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The Utica/Maquoketa Shale is considered to be the primary confining layer for 

Cambro-Ordovician CO2 sequestration targets in the Midwest in the Michigan and 

Illinois basins, respectively.  Prospective regional geologic seals in mudrock formations 

possess a combination of lithologic properties including nanometer scale pore space, 

elevated breakthrough pressures for non-wetting fluid phases and ductile mechanical 

deformation.  Mineralogical composition is related to and typically controls these 

properties.   

The objective of this study is to investigate the geological controls on 

stratigraphic and lithologic variability in the Utica/Collingwood in the Michigan basin.  

Twelve conventional cores and hundreds of modern well logs from the Michigan basin 

were analyzed in order to correlate/calibrate wire-line log signatures with whole rock 

mineral composition (from X-ray diffraction analysis) and mechanical properties (from 

core analysis) to identify brittle, fracture-prone zones, and to validate the Utica Shale as 

a regional geologic seal.  Analysis using scanning electron microscopy with Quantitative 

Evaluation of Minerals by Scanning Electron Microscope (QEMSCAN®) software was 

employed to image pores and for quantitative analysis of mineralogy, texture, and 

porosity.  Mercury Injection Capillary Pressure test (MICP) and Triaxial Strength Testing 

were conducted in order to assess petrophysical and mechanical response.  Spatial and 

stratigraphic distributions of lithological properties were mapped, documenting the 

distribution of lithologic properties of the Utica Shale in the Michigan basin. 
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1. INTRODUCTION

Study Objective 

The objective of this study is geological characterization of the Upper Ordovician 

Utica Shale in the Michigan basin in order to assess CO2 sequestration caprock (seal) 

potential, including petrophysical properties and mechanical fracture response.  

Detailed observations of mineralogical and textural variations in the Utica, from 

conventional core samples were compared to petrophysical and mechanical properties 

determined using a variety of analytical methodologies. The upper Ordovician Utica 

Shale is thought to be the primary hydrocarbon source rock, but also the ultimate seal 

for important, Ordovician Trenton-Black River hydrocarbon reservoirs in the Midwest. In 

the Northeast, the Utica Shale is known to be an unconventional hydrocarbon reservoir.  

In nearby states including Maryland, New York, Ohio, Pennsylvania, Virginia, and West 

Virginia the Utica Shale is estimated to contain as much as 38 trillion cubic feet of 

undiscovered, technically recoverable natural gas,  940 million barrels of oil and 208 

million barrels of natural gas liquids (USGS, 2012).  The Utica Shale formation in 

Michigan has received little attention as an unconventional reservoir, although 

significant production from unconventional hydrocarbon reservoirs in neighboring 

states is currently ongoing.   

The Utica and Maquoketa Shale formations are considered to be the primary 

confining layer for Cambro-Ordovician CO2 sequestration targets in the Midwest in the 

Michigan and Illinois basins (figure 1-1).  Important saline aquifer, geological carbon 

sequestration reservoir targets in the Knox Supergroup and St. Peter Sandstone in 

Michigan, Illinois, Kentucky and Indiana have less laterally persistent, generally thinner 

and less reliable secondary confining zones but lateral continuity of the Utica Shale, 

dense mudrock lithology and thickness in excess of 100 ft. is noteworthy.  The Utica 

Shale overlies the Trenton Formation and is overlain by the Queenston Shale in the 

Michigan basin.  Although the Utica Shale is a prospective, unconventional hydrocarbon 

reservoir, there is currently little, publically available geological characterization 
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information related to the Utica Shale in the Michigan basin.  This study establishes the 

spatial and stratigraphic distribution of lithological properties of the Utica Shale in the 

Michigan basin that may control regional confining layer integrity. 

 

Figure 1-1: Utica Shale (and related strata) stratigraphy in the Illinois and Michigan 
basins.   

Modified from Barnes, D.A.  (knoxstp.org/mi-strat.htm) 

 

The upper Ordovician Utica Shale underlies much of the northeastern United 

States and southern Canada.  In Michigan, the Utica Shale is typically 200-400 ft. thick 

but thickens to greater than 475 ft. in the southeastern part of the Michigan basin 

(figure 1-2).  The increased thickness observed in the southeastern part of the basin will 

be referred to as the “southeastern subbasin” in this study.  The widespread 

geographical extent, generally dense and impermeable lithology, and thickness of the 
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Utica Shale make it a prospective confining zone for Cambro-Ordovician, regional 

geological carbon sequestration injection targets. Regional seal integrity is required for 

secure and permanent storage of CO2,to ensure buoyant supercritical fluid confinement 

with no leakage of injected CO2 into overlying strata, underground sources of drinking 

water (USDW), soils or the atmosphere.  

 Whole rock mineralogy relates to rock ductility or brittleness and other 

mechanical properties, which affects rock strength and the development of permeability 

through fractures.  Strata with high clay content will have relatively low strength, but 

will be less likely to develop fractures due to a high ductility.  In contrast, increasing 

carbonate or silica content increases strength and will result in higher tendency to 

develop fractures due to an increase in rock brittleness (IEAGHG, 2011).  The geological 

controls on lithological and mineralogical variability and corresponding mechanical 

properties are therefore a fundamental aspect of comprehensive seal integrity 

evaluation.   
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Figure 1-2:  Utica (Shale) Formation Isopach.  The widespread geographic extent of the 

Utica Formation makes it a potential seal for Cambro-Ordovician CO2 sequestration 

targets. 

Contour interval shown in gray 

Modified from Barnes, D.A.  (knoxstp.org/mi-strat.htm) 
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Michigan Basin Geology 
 

 

Figure 1-3:  Regional structural features related to the Michigan basin and proximity to 

proposed source terrain (Appalachian highlands)   

 Modified from Rupp, 1997 

 

The Michigan basin is an intracratonic, bowl shaped basin centered in the lower 

peninsula of Michigan comprising up to 16,000 feet (4,900 m.) of sedimentary rock 

strata. It is slightly elongated in the N-S direction and approximately 300 miles (480 km.) 

in diameter (Banas, 2011; Howell & van der Pluijm 1990, 1999).  The Michigan basin also 

includes parts of eastern Wisconsin; southwestern Ontario, Canada; northwestern Ohio; 

northeastern Illinois; and northern Indiana (Harrison III et al., 2009).  Basin geodynamics 

include periods of basin-centered subsidence as well as regional, eastward tilting 

(Howell & van der Pluijm, 1999).  The basin lies in-board in an intra-cratonic setting 

relative to the Appalachian basin and is bounded by the Kankakee and Findlay Arches 

(figure 1-3).  Michigan basin bedrock geology at outcrop and the Pleistocene cub-crop 
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consists of Precambrian basement rocks around the margins and Paleozoic rocks of 

Cambrian through Pennsylvanian age up to as recent as Jurassic sedimentary strata in 

the basin center.   

The Taconic orogeny refers to the North American mountain building episodes 

that occurred during the Ordovician (Faill, 1997).  The Taconic orogeny was a complex 

series of orogenic episodes spread over the entire Ordovician period along what are 

now the Appalachian Mountains (Rodgers, 1971).  Modern, eastern North America 

(Laurentia) was located south of the equator (figure 1-4) during the early Ordovician and 

was separated from the newly forming Taconic Island Arc by the Iapetus Ocean (Howell 

and Van der Pluijm, 1999).  Late Ordovician Taconic orogenesis along proto-eastern 

North America caused the Iapetus Ocean to narrow and eventually closed the 

Laurentian-Taconic seaway (Faill, 1997).   A convergent plate boundary developed and 

continental crust was uplifted.  The uplifted igneous and sedimentary rocks were folded, 

faulted and eroded. 

 

Figure 1-4:  Michigan basin during the late Ordovician.  Michigan is situated south of the 
equator with sediment being supplied from the southeast and east. 
Modified from Wicander and Monroe, 2000. 
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Carbonate sedimentation dominated the Michigan basin during the early 

Ordovician.  A vast carbonate platform spanned much of the eastern Laurentian 

continent and carbonate production on this platform kept pace with subsidence and 

sea-level rise, forming a thick succession of shallow marine, platform carbonate deposits 

of the Trenton/Black River now underlying the Utica Shale (Howell and Van der Pluijm, 

1999).  Fine-grained, organic-rich carbonate dominated strata of the Collingwood Shale 

(a member of the Trenton Formation) underlies the Utica Shale in the northern 

Michigan basin and is capped by a phosphatic lag deposit and hardground suggesting a 

long period of marine non-deposition (condensed interval) [Hiatt, 1985]. This contact is 

interpreted as a diastem. The Collingwood is a fine-grained organic rich member of the 

Trenton Formation.  The Collingwood was observed to be a finely laminated calcareous 

biomicrite.  The Collingwood is rich in organic content and has been an unconventional 

self-sourced reservoir target with organic carbon content as high as 4%.  The phosphatic 

cap is found at the top of the Collingwood, separating the Collingwood from the Utica 

Shale. 

 Craton derived clastics were then initially deposited in the Taconic foreland 

basin with sediment being supplied from the newly uplifted Taconic highlands (Howell 

and Van der Pluijm, 1999).  The locus of siliciclastic deposition migrated to the 

northwest and the middle Ordovician, shallow marine carbonate platform was drowned 

(Howell and Van der Pluijm, 1999).  As a result of a regional sea level rise and 

transgression coincident with uplift in the Taconic highlands to the east, fine-grained 

siliciclastic sediments flooded the eastern interior platform and the Michigan, Illinois, 

and Appalachian basins and comprise the bulk of the Utica Shale.  Spillover from the 

filled Taconic foreland basin resulted in the deposition of fine-grained clastics of the 

Utica Shale in the Michigan basin (Howell and Van der Pluijm, 1999). 

The Utica Shale contact with underlying carbonate rocks of the Trenton 

Formation signifies an abrupt change in sedimentation.  This observation is in support of 

a “drowning ramp scenario”, supported by Howell and Van der Pluijm (1999), in which 

relative sea level was rising through the late Ordovician.  Taconian orogenic events 
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caused a shift in ocean currents, water oxygenation, and sediment sources.  This change 

in depositional environment is shown by the sharp contact of the Utica Formation over 

Trenton-Black River carbonate deposits (Banas, 2011).  This contact is marked by a 

sudden gamma-ray spike (GR) and a marked increase in the neutron porosity (NPHI) and 

decrease in photoelectric (PEF) log curves.  These relationships make the top of the 

Trenton a widely traceable stratigraphic boundary in the Michigan basin, easily 

distinguishable on both petrophysical and lithologic logs.  

The Utica Shale isopach shows a thickening in the southeastern part of the state.  

Fine-grained, argillaceous clastics of the Utica Shale were deposited with varying 

regional thickness and lithofacies (Hiattt, 1985; Banas, 2011; Howell & Van der Pluijm, 

1990, 1999; Sharma et al., 2003; Sharma, 2004; Rancourt, 2009).  Howell & Van der 

Pluijm, (1990) suggest the varying thicknesses observed in the Utica Shale isopach are 

the result of the infilling of bathymetric lows in the Michigan basin.  This clastics-

dominated succession is now found superjacent to Trenton/Black River strata that was 

deposited in a laterally extensive carbonate platform (Banas, 2011; Sharma et al., 2003).  

After the deposition of the Utica Shale, late Ordovician regional regression resulted in 

the return of shallow water conditions, and deposition of the mixed terrigenous-

carbonate Queenston Formation (Brogly et al., 1998).      

The Queenston Formation is poorly sampled and poorly understood in the 

Michigan basin.  Wire-line log analysis shows a mixed system with interfingered clastic 

and carbonate units.  The Utica is differentiated from the Queenston Formation by a 

shift in the wire-line log signature to a more carbonate-rich rock.  The Queenston 

Formation is not sampled in this study but difficulty differentiating the Utica from the 

Queenston should be noted. 

The Utica-Trenton contact is suggested to be a maximum flooding surface (MFS) 

and the Utica Shale was deposited during a high-stand systems tract, in an open marine 

environment.  The upper interval of the Utica Shale was deposited in shallower water, 

and therefore is classified as a high stand systems tract where the Utica then transitions 

into the Queenston Formation.  
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 2. METHODOLOGY 

  

Conventional Core and Geophysical Well-Log Analysis 

 

  

Figure 2- 1:  Location of Utica Shale core used in this study.  

 

Subsurface geophysical well-logs were used extensively in this study.  The IHS 

Petra software is the primary software application used in this study for well log 
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analysis, subsurface mapping, and isopach contouring of the Utica Shale in the Michigan 

basin.  Digital logs were used for interpretation and regional subsurface mapping in 

order to understand the subsurface distribution of lithofacies in the Michigan basin.  

Subsurface geophysical well-log analysis was conducted using subsurface data curated 

at the Michigan Geologic Repository for Research and Education (MGRRE), Kalamazoo, 

MI.  The MGRRE facility houses more than 500,000 linear feet of conventional core from 

the Michigan basin as well as various software and petrographic tools that were utilized 

throughout this study.  Twelve Utica Shale cores totaling over 500 ft. from the Michigan 

basin were analyzed in this study.  Locations for Utica Shale cores used in this study are 

shown in figure 2-1.  The Utica Shale has a relatively homogenous log signature 

throughout the Michigan basin (figure 2-2).  The signature is characterized by an 

elevated gamma ray log response (generally > 150 gapi), as well as a low photoelectric 

factor (PEF), high neutron porosity (NPHI) and a (higher) bulk density (RHOB) log 

response than the underlying Trenton Formation.  The NPHI and PEF curves overlie one 

another around 3,200 ft on the type log.  This relationship (high NPHI and PEF ≈3.0) is 

indicative of a dolomitic mudrock and is persistent for roughly 200 ft in the type log. 

Anomalous log signatures are observed in the basin around the Saginaw Bay area 

(figure 2-3).  This signature makes it impossible to differentiate between log curves and 

therefore the Utica has not been mapped extensively in this region.  Anomalous log 

signatures in the Saginaw Bay area are coincident with an isopach thick and the raster 

log files cannot be reliably digitized.  The gamma-ray log response is not affected but the 

RHOB, NPHI, PE and caliper curves cannot be reliably digitized.  The consistent 

mineralogy of the Utica in this area, inferred from the gamma-ray log compared to more 

reliable well logs elsewhere, does not support a shift in facies and there are no 

observable differences in the rock in core.  The anomalous signature has a limited extent 

and is observed (at least partially) in Arenac, Gladwin, Midland, Bay, Saginaw and 

Tuscola counties.  The signature roughly corresponds with the increased Utica Shale 

thickness observed in the isopach in the Saginaw Bay area, shown in figure 1-2. 
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Figure 2- 2:  Type log for the Utica Shale in the Michigan basin.  The log response is 
typical of dense mudrock lithologies. 
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Figure 2- 3:  Anomalous log signature found in the Saginaw Bay area.  The gamma ray 
curve is unaffected but the NPHI, RHOB, PE and caliper curves cannot be digitized with 
confidence. 

X-Ray Diffraction 

 

 Powder X-ray diffraction (XRD) is currently the best and most widely available 

technique for the identification and quantification of minerals present in clay-rich rocks 

(Środoń et al., 2001).  Quantitative XRD analysis is used to determine the relative 

proportions of different minerals from a powdered, whole-rock sample.  Quantitative 

XRD was used to evaluate the relative proportions of minerals present in the Utica 

Shale, in order to characterize the rock for both petrophysical and mechanical response.  

Clay minerals with variable chemical compositions and crystal structures dominate 

mudrocks and make the XRD analysis of clay-rich samples difficult.  A wide range of 

intensities may be present for XRD reflections of different samples of the same clay 

mineral species, and furthermore clay mineral crystallites may differentially orientate in 

sample holders causing variability in sample intensities (Środoń et al., 2001).   The platy 

nature of clay mineral crystallites results in a tendency for preferred orientation (Środoń 

et al., 2001).  Randomly orientated samples may be used to avoid orientation-related 

problems, and can be used to determine the relative proportions of distinct clay 
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minerals within the clay-sized fraction.  For these reasons errors amounting to ±10% are 

not uncommon for major components and ±20% for minor constituents. 

Sample Preparation Procedure  
 

 Sample preparation is a fundamental aspect of accurate quantitative XRD 

analysis.  Samples were ground with a mortar and pestle, mixed with an internal 

corundum standard and ground in a laboratory grinding mill with 4 ml of methanol.  

Samples were then dried and packed onto a holder and inserted into the Rigaku X-Ray 

Diffractometer at Western Michigan University.   

 X-rays are generated in a Cr- tube (wavelength 2.2909 Å) by a current measuring 

15 mA.  This current heats a tungsten filament, which liberates electrons that hit a Cr 

target.  Cr- tubes have higher diffraction resolution at low 2θ angles than do Cu- tubes 

and are especially suitable for this study since clay minerals have low 2θ reflection peaks 

(large d-spacing).  X-ray wave length emissions are then accelerated by a 30kV potential 

and passed through a Be window.  The incident beam leaves the tube and passes 

through two slits (divergence and scattering) before coming into contact with the 

sample.  The width and angle of the incident beam is determined by the size of the slits.  

Wider slits will provide more energy, but have wider peaks.  Smaller slits provide less 

energy, but give better peak resolution.  Clay minerals, especially detrital clays, have 

intrinsically broad peaks due to crystal defects, and the use of smaller slit sizes helps 

distinguish peaks from background (Moore and Reynolds, 1989).  Arriving at an angle 

(Ө), x-rays are reflected from internal crystal planes separated by a distance (d).  Bragg’s 

Law refers to the equation nλ = (2d)sinӨ, where λ is the wavelength of the x-rays 

(2.2909 Å), Ө is the angle between the incident rays and the surface of the crystal and 

constructive interference occurs when n is an integer.  The angle between the incident 

beam and the sample must be equal to the angle between the sample and the diffracted 

beam for Bragg’s Law to apply (Moore and Reynolds, 1989).  Bragg’s Law explains the 

interaction of the beam and the sample, and provides unequivocal evidence for the 

structures of crystals, making XRD possible.  Crystals will be orientated at random angles 
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when x-rays contact the sample.  When the x-ray beam, crystal orientation and detector 

are orientated to satisfy Bragg’s equation, a characteristic peak will be generated that 

represents the presence of a certain mineral.  The detector rotates over a range of 

angles (minimum 5-65⁰) to ensure sampling at all possible crystal orientations.  X-rays 

diffracting a crystal pass through a receiving slit before ultimately arriving at the 

detector.   

 

Figure 2- 4:  Incident intensity loss at low diffraction angles 

Modified from Moore and Reynolds, 1989 

 

 Characteristic peaks of diffracted x-rays are proportional to the volume of 

sample exposed to radiation, although the sample must be wider than the spread of the 

incoming beam at the lowest diffraction angles for this relationship to be reliable 

(Moore and Reynolds, 1989).  Sample and divergence slit width must be known in order 

to ensure intensity is not lost at low diffraction angles (figure 2-4).  At the highest 

diffraction angles the sample must be infinitely thick to incident x-rays (Moore and 

Reynolds, 1989).  Samples may lose intensity at high reflection angles when the powder 

has not met the minimum thickness requirement.  To ensure adequate sample 

thickness, petroleum jelly was placed on a glass slide and the samples were pushed into 

the jelly.  A glass cover slide was used to push down on the sample and ensure an 

infinitely thick sample with a flat surface.  Samples must be ground so there is little 

particle-size variation found within a single sample.   

 X-ray diffraction pattern fitting methods use measured diffraction patterns for 

analysis.  The RockJock program (Eberl, 2003, using the Solver function in Microsoft 
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Excel) fits the sum of stored XRD pattern libraries of pure minerals to the unknown 

sample pattern measured by varying the fraction of each mineral standard pattern.  The 

pure mineral standards are selected from a list of minerals thought to be present in the 

sample.  The intensity of each mineral is determined from the proportion of each 

mineral standard pattern required to give the best fit (Eberl, 2003).  Sample preparation 

techniques used in this study were consistent with those used in the RockJock user’s 

guide (Eberl, 2003). 

 

SEM/Petrographic Analysis 

 

 Scanning Electron Microscopy (SEM) imaging was used in this study to evaluate 

mineral composition and textural information including pore size, pore type and 

distribution of pores on the nanometer scale.  Additional, quantitative mineralogy 

analysis by employing SEM QEMSCAN® software provided further confidence of the 

accuracy of XRD techniques, as well as evaluating relationships between grain types.  

Detrital grains and authigenic cements were identified and interpretations were made 

on the basis of high resolution imaging provided by the SEM. 

 Imaging and energy dispersive x-ray analysis of mineral composition for Utica 

Shale samples in this study were conducted at the Subsurface Energy Materials 

Characterization and Analysis Laboratory (SEMCAL), School of Earth Sciences, Ohio State 

University.  Images were obtained with an FEI Quanta 250 Field Emission Gun (FEG).  

Imaging parameters were an accelerating voltage of 15 KeV, an emission current of 130 

µA, and a working distance of 13 mm.  Total field size of 9 mm2 was obtained for images 

in this study (3 mm x 3 mm).  Nine fields, each measuring 1 mm x 1 mm are generated 

and then stitched together to create a single 3 mm x 3 mm back scattered election (BSE) 

image mosaic.  Images were stitched together using the Stitching plugin (described in 

Preibisch et al., 2009) for the ImageJ software (Fiji distribution).  Uncertainties and 

limitations of software capabilities during the stitching process may cause a slight error 

during processing, however this error is considered negligible and not thought to affect 
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quantitative mineralogical results.  The FEI QEMSCAN® analytical platform (hardware 

and software) uses backscattered electron (BSE) signals along with characteristic X-ray 

energy emissions to yield average atomic number contrast and individual elemental 

signal intensity (Swift et al., 2014).  The energy-dispersive X-ray spectrum provides 

characteristic information of mineral composition and, using a point count spacing of 1 

micron provides mineral composition and textural information.  The iDiscover software 

package is used to manage the mineral database and for data processing.     

Mercury Injection-Capillary Pressure Testing 

 

Petrophysical properties; including porosity, permeability, and pore geometry, 

must be assessed in order to understand CO2 entrapment and migration potential.  

Mercury injection-capillary pressure tests can be used to determine the potential for 

non-wetting fluid phases to permeate through a pore system at various pressure 

conditions.  Porosity and permeability may be correlated to pore throat aperture sizes 

corresponding to different mercury saturations.  Relationships developed between 

porosity, permeability and pore throat radii can be used to estimate fluid flow responses 

to injection of a buoyant non-wetting fluid (such as CO2) into underlying strata.  The 

identification of lithofacies with breakthrough pore throat aperture sizes capable of 

readily transferring non-wetting fluids under pressure conditions expected in the 

subsurface, along with the 3D stratigraphic and spatial distribution of these prospective 

confining layers can be evaluated.  The entrapment and migration potential of injected 

CO2 depends on the pore structure and regional geometry of the caprock.  Special core 

analyses using mercury injection-capillary pressure tests have established the 

relationships between porosity, permeability, modal pore-throat size and relative 

permeability.  Evaluation of these relationships establishes lithofacies that may be 

vulnerable to migration of non-wetting fluid phases, such as supercritical CO2, under 

temperature/pressure regimes expected in subsurface environments.  Understanding 

the regional stratigraphic and lateral distribution relationships amongst distinct 
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lithofacies is crucial to evaluating the seal integrity of the Utica Shale in the Michigan 

basin. 

Mercury Injection-Capillary Pressure(MICP) analysis was conducted at the Ohio 

State University SEMCAL facility on a Micromeretics AutoPore IV 9500 (software version 

1.09).  Samples were degassed under vacuum at 50 ⁰C overnight before being returned 

to ambient pressure and temperature and loaded for MICP analysis.  Rock pieces taken 

from core were used and varied in size from 9 g to 16 g.  Larger sized samples yielded 

better data but in order to fit into the 15 mL sample cup, two pieces of rock were used 

instead of one for some of the samples.  Using two pieces of rock for some samples 

allowed for a sufficient volume of rock to be analyzed when a single piece did not satisfy 

volumetric requirements.  A single piece of core was difficult to obtain and cut to an 

acceptable size due to the weakness inherit to clay-rich samples.  Samples were cut 

from core or taken as core plugs and cut to shape in order to fit inside the sample cup.  

Equilibration times for the low pressure (<30 psia) runs were 10 seconds because no 

intrusion was observed to occur during these pressure steps, and low pressure analysis 

is done primarily to fill the sample holding cup for the high pressure cycle.  Equilibration 

times for the high pressure runs were 1000 seconds to ensure a slow, steady increase in 

pressure and an accurate depiction of breakthrough pressures. 

Mechanical Testing 

 

Mechanical properties analysis in mudrock formations provides a fundamental 

characterization tool important for basin modeling, seismic response, and wellbore 

stability.  The correlation of mechanical rock properties to gross lithofacies 

discriminated on the basis of mineral composition was used to predict the regional 

distribution of rock mechanical properties for the Utica Shale, regionally, in the 

Michigan basin.   

Mineral composition and lithology are intrinsic controls on the development of 

naturally occurring fractures in mudrocks (Ding et al., 2012).   Mudrock is a general 

lithologic term used for fine-grained sedimentary rocks composed of 50% or greater clay 
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minerals (grain size diameter less than 4µm) [Tucker, 2001].  Mudrocks with grain size 

variations include clay-rich, sand-rich, or carbonate-rich units.  Each lithologic variation 

possesses distinct mechanical behavior.  Quartz, feldspar and calcite are known to 

increase brittleness, while increasing clay mineral content results in higher ductility 

(Ding et al., 2012).  Shales rich is quartz tends to be more brittle than shales rich in 

calcite, which tend to deform in a more plastic (ductile) fashion (Ding et al., 2012).  

Where mineralogical composition is similar, finer-grained rocks tend to be more 

conducive to fracturing (Ding et al., 2012).  

 Young’s modulus and Poisson’s ratio are the parameters associated with rock 

tensile strength and lateral compressibility, respectively.  Young’s modulus is defined as 

the stress on a material divided by the strain of that material along a given axis.  

Elevated Young’s modulus corresponds to rigidity.  Materials with an elevated Young’s 

modulus will be more brittle than materials with a low Young’s modulus.   

When a material is compressed along a single axis, it will tend to expand in the 

other two axis planes.  The measurement of the percent of expansion divided by the 

percent of compression is called Poisson’s ratio.  Materials with a low Poisson’s ratio 

(0.0-0.2) will show limited lateral expansion when compressed, while materials with a 

higher Poisson’s ratio (0.2-0.5) show limited compressibility.  Poisson’s ratio decreases 

with an increase in brittleness.  Several authors (Buller et al., 2010; Rickman, et al., 

2008; Mullen et al., 2007; Horsrud, 2001) suggest mechanical properties testing to be a 

fundamental geological characterization tool, particularly in mudrocks, where an 

increasingly large percentage of wells are now drilled.  Interbedded silt, carbonate, or 

fine-grained sandstone may be conducive to fracture development, enhancing 

permeability in mudrock formations (Ding et al., 2012).  It is further suggested by Ding et 

al., (2012) that organic content (TOC) is an important factor affecting fracture 

development, where rocks with high TOC values have less tensile strength, and are 

prone to produce natural fractures as a result of increased brittleness.   

Properties of clay-rich rocks may be dependent on the direction of maximum 

principle stress.  When rock properties change with respect to direction, the rock may 
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be considered anisotropic.  Mudrocks may exhibit variations in compressive strength 

relative to bedding plane orientations (Kier et al., 2011).  Anisotropic formations 

(particularly mudrock formations) may exhibit a loss of strength of up to 85% when 

tested at 45-55⁰ to bedding planes (Kier et al., 2011).  Two core plugs in this study are 

taken at orientations parallel and 45⁰ to bedding.  The loss of rock strength at various 

orientations to bedding planes quantifies anisotropy for the formation. 

Weatherford laboratory conducted triaxial strength testing on six samples in this 

study.  All of the samples tested are from the Bruske 1-26A or Thompson 1-30 wells.  

Core plugs which could not be taken of sufficient length were deemed unsuitable for 

mechanical analysis.  The six suitable samples were cut to length and their dimensions 

and mass were recorded.  After samples were cut to length they were made square and 

parallel by being fitted into a precision machinist’s v-block and end-ground with 80-grit 

sandpaper before being finished with 220-grit paper. Samples were determined to be 

ready for testing when the ends were flat to a precision of ±0.001 inch.  Once prepared 

for testing, samples were jacketed using fluorinated ethylene propylene (FEP) heat-

shrink tubing in order to isolate the sample from confining oil during testing. After being 

jacketed the samples were affixed to the loading platens and sealed to them using 

rubber O-rings and a stainless steel wire tourniquet.  When the sample is affixed to the 

loading platens, axial and circumferential deformation transducers were fitted onto the 

assembly. Once the sample assembly was built, it was fitted inside of the load frame and 

the pressure cell was lowered over the sample, filled with silicone oil, and pressurized to 

experimental conditions (0.5*depth(ft.) ≈ confining pressure in psi for all samples in this 

study) at a rate of 1000 psi/min. At this point the sample was allowed to stabilize under 

constant confining pressure until such time as the circumferential deformation 

transducer indicated a rate of deformation less than 0.005 mm/minute.  Following 

stabilization the axial ram was brought into contact with the sample assembly and the 

sample was deformed at an axial strain rate of ~5x10-6 mm/s until it fractured. During 

this period of deformation axial load, axial deformation, and radial deformation were 

recorded at a rate of 1 Hz. Following fracture of the sample the assembly was unloaded 
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at a rate of 0.25 inch/minute for 1 minute, the confining pressure brought down at a 

rate of 1000 psi/minute, and the pressure cell subsequently emptied.  At the end of the 

stabilization period (differential stress: σD = 0) and during the initial stages of axial 

loading (σD ≈ 1000, 2000, and 3000 psi) P- and S-waves were passed through the sample 

and the waveforms were recorded in order to determine the P- and S-wave velocities 

for samples Bruske 1-26A #3, #4, and Thompson 1-30 #5. 

Sonic logs measure seismic wave transit time.  Sonic measurements are created 

using transducers to produce spherically symmetrical outgoing electrically charged 

compressional waves in the borehole fluid, exciting compressional and shear waves in 

the formation.  In an anisotropic media, shear waves will split into a fast and slow 

component, with the fast component polarized along the direction of maximum stress 

(parallel to fracture strike) (Brie et al., 1998).  The transit time (velocity) for both p-

waves (Vp) and s-waves (Vs) is measured by the time it takes for each wave to travel 

through the formation and meet the receiver.  The generated shear waves measure 

sonic compressional and shear slowness data, valuable for lithology interpretations and 

porosity distribution (Brie et al., 1998).  Sedimentary rocks, particularly mudrocks, are 

known to exhibit significant intrinsic velocity, strength, and permeability anisotropy 

(Kuila et al., 2010; Brie et al., 1998; Donald et al., 2009; Kier et al., 2011; Miller et al., 

2012).  Anisotropy in mudrocks may be the result of intrinsic properties such as aligned 

natural fractures, platy clay mineral particle orientation, or unequal stress states within 

the formation (Brie et al., 1998; Donald et al., 2009; Kier et al., 2011).  Density logs, 

along with the arrival times for p- and s- waves, can be used to calculate elastic 

properties such as Poisson’s ratio and Young’s modulus (Nygaard, 2010).  Poisson’s ratio 

(Vd) is calculated from the relationship between the p- and s- wave velocities as: 

 

Young’s modulus (Ed) can then be calculated from velocity and density logs where: 
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(Nygaard, 2010).  Sonic logs with Vp/Vs values can be evaluated for Poisson’ ratio, 

Young’s modulus, shear and bulk modulus.  These predictive, in-situ mechanical rock 

properties were measured in the Bruske 1-26A well as seen in figure 2-5.    
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Figure 2- 5:  Predictive rock mechanical properties calculated from dipole sonic logs in Bruske 1-
26A.
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Figure 3- 1:  Weingartz 1-7A box.  The Utica Shale is a grey to black, structureless 
mudrock with bedding parallel fractures.  Some vertical fractures are observed and 
typically cemented with calcite, or gypsum/anhydrite. 

3. CONVENTIONAL CORE AND GEOPHYSICAL WELL-LOG 

ANALYSIS 
 

 The Utica Shale cores used in this study are primarily cored in the lower 

interval of the Utica Shale, near the Collingwood (where present) or Trenton 
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unconformity.  The Utica Shale is a grey to black mudstone, with some cemented 

vertical fractures and calcareous lenses (figure 3-1).  The Utica/Trenton unconformity is 

easily distinguished in both wire-line logs and in core.  In core an abrupt change is 

observed above fossiliferous lime mudstone with scattered shell fragments and intense 

bioturbation and below black to gray mudstone devoid of bedding structures with 

multiple bedding parallel (induced) fractures.  This contact is observed in the Prevost 1-

11 well at a depth of 9,363.5 ft in figure 3-2.   X-Ray diffraction analysis confirms the 

presence of a phosphatic hardground at the contact, interpreted to be associated with a 

long period of sub-marine non-deposition.  The vertical fracture present in the Utica 

Shale in this photo is cemented with calcite.  Underlying the Utica Shale, the 

Collingwood (where present) or the Trenton Formation has abundant shell fragments, 

rip-up clasts, and pyrite rich lenses.   

Core from the St. Allis 2-30 and the St. Albert 1-10 (located in Presque Isle 

County and Montmorency County, respectively) wells contain the contact with the 

Collingwood Shale.  Both the St. Allis and St. Albert exhibit a thin (< 5 cm) layer of 

volcanic ash around 20 ft above the contact with the Collingwood.  The presence of this 

volcanic ash bed and the locations it is found (figure 2-1) suggests volcanism occurred to 

the east or northeast.  Ash beds are not found in the Prevost well core or any other 

wells cored in the same interval anywhere else in the Michigan basin. 

Graptolites, cephalopods, brachiopods and trilobites are observed in the Utica 

Shale.  Pyrite is common throughout the Utica and particularly common in the 

southeastern subbasin, where fossils are often replaced with pyrite (figure 3-3).   These 

fossils are primarily disarticulated and are present in silty-carbonate lenses.  The lenses 

typically occur in scour contact above the underlying mudrock suggesting alternating 

energy conditions and scour of muddy, suspension sediment during deposition.  The 

disarticulated nature of the fossils indicates some amount of transport prior to 

deposition.  Less commonly these fossils are found intact in the Utica Shale, suggesting 

infaunal benthic organisms were present during Utica Shale deposition.  Bedding is 

mostly parallel laminates or structureless, with minor burrowing/bioturbation.  
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Figure 3- 2:  The Utica/Trenton unconformity (9,363.5 ft) as observed in the Prevost 1-11 
well located in Bay County.  Note the abrupt change from a fossiliferous limestone with 
burrows and stylolite to a gray/black mudstone.  The contact shown is confirmed to 
contain substantial calcium fluorophosphate.  The vertical fracture observed in the Utica 
Shale is calcite cemented. 
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Figure 3- 3:  Graptolites replaced with pyrite in the Thompson 1-30 core.  This core was 
not slabbed for observation and therefor images are from a top down view of the rock. 
Core is 4 inches in diameter. 

 The Thompson 1-30 core is located in Lenawee County (see figure 2-1).  The core 

is a total of 105 ft including about 5 ft of the Trenton Formation.  The contact is abrupt 

as the gray limestone of the Trenton Formation suddenly changes into the black, 

structureless mudrock of the Utica Shale.  Throughout the Thompson 1-30 core the 

Utica Shale is a black, structureless mudrock with pyrite replaced fossils.  Graptolites are 

the most common biota found in this core and represent the pelagic fauna that lived in 

the water column during the time the Utica Shale was deposited.  Benthic organisms are 

extremely rare in the Thompson 1-30 core, which suggests that there may have been 

poor bottom water circulation and oxygen deficiencies.  The Thompson core was 

extensively studied because it is a full core and does not have many bedding parallel 

fractures to complicate plugging and sampling.  Core plugs at high angle to bedding 

were taken from the Thompson well for more comprehensive mechanical testing.  Other 

cores were not amenable to this sampling method.  In addition, thin section 

observations indicate that the Thompson core is generally more completely cemented 

with abundant (relative to other samples) carbonate.  This property results in a stronger 

rock allowing for the additional analysis.   

The wire-line log signature for the Thompson 1-30 well is shown in figure 3-4.  

The core corresponding to the log signature was sampled for XRD analysis, thin section, 

MICP tests, and for mechanical testing.  The XRD results (table 3-1) show elevated clay 
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content for the well at 2,307 and 2,311 ft consistent with increased gamma ray log 

signature.  At shallower depths, the Thompson 1-30 well has a lower gamma ray 

signature and slightly higher PEF and RHOB signature.  Based on the XRD and 

QEMSCAN® results and relationships to wire-line logs, this signature likely corresponds 

to increased dolomite and quartz content.  The wire-line log signature for the Thompson 

1-30 well will be discussed in detail in Chapter 4.  This section of the well was not 

available for sampling so the seal integrity in the upper parts of the formation cannot be 

directly evaluated.  However the underlying Utica Shale strata, in excess of 200 ft in 

thickness is shown to have ideal seal capacity. 
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Figure 3- 4:  Wire-line log for the Thompson 1-30 well in Lenawee County.  The black bar 
to the left of the gamma ray signature shows the cored interval.  The wire-line log 
signature becomes less consistent shallow to the cored interval and may represent a 
facies not yet described in this study. 
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The Arco-Conklin well used in this study is located in the south-central part of 

Jackson County (figure 3-2).  The core is a dull gray mudrock with bedding parallel 

microfractures.  There are some brachiopods both disarticulated and intact found in the 

gray mudrock.  The unconformity with the Trenton Formation is once again abrupt both 

in core and on wire-line logs (figure 3-5).  Five feet above the unconformity there is a 4 

inch bed of brown to gray, cross-bedded siltstone.  This segment of core was sampled 

for MICP analysis and thin section.  The results indicate a quartz and dolomite 

dominated mineralogy.  MICP analysis of this sample indicates nano-scale pore throats.  

On either side of this lens gray mudrock comprises 70% illite clay. 

 

 

Figure 3- 5:  The Arco-Conklin well in Jackson County at a depth of 3,695 ft.  The convex 
downward silty lens observed in core corresponds to an elevated NPHI signature in wire-
line log analysis. 
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The Bruske 1-26A core is located in the southwestern corner of Osceola County 

(figure 2-1) and is the only core in this study to capture the upper interval of the Utica.  

The cored interval is a light, to medium gray, Silty Claystone to Silty Marl with siltstone 

in light gray lenses throughout the core.  The lenses in the core are composed of 

primarily quartz and dolomite grains (as observed in petrographic analysis), and contain 

skeletal fragments from brachiopods, trilobites, and cephalopods.  The fossiliferous 

limestone lenses in the upper interval of the Utica are the result of higher energy 

currents and a possible return to shallower water conditions, suggesting overall 

upwards shoaling, perhaps the result of regional regression.  To the east in Ontario, the 

deeper shelf settings of the Utica Shale (Georgian Bay Formation) contain well-

developed hummocky cross-stratification, grading upward to a rapidly prograding 

muddy shore with silty limestone storm layers (Brogly et al., 1998).  The upper interval 

of the Utica Shale (as observed in the Bruske 1-26A core) shows coarser grains and 

reworked carbonate fossil fragments and clastic lenses.  These observations show a 

distinct difference in water depth from other Utica Shale cores.  Storm deposited lenses 

and early cemented rip-up clasts are observed in the Bruske 1-26A well core (figure 3-6).  

Silt sized grains fine upwards into clay sized particles.  The lenses produce cm-scale ball 

and pillow structures, dewatering structures, and load casts.  The presence of these 

structures suggests that rapid sediment accumulation compacted the underlying 

sediment prior to lithification resulting in the development of soft sediment 

deformation.  Burrows are observed and infilled with coarse grains, indicating 

oxygenated sediments for benthic organisms.  The evidence observed in the Bruske 1-

26A core suggests periodic, storm-induced events above storm wave base.  The Bruske 

1-26A well plots as both a Silty Claystone and a Silty Marl with XRD data.   

The wire-line log for the Bruske 1-26A well is shown in figure 3-7.  When 

compared to the Thompson 1-30 well the wire-line log signature for the Bruske 1-26A 

well is more consistent.  The Utica Shale interval from the top of the Trenton Formation 

to the base of the cored interval is homogeneous in log response.  From the bottom of 

the cored interval up to the top of the Utica Shale the wire-line log signature is observed 
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to have thin, low gamma ray intervals.  The drop in the gamma ray signature is caused 

by a drop in the relative abundance of clay minerals.  The percentage of clay minerals 

decreases upwards as the core shallows (table 1, Ch. 4) and the expected drop in the 

gamma ray signature is observed in the log.  The decrease in clay mineral abundance is 

only observed in the upper interval of the Utica Shale in the northern part of the 

Michigan basin.  Core observation and XRD results indicate that the drops in the gamma 

ray signature (and corresponding lower NPHI signature) correspond to large storm beds 

composed of primarily quartz and dolomite.  The log signature that is observed in the 

upper part of the Bruske 1-26A well is observed in most other wells located in the 

northern part of the Michigan basin, as will be discussed further below. 
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Figure 3- 6:  The Bruske 1-26A core is shown (8,448.4 ft.) with silt-infilled burrows and 
ball and pillow structures.  The cross bedding in the burrow is evidence of higher energy 
storm sediment.  The carbonate lens in this photo is gradational at the top, suggesting 
higher energy currents.  The fining upwards grain size that is observed in the lens can be 
attributed to the waning part of a storm event. 

 

The upper part of the Utica Shale has been shown through core analysis, thin 

section analysis and XRD results to be rich in carbonate and siliciclastic content in the 

Bruske 1-26A well (relative to other Utica Shale wells used in this study).  Wire-line logs 

have been used to trace the extent of a lower NPHI signature within the upper part of 

the Utica Shale.  The logs show that in the north and eastern part of the basin the upper 

interval of the Utica Shale has a lower gamma ray signature and lower NPHI signature, 
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but the signature is not laterally persistent through the entire basin.  The relative drop 

in the NPHI signature is not associated with organic matter because the mineralogy 

changes to a more carbonate and siliciclastic rich rock in sections.  The overlying 

Queenston Formation is a mixed carbonate/siliciclastic system and the upper part of the 

Utica Shale discussed here is transitional to the Queenston.  Figure 3-8 shows a cross-

section from the northern part of the Michigan basin trending W-E.  The upper part of 

the Utica Shale is labelled CBNT, and is shaded green to blue with respect to the NPHI 

signature.  The westernmost wells are shaded green which corresponds to a higher NPHI 

signature, while to the east as the NPHI signature is lower, the wells are shaded blue.  

The stratigraphic thickness of the shaded unit is thickest to the east, thinning to the 

west.  The top is picked based on the point where the gamma ray signature begins to 

drop, and the NPHI signature begins to lower.  This point marks a shift to a more 

carbonate and siliciclastic rich rock, with core observations (albeit limited) suggesting a 

shift in depositional environment to above the storm weather wave base.   

Figure 3-9 shows a north-south trending cross-section where the carbonate and 

siliciclastic content in the upper part of the Utica Shale disappears in the southern and 

western ends of the basin.  The Utica Shale is thicker in the southern part of the basin, 

but the lenses of carbonate and siliciclastic content are not observed in the upper part 

of the log signature.  The southeastern sub-basin is observed to have elevated 

carbonate/siliciclastic content in the lower part of the Utica Shale, with no clear 

differentiation of contacts separating the carbonate rich sections from the primarily clay 

rock that is present throughout the Utica Shale (figure 3-10).  A map showing the 

locations of wells used in the previous cross-sections is shown in figure 3-11.   

The Utica Shale is thickest in the southeastern subbasin of the Michigan basin 

with 300-500 ft thick shale deposits.  Lenses of silt-sized siliciclastic/carbonate content 

are observed in the subbasin but do not extend outside of the subbasin in the lower 

interval of the Utica Shale. The wells located in the southeastern subbasin include the 

Thompson 1-30, Arco-Conklin 1-31, Rzepka 1-27 and Taylor 1-35 wells.   All of the XRD 

results from these wells plot in the Silty Claystone facies, with the exception of the 
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Thompson 1-30 well, which plots as both a Silty Claystone and a Silty Marl (classification 

scheme provided in chapter 5).  The log response for all of these wells is very similar, 

with no clear difference denoting a shift in mineralogy.  The Thompson 1-30 well and 

the Arco-Conklin 1-31 well were studied extensively through QEMSCAN® analysis, and 

are shown to be clay rich, with some quartz and dolomite.   
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Figure 3- 7:  Wire-line log for the Bruske 1-26A well in Osceola County.  The black bar to 
the left of the gamma ray signature shows the cored interval.  The increase in carbonate 
lenses observed in core (and documented by XRD results) is also observed in wire-line 
logs, where small drops in the NPHI signature correspond to a drop in the GR signature.
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Figure 3- 8:  W-E trending cross-section in the northern part of the Michigan basin.  The upper 
interval of the Utica is shaded green-blue depending on the NPHI signature.  Decreased NPHI 
signatures are observed in the eastern part of the basin, where carbonate content is increased. 
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Figure 3- 9:  N-S trending cross-section on the western part of the Michigan basin.  The 
carbonate rich upper interval of the Utica Shale does not extend to the southern part of the 
basin, where the Utica is primarily a Silty Claystone throughout.  
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Figure 3- 10:  W-E trending cross-section in the southern part of the state.  Note the increased 
thickness of the Utica Shale in the southeastern sub-basin. 
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Figure 3- 11:  Locations of wells used in cross-sections from figures 3-8, 3-9, 3-10. 
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Figure 3- 12:  Isopach map of the carbonate rich upper interval in the Utica Shale.  The 
extent of the carbonate lens suggests the northern portion of the Michigan basin was 
the first affected by a regressing sea level. 

 

Well-log analysis confirms the identification of two distinct lithofacies within the 

Utica Shale.  The thick shale deposits are observed to have been deposited in the basin 

after the initial maximum flooding surface that marks the beginning of the Utica.  As 

regression and restricted, shallower water conditions evolved upsection, there is a 

marked increase in carbonate content, but only in the north-eastern part of the basin.  

Carbonate lenses and increased carbonate content is not observed in the Utica Shale in 
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the western part of the basin.  This relationship is observed in figure 3-8, where the 

upper interval is shaded blue-to-green indicating a decrease in apparent porosity to the 

east.  The decrease in the NPHI curve corresponds to increase in the RHOB curve as well 

as a decrease in the gamma ray curve.     

The carbonate-rich interval interpreted from well-logs in the upper part of the 

Utica Shale extends south only about half way across the basin.  Figure 3-12 is an 

isopach thickness map created for the interval containing the increased carbonate 

content.  The results indicate that the carbonate-rich interval is less than 150 ft thick, 

thinning to the west, northwest.  Increased carbonate content in the upper part of the 

Utica Shale suggests a more restricted environment in the northern part of the basin 

during the deposition of the upper Utica Shale.  Fossil fragments and carbonate stringers 

found within the mud matrix shows increased carbonate productivity as a result of basin 

restriction and limited clastic input.  The carbonate rich interval is not present at all in 

the southwestern or southeastern part of the basin.  The locus of carbonate production 

is in the northeastern part of the basin, suggesting restriction from the siliciclastic input 

in present to the south and shows the first indication of basin restriction that is present 

during the deposition of the overlying Queenston Formation.  Limited, reliable wire-line 

log data is available around the thumb area and was not used to construct figure 3-12.   
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4.  X-RAY DRIFFRACTION RESULTS AND ANALYSIS 
 

 X-Ray diffraction analysis conducted at Western Michigan University was 

completed on over 50 Utica Shale samples from 12 conventional cores.  Samples were 

analyzed using the RockJock program in MS-Excel.  The output file for the RockJock 

program is an excel table with individual mineral abundances given as a weight 

percentage of whole rock mineralogy.  The mineralogy was then lumped into a non-clay 

siliciclastic, carbonate, clay mineral and other categories in this study.  The minerals that 

comprise the majority of the non-clay siliciclastic fraction include quartz, K-feldspar and 

plagioclase.  The carbonate fraction is primarily calcite or dolomite, while illite is by far 

the most commonly observed clay mineral.  The “other” category is represented 

primarily by pyrite or gypsum/anhydrite.  The results are shown in table 1 below.  The x-

ray diffraction results indicate that clay content dominates a large portion of the 

mineralogy in the Utica Shale in the Michigan basin.  The data points taken from the 

formation labelled Utica/Collingwood or Utica/Trenton are taken from the contact 

representing the unconformity between the underlying carbonate units and the Utica 

Shale.  The Prevost (4) sample has a more precise depth because it was taken right at 

the unconformity.  The “other” category making up the majority of these samples is 

primarily fluorapatite, or calcium fluorophosphate.  The presence of a phosphatic 

deposit at an interpreted unconformity suggests submarine weathering and a prolonged 

period of non-deposition before the deposition of the Utica Shale. 
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Table 1:  Quantitative mineralogy based on x-ray diffraction results. 

Well Formation Depth (ft.) Clastic Carbonate Clay Other 

Arco-Conklin 1-31 (1) Utica Shale 3,695 14.6 8.5 70.1 6.8

Arco-Conklin 1-31 (2) Utica Shale 3,698 20.3 6.8 69.2 3.7

Arco-Conklin 1-31 (3) Utica Shale 3,704 22.1 15.4 59.7 2.8

Bruggers 3-7 (1) Utica Shale 9,649 46 0 53 1

Bruggers 3-7 (2) Utica Shale 9,657 55 0 43 2

Bruggers 3-7 (3) Collingwood 9,660 1 78.2 11.4 9.6

Bruske 1-26A (1) Utica Shale 8,426 29 25 43.3 2.7

Bruske 1-26A (2) Utica Shale 8,432 0 94 0 6

Bruske 1-26A (3) Utica Shale 8,438 28 15 56 1

Bruske 1-26A (4) Utica Shale 8,443 3.5 96.5 0 0

Bruske 1-26A (5) Utica Shale 8,450 18 39 31 2

Bruske 1-26A (6) Utica Shale 8,457 19 10 71 0

Bruske 1-26A (7) Utica Shale 8,461 27 24 43 4

Bruske 1-26A (8) Utica Shale 8,465.5 19 11 68 2

Bruske 1-26A (9) Utica Shale 8,471.5 26 14 60 0

Bruske 1-26A (10) Utica Shale 8,478 26 8 65 1

Bruske 1-26A (11) Utica Shale 8,486 22 12 66 0

Prevost 1-11 (1) Utica Shale 9,347 13 5.9 75.5 5.6

Prevost 1-11 (2) Utica Shale 9,349 18.4 7.3 67 7.3

Prevost 1-11 (3) Utica Shale 9,362 15.7 8.7 73 2.6

Prevost 1-11 (4) Utica/Trenton 9,363.50 0 7.2 0 92.8

Rzepka 1-27 (1) Utica Shale 3,110 11.2 8.4 77.6 2.8

Rzepka 1-27 (2) Utica Shale 3,114 17.3 8.7 71.8 2.2

Rzepka 1-27 (3) Utica Shale 3,119 25.5 12.2 53.9 8.4

Rzepka 1-27 (4) Utica Shale 3,126 22.1 28.3 46.7 2.9

Whole Rock Mineralogy

Weight %
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Well Formation Depth (ft.) Clastic Carbonate Clay Other 

St. Albert 1-10 (1) Utica Shale 7,719 11.7 4.4 78.2 5.7

St. Albert 1-10 (2) Utica Shale 7,731 11.4 3.6 80 5

St. Albert 1-10 (3) Utica Shale 7,740 12.6 10.7 73.4 3.3

St. Albert 1-10 (4) Utica Shale 7,752 14.3 2.6 81 2.1

St. Allis 2-30 (1) Utica Shale 5,291 13.8 4.6 77.7 3.9

St. Allis 2-30 (2) Utica Shale 5,298 22.4 12 61 4.6

St. Allis 2-30 (3) Utica Shale 5,307 6.8 47.4 37.3 8.5

St. Allis 2-30 (4) Utica Shale 5,313 23.7 1.6 70.5 4.2

St. Allis 2-30 (5) Utica Shale 5,318 10.8 11.5 72.9 4.8

St. Allis 2-30 (6) Utica/Collingwood 5,319 26.9 14.2 0 58.9

Taylor 1-35 (1) Utica Shale 3,090 25.4 2.6 67.9 4.1

Taylor 1-35 (2) Utica Shale 3,094 23.2 12.5 59.9 4.4

Taylor 1-35 (3) Utica Shale 3,101 10.5 4.5 81.8 3.2

Thompson 1-30 (1) Utica Shale 2,235.5 27 27 44 2

Thompson 1-30 (2) Utica Shale 2,246 22 28 47 3

Thompson 1-30 (3) Utica Shale 2,260 34 27 36 3

Thompson 1-30 (4) Utica Shale 2,270 25 19 53 3

Thompson 1-30 (5) Utica Shale 2,286 26 28 43 3

Thompson 1-30 (6) Utica Shale 2,307 17 26 52 5

Thompson 1-30 (7) Utica Shale 2,311 23 19 54 4

Thompson 1-30 (8) Utica Shale 2,321 22 34 42 2

Thompson 1-30 (9) Utica Shale 2,331 18 41 36 5

Visser 1-27 (1) Utica Shale 6,705 19.4 4.6 70.6 5.4

Visser 1-27 (2) Utica Shale 6,720 22 10 64 4

Visser 1-27 (3) Utica Shale 6,725 32.4 0 54.7 12.9

Visser 1-27 (4) Utica Shale 6,732 37.1 19.2 34.4 9.3

Visser 1-27 (5) Utica Shale 6,743 23.5 7.4 63.6 5.5

Visser 1-27 (6) Utica Shale 6,752 20.8 8 67.1 4.1

Weingartz 1-7A (1) Utica Shale 10,065 22 3.8 71 3.2

Weingartz 1-7A (2) Utica Shale 10,082 6 4.6 84.2 5.3

Weingartz 1-7A (3) Utica Shale 10,089 14.7 7 75 3.3

Winterfield Deep A-1 (1) Utica Shale 9,885 11.3 11.4 73 4.3

Winterfield Deep A-1 (2) Utica Shale 9,893 27 8.5 60 4.5

Whole Rock Mineralogy

Weight %

Table 1 (cont):  Quantitative mineralogy based on x-ray diffraction 

results. 
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A classification scheme was created using a ternary diagram with non-clay 

siliciclastic, clay and carbonate end members (figure 4-1).  This classification scheme was 

used to subdivide the Utica Shale into various lithofacies. 

 

Figure 4- 1:  Classification scheme created for the Utica Shale based on quantitative 
mineralogy 

 

Minerals that would normally be classified in the “other” category (pyrite, 

anhydrite, fluorapatite etc.) are lumped with the non-clay siliciclastic fraction in this 

classification scheme.  These minerals compose a relatively small (<5%) fraction of most 

samples, and are not thought to influence results of facies distributions except in the 

samples taken from the unconformity, which plot as non-clay siliciclastics in this 

classification scheme.  Results are plotted in figure 4-2.   
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Figure 4- 2:  Ternary diagram filled with 12 wells from the Utica Shale in the Michigan 
basin.  Results indicate two distinct lithofacies. 

 

The results indicate two dominant lithofacies are present in the Utica Shale, a 

Silty Claystone and a Silty Marl.  The Silty Marl facies is present in the southeastern sub-

basin, in the northern part of the Michigan basin, and in the upper part of the Utica 

Shale.  The upper part of the Utica Shale is represented by the Bruske 1-26A well.  The 

shift to a more carbonate-rich rock is observable in wire-line log analysis.  Figure 4-3 

shows a W-E trending cross section through the middle of the basin with the cored 

intervals colored to show the distribution of observed facies.  The Bruske 1-26A well 

shows an alternating Silty Marl facies and Silty Claystone facies in the upper part of the 
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Utica Shale, while the cores from the lower interval of the Utica are all composed of the 

Silty Claystone or Claystone facies.  Figure 4-4 shows a similar cross section in the 

southern part of the basin.  The Thompson 1-30 well plots primarily as a Silty Marl with 

some of the sampled interval plotting as a Silty Claystone.  The XRD data agrees with the 

wire-line log signature.  In places where the NPHI plots to the left of the PEF curve the 

Silty Marl facies is present, and where the NPHI plots on top of the PEF curve the Silty 

Claystone facies is present.  Wire-line log signatures are therefore considered reliable 

for the Utica Shale and suggest the Silty Marl facies is limited to the upper part of the 

Utica Shale as well as small, localized intervals in the lower part of the Utica, particularly 

in the subbasin.   

 The clay size fraction of most samples is dominated by phyllosilicate minerals, 

primarily illite/muscovite, with varying amounts of chlorite.  Quartz, K-feldspar, 

dolomite and calcite are also commonly observed in x-ray diffraction results.   Outliers 

to the data set are taken from carbonate lenses, where carbonate may compose over 

90% of the mineralogy, or from the unconformity found between the Utica Shale and 

the underlying Trenton/Collingwood which is discussed above.   

 X-ray diffraction results show that the Utica Shale is composed of a high relative 

abundance of clay minerals.  Most samples analyzed are shown to be composed of 

greater than 50% clay minerals, with some samples being composed of nearly 80% clay 

minerals.  High clay content generally corresponds to small pore throats and ductile 

deformation, and is therefore ideal for geologic seals in mudrock formations. 
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Figure 4- 3:  W-E trending cross-section of the Utica Shale with XRD facies superimposed 
on the log tracks.  The Utica Shale is primarily a Silty Claystone in the lower part, and an 
alternating Silty Claystone/Silty Marl in the upper part. 
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Figure 4- 4:  The Utica in the southeastern subbasin.  The Thompson 1-30 well is the only 
core in this study with the Silty Marl facies present in the lower part of the Utica.
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5.  QEMSCAN/PETROGRAPHIC RESULTS AND ANALYSIS 
 

Microstructure and porosity distribution in mudrocks is an important factor 

governing subsurface fluid flow properties.  Rock strata considered to be potential 

confining layers may have fracture-dominated flow, from the nano-pore to the macro-

pore range.  Imaging pore structures and nano-scale pore distribution as well as 

microfractures is therefore a fundamental characterization tool utilized to investigate 

seal integrity in mudrock formations.  Six samples were analyzed with varying 

mineralogical properties in 3mm x 3mm fields using QEMSCAN®.   

A representative Silty Marl facies sample is shown in figure 5-1 from the 

Thompson 1-30 well in Lenawee County at 2,277 ft.  There are no observed micro-

fractures and less than 5% unidentified or background structures.  This observation is 

consistent with observations made in core for the same facies, where marly rocks are 

generally less prone to fracture than silty (or argillaceous) rocks.  The mineralogy 

consists of 20% quartz, 20% dolomite, 40% illite and 20% other.  The high percentage of 

quartz and dolomite is noteworthy as the Thompson 1-30 sample is the only sample 

analyzed with such high values of quartz and carbonate content.  This well is located in 

the southeastern sub-basin, likely the first part of the state affected by the influx of 

clastics following filling of the Taconic foreland basin.  Pores observed through 

QEMSCAN® analysis of the Thompson 1-30 sample are interpreted to be organic 

porosity (OM), based on the geometry of the pores, and the chemical composition. 

Composition of pore space is discussed further below.  Figures 5-2a and 5-2b show 

backscattered electron (BSE) images of OM porosity surrounding carbonate grains and 

near framboidal pyrite.  Sulphate-reducing bacteria and associated diagenetic alteration 

is interpreted to be responsible for OM porosity in this sample based on the proximity of 

pyrite clusters to organic pore space.  Dolomite accounts for 18% of the whole rock 

mineralogy in the sample.  The dolomite is observed to replace calcite as well as 
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authigenic overgrowths.  Calcite is observed with syntaxial overgrowths as well as 

dolomite cement which formed during diagenesis.  Figure 5-3 shows a brachiopod found 

in a clay matrix, suggesting little to no transport of the fossil.  The presence of intact, 

infaunal brachiopods living in the sediment supports oxygenated conditions, at least 

near the sediment-water interface.   
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Figure 5- 1:  QEMSCAN field of the Thompson 1-30 well at 2,277 ft.  The Thompson well 
consistently plots as a ‘Silty Marl’ and is rich in carbonate content. 
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Figure 5- 2a and 5-2b:  BSE images of OM porosity in the Thompson  1-30 2,277 ft. 
sample.  OM lines the rim of dolomite grains in figure 5-2a and is within a pyrite cluster 
in figure 5-2b. 

    

Figure 5- 3:  Intact brachiopod fossil found during conventional thin section analysis at 
2,255 ft. in the Thompson 1-30 core.  The condition of the brachiopod suggests it was 
living in (infaunal) the sediment. Scale bar reflects 0.4 mm. 

 

 A sample from the Bruske 1-26A well in Osceola County at 8,479 ft was analyzed 

by the QEMSCAN® software and is shown in figure 5-4.  Alternating carbonate and 

clastic lenses with larger grain size suggest varying energy regimes, with larger grains 

deposited during periods of higher energy.  Some small, bedding parallel fractures are 

observed and cemented with gypsum/anhydrite cement.  This is the only thin section 

examined from the upper part of the Utica Shale.  The lenses of coarser grained particles 

are primarily composed of carbonate, with the geometry of grains suggesting skeletal 

origin.  The increased calcite content in the lenses is interpreted to be locally reworked, 

fossiliferous debris deposited during higher energy regimes.  These observations suggest 

a shift in depositional environment from what is observed in the lower part of the Utica 
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Shale. The upper interval of the Utica Shale is commonly observed to have carbonate 

lenses and bedding structures consistent with deposition above storm weather wave 

base, indicating an overall shoaling upward trend.   
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Figure 5- 4:  QEMSCAN field of the Bruske 1-26A well at 8,479 ft.  The Bruske well 
QEMSCAN field shows that mineralogy varies in bedding parallel lenses.  These lenses 
are composed of larger grains and suggest shifting energy regimes. 
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Figure 5- 5a and 5-5b:  Acritarch fossil and disarticulated trilobites observed in the 
Bruske 1-26A well at 8,426 ft. and 8,428 ft. respectively.  The scale bars are 0.1 mm and 
0.8mm for the images shown. 

  

Standard thin section analysis of samples from the Bruske well was also 

performed (figures 5-5a, 5-5b).  Figure 5-5a is a thin section taken from a structure-less 

dull gray mudrock section of core (8,426 ft.) with no megascopically visible grains or 

bedding structures.  An intact acritarch fossil surrounded by a mud matrix suggests quiet 

water conditions during deposition with little or no current-induced transport.  

Acritarchs are organic-walled microphytoplanktonic organisms that may be very diverse 

in appearance, and are frequently found in Paleozoic sedimentary rocks.  The spikes 

observed on the wall of the organism are interpreted to have been used as a mechanism 

to stay afloat or for defense against predators.  Disarticulated trilobites, brachiopods 

and crinoid ossicles are observed in a nearby thin section obtained from a depth of 

8,428 ft. (figure 5-5b).  This thin section was taken in a carbonate lens where silt to sand 

sized carbonate grains are common.  The thin section analysis reveals the carbonate 

lens to be composed of disarticulated skeletal fragments.  These textures are 

interpreted as the fossil fragments of marine organisms that lived in nearby 

environments and were reworked during higher energy events.  The acritarch fossil is 

found in the Utica Shale surrounded by a clay matrix, while the trilobites are present 

primarily in carbonate lenses.  This observation suggests the acritarch lived in a pelagic, 

open marine environment while the trilobites and crinoids were benthic organisms and 
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are interpreted to have lived in shallower, well circulated water nearby and deposited as 

a result of storm activity, where they were reworked and disarticulated.   

 The Prevost 1-11 core is located within the region of anomalous well log 

signature in the Saginaw Bay area and was analyzed using SEM technques.  Figure 5-6 

shows QEMSCAN® analysis from a sample in the Prevost 1-11 well in Bay County at 

9,360 ft.  This sample contains a high abundance of clay minerals (68%), 20% siliciclastic 

sediments, and less than 4% carbonate.  This sample has numerous bedding parallel 

fractures with gypsum/anhydrite cement, indicating some amount of fluid flow in open 

fractures at some point in time.   

The log signature observed in the Prevost 1-11 well was originally thought to be 

the result of elevated coarse siliciclastic content, due to initial XRD analysis.  SEM 

analysis shows that the Prevost 1-11 well does not contain significant amounts of coarse 

clastic sediments, but instead a high abundance of clay minerals.  The wire-line log 

signature found around the Saginaw Bay area is currently suggested to be the result of 

overpressure in the formation causing blowouts.  The well file for the Prevost 1-11 well 

indicates that high pressure gas is present in the Utica Shale interval.  Clay minerals may 

hold a large amount of bound water, which may cause the formation to become over-

pressured, causing blowouts during drilling.  Pyrite clusters are common in the Prevost 

1-11 SEM analysis and a cluster of pyrite overprinting micro-fractures is shown in an 

electron-transfer dissociation (ETD) image as well as a small QEMSCAN® field in figures 

5-7 and 5-8.   
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Figure 5- 6:  QEMSCAN field for the Prevost 1-11 well at 9,360 ft.  The Prevost 1-11 well 

is located in Bay County and is the only well located within the zone containing an 

anomalous log signature. 
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Figure 5- 7:  Framboidal pyrite cluster around cemented micro-fractures. 

 

This second QEMSCAN® field (figure 5-8) is generated from the same thin section 

as the first field, and is not the same size as the other fields generated in this study (the 

dimensions of the field are 2mm x 2mm).  The cementing material observed around the 

pyrite cluster is gypsum/anhydrite.  There appears to be an elevated amount of OM 

porosity around the pyrite cluster but an elemental spectrum of the composition of the 

pores could not positively identify increased organic content.  The micro-fractures found 

through the pyrite cluster cross-cut individual framboids, suggesting the pyrite was 

formed before the microfractures.  The black “hair shaped” unidentified mineral near 

the top of figure 5-10 is extra carbon that is coated on the thin section and is not part of 

the thin section itself.    
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Figure 5- 8:  Prevost 1-11 well at 9,360 ft.  Pyrite is clustered around an area full of 
sealed micro-fractures.  Cementing material is gypsum/anhydrite. 
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The State Albert 1-10 well in Montmorency County is studied extensively 

through SEM analysis.  A 3mm x 3mm QEMSCAN® field is generated along with a BSE 

field of the same dimensions and the same location (figures 5-9 and 5-10).   

 

Figure 5- 9:  QEMSCAN field for the St. Albert well at 7,728 ft.  The St. Albert 1-10 well 
was drilled in Montmorency County, in the northeastern part of Lower Michigan.  
Fractures occur parallel to bedding. 
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Figure 5- 10:  ETD image for the St. Albert well at 7,728 ft.  This image can be magnified 
and is used to check the QEMSCAN® software for accuracy. 

 

The sample analyzed is taken at a depth of 7,728 ft.  The resulting fields show a 

primarily clay matrix with gypsum/anhydrite cemented fractures and silt sized detrital 

quartz grains.  The grains are moderately well rounded and are not the result of 

authigenic mineralization.  Dolomite is observed replacing calcite and interpreted to 
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have formed in-situ.  Montmorency County is located in the northeastern part of the 

Michigan basin, and the upper interval of the Utica Shale in this location is observed to 

contain increased carbonate content (discussed in Ch. 3).  This sample was taken from 

the lower interval of the Utica, near the contact with the underlying Collingwood Mbr.  

The matrix is composed of phyllosilicate minerals, primarily illite with some mica group 

minerals and chlorite.  Chlorite is identified as chamosite (a reduced iron-rich chlorite) 

by the iDiscover software.  Pyrite and K-feldspar are also present in the sample but in 

low abundance.  The State Albert 1-10 well contains numerous bedding parallel 

fractures typically cemented with gypsum/anhydrite.  The BSE image field (figure 5-10) 

is used to ensure accuracy of the QEMSCAN® software.  The resolution and zoom of the 

field may be increased to accurately depict grains and gives a higher degree of 

confidence for accurate mineral identification.  Figure 5-11 is a high resolution ETD 

image that shows authigenic clay minerals coating detrital grains.  The scale bar in the 

photo is for 10 µm.  These relationships suggest that, at least some clay minerals were 

formed during diagenesis, further reducing intergranular porosity and permeability.  

 

Figure 5- 11:  Authigenic mineralization of clay minerals and coating of detrital grains.  
Scale bar is 10 µm. 

 

The Arco & Conklin 1-31 (Jackson Co.) sample studied was taken at a depth of 

3,696 ft.  The field generated by QEMSCAN® analysis is shown below in figure 5-12.  The 

field is taken from a section of core with visible grains and cross-bedding.  This section of 
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core was probably deposited above storm weather wave base and is the only 

QEMSCAN® field to have been taken from an area of core with cross-bedding.  The 

QEMSCAN® results show that the larger grains are quartz and K-feldspar.  Authigenic 

dolomite composes just over 11% of the whole rock mineralogy.  Calcite is included into 

the dolomite fraction because it represented <1% of the field.  Minor intergranular 

cement is primarily gypsum/anhydrite.  Clay minerals are the most abundant mineral 

type observed in this sample although they compose less than 50% of the sample, 

significantly less than previously analyzed samples. 
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Figure 5- 12:  QEMSCAN® field of the Arco-Conklin well at 3,696 ft.  Increased siliciclastic 
content and carbonate grains are observed to occur in a rhythmic pattern. 

In sample 3,696 ft a large, irregular and elongate pore occurs in the lower-right 

part of the field.  The origin of this vein-like pore is difficult to analyze with confidence in 

a standard QEMSCAN® field, however when the QEMSCAN® field is modified to show 

only pores and OM, the pore is clearly well connected (figure 5-13).  The morphology of 

this porosity is suggestive of origin related to a stylolite.  Stylolites form as a result of 

pressure induced mineral dissolution.  High stress associated with dissolution can lead 
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to the formation of stylolites, and these relationships are present in the Arco-Conklin 

sample presented in the QEMSCAN® field in figures 5-12 and 5-13.  The stylolite would 

likely have been sealed shut in the subsurface and opened during coring, slabbing, or 

during the creation of the thin section itself.   

 

Figure 5- 13:  Negative image of porosity in the Arco-Conklin well.  The connectivity of 
pore space is not as easily observed in QEMSCAN® analysis, however here it is shown to 
be well connected. 

 

 

The Weingartz 1-7A well located in Clare County is sampled at a depth of 10,076 

ft.  The QEMSCAN® field reveals a primarily clay matrix with nearly 20% quartz content 

and some carbonate grains (figure 5-14, below).   
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Figure 5- 14:  QEMSCAN® field of the Weingartz well at 10,076 ft.  Note the increased 
abundance of bedding parallel microfractures.  These fractures are interpreted to have 
been formed as a result of pressure release as the core was taken to the surface and 
stored. 

The rock is highly fractured when compared to previously analyzed samples.  

Fractures are cemented with gypsum/anhydrite and in some instances cut across large 

grains.  Open fractures observed in the sample likely formed late, possibly as a result of 
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pressure release as the rock was brought to the surface, while mineralized fractures are 

of geologic origin.  The Utica is buried to significant depth in Clare County and at a 

pressure gradient of 0.5 psi/ft., it is reasonable to infer that the rock was under a 

minimum of 5,000 psi in the subsurface.  Upon drilling and coring the rock was brought 

to the surface where only atmospheric pressure conditions exist.  Many of the fractures 

observed in this sample formed during this rapid pressure release when the samples 

went from being under 5,000 psi to atmospheric pressure conditions (14 psi) and were 

stored.  Figure 5-15 shows a grain cross cut by a fracture and is suggested to have been 

formed in this fashion. 

   

Figure 5- 15:  Grain being cross cut by an artificial fracture.  The fracture is suggested to 
not have been open in the subsurface. 

The Weingartz 1-7A QEMSCAN® field has small OM pores scattered throughout.  

Figure 5-16 is one such pore.  The irregular shape of the pore and the relationship of the 

pore to surrounding grains aids in interpretation of OM porosity.  To be confident in 

interpreting the origin of this porosity a spectrum of elemental abundances is required.  

One such spectrum is shown along with the BSE image and shows an 88.45% carbon 

signature.  Fractures filled with epoxy typically contain Cl along with C and O, and the 

absence of Cl suggests the spectrum generated is that of organic matter.  Pores 

interpreted as OM are frequently observed to be in close proximity to apatite grains or 
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pyrite.  Pores in this study that have a similar elemental spectrum are considered 

organic and have been labelled as such (OM). 

 

Figure 5- 16:  OM porosity within the Weingartz 1-7A well and the chemical composition 
of the pore.  A high carbon signature suggests the pore to be organic.  Scale bar is 500 
µm. 

 

Results from QEMSCAN® analysis are consistent with quantitative mineralogy 

results produced by X-ray diffraction analysis (figure 5-17, below).  QEMSCAN® analysis 

of samples from the Thompson 1-30 well and the Bruske 1-26A plot as a ‘Silty Claystone’ 

on a ternary composition diagram.  The QEMSCAN® results show that the Utica Shale 

consistently plots as a Silty Claystone in the classification scheme presented in figure 4-

1.   Several samples with mineralogical analysis from whole rock x-ray diffraction only 

plot in the Silty Marl or Argillaceous Siltstone facies.  Although these facies were not 

observed in QEMSCAN® analysis, these mineralogical facies are expected to be 

accurately characterized by the x-ray diffraction analysis.  Thin sections selected are 

interpreted to be representative of the rock at the depth provided.  Each thin section 

was taken from a section of rock that was characteristic of the Utica Shale in the core 
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provided.  The Arco-Conklin sample is the one exception in that it was taken from a 

cross-bedded section of core with grains visible to the naked eye.  The Bruske, 

Thompson, Prevost, St. Albert, and Weingartz thin sections were all taken from areas of 

core that appeared to best represent the general core appearance.  This was done in 

order to ensure an accurate depiction of quantitative mineralogy for each well.  Of the 9 

thin sections generated for use in this study, only 6 were used for QEMSCAN® analysis.  

Thin sections that were not selected for QEMSCAN® analysis were observed under a 

standard petrographic microscope and no interpretations of mineralogy were made on 

such samples.  The samples that were selected for QEMSCAN® analysis have the best 

field size and characteristics (no fractures, artifacts) and are most representative of the 

core and depth provided. 
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Figure 5- 17:  QEMSCAN® results plotted on a ternary diagram.  Results confirm XRD 
analysis on the distribution of lithofacies.  The Bruske 1-26A and Thompson 1-30 wells 
do not plot directly in the ‘Silty Marl’ facies, but are within expected facies boundaries. 
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6.  MERCURY INJECTION-CAPILLARY PRESSURE TESTING 
 

Mercury injection porosimetery is used to determine porosity, pore connectivity, 

and pore size for five samples from the Thompson, Bruske, Prevost, Arco & Conklin and 

Weingartz wells.  Each sample with measured porosity and calculated permeability 

values is shown in table 2.   

 

Table 2:  Measured porosity and calculated permeability values for each sample 
analyzed. 

  

The measured outputs given by the mercury porosimeter are total intrusion 

volume, total pore area, pore diameter, bulk density, apparent (skeletal) density and 

porosity.  The total intrusion volume is the total volume of mercury that is intruded 

during the experiment.  The intrusion volume converted to an area (assuming cylindrical 

shaped pores) is the total pore area.  The pore (throat) diameters are determined by the 

size at the 50th percentile on the cumulative volume and area graphs.  An average is 

taken from these amounts and is reported as the average pore diameter.  The mass of 

the sample (measured) divided by the bulk volume (penetrometer filled with mercury at 

0.5 psia) yields the bulk density.  Once the sample in under maximum pressure 

(assuming 100% pore volume filled with mercury) the mass of the sample divided by the 

volume yields apparent (skeletal) density of the rock.  Porosity can then be calculated by 

dividing the bulk density by the apparent density.  The permeability is calculated based 

on the first inflection point of rapidly rising mercury intrusion on the intrusion curve.  

The corresponding pressure for the inflection point corresponds to the pore throat size 

at which mercury can migrate in a sample. 

Depth (ft.) Weight (g) Porosity (%) Permeability (mD)

Thompson 1-30 2,277 16.251 0.77 0.003

Bruske 1-26A 8,479 16.083 2.66 0.179

Prevost 1-11 9,353 13.329 6.11 5.368

Arco-Conlkin 1-31 3,696 14.214 2.78 14.71

Weingartz 1-7A 10,076 14.539 5.93 89.42
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Figure 6- 1:  Capillary Pressure vs. Percent Saturation.  Note the decrease in pressure required 
to mobilize the non-wetting fluid phase when reservoir (CO2) conditions are given. 
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Mercury injection porosimetery was used in this study to estimate the regional 

seal capacity for the Utica Shale in the Michigan basin.  Figure 6-1 is a plot of capillary 

pressure vs. pore volume intruded.  The y-axis represents pressure and the x-axis 

mercury saturation.  The values for pressure are plotted on a logarithmic scale and the 

Hg saturation is plotted in reverse order.  As pressure is increased more of the sample 

becomes saturated.  When the line that represents each sample moves in a straight line 

to the left (increased saturation without increased pressure) the sample is readily 

imbibing the non-wetting fluid phase.     

CO2 and Hg have different surface tensions and therefore contact angles that 

depend not only on the fluid, but on the surface to which the fluid is contacting.  

Therefore when calculating in-situ reservoir conditions the properties of the injection 

fluid must be taken into account.  CO2 breakthrough pressures may be an order of 

magnitude smaller than breakthrough pressures measured in laboratory experiments 

using Hg.  Estimated CO2 breakthrough pressures are plotted on the secondary y-axis in 

figure 6-1.  These values are calculated from the conversion equations generated by 

Hartmann and Beaumont, (1999).  The pressures used in this study are accurate for 

gaseous CO2 and not supercritical CO2.  The buoyancy forces for gaseous CO2 should be 

even higher than supercritical CO2, and therefore the pressures used in this study are 

conservative numbers, with the actual pressures required to migrate the non-wetting 

fluid phase likely to be substantially higher than recorded. 

Figure 6-2 shows a plot of cumulative intrusion vs. pore diameter.  Pore throat 

size distributions were calculated from mercury injection capillary pressure (MICP) data 

using relationships that are dependent on the properties of both mercury and the rock 

matrix.  Pore throats are assumed to be cylindrical allowing for use of the Washburn 

equation: 

D = -4 γ cos(θ) / P 

D is pore throat diameter, P is mercury intrusion pressure, γ is the surface tension of 

mercury and θ is the advancing mercury contact angle.  The plot shows that a vast 

majority of the intrusion takes place in pore throats with a diameter of 0.1 µm or less 
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(nanometer scale).  Intrusion in larger pore throats is considered to primarily take place 

in fractures located in the sample, or as Hg conforms to irregularities at the surface of 

the sample.  This recorded intrusion is not representative of in-situ conditions as 

pressure release micro-fractures and sample surface irregularities are artifacts that are 

only encountered in the lab.  The Weingartz sample had a significant amount of 

intrusion at the 10’s of µm scale.  The sample used for MICP analysis for the Weingartz 

well is from a depth of 10,076 ft. and therefore has undergone significant pressure 

changes allowing fractures to form after drilling.  The observed intrusion at larger pore 

throats for the sample may therefore be artifacts, fractures that would not be open and 

transporting fluids in the subsurface.  The remaining samples are observed to have little 

to no intrusion until the nanometer scale pore space.  This observation is consistent 

with what would be expected in an impermeable geologic seal.   

A mercury saturation of 35% corresponds to the pore system that dominated 

flow through rock (Hartmann and Beaumont, 1999).  Figure 6-3 is a plot that takes into 

account pore throat size, reservoir capillary pressure, mercury saturation and height of 

non-wetting fluid column required to enter 35% of the pore throat space.  The vertical 

black bar labelled “R35 Port” represents 35% mercury saturation in a given sample.  This 

point is traced to the secondary y-axis on the left side of the figure, showing the 

capillary pressure (of CO2 in psia) required to access 35% of the pore throats.  The 

corresponding height of CO2 column is the height of buoyant non-wetting fluids (in this 

case CO2) required to overcome the capillary resistance of the pore throat radii.  For 

example, when considering the Thompson 1-30 sample (in green), the pore throat radii 

that corresponds to 35% mercury saturation is < 0.1 µm (nanopore).  A capillary 

pressure of ≈3,000 psia CO2 is required to access this amount of pore space, and a CO2 

column 5,200 ft high would be required to overcome the capillary resistance of the 

pores to actively migrate fluids.  The Weingartz sample is an outlier in the data set, with 

macropore sized pore throats and only 15 psi CO2 required to access pore throats, 

corresponding to a CO2 column height of only 60 ft.  The Weingartz sample was 

previously discussed as having been buried to significant depth (>10,000 ft.) and 
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artificial fractures may have resulted in inaccurate measurements of porosity, intrusion 

volume, and pore throat sizes.  All other samples from the Thompson, Bruske, Prevost 

and Arco-Conklin wells have breakthrough pressures over 3,000 psi CO2 corresponding 

to CO2 column height of over 5,000 ft.  Therefore the Utica Shale in the Michigan basin 

will act as a regional geologic seal for a minimum of 5,000 ft. of CO2, and greater than a 

10,000 ft. of CO2 column (see Bruske sample).  The column heights suggested are once 

again representative of gaseous CO2.  Supercritical CO2 will have a lower buoyancy force 

than gaseous CO2 and therefore the column heights are once again conservative values.   

The Arco-Conklin sample is the only sample in this study that used a single piece 

of rock during MICP testing, and is also the only sample taken from a piece of core with 

silt-sized grains present.   The Arco-Conklin sample is taken through a cross-bedded 

section of core and has breakthrough pressure at around 3,500 psia CO2.  The capillary 

resistance of the pore throats in the sample are capable of holding a 7,000 ft. column of 

CO2 before transporting fluids.   The cross-bedded section of core therefore does 

behave as a geologic seal.  SEM analysis conducted on the Arco-Conklin well shows a 

primarily clay composition, with the cross-bedding consisting of larger quartz and 

dolomite grains.  This piece of core was chosen to ensure quality control and for 

experimental results.   

MICP analysis is supplemented with SEM, XRD and thin section analysis in order to 

document mineralogical and textural variations.  The results observed during both SEM 

and MICP analyses are consistent with one another.  Fractures are most abundant in the 

Prevost 1-11 well and MICP analysis confirms this sample has the highest porosity and 

permeability relative to the other samples.  The lowest porosity and permeability values 

are observed in the Thompson 1-30 well.  An absence of connected fractures or 

fracture-fill cement is also observed with SEM analysis.  Pores observed in SEM analysis 

of the Thompson 1-30 well are thought to originate as organic (OM) porosity in the 

absence of intergranular pores.   

Porosity and permeability values may be in error due to microfractures that 

developed during or after coring.  It is possible stress relief fractures account for some 
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amount of porosity and mislead permeability calculations.  Older cores that have been 

stored for longer periods of time and that were originally buried at significant (8,000 ft. 

+) depth tend to have more bedding parallel stress relief fractures than newer, 

shallower cores.  It is possible that older cores, slabbed and stored for multiple decades, 

may be weaker and therefore subject to error during MICP analysis (microfractures may 

develop during storage over time).     

 

Figure 6- 2:  Cumulative Intrusion vs. Pore Size.  Each curve shows the majority of intrusion 
occurring at the nanometer scale pore size.
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Figure 6- 3:  Height of CO2 column required to overcome capillary resistance.
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7. MECHANICAL TESTING 
 

Triaxial strength tests are used to measure the mechanical properties in rocks.  

Shales that have low density and high ductility are ideal geologic seals.  Increased 

ductility allows for rock to undergo large amounts of strain without giving way to brittle 

failure, and a loss of seal integrity due to mechanical fracture.  Shale with density values 

greater than 2.1 g/cm3 will undergo brittle failure given sufficient strain (Hoshino et al., 

1972).  Ductility is also a function of confining pressure, where increasing confining 

pressure increases ductility of the rock.  Results for triaxial strength tests and testing 

parameters are shown below in tables 3 and 4. 

 

 

Table 3:  Sample names and testing parameters for the six samples used in this study. 

 

Table 4:  Results for each sample including compressive strength, Young’s modulus, and 
Poisson’s ratio. 
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Samples taken from the Bruske well have the higher compressive strength of the 

two lithologies (Silty Claystone/Silty Marl).  Results for all samples are shown in figures 

7-1, 7-2, 7-3.  The compressive stresses required to cause mechanical failure of the 

Bruske samples are 40,032 psi and 33,150 psi (table 4).  These values are considerably 

higher than the 11,591 psi to 19,324 psi required to cause mechanical failure for the 

Thompson samples. Additionally the static Young’s Modulus (ES) [as determined by 

mechanical deformation of the sample] of the Bruske samples was generally higher than 

Thompson samples, (5.28-7.08) x106 psi as compared to (~3-5.55) x106 psi. Likewise the 

static Poisson’s Ratio (µS) for the Bruske samples is higher (0.26-0.28) than the 

Thompson samples (0.16-0.22).  

A higher Young’s Modulus and a lower Poisson’s Ratio means the Bruske samples 

will deform in a more brittle fashion than the Thompson samples.  An interesting note is 

that while the Bruske samples have higher compressive strength, it is the Thompson 

samples that fail truly catastrophically, exhibiting significant stress drops upon failure, as 

opposed to the much more gentle failures shown by the Bruske samples.  This increase 

in ductility shown by the Bruske samples may be explained by the increased depth, as 

an increase in depth correlates to an increase in confining pressure, and therefore, 

ductility.  The assumed pressure gradient for the Michigan basin in this study is 0.5 

psi/ft, and since an increase in confining pressure corresponds to higher ductility, the 

results are expected.  The Bruske samples were expected to fail in a more brittle fashion 

than the Thompson samples, primarily due to higher porosity in the Bruske samples. The 

effect of porosity on mechanical behavior is discussed by Lashkaripour, (2002).  The 

results suggest that confining pressure may be a more determining factor in rock 

ductility than porosity, at least when the change in confining pressure is significant ( > 

3,000 psi + ).  It is difficult to compare these samples because they are tested at vastly 

different confining pressures to mimic in-situ conditions.  Both of the samples analyzed 

are shown to require thousands of psi higher than what the in-situ stresses are at depth 

in the subsurface, indicating that the Utica Shale is not likely to succumb to brittle 

fracture in the subsurface in the Michigan basin. 



81 
 

 

Figure 7- 1:  Thompson samples #5, 6 and 10.  This graph has been modified in order to 

quantify anisotropy.  A 40% reduction of rock strength is observed at 45% to bedding.  

Sample #5 is taken at 90⁰ to bedding, sample #6 at 0⁰ to bedding, and sample #10 at 45⁰ 

to bedding. 
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Figure 7- 2:  Thompson sample #8.  This sample may have errors in the values for elastic 
parameters due to transducer failure during testing. 
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Figure 7- 3a and b:  Bruske 1-26A samples #3 and #4.  The Bruske samples are seemingly 
much stronger than the Thompson samples, failing at over 30,000 psi as opposed to 
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around 15-20k psi.  This increase in strength is attributed to testing parameters 
mimicking in-situ conditions. 

Thompson samples 1-30 #6 and #10 were cored parallel to and oblique (45°) to 

bedding respectively, and they exhibit some mechanical behaviors which can be 

described as “typical of anisotropic formations”. Thompson 1-30 #6 shows a higher 

value for ES (5.55x106 psi) than the two Thompson samples plugged perpendicular to 

bedding (#5 & #8), and while the ultimate strength of #6 is slightly lower (14,088 psi) 

than for the perpendicularly plugged samples, this is likely due to small failures that 

occurred at ~11,500, 12,500, and 13,000 psi applied differential stress, therefore it is 

possible that the ultimate strength parallel to bedding is similar to and possibly even in 

excess of strength perpendicular to bedding.  Thompson 1-30 #10, which was plugged 

oblique to bedding, exhibits a compressive strength (11,591 psi) that is far below the 

other Thompson samples tested (14,088-19,234 psi), which is a 40% reduction in rock 

strength at 45⁰ to bedding.  As a result, wellbores drilled at 45⁰ to bedding are more 

liable to be subjected to bore hole collapse than wellbores drilled at 90⁰ to bedding (Kier 

et al., 2011).  The results indicate that while the samples taken at 45⁰ to bedding are 

significantly weaker than the samples taken at 90⁰ or 0⁰, the formation is not considered 

to be highly anisotropic.  Highly anisotropic formations may exhibit a loss of strength of 

up to 85% when tested at 45-55⁰ to bedding planes (Kier et al., 2011). 

Thompson 1-30 sample #8 is shown to have two values of Young’s modulus and 

Poisson’s ratio (table 2).  During this test one of the axial displacement transducers was 

reported to have stopped responding at a point when ~26% of failure load was applied, 

and began responding again when ~60% the failure load was applied.  During this time 

all axial strain measurements were based only on one displacement transducer, and 

therefore are inaccurate.  Before and after this time both transducers were functioning 

as normal and strain calculations are believed to be correct.  Young’s modulus and 

Poisson’s ratio are typically measured in the range of 40-50% of failure load.  Accurate 

measurements were therefore not able to be made during the time of 40-50% failure 

load.  The two values provided have been taken during measurements of 21-26% and 
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60-65% of failure load.  These values are then end members of the spectrum for Young’s 

Modulus or Poisson’s Ratio. 

Measurements of P- and S-wave velocity were conducted on the samples Bruske 

1-26A #3 and #4, and Thompson 1-30 #5, all of which were plugged perpendicular to 

bedding (table 5). The Thompson sample exhibited P- and S-wave velocities of 13,697 

ft/s and 8,206 ft/s respectively, and dynamic elastic moduli of ED=5.86x106 psi, 

KD=3.52x106 psi, and GD=2.40x106 psi, all of which are the lowest of the measured 

samples, where ED is the dynamic Young’s Modulus, KD is the dynamic Bulk Modulus, 

and GD is the dynamic Shear Modulus.  The P-wave (15,758-17,126 ft/s) and S-wave 

(9,517-10,123 ft/s) velocities of the Bruske samples are slightly higher than those 

exhibited by the Thompson sample, however the calculated dynamic elastic moduli are 

markedly higher for the Bruske samples than the Thompson indicating the Bruske 

samples should behave in a more brittle fashion than the Thompson samples. Dynamic 

Poisson’s ratio for the 3 samples ranges from 0.21 to 0.23, which are within the range of 

expected values for shale formations with no real variation based on well location.   

 

 

Table 5:  Results of acoustic velocity testing.  Dynamic elastic parameters are within the 
range of dynamic values calculated through dipole sonic logs. 

 

Triaxial compressive strength tests on 6 samples from the Bruske and Thompson 

wells indicate that the failure strength of the Bruske samples is in the range of 33,150-

40,032 psi at a confining stress of ~4200 psi, as compared to a range of 11,591-19234 psi 

for the Thompson at a confining pressure of ~1100 psi. Young’s Modulus for the Bruske 

samples ranged from (5.28-7.08) x106 psi and the Thompson samples from (2.93-5.55) 

x106 psi.   
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Measurements of P- and S-wave velocity conducted on 2 Bruske samples and 1 

Thompson sample do not show a significant difference, though calculated dynamic 

elastic parameters would seem to indicate that the Bruske samples are generally stiffer 

than the Thompson samples.  Dynamic Poisson’s ratio for all samples was in the narrow 

range of 0.21-0.23.  The dynamic Young’s Modulus and Poisson’s Ratio values are within 

range (±5 x 106 or ±0.1) of dynamic values calculated from dipole sonic log data for the 

Bruske 1-26A well in figure 3-4.  This relationship suggests that dipole sonic logs do a 

reasonable job of estimating dynamic mechanical parameters. 

 The expected results would be a more brittle deformation for the Bruske 

samples based on the higher Young’s Modulus values, however it is the Thompson 

samples that have a failure envelope indicating more brittle behavior.  This relationship 

suggests that increasing confining pressure will both increase rock strength and ductility.  

The primary difference in testing parameter for the Bruske (higher in-situ ambient 

pressure) and Thompson samples (lower in-situ ambient pressure) is the increase of 

confining pressure for the Bruske samples.  The Thompson samples are buried as 

shallow as 2,200 ft and were tested with confining pressures as low as 1,137 psi, while 

the Bruske samples were tested with confining pressures of 4,200+ psi.  The typical 

overburden of the Utica Shale in the Michigan basin is well over 2,600 ft (figure 7-4, 

below).    The in-situ confining pressures for the Utica Shale across most of the Michigan 

basin will therefore be elevated as compared to the Thompson well.   

Results generated by triaxial strength testing and acoustic velocity testing are 

consistent with those expected in a geologic seal.  The compressive strength of the Utica 

Shale in laboratory testing is well in excess of subsurface in-situ confining pressures.  

The United States Environmental Protection Agency (EPA) controls regulations for 

carbon dioxide (Class VI) injection wells.  The EPA requires extensive site 

characterization and operators are restricted to injection pressures such that pressure in 

the injection zones does not exceed 90% of the fracture pressure of the injection zone.  

The calculated fracture pressure (injection pressure limit) is based on site-specific 

geologic and geomechanical data.  The pressure would therefore be dependent on the 
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mechanical properties of the injection zone underlying the Utica.  If the injection zone 

involved the Utica Shale in Lenawee or Osceola counties the fracture pressure that 

operators would be allowed to inject under would be 90% of the reported results (table 

4). 

  The values for Poisson’s ratio and Young’s modulus suggest the Utica Shale will 

deform in a ductile fashion, and is strong enough to withstand in-situ pressure 

conditions in the Michigan basin.  The mechanical properties measured in this study 

provide evidence that the Utica Shale will not undergo brittle deformation (causing 

fractures) in the subsurface, and injection pressures (as regulated by the US EPA) would 

be dependent on the injection zone for each prospective well.  Laboratory testing of 

core plugs from Utica Shale cores suggest that the Utica Shale is a strong and ductile 

mudrock formation, ideal for a regional geologic seal. 
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Figure 7- 4:  Utica (Shale) Formation overburden.  The burial depth of the Utica Shale 

over much of the Michigan basin suggests it will exhibit ductile deformation, and will 

require failure pressures much higher than are expected in the subsurface. 

Contour interval shown in legend 

Modified from Barnes, D.A.  (knoxstp.org/mi-strat.htm) 

  



89 
 

8. DISCUSSION AND CONCLUSIONS 
 

 The Utica Shale in the Michigan basin is a thick, mud-rich rock that is laterally 

persistent through the entire basin.  The clay fraction of the Utica frequently makes up 

over 50% of the whole rock mineralogy, with some samples composed of as high as 70% 

or more clay minerals.  The mineralogy may vary considerably over short distances, as 

evidenced by the increased carbonate content in the Thompson 1-30 well in Lenawee 

County which is not observed in the Arco-Conklin well in nearby Jackson County.  

Dolomite is the most common authigenic carbonate mineral observed in SEM analysis, 

commonly observed replacing calcite.  Pores are observed to be primarily on the 

nanometer scale, with most of the intrusion of the non-wetting fluid phase likely to take 

place in pores with breakthrough pressures corresponding to massive (>1,000 ft) CO2 

columns.  Mechanical testing suggests ductile deformation for in-situ conditions, with 

deformation occurring at fracture pressures that are 10’s of thousands of pounds per 

square inch (psi) higher than expected in the subsurface.  Increased confining pressures 

associated with significant burial depth (> 3,000 ft) will result in increased rock strength.  

Nanometer scale pore space, ductile deformation and significant burial depth allow for 

subsurface conditions ideal for a regional geologic mudrock seal.   

Lack of core availability for much of the state may provide some amount of error.  

The core used in this study is not distributed equally throughout the state, and therefore 

there are large areas where no sampling has been done.  South of the Saginaw Bay area 

there are only four cores studied, all located in or around the southeastern subbasin.  

Wire-line log correlations do not suggest a significant change in mineralogy or rock 

properties but the absence of data should be noted. Mechanical testing was completed 

on only 2 wells during this study.  The Thompson 1-30 and Bruske 1-26A wells have 

elevated carbonate content which made plugging the core easier.  It was difficult to take 

plugs from rock with high clay content and lack of full or “butt-end” core made it 

impossible to sample each core stored at the MGRRE facility.  Mercury Injection 

Capillary Pressure (MICP) analysis provided values for the Weingartz well of 
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permeability and porosity that may vary significantly from true subsurface conditions 

due to multiple bedding plane fractures.  These fractures (as previously discussed) are 

not believed to be open in the subsurface.  Mercury entering this artificial fracture 

network is likely being misinterpreted as porosity that would otherwise be unavailable 

in the subsurface.  The MICP results did indicate that at 35% saturation of the pore 

throats, the required breakthrough pressures for supercritical CO2 correspond to large 

buoyant super-critical CO2 columns. 

Various analytical techniques have been utilized in this study in order to characterize 

the Utica Shale in the Michigan basin.  X-ray diffraction, SEM petrography, MICP testing 

and mechanical testing have been used to determine and predict lithologic properties of 

the Utica Shale in the subsurface.  The results from each technique are compatible, 

providing concrete evidence that the Utica Shale contains abundant clay minerals, 

contains mostly nano-scale pore throats, and has enough strength to withstand in-situ 

pressure condition and not fracture in the subsurface.  Quantitative mineralogical 

analysis that confirms the Utica Shale is composed of greater than 50% clay minerals is 

consistent with mechanical testing results indicating that the Utica Shale will deform in a 

ductile fashion at significant burial depths.  Mechanical testing also confirms that 

stresses required to induce failure are significantly higher than in-situ stress conditions 

and allow for a high frac pressure gradient when injecting into underlying strata.  This 

study confirms that the Utica Shale will behave as a regional geologic seal for the 

sequestration of supercritical CO2 into underlying Cambro-Orodovician injection targets.   
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