and} \quad [S_i, S_j] = i\epsilon_{ijk} S_k, \quad (2.11)$$

where ϵ_{ijk} is the Levi-Civita symbol [153]. Thus, it is possible to obtain eigenfunctions of H_c which are simultaneously eigenfunctions for the operators L^2, L_z, S^2, and S_z with eigenvalues $L(L + 1)$, M_L, $S(S + 1)$, and M_S in a.u., respectively. When we deal with the situation where the spin-orbit interaction is greater than the electron repulsion, another type of coupling should be used. In this situation, H does not commute with the spin-orbit part of the Hamiltonian, so we use the jj-coupling scheme, where H commutes with the total angular momentum, J

$$[H, J] = 0, \quad J = \sum_{i} j_i, \quad \text{and} \quad j_i = \hat{\ell}_i + \hat{s}_i. \quad (2.12)$$
2.2 Approximate Wave Functions for N-Electron Systems
2.2.1 Antisymmetrization and Slater Determinants

The trouble with the product wave functions in Eq. (2.6) is that it does not reflect the indistinguishability of the electrons. As we know, our total wave function $\psi_c(q_1, q_2, \cdots, q_N)$ for the N-electron system, should be antisymmetric and should satisfy the Pauli exclusion principle, namely that no two electrons in an atom can have the same set of four quantum numbers. Thus, the best way to describe $\psi_c(q_1, q_2, \cdots, q_N)$ is to use a Slater determinant [152, 154, 155]. For simplicity we replace the quantum numbers by $\alpha, \beta, \ldots, \nu$, and ψ_c can be written as:

$$\psi_c(q_1, q_2, \cdots, q_N) = \frac{1}{\sqrt{N!}} \phi_\alpha(q_1) \phi_\beta(q_1) \cdots \phi_\nu(q_1)$$

$$(n_1 \ell_1)^{w_1} (n_2 \ell_2)^{w_2} \cdots (n_m \ell_m)^{w_m}, \quad N = \sum_{i=1}^{m} w_i,$$

where w_i denotes the total number of electrons occupying the spin-orbitals in the sub-shell $n_i \ell_i$. For example, our Al-like target has the configuration $1s^22s^22p^63s^23p$ for the ground state. When electrons occupy the same subshell we refer to them as equivalent electrons such as the two electron in the subshell 3s. Another important quantum number is the the
parity π, which can be used to describe the state and is defined as

$$\pi = (-1)^w \ell_1 (-1)^w \ell_2 \ldots (-1)^w \ell_m = \pm 1,$$

(2.15)

where positive values correspond to an even parity and negative values correspond to an odd parity. The total wave function for this configuration is referred to as a configuration state function (CSF) and is denoted by $\psi_c(\gamma LM_L S M_s)$ or in the ket form as $|\gamma LM_L S M_s\rangle$, where γ is used to specify the electron configuration and any additional quantum numbers required to completely describe the state (such as π). The spectroscopic notation for the energy term in LS-coupling is denoted by $2^S + 1 L^\pi$, where $2S + 1$ is called the spin multiplicity of the term and L is the total angular momentum, which can take values of $0, 1, 2, 3, 4, 5, 6, \ldots$ referring to $S, P, D, F, G, H, I, \ldots$ states. So, the ground state of Al-like term energy can be written as $3s^2 3p^2 \ [2P^o]$ and the superscript o is used to distinguish the odd parity.

2.2.2 The Variational Principle

The best form of solutions for radial wave functions can be obtained by an optimization method which we call variational method. This method is usually referred to as an optimization problem under constraint. So, there is a Lagrange multiplier ε such that the functional [156]

$$\mathcal{F}[\psi] = E[\psi] + \varepsilon \langle \psi | \psi \rangle$$

(2.16)

is stationary to the first order with respect to all variations $|\delta \psi\rangle$ satisfying the boundary conditions [157]. $E[\psi]$ is the expectation value of the Hamiltonian \mathcal{H} and is given by

$$\langle \mathcal{H} \rangle = \frac{\langle \psi | \mathcal{H} | \psi \rangle}{\langle \psi | \psi \rangle} \equiv E[\psi].$$

(2.17)
The value of E varies with the form of the state $|\psi\rangle$. But we assume that we found $|\psi\rangle$ for which E is stationary. This means that $\delta E = 0$ when $|\psi\rangle$ is replaced by $|\psi + \delta\psi\rangle$ under an infinitesimal change $|\delta\psi\rangle$. The variation δE is defined as $E[\psi + \delta\psi] - E[\psi]$ and can be calculated to the first order in $|\delta\psi\rangle$ as

$$\delta E = \frac{\langle \psi + \delta\psi | \mathcal{H} | \psi + \delta\psi \rangle - E}{\langle \psi | \psi \rangle + \langle \delta\psi | \psi \rangle + \langle \psi | \delta\psi \rangle} = 0,$$

(2.18)

and this expression vanishes only if

$$\langle \delta\psi | \mathcal{H} - E | \psi \rangle + \langle \psi | \mathcal{H} - E | \delta\psi \rangle = 0,$$

(2.19)

where we assumed that $\langle \delta\psi | \psi \rangle = 0$ and it follows that

$$\begin{cases} \langle \psi | \mathcal{H} - E | \delta\psi \rangle = 0, \\ \langle \delta\psi | \mathcal{H} - E | \psi \rangle = 0. \end{cases}$$

(2.20)

A similar method can be used for continuum states [146, 158].

2.2.3 Hartree-Fock (HF) Approximation

In the Hartree-Fock (HF) method, the approximate wave function consists of only one configuration state function. The radial function of each spin-orbital is assumed to depend only on n and ℓ quantum numbers and can be determined by using the variational principle. This general method of solution is known as Hartree-Fock or self-consistent field method [156], where each electron moves in a potential due to the nucleus and the charge distribution of all other $(N-1)$-electrons. When we calculate the matrix elements of \mathcal{H}_{nr},
numerous algebraic integrals are involved, and we have to simplify them as much as possible. In order to do so, we divide \mathcal{H}_{nr} into one- and two-electron operators as follows [152, 154]:

$$\mathcal{H}_{nr} = \sum_{i} f_{i} + \sum_{i<j} g_{ij}. \quad (2.21)$$

These operators are given respectively as

$$f_{i} = f(r_{i}) = -\frac{1}{2} \left(\nabla_{i}^{2} + \frac{2Z}{r_{i}} \right)$$

and

$$g_{ij} = g(r_{i}, r_{j}) = \frac{1}{r_{ij}}. \quad (2.22)$$

If we assume that E_{0} is the ground state energy of the system, then according to the variational method (see Sec. 2.2.2) we have

$$E_{0} \leq E[\psi] = \langle \psi | H | \psi \rangle, \quad (2.23)$$

where ψ is a trial function in a Slater determinant form as Eq. (2.13) with the normalization

$$\langle \psi | \psi \rangle = 1. \quad (2.24)$$

This requires that all spin-orbitals are orthonormalized as

$$\langle \phi_{\alpha} | \phi_{\beta} \rangle = \sum_{m_{\alpha}, m_{\beta}} \int \phi_{\alpha}^{\dagger}(q) \phi_{\beta}(q) dq = \delta_{m_{\alpha}, m_{\beta}} \delta_{\alpha\beta}. \quad (2.25)$$

The matrix elements of the one-electron symmetric operator are simplified using the orthonormality properties of the one-electron spin-orbitals ϕ, as

$$\langle \psi | \sum_{i=1}^{N} f_{i} | \psi \rangle = \sum_{\gamma} \langle \phi_{\gamma}(q_{i}) | f_{i} | \phi_{\gamma}(q_{i}) \rangle = \sum_{\gamma} I_{\gamma}, \quad \gamma = \alpha, \beta, ..., \nu, \quad (2.26)$$

27
with I_γ is defined as

$$I_\gamma = \langle \phi_\gamma(q_i) | f_j | \phi_\gamma(q_i) \rangle.$$ \hfill (2.27)

The matrix elements of the two-electron operator can be represented as

$$\langle \psi | \sum_{i<j} g_{ij} | \psi \rangle = \sum_{\gamma, \mu} \{ \langle \phi_\gamma(q_i) \phi_\mu(q_j) | \frac{1}{r_{ij}} | \phi_\gamma(q_i) \phi_\mu(q_j) \rangle$$
$$- \langle \phi_\gamma(q_i) \phi_\mu(q_j) | \frac{1}{r_{ij}} | \phi_\mu(q_i) \phi_\gamma(q_j) \rangle \}.$$ \hfill (2.28)

The summation over γ and μ runs over the $N(N-1)/2$ pairs of orbitals and Eq. (2.28) can be written as

$$\langle \psi | \sum_{i<j} g_{ij} | \psi \rangle = \frac{1}{2} \sum_{\gamma} \sum_{\mu} \{ J_{\gamma \mu} - K_{\gamma \mu} \} ; \gamma, \mu = \alpha, \beta, \ldots \nu.$$ \hfill (2.29)

As a result of using the antisymmetrized wave functions to reflect the indistinguishability of the electrons, we end up with two terms. The first one, $J_{\gamma \mu}$, is called the direct term and the second one, $K_{\gamma \mu}$, is called the exchange term. We may realize that both $J_{\gamma \mu}$ and $K_{\gamma \mu}$ are real and symmetric too ($J_{\gamma \mu} = J_{\mu \gamma}$ and $K_{\gamma \mu} = K_{\mu \gamma}$). Now the total energy is given by

$$E[\psi] = \sum_\gamma I_\gamma + \frac{1}{2} \sum_\gamma \sum_\mu [J_{\gamma \mu} - K_{\gamma \mu}] = \mathcal{F},$$ \hfill (2.30)

where \mathcal{F} is the Fock operator.

When we introduce N^2 Lagrange multipliers, $\varepsilon_{\gamma \mu}$, such that it keeps $E[\psi]$ stationary
with respect to variations in the spin-orbitals ϕ_γ, the variational equation becomes

$$\delta E - \sum_\gamma \sum_\mu \varepsilon_{\gamma\mu} \delta \langle \phi_\mu | \phi_\gamma \rangle = 0,$$

(2.31)

with $\varepsilon_{\gamma\mu} = \varepsilon^\dagger_{\mu\gamma}$, so $\varepsilon_{\gamma\mu}$ are elements of the Hermitian matrix ε. We make the unitary transformation on the spin-orbitals ϕ_γ as

$$\hat{\phi}_\gamma = \sum_\mu U_{\gamma\mu} \phi_\mu,$$

where $U_{\gamma\mu}$ are the elements of a $N \times N$ unitary matrix. Such a transformation does not alter the Slater determinantal wave functions because it is a unitary transformation. If we choose U such that $\varepsilon_{\gamma\mu}$ becomes a diagonal matrix with elements $E_\gamma \delta_{\gamma\mu}$, then Eq. (2.31) becomes

$$\delta E - \sum_\gamma E_\gamma \delta \langle \phi_\gamma | \phi_\gamma \rangle = 0.$$

(2.32)

If we vary with respect to the spin-orbital ϕ_γ, then the variational equations become

$$\mathcal{F} \phi_\gamma = E_\gamma \phi_\gamma,$$

(2.33)

which are called Hartree-Fock equations [152, 156, 159, 160, 161, 162, 163]. Numerical solution for these coupled nonlinear differential equation is done iteratively starting with hydrogenic wave functions.

2.2.4 Hartree-Slater Method for Bound Orbitals

Slater introduced an approximate analytic form for atomic wave functions, which we refer to as Slater-type orbitals (STO) [164]. This approach is similar to the method used by Zener for writing an analytic form for wave functions of atoms with variational parameters [165]. In this method, bound electrons are assumed to move in a screened potential generated by the nucleus of charge Z and the charge distribution of the other remaining $(N-1)$-electrons. Our Al-like radial orbitals $P_j(r)$ are determined using this method.
The STO $P_j(r)$ in the j^{th} subshell $n_j\ell_j$ can be written as [166]

$$P_j(r) = c \left[\frac{2z_j\lambda_j r}{n_j} \right]^{n_j} \exp \left(-\frac{z_j\lambda_j r}{n_j}\right),$$ \hspace{1cm} (2.34)

where c is a normalization constant, λ_j is an adjustable scaling parameter, and z is the effective charge seen by the electron in the j-shell, which is given by

$$z_j = Z - \frac{(w_j - 1)}{2} - \sum_{i<j} w_i,$$ \hspace{1cm} (2.35)

with w_j represents the number of electrons in the i^{th} shell and the second term represents the approximate screening of all other $(w_j - 1)$ equivalent electrons.

The potential seen by an electron in the i^{th} subshell is given by [166]

$$V_i(r) = -\frac{Z}{r} + \sum_j \frac{(w_j - \delta_{ij})}{r} \left[1 - \frac{\exp(-\rho_j)}{2n_j} \sum_{m=0}^{2n_j-1} \frac{(2n_j - m)}{m!} \rho_j^m \right],$$ \hspace{1cm} (2.36)

where $\rho_j = 2z_j\lambda_j r/n_j$. The radial scaling parameters for the entire Al-like ions will be presented in Chapter IV.

2.2.5 Configuration Interaction

We improve the eigenfunctions and eigenvalues for the N-electron target system by describing the wave functions as a linear combination of Slater determinants of the single-configurations (SC) wave functions which is known as configuration interaction (CI). So, we write the N-electron wave functions Ψ in terms of the wave functions ψ_i from different configurations with the same final symmetry [154] as

$$\Psi = \sum_{i=1}^{M} c_i \psi_i ; \quad \sum_{i=1}^{M} c_i^2 = 1,$$ \hspace{1cm} (2.37)
where \(c_i = \langle \psi_i | \Psi \rangle \) are the mixing coefficients and \(\psi_i \) are the eigenfunctions of the Hamiltonian \(\mathcal{H} \) and they are orthonormalized \(\langle \psi_i | \psi_j \rangle = \delta_{ij} \). These extra configurations are included for correlation effects.

2.2.6 Distorted Wave Approximation

For the scattering problems, continuum orbitals are determined using the distorted wave approximation (DWA). It assumes that the coupling between the states of the \(N \)-electron target and the continuum electron are weak and the continuum electron is assumed to move in a spherically symmetric screened potential due to the target electrons and the nucleus which are chosen to be a STO-Hartree potential as given in Eq. (2.36).

The radial equation for the continuum electron with angular momentum \(\ell_i \) and linear momentum \(k_i \) can be written \([167, 168]\) as

\[
\left[\frac{d^2}{dr^2} - \frac{\ell_i(\ell_i + 1)}{r^2} - 2V_i(r) + k_i^2 \right] F_{k_i \ell_i}(r) = 0, \tag{2.38}
\]

where \(V_i(r) \) is the local potential due to the nucleus and all \(N \)-target electrons.

The asymptotic solutions of these equations for \(r \to 0 \) and \(r \to \infty \), respectively can be written as

\[
F_{k_i \ell_i}(r) = A_i r^{\ell_i+1}, \quad \text{and} \tag{2.39}
\]

\[
F_{k_i \ell_i}(r) = \frac{1}{\sqrt{k_i}} \sin \left\{ k_i r + \frac{q}{k_i} \ln(2k_i r) - \frac{\ell_i \pi}{2} + \arg \Gamma(\ell_i + 1 - \frac{iq}{k_i}) + \delta \right\}, \tag{2.40}
\]

where \(q \) is the ionic charge defined as \(q = Z - N \) and \(\delta \) is the distorted-wave phase shift which is zero when \(V_i(r) = q/r \).
The normalization of the continuum orbitals $F_{k\ell}(r)$ is given by

$$
\int_0^\infty F_{k\ell}(r) F_{k'\ell}(r) \, dr = \pi \delta(k - k'),
$$
(2.41)

where k is the linear momentum of the continuum electron.

Higher bound orbitals $P_{n\ell}(r)$ are determined using the following approximation [90]

$$
\lim_{n\to\infty} P_{n\ell}(r) = \sqrt{2} q / \pi n^3 F_{k\ell}|_{k=0},
$$
(2.42)

2.3 Relativistic Corrections

The ideal way to consider the relativistic effects is to solve Dirac equation [169], but this requires dealing with four radial functions for each subshell $n\ell$ instead of one and this is cumbersome and time consuming. Since we cannot ignore these effects, especially the spin-orbit term, which scales as Z^4. This term, we found to have profound effect on our new DR cross sections and rate coefficients for Al-like isoelectronic sequence (see Chapter IV). For our calculations, which involve systems with $Z \leq 30$, it is safe to go beyond the non-relativistic approximation by including these extra effects to \mathcal{H}_{nr}, which arise from the expansion of Dirac equation in powers of αv, where $\alpha = 1/c$ is the fine structure constant, c is the speed of light in vacuum (see Appendix A), and v is the electron velocity, with the assumption $v \ll c$ and ignoring terms that include α^3 and higher orders. These extra terms are considered as perturbations and the resulting Hamiltonian is known as the Breit-Pauli Hamiltonian \mathcal{H}_{BP} [141, 154, 152, 156] and can be written as

$$
\mathcal{H}_{BP} = \mathcal{H}_{nr} + \mathcal{H}_{rel},
$$
(2.43)
where \mathcal{H}_{nr} and \mathcal{H}_{rel} are the non-relativistic and relativistic corrections, respectively. \mathcal{H}_{rel} can be divided into nonfine structure (nfs) and fine structure (fs) terms as follows

$$\mathcal{H}_{rel} = \mathcal{H}_{nfs} + \mathcal{H}_{fs}. \quad (2.44)$$

The nonfine structure part can be written as

$$\mathcal{H}_{nfs} = \mathcal{H}_{mv} + \mathcal{H}_{D} + \mathcal{H}_{oo} + \mathcal{H}_{ssc}, \quad (2.45)$$

which shifts the nonrelativistic energy levels without splitting the levels. The mass-velocity term \mathcal{H}_{mv} is given by

$$\mathcal{H}_{mv} = -\frac{\alpha^2}{8} \sum_{i=1}^{N} \nabla_{i}^4, \quad (2.46)$$

the one and two-body Darwin terms are

$$\mathcal{H}_{D} = -\frac{\alpha^2 Z}{8} \sum_{i=1}^{N} \nabla_{i}^2 \left(\frac{1}{r_i}\right) + \frac{\alpha^2}{4} \sum_{i<j}^{N} \nabla_{i}^2 \left(\frac{1}{r_{ij}}\right), \quad (2.47)$$

the spin-spin contact term, \mathcal{H}_{ssc}, which accounts for the spin magnetic moments of two electrons occupying the same space, is given by

$$\mathcal{H}_{ssc} = -\frac{8\pi\alpha^2}{3} \sum_{i<j}^{N} (s_i \cdot s_j) \delta(r_i, r_j), \quad (2.48)$$

and the orbit-orbit term \mathcal{H}_{oo}, which accounts for two orbital moments, is given by

$$\mathcal{H}_{oo} = -\frac{\alpha^2}{2} \sum_{i<j}^{N} \left[\frac{p_i \cdot p_j}{r_{ij}} + \frac{r_{ij} (r_{ij} \cdot p_i) \cdot p_j}{r_{ij}^3} \right]. \quad (2.49)$$

The fine structure term, \mathcal{H}_{fs}, which splits the non-relativistic energy levels into a series of closely-spaced fine structure levels, is given by

$$\mathcal{H}_{fs} = \mathcal{H}_{so} + \mathcal{H}_{soo} + \mathcal{H}_{ss}, \quad (2.50)$$

33
where H_{so} is the spin-orbit interaction, which represents the interaction of the spin and angular momentum of the electrons in the field of the nucleus and is given by

$$H_{so} = \frac{\alpha^2 Z}{2} \sum_{i=1}^{N} \frac{1}{r_i} \frac{dV_i}{dr_i} \ell_i \cdot s_i. \quad (2.51)$$

The spin-other-orbit H_{soo} is given by

$$H_{soo} = -\frac{\alpha^2}{2} \sum_{i<j} \frac{r_{ij}}{r_{ij}^3} \left[p_i \cdot (s_i + 2s_j) \right], \quad (2.52)$$

and the spin-spin H_{ss} interaction is given by

$$H_{ss} = \alpha^2 \sum_{i<j} \frac{1}{r_{ij}^3} \left[s_i \cdot s_j - \frac{3}{r_{ij}^2} (s_i \cdot r_{ij}) (s_j \cdot r_{ij}) \right]. \quad (2.53)$$

It is worth to mention that H_{BP} commutes with the total angular momentum of the system ($[H_{BP}, J] = 0$), so eigenfunctions for H_{BP} are eigenfunctions for both J^2 and J. These eigenfunctions can be obtained by the intermediate coupling [154, 155], in which we coupling the total angular L and the total spin S momenta as follows

$$|JM_J\rangle = \sum_{MLMS} C_{MLMSJM}^L S J |LSLM\rangle,$$

where $C_{MLMSJM}^L S J$ are known as Clebsch-Gordan coefficients.

2.4 MultiConfiguration Breit-Pauli Method

In the multiconfiguration Breit-Pauli method (M CBP), target wave functions are described as a CI expansion as discussed in Sec. 2.2.5 and using the Breit-Pauli Hamiltonian H_{BP}, which is given in Eq. (2.43). These wave functions can be written in both LS and IC-coupling schemes, respectively as

$$\Psi(\gamma LS) = \sum_{i=1}^{M} c_i \tilde{\psi}_i(\gamma LS), \quad \text{and} \quad (2.55)$$
\[\Psi(\gamma JM_J) = \sum_{i=1}^{M} c_i \psi_i(\gamma JM_J), \] (2.56)

with \(\psi(\gamma JM_J) \) is obtained using the coupling described in Eq. (2.54). This requires previous determination of \(\psi_i \) either from HF or HS methods, then we seek solutions for the expansion coefficients by minimizing the energy, which leads to the following linear equations

\[\sum_{i=1}^{M} (H_{ij} - E\delta_{ij})c_i = 0, \] (2.57)

where the matrix elements \(H_{ij} \) are given by \(H_{ij} = \langle \psi_i | H_{BP} | \psi_j \rangle \) and the energies \(E \) can be determined from the secular determinant

\[|H_{ij} - E\delta_{ij}| = 0, \] (2.58)

then \(E \) is used back in Eq. (2.57) to solve for the mixing coefficients \(c_i \).

Despite the accurate description of this method, the convergence is usually slow and the numerical work increases rapidly as the number of configurations is increased. Thus, we usually include only those configurations whose energies are close to each other and therefore interact more strongly. We use the AUTOSTRUCTURE atomic structure package and collision code [32] for calculating energy levels or term energies in the case of LS-coupling. The beauty of this cod is that you can use orthogonal bases, non-orthogonal sets of orbitals, one set for each configuration to account for the relaxation effects due to different screening in the initial and final states, and you can use your own orbitals obtained from multiconfiguration Hartree-Foch MCHF code [160].

35
2.5 Transition Rates

After finding the approximate solutions for our wave functions and calculating their energy levels, the first application is to calculate the DR and photoabsorption cross sections. These calculations depend on calculating transition rates in advance. In this section we give a brief summary for radiative and Auger transition rates. These rates are mainly calculated from the famous quantum mechanics expression which is called ”Fermi’s Golden Rule” [149, 154, 155, 170]. This rule is derived in the study of the time-dependent perturbation theory, where we assume that the Hamiltonian has a small time-dependent perturbation $\mathcal{H}' = -iA \cdot \nabla$, where A is the vector potential. Following Dirac’s method of variation of constants, the transition probability per unit time (transition rate), in first order perturbation theory from an initial state $|a\rangle$ to a final state $|b\rangle$, is given in a.u. by

$$W_{a\rightarrow b} = 2\pi |\langle b|\mathcal{H}'|a\rangle|^2 \rho_b(E),$$

(2.59)

where $\rho_b(E)$ is the density of final states (the number of states per unit energy).

2.5.1 Radiative Transition Rates

In the DR process, radiative transitions usually occur between resonant doubly-excited state $|\Psi_d\rangle$ to a final bound state $|\Psi_f\rangle$ with photon emission. Applying the dipole approximation ($e^{ik\cdot r} = 1 + i\mathbf{k} \cdot \mathbf{r} + \ldots = 1$) to the Hamiltonian, and neglecting A^2, the spontaneous radiative transition rate [154, 155, 170] is given by

$$A^r(d \rightarrow f) = \frac{4}{3} \alpha^3 w^3 |\langle \Psi_f | \mathcal{D} | \Psi_d \rangle|^2,$$

(2.60)
where α is the fine structure constant, $w = w_f - w_d$ is the photon energy, and $D = \sum_{i=1}^{N} r_i$ is the electric dipole operator. The matrix elements follow selection rules arising from carrying the integrations or applying Wigner-Eckart theorem, where we write r in a tensor form of rank one. The dipole selection rules for the $A'(d \rightarrow f)$ are, for LS-coupling, $\Delta S = 0, \Delta M_S = 0, \Delta \pi = \pm 1, \Delta L = 0, \pm 1$, and $\Delta M_L = 0, \pm 1$. For IC-coupling, the selection rules are $\Delta \pi = \pm 1, \Delta J = 0, \pm 1$, and $\Delta M_J = 0, \pm 1$ [149, 154, 155, 170].

In a non-relativistic, LS approximation, the dipole matrix element, $D_{df} = \langle \Psi_f | r | \Psi_d \rangle$, can be written in length and velocity forms as [171]

$$D_{df} = \begin{cases}
\langle \Psi_f | \sum_{i=1}^{N} r_i | \Psi_d \rangle & \text{Length Form} \\
-\frac{1}{w} \langle \Psi_f | \sum_{i=1}^{N} \nabla_i | \Psi_d \rangle & \text{Velocity Form}.
\end{cases}$$

(2.61)

In our calculations, we compare results obtained in these forms for the seek of completeness of the wave function [154, 170]. Generally, doubly-excited states may radiatively decay to many final states and we add these final states to get the total radiative width Γ^r as follows

$$\Gamma^r = \sum_{f} A'(d \rightarrow f)$$

(2.62)

2.5.2 Auger Transition Rates

When we study electron-ion recombination, specially the DR process, we deal with infinite number of doubly-excited states. These doubly-excited states can decay back to their initial states or to an excited state of the N-electron ion (Al-like system in our case) and the emitted electrons are referred to as Auger electrons. Auger transitions occur due to the electron-electron interaction term in the Hamiltonian. For example, the doubly-excited state $3s^23d^2|D_{3/2}\rangle n\ell$ of Si-like ions, which can be formed by EIE from the ground state
$3s^23p[{}^2P_{1/2}]$ of Al-like ions, can Autoionize to the ground state of Al-like or to its first excited state $(3s^23p[{}^2P_{3/2}] + e^-)$.

The partial autoionization transition rate $A^a(d \rightarrow c)$ from a doubly-excited state $|\Psi_d\rangle$ to a continuum state $|\Psi_c\rangle$ can be calculated using Fermi’s Golden Rule [149, 152, 154] as follows

$$A^a(d \rightarrow c) = 2\pi \left| \left\langle \Psi_c \left| \sum_s^{N+1} \frac{1}{|r_s - r_{N+1}|} \right| \Psi_d \right\rangle \right|^2.$$ \hspace{1cm} (2.63)

In conclusion, Auger transitions may occur when a doubly-excited state is located above the ionization limit with a vacancy exists below at least two active electrons. The energy lost when an electron fills this vacancy is enough to liberate the other electron to the continuum state of the same parity ($\Delta \pi = 0$).

The total Auger width Γ^a is given by

$$\Gamma^a = \sum_{\ell_c} A^a(d \rightarrow i) + \sum_{m, \ell'} A^a(d \rightarrow m),$$ \hspace{1cm} (2.64)

where the first term gives Auger rates for the decay to the initial ground state i with different continua ℓ_c and the the second term represents the sum over all other possible autoionizing states.

2.6 Electron-Ion Recombination

As mentioned in Chapter I, electron-ion collisions include direct and indirect (resonant) processes. The former is referred to as radiative recombination (RR) and the latter is called dielectronic recombination (DR). When a free electron e^- collisionally collide with an ion
A with a charge q, both processes can be schematically represented as

$$e^- + A_i^{q+} \rightarrow A_f^{(q-1)^+} + \omega \quad \text{(RR)}, \quad \text{and}$$

$$e^- + A_i^{q+} \rightarrow [A_f^{(q-1)^+}]^{**} \rightarrow A_f^{(q-1)^+} + \omega \quad \text{(DR)},$$

where $[A_f^{(q-1)^+}]^{**}$ is a doubly-excited state and ω is the photon energy. We use the independent processes approximation, in which interference between RR and DR is very small even for ions with small degree of ionization q [98, 172]. So, we neglect the interference between RR and DR processes and treat them separately. The second approximation is to consider first order perturbation theory to calculate their cross sections.

2.6.1 Cross Sections

The RR cross section for an initial state $|\Psi_i\rangle$ of a target ion plus continuum electron with linear momentum k_i to a final bound state $|\Psi_f\rangle$ is given by

$$\sigma_{RR} = \frac{16 \pi \omega^3 \alpha^3}{3k_i^3} \left| \langle \Psi_f | \sum_{s=1}^{N+1} r_s | \Psi_i \rangle \right|^2. \quad (2.67)$$

The partial DR cross section, as a function of center of mass energy E from an initial metastable state i through a doubly-excited state d to a final state f is given by

$$\sigma_{fi}^{DR} = S^d(i \rightarrow f)L_d^d(E), \quad (2.68)$$

where $L_d^d(E)$ is the Lorentzian line-shape of the resonance with an energy E_d and width Γ^d and is given by

$$L_d^d(E) = \frac{\Gamma^d}{2\pi (\Gamma^d/2)^2 + (E - E_d)^2}. \quad (2.69)$$
and \(S_d(i \rightarrow f) \) is the partial integrated DR cross section, which is proportional to the capture rate times the radiative branching ratio and is given by

\[
S_d(i \rightarrow f) = \frac{(2\pi a_0 I_H)^2 G_d}{E} \frac{G_i}{2G_i \tau_0} \sum_{\ell} A^{\alpha}(d \rightarrow i, E\ell) B^{\tau}(d \rightarrow f),
\]

(2.70)

\[
B^{\tau}(d \rightarrow f) = \frac{A^{\tau}(d \rightarrow f)}{\sum_{m,\ell} A^{\alpha}(d \rightarrow m, E\ell) + \sum_{f'} A^{\tau}(d \rightarrow f')},
\]

(2.71)

where \((2\pi a_0)^2 \tau_0 = 2.6741 \times 10^{-32} \text{ cm}^2\text{s} \), \(I_H \) is the ionization potential energy of the hydrogen atom, \(G_d \) is the statistical weight of the \((N+1)\)-electron doubly-excited resonance state \(d \), \(G_i \) is the statistical weight of the \(N \)-electron target state (Al-like ion), and \(B^{\tau}(d \rightarrow f) \) is the radiative branching ratio. The ionization potential of hydrogen \(I_H \), the energy \(E \), and the total width \(\Gamma^d \) are calculated in the same units of energy, the radiative and Auger rates \((A^{\tau}, A^{\alpha}) \) are calculated in inverse second. We may realize that the summations over \(m \) and \(f' \) include all possible autoionization and radiative states from a given resonant state \(d \). Thus, the sum over \(m \) accounts for excitations which lead to the total autoionization rate \(\Gamma^{a} \) and the sum over \(f' \) includes all bound and other states that may radiatively decay by cascade to other autoionizing states, giving the total radiative rate \(\Gamma^{r} \).

If we assume that there is no overlap between RR and DR resonances (i.e. isolated resonance approximation), the partial energy-averaged DR cross section \(\bar{\sigma}^{DR}_{fi} \) is given by

\[
\bar{\sigma}^{DR}_{fi} = \frac{1}{\Delta E} \int_{E_c - \Delta E / 2}^{E_c + \Delta E / 2} \sigma^{DR}_{fi}(E') dE'
\]

(2.72)

\[
= \frac{1}{\Delta E} \sigma^{DR}_{fi}(E_c),
\]

where the energy bin width \(\Delta E \) is chosen to be larger than the largest resonance width and small compared to the experimental width and \(E_c \) is continuum energy.
The total DR cross section is then obtained by summing over all possible doubly-excited states \(d \) and final bound states \(f \) below the ionization limit and is given by

\[
\sigma^{DR} = \sum_{f,d} \bar{\sigma}_{fi}^{DR}.
\]

(2.73)

2.6.2 Maxwellian Rate Coefficients

The Maxwellian-averaged rate coefficient \(\alpha(T) \) can be calculated by convolving the cross section with the Maxwell-Boltzmann distribution function as follows

\[
\alpha(T) = \langle \nu \sigma \rangle = \int_0^\infty \nu \sigma(E) f_{MB}(E, k_B T) dE,
\]

(2.74)

where \(f_{MB}(E, k_B T) \) is the Maxwell-Boltzmann distribution which can be written in velocity and energy forms, respectively as

\[
f_v(v) dv = \left(\frac{me}{2\pi T} \right)^{3/2} \frac{4\pi v^2}{2T} \exp \left(-\frac{mv^2}{2T} \right) dv,
\]

\[
f_E(E) dE = 2\sqrt{\frac{E}{\pi}} \frac{1}{(k_B T)^{3/2}} \exp \left(-\frac{E}{k_B T} \right) dE.
\]

(2.75)

In our DR calculations, we assume that \(L^d(E) \) can be represented as Dirac delta function

\[
L^d(E) = \delta(E - E_c)
\]

(2.76)

then, \(\alpha^{DR}(T) \) can be given by

\[
\alpha^{DR}(T) = \int_0^\infty \nu \sum_{f,d} S^d(i \rightarrow f) \delta(E - E_c) f_E(E) dE,
\]

\[
= \sum_{f,d} S^d(i \rightarrow f) v(E_c) f_E(E_c).
\]

(2.77)

Instead of extrapolating the rates by \(1/n^3 \) method, we follow a more accurate technique, in which bound orbitals are approximated by a normalized zero-energy continuum
orbital for $n > 15 + \ell^2/4$ using a quantum defect approximation as in Eq. (2.41). For each $n\ell$, diagonalizations for N and $N + 1$ electron-Hamiltonians are performed and followed by calculations for autoionization and radiative rates A^a and A^r, respectively. Rate coefficients are then calculated by using a post-processor ADASDR, in which radiative transition between highly excited Rydberg states are computed hydrogenically.

The theoretical rate coefficient, $\alpha^{DR}(v_0)$, can be convolved in another form for comparison with the merged beam experimental results as follows

$$\alpha^{DR}(v_0) = <v\sigma> = \int \sigma(v) v f(v_0, v) dv, \quad (2.78)$$

where $f(v_0, v)$ is the merged-beams electron velocity distribution in the center of mass frame of the ions and $v_0 = \sqrt{2E_0/m_e}$. The experimental velocity distribution, $f(v_0, v)$, is a flattened Maxwellian [173] which is characterized by its parallel and perpendicular temperatures T_\parallel and T_\perp respectively, with $T_\parallel \ll T_\perp$:

$$f(v_0, v) = \sqrt{\frac{m_e}{2\pi kT_\parallel}} \exp \left[\frac{-m_e(v_\parallel - v_0)^2}{2kT_\parallel} \right] \frac{m_e}{2\pi kT_\perp} \exp \left(\frac{-m_e v_\perp^2}{2kT_\perp} \right). \quad (2.79)$$

In traveling from the electron cooler to the detector, recombined ions with higher n-values may re-ionized by the motional electric field induced in various magnetic elements in the ring. This leads to an-n_{cut} (cutoff) above which all the recombined states will be ionized. This hard cut-off at n_{cut} is given by the hydrogenic expression [171].

$$n_{cut} = \left(6.2 \times 10^8 \frac{q^3}{F} \right)^{1/4}, \quad (2.80)$$

where q is the ionic charge and F is the electric field strength in V cm$^{-1}$. However, during the time of flight T_f from the cooler to the analyzer, recombined ions with $n > n_{cut}$ may
radiatively decay to \(n < n_{\text{cut}} \), thus they can survive and be counted by the analyzer. This was modeled theoretically [174, 175] by the survival probability as

\[
P_{n\ell} = 1 - \frac{T_{n\ell}}{T_L} \exp \left(\frac{-T_L}{T_{n\ell}} \right) \left[\exp \left(\frac{T_L}{2T_{n\ell}} \right) - \exp \left(\frac{-T_L}{2T_{n\ell}} \right) \right],
\]

(2.81)

where \(T_{n\ell} \) and \(T_L \) are the lifetime of the Rydberg series (usually hydrogenic) and the time of flight through the merged-beams section of the cooler, respectively.

The Maxwellian-averaged DR rate coefficients \(\alpha^{DR}(T) \) are fit to the following formula

\[
\alpha^{DR}(T) = T^{-3/2} \sum_i c_i \exp \left(\frac{-E_i}{T} \right).
\]

(2.82)

where, \(E_i \) is in units of the temperature \(T \) (eV or K) and \(c_i \) has units of cm\(^3\)s\(^{-1}\)[eV or K]\(^{3/2}\).

2.7 Non-Relativistic \(R \)-Matrix Method

Wigner first introduced the \(R \)-matrix method to study the resonance reactions in nuclear physics [142, 143]. Then the theory was developed and applied more generally for nuclear physics [144] and followed by applications to atomic physics by Burke and coworkers [145, 146, 147, 176, 177, 178]. The theory starts by dividing the configuration space into two regions by a sphere of radius \(r = a \) centered on the target nucleus (\(N \)-electron system) where \(r \) is the coordinate of the scattered electron relative to the target nucleus (see Fig. 2.1). The \(R \)-matrix boundary, \(r = a \), is chosen such that all electron orbital amplitudes in the target are negligible beyond the boundary \(r > a \). In the internal region \(r \leq a \), electron exchange and correlation between the scattered electron and the \(N \)-electron target are important and the \((N + 1)\)-electron system behaves in a similar way to a bound state. So, a configuration interaction (CI) expansion of this complex is applied. In the external region,
$r > a$, electron exchange between the scattered electron and the target can be neglected, so the scattered electron moves in the long-range multipole potential of the target. This potential is local and the solution in this region can be obtained using an asymptotic expansion or by using perturbation theory. The wave functions are solved in both regions, and inverse logarithmic boundary conditions are used to match the inner and outer solutions.

Figure 2.1 Schematic diagram for the configuration space in the R-matrix theory.

The wave function Ψ for the $(N + 1)$-electron system is a variational approximation to the time independent Schrödinger equation

$$H_{N+1} \Psi = E \Psi,$$ \hspace{1cm} (2.83)

where E is the total energy and H_{N+1} is the $(N + 1)$-electron Hamiltonian. For light atoms and ions, we can neglect the relativistic effects, and this Hamiltonian can be described as

$$H_{N+1} = \sum_{i=1}^{N+1} \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right) + \sum_{i>j=1}^{N+1} \frac{1}{r_{ij}},$$ \hspace{1cm} (2.84)
The solutions Ψ of Eq. (2.83) are constructed as products of one-electron functions in spherical polar coordinates. Thus, configuration mixing is required. We introduce a set of target states and pseudo-states Φ_i, and their corresponding energies E_i^N by the equation

$$\langle \Phi_i | H_N | \Phi_j \rangle = E_i^N \delta_{ij},$$ \hspace{1cm} (2.85)

where H_N is the target Hamiltonian given by Eq. (2.84) with $N + 1$ is replaced by N. These states are written as a CI expansion in terms of basis configurations ϕ_j by

$$\Phi_i = \sum_j b_{ij} \phi_j,$$ \hspace{1cm} (2.86)

Here, ϕ_j are the SC electron wave functions of Slater determinant form as discussed in Sec. 2.2.1.

The solution to Eq. (2.83), in the internal region, is obtained by introducing the Bloch operator B_{N+1} [144, 179] which is given by

$$B_{N+1} = \sum_{i=1}^{N+1} \frac{1}{2} \delta(r_i - a) \left(\frac{d}{dr_i} - \frac{b - 1}{r_i} \right),$$ \hspace{1cm} (2.87)

where b is an arbitrary constant and this guaranties that $H_{N+1} + B_{N+1}$ is a Hermitian operator. Now the solution for Eq. (2.83) is given by

$$\Psi = (H_{N+1} + B_{N+1} - E)^{-1} B_{N+1} \Psi.$$ \hspace{1cm} (2.88)

In order to solve this equation, we look for solutions ψ_k that can be written as,

$$\psi_k = A \sum_{ij} c_{ijk} \bar{\Phi}_i \frac{1}{r_{N+1}} u_{ij}(r_{N+1}) + \sum_j d_{jk} \Upsilon_j,$$ \hspace{1cm} (2.89)

where A is the anti-symmetrization operator. $\bar{\Phi}_i$ is obtained by coupling the target wave functions Φ_i with the angular and spin functions of the scattered electron. Υ_j is constructed
from the bound orbitals, \(P_{\ell n}(r) \), and is included for the completeness of the total wave function. The continuum orbitals \(u_{ij}(r) \) for each angular momentum \(\ell_i \) are obtained by solving the following equation

\[
\left(\frac{d^2}{dr^2} - \frac{\ell_i(\ell_i + 1)}{r^2} + V_0(r) + k_{ij}^2 \right) u_{ij}(r) = \sum_n \varepsilon_{ijn} P_{n\ell_i}(r) \tag{2.90}
\]

which satisfies the boundary conditions,

\[
u_{ij}(0) = 0, \quad \frac{a}{u_{ij}(a)} \left[\frac{du_{ij}(r)}{dr} \right]_{r=a} = b. \tag{2.91}
\]

Here \(\varepsilon_{ijn} \) are Lagrange multipliers which are used to satisfy the orthogonality condition \(\langle u_{i\ell} | P_{n\ell} \rangle = 0 \), \(b \) is an arbitrary constant and is normally set to zero, \(c_{ijk} \) and \(d_{ik} \) are the expansion coefficients.

Now, the wave function in the internal region is defined as

\[
\Psi_{\text{in}} = \sum_k A_{Ek} \psi_k, \tag{2.92}
\]

with \(A_{Ek} \) is the expansion coefficient. The elements of the \(R \)-matrix [145] can be given by

\[
R_{ij}(E) = \frac{1}{2a} \sum_k w_{ik}(a) w_{kj}(a) \left(E_k - E \right), \tag{2.93}
\]

where \(w_{ik} \) is the surface amplitude which is defined as \(w_{ik} = a \langle \Phi_k | \psi_k \rangle_{r=a} \), where Wigner’s one channel case [142] is generalized to \(M \) channels [144].

In the outer region, anti-symmetrization is not required and the total wave function can be written as

\[
\Psi_{\text{out}} = \sum_i \Phi_i \frac{1}{f_{N+1}} F_i(r_{N+1}). \tag{2.94}
\]
Substituting Ψ_{out} into Eq. (2.83), we can determine the radial wave functions $F_i(r)$ for each channel i:

$$
\left(\frac{d^2}{dr^2} - \frac{\ell_i(\ell_i + 1)}{r^2} + \frac{2Z}{r} + k_i^2 \right) F_i(r) = 2 \sum_{j=1}^{M} V_{ij}(r) F_j(r). \tag{2.95}
$$

Here ℓ_i and k_i^2 are the channel angular momenta and energies $\{k_i^2 = 2(E - E_i^N)\}$. V_{ij} is the potential matrix which is given by

$$
V_{ij}(r) = \langle \bar{\Phi}_i | \sum_{m=1}^{N} \frac{1}{r_{m,N}+1} | \bar{\Phi}_j \rangle. \tag{2.96}
$$

The external radial wave functions $F_{ij}(r)$ has the following asymptotic solutions at $r \to \infty$

$$
F_{ij}(r) \sim \begin{cases}
\frac{1}{\sqrt{k_i}} (\sin \theta_i \delta_{ij} + \cos \theta_i K_{ij}), & k_i^2 > 0 \quad \text{open channel} \\
e^{-\phi_i} \delta_{ij}, & k_i^2 < 0 \quad \text{closed channel}
\end{cases} \tag{2.97}
$$

The second index j on F_{ij} denotes the linearly independent solutions, K is the reactance matrix, θ_i and ϕ_i are defined as

$$
\theta_i = k_i r - \frac{\ell_i \pi}{2} + \frac{q}{k_i} \ln 2k_i r + \arg \Gamma(\ell_i + 1 - i \frac{q}{k_i}) \tag{2.98}
$$

$$
\phi_i = |k_i| r - \frac{q}{|k_i|} \ln (2|k_i| r),
$$

where q is the residual target charge $q = Z - N$.

Since the R-matrix must match smoothly between the inner and outer region solutions at the boundary $r = a$, we have

$$
R_{in}(E, r = a) [a\Psi'_{out}(E, a)] = \Psi_{out}(E, a). \tag{2.99}
$$

This boundary condition gives us the solution for the reactance matrix K, from which the scattering matrix is determined as

$$
S = \frac{I + iK}{I - iK}. \tag{2.100}
$$
Knowledge of S-matrix-normalization of the continuum states Ψ_f allows the photoionization cross section [180] to be computed from an initial state Ψ_i as

$$\sigma^{PI}(E) = \frac{4\pi^2 w}{3c} |\langle \Psi_f | D | \Psi_i \rangle|^2.$$ \hspace{1cm} (2.101)

For $E < 0$, on the other hand, we get an eigenvalue equation for the binding energy and the wave function Ψ_i of the initial state.

2.7.1 Auger Width Using Smith Time-Delay Method

Usually, we use AUTOSTRUCTURE code [32] to determine Auger width for decaying resonant states as described in Sec. 2.5. Another alternative method that can be used in the R-matrix calculations is based on the Smith time-delay method [181]. As pointed out by Smith, the scattering matrix S and the life time matrix Q are related by the following relation

$$Q = -iS^\dagger \frac{dS}{dE}.$$ \hspace{1cm} (2.102)

The scattering matrix S is determined from the reactance matrix K as in Eq. (2.100). The trace of Q, which is the sum of the diagonal elements Q_{ii}, has an analytic form near the resonance as a Lorentzian profile and is given by

$$Q_{ii}(E) = \frac{\Gamma^a}{(E - E_r)^2 + (\Gamma^a/2)^2}.$$ \hspace{1cm} (2.103)

where Γ^a is the Auger width of the decaying resonance and E_r is the resonance position.
CHAPTER III

M-SHELL DIELECTRONIC RECOMBINATION FOR ARGON IONS

3.1 Introduction

Argon is a valuable diagnostic element for magnetically controlled fusion plasmas [112, 113]. High-pressure gas-jet injection of argon and other rare gases has been found to mitigate the tokamak plasma disruptions [114]. One important factor in designing the future operation of the International Tokamak Experimental Reactor (ITER) is to avoid the disruption of plasmas. Line ratios from argon ions have been shown to be accurate electron density and temperature diagnostics [182]. Abdallah and Clark [183] investigated the density effect on the populations of all ion stages of argon. The atomic collision processes needed for tokamak transport modeling involve mainly electron-ion collisions and include excitation, ionization, and recombination. Accurate ionization and recombination rate coefficients for low ion stages of argon are needed. In particular, using level-resolved distorted-wave methods to calculate dielectronic recombination for M-shell ions leads to prohibitively large calculations.

In this chapter, electron-impact DR cross sections and rate coefficients, for $\Delta n_c = 0$ core excitations are calculated in a configuration-average distorted-wave approximation for $\text{Ar}^+ - \text{Ar}^{7+}$. We start by introducing calculations for Ar^{7+} and Ar^{6+} and compare our results with the available recent level-resolved distorted-wave calculations [101, 102] which can provide a check on our method. As we move along the M-shell ions, the open-shell nature of the atomic structure has made level-resolved distorted-wave calculations
difficult for recombination cross sections and rate coefficients for $\text{Ar}^+ - \text{Ar}^{5+}$. We note that storage-ring experimental measurements of recombination cross sections for all the M-shell ions from $\text{Ar}^+ - \text{Ar}^{7+}$ are still in the planning stages. The DR data produced here were then used in determining the fractional abundance for Argon.

In Sec. 3.2, we present a brief review of the configuration-average distorted wave theory. In Sec. 3.3, DR rate coefficients for $\text{Ar}^+ - \text{Ar}^{7+}$ are presented and compared with available level-resolved distorted-wave calculations [101, 102].

3.2 Methodology

In the independent processes approximation, the total recombination cross section is given by

$$\sigma_{\text{Rec}} = \sigma_{\text{RR}} + \sum_j \sigma_{\text{cap}}^j B^r_j, \quad (3.1)$$

where σ_{RR} is the direct (radiative) recombination cross section and σ_{cap}^j is the resonant capture cross section to an autoionizing configuration j. The branching ratio for radiative stabilization is given by

$$B^r_j = \frac{\sum_m A^r(j \rightarrow m)}{\sum_m A^r(j \rightarrow m) + \sum_n A^a(j \rightarrow n)}, \quad (3.2)$$

where A^r is a radiative rate and A^a is an autoionization rate.

The configuration average expressions for the above rates and cross sections have been derived in [184] for direct (radiative) recombination. A general transition between configurations has the form

$$(n\ell)^{q-1}k_i\ell_i \rightarrow (n\ell)^q, \quad (3.3)$$
and the recombination cross section is given by

\[\sigma_{RR} = \frac{16\pi^2}{3k_i^3c^3}(4\ell + 3 - q) \frac{2\ell_\omega}{(4\ell + 2)(4\ell_\omega + 2)} |D(k_i\ell_i \rightarrow n\ell)|^2, \]

(3.4)

where \(\omega = \frac{1}{2}k_i^2 - \epsilon_n, \ c \) is the speed of light in vacuum, and \(\ell_\omega \) is the greater value between \(\ell \) and \(\ell_i \). The radial dipole integral, \(D \), can be calculated as

\[D(k_i\ell_i \rightarrow n\ell) = \int_0^\infty P_{n\ell_i}(r)rP_{n\ell}(r)dr. \]

(3.5)

For electron-impact capture to autoionizing configurations, a general transition between configurations may have the form

\[(n_1\ell_1)^{q_1+1}(n_2\ell_2)^{q_2-1}(n_3\ell_3)^{q_3-1}k_i\ell_i \rightarrow (n_1\ell_1)^{q_1}(n_2\ell_2)^{q_2}(n_3\ell_3)^{q_3}, \]

(3.6)

and the resonant capture cross section is given by

\[\sigma_{cap} = \frac{2\pi^2}{k_i^3c^3\Delta\epsilon}(q_1 + 1)(4\ell_2 + 3 - q_2)(4\ell_3 + 3 - q_3) \times \sum_{\ell_i} (2\ell_i + 1)|M(n_1\ell_1, k_i\ell_i \rightarrow n_2\ell_2, n_3\ell_3)|^2. \]

(3.7)

In the capture cross section expressions, \(n_1\ell_1, n_2\ell_2, \) and \(n_3\ell_3 \) are quantum numbers of the bound electrons, \(k_i\ell_i \) are quantum numbers for the initial continuum electrons, \(\Delta\epsilon \) is an energy width larger than the largest resonance width, which provides a width that is used to bin the cross section results, and \(M(n_1\ell_1, k_i\ell_i \rightarrow n_2\ell_2, n_3\ell_3) \) is the scattering matrix, which is a sum over products of standard angular factors and radial direct and exchange electrostatic integrals. For the generation of Maxwellian rate coefficients, the width of the Maxwellian distribution is much greater than the resonance width; thus, it is sufficient to
choose a $\Delta \epsilon$ that is larger than the largest resonance width. For the calculations shown here a $\Delta \epsilon$ of 0.005 eV was used.

The energies and bound orbitals needed to evaluate all the configuration-average cross sections and rates appearing in Eqs. (3.1, and 3.2) are calculated in the Hartree-Fock relativistic (HFR) approximation [154], which includes the mass-velocity and Darwin corrections with modified HF differential equations. The continuum radial orbitals, with normalization chosen as one times a sine function as $r \to \infty$, are obtained by solving a single-channel radial Schrödinger equation, which also includes the mass-velocity and Darwin corrections, where the distorting potential is constructed from HFR bound orbitals.

The Maxwellian-averaged DR rate coefficient, $\alpha^{DR}(T)$, can be calculated as follows

$$\alpha^{DR}(T) = \langle v^\sigma^{DR} \rangle = \int_0^{\infty} v(E) \sigma^{DR}(E) f_{MB}(E, k_B T) \, dE,$$

(3.8)

with $f_{MB}(E, k_B T)$ as the Maxwell-Boltzmann distribution is given in Eq. (2.74).

3.3 Dielectronic Recombination for M-Shell Ions

3.3.1 Dielectronic Recombination for Ar$^{7+}$

The DR process for $\Delta n_c = 0$ core excitations of Na-like Ar$^{7+}$ occurs via the intermediate autoionizing configurations

$$\text{Ar}^{7+}(3s) + e^- \rightarrow \text{Ar}^{6+}(3pn\ell)$$
$$\rightarrow \text{Ar}^{6+}(3dn\ell),$$

(3.9)

where n and ℓ are included explicitly up to $n = 10$ and $\ell = 7$, and extrapolations are used to include contributions up to $n = 1000$ and $\ell = 12$.

52
We compare our configuration-average distorted-wave rate coefficients with level-resolved distorted-wave calculations [101] in Fig. 3.1. At low temperatures, there is a large disagreement between the configuration-average and level-resolved distorted-wave calculations. This is due to the fact that the average energy for the $3d4f$ configuration is bound in the configuration-average case, whereas some of the energy levels of this configuration are actually autoionizing. A few levels just above the ionization limit can have a large effect on the recombination rate for low temperatures. On the other hand, there is very good agreement between the configuration-average and level-resolved distorted-wave calculations at high temperatures. For plasmas dominated by electron ionization, the Ar$^{7+}$ ion stage balance is mainly determined by the values of the recombination rate coefficients above 20 eV (see Fig. 3.4). The comparison between our configuration-average distorted-wave results and the level-resolved distorted-wave results gives us increased confidence in the configuration average results for the lower ionization stages. The results for the lower ionization
stages also provide an indication of the most important recombining channels, to guide future level-resolved calculations.

3.3.2 Dielectronic Recombination for Ar\(^{6+}\)

![Graph showing dielectronic recombination rate coefficients for Ar\(^{6+}\)]

Figure 3.2 Dielectronic recombination rate coefficients for Ar\(^{6+}\): black solid curve, our configuration-average distorted-wave results; red dashed curve, level-resolved distorted-wave [102].

The DR process for \(\Delta n_c = 0\) core excitations of Mg-like Ar\(^{6+}\) occurs via the intermediate autoionizing configurations

\[
\text{Ar}^{6+}(3s^2) + e^- \rightarrow \text{Ar}^{5+}(3s3pn\ell)
\]

\[
\rightarrow \text{Ar}^{5+}(3s3dn\ell),
\]

where we have used the same values for \(n\) and \(\ell\) as we did in the Ar\(^{7+}\) cases. We compare our configuration-average distorted-wave rate coefficient with level-resolved distorted-wave results [102] in Fig. 3.2. The large differences at low temperatures are due to differences in the near threshold resonances in the two calculations. The small differences
at high temperatures are due to term splitting of the core-excited energies of the 3s3p and 3s3d excited configurations, which are not accounted for in the configuration-average calculations. Plasmas dominated by electron collisions for the Ar\(^{6+}\) ion stage balance are mainly determined by the values of the recombination rate coefficients above 10 eV (see Fig. 3.4).

3.3.3 Dielectronic Recombination for Ar\(^{+} - \text{Ar}^{5+}\)

The DR process, for \(\Delta n_c = 0\) core excitations, of Ar\(^{+} - \text{Ar}^{5+}\) occurs via the intermediate autoionizing configurations:

\[
\text{Ar}^{(6-m)+}(3s^23p^m) + e^- \rightarrow \text{Ar}^{(5-m)+}(3s^23p^{m-1}3dn\ell) \\
\rightarrow \text{Ar}^{(5-m)+}(3s3p^{m+1}n\ell) \\
\rightarrow \text{Ar}^{(5-m)+}(3s3p^{m}3dn\ell),
\]

where 1 \(\leq m \leq 5\) and we have used the same values for \(n\) and \(\ell\) as we did in the Ar\(^{7+}\) and Ar\(^{6+}\) cases. The magnitudes of the 3s \(\rightarrow\) 3d excitations were found to be much smaller than the 3p \(\rightarrow\) 3d excitations at the temperatures relevant for plasmas dominated by electron collisions and, therefore, were not included in our total recombination rate coefficients. Higher \(\Delta n_c = 1\) excitations were not considered, since they were also found to be very small compared to \(\Delta n_c = 0\) excitations in recent level-resolved distorted-wave calculations for Al-like Fe\(^{13+}\) [104]. We present our configuration-average distorted-wave rate coefficients for Ar\(^{+} - \text{Ar}^{5+}\) in Fig. 3.3. There are no quantum mechanically derived rate coefficients to compare with for these ion stages. Hence, we extended our configuration-average distorted-wave calculations to Ar\(^{6+}\) and Ar\(^{7+}\) to provide a comparison of our method with previously
published level-resolved distorted-wave calculations.

Figure 3.3 Dielectronic recombination rate coefficients for M-shell argon ions (Ar$^+$ - Ar$^{5+}$): (a) black solid curve, DR data for Ar$^+$; (b) black dash-dotted curve, for Ar$^{2+}$; (c) blue dashed curve, for Ar$^{4+}$; (d) blue solid curve, for Ar$^{4+}$; and (e) red solid curve, Ar$^{5+}$.

Figure 3.4 Equilibrium ion-stage balance for Ar- Ar$^{8+}$: red solid curves, our configuration-average distorted-wave atomic data; dashed line curves, older atomic data of Mazzotta et al. [123].
Our new DR rate coefficients data for the M-shell argon ions were used in a study to determine the fractional abundances of Argon in a study by Loch et al. [185]. The ionization balance equations based on the available electron impact ionization and our recombination data were solved in the case of equilibrium balance and taking into account ionization from metastable and excited states. The fractional abundances for Ar \(-\) Ar\(^{8+}\) as a function of electron temperatures are shown in Fig. 3.4. A comparison with the tabulated fractional abundances of Mazzotta et al. [123] is seen. Although both data show similar results for Ar\(^{8+}\), the position and height are shifted for the rest of the argon ions. The difference in the fractional abundances for Ar\(^{2+}\) - Ar\(^{5+}\) are due to the DR data of Mazzotta et al. [123] being taken from different sources, including the general formula of Burgess [4]. The fractional abundances for Ar - Ar\(^{8+}\) from Byrans et al. [115] are similar to the results of Mazzotta et al. [123], because they used the same data for these ions.

In summary, Electron impact DR rate coefficients for Ar\(^+\)- Ar\(^{7+}\) were calculated using a configuration-average distorted-wave approximation. Good agreements have been obtained with the level-resolved distorted-wave rate coefficients for Ar\(^{6+}\) and Ar\(^{7+}\) for electron temperatures above 10 eV, where these ions are abundant. The difference in the fractional abundances for argon ions at the lower ion stages can be attributed to the difference in the DR rate coefficients data.
CHAPTER IV
DIELECTRONIC RECOMBINATION FOR ALUMINUM-LIKE IONS

4.1 Introduction

There has been little theoretical DR work performed in the past for M-shell systems with open p- and d-shells, thus systematic calculations for these systems are required to remove the uncertainty in ionization balance predictions, which comes from the poor DR data used. Here, we focus on study of the Al-like isoelectronic sequence. The available DR data for Al-like ions [84, 123, 127, 128, 129, 130] are either semi-empirical fits or from calculations performed within a non-relativistic LS-coupling approximation. These data are appropriate for the high temperatures characteristic of electron-ionized gas, but not for the low temperatures characteristic of photoionized gas. I have carried out semi-relativistic calculations for DR cross sections and rate coefficients of the Al-like isoelectronic sequence using the level-resolved distorted-wave AUTOSTRUCTURE program [32, 186]. The results for Fe$^{13+}$ are tested against the available measurements from the Heidelberg heavy-ion Test Storage Ring facility [76]. My calculations include final-state-resolved partial DR and RR rate coefficients from the initial ground and metastable levels spanning a temperature range of $q^2(10^3 - 10^7)K$, where q is the initial ionic charge. Finally, I have fitted my computed Maxwellian-averaged DR rate coefficients with a simple formula for efficient dissemination of data and ease of use in plasma modeling codes.

The rest of this Chapter is organized as follows. In Sec. 4.2, a summary of available RR and DR formulas and fitting data for Al-like ions is presented. In 4.3, the methodology is
presented and the results for the entire Al-like isoelectronic sequence are discussed in Sec. 4.4.

4.2 Available Fitting Formulas for DR and RR Rate Coefficients

Most of the available DR data for the Al-like sequence are from compilations obtained using fitting formulas. In 1965, Burgess introduced a fitting formula [4], which is given by

\[
\alpha^{DR} = 3.0 \times 10^{-12} B(q) \sum_j f(j, i) A(x) \exp \left(-\frac{E}{k_B T} \right), \tag{4.1}
\]

where \(f(j, i)\) is the oscillator strength of the recombining ion from state \(i\) to state \(j\), \(t\) is the electron temperature in units of \(10^6\) K, \(q\) is the charge of the recombining ion, \(A(x)\) and \(B(q)\) are given by

\[
A(x) = \frac{\sqrt{x}}{(1 + 0.105 x + 0.015 x^2)}, \quad x > 0.05, \quad x = \frac{q + 1}{\epsilon_{ij}}
\]

\[
B(q) = \sqrt{\frac{q(q + 1)}{q^2 + 13.4}} (q + 1)^2, \quad q \leq 20,
\]

\[
\frac{E}{k_B T} = \frac{0.158(q + 1)^2 \epsilon_{ij}}{a t}, \quad \epsilon_{ij} = \frac{1}{\nu_i^2} - \frac{1}{\nu_j^2}
\]

\[
a = 1 + \frac{0.015 q^3}{(q + 1)^2}, \quad \frac{E}{k_B T} \leq 5.0, \tag{4.2}
\]

with \(\nu_i\) and \(\nu_j\) are the effective quantum numbers of state \(i\) and \(j\), respectively.

In 1973, Aldrovandi and Péquignot introduced a two-parameter fitting formula for calculating RR rate coefficients and a four-parameter fitting formula for calculating DR rate coefficients for the recombined ion (\(N + 1\)-electron system) [84]. They used hydrogenic approximations for all excited states in the recombined ion in their radiative calculations.
Their fitting formulas are given by

\[\alpha_{RR}(T) = A_{rad} \left(\frac{T}{10^4} \right)^{-\eta}, \]

\[\alpha_{DR}(T) = \frac{A_{di}}{T^{3/2}} \exp \left(-\frac{T_0}{T} \right) \left[1 + B_{di} \exp \left(-\frac{T_1}{T} \right) \right], \] \hspace{1cm} (4.3)

where \(T \) is in Kelvin and the rates are in \(\text{cm}^3 \text{ s}^{-1} \).

In 1980, Mewe et al. introduced an empirical formulas for calculating RR and DR rate coefficients \[85\]. Their formulas are given in Eq. (4.4) and their fitting coefficients are presented in Table 4.1.

\[\alpha_{RR} = \frac{\alpha q^{2n+1-\Delta}}{10^{10} T^n}, \]

\[\alpha_{DR} = \frac{\sum_{i=1}^{2} \alpha_i q^{\beta_i}}{10^3 T^{3/2} \sqrt{q^2 + 13.4}} \exp \left(-\frac{10^3 q_i q^{\gamma_i}}{T} \right), \] \hspace{1cm} (4.4)

where \(q \) is the initial charge of the target ions.

Table 4.1 RR and DR fitting coefficients for the Al-like isoelectronic sequence given by Mewe et al. \[85\].

<table>
<thead>
<tr>
<th>(Z - q)</th>
<th>RR</th>
<th>DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\eta)</td>
<td>(\Delta)</td>
</tr>
<tr>
<td>13</td>
<td>1.67</td>
<td>0.75</td>
</tr>
</tbody>
</table>

In 1982, Shull and Steenberg presented calculations for ionization equilibrium of 11 abundant elements (C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) \[86\]. Their fitting coefficients for RR and DR rate coefficients for the Al-like ions are given in Table 4.2 for the recombining ion (\(N \)-electron system). They took their RR fitting coefficients (\(A_{rad} \) and \(\eta \)) from the tabulations of Aldrovandi and Péquignot \[84\] for Si and S and from Woods et al. \[188\] for Fe. The values for Ar, Ca, and Ni were obtained by interpolation along...
Table 4.2 Available RR and DR fitting coefficients for the Al-like isoelectronic sequence. Numbers in parentheses are powers of 10.

<table>
<thead>
<tr>
<th>ion</th>
<th>A_{rad} cm3 s$^{-1}$</th>
<th>η</th>
<th>A_{di} cm3 s$^{-1}$ K$^{3/2}$</th>
<th>B_{di}</th>
<th>T_0 K</th>
<th>T_1 K</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si$^+$</td>
<td>5.900(-13)</td>
<td>6.010(-1)</td>
<td>6.200(-3)</td>
<td>0</td>
<td>1.100(5)</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>P$^{2+}$</td>
<td>1.294(-12)</td>
<td>6.766(-1)</td>
<td>7.641(-3)</td>
<td>6.005(-2)</td>
<td>1.284(5)</td>
<td>1.109(5)</td>
<td>c</td>
</tr>
<tr>
<td>S$^{3+}$</td>
<td>2.700(-12)</td>
<td>7.450(-1)</td>
<td>9.100(-3)</td>
<td>6.000</td>
<td>1.300(5)</td>
<td>1.500(5)</td>
<td>a</td>
</tr>
<tr>
<td>Cl$^{4+}$</td>
<td>5.165(-12)</td>
<td>7.893(-1)</td>
<td>6.844(-2)</td>
<td>7.232(-2)</td>
<td>2.275(5)</td>
<td>2.280(5)</td>
<td>c</td>
</tr>
<tr>
<td>Ar$^{5+}$</td>
<td>9.120(-12)</td>
<td>8.110(-1)</td>
<td>9.000(-2)</td>
<td>7.690(-2)</td>
<td>2.500(5)</td>
<td>3.300(5)</td>
<td>b</td>
</tr>
<tr>
<td>K$^{6+}$</td>
<td>1.513(-11)</td>
<td>8.186(-1)</td>
<td>1.126(-1)</td>
<td>7.902(-2)</td>
<td>2.830(5)</td>
<td>4.832(5)</td>
<td>c</td>
</tr>
<tr>
<td>Ca$^{7+}$</td>
<td>2.400(-11)</td>
<td>8.200(-1)</td>
<td>1.390(-1)</td>
<td>8.780(-2)</td>
<td>3.220(5)</td>
<td>6.990(5)</td>
<td>b</td>
</tr>
<tr>
<td>Ti$^{9+}$</td>
<td>5.518(-11)</td>
<td>8.245(-1)</td>
<td>1.818(-1)</td>
<td>1.777(-1)</td>
<td>3.679(5)</td>
<td>1.282(6)</td>
<td>c</td>
</tr>
<tr>
<td>Cr$^{11+}$</td>
<td>1.123(-10)</td>
<td>8.313(-1)</td>
<td>2.130(-1)</td>
<td>4.267(-1)</td>
<td>3.846(5)</td>
<td>1.816(6)</td>
<td>c</td>
</tr>
<tr>
<td>Mn$^{12+}$</td>
<td>1.525(-10)</td>
<td>8.342(-1)</td>
<td>2.320(-1)</td>
<td>5.655(-1)</td>
<td>3.967(5)</td>
<td>1.908(6)</td>
<td>c</td>
</tr>
<tr>
<td>Fe$^{13+}$</td>
<td>2.000(-10)</td>
<td>8.360(-1)</td>
<td>2.600(-1)</td>
<td>6.000(-1)</td>
<td>4.210(5)</td>
<td>1.820(6)</td>
<td>b</td>
</tr>
<tr>
<td>Co$^{14+}$</td>
<td>2.537(-10)</td>
<td>8.364(-1)</td>
<td>3.036(-1)</td>
<td>4.860(-1)</td>
<td>4.644(5)</td>
<td>1.574(6)</td>
<td>c</td>
</tr>
<tr>
<td>Ni$^{15+}$</td>
<td>3.160(-10)</td>
<td>8.360(-1)</td>
<td>3.630(-1)</td>
<td>3.370(-1)</td>
<td>5.240(5)</td>
<td>1.290(6)</td>
<td>b</td>
</tr>
</tbody>
</table>

a Aldrovandi and Pequignot [84].
b Shull and Steenberg [86].
c Landini and Fossi [89].

The sequence. Their DR fitting coefficients (A_{di}, B_{di}, T_0, and T_1) were determined by a least-squares procedure from the rates of Refs. [127, 189, 190] for Si, S, Ca, and Ni. The DR fitting coefficients for Fe were taken from Woods et al. [188] that were fits to the calculations of Ref. [191]. DR rates for Ar were interpolated between S and Ca [127, 190]. One can obtain their RR and DR rate coefficients for the Al-like ions using their fitting coefficients from Table 4.2 and using Eq. (4.3).
In 1990, Landini and Fossi [88] calculated the ionization balance for the ions H, He, C, O, N, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni for temperatures ranging from 10^4 to 10^8 K based on the fitting coefficients for RR and DR rates given by Shull and Steenberg [86]. They also computed the ionization equilibrium for some cosmically less abundant elements (F, P, Cl, K, Ti, Cr, Mn, and Co), where they extrapolated the data given by Shull and Steenberg [86] to obtain the RR and DR rate coefficients for these ions and presented their fitting coefficients in Ref. [89].

In 1998, Mazzotta et al. [123] calculated the ionization equilibrium for all the elements from H to Ni where they took the available ionization, RR, and DR rate coefficients in the literature. We have to emphasize that they did not perform any DR calculations for these ions, but they provided DR fitting coefficients based on the available DR calculations for some of these ions or from the Burgess general formula [4]. Moreover, for the Al-like isoelectronic, it is not clear from which source Mazzotta et al. obtained their DR data or how these rates were determined. The Al-like DR rate coefficients of Mazzotta et al. [123] can be reproduced by using their fitting coefficients from Table 4.3 and using Eq. (4.5)

$$\alpha^{DR}(T) = \frac{1}{T^{3/2}} \sum_j c_j \exp \left(-\frac{E_j}{T} \right),$$

where T and E_i are given in eV, c_i in cm3 s$^{-1}$ eV$^{3/2}$, and $\alpha^{DR}(T)$ in cm3 s$^{-1}$.

In 2002, Mazzitelli and Mattioli [192] calculated the ionization equilibria for Cu, Zn, Ga and Ge ions where the Burgess general formula [4] was used to calculate the DR rate coefficients and summed over $\Delta n_c = 0$ and $\Delta n_c = 1$ transitions in the target. Since there are no DR data available beyond Ni ions, for each sequence they produced their data by
extrapolation. In Table 4.3, their RR and DR fitting coefficients are presented. Their RR rate coefficients can be reproduced by using the first equation in Eq. (4.3) whereas their DR rate coefficients can be reproduced by using Eq. (4.5).

Table 4.3 RR and DR fitting coefficients for the Al-like ions. A_{rad} (cm3 s$^{-1}$), c_i (cm3 s$^{-1}$ eV$^{3/2}$), and E_i (eV). Numbers in parentheses are powers of 10.

<table>
<thead>
<tr>
<th>Ion</th>
<th>A_{rad}</th>
<th>η</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si$^+$</td>
<td>...</td>
<td>...</td>
<td>0.4898(-11)</td>
<td>0.6080(-9)</td>
<td>...</td>
<td>2.050</td>
<td>9.680</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>P$^{2+}$</td>
<td>...</td>
<td>...</td>
<td>0.6359(-8)</td>
<td>...</td>
<td>11.200</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>S$^{3+}$</td>
<td>...</td>
<td>...</td>
<td>0.1817(-7)</td>
<td>0.5920(-10)</td>
<td>...</td>
<td>16.620</td>
<td>2.400</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Cl$^{4+}$</td>
<td>...</td>
<td>...</td>
<td>0.5708(-7)</td>
<td>...</td>
<td>19.890</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Ar$^{5+}$</td>
<td>...</td>
<td>...</td>
<td>0.7557(-7)</td>
<td>...</td>
<td>22.020</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>K$^{6+}$</td>
<td>...</td>
<td>...</td>
<td>0.9296(-7)</td>
<td>...</td>
<td>24.730</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Ca$^{7+}$</td>
<td>...</td>
<td>...</td>
<td>0.1149(-6)</td>
<td>...</td>
<td>28.160</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Sc$^{8+}$</td>
<td>...</td>
<td>...</td>
<td>0.1247(-6)</td>
<td>...</td>
<td>27.700</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Ti$^{9+}$</td>
<td>...</td>
<td>...</td>
<td>0.2584(-7)</td>
<td>0.1454(-6)</td>
<td>...</td>
<td>142.170</td>
<td>31.700</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>V$^{10+}$</td>
<td>...</td>
<td>...</td>
<td>0.1687(-6)</td>
<td>...</td>
<td>32.990</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Cr$^{11+}$</td>
<td>...</td>
<td>...</td>
<td>0.7270(-7)</td>
<td>0.1704(-6)</td>
<td>...</td>
<td>189.630</td>
<td>33.140</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Mn$^{12+}$</td>
<td>...</td>
<td>...</td>
<td>0.1049(-6)</td>
<td>0.1856(-6)</td>
<td>...</td>
<td>198.600</td>
<td>34.180</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Fe$^{13+}$</td>
<td>...</td>
<td>...</td>
<td>0.2081(-6)</td>
<td>0.1281(-6)</td>
<td>...</td>
<td>36.300</td>
<td>193.000</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Co$^{14+}$</td>
<td>...</td>
<td>...</td>
<td>0.2429(-6)</td>
<td>0.1180(-6)</td>
<td>...</td>
<td>40.020</td>
<td>175.650</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Ni$^{15+}$</td>
<td>...</td>
<td>...</td>
<td>0.9885(-7)</td>
<td>0.2904(-6)</td>
<td>...</td>
<td>156.310</td>
<td>45.150</td>
<td>...</td>
<td>a</td>
</tr>
<tr>
<td>Cu$^{16+}$</td>
<td>3.780(-10)</td>
<td>0.833</td>
<td>1.560(-7)</td>
<td>1.660(-7)</td>
<td>0.877(-7)</td>
<td>42.880</td>
<td>56.080</td>
<td>247.400</td>
<td>b</td>
</tr>
<tr>
<td>Zn$^{17+}$</td>
<td>4.410(-10)</td>
<td>0.835</td>
<td>1.710(-7)</td>
<td>1.690(-7)</td>
<td>1.020(-7)</td>
<td>44.808</td>
<td>58.658</td>
<td>260.700</td>
<td>b</td>
</tr>
</tbody>
</table>

a Mazzotta et al. [123].

b Mazzitelli and Mattioli [192].

4.3 Methodology

We use the-state-of-the-art AUTOSTRUCTURE [32, 186] to carry out a series of multi-configuration Breit-Pauli (MCBP) calculations for DR cross sections and rate coefficients for the Al-like isoelectronic sequence in the independent-processes, isolated-resonances distorted-wave (IPIRDW) approach. Interference between RR and DR is very small even
for ions with small degree of ionization q [98, 172]. So, it can be neglected and treat RR and DR processes separately. AUTOSTRUCTURE is based on lowest-order perturbation theory, where electron-electron and electron-photon interactions are treated to the first order. Nonorthogonal radial functions are determined using the STO model potential [166] as described in Sec. 2.2.4. The radial scaling parameters λ_{3l} for (3s, 3p, and 3d) are determined by minimizing the equally weighted sum of energies of the lowest energy levels, with a closed neon core. Configuration mixing is taken into account for describing target wave functions as discussed in Sec. 2.2.5. Instead of extrapolating the rates by $1/n^3$ method, we follow a more accurate technique, in which bound orbitals are approximated by a normalized zero-energy continuum orbital for $n > 15 + \ell^2/4$ using a quantum defect approximation as in Eq. (2.41). For each $n\ell$, diagonalizations for N and $(N + 1)$-electron-Hamiltonians are performed and followed by calculations for autoionization and radiative rates A^a and A^r, respectively as discussed in Sec. 2.5. Rate coefficients are then calculated by using a post-processor ADASDR, in which radiative transition between highly excited Rydberg states are computed hydrogenically.

Finally, DR rate coefficients are fitted using the form:

$$\alpha^{DR}(T) = T^{-3/2} \sum_i c_i \exp\left(-\frac{E_i}{T}\right),$$

(4.6)

where E_i are in units of temperature T (eV or K), and the units of c_i are then cm3 s$^{-1}$[eV or K]$^{3/2}$.

The RR rate coefficients are fitted using the formula of Verner and Ferland [193]

$$\alpha^{RR}(T) = \frac{A\sqrt{T_0/T}}{[1 + \sqrt{T/T_0}]^{1-B} [1 + \sqrt{T/T_1}]^{1+B}},$$

(4.7)
where A has units of cm3 s$^{-1}$, T_0 and T_1 are in units of temperature (eV or K). The fitting coefficient B is unitless. A more accurate representation, especially for low-charge ions, replaces B as [110]

$$B \rightarrow B + C \exp\left(\frac{-T_2}{T}\right). \quad (4.8)$$

4.4 DR for the Aluminum-Like Isoelectronic Sequence

4.4.1 Aluminum-Like Sulfur

In 1979, Jacobs et al. calculated total DR rate coefficients for sulfur ions with application to a magnetic fusion plasma [127]. They assumed that the recombination could take place through a limited number of electron transitions with an electron density of 10^{10} cm$^{-3}$. Moreover, they neglected the non-dipole autoionizing transitions and used a single-configuration approximation to evaluate energies and transition rates. Such approximations are not valid for low charged ions. In 1991, Badnell [128] calculated total DR rate coefficients for S^{q+} ($q = 1 - 5$) ions in the low-density limit, but these calculations were performed within LS-coupling and were limited to the temperature range $T = 3 \times 10^4 - 10^6$ K as an application to the Io plasma torus. In 1992, Al-Mulhem and Nasser presented DR cross sections and rate coefficients for S^{3+} [129]. Their calculations were also done in LS-coupling and only considered $3s \rightarrow 3p$ excitation using single-configuration and relativistic Hartree-Fock wave functions. The disadvantage of their calculation is that they didn’t include the other important $3p \rightarrow 3d$ and $3s \rightarrow 3d$ excitations and the subsequent Auger channels that can contribute to the DR cross sections and rate coefficients. In 1995,
Nahar and Pradhan [44] presented total rate coefficients for silicon and sulfur ions (RR + DR) applying a new unified treatment they developed for electron-ion recombination based on the close coupling R-matrix method. In the same year, Nahar published the data for S$^{3+}$ along with other ions [194]. In 1996, a correction was made due to a numerical error in the step size of the integration that affected the total rate coefficient in the low-temperature region [195]. In 2000, Nahar calculated the total rate coefficients and photoionization cross sections for the Al-like isoelectronic sequence for the astrophysically abundant elements Si$^+$, S$^{3+}$, Ar$^{5+}$, Ca$^{7+}$, and Fe$^{13+}$ [130]. All these calculations were performed in the LS-coupling approximation. We have to keep in mind that they are studying the photorecombination process and their target is the $(N + 1)$-electron system which is the the opposite of the DR process (our target is the recombining ion and has N electrons).

Given the available earlier results, calculations of DR cross sections and rate coefficients for S$^{3+}$ are a good starting point for the Al-like sequence. The goal is to perform these calculations not only in LS-coupling but also in IC-coupling scheme and to study the low-energy DR rate coefficients. Two separate calculations were done for both cross sections and rate coefficients for S$^{3+}$. In the first calculation, I used the same target basis (N-electrons) as Badnell did [128], which I call basis A. In the second calculation, a larger basis B was used to describe the target since this basis was used in the study for Fe$^{13+}$ [104]. Both bases are described in Table 4.4.

Note that configurations 1, 2, 3, and 5 form the minimal set which allows for all ($\Delta n_e = 0$) one-electron promotions during the DR capture process. Basis A gives rise to 30 target terms (68 levels) while basis B gives rise to 56 target terms (129 levels). The radial wave
Table 4.4 Bases used to calculate Al-like DR cross sections and rate coefficients. A neon core was assumed for all these configurations and omitted for simplicity.

<table>
<thead>
<tr>
<th>Basis</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1- $3s^23p$, 2- $3s3p^2$, 3- $3s^23d$, 4- $3p^3$, 5- $3s3p3d$, and 6- $3p^23d$</td>
</tr>
<tr>
<td>B</td>
<td>Basis A, 7- $3s3d^2$, and 8- $3p3d^2$</td>
</tr>
</tbody>
</table>

functions were obtained by using the STO model potential [166] as described in Sec. 2.2.4. The $3s$, $3p$, and $3d$ radial scaling parameters, λ_{nl}, were determined by minimizing the equally-weighted-sum of energies of the lowest 18 levels. The radial scaling parameters for basis A are $\lambda_{3s} = 1.18199$, $\lambda_{3p} = 1.25917$, and $\lambda_{3d} = 0.98662$, and $\lambda_{3s} = 1.18372$, $\lambda_{3p} = 1.24942$, and $\lambda_{3d} = 0.98197$ for basis B.

In Table 4.5, a comparison of the lowest calculated 10 energy levels (in Rydbergs) with other available data is presented. We see that the energy levels for basis B are closer to the observed values [196, 197] or the recent MCHF calculations by Froese-Fischer et al. [198]. The data given by Bhatia et al. [199], using the SUPERSTRUCTURE program by Eissner et al. [141], do not describe the target very well because they used only $3s^23p$, $3s3p^{2}$, and $3s^23d$ configurations. An extensive structure calculation including more target bases with correlations up to $n = 6$ was carried out by Tayal [200], where he used the CIV3 program by Hibbert [203]. Data by Gupta and Msezane were obtained by including correlations up to $n = 5$ [201]. Hibbert et al. included up to $n = 7$ in their target bases and used both MCHF and CIV3 program packages to calculate the energy levels and the $3s^23p - 3s3p^2$ transitions for S^{3+} [202]. The biggest energy difference found between my calculated energy levels using basis B and the observed low-lying level energies was 0.11 Ryd. Resonances attached to the target states were shifted to match the observed energies.
Table 4.5 Lowest energy levels (in Rydbergs) for S^{3+} for $\Delta n_c = 0$. A neon core is assumed in all cases and omitted for simplicity.

<table>
<thead>
<tr>
<th>m</th>
<th>config.</th>
<th>$2S + 1L \pi$</th>
<th>Basis Aa</th>
<th>Basis Bb</th>
<th>NISTc</th>
<th>MCHFd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3s^23p$</td>
<td>$2P_{1/2}$</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>$3s3p^2$</td>
<td>$2P_{3/2}$</td>
<td>0.00712</td>
<td>0.00720</td>
<td>0.00867</td>
<td>0.00773</td>
</tr>
<tr>
<td>3</td>
<td>$3s3p^2$</td>
<td>$4P_{1/2}$</td>
<td>0.63309</td>
<td>0.62918</td>
<td>0.64869</td>
<td>0.63695</td>
</tr>
<tr>
<td>4</td>
<td>$3s3p^2$</td>
<td>$4P_{3/2}$</td>
<td>0.63559</td>
<td>0.63171</td>
<td>0.65181</td>
<td>0.63976</td>
</tr>
<tr>
<td>5</td>
<td>$3s3p^2$</td>
<td>$4P_{5/2}$</td>
<td>0.63964</td>
<td>0.63578</td>
<td>0.65679</td>
<td>0.64418</td>
</tr>
<tr>
<td>6</td>
<td>$2D_{3/2}$</td>
<td></td>
<td>0.85195</td>
<td>0.85341</td>
<td>0.85753</td>
<td>0.85060</td>
</tr>
<tr>
<td>7</td>
<td>$2D_{5/2}$</td>
<td></td>
<td>0.85214</td>
<td>0.85360</td>
<td>0.85796</td>
<td>0.85097</td>
</tr>
<tr>
<td>8</td>
<td>$2P_{1/2}$</td>
<td></td>
<td>1.13910</td>
<td>1.09009</td>
<td>1.12550</td>
<td>1.12630</td>
</tr>
<tr>
<td>9</td>
<td>$2P_{3/2}$</td>
<td></td>
<td>1.17306</td>
<td>1.17880</td>
<td>1.21763</td>
<td>1.23232</td>
</tr>
<tr>
<td>10</td>
<td>$2P_{3/2}$</td>
<td></td>
<td>1.17745</td>
<td>1.18352</td>
<td>1.22333</td>
<td>1.23747</td>
</tr>
</tbody>
</table>

a present work: Basis A MCBP calculations.
b present work: Basis B MCBP calculations.
c NIST experimental data by Joelsson et al. [196] compiled by Martin et al. [197].
d MCHF theory calculations of Froese-Fischer et al. [198].
e results by Bhatia et al. [199].
f results by Tayal [200].
g results by Gupta and Msezane [201].
h results by Hibbert et al. [202].

to align the Rydberg series correctly.

The $(N+1)$-electron wave functions were described by coupling a continuum or bound
orbital to the target configurations \((N\)-electron system\). Then all possible Auger and radiative rates were computed from these configurations and used to determine partial and total DR cross sections. Eq. (4.9) describes the \(\Delta n_c = 0\) \((3s \rightarrow 3p, 3s \rightarrow 3d,\) and \(3p \rightarrow 3d\)\) DR process for the Al-like isoelectronic sequence.

\[
e^{-} + 3s^23p^2[2P_{1/2}] \rightarrow \begin{pmatrix} \text{Basis A} \\ \text{Basis B} \end{pmatrix}_{n\ell}^{**} A_r \rightarrow 3s^a3p^b3d^c + h\nu,
\]

where \(x + y + z = 3\) and \(a + b + c = 4\). The doubly excited states formed by capturing the incident electron can either autoionize or radiatively decay to final states to complete the DR process. For the recombined \(S^{2+}\) ion, only the \(3s^23p^2, 3s3p^3, 3s^23p^33d,\) and \(3p^4\) configurations are completely bound, while some of the levels for the \(3s3p^23d\) configuration are autoionizing and all other possible configurations in the form \(3s^a3p^b3d^c\) are autoionizing.

I started by performing DR rate coefficient calculations using both basis A, the one that Badnell used in his study of \(S^{3+}\) [128], and the bigger basis B in both \(LS\) and IC-coupling schemes. Fig. 4.1 shows a comparison between my present \(LS\) results using both bases A and B and the \(LS\) results of Badnell. All rate coefficients peak at the same electron temperature of 10.858 eV with values of \(16.2 \times 10^{-11}\), \(15.5 \times 10^{-11}\), and \(15.5 \times 10^{-11}\) \(cm^3\ s^{-1}\) for the Badnell data, basis A results, and basis B results, respectively. As seen from Fig. 4.1, the DR rate coefficients for basis A and basis B are the same except at electron temperatures below 1.0 eV, where the DR rate coefficients of basis A is higher, but both results are 4% lower than those of Badnell using earlier AUTOSTRUCTURE implementations [128] at their peaks. From now on, I will use basis B in the rest of my calculations.
Figure 4.1 Comparison of DR rate coefficients for S^{3+} in \emph{LS}-coupling scheme: black solid curve, DR data of Badnell [128]; blue solid curve, DR rate coefficient using basis A; and red solid curve, DR rate coefficient using basis B.

Next, a comparison between the DR rate coefficients performed in \emph{LS}- and IC-coupling approximations is shown in Fig. 4.2 using basis B. DR rate coefficient in IC-coupling is higher than the one performed in \emph{LS}-coupling at low-electron temperatures below 2.0 eV, due to the doubly excited $3s^23p[^2P_{3/2}]n\ell$ states that can autoionize to the ground state $3s^23p[^2P_{1/2}]$ of S^{3+} $[3s^23p(^2P_{3/2})n\ell \rightarrow 3s^23p(^2P_{1/2}) + e^-]$ which does not exist in a non-relativistic \emph{LS} treatment. On the other hand, the DR rate coefficient in IC-coupling is lower at higher electron temperatures ($T > 4.0$ eV). Here, the collisionally ionized zone is as recommended by Bryans \emph{et al.} [204] and the photoionized zones is taken as a private communications from Korista [205].

In order to understand this behavior, we focus on the DR cross section for S^{3+}. In
Figure 4.2 Rate coefficients for S^{3+} in both LS- and IC-coupling schemes using basis B: blue dash-dotted curve, DR rate coefficient in LS-coupling; red dash-dotted curve, DR rate coefficient in IC-coupling; black dash-dotted curve, contribution from $3s^23p n\ell$ series which is forbidden in LS-coupling; gray dashed curve, RR rate coefficient. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

Fig. 4.3, the DR cross section results, in both LS- and IC-coupling approximations are shown. These cross sections are convolved with a full width at half maximum (FWHM) Gaussian of 0.1 eV. The DR cross section calculated in IC-coupling at the low-energy region below 0.5 eV is higher than the one calculated in LS-coupling. Part of this resonance peaks around 0.054 eV, which is mainly due to the $3s^23p(^2P_{3/2})n\ell$ resonances which do not exist in an LS-coupling scheme and the rest is due to the contribution from the $3s3p^2n\ell$ series (which is allowed in LS-coupling). The $3s \rightarrow 3p$ core excitation forms the series $3s3p^2[^4P_J, ^2D_J, ^2S_J, ^2P_J]n\ell$. The series limit of $3s3p^2[^2D_{3/2}]n\ell$ is located at 11.667 eV, while the $3s3p^2[^2P_{1/2}]n\ell$ and $3s3p^2[^2P_{3/2}]n\ell$ series have limits of 16.567 eV.
Figure 4.3 DR cross sections for S$^{3+}$ in LS- and IC-coupling: blue solid curve, DR cross section in LS-coupling; red solid curve, DR cross section in IC-coupling. Both calculations are convolved with FWHM of 0.1 eV using basis B.

and 16.644 eV, respectively. The $3p \rightarrow 3d$ core excitation forms the series $3s^23d[^2D_{3/2}]n\ell$ and $3s^23d[^2D_{5/2}]n\ell$ with limits of 18.862 and 18.864 eV, respectively. At higher energies, the DR cross section in LS-coupling is higher than the cross section in IC-coupling for both $3s \rightarrow 3p$ and $3p \rightarrow 3d$ excitations. In this case, the ground state has a fine structure splitting $[3s^23p(^2P_{1/2}, 3/2)]$ of 0.118 eV. Moreover, the DR cross section for $3p \rightarrow 3d$ is higher than the DR cross section for $3s \rightarrow 3p$, which is reflected in the DR rate coefficient.

In an attempt to understand the suppression of the DR cross section in IC-coupling, we focus on the the DR cross section for the $3s \rightarrow 3p$ core excitation in both LS- and IC-coupling $[e^- + 3s^23p(^2P_{1/2}) \rightarrow 3s3p^2(^2P_{1/2}, 3/2)n\ell]$. The results for this study are shown in Fig 4.4. All DR cross sections are convolved with a full width at half maximum.
Figure 4.4 DR cross section of S^{3+} for the collision $e^- + 3s^23p[^2P_{1/2}] \rightarrow 3s3p[^2P_{1/2},3/2]n\ell$ in both LS- and IC-coupling schemes: Left panel (IC): DR cross section in IC-coupling, red solid curve, DR cross section for the series $3s3p[^2P_{1/2}]n\ell$ and blue solid curve, DR cross section for the series $3s3p[^2P_{3/2}]n\ell$. Right panel (LS): same as left panel with green solid curve is the same calculation but in LS-coupling approximation. All series are convolved by a FWHM Gaussian of 1.2 meV. (FWHM) Gaussian of 1.2 meV. As seen, both $3s3p[^2P_{1/2},3/2]n\ell$ series exhibit a sudden drop in the DR cross section at a principal quantum number $n = 36$. Such a reduction does not exist in the LS results. This reduction can be explained as follows. For the $3s \rightarrow 3p$ core excitation, the doubly excited state $3s3p^2n\ell$ can radiatively decay either to $3s3p[^2P_{1/2}]n\ell$, which completes the DR process, or it can radiatively decay to $3s3p[^2P_{3/2}]n\ell$, which in turn can autoionize for $n \geq 36$. This reduction in the DR cross section can be represented as such:

$$e^- + 3s^23p[^2P_{1/2}] \Rightarrow 3s3p^2n\ell \rightarrow 3s^23p[^2P_{1/2}]n\ell + h\nu \quad \text{(DR)}$$

$$\downarrow$$

$$3s^23p[^2P_{3/2}]n\ell + h\nu'$$

$$\downarrow$$

$$3s^23p[^2P_{1/2}] + e^- \quad (n \geq 36). \quad (4.10)$$
The contribution from the fine structure \(3s^23p(^2P_{3/2})n\ell\) series for the collision \([e^- + 3s^23p(^2P_{1/2}) \rightarrow 3s^23p(^2P_{3/2})n\ell]\) for \(S^{3+}\) to the DR cross section is presented in Fig. 4.5. All Rydberg states associated with \(n < 36\) are bound, while higher Rydberg states are autoionizing. The DR cross section for this collision decreases rapidly with \(n\) since the radiative stabilization occurs between two outer electron transitions \(n \rightarrow n'\) with \(n' < 36\).

![Figure 4.5](image.png)

Figure 4.5 DR cross section for the series \(3s^23p(^2P_{3/2})n\ell\) of \(S^{3+}\) in the IC-coupling scheme convolved with FWHM of 1.2 meV.

In the study of the DR cross section for the \(3p \rightarrow 3d\) core excitation, a similar drop in the DR cross section for both series \(3s^23d[{}^2D_{3/2, 5/2}]n\ell\) occurs right at \(n = 36\). Fig. 4.6 shows the results for the collision \(e^- + 3s^23p[^2P_{1/2}] = 3s^23d[^2D_{3/2}]n\ell\) and this reduction is due to the doubly-excited \(3s^23dn\ell\) state that can radiatively decay either to \(3s^23p[^2P_{1/2}]n\ell\), which completes the DR process, or to \(3s^23p[^2P_{3/2}]n\ell\), which in turn can autoionize for
Figure 4.6 DR rate coefficients for S^{3+} for the collision $e^- + 3s^23p \ (^2P_{1/2}) \rightarrow 3s^23d \ (^2D_{3/2}) n\ell$ in IC-coupling convolved with a Gaussian with FWHM of 1.2 meV.

$n \geq 36$. This reduction in the DR cross section can be represented as such:

$$e^- + 3s^23p[^2P_{1/2}] \Rightarrow 3s^23d[^2D_{3/2}] n\ell \rightarrow 3s^23p[^2P_{1/2}] n\ell + h\nu$$

(DR)

$$\downarrow$$

$$3s^23p[^2P_{3/2}] n\ell + h\nu'$$

$$\downarrow$$

$$3s^23p[^2P_{1/2}] + e^- (n \geq 36).$$

In Fig. 4.7, a schematic diagram for the N- and $(N + 1)$-electron systems is shown, which shows the energy levels for each series and how the fine structure series causes the reduction in the DR cross section in IC-coupling.

Since the $3p \rightarrow 3d$ core excitation is the strongest, we choose the $3s^23d n\ell$ series to
check on the convergence of these calculations for both the angular momentum quantum number ℓ and the principal quantum number n. The convergence for ℓ is shown in Fig. 4.8, where the DR rate coefficient for this series starts to converge at $\ell = 7$. On the other hand, the convergence for n is obtained at $n \geq 200$ (see Fig. 4.9).

Fig. 4.10 shows a comparison of my calculated DR rate coefficients, in both LS- and IC-coupling, with other available data of Aldrovandi and Péquignot [84], Mewe et al [85], Shull and Steenberg [86], Mazzotta et al. [123], Jacobs et al. [127], Badnell [128], Al-Mulhem and Nasser [129], and Nahar [130]. As seen, both results of Aldrovandi and Péquignot [84] and Mewe et al. [85] differ markedly from the other results. The first one peaks at an electron temperature of 13.0 eV, with a peak 37% higher than my LS-coupling results, while the second peaks at 7.0 eV and is 19% higher than my LS-coupling results.
The discrepancy in these two results can be attributed to the fact that the first result is based on an empirical data while the second is obtained by using the general expression.

\[e^- + 3s^23p \, ^2P_{1/2} \rightarrow 3s^23d \, ^2D_{3/2, 5/2} n\ell \, \text{IC-coupling} \]

Figure 4.8 Study of the convergence of the angular momentum quantum number \(\ell \) for the atomic collision \(e^- + 3s^23p \, ^2P_{1/2} \rightarrow 3s^23d \, ^2D_{3/2, 5/2} n\ell \) in IC-coupling: left panel, the rate coefficient at different values of \(\ell \). Black dash-dotted curve is for \(\ell = 0 \); red dash-dotted curve, for \(\ell = 1 \); green dash-dotted curve, for \(\ell = 2 \); blue dash-dotted curve, for \(\ell = 3 \); black solid curve, for \(\ell = 4 \); blue solid curve, for \(\ell = 5 \); gray dotted curve, \(\ell = 6 \); and red solid curve, for \(\ell \leq 13 \). Right panel, the variation of the DR rate coefficient peak with \(\ell \). Convergence occurs at \(\ell \geq 7 \).

Figure 4.9 Study of the convergence of the principal quantum number \(n \) for the collision \(e^- + 3s^23p \, ^2P_{1/2} \rightarrow 3s^23d \, ^2D_{3/2, 5/2} n\ell \) in IC-coupling: left panel, the rate coefficient at different values of \(n \). Solid green curve is for \(n = 10 \); black dash-dotted curve, for \(n = 20 \); blue dash-dotted curve, for \(n = 35 \); black solid curve, for \(n = 40 \); red dash-dotted curve, for \(n = 60 \); blue solid curve, for \(n = 80 \); red dotted curve, for \(n = 100 \); green dash-dotted curve, for \(n = 200 \); gray dotted curve, for \(n = 400 \); and red solid curve, for \(n \leq 1000 \). Right panel, the variation of the DR rate coefficient peak with \(n \). Convergence occurs at \(n \geq 200 \).
Figure 4.10 Comparisons between previous and present DR rate coefficients for S^{3+}: black dotted curve, empirical results of Mewe et al. [85]; red solid curve with circles, results of Aldrovandi and Péquignot [84]; green solid curve with stars, results of Shull and Steenberg [86]; red solid line with squares, data of Jacobs et al. [127]; black solid curve, data of Badnell [128]; blue solid line, data of Al-Mulhem and Nasser [129]; solid green curve, total rate coefficient by Nahar [130]; black dashed curve, recommended data of Mazzotta et al. [123], blue dash-dotted and red dash-dotted curves are my rate coefficients in LS- and IC-coupling schemes, respectively. The collisionally ionized zone is as recommended by Bryans et al. [204].

given by Burgess [4] that may overestimate the DR rate coefficients. The results of Shull and Steenberg [86] and Jacobs et al. [127] are nearly identical since the first one is just a fitting for the second. The data of Jacobs et al. are about 4% higher than my LS-coupling data. However, their calculations were truncated at a certain n value using the Inglis-Teller formula [206], where they applied a field strength which is determined by the Holtzmark formula for the micro field produced by a plasma with an electron density of 10^{10} cm$^{-3}$. Moreover, non-dipole autoionizing transitions into excited states were neglected. These
transitions are included in my calculations, with a contribution of 15% to the total rate. The rate coefficient by Al-Mulhem and Nasser [129] in LS-coupling peaks nearly at the same electron temperature as mine and is 2.6% lower. But those calculations were not complete because they considered only $3s \rightarrow 3p$ core excitation and did not include the other transitions such as $3s \rightarrow 3d$ and $3p \rightarrow 3d$, which we found to be more important. As seen, the recommended data by Mazzotta et al. [123] are taken from Nahar [130]. The data of Nahar are 26% lower than my LS-coupling calculations. I believe that my new results are more accurate and reliable [207].

For $\Delta n_c = 1$, only $3 \rightarrow 4$ ($3s \rightarrow 4\ell$, $3p \rightarrow 4\ell$, and $3d \rightarrow 4\ell$) core excitations are considered. All the configurations in basis B plus the $3s^24\ell$, $3s3p4\ell$, and $3p^24\ell$ configurations are included for $0 \leq \ell \leq 3$. These 20 configurations give rise to 295 target levels. Contribution from $\Delta n_c = 1$ to the total DR rate coefficient for S^{3+} was found to be only about 3% at higher electron temperatures.

Now, the results for the rest of the Al-like isoelectronic sequence following the same methodology as for S^{3+} using basis B can be presented. The scaling parameters $\lambda_{3\ell}$ for all the Al-like ions are presented in Table 4.6.

4.4.2 Aluminum-Like Silicon, Phosphorus, Chlorine, and Argon

Fig. 4.11 shows a comparison between my calculated Maxwellian-averaged DR rate coefficients and other available data for Si$^+$. The curve of Mewe et al. [85] is 10% lower than my computed DR rate coefficient in LS-coupling and its peak is shifted to the lower electron temperatures by around 4.0 eV. I reproduced their DR data by using their fitting
Table 4.6 Radial scaling parameters used in the present study for $\Delta n_c = 0$ core excitations for the Al-like isoelectronic sequence.

| Element | Si$^+$ | P$^{2+}$ | S$^{3+}$ | Cl$^{1+}$ | Ar$^{15+}$ | K$^{16+}$ | Ca$^{17+}$ | Sc$^{18+}$ | Ti$^{19+}$ | V$^{20+}$ | Cr$^{21+}$ | Mn$^{22+}$ | Fe$^{23+}$ | Co$^{24+}$ | Ni$^{25+}$ | Cu$^{26+}$ | Zn$^{27+}$ |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| λ_{3s} | 1.2626 | 1.2183 | 1.1837 | 1.1543 | 1.1278 | 1.1032 | 1.0799 | 1.0574 | 1.0351 | 1.0132 | 0.9916 | 0.9701 | 0.9489 | 0.9281 | 0.9074 | 0.8870 | 0.8668 |
| λ_{3p} | 1.2526 | 1.2506 | 1.2494 | 1.2466 | 1.2407 | 1.2307 | 1.2161 | 1.1963 | 1.1686 | 1.1392 | 1.1019 | 1.0613 | 1.0222 | 0.9884 | 0.9599 | 0.9360 | 0.9153 |
| λ_{3d} | 1.1322 | 1.0373 | 0.9820 | 0.9496 | 0.9288 | 0.9142 | 0.9031 | 0.8945 | 0.8877 | 0.8817 | 0.8769 | 0.8727 | 0.8687 | 0.8650 | 0.8613 | 0.8578 | 0.8545 |

The DR rate coefficient of Aldrovandi and Péquignot [84] is only 2% higher, but their DR rate coefficient is based on the Burgess formula [4]. The rate of Jacobs et al. [189] is around 85% lower. Their calculations were performed for an electron density of 10^{10} cm$^{-3}$ and they took into account all radiative stabilization and all autoionization processes that involve only single-electron electric-dipole transitions of the recombining ion core. Also, they omitted all other non-dipole transitions and truncated their calculations at a specific n value based on the Inglis-Teller limit [206]. As we can see from Fig. 4.11, all these calculations are missing the contribution at the low electron temperatures. The Nussbaumer and Storey [208] calculations were limited to the low-electron temperature region, covering the range between 0.086 and 5.171 eV. The rate coefficient of Nahar [130] is around 85% lower than my rate performed in LS-coupling. In 1995, Nahar and Pradhan [44] and Nahar [194] calculated the total rate coefficient for Si$^+$ in the close coupling approximation using the R-matrix method. But these calculations were performed in LS-coupling. A numerical error was then corrected in their integration step size that affected the total rate coefficients only in
the low-electron temperature region [195]. Finally, in 2000, Nahar presented electron ion recombination rate coefficients for Si+, S3+, Ar5+, Ca7+, and Fe13+ [130] [their target is the \((N + 1)\)-electron system]. The recommended data of Mazzotta \textit{et al.} [123] are based on the data of Nahar [130]. My Mawellian-averaged DR rate coefficient performed in IC-coupling is the only calculation that accounts for the contribution of the fine structure in the ground state of Si+.

![Figure 4.11](image-url) **Figure 4.11** Comparison of available DR rate coefficients for Si+: (a) black solid curve, DR data from the empirical formula of Mewe \textit{et al.} [85]; (b) red solid curve, recommended DR data of Aldrovandi and Péquignot [84]; (c) black dotted curve, DR data from Jacobs \textit{et al.} [189]; (d) green solid curve, total rate coefficient (RR + DR) using \(R\)-matrix by Nahar [130]; (e) blue solid curve, recommended DR data by Mazzotta \textit{et al.} [123]; (f) blue dash-dotted curve, my DR data using \(LS\)-coupling; (g) red dash-dotted curve, my DR data using IC-coupling (MCBP); (h) black dashed curve, low temperature DR data from Nussbaumer and Storey [208]; and (i) gray dashed curve, my RR rate coefficient. The collisionally ionized zone is as recommended by Bryans \textit{et al.} [204]. The photoionized zone is taken from Ref. [205].

To my knowledge, there are no computed DR rate coefficients for P2+. Fig. 4.12, shows
Figure 4.12 Comparison of available DR rate coefficients for P\(^{2+}\): (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) black circles, DR data from Landini and Fossi [89]; (d) blue dash-dotted curve, my DR data in LS-coupling; (e) red dash-dotted curve, my DR data using IC-coupling (MCBP); (f) green solid curve, contribution from the 3s3p\(^3\)dnl series at low-electron temperatures; and (g) gray dashed curve, my RR rate coefficient. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

the Maxwellian-averaged DR rate coefficients in both LS- and IC-coupling schemes. The fitting data of Mewe et al. [85] are reproduced from their fitting parameters for P\(^{2+}\) given in Table 4.1 and using Eq. (4.4). The peak of their DR rate coefficient is 21\% higher than my DR rate coefficient in LS-coupling and is shifted by 5 eV toward the lower electron temperatures. The DR rate coefficient of Landini and Fossi [89] is 33\% lower than my DR rate coefficient in LS-coupling. They computed the ionization equilibrium of P ions for the low-density plasma using the same approximations as Shull and Steenberg [86], where their fitting parameters for the rate coefficient for P\(^{2+}\) were obtained by an extrapolation
through the isoelectronic sequence. As we can see from Fig. 4.12, the recommended data of Mazzotta et al. [123] for P$^{2+}$ are based on the data of Landini and Fossi [89]. The contribution to the DR rate coefficient at low electron temperatures is mainly due to the 3s3p3dnℓ series.

In Table 4.7, a comparison between my calculated energy levels (in Rydberg) for Al-like Cl$^{4+}$ and Ar$^{5+}$ ions with the available data from NIST and MCHF calculations by Fischer et al. [198]. Good agreement is obtained for most of the levels.

Table 4.7 Comparisons of the lowest energy levels (in Rydbergs) for Al-like Cl$^{4+}$ and Ar$^{5+}$.

<table>
<thead>
<tr>
<th>m</th>
<th>config.</th>
<th>Cl$^{4+}$</th>
<th>Ar$^{5+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2S$^{+1}$L$_j^z$</td>
<td>Presenta</td>
</tr>
<tr>
<td>1</td>
<td>3s23p</td>
<td>2P$_{1/2}^o$</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2P$_{3/2}^o$</td>
<td>0.01133</td>
</tr>
<tr>
<td>3</td>
<td>3s3p2</td>
<td>4P$_{1/2}$</td>
<td>0.76229</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4P$_{3/2}$</td>
<td>0.76621</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4P$_{5/2}$</td>
<td>0.77248</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2D$_{3/2}$</td>
<td>1.02861</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2D$_{5/2}$</td>
<td>1.02895</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2S$_{1/2}$</td>
<td>1.30234</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2P$_{1/2}$</td>
<td>1.40521</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2P$_{3/2}$</td>
<td>1.41243</td>
</tr>
</tbody>
</table>

a present work: 129-level MCBP calculations.

b data taken from NIST.

c MCHF theory calculations of Froese-Fischer et al. [198].
Figure 4.13 Comparison of available DR rate coefficients for Cl$^{4+}$: (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) back circles curve, DR data from Landini and Fossi [89]; (d) blue dash-dotted curve, my DR data in LS-coupling; (e) red dash-dotted curve, my DR data in IC-coupling, (f) green solid curve, contribution from the series $3s^23p\ell$; and (g) gray dashed curve, my RR rate coefficient. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

by around 4 eV toward the lower electron temperatures. The DR rate coefficient of Landini and Fossi [89] is higher by 44% than my DR rate coefficient performed in LS-coupling. Their DR rate coefficient is obtained by extrapolation of the fitting parameters from Shull and Steenberg [86]. As seen from Fig. 4.13, the recommended DR data of Mazzotta et al. [123] for Cl$^{4+}$ are exactly the same as the work of Landini and Fossi [89]. The DR rate coefficient at the low electron temperatures is dominated by the contribution from $3s^23p\ell$ series.

Fig. 4.14 shows a comparison of my Maxwellian-averaged DR rate coefficients for
Figure 4.14 Comparison of available DR rate coefficients for Ar^{5+}: (a) black solid curve, DR from the empirical formula of Mewe et al. [85]; (b) black circles, recommended DR data of Shull and Steenberg [86]; (c) blue solid curve, recommended DR data by Mazzotta et al. [123]; (d) green solid curve, total rate coefficient (RR + DR) using R-matrix by Nahar [130]; (e) blue dash-dotted curve, my DR data in LS-coupling scheme; (f) red dash-dotted curve, my DR data in IC-coupling scheme; (g) red solid curve, configuration-average data of Loch et al. [185]; (h) black dash-dotted curve, contribution from the series $3s^23p\ell$; and (i) gray dashed curve, my RR rate coefficient. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

Ar^{5+} in both LS- and IC-coupling and other available DR rate coefficients. The peak of the empirical DR rate coefficient of Mewe et al. [85] is higher than my DR rate coefficient performed in LS-coupling by 15% and is shifted toward the lower electron temperatures by 4.5 eV. Their DR data are obtained by using the empirical formula in Eq. (4.4) and the fitting parameters in Table 4.1. The DR rate coefficient of Shull and Steenberg [86] is 40% higher than my DR rate coefficient performed in LS-coupling. Their rate coefficient for Ar^{5+} is obtained by extrapolation for the work of Jacobs et al. [127, 190] between
S and Ca ions. The recommended data of Mazzotta et al. [123] are based on Shull and Steenberg [86] (see Fig. 4.14). Available calculations for DR rate coefficients for Ar$^{5+}$ are either from the unified close-coupling R-matrix approximation in LS-coupling by Nahar [130] or from the configuration-average distorted-wave approximation (CADWA) of Loch et al. [185] (see Chapter III). The peak of the DR rate coefficient of Nahar [130] is 18% lower than my DR rate coefficient performed in LS-coupling. The peak of the CADWA is 13% lower and is shifted toward the lower electron temperatures by 5 eV. Neither of these calculations included the fine structure splitting in the ground state, which has an effect on the rate coefficient at higher electron temperatures as seen in my study of S$^{3+}$ (see Sec. 4.4.1). Moreover, the CADWA DR rate coefficient is missing the $3s \rightarrow 3d$ core-excitation. The code was designed to handle the transitions only between two active electrons, but for Ar$^{5+}$ $\Delta n_c = 0$ ($3s \rightarrow 3p, 3p \rightarrow 3d$, and $3s \rightarrow 3d$) core excitations give rise to three active electrons when one excites $3s \rightarrow 3d$. The modifications of the code are underway to overcome such limitation.

4.4.3 Aluminum-Like Potassium, Calcium, Scandium, and Titanium

Now we move to higher Al-like ions though the periodic table. Comparisons between my calculated energy levels for the Al-like K$^{6+}$, Ca$^{7+}$, Sc$^{8+}$, and Ti$^{9+}$ ions and other available data are presented in Table 4.8. Good agreement is obtained between my calculated energy levels and the available data taken from NIST, the perturbation theory calculations (MR-MP) of Santana et al. [209], and the MCHF calculations of Froese-Fischer et al. [198].
Table 4.8 Comparisons of the lowest energy levels (in Rydbergs) for the Al-like K6+, Ca7+, Sc8+, and Ti9+.

<table>
<thead>
<tr>
<th>m config.</th>
<th>(2^{+1}L_j)</th>
<th>(3^{+1}L_j)</th>
<th>(4^{+1}L_j)</th>
<th>(5^{+1}L_j)</th>
<th>(6^{+1}L_j)</th>
<th>(7^{+1}L_j)</th>
<th>(8^{+1}L_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2s^22p)</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>(2s^23p)</td>
<td>0.02354</td>
<td>0.02857</td>
<td>0.02857</td>
<td>0.02684</td>
<td>0.02684</td>
<td>0.02857</td>
<td>0.02857</td>
</tr>
<tr>
<td>(3s3p)</td>
<td>1.03189</td>
<td>1.04477</td>
<td>1.04654</td>
<td>1.03346</td>
<td>1.03346</td>
<td>1.04705</td>
<td>1.04705</td>
</tr>
<tr>
<td>(4s3p)</td>
<td>1.04033</td>
<td>1.05512</td>
<td>1.05696</td>
<td>1.04322</td>
<td>1.04322</td>
<td>1.05696</td>
<td>1.05696</td>
</tr>
<tr>
<td>(5s3p)</td>
<td>1.05346</td>
<td>1.07095</td>
<td>1.07280</td>
<td>1.05789</td>
<td>1.05789</td>
<td>1.07095</td>
<td>1.07095</td>
</tr>
<tr>
<td>(6s3p)</td>
<td>1.38437</td>
<td>1.38407</td>
<td>1.38384</td>
<td>1.37757</td>
<td>1.37757</td>
<td>1.38384</td>
<td>1.38384</td>
</tr>
<tr>
<td>(7s3p)</td>
<td>1.38533</td>
<td>1.38560</td>
<td>1.38538</td>
<td>1.37892</td>
<td>1.37892</td>
<td>1.38538</td>
<td>1.38538</td>
</tr>
<tr>
<td>(8s3p)</td>
<td>1.15873</td>
<td>1.18060</td>
<td>1.17645</td>
<td>1.18279</td>
<td>1.18279</td>
<td>1.17645</td>
<td>1.17645</td>
</tr>
<tr>
<td>(9s3p)</td>
<td>1.15873</td>
<td>1.18060</td>
<td>1.17645</td>
<td>1.18279</td>
<td>1.18279</td>
<td>1.17645</td>
<td>1.17645</td>
</tr>
<tr>
<td>(10s3p)</td>
<td>1.15873</td>
<td>1.18060</td>
<td>1.17645</td>
<td>1.18279</td>
<td>1.18279</td>
<td>1.17645</td>
<td>1.17645</td>
</tr>
</tbody>
</table>

a present work: 129-level MCBP calculations.
b data taken from NIST.
c perturbation theory calculations of Santana et al. [209].
d MCHF theory calculations of Froese-Fischer et al. [198].

Fig. 4.15 shows my calculated Maxwellian-averaged DR rate coefficients for K6+ in both LS- and IC-coupling. The peak of the DR rate coefficient of Mewe et al. [85] is 8% higher than my DR rate coefficient performed in LS-coupling and is shifted to the lower electron temperatures by 3 eV. I reproduced their data for K6+ by using their fitting
Figure 4.15 Comparison of available DR rate coefficients for K^{6+}: (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) black circles curve, DR data from Landini and Fossi [89]; (d) blue dash-dotted curve, my DR data in LS-coupling; (e) red dash-dotted curve, my DR rate coefficient in IC-coupling; and (e) gray dashed curve, my RR rate coefficient. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

parameters in Table 4.1 and their Eq. (4.4). The DR rate coefficient of Landini and Fossi [89] is 25\% higher than my DR rate coefficient performed in LS-coupling. The DR data of Landini and Fossi [89] are reproduced by using the DR fitting parameters given in Table 4.2 and using Eq. (4.3). The parameters for the DR rate coefficients of Landini and Fossi [89] were obtained by extrapolating the work of Shull and Steenberg [86]. From Fig. 4.15, it is clear that the recommended DR rate coefficient of Mazzotta et al. [123] are taken from the extrapolation work of Landini and Fossi [89]. The DR rate coefficient peak at 0.2 eV is due to contributions form $3s3p^2n\ell$, $3s^23d\ell$, and $3s3p3d\ell$ series, that are omitted in the data
of Mewe et al. [85], Landini and Fossi [89], and Mazzotta et al. [123].

Figure 4.16 Maxwellian-averaged DR rate coefficients for Ca$^{7+}$: (a) black solid curve, DR from the empirical formula of Mewe et al. [85]; (b) black dashed curve, data of Jacobs et al. [190]; (c) blue solid curve, recommended DR data by Mazzotta et al. [123]; (d) black circles curve, recommended DR data of Shull and Steenberg [86]; (e) green solid curve, total rate coefficient (RR + DR) using R-matrix by Nahar [130]; (f) blue dash-dotted curve, my DR data using LS-coupling scheme; (g) and (h) red dash-dotted and gray dashed curves, my DR and RR data using IC-coupling (MCBP) scheme, respectively. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

Fig. 4.16, shows my calculated Maxwellian-averaged DR rate coefficients for Ca$^{7+}$ in both LS- and IC-coupling. The DR rate coefficient of Mewe et al. [85] is 2% higher than my DR rate coefficient performed in LS-coupling and is shifted to the lower electron temperatures by 2 eV. I reproduced their data for Ca$^{7+}$ by using their fitting parameters in Table 4.1 and their Eq. (4.4). The DR rate coefficients of Jacobs et al. [190] is 2% higher than my DR rate coefficient performed in LS-coupling. They took into account autoionization to
excited states of Ca\(^{7+}\) and stabilizing radiative transitions of the recombining electron. The DR rate coefficient of Shull and Steenberg [86] is based on a least square fitting for the work of Jacobs et al. [190]. The peak of the DR rate coefficient of Nahar [130] is 12% lower than my DR rate coefficient performed in \(LS\)-coupling. This rate coefficient was carried out in the close coupling approximation using the \(R\)-matrix method. As we can see from Fig. 4.16, the recommended DR rate coefficient of Mazzotta et al. [123] matches the work of Shull and Steenberg [86] for Ca\(^{7+}\). The peak at an electron temperature of 0.2 eV is due to contributions form \(3s^23p^{n\ell}, 3s3p^2n\ell, 3s^23dn\ell, 3p^3n\ell, \) and \(3s3p3dn\ell\) series, that are omitted in the data of Mewe et al. [85], Shull and Steenberg [86], and Mazzotta et al. [123].

Fig. 4.17 shows the Maxwellian-averaged DR rate coefficients performed in \(LS\)- and IC-coupling for Sc\(^{8+}\). The DR rate coefficient of Mewe et al. [85] is 5% higher than my DR rate coefficient performed in \(LS\)-coupling. I reproduced their data for Sc\(^{8+}\) by using their fitting parameters in Table 4.1 and their Eq. (4.4). The recommended DR rate coefficient of Mazzotta et al. [123] is 11% higher than my DR rate coefficient performed in \(LS\)-coupling. It is not clear how Mazzotta et al. [123] obtained their fitting coefficients. The peak of my DR rate coefficient performed in IC-coupling scheme is 10% lower than the one performed in \(LS\)-coupling. As seen from Fig. 4.17, the DR rate coefficients of Mewe et al. [85] and Mazzotta et al. [123] missed the contributions at electron temperatures below 1 eV. The main contributions to the DR rate coefficients at electron temperatures below 0.1 eV are due to the \(3s^23dn\ell\) series.

Fig. 4.18 shows the calculated Maxwellian-averaged DR rate coefficients for Ti\(^{9+}\) in
Figure 4.17 Comparison of available DR rate coefficients for Sc$^{8+}$: (a) black solid curve, DR from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) blue dash-dotted curve, my DR data in LS-coupling; (d) red dash-dotted curve, my DR data in IC-coupling; and (e) gray dashed curve, my RR data. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

Both LS- and IC-coupling schemes. The DR rate coefficient of Mewe et al. [85] for Ti$^{9+}$ was reproduced by using their fitting parameters in Table 4.1 and their Eq. (4.4). The recommended DR rate coefficient of Mazzotta et al. [123] matches the DR rate coefficient of Landini and Fossi [89]. The data of Landini and Fossi were obtained by extrapolating the work of Shull and Steenberg [86]. The main contributions to the DR rate coefficients for Ti$^{9+}$ below 1.0 eV are mainly due to the $3s3p3dn\ell$ and $3s3p^2n\ell$ series.

It is clear from my study for these Al-like ions that all previously existing work for this isoelectronic sequence are based on empirical formulas that differ by orders of magnitudes at the low-electron temperatures compared to my present results. In Sec. 4.4.4, The
comparison with the experimental measurements for Fe$^{13+}$ will be used as a check on my results.

4.4.4 Aluminum-Like Iron Peak Elements

In Table 4.9, comparisons between my lowest calculated energy levels for Al-like V$^{10+}$, Cr$^{11+}$, Mn$^{12+}$, and Fe$^{13+}$ ions with the data taken from NIST, the perturbation theory (MR-MP) calculations of Santana et al. [209], and the MCHF calculations of Froese-Fischer et al. [198]. The energy levels for the rest of the iron peak elements (Co$^{14+}$ and Ni$^{15+}$) are presented in Table 4.10. Very good agreement is obtained for all these ions.
Table 4.9 Comparisons of the lowest energy levels (in Rydbergs) for the Al-like V^{10+}, Cr^{11+}, Mn^{12+}, and Fe^{13+}.

<table>
<thead>
<tr>
<th></th>
<th>V^{10+}</th>
<th>Cr^{11+}</th>
<th>Mn^{12+}</th>
<th>Fe^{13+}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2s^{2}p</td>
<td>2s^{2}p</td>
<td>2s^{2}p</td>
<td>2s^{2}p</td>
</tr>
<tr>
<td>m</td>
<td>config.</td>
<td>2s^{2}p</td>
<td>config.</td>
<td>config.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3s^{2}p</td>
<td>2P_{1/2}</td>
<td>2P_{1/2}</td>
<td>2P_{1/2}</td>
</tr>
<tr>
<td></td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>2P_{3/2}</td>
<td>0.07718</td>
<td>0.08836</td>
<td>0.11174</td>
</tr>
<tr>
<td></td>
<td>0.08615</td>
<td>0.09943</td>
<td>0.11173</td>
<td>0.11714</td>
</tr>
<tr>
<td>3</td>
<td>3s^{3}p</td>
<td>4P_{1/2}</td>
<td>4P_{1/2}</td>
<td>4P_{1/2}</td>
</tr>
<tr>
<td></td>
<td>1.58928</td>
<td>1.60490</td>
<td>1.75051</td>
<td>1.75051</td>
</tr>
<tr>
<td>4</td>
<td>4P_{3/2}</td>
<td>1.61855</td>
<td>1.63881</td>
<td>1.62393</td>
</tr>
<tr>
<td></td>
<td>1.79428</td>
<td>1.79428</td>
<td>1.79428</td>
<td>1.79428</td>
</tr>
<tr>
<td>5</td>
<td>4P_{5/2}</td>
<td>1.66036</td>
<td>1.68577</td>
<td>1.85290</td>
</tr>
<tr>
<td></td>
<td>1.85290</td>
<td>1.85290</td>
<td>1.85290</td>
<td>1.85290</td>
</tr>
<tr>
<td>6</td>
<td>2D_{1/2}</td>
<td>2.12694</td>
<td>2.12300</td>
<td>2.11867</td>
</tr>
<tr>
<td></td>
<td>2.31828</td>
<td>2.31828</td>
<td>2.31828</td>
<td>2.31828</td>
</tr>
<tr>
<td>7</td>
<td>2D_{3/2}</td>
<td>2.13251</td>
<td>2.13034</td>
<td>2.12549</td>
</tr>
<tr>
<td></td>
<td>2.32682</td>
<td>2.32682</td>
<td>2.32682</td>
<td>2.32682</td>
</tr>
<tr>
<td>8</td>
<td>2S_{1/2}</td>
<td>2.62949</td>
<td>2.63278</td>
<td>2.64103</td>
</tr>
<tr>
<td></td>
<td>2.85964</td>
<td>2.85964</td>
<td>2.85964</td>
<td>2.85964</td>
</tr>
<tr>
<td>9</td>
<td>2P_{1/2}</td>
<td>2.80725</td>
<td>2.79578</td>
<td>3.03631</td>
</tr>
<tr>
<td></td>
<td>3.03631</td>
<td>3.03631</td>
<td>3.03631</td>
<td>3.03631</td>
</tr>
<tr>
<td>10</td>
<td>2P_{3/2}</td>
<td>2.85049</td>
<td>2.84215</td>
<td>3.09154</td>
</tr>
<tr>
<td></td>
<td>3.09154</td>
<td>3.09154</td>
<td>3.09154</td>
<td>3.09154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Present(^{a})</th>
<th>NIST(^{b})</th>
<th>MR-MP(^{c})</th>
<th>MCHF(^{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>0.12633</td>
<td>0.13938</td>
<td>0.13938</td>
<td>0.13786</td>
</tr>
<tr>
<td>3</td>
<td>1.87950</td>
<td>1.89955</td>
<td>1.89916</td>
<td>1.88426</td>
</tr>
<tr>
<td>4</td>
<td>1.92932</td>
<td>1.95509</td>
<td>1.95489</td>
<td>1.94027</td>
</tr>
<tr>
<td>5</td>
<td>1.99618</td>
<td>2.02723</td>
<td>2.02697</td>
<td>2.01083</td>
</tr>
<tr>
<td>6</td>
<td>2.52181</td>
<td>2.51963</td>
<td>2.51942</td>
<td>2.51679</td>
</tr>
<tr>
<td>7</td>
<td>2.53374</td>
<td>2.53422</td>
<td>2.53398</td>
<td>2.53072</td>
</tr>
<tr>
<td>8</td>
<td>2.53374</td>
<td>2.53422</td>
<td>2.53398</td>
<td>2.53072</td>
</tr>
<tr>
<td>9</td>
<td>3.00966</td>
<td>3.09020</td>
<td>3.09897</td>
<td>3.10028</td>
</tr>
<tr>
<td>10</td>
<td>3.30384</td>
<td>3.28409</td>
<td>3.28410</td>
<td>3.31132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Present(^{a})</th>
<th>NIST(^{b})</th>
<th>MR-MP(^{c})</th>
<th>MCHF(^{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>0.15824</td>
<td>0.17179</td>
<td>0.17179</td>
<td>0.17101</td>
</tr>
<tr>
<td>3</td>
<td>1.88426</td>
<td>2.05139</td>
<td>2.05139</td>
<td>2.03602</td>
</tr>
<tr>
<td>4</td>
<td>1.94027</td>
<td>2.12133</td>
<td>2.12133</td>
<td>2.10702</td>
</tr>
<tr>
<td>5</td>
<td>2.01083</td>
<td>2.20878</td>
<td>2.20878</td>
<td>2.19326</td>
</tr>
<tr>
<td>6</td>
<td>2.51679</td>
<td>2.72679</td>
<td>2.72679</td>
<td>2.72540</td>
</tr>
<tr>
<td>7</td>
<td>2.53072</td>
<td>2.74446</td>
<td>2.74446</td>
<td>2.74446</td>
</tr>
<tr>
<td>8</td>
<td>3.10028</td>
<td>3.33333</td>
<td>3.33333</td>
<td>3.33333</td>
</tr>
<tr>
<td>9</td>
<td>3.31132</td>
<td>3.54036</td>
<td>3.54036</td>
<td>3.56777</td>
</tr>
<tr>
<td>10</td>
<td>3.37826</td>
<td>3.61328</td>
<td>3.61328</td>
<td>3.64486</td>
</tr>
</tbody>
</table>

\(^{a}\) present work: 129-level MCBP calculations.

\(^{b}\) data taken from NIST.

\(^{c}\) perturbation theory calculations of Santana et al. [209].

\(^{d}\) MCHF theory calculations of Froese-Fischer et al. [198].

Fig. 4.19 shows my calculated Maxwellian-averaged DR rate coefficients in both LS- and IC-coupling for V^{10+}. The DR rate coefficient of Mewe et al. [85] for V^{10+} was reproduced by using their fitting parameters in Table 4.1 and their Eq. (4.4). The recommended DR data of Mazzotta et al. [123] are very close to Mewe et al. data [85]. Contributions to
Table 4.10 Comparisons of the lowest energy levels (in Rydbergs) for the Al-like Co$^{14+}$, Ni$^{15+}$, Cu$^{16+}$, and Zn$^{17+}$.

<table>
<thead>
<tr>
<th>m</th>
<th>config.</th>
<th>$2S+1L_J$</th>
<th>Presenta</th>
<th>NISTb</th>
<th>MR-MPc</th>
<th>$2S+1L_J$</th>
<th>Presenta</th>
<th>NISTb</th>
<th>MR-MPc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3s^23p$</td>
<td>$^2P_{1/2}^o$</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>$^2P_{1/2}^o$</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>$3s^23p$</td>
<td>$^2P_{3/2}^o$</td>
<td>0.19545</td>
<td>0.20940</td>
<td>0.20947</td>
<td>$^2P_{3/2}^o$</td>
<td>0.23841</td>
<td>0.25297</td>
<td>0.25296</td>
</tr>
<tr>
<td>3</td>
<td>$3s3p^2$</td>
<td>$^4P_{1/2}$</td>
<td>2.18019</td>
<td>2.20640</td>
<td>2.20612</td>
<td>$^4P_{1/2}$</td>
<td>2.33525</td>
<td>2.36464</td>
<td>2.36443</td>
</tr>
<tr>
<td>4</td>
<td>$3s3p^2$</td>
<td>$^4P_{3/2}$</td>
<td>2.26085</td>
<td>2.29365</td>
<td>2.29374</td>
<td>$^4P_{3/2}$</td>
<td>2.43607</td>
<td>2.47264</td>
<td>2.47288</td>
</tr>
<tr>
<td>5</td>
<td>$3s3p^2$</td>
<td>$^4P_{5/2}$</td>
<td>2.36111</td>
<td>2.39835</td>
<td>2.39840</td>
<td>$^4P_{5/2}$</td>
<td>2.55609</td>
<td>2.59665</td>
<td>2.59669</td>
</tr>
<tr>
<td>6</td>
<td>$2D_{3/2}$</td>
<td>2.93950</td>
<td>2.94089</td>
<td>2.94087</td>
<td>$^2D_{3/2}$</td>
<td>3.15876</td>
<td>3.16239</td>
<td>3.16237</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$2D_{5/2}$</td>
<td>2.96338</td>
<td>2.96882</td>
<td>2.96865</td>
<td>$^2D_{5/2}$</td>
<td>3.19169</td>
<td>3.20023</td>
<td>3.20006</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$2S_{1/2}$</td>
<td>3.58235</td>
<td>3.56173</td>
<td>3.56191</td>
<td>$^2S_{1/2}$</td>
<td>3.82840</td>
<td>3.80475</td>
<td>3.80492</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$2P_{1/2}$</td>
<td>3.82830</td>
<td>3.80652</td>
<td>3.80648</td>
<td>$^2P_{1/2}$</td>
<td>4.10504</td>
<td>4.08402</td>
<td>4.08393</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$2P_{3/2}$</td>
<td>3.91106</td>
<td>3.88773</td>
<td>3.88777</td>
<td>$^2P_{3/2}$</td>
<td>4.19641</td>
<td>4.17280</td>
<td>4.17269</td>
<td></td>
</tr>
</tbody>
</table>

a present work: 129-level MCBP calculations.
b data taken from NIST.
c perturbation theory calculations of Santana et al. [209].

the DR rate coefficients at the low electron temperatures below 1.0 eV mainly come from
the $3p^3nl$ and $3s3p^2nl$ series, that are omitted in the DR rate coefficients of Mewe et al.
Figure 4.19 Maxwellian-averaged rate coefficients for V^{10+}: (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) blue dash-dotted curve, my DR data in LS-coupling; (d) red dash-dotted curve, my DR data in IC-coupling; (e) green solid curve, contribution from the series 3p^3n\ell; and (f) gray dashed curve, my RR data. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

[85] and Mazzotta et al. [123].

The calculated Maxwellian-averaged DR rate coefficients in both LS- and IC-coupling for Cr^{11+} are shown in Fig. 4.20. The peak of the DR rate coefficient of Mewe et al. [85] is 23% lower than my DR rate coefficient performed in LS-coupling. The DR rate coefficient of Mewe et al. [85] for V^{10+} was reproduced by using their fitting parameters in Table 4.1 and their Eq. (4.4). The peak of the DR rate coefficient of Landini and Fossi [89] is 13% lower than my DR rate coefficient performed in LS-coupling. I reproduced the DR rate coefficient of Landini and Fossi [89] for Cr^{11+} by using their fitting coefficients in
Figure 4.20 Maxwellian-averaged rate coefficients for Cr^{11+}: (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) black circles, DR data from Landini and Fossi [89]; (d) blue dash-dotted curve, my DR data in LS-coupling; (e) red dash-dotted curve, my DR in IC-coupling; and (f) gray dashed curve, my RR data. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

Table 4.2. These fitting coefficients were derived by extrapolating the fitting work of Shull and Steenberg along the sequence [86]. As we can see from Fig. 4.20, the recommended DR rate coefficient of Mazzotta et al. [123] is identical to the DR rate coefficient of Landini and Fossi [89]. The little peak for the DR rate coefficient at 0.5 eV is due to the contribution of the $3s3p3dn\ell$ and $3p3n\ell$ series.

Fig. 4.21 shows my Maxwellian-averaged DR rate coefficients in both LS- and IC-coupling schemes for Mn^{12+}. The peak of the DR rate coefficient of Mewe et al. [85] is 26% lower than my DR rate coefficient performed in LS-coupling. The The DR rate
Figure 4.21 Comparison of available DR rate coefficients for Mn\(^{12+}\): (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) black circles, DR data from Landini and Fossi [89]; (d) blue dash-dotted curve, my DR data in \(LS\)-coupling; (e) red dash-dotted curve, my DR data in IC-coupling; and (f) gray dashed curve, my RR data. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

The DR rate coefficient of Mewe et al. [85] for Mn\(^{12+}\) was reproduced by using their fitting parameters in Table 4.1 and their Eq. (4.4). The peak of the DR rate coefficient of Landini and Fossi [89] is 16\% lower than my DR rate coefficient performed in \(LS\)-coupling. I reproduced the DR rate coefficient results of Landini and Fossi [89] by using their fitting coefficients in Table 4.2, which were derived by extrapolating the DR fitting work of Shull and Steenberg along the sequences [86]. The recommended DR rate coefficient of Mazzotta et al. [123] are identical to the DR rate coefficient of Landini and Fossi [89]. The DR rate coefficients of Mewe et al. [85], Landini and Fossi [89], and Mazzotta et al. [123] are missing contribu-
tions below 10 eV. Contributions at electron temperatures seen up to 1.0 eV are dominated by both series $3s^23dn\ell$ and $3s3p3dn\ell$. A comparison to the experimental results for Fe$^{13+}$ is made to confirm the inadequacy of these previously existing data.

![Diagram](image)

Figure 4.22 Comparisons of the DR rate coefficients with the TSR measured merged-beams electron-ion recombination rate coefficient (MBRRC) for Fe$^{13+}$ from intra-shell $\Delta n_c = 0$ transitions: blue solid curve, experimental measurements by Schmidt et al. [76]; red solid curve, my multi-configuration Breit-Pauli calculation (MCBP). The expected DR resonance positions are represented by vertical bars using the hydrogenic Rydberg formula.

Test Storage Ring (TSR) measurements of Schmidt et al. [76] for Fe$^{13+}$ do exist and a comparison with my calculated MCBP DR rate coefficient for $\Delta n_c = 0$ core excitations is shown in Fig. 4.22. A flattened Maxwellian was used to describe the electron cooler, characterized by a transverse temperature of $kT_\perp = 12$ meV and a longitudinal temperature of $kT_\parallel = 0.09$ meV, with respect to the ion beam direction in Eq. (2.78) [173]. There is poor
agreement between theory and experiment at low energies (0.05 - 0.36 eV), where the measured DR rate coefficient is higher by an order of magnitude (see Fig. 4.23). The resonances located at this energy range are members of the $3s^23p[^2P_{3/2}]n\ell$, $3s3p[^4P_{3/2}]9f$, $3s3p3d5g$, $3p^23d\ell$, and $3s3d^2n\ell$ series. Both DR rate coefficients drop at 2.34 eV, where autoionization to $3s^23p[^2P_{3/2}]$ becomes energetically available. Good agreement is obtained up to 20 eV, while disagreement at the energy range 23 – 29 eV is seen, where the measured rate is higher. Contributions to the DR rate coefficient at this energy range are coming from $3s \rightarrow 3p$ and $3p \rightarrow 3d$ core excitations. I think this may be due to correlations with higher n-values ($n = 4$, and 5) are required. The $3s \rightarrow 3p$ core excitations have series limits at 48.169 eV for $3s3p[^2P_{1/2}]n\ell$ and 49.61 for $3s3p[^2P_{3/2}]n\ell$, while the $3p \rightarrow 3d$ core excitations have limits of 58.672 eV for $3s^23d[^2D_{3/2}]n\ell$. Better agreement is obtained at higher
energies, where a hard cut-off at $n_{\text{cut}} = 95$ was used. The time of flight of $T_f = 166.5$ ns was used in Eqs. (2.80) and (2.81) for the recombined series including up to $\ell = 8$, where the recombined states can re-ionize while they are traveling from the electron cooler to the charge-state analyzer by the motional electric field induced in the magnetic elements as in Eq. (2.80). Overall, reasonable agreement is obtained except at the low energies below 0.35 eV.

Figure 4.24 Maxwellian-averaged DR and RR rate coefficients for Fe$^{13+}$: blue dashed curve, Maxwellian-average DR rate coefficient for the experimental measurements of Schmidt et al. [76]; black dotted curve, DR calculations of Badnell [104]; red solid curve, my DR rate coefficient in IC-coupling; pink dashed curve, DR data of Jacobs et al. [191]; black circles, DR data fitting of Shull and Steenberg [86]; black solid curve, DR data from the empirical formula of Mewe et al. [85]; blue solid curve, recommended DR data by Mazzotta et al. [123]; green solid curve, total rate coefficient (RR + DR) using R-matrix by Nahar [130]; and gray dashed curve, my RR data. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

Fig. 4.24 shows a comparison between my calculated Maxwellian-averaged DR rate
coefficients in both LS- and IC-coupling and other available data for Fe$^{13+}$. The peak of the DR rate coefficient of Mewe et al. [85] is 23\% lower than my DR rate coefficient performed in IC-coupling. The DR rate coefficient of Mewe et al. [85] for Fe$^{13+}$ was reproduced by using their fitting parameters in Table 4.1 and their Eq. (4.4). The peak of the DR rate coefficients of Shull and Steenberg [86] are 11\% lower than my DR rate coefficient performed in IC-coupling. This rate coefficient is reproduced by using the DR fitting parameters in Table 4.2 and using Eq. (4.3) and is based on the calculations of Jacobs et al. [191]. The recommended DR rate coefficient of Mazzotta et al. [123] is matching the rate coefficient of Shull and Steenberg [86], especially after 11 eV. The total rate coefficient (RR + DR) of Nahar [130] is obtained by using R-matrix method and is three times lower than my DR rate coefficient performed in IC-coupling. The DR rate coefficient of Badnell [104] is higher at high-electron temperatures since it includes the contributions from $\Delta n_c = 1$ ($n = 2 \rightarrow n = 3$ and $n = 3 \rightarrow n = 4$) core transitions.

Fig. 4.25 shows my Maxwellian-averaged rate coefficients for Co$^{14+}$ in both LS- and IC-coupling. The peak of the DR rate coefficient of Mewe et al. [85] is 28\% lower than my DR rate coefficient performed in IC-coupling. The DR rate coefficient of Mewe et al. [85] for Co$^{14+}$ was reproduced by using their fitting parameters in Table 4.1 and their Eq. (4.4). The peak of the DR rate coefficient of Landini and Fossi is 19\% lower than my DR rate coefficient performed in IC-coupling. The DR rate coefficient of Landini and Fossi was reproduced by using their DR fitting parameters in Table 4.2 and using Eq. (4.3). They obtained these parameters by extrapolating the work of Shull and Steenberg [86]. The fitting work of Shull and Steenberg [86] is based on the work of Aldrovandi and
Figure 4.25 Maxwellian-averaged rate coefficients for Co$^{14+}$: (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) black circles, DR data from Landini and Fossi [89]; (d) blue dash-dotted curve, my DR data in LS-coupling; (e) red dash-dotted curve, my DR data in IC-coupling; (f) green solid curve, contribution from the $3s3p3dn\ell$ series; and (g) gray dashed curve, my RR data. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

Péquignot [84], Jacobs et al. [127, 189, 190, 191]. The DR rate coefficient for Co$^{14+}$ at the low electron temperatures below 1.0 eV is mainly due to the contribution of the $3s3p3dn\ell$ series.

The calculated Maxwellian-averaged DR rate coefficients for Ni$^{15+}$ in both LS- and IC-coupling are shown in Fig. 4.26. The peak of the DR rate coefficient of Mewe et al. [85] is 26% lower than my DR rate coefficient performed in IC-coupling. The DR rate coefficient of Mewe et al. [85] for Ni$^{14+}$ was reproduced by using their fitting parameters in Table 4.1 and their Eq. (4.4). The peak of the DR rate coefficient of Shull and Steenberg [86] is
Figure 4.26 Maxwellian-averaged DR rate coefficients for Ni$^{15+}$: (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue solid curve, recommended DR data by Mazzotta et al. [123]; (c) black circles, DR data of Shull and Steenberg [86]; (d) pink dashed curve, DR data of Jacobs et al. [190]; (e) blue dash-dotted curve, my DR data in LS-coupling; (f) red dash-dotted curve, my DR data in IC-coupling; and (g) green solid curve, contribution from the 3$s^23pn\ell$ series; (h) gray dashed curve, my RR data. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

is 15% lower than my DR rate coefficient performed in IC-coupling. I reproduced the DR rate coefficient of Shull and Steenberg [86] from their DR parameters in Table 4.2 and by using Eq. (4.3). Their fitting work is based on Jacobs et al. [190], which is 30% lower than my DR rate coefficient performed in IC-coupling. The recommended DR rate coefficient of Mazzotta et al. [123] matches the rate coefficient of Shull and Steenberg [86]. The DR rate coefficient for Ni$^{15+}$ at the low electron temperatures below 0.1 eV comes from the contribution of the 3$s^23pn\ell$ series. The DR rate coefficient peak at 1 eV is due to contributions from 3$s3p^2n\ell$, 3$s^23dn\ell$, and 3$s3p3dn\ell$ series.
In Fig. 4.27, I present the calculated total Maxwellian-averaged DR rate coefficients ($\Delta n_c = 0$ and $\Delta n_c = 1$ core excitations) for iron peak elements. For the collisionally ionized electron temperature ranges, the total DR rate coefficients increase as the ionic charge q increases, while there is no systematic trend for the DR rate coefficients at the low-electron temperatures. Thus, extrapolations or interpolations are not recommended through the Al-like isoelectronic sequence and systematic calculations are required.

4.4.5 Aluminum-Like Copper and Zinc

In Table 4.10, comparisons between my lowest energy levels for Al-like Cu$^{16+}$ and Zn$^{17+}$ ions for $\Delta n_c = 0$ core excitations and the data taken from NIST, the perturba-
tion theory calculations (MR-MP) of Santana et al. [209], and the MCHF calculations of Froese-Fischer et al. [198], where very good agreement is obtained.

![Figure 4.28](image)

Figure 4.28 Maxwellian-averaged DR and RR rate coefficients for Cu$^{16+}$: (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue circles, DR data from Mazzitelli and Mattioli [192]; (c) blue dash-dotted curve, my DR data in LS-coupling; (d) red dash-dotted curve, my DR data in IC-coupling; and (e) gray dashed curve, my RR data . The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

My calculated Maxwellian-averaged DR rate coefficients for Al-like Cu$^{16+}$ and Zn$^{17+}$ ions are presented in Fig. 4.28 and Fig. 4.29, respectively. The DR rate coefficients of Mewe et al. were obtained by using their empirical formula in Eq. (4.4) and their fitting coefficients in Table 4.1 [85]. The DR rate coefficients of Mazzitelli and Mattioli were obtained by using their DR fitting coefficients in Table 4.3. Their DR rate coefficients were obtained by extrapolations through the isoelectronic sequences beyond Ni ions.

105
Figure 4.29 Maxwellian-averaged DR and RR rate coefficients for Zn\(^{17+}\): (a) black solid curve, DR data from the empirical formula of Mewe et al. [85]; (b) blue circles, DR data from Mazzitelli and Mattioli [192]; (c) blue dash-dotted curve, my DR data in LS-coupling; (d) red dash-dotted curve, my DR data in IC-coupling; and (e) gray dashed curve, my RR data. The collisionally ionized zone is as recommended by Bryans et al. [204]. The photoionized zone is taken from Ref. [205].

The total DR rate coefficients \(\Delta n_c = 0\) and \(\Delta n_c = 1\) for the entire Al-like isoelectronic sequence are fitted using Eq. (4.6), with \(E_i\) and \(T\) are in units of K, and \(\alpha^{DR}\) is in units of \(\text{cm}^3\ \text{s}^{-1}\). These fits are accurate to better than 5\% for all the Al-like isoelectronic sequence in the electron temperature range \(q^2(10 - 10^7)\) K, where \(q\) is the charge of the recombing ion. The accuracy is better than 1\% over the collisionally ionized range. In Table 4.11, the total DR rate fitting coefficients for the Al-like isoelectronic sequence forming the Si-like ions are presented.

In Fig. 4.30, an overview of the total ground state RR rate coefficients for the Al-
like isoelectronic sequence are shown. At low charges (Si$^+$), the characteristic high-temperature bump is seen due to the highly non-hydrogenic screening of the wave functions for low-$n\ell$ states, in low-charge many-electron ions, which dominate the recombination at high temperatures. Table 4.12 presents the RR fitting coefficients for the initial ground and metastable states ($m = 1$ to $m = 5$), where $m = 1$ is the ground state of the Al-like ions ($3s^23p^2[2P_{1/2}]$) and $m = 2$ is the first excited state ($3s^23p^2[2P_{3/2}]$) and so on as can be figured out from Table 4.7.

The DR study of the Al-like isoelectronic sequence is closed with the following conclusions. Previous DR data were obtained either by using empirical formulas or were performed in a non-relativistic LS-coupling framework. The commonly used database of Mazzotta et al. [123] was generated by fitting these previous data, but it was not clear from
which sources they obtained their data [123]. Through this study, these sources were identified for most of the Al-like isoelectronic sequence. My results for S^{3+}, agreed very well with the previously existing results of Badnell [128]. A further study of the DR rate coefficients for S^{3+} in IC-coupling stressed the importance of the fine structure effects on the DR study. The DR rate coefficient performed in IC-coupling was higher than the DR rate coefficient performed in LS-coupling at low-electron temperatures due to the fine structure series that can autoionize to the ground state of S^{3+}, which does not exist in a non-relativistic LS treatment. On the other hand, for higher-electron temperatures, the DR rate coefficient obtained in IC-coupling was lower due to the doubly-excited states that can radiatively decay to autoionizing states for $n \geq 36$. Thus IC-coupling calculations are required for this isoelectronic sequence. My work on S^{3+} was published by Abdel-Naby et al. [207].

Calculations for the DR rate coefficient have been carried out for the entire Al-like isoelectronic sequence in both LS- and IC-coupling. Comparisons of my present DR rate coefficients in IC-coupling versus the existing LS-results or the DR rates of Mazzotta et al. [123] were found to differ by orders of magnitudes at the low-electron temperatures since they did not include the fine structure splitting. This was confirmed by a comparison to the measurements from the Heidelberg heavy-ion Test Storage Ring facility of Schmidt et al. [76], where my DR rate coefficient at low-electron temperatures is comparable to the experimental results. The DR and RR rate coefficients were then fitted with simple formulas for efficient dissemination of data and ease of use in plasma modeling codes. These results for the Al-like sequence are in preparation for publications [210].
Table 4.11 Fitting coefficients \(c_i \) and \(E_i \) for Eq. (4.6) for the total DR rate coefficients of the ground Al-like isoelectronic sequence forming the Si-like ions. All coefficients refer to my IC-coupling calculations. \(X(Y) \) means \(X \times 10^Y \).

<table>
<thead>
<tr>
<th>ion</th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(c_4)</th>
<th>(c_5)</th>
<th>(c_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(^+)</td>
<td>3.463(-08)</td>
<td>1.934(-07)</td>
<td>1.652(-07)</td>
<td>6.273(-06)</td>
<td>5.465(-05)</td>
<td>4.103(-03)</td>
</tr>
<tr>
<td>P(^2+)</td>
<td>1.399(-07)</td>
<td>1.809(-06)</td>
<td>2.659(-06)</td>
<td>1.362(-05)</td>
<td>4.795(-04)</td>
<td>1.202(-02)</td>
</tr>
<tr>
<td>S(^3+)</td>
<td>5.817(-07)</td>
<td>1.391(-06)</td>
<td>1.123(-05)</td>
<td>1.521(-04)</td>
<td>1.875(-03)</td>
<td>2.097(-02)</td>
</tr>
<tr>
<td>Cl(^4+)</td>
<td>1.399(-06)</td>
<td>1.371(-05)</td>
<td>1.215(-04)</td>
<td>1.183(-03)</td>
<td>4.048(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Ar(^5+)</td>
<td>1.136(-05)</td>
<td>1.302(-04)</td>
<td>8.017(-04)</td>
<td>4.318(-02)</td>
<td>7.582(-03)</td>
<td>7.582(-03)</td>
</tr>
<tr>
<td>K(^6+)</td>
<td>2.674(-04)</td>
<td>4.405(-04)</td>
<td>2.397(-03)</td>
<td>6.775(-02)</td>
<td>4.313(-03)</td>
<td>4.313(-03)</td>
</tr>
<tr>
<td>Ca(^7+)</td>
<td>2.978(-04)</td>
<td>7.585(-04)</td>
<td>5.973(-03)</td>
<td>8.950(-02)</td>
<td>2.076(-03)</td>
<td>2.078(-03)</td>
</tr>
<tr>
<td>Sc(^8+)</td>
<td>2.469(-04)</td>
<td>1.117(-03)</td>
<td>4.082(-03)</td>
<td>6.200(-02)</td>
<td>5.721(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Ti(^9+)</td>
<td>3.790(-04)</td>
<td>1.098(-03)</td>
<td>7.060(-03)</td>
<td>9.302(-02)</td>
<td>5.030(-02)</td>
<td>···</td>
</tr>
<tr>
<td>V(^{10+})</td>
<td>1.890(-03)</td>
<td>4.228(-03)</td>
<td>9.756(-03)</td>
<td>1.225(-01)</td>
<td>4.594(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Cr(^{11+})</td>
<td>5.673(-04)</td>
<td>4.535(-03)</td>
<td>1.811(-02)</td>
<td>1.522(-01)</td>
<td>4.117(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Mn(^{12+})</td>
<td>3.619(-03)</td>
<td>8.488(-03)</td>
<td>2.212(-02)</td>
<td>1.824(-01)</td>
<td>3.920(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Fe(^{13+})</td>
<td>2.305(-03)</td>
<td>1.072(-02)</td>
<td>3.512(-02)</td>
<td>2.105(-01)</td>
<td>3.622(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Co(^{14+})</td>
<td>2.468(-03)</td>
<td>1.431(-02)</td>
<td>4.235(-02)</td>
<td>2.450(-01)</td>
<td>4.216(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Ni(^{15+})</td>
<td>1.625(-03)</td>
<td>1.378(-02)</td>
<td>3.737(-02)</td>
<td>3.721(-01)</td>
<td>4.986(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Cu(^{16+})</td>
<td>7.414(-03)</td>
<td>1.566(-02)</td>
<td>7.305(-02)</td>
<td>3.055(-01)</td>
<td>4.986(-02)</td>
<td>···</td>
</tr>
<tr>
<td>Zn(^{17+})</td>
<td>5.463(-03)</td>
<td>2.664(-02)</td>
<td>8.918(-02)</td>
<td>3.348(-01)</td>
<td>6.397(-02)</td>
<td>···</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ion</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
<th>(E_5)</th>
<th>(E_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(^+)</td>
<td>2.411(+01)</td>
<td>1.289(+02)</td>
<td>4.201(+02)</td>
<td>1.099(+04)</td>
<td>5.042(+04)</td>
<td>1.291(+05)</td>
</tr>
<tr>
<td>P(^2+)</td>
<td>1.997(+02)</td>
<td>5.684(+02)</td>
<td>2.420(+03)</td>
<td>1.511(+04)</td>
<td>7.690(+04)</td>
<td>1.606(+05)</td>
</tr>
<tr>
<td>S(^3+)</td>
<td>3.628(+02)</td>
<td>1.058(+03)</td>
<td>7.160(+03)</td>
<td>3.260(+04)</td>
<td>1.235(+05)</td>
<td>2.070(+05)</td>
</tr>
<tr>
<td>Cl(^4+)</td>
<td>5.776(+02)</td>
<td>2.707(+03)</td>
<td>1.065(+04)</td>
<td>6.346(+04)</td>
<td>2.407(+05)</td>
<td>···</td>
</tr>
<tr>
<td>Ar(^5+)</td>
<td>7.953(+02)</td>
<td>7.596(+03)</td>
<td>3.505(+04)</td>
<td>2.299(+05)</td>
<td>4.576(+05)</td>
<td>4.576(+05)</td>
</tr>
<tr>
<td>K(^6+)</td>
<td>2.667(+03)</td>
<td>8.588(+03)</td>
<td>5.812(+04)</td>
<td>2.807(+05)</td>
<td>6.088(+05)</td>
<td>6.088(+05)</td>
</tr>
<tr>
<td>Ca(^7+)</td>
<td>3.540(+03)</td>
<td>1.530(+04)</td>
<td>7.536(+04)</td>
<td>3.313(+05)</td>
<td>8.562(+05)</td>
<td>8.562(+05)</td>
</tr>
<tr>
<td>Sc(^8+)</td>
<td>6.596(+02)</td>
<td>6.965(+03)</td>
<td>4.220(+04)</td>
<td>2.481(+05)</td>
<td>5.378(+05)</td>
<td>···</td>
</tr>
<tr>
<td>Ti(^9+)</td>
<td>8.123(+02)</td>
<td>8.315(+03)</td>
<td>4.990(+04)</td>
<td>3.000(+05)</td>
<td>6.558(+05)</td>
<td>···</td>
</tr>
<tr>
<td>V(^{10+})</td>
<td>1.324(+03)</td>
<td>9.205(+03)</td>
<td>6.872(+04)</td>
<td>3.450(+05)</td>
<td>8.177(+05)</td>
<td>···</td>
</tr>
<tr>
<td>Cr(^{11+})</td>
<td>3.088(+03)</td>
<td>1.472(+04)</td>
<td>7.630(+04)</td>
<td>3.956(+05)</td>
<td>9.864(+05)</td>
<td>···</td>
</tr>
<tr>
<td>Mn(^{12+})</td>
<td>2.073(+03)</td>
<td>1.548(+04)</td>
<td>9.187(+04)</td>
<td>4.434(+05)</td>
<td>1.265(+06)</td>
<td>···</td>
</tr>
<tr>
<td>Fe(^{13+})</td>
<td>4.747(+03)</td>
<td>1.877(+04)</td>
<td>1.190(+05)</td>
<td>5.090(+05)</td>
<td>1.595(+06)</td>
<td>···</td>
</tr>
<tr>
<td>Co(^{14+})</td>
<td>5.617(+03)</td>
<td>2.330(+04)</td>
<td>1.259(+05)</td>
<td>5.619(+05)</td>
<td>1.982(+06)</td>
<td>···</td>
</tr>
<tr>
<td>Ni(^{15+})</td>
<td>8.084(+03)</td>
<td>3.157(+04)</td>
<td>1.497(+05)</td>
<td>6.139(+05)</td>
<td>2.428(+06)</td>
<td>···</td>
</tr>
<tr>
<td>Cu(^{16+})</td>
<td>2.345(+03)</td>
<td>2.556(+04)</td>
<td>1.636(+05)</td>
<td>6.788(+05)</td>
<td>2.789(+06)</td>
<td>···</td>
</tr>
<tr>
<td>Zn(^{17+})</td>
<td>3.634(+03)</td>
<td>3.351(+04)</td>
<td>1.835(+05)</td>
<td>7.410(+05)</td>
<td>3.102(+06)</td>
<td>···</td>
</tr>
<tr>
<td>ion</td>
<td>m</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Si+</td>
<td>1</td>
<td>3.501(-11)</td>
<td>0.6344</td>
<td>1.410(+1)</td>
<td>4.437(+3)</td>
<td>0.2248</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.985(-13)</td>
<td>0.2581</td>
<td>1.089(+4)</td>
<td>1.729(+7)</td>
<td>0.8233</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.152(-11)</td>
<td>0.5145</td>
<td>1.582(+6)</td>
<td>1.536(+9)</td>
<td>0.3331</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.154(-11)</td>
<td>0.9643</td>
<td>1.546(+9)</td>
<td>1.552(+11)</td>
<td>0.3316</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9.599(-14)</td>
<td>0.0012</td>
<td>6.859(+4)</td>
<td>8.113(+6)</td>
<td>1.6295</td>
</tr>
</tbody>
</table>

V**+	1	1.348(-10)	0.6342	1.410(+1)	2.213(+7)	0.1784	4.492(+4)
	2	1.249(-12)	0.0601	2.933(+4)	1.141(+7)	0.9362	2.880(+4)
	3	2.368(-11)	1.0332	3.767(+6)	1.027(+9)	0.1323	1.864(+4)
	4	2.363(-11)	1.0331	3.739(+6)	1.025(+9)	0.1325	1.864(+4)
	5	2.600(-10)	1.0270	5.518(+2)	1.346(+7)	0.0843	1.895(+4)

Fe**+	1	3.803(-11)	0.4213	3.724(+3)	2.757(+7)	0.4922	2.848(+3)
	2	1.862(-11)	0.6051	3.949(+5)	2.362(+7)	0.4213	2.848(+3)
	3	2.154(-11)	0.9634	1.546(+4)	3.516(+7)	0.3316	2.972(+5)
	4	2.154(-11)	0.9643	1.546(+4)	3.516(+7)	0.3316	2.972(+5)
	5	9.599(-14)	0.0012	6.859(+4)	8.113(+6)	1.6295	9.307(+4)

Cu**+	1	2.664(-10)	0.6896	2.107(+1)	2.028(+7)	0.0840	6.752(+4)
	2	2.037(-12)	0.0000	8.032(+4)	2.377(+7)	0.6629	4.283(+4)
	3	3.990(-11)	1.0288	2.885(+1)	9.662(+6)	0.0760	2.067(+4)
	4	3.990(-11)	1.0288	2.885(+1)	9.662(+6)	0.0760	2.067(+4)
	5	2.055(-10)	1.0125	1.989(+2)	1.294(+7)	0.0738	1.793(+4)

Table 4.12 RR fitting coefficients for the metastable initial levels (m = 1 – 5) for Al-like ions using Eq. (4.7). X(Y) means X × 10^Y.
CHAPTER V

K-SHELL PHOTOABSORPTION FOR MAGNESIUM IONS

5.1 Introduction

There is a demand for accurate data for inner shell processes such as excitation and ionization, especially after the huge advances in the spectral resolutions of the launched X-ray telescopes. Such data are used for modeling astrophysical plasmas, interpreting the observed spectra from distant cosmic emitters, and determining the elemental abundances of the interstellar medium (ISM). Spectra of K-shell processes were observed from all ionic stages of the most abundant elements between oxygen and nickel [211]. An interesting study of K-shell photoionization and electron impact excitations of Fe\(^{16+}\) - Fe\(^{22+}\) has been carried out by Bautista et al. [212], followed by photoionization cross section calculations for the lower ionic stages of iron ions [213]. A series of successful K-shell photoabsorption calculations were carried out at Western Michigan University (WMU) for argon [138], oxygen [135], and neon [133]. These calculations were also used as an application to Chandra high-resolution spectroscopic observations for oxygen ions [134, 136] and neon ions [132]. Recently, I have been involved in the calculations for the K-shell photoabsorption for carbon ions [137].

I extend the efforts for the K-shell photoabsorption studies to magnesium ions. While I was performing these calculations, in late 2009 Witthoeft et al. [140] presented K-shell photoionization and photoabsorption calculations for Mg\(^{2+}\) - Mg\(^{9+}\) using the Breit-Pauli \(R\)-matrix method (BPRM). Thus, comparisons between these two results for multiply ion-
ized Mg$^{6+}$, Mg$^{3+}$, and Mg$^{2+}$ ionic stages will be presented and I conclude my study by presenting a further calculation for neutral magnesium.

The rest of this Chapter is organized as follows. In Sec. 5.2, the methodology for calculating the K-shell photoabsorption cross sections is presented, while in Sec. 5.3 the results for Mg ions are discussed.

5.2 Methodology

The K-shell photo-excitation of the ground states of Mg ions up to Ne-like (Mg$^{2+}$ - Mg$^{9+}$) can be represented as initial $1s \rightarrow np$ photoabsorption,

$$h\nu + 1s^22\ell^w \rightarrow 1s2\ell^w np,$$

followed by two competing decay routes. The first one is called *participator* Auger decay which can be represented as

$$1s2\ell^w np \rightarrow 1s^22\ell^{w-1} + e^-,$$

where the valence electron np participates in the autoionization process with a decay rate that scales as $1/n^3$ and goes to zero near the K-shell threshold. These channels are included in the R-matrix calculations. The second route is the *spectator* Auger decay which can be represented as

$$1s2\ell^w np \rightarrow 1s^22\ell^{w-2} np + e^-,$$

where the valence electron np does not participate in the autoionization process, giving instead a decay width that is independent of n. Therefore, it is the dominant decay route.
as \(n \to \infty \) and gives a smooth cross section as the K-shell threshold is approached; above each threshold, K-shell photoionization to the \(1s2\ell^w \) states occurs instead.

The important spectator Auger broadening are accounted for via an optical potential approach [138]. The target energy for each closed channel \(1s2\ell^wnp \) is modified within a multi-channel quantum defect theory (MQDT) approach as

\[
E_{1s2\ell^w} \to E_{1s2\ell^w} - i\frac{\Gamma_{1s2\ell^w}}{2},
\]

where \(\Gamma_{1s2\ell^w} \) is the \(1s2\ell^w \to 1s^22\ell^w-2 + e^- \) Auger width. This enhanced \(R \)-matrix method was shown to be successful in describing experimental synchrotron measurements for argon [138], oxygen [135], and neon [133]. We compute the \(1s2\ell^w \) Auger widths by applying the Smith time-delay method [181] to the photoabsorption \(R \)-matrix calculation of the neighboring \(1s^22\ell^w-1 \) magnesium ion (see Sec. 2.7.1). Since \(1s \to 2p \) photoabsorption of the \(1s^22\ell^w-1 \) ion gives an intermediate \(1s2\ell^w \) resonance, the subsequent Auger decay to the \(1s^22\ell^w-2 + e^- \) channel can be analyzed to obtain the Auger width.

It is also important to obtain accurate target wave functions using a single orthogonal orbital basis, and this is problematic since orbital relaxation occurs when the \(1s^22\ell^w-1 \) states are excited to the \(1s2\ell^w \) K-shell-vacancy states (the \(2\ell \) electrons are now only screened by one, not two, \(1s \) electrons). We account for orbital relaxation by using additional pseudo-orbitals as follows. A basis of physical \(1s, 2s, \) and \(2p \) orbitals is first constructed by performing Hartree-Fock (HF) [159] calculations for the \(1s^22\ell^w-1 \) ground states. Then a multiconfiguration Hartree-Fock calculation (MCHF) [160] is performed for the lowest \(1s2\ell^w \) K-shell-excited states, including all configurations obtained from single and double promo-
tions to the \(n = 3 \) shell, to obtain \(3s, 3p, \) and \(3d \) pseudo-orbitals. All target states are then described by a configuration-interaction (CI) expansion using all configurations consistent with single and double promotions out of the \(1s^22\ell^{w-1} \) and \(1s2\ell^{w} \) states, using the six \(1s, 2s, 2p, 3s, 3p, \) and \(3d \) orbitals.

5.3 K-Shell Photoabsorption Results

5.3.1 K-Shell Photoabsorption for Mg\(^{6+}\)

The inner-shell photoexcitation of the ground state of Mg\(^{6+}\) is obtained as follows.

\[
h\nu + 1s^22s^22p^2[3P] \rightarrow 1s2s^22p^2[4P, 2D, 2P, 2S]np[3D, 3P, 3S]^\circ. \tag{5.5}
\]

The participator and spectator Auger transitions are obtained as follows:

\[
\begin{align*}
1s2s^22p^2np \\
\text{participator Auger } &\quad \text{spectator Auger} \\
1s^22s2p + e^- &\quad \rightarrow 1s^22snp + e^- \\
1s^22s2p^2 + e^- &\quad \rightarrow 1s^22s2np + e^- \\
1s^22p^3 + e^- &\quad \rightarrow 1s^22p^2np + e^-.
\end{align*}
\]

The physical \(1s, 2s, \) and \(2p \) orbitals are first generated by performing a Hartree-Fock (HF) [159] calculation for the ground state of Mg\(^{7+}\) \((1s^22s^22p[2P]) \). Then, a multiconfiguration Hartree-Fock (MCHF) [160] calculation is performed for the \(1s2s^22p^2[4P] \) K-shell excited state. Single and double promotions to the \(n = 3 \) shell to obtain the \(3s, 3p, \) and \(3d \) pseudo-orbitals account for orbital relaxation effects due to the \(1s \)-vacancy. A summary for the optimization procedure is presented in Table 5.1.
Table 5.1 Methodology of determining the physical $1s$, $2s$, and $2p$ orbitals and correlation (or pseudo) $3s$, $3p$, and $3d$ orbitals for Mg$^{7+}$.

<table>
<thead>
<tr>
<th>$1s$, $2s$, and $2p$</th>
<th>From a HF (single-configuration) calculation for the $1s^22s^22p^2[^2P]$ term.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3s$, $3p$, and $3d$</td>
<td>From a MCHF (multiconfiguration) calculation for the lowest K-shell vacancy $1s2s^22p^2[^4P]$ term including single and double $n = 1 \rightarrow n = 3$ promotions.</td>
</tr>
</tbody>
</table>

![Graph of K-shell photoabsorption cross section for Mg$^{6+}$](image)

Figure 5.1 Comparisons of my calculated K-shell photoabsorption cross section for Mg$^{6+}$, the results of Witthoeft et al. [140] obtained by using the Breit Pauli R-matrix method (BPRM), and the photoionization results of Verner et al. [214].

In Table 5.2, a comparison of my R-matrix results of the target energies with the results obtained from another theoretical MCBP calculations using AUTOSTRUCTURE, and the available data taken from NIST for Mg$^{6+}$ and Mg$^{7+}$, respectively. Overall, good agreement between these results is obtained.

In Table 5.3, the calculated Auger widths of the lowest 17 autoionizing Mg$^{7+}$ target...
states (in eV) using R-matrix calculations [181] are presented. Comparisons with the results obtained by using the MCBP method of AUTOSTRUCTURE [32, 186] and the avail-
In Fig. 5.1, the results for the K-shell photoabsorption cross section for Mg$^{6+}$ versus the incident photon energy are presented. Also, my results are compared to the results obtained by Witthoeft et al. [140] using the Breit Pauli R-matrix (BPRM) method. Overall, good agreement is obtained and they align very well with the background of the photoionization results of Verner et al. [214].

Fig. 5.2 shows the photon energy range from 1270 to 1310 eV where the lowest $1s \rightarrow np$ photoexcitation is obtained from the $1s^22s^22p^2[3P]$ ground state of Mg$^{6+}$ which can form the $1s2s^22p^2np[^3D, ^3S, ^3P]$ photoexcited states for $n = 2$. The energy positions for 3D, 3S, and 3P are located at 1286.57, 1289.66, and 1290.63 eV, respectively, while the corresponding energy positions of Witthoeft et al. [140] obtained by using the BPRM are

![Graph showing photoabsorption cross section](image)

Figure 5.2 Same as Fig. 5.1, but for the photon energy range 1270 – 1310 eV.

... able data of Palmeri et al. [215] show good agreement.
Table 5.3 Comparison of Auger widths (in eV) for the 17Mg$^{7+}$ autoionizing target states above the K-shell threshold.

<table>
<thead>
<tr>
<th>State</th>
<th>Auger width (eV)</th>
<th>Presenta</th>
<th>AUTOb</th>
<th>OTHERc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1s2s22p2 (4P)</td>
<td>0.11884</td>
<td>0.12341</td>
<td>0.106303</td>
</tr>
<tr>
<td>2</td>
<td>1s2s22p2 (2D)</td>
<td>0.17731</td>
<td>0.17741</td>
<td>0.167321</td>
</tr>
<tr>
<td>3</td>
<td>1s2s22p2 (2P)</td>
<td>0.07672</td>
<td>0.07139</td>
<td>0.062575</td>
</tr>
<tr>
<td>4</td>
<td>1s2s22p2 (2S)</td>
<td>0.15615</td>
<td>0.15202</td>
<td>0.136252</td>
</tr>
<tr>
<td>5</td>
<td>1s2s(3S)2p3 (4D)</td>
<td>0.11374</td>
<td>0.11462</td>
<td>0.118480</td>
</tr>
<tr>
<td>6</td>
<td>1s2s(1S)2p3 (4S)</td>
<td>0.02820</td>
<td>0.01962</td>
<td>0.009413</td>
</tr>
<tr>
<td>7</td>
<td>1s2s(3S)2p3 (4P)</td>
<td>0.08735</td>
<td>0.08698</td>
<td>0.090177</td>
</tr>
<tr>
<td>8</td>
<td>1s2s(1S)2p3 (2D)</td>
<td>0.15325</td>
<td>0.15515</td>
<td>0.144809</td>
</tr>
<tr>
<td>9</td>
<td>1s2s(3S)2p3 (4S)</td>
<td>0.10399</td>
<td>0.11340</td>
<td>0.094784</td>
</tr>
<tr>
<td>10</td>
<td>1s2s(1S)2p3 (2P)</td>
<td>0.12862</td>
<td>0.12420</td>
<td>0.114970</td>
</tr>
<tr>
<td>11</td>
<td>1s2s(3S)2p3 (2D)</td>
<td>0.18078</td>
<td>0.19156</td>
<td>0.177194</td>
</tr>
<tr>
<td>12</td>
<td>1s2s(3S)2p3 (2P)</td>
<td>0.15542</td>
<td>0.16217</td>
<td>0.146126</td>
</tr>
<tr>
<td>13</td>
<td>1s2s(3S)2p3 (2S)</td>
<td>0.03905</td>
<td>0.03308</td>
<td>0.050420</td>
</tr>
<tr>
<td>14</td>
<td>1s2p4 (4P)</td>
<td>0.11414</td>
<td>0.12058</td>
<td>0.088202</td>
</tr>
<tr>
<td>15</td>
<td>1s2p4 (2D)</td>
<td>0.18133</td>
<td>0.19077</td>
<td>0.137964</td>
</tr>
<tr>
<td>16</td>
<td>1s2p4 (2P)</td>
<td>0.11356</td>
<td>0.11861</td>
<td>0.087983</td>
</tr>
<tr>
<td>17</td>
<td>1s2p4 (2S)</td>
<td>0.12504</td>
<td>0.12932</td>
<td>0.091493</td>
</tr>
</tbody>
</table>

a Present R-matrix results.
b MCBP AUTOSTRUCTURE results [32, 186].
c Palmeri \textit{et al.} [215].

1288.88, 1291.88, and 1292.94 eV, with a difference of up to 2.31 eV. Our binding energy for Mg$^{6+}$ is higher than the one obtained from NIST by 0.26 eV. The calculated K-shell photoabsorption in length and velocity gauges differs by less than 5%, so only the length results will be shown.
5.3.2 K-Shell Photoabsorption for Mg$^{3+}$

For Mg$^{3+}$, the K-shell photoexcitation of the ground state can be obtained as follows.

$$h\nu + 1s^2 2s^2 2p^5 [2P] \rightarrow 1s 2s^2 2p^5 np [2S, 2P, 2D]. \quad (5.6)$$

The participator and spectator Auger transitions are obtained as follows:

1s2s2p5np

<table>
<thead>
<tr>
<th>participator Auger</th>
<th>spectator Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s2s2p4 + e$^-$ \leftarrow</td>
<td>\rightarrow 1s2s2p3 np + e$^-$</td>
</tr>
<tr>
<td>1s2s2p5 + e$^-$ \leftarrow</td>
<td>\rightarrow 1s2s2p4 np + e$^-$</td>
</tr>
<tr>
<td>1s2p6 + e$^-$ \leftarrow</td>
<td>\rightarrow 1s2p5 np + e$^-$</td>
</tr>
</tbody>
</table>

Table 5.4 summarizes the procedure for generating the optimized radial orbitals for Mg$^{4+}$, using the HF [159] and MCHF [160] program packages.

Table 5.4 Methodology of determining the physical 1s, 2s, and 2p orbitals and correlation (or pseudo) 3s, 3p, and 3d orbitals for Mg$^{4+}$.

<table>
<thead>
<tr>
<th>1s, 2s, and 2p</th>
<th>From a HF (single-configuration) calculation for the 1s2s2p4[3P] term.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3s, 3p, and 3d</td>
<td>From a MCHF (multiconfiguration) calculation for the lowest K-shell vacancy 1s2s2p5[3P] term including single and double n = 1 \rightarrow n = 3 promotions.</td>
</tr>
</tbody>
</table>

The calculated term energies for Mg$^{3+}$ and Mg$^{4+}$, relative to the 1s2s2p4[3P] ground state of Mg$^{4+}$, are compared to the data taken from NIST in Table 5.5. Good agreement is obtained.
Table 5.5 Comparison of term energies (in Rydbergs) for Mg3+ and Mg4+ for the states included in my calculations relative to the 1s22s22p4 (3P) ground state of Mg4+.

<table>
<thead>
<tr>
<th>State</th>
<th>Present a</th>
<th>OTHER b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s22s22p6 (2P)</td>
<td>8.082626</td>
<td>8.036954</td>
</tr>
<tr>
<td>1s22s22p4 (1D)</td>
<td>0.338589</td>
<td>0.32738</td>
</tr>
<tr>
<td>1s22s22p4 (1S)</td>
<td>0.745541</td>
<td>0.70422</td>
</tr>
<tr>
<td>1s22s22p5 (2P)</td>
<td>2.624466</td>
<td>2.58826</td>
</tr>
<tr>
<td>1s22s22p5 (1D)</td>
<td>3.698571</td>
<td>3.62212</td>
</tr>
<tr>
<td>1s22s22p5 (1S)</td>
<td>0.176948</td>
<td>6.04143</td>
</tr>
<tr>
<td>1s22s22p5 (1S)</td>
<td>92.810045</td>
<td></td>
</tr>
<tr>
<td>1s22s22p5 (1S)</td>
<td>93.280049</td>
<td></td>
</tr>
<tr>
<td>1s22s22p5 (3S)</td>
<td>95.458438</td>
<td></td>
</tr>
<tr>
<td>1s22s22p5 (1S)</td>
<td>96.142518</td>
<td></td>
</tr>
</tbody>
</table>

a Present R-matrix results.

b NIST data.

Figure 5.3 Same as Fig. 5.1 but for Mg3+.
The results for the $1s \rightarrow np$ photoabsorption for Mg$^{3+}$ are presented in Fig. 5.3. Analyzing the allowed partial waves (see Eq. (5.6)), we find that the lowest resonance is obtained by the $1s \rightarrow 2p$ photoexcitation, which gives the $2S$ state and is located at 1257 eV with a cross section of 10.97 Mb. The corresponding BPRM [140] results are 1258.13 eV with a cross section of 12.32 Mb. There is an energy difference in the position of the peaks for this partial wave of 1.13 eV and a difference in the cross section of 12%. The rest of the K-shell photoabsorption is for $1s \rightarrow np \ (n \geq 3)$ above 1325 eV.

5.3.3 K-Shell Photoabsorption for Mg$^{2+}$

In neon-like magnesium, which we expect to be much simpler because of the absence of the fine structure splitting, the K-shell photoabsorption can be represented as

$$h\nu + 1s^22s^22p^6[1S] \rightarrow 1s2s^22p^6np[1P^o]. \quad (5.7)$$

The participator and spectator Auger transitions are obtained via

$$1s2s^22p^6np$$

$$\text{participator Auger} \triangleleft \rightarrow 1s^22s^22p^5 + e^- \quad \text{spectator Auger} \triangleright \rightarrow 1s^22s^22p^6np + e^-$$

$$1s^22s^2p^6 + e^- \leftrightarrow \rightarrow 1s^22s^22p^6np + e^-$$

$$\rightarrow 1s^22p^6np + e^-.$$

The Hartree-Fock [159] and multiconfiguration Hartree-Fock [160] atomic structure program packages are used to generate the radial orbitals for our target Mg$^{3+}$. The optimization procedure is summarized in Table 5.6.
Table 5.6 Methodology of determining the physical 1s, 2s, and 2p orbitals and correlation (or pseudo) 3s, 3p, and 3d orbitals for Mg$^{3+}$.

<table>
<thead>
<tr>
<th>1s, 2s, and 2p</th>
<th>From a HF (single-configuration) calculation for the 1s22s22p$^5[2P]$ term.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3s, 3p, and 3d</td>
<td>From a MCHF (multiconfiguration) calculation for the lowest K-shell vacancy 1s2s22p$^6[2S]$ term including single and double $n = 1 \rightarrow n = 3$ promotions.</td>
</tr>
</tbody>
</table>

Fig. 5.4 presents the K-shell photoabsorption results for Mg$^{2+}$ using the length and velocity forms of the dipole operator, where good agreement is obtained (difference of up to 4.5%).

Figure 5.4 Comparisons of my results for the K-shell photoabsorption cross section in the length and velocity forms for the dipole operator for Mg$^{2+}$. Also, The K-shell photoionization results of Verner et al. [214].
Spectator Auger decay was found to be very important especially for $n \to \infty$, where the participator Auger decay scales as $1/n^3$ and goes to zero [133]. Fig. 5.5 shows my K-shell photoabsorption results with and without including the spectator Auger decays in the length form of the dipole operator for Mg$^{2+}$. As seen, the spectator Auger decay not only affects the photoabsorption cross sections for higher $1s2s^22p^6np$ resonances but also does for $n = 3$.

![Figure 5.5](image)

Figure 5.5 K-shell photoabsorption with and without including the spectator Auger decays (with broadening and without) in the length form of the dipole operator Mg$^{2+}$.

As can be seen from Eq. (5.7), K-shell photoabsorption of the $1s^22s^22p^6[1S]$ ground state of Mg$^{2+}$ gives rise to the $1s2s^22p^6np[1P]$ states (see Sec. 2.5.1). Fig. 5.6 shows a
comparison between my results and those obtained using the BPRM by Witthoeft et al. [140]. According to my calculations, the lowest resonance is obtained for $n = 3$ with its peak located at 1315.33 eV and has a cross section of 7.01 Mb, while the corresponding one from the BPRM is located at 1314.77 eV and a cross section of 8.495 Mb, with an energy difference of 0.56 eV and 17% in the cross section. The higher resonances for $n = 4 - 6$ are located at 1326.06, 1330.27, and 1332.36 eV. As seen, our results align very well with the photoionization results of Verner et al. [214].

![Figure 5.6](image)

Figure 5.6 Comparisons of my calculated K-shell photoabsorption cross section for Mg$^{2+}$, the results of Witthoeft et al. [140] obtained by using the Breit Pauli R-matrix (BPRM), and the photoionization results of Verner et al. [214].
K-shell photoexcitation for the ground state of neutral magnesium is represented as
\[h\nu + 1s^22s^22p^63s^2[\frac{1}{2}S] \rightarrow 1s2s^22p^63s^2np[\frac{1}{2}P]^\circ. \] (5.8)

The participator and spectator Auger transitions are obtained as follows:

\[
\begin{align*}
\text{participator Auger} & : \quad 1s2s^22p^63s^2 + e^- & \rightarrow & \quad 1s2s^22p^6np + e^- \\
& : \quad 1s2s^22p^63s^2 + e^- & \rightarrow & \quad 1s2s^22p^53snp + e^- \\
& : \quad 1s2s2p^63s^2 + e^- & \rightarrow & \quad 1s2s2p^63snp + e^- \\
& & & \rightarrow 1s2s2p^43s^2np + e^- \\
& & & \rightarrow 1s2s2p^53s^2np + e^- \\
& & & \rightarrow 1s2p^63s^2np + e^-.
\end{align*}
\]

The physical 1s, 2s, 2p, 3s, 3p, and 3d orbitals are first generated by performing a Hartree-Fock (HF) [159] calculation for the Mg\(^{+}\) (1s\(^2\)2s\(^2\)2p\(^6\)3\(^2\)S\(^2\)) states. Then a multi-configuration Hartree-Fock (MCHF) [160] calculation is performed for the 1s\(^2\)2s\(^2\)2p\(^6\)3\(^2\)S\(^2\)] K-shell excited state including single and double promotions to \(n = 4\) shell to obtain the \(4s\), \(4p\), and \(4d\) pseudo-orbitals, which accounts for orbital relaxation effects due to the 1s-vacancy. A summary for the optimization procedure is presented in Table 5.7.

In my calculations, I included 1s\(^2\)2s\(^2\)2p\(^6\)3s, 1s\(^2\)2s\(^2\)2p\(^6\)3p, 1s\(^2\)2s\(^2\)2p\(^5\)3s\(^2\), 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\), 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\), and 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\) target states. Then the bound and pseudo-orbitals \(\{1s, 2s,\)

125
Table 5.7 Methodology of determining the physical 1s, 2s, 2p, 3s, 3p, and 3d orbitals and correlation (or pseudo) δs, δp, and δd orbitals for Mg$^+$.

<table>
<thead>
<tr>
<th>1s, 2s, 2p, 3s, 3p, and 3d</th>
<th>From a HF (single-configuration) calculation for the $1s^22s^22p^63d^3[2S]$ term.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4s, 4p, and 4d</td>
<td>From a MCHF (multiconfiguration) calculation for the lowest K-shell vacancy $1s2s^22p^63s^2[2S]$ term including single and double $n = 1 \rightarrow n = 4$ promotions.</td>
</tr>
</tbody>
</table>

2p, 3s, 3p, 3d, δs, δp, δd} are used to generate a CI basis considering single and double promotions out of the above six target configurations.

Figure 5.7 K-shell photoabsorption cross section for Mg and the photoionization results of Verner et al. [214].

Fig. 5.7 presents preliminary results for the K-shell photoabsorption of neutral magnesium. Above the threshold the $1s2s^22p^63s3p(ns, nd)$ resonances complicate the spectrum. The $1s2s^22p^63s^23p$ spectator Auger decay is not treated correctly (see Eq. 5.4) since the R-
matrix box contains this resonance. Therefore, these spectator channels need to be included in R-matrix explicitly and further work for neutral magnesium is required.

In summary, a series of K-shell photoabsorption calculations for Mg$^{2+}$, Mg$^{3+}$, Mg$^{6+}$ were performed using the R-matrix method in LS-coupling. Good agreement with the recent results by Witthoeft et al. [140] of the Breit Pauli R-matrix was obtained. Preliminary work for neutral Mg was presented, which is complicated by the $n = 3$ physical orbitals.
CHAPTER VI

SUMMARY

The work in this dissertation has been focused on producing accurate and reliable DR and K-shell photoabsorption data. The DR rate coefficient data can be used for modeling ions that are found in astrophysical and fusion plasmas, and K-shell photoabsorption data can be used for modeling X-ray astrophysical spectra. Three projects have been studied throughout this work. The first one resulted in producing DR data for M-shell argon ions for fusion applications. The second one produced a comprehensive DR data set for the Al-like isoelectronic sequence for all the ions from Si$^+$ up to Zn$^{17+}$, and the third one produced K-shell photoabsorption results for Mg ions for astrophysical applications.

In the study of M-shell argon ions, DR rate coefficients for Ar$^+$- Ar$^{7+}$ were produced using a configuration-average distorted-wave approximation (CADWA). Good agreement was obtained with the level-resolved distorted-wave rate coefficients for Ar$^{6+}$ and Ar$^{7+}$ for electron temperatures above 10.0 eV, where these ions are abundant in fusion sources. My M-shell DR rate coefficient data have been used in a study to determine the fractional abundances of argon, where significant differences from those obtained using the recommended data of Mazzotta et al. [123] were found and this ended in a publication by Loch et al. [185].

For the Al-like isoelectronic sequence, all previous DR data were either obtained by using empirical formulas or were performed in a non-relativistic LS-coupling framework. The commonly used database of Mazzotta et al. [123] was generated by fitting these pre-
vious data, but it was not clear from which sources they obtained their data [123]. I started the Al-like DR study by revisiting S^{3+}, where previous LS-coupling data were available for this ion by Badnell [128]. Good agreement was obtained with my results performed in LS-coupling and that pushed me to perform another calculation in IC-coupling. When I compared my LS- and IC-coupling DR rate coefficients, I found that fine structure effects led to the following. The DR rate coefficient performed in IC-coupling was higher at low-electron temperatures due to the fine structure series that can autoionize to the ground state of S^{3+}, which does not exist in a non-relativistic LS treatment. On the other hand, for higher-electron temperatures, the DR rate coefficient obtained in IC-coupling was lower due to the doubly excited states that can radiatively decay to autoionizing states for $n \geq 36$. Thus IC-coupling calculations are required for this isoelectronic sequence. The work on S^{3+} was published by Abdel-Naby et al. [207].

Calculations for the DR rate coefficient have been carried out for the entire Al-like isoelectronic sequence in both LS- and IC-coupling. Comparisons of my present DR rate coefficients in IC-coupling versus the existing LS results or the DR rate coefficients of Mazzotta et al. [123] were found to differ by orders of magnitudes at the low-electron temperatures since the latter did not include the fine structure splitting. This was confirmed by a comparison to the measurements from the Heidelberg heavy-ion Test Storage Ring (TSR) facility of Schmidt et al. [76], where my DR rate coefficient at low-electron temperatures is comparable to the experimental results. The DR and RR rate coefficients were then fitted to simple formulas for efficient dissemination of data and ease of use in plasma modeling codes. These results for the Al-like sequence are in preparation for publication [210].
The results for the K-shell photoabsorption of Mg$^{2+}$, Mg$^{3+}$, and Mg$^{6+}$ agreed very well with the recent results of the Breit Pauli R-matrix of Witthoeft et al. [140]. Preliminary work for neutral Mg was presented, which was complicated by the $n = 3$ physical orbitals. The work on neutral Mg and Mg$^+$ will be prepared for publication.
Appendix A

Atomic Units and Abbreviations
The Hamiltonian for our \(N \)-electron system is given by

\[
\mathcal{H} = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_e} \nabla^2_i - \frac{Ze^2}{4\pi\epsilon_0 r_i} \right) + \sum_{i<j}^{N} \frac{1}{4\pi\epsilon_0 r_{ij}}. \tag{A.1}
\]

For simplicity in notation and for convenience in numerical work, we choose the atomic units (a.u.) such that \(e = m_e = \hbar = a_0 = 4\pi\epsilon_0 = 1 \). So the new form of the Hamiltonian is given by

\[
\mathcal{H} = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla^2_i - \frac{Z}{r_i} \right) + \sum_{i<j}^{N} \frac{1}{r_{ij}}. \tag{A.2}
\]

In Table A.1, we present the conversion from the a.u. to the international system of units (SI) units. \(\alpha \) is the fine-structure constant \(\left(\alpha = \frac{1}{4\pi\epsilon_0} \frac{e^2}{\hbar c} = \frac{1}{137.03599911} \right) \).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>SI Value(^{a,b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Charge</td>
<td>(e)</td>
<td>(1.60217648 \times 10^{-19}) C</td>
</tr>
<tr>
<td>Electron Mass</td>
<td>(m_e)</td>
<td>(9.10938215 \times 10^{-31}) kg</td>
</tr>
<tr>
<td>Action</td>
<td>(\hbar = \frac{\hbar}{2\pi})</td>
<td>(1.05457162 \times 10^{-34}) J.s</td>
</tr>
<tr>
<td>Electrostatic force constant</td>
<td>(k = \frac{1}{4\pi\epsilon_0})</td>
<td>(8.9875518 \times 10^9) N.m²/C²</td>
</tr>
<tr>
<td>Bohr radius</td>
<td>(a_0 = \frac{\hbar}{m_e c})</td>
<td>(0.52917720 \times 10^{-10}) m</td>
</tr>
<tr>
<td>Velocity</td>
<td>(v = \alpha c)</td>
<td>(2.18769125 \times 10^6) m/s</td>
</tr>
<tr>
<td>Time</td>
<td>(\tau_0 = \frac{a_0}{\alpha c})</td>
<td>(2.41888432 \times 10^{-17}) s</td>
</tr>
<tr>
<td>Hartree Energy</td>
<td>(E_h = m(\alpha c)^2)</td>
<td>(2) Ryd = 27.211 eV = 4.359743 \times 10^{-18}) J</td>
</tr>
</tbody>
</table>

\(^{a}\) Mohr et al. [216].
\(^{b}\) Mohr et al. [217].
<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGN</td>
<td>active galactic nuclei</td>
</tr>
<tr>
<td>a.u.</td>
<td>atomic units</td>
</tr>
<tr>
<td>AUTOSTRUCTURE</td>
<td>atomic structure code</td>
</tr>
<tr>
<td>BPRM</td>
<td>Breit Pauli R-matrix method</td>
</tr>
<tr>
<td>CADWA</td>
<td>configuration-average distorted-wave approximation</td>
</tr>
<tr>
<td>CI</td>
<td>configuration interaction</td>
</tr>
<tr>
<td>CSF</td>
<td>configuration state function</td>
</tr>
<tr>
<td>DR</td>
<td>dielectronic recombination</td>
</tr>
<tr>
<td>EBIS</td>
<td>electron-beam ion source</td>
</tr>
<tr>
<td>EBIT</td>
<td>electron-beam ion trap</td>
</tr>
<tr>
<td>EIDE</td>
<td>electron impact de-excitation</td>
</tr>
<tr>
<td>EIE</td>
<td>electron impact excitation</td>
</tr>
<tr>
<td>EII</td>
<td>electron impact ionization</td>
</tr>
<tr>
<td>ESR</td>
<td>experimental Storage Ring</td>
</tr>
<tr>
<td>FAC</td>
<td>flexible atomic code</td>
</tr>
<tr>
<td>FWHM</td>
<td>full width at half maximum</td>
</tr>
<tr>
<td>HF</td>
<td>Hartree-Fock</td>
</tr>
<tr>
<td>HFRR</td>
<td>Hartree-Fock relativistic approximation</td>
</tr>
<tr>
<td>HFSCF</td>
<td>Hartree-Fock self consistent field</td>
</tr>
<tr>
<td>IC</td>
<td>intermediate coupling</td>
</tr>
<tr>
<td>IP</td>
<td>independent-particle model</td>
</tr>
<tr>
<td>IPIRDW</td>
<td>independent-processes, isolated-resonance, distorted-wave approximation</td>
</tr>
<tr>
<td>ISM</td>
<td>interstellar medium</td>
</tr>
<tr>
<td>ITER</td>
<td>international thermonuclear experimental reactor</td>
</tr>
<tr>
<td>IXO</td>
<td>International X-ray observatory</td>
</tr>
<tr>
<td>LS</td>
<td>Russell-Saunders coupling</td>
</tr>
<tr>
<td>MBRRRC</td>
<td>measured merged-beams electron-ion recombination rate coefficient</td>
</tr>
<tr>
<td>MCBP</td>
<td>multiconfiguration Breit-Pauli</td>
</tr>
<tr>
<td>MCDF</td>
<td>multiconfiguration Dirac-Fock</td>
</tr>
<tr>
<td>MQDT</td>
<td>multichannel quantum defect theory</td>
</tr>
<tr>
<td>MCHF</td>
<td>multiconfiguration Hartree-Fock</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>PA</td>
<td>photoabsorption</td>
</tr>
<tr>
<td>PI</td>
<td>photoionization</td>
</tr>
<tr>
<td>RMBPT</td>
<td>relativistic many-body perturbation theory</td>
</tr>
<tr>
<td>RR</td>
<td>radiative recombination</td>
</tr>
<tr>
<td>RTE</td>
<td>resonant transfer excitation</td>
</tr>
<tr>
<td>SC</td>
<td>single configuration</td>
</tr>
<tr>
<td>SI</td>
<td>international system of units</td>
</tr>
<tr>
<td>SOHO</td>
<td>Solar and Heliospheric Observatory</td>
</tr>
<tr>
<td>STO</td>
<td>Slater-type-orbitals</td>
</tr>
<tr>
<td>TBR</td>
<td>three-body recombination</td>
</tr>
<tr>
<td>TSR</td>
<td>Test Storage Ring</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

