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ON ROBUSTIFICATION OF SOME PROCEDURES 
USED IN ANALYSIS OF COVARIANCE 

Kuanwong Watcharotone, Ph.D. 

Western Michigan University, 2010 

This study discusses robust procedures for the analysis of covariance 

(ANCOVA) models. These methods are based on rank-based (R) fitting procedures, 

which are quite analogous to the traditional ANCOVA methods based on least 

squares fits. Our initial empirical results show that the validity of R procedures is 

similar to the least squares procedures. In terms of power, there is a small loss in 

efficiency to least squares methods when the random errors have a normal distribution 

but the rank-based procedures are much more powerful for the heavy-tailed error 

distributions in our study. 

Rank-based analogs are also developed for pick-a-point, adjusted mean, and 

the Johnson-Neyman procedures. Instead of regions of significance, pick-a-point 

procedures obtain the confidence interval for treatment differences at any selected 

covariate point. For the traditional adjusted means procedures, it is established that 

they can be derived from the underlying design by using the normal equations. This is 

then used to derive the rank-based adjusted means, showing that they have the desired 

asymptotic representation. This study compares these with their LS counterparts, the 

naive adjusted Hodges-Lehmann, and adjusted medians. A rank-based analog is 

developed for the Johnson-Neyman technique which obtains a region of significant 

differences of the treatments. Examples illustrate the rank-based procedures. For each 

of these ANCOVA procedures, Monte Carlo analysis is conducted to compare 



empirically the differences of the traditional and robust methods. The results indicate 

that these robust, rank-based, procedures have more power than the traditional least 

squares for longer-tailed distributions for the situations investigated. 
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CHAPTER I 

INTRODUCTION 

The analysis of covariance (ANCOVA) is a technique that combines the features of analysis 

of variance (ANOVA) and regression (Snedecor and Cochran, 1980, p.365). The analysis 

of covariance is used to assess whether the means of two or more population groups are 

equal; this is similar to analysis of variance. However, the analysis of covariance has an 

advantage in that it reduces bias and increases power. In experimental studies involving ran­

dom assignment of units to conditions, the covariate, when related to the response variable, 

reduces the error variance, resulting in increased statistical power and greater precision in 

the estimation of group effects (Keselman et al., 1998). An adjustment of the treatment 

effect is included as a standard part of analysis of covariance to reduce bias. Snedecor 

and Cochran (1980, p.380) show that the covariance adjustment removes all the bias if 

we have random samples and the regression of Y on X is linear with the same slope for 

each group. The homogeneity of within group slopes is assumed under the analysis of co-

variance model. If this assumption is not met, an alternative technique is required. There 

are several alternative techniques available; however, we are interested in the pick-a-point 

technique (Huitema, 1980; Rogosa, 1980) and the Johnson-Neyman technique (Johnson 

andNeyman, 1936). 

The techniques we mentioned above rely on traditional least square type methods. 

These methods are optimal if the underlying errors have a normal distribution but they 

generally become less efficient tools under violations of normality. For example, one outlier 

can spoil the least squares fit, its associated inference, and even its diagnostic procedures 

(i.e., methods which should detect the outliers), (Kloke and McKean, 2010). Least squares 
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procedures are thus sensitive to outliers and we say that these procedures are not robust. 

The outliers that cause the longer tails have an effect on the least squares fit (McKean and 

Vidmar, 1994). Hettmansperger and McKean (1998, p.259) suggest using a rank-based 

analysis based on R estimation for the analysis of covariance in case of outliers. This 

analysis is easy to interpret because it involves substituting another norm for the Euclidean 

norm of least squares; see Hettmansperger and McKean (1998). The analysis is robust, 

being much less sensitive to outliers than the traditional analysis. The norm depends on a 

score function. 

The R estimate we use in this study is Weighted Wilcoxon (WW), which can be 

obtained from wwest function for the R statistical software package (R Development Core 

Team, 2005) created by Terpstra and McKean (2005). The Wilcoxon weights correspond 

to bjj = lfori^j and 0 otherwise, and yield the well known rank-based Wilcoxon (WIL) 

estimate (Terpstra and McKean, 2005). We primarily use the weighted Wilcoxon in this 

study, but our procedures can be generalized to other weights and by other rank regres­

sion score functions. The efficiency of the Wilcoxon estimates for normal distributed data 

is 0.955, and is much higher for longer-tailed distribution (Hettmansperger and McKean, 

1998,p.l63). 

In this study, we present the robust technique and are interested in comparing the re­

sults between the LS and R estimates. In Chapter 2, we compare the validity of ANCOVA 

between the traditional least squares and the R estimate. Furthermore, the pick-a-point 

method is established. We develop rank-based analogues of pick-a-point and compare the 

simulation results with the traditional procedure under different distributions of response 

variable, slopes, and sample sizes at different points on X. In Chapter 3 we illustrate two 

ways (simple and design matrix) to obtain the adjusted means. We also discuss the tradi­

tional adjusted means and develop R analogues for adjusted means, including the robust 

adjusted median, robust naive adjusted Hodges-Lehmann, robust adjusted median design, 
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and robust adjusted signed-rank. These LS and R adjusted means estimates are compared 

when outliers occur. The simulation is also conducted on standard normal and contami­

nated normal distributions. The R analog for the Johnson-Neyman technique is developed 

and presented in Chapter 4. The power of the Johnson-Neyman region of significance, 

as well as the power of the simultaneous region of significance based on the LS and R 

procedures are compared at different points of X and at different distributions of Y. 
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CHAPTER II 

ANALYSIS OF COVARIANCE 

Consider the situation where we are observing data from k groups of subjects. Assume that 

the sample size from Group iis rii, i = 1,2,... ,k and denote the total sample size as n = 

2~2i=i ni- Along with the response variable Y, we observe a covariate variable x. Although 

much of what we do can be generalized to more than one covariate, a single covariate is 

convenient. Let Ytj denote the jth response from the ith group and, correspondingly, let 

Xij denote the value of the covariate. The suitable analysis of Y is based on the analysis of 

covariance (ANCOVA) model. Suppose the following linear model holds, 

Yij = fJ'i + XijPi + &ij, J = 1, 2, • • • , fa, % = 1, 2, . . . , K, (2.1) 

where $ is the slope parameter for the ith group, fa is the intercept parameter for the 

ith group, and the random errors e^ are independent and identically distributed (iid) with 

probability density function (pdf) f(t) and cumulative distribution function (cdf) F(t). 

This is the general model in this paper and we generally call it the full model. 

At times, matrix notation will be helpful. Denote the vector of responses by Y = 

(Yn, ... ,Ylni, Y2\, ... , Y2n2, ... , Yki, ... , YknJ. Denote the corresponding vectors 

of covariates and errors by x and e, respectively. Denote the n x 1 dummy vector for 

the ith group by q, i.e., the value of q is one at the coordinate corresponding to Y^ for 

j = 1 , . . . , fa with all other values zero. Let dj = x*cu where the * denotes coordinatewise 

multiplication. Let p = 2k and define the n x p matrix X to be [c\ c2 • • • ck di d2 • • • dk\. 

Denote the vector of parameters by b = (fa, ji2,..., fa, (3\, f32,..., (3k)'• Then we can 
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write Model (2.1) as 

Y = Xb + e (2.2) 

An equivalent model to Model (2.2) is the incremental model. Without loss of 

generality, we reference the first group. Let X* = [1„ c2 • • • Ck x <i2 • • • dk], where 

1„ is an n x 1 vector of ones and x = Yli=i ^- Note that the column spaces of the 

matrices X and X* are the same but the parameter space differs. If we let fiji = fij — 

Hi and j3j\ = 0j — 0i, j = 2 , . . . , k then the vector of parameters for X* is b* = 

(Hi, fi2i, • • •, A*fci, Pi, #2i, • • •, 0ki)'- Then we can write Model (2.2) as 

Y = X*b* + e 

If X and Y are closely related, we may expect this model to fit the 1^ values better 

than the analysis of variance model (Snedecor and Cochran, 1980, p.365). This implies the 

random errors (e) in ANCOVA are smaller than those in ANOVA; hence, the power of the 

ANCOVA is generally higher. The analysis of covariance has numerous uses (Snedecor and 

Cochran, 1980, p.365-366): (1) to increase precision in randomized experiments, (2) to ad­

just for sources of bias in observational studies, (3) to throw light on the nature of treatment 

effects in randomized experiments, and (4) to study regressions in multiple classifications. 

An important issue in the application of ANCOVA is the equality of slopes of 

the different treatment regression lines (Neter, Kuner, Nachtshem, and Wasserman, 1996, 

p.1019). 

H0 : 0i = ...= 0k 

It must be demonstrated that the slopes are not statistically different before conducting 

ANCOVA (White, 2003). If H0 : 0X = ... = 0k is not true then the covariate and the 

levels interact (Hogg, McKean, and Craig, 2005). If we accept H0 : 0X = ... = 0k then 
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the model can be written as 

In this case, the hypothesis of interest is that the treatments are the same; that is, 

HQ : Hi = ... = fik 

The second hypothesis of interest is to see if the covariate is needed; that is, 

H0 : 0 = 0 

Linear model procedures based on the robust R fit are discussed in general in Chap­

ter 3 and 4 of Hettmansperger and McKean (1998). This includes a discussion of robust 

analysis of covariance in section 4.5 of Hettmansperger and McKean (1998). In this chap­

ter, we want to investigate the validity of these procedures to test the following hypotheses: 

(HI) The slopes are the same 

(H2) The treatments have no effects (assume the slopes are the same) 

(H3) The treatments have no effects (no assumption that the slopes are the same) 

(H4) The covariates have no effects (assume the slopes are the same) 

2.1 General R-Estimates 

We describe the robust estimates for a general linear model. Let YJ denote the ith 

response, i = 1, 2 , . . . , n, and let x\ denote a p x l vector of the independent variables. The 
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general linear model can be expressed as 

Yi = a + xiP + ei (2.3) 

where a is the intercept parameter, /? is a vector of regression coefficients, and the errors 

et are independent and identically distributed (iid) normal distribution with mean equal to 

0 and variance equal to a2. 

Let Y = (Yi , . . . , Yn) ' and X is an n x p matrix. We can write the model (2.3) as 

Y = l„a + X0 + e (2.4) 

where l n is an n x 1 vector of ones, a is the intercept parameter, j3 is a p x 1 vector of slope 

parameters, and the random errors are e' = (e i , . . . , en). The LS estimate of (3 is estimated 

by minimizing the distance between YLs and Y 

PLS = Argmin Y - Y LS = Argmin ||Y - X/3||, 

where ||.||LS is the Euclidean norm. 

For our generator R-estimators, another norm is used. Let ip(u) be a nondecreasing 

function on (0,1). Assume that J0 tp(u)du = 0 and J0 ip2(u)du = 1. The scores generated 

by if are given by a(i) = <p[i/(n + 1)], i = 1,2,..., n. Consider the pseudo-norm 

\v\\lp = ^2a(R(vi))vi, 1 = 1,2,... n 

This is shown to be pseudo-norm on Rn; see Hettmansperger and McKean (1998). Define 

the R-estimator as 

3 V = Argmin ||Y - X/3||„ 
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The Wilcoxon scores discussed in Chapter 2 of Hettmansperger and McKean (1998) 

are generated by ip(u) = y/l2(u — | ) . Another example is the sign scores generated by 

ip(u) = sgn(u - \). 

At times, dispersion notation is useful. Jaeckel's dispersion function for a general 

score function tp(u) is 

n 

where x\ denotes the ith row of X, and R(yi — x'fi) is the rank of y, — x[P among y» — x'fl, 

...,yn — x'n/3. Recall that the errors e; = y, — x /̂3. Hence we arrive at a linear combination 

of ordered residuals. The outlying residuals are no longer squared but instead are weighted 

according to their rank (Hettmansperger and McKean, 1977). This would decrease the 

effects of outliers (Huber, 1973). Therefore, this would be recommended for the longer 

tailed distributions. The function -D(/5(/3) is a continuous and convex function of (3. Hence, 

the R estimator of /3 can also be written as 

3^ = Argmin/Jv(/3). 

As we can see, instead of using the Euclidean norm, D^{(3) utilizes the pseudo-

norm: ||tu|L = 5^r=i o\R{wi)}wi. The intercept parameter plays an important role in ad­

justed means. Because the scores sum to zero and the ranks are invariant to a constant 

shift, the intercept cannot be estimated using the norm (Kloke and McKean, 2010). The 

intercept can be estimated by using the median of the residuals: a^ = med J Y - X. (3^ > 

(Hettmansperger and McKean, 1998, p. 147). Recall that the LS intercept estimator is the 

mean of the LS residuals, hence this R intercept estimator is analogous to the LS intercept 

estimator. Note that this R estimate of intercept does not require symmetrically distributed 
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errors (Hettmansperger and McKean, 1998, p.164). 

Under regularity conditions, Theorem 3.5.11 (Hettmansperger and McKean, 1998, 

p. 166) shows 

" n~lT2
s 0' 

0 r^(X'X)-1 ;;H(i; 
where T$ and TV are the scale parameters which are defined as: 

rs = (2/(0))"1 

TV = (Vl2 J f(t)dt)-\ 

Note that the asymptotic relative efficiency of the R estimate in relation to LS is 

the ratio of a2 /T2. For Wilcoxon scores, this is the familiar value 12a2(j f2)2, which 

for normal errors is 0.955 (McKean and Vidmar, 1994). On the other hand, if the true 

distribution has tails heavier than the normal, then this efficiency is usually much larger 

than 1 (McKean, 2004). For Wilcoxon scores, 

DW(P) = K^2^2\(yi- Vj) - (Xi - Xj)'p\, 

where K is constant. Hence, the Wilcoxon estimate can also be written as 

pw = AigmmDw(p). 

2.2 Simulation Study 

We created a full and reduced design matrix function using R code for each hypoth­

esis: 
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(HI) The slopes are the same: 

X/UH — 
J-ni " n i -^n i " n i 

J-n2 -'•na •*'7i2 •£,ni 

^reduced 

J-ni *-*ni ^7 i i 

J-ri2 •*-n2 "C™2 

(H2) The treatments have no effects (assume the slopes are the same): 

X/UH — 
J-ni " n i -^ni 

1 1 Z 
^712 1 I 1 2 ^712 

X •reduced — 

J-ni -^n i 

•tfi2 "^ri2 

(H3) The treatments have no effects (no assumption that the slopes are the same): 

X/ U ' i — 
1 0 T 0 
J-ni u n i - ^ m u n 

•tjl2 •*-fl2 "^«2 •*'Tl2 

X r e d u c e d 

-Ini ^ n i ^n\ 

'•ri2 •^n.2 •^U2 

(H4) The covariates have no effects (assume the slopes are the same): 

X/UH = 
J-ni U n i %m 

^ri2 -tri2 "^"2 
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•reduced 

J-n2
 ±n2 

The dependent variable, covariate, and vector indicators of levels/groups are in­

putted. The full and reduced model residuals are obtained for each hypothesis from fitting 

the full and reduced models. A simulation is conducted for each assumption in the case of 

one covariate and two groups from a standard normal distribution with 30 observations at 

the 5% level of significance. We run 10000 simulations for each scenario. The validity of 

each scenario is shown in the Table 1. 

Table 1: Validity Results 
Test 

HI 

H2 

H3 

H4 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Validity 
a = 0.10 

0.098 
0.0999 
0.1046 
0.0957 
0.1046 
0.1026 
0.0994 
0.0954 

a = 0.05 
0.0496 
0.0487 
0.0505 
0.0457 
0.0529 
0.0516 
0.0507 
0.0489 

a = 0.01 
0.0082 
0.009 
0.0079 
0.0074 
0.0101 
0.0097 
0.0107 
0.009 

The results show that the validity of WWIL estimate is slightly lower than that of 

LS estimate except the case of HI at a = 0.10 and at a = 0.01. However, the validity of 

both estimates is very close to the level of significance. 

The weighted Wilcoxon (WW) routine is written by Terpstra and McKean (2005) 

via the R statistical software package (R Development Core Team, 2005). Our computation 

is performed by using this R collection. We denote it by WWIL in this study. 
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2.3 Pick-A-Point 

One of the important assumptions in the use of analysis of covariance is that the 

regression slopes are homogeneous. Heterogeneous regression slopes associated with anal­

ysis of covariance present interpretation problems because the magnitude of the treatment 

effect is not the same at different levels of X (Huitema, 1980, p.270). Heterogeneous slopes 

are shown in Figure 1. Figure la shows that the adjusted means are different as most of the 

data in group 1 are higher than that in group 2. This would mislead the conclusion because 

it seems to have no treatment effects at the lower levels of X, and the higher X, the larger 

effects. Figure lb shows that both groups differ in slopes and in adjusted means. Group 1 

is higher than group 2 at all levels of X. Figure lc shows both groups have the different 

slopes where group 1 is inferior to group 2 at the lower values of X, then appears to overlap 

in the middle of X, and is superior to group 2 at the higher values of X. 

We focus on obtaining the confidence interval at any covariate point we choose for 

the treatment effects. Consider the case of two groups and one covariate. Assume that 

the sample size of group i is n i ; i = 1,2. Let Yij denote the jth response from the ith 

group and let X{j be the covariate. Assume that the response variable Y is normally and 

independently distributed, the conditional distribution of Y given X is 

E(Yij\Xij) = a* + PiXij, 

where a* is the intercept and $ is the slope parameters for the ith group. The difference at 
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Figure 1: Three types of heterogeneous slopes 

point X between both groups is 

A(X) = E(Y2j\X) - E{Yl3\X) 

= (a2 + foX) - {per + fcX) 

= {a2-al) + {(32-f3l)X. 
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Thus, the estimator of the difference is 

A(X) = (S~2 - ST) + (& - fr)X. 

2.3.1 The Traditional Pick-A-Point Procedure 

A 100(1 — a)% confidence interval for A(X) for any specified individual point X 

is given by 

A(X) ± tftlHma[SE2(A(X))}^2, (2.5) 

where 

^rxl = {X\,X2,---,Xk) 

SE{A(X)) = osf{h'XX)-lh 

h = (-1,1,-1,1) 

/ = m + n2 - 4. 

2.3.2 The Rank-Based Pick-A-Point Procedure 

For R estimate, a 100(1 — a)% confidence interval for A(X) for any specified 

individual point X is the same as formulation above (2.5) except the standard error for R 

estimate equals to 

SEV(A(X)) = f v ^ ' ( X ' X ) - 1 ^ 

where f is the estimate of r (Koul, Sievers, and McKean, 1987). This estimate is consistent 

under both symmetrical and asymmetrical errors (Hettmansperger, McKean, and Sheather, 

2003). 
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2.3.3 Simulation Study 

Consider the case of two groups and one covariate, the matrix X can be written as 

a0 OLI a2 &3 

-tni t n i Xni Xni v • / 
-X. = 

^ri2 " « 2 ^""2 ^ « 2 

Suppose the point we choose is x*, therefore 

E(Yij\X = x*) = a0 + ax + a2x * +a3x * 

E(Y2j\X = x*) = ao + a2x * . 

Let x0 be the point that the regression lines of both groups cross, we then have 

E(Y2j\X = x0) - E^jlX = x0) = 0 

oc\ + a3x0 = 0 

" i = -c*3Zo-

A simulation is conducted to obtain the power of the 95% confidence interval at 5 

different points of X, which are: 

(1) minimum value of X (q0) 

(2) 1st quartile (qi) 

(3) median of X (q2) 

(4) 3rd quartile (g3) 

(5) maximum value of X (g4) 

15 



The confidence intervals are calculated based on the least square and R estimate approaches. 

The powers of the treatment effects at 10%, 5%, and 1% level of significance are also ob­

tained. The covariate is generated from normal distribution with /x = 100 and a = 20. The 

response variable is generated from: 

(1) Normal distribution 

(2) Laplace distribution 

(3) Cauchy distribution 

The sample sizes are 20,40, and 80. The a3 ranges from 0 to 1.9. We run 10000 simulations 

for each scenario. 

The power of the treatment effects test based on R estimate is slightly lower than the 

least squares procedure for all three levels of significance and all different a3. The power at 

a3 = 0 at 10% level of significance almost equals to its level of significance; e.g., 10% (LS 

= 9.94% and WWIL = 9.74%), likewise, at 5% and 1% level of significance. Moreover, the 

powers of both procedures are higher when a3 is higher (Table 2). 

For the power of the 95% confidence interval at pick-a-point, the power of LS pro­

cedure at a3 — 0 is close to 5% at all pick-a-points, while the power of WWIL procedure 

is slightly lower than 5%. The power based on R estimate is lower than the least square 

procedure at all points. Both procedures have higher power when 013 is higher except at the 

median of X (q2). The powers at q2 are all close to 5% for all values of a3 (Table 3). Figure 

2 shows the plots of the power for the treatment test and for 95% confidence interval at q2 

and qA between LS and R procedures. 
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Table 2: H0: j3 = 0 when Y is normal, n = 20 

«3 = 0 

a 3 = 0.3 

a 3 = 0.6 

a3 = 0.9 

«3 = 1.2 

a 3 = 1.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.0994 
0.0974 
0.1415 
0.1395 
0.2427 
0.2274 
0.4308 
0.4010 
0.7026 
0.6637 
0.9483 
0.9303 

a = 0.05 
0.0506 
0.0462 
0.0768 
0.0758 
0.1535 
0.1395 
0.3032 
0.2683 
0.5644 
0.5142 
0.8949 
0.8594 

a = 0.01 
0.0108 
0.0089 
0.0191 
0.0158 
0.0457 
0.0358 
0.1161 
0.0851 
0.2871 
0.2269 
0.6967 
0.5927 

Table 3: Pick-a-point when Y is normal, n = 20 

a3 = 0 

a 3 = 0.3 

a 3 = 0.6 

a 3 = 0.9 

a 3 = 1.2 

a 3 = 1.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 

<?o 
0.0472 
0.0325 
0.0697 
0.0460 
0.1147 
0.0790 
0.2798 
0.1933 
0.4438 
0.3256 
0.8342 
0.7005 

<7i 
0.0505 
0.0352 
0.0766 
0.0510 
0.1538 
0.1070 
0.3030 
0.2092 
0.5636 
0.4225 
0.8947 
0.7792 

<?2 
0.0459 
0.0320 
0.0513 
0.0372 
0.0483 
0.0340 
0.0523 
0.0359 
0.0493 
0.0353 
0.0508 
0.0352 

13 
0.0489 
0.0365 
0.0560 
0.0389 
0.1046 
0.0738 
0.1365 
0.0893 
0.4296 
0.3112 
0.5140 
0.3723 

94 
0.0485 
0.0360 
0.0795 
0.0519 
0.1491 
0.1043 
0.2697 
0.1850 
0.6037 
0.4599 
0.8772 
0.7585 

17 



<X3 

Level test ° 
CI at Max(X) + 
CI at Median(X) v 

Figure 2: Y is normal, n = 20 
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The power of the treatment effects test based on R estimate is slightly lower than 

the least squares procedure for all three levels of significance and all different a3. The 

powers at a3 = 0 at 10%, 5%, and 1% level of significance are similar to its level of 

significance; e.g., at 10% level of significance: LS = 10.27% and WWIL = 9.81%, at 5% 

level of significance: LS = 4.98% and WWIL = 4.97%, and at 1% level of significance: LS 

= 0.92% and WWIL = 0.87%. The powers of both procedures are also higher when a3 is 

higher (Table 4). 

For the power of the 95% confidence interval at pick-a-point, the power of LS pro­

cedure at «3 = 0 is close to 5% at the minimum of X (q0) and at 1st quartile (qi), and 

slightly higher than 5% at the median of X (q2), at 3rd quartile (g3), and at the maximum 

of X (qi). While the power of WWIL procedure, for all points, is slightly lower than 5%. 

At all points, the power based on R estimate is lower than the least square procedure. Both 

procedures have higher power when a3 is higher except at the median of X (q2). The pow­

ers at q2 are all close to 5% at all values of a3 (Table 5). Figure 3 shows the plots of the 

power for the treatment test and for 95% confidence interval at q2 and q± between LS and 

R procedures at n — 40. 

19 



Table 4: H0: f3 = 0 when Y is normal, n = 40 

«3 = 0 

a3 = 0.3 

«3 = 0.6 

a 3 = 0.9 

a3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1027 
0.0981 
0.1857 
0.1817 
0.4775 
0.4603 
0.8530 
0.8357 
0.9880 
0.9812 

a = 0.05 
0.0498 
0.0497 
0.1074 
0.1053 
0.3568 
0.3382 
0.7695 
0.7422 
0.9689 
0.9588 

a = 0.01 
0.0092 
0.0087 
0.0275 
0.0258 
0.1519 
0.1343 
0.5343 
0.4855 
0.8817 
0.8432 

Table 5: Pick-a-point when Y is normal, n = 40 

otz = 0 

a3 = 0.3 

CK3 = 0.6 

a3 = 0.9 

a 3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 

<7o 
0.0496 
0.0414 
0.1008 
0.0844 
0.2708 
0.2299 
0.7210 
0.6492 
0.9544 
0.9234 

9i 
0.0497 
0.0416 
0.1074 
0.0877 
0.3562 
0.3023 
0.7690 
0.7029 
0.9688 
0.9484 

92 

0.0539 
0.0457 
0.0565 
0.0472 
0.0493 
0.0416 
0.0525 
0.0446 
0.0537 
0.0465 

93 
0.0532 
0.0477 
0.0727 
0.0584 
0.2920 
0.2399 
0.4258 
0.3610 
0.5016 
0.4313 

94 
0.0514 
0.0444 
0.1033 
0.0849 
0.3920 
0.3313 
0.7631 
0.6973 
0.9344 
0.8925 
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Figure 3: Y is normal, n = 40 
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Table 6: H0: (5 = 0 when Y is normal, n = 80 

CK3 = 0 

a 3 = 0.3 

a3 = 0.45 

a3 = 0.6 

a 3 = 0.9 

a 3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1010 
0.0994 
0.2923 
0.2849 
0.6629 
0.6414 
0.8499 
0.8361 
0.9921 
0.9885 
0.9998 
0.9998 

a = 0.05 
0.0492 
0.0503 
0.1966 
0.1893 
0.5403 
0.5136 
0.7709 
0.7464 
0.9795 
0.9747 
0.9997 
0.9994 

a = 0.01 
0.0101 
0.0096 
0.0692 
0.0667 
0.2940 
0.2730 
0.5404 
0.5015 
0.9257 
0.9065 
0.9977 
0.9961 

Table 7: Pick-a-point when Y is normal, n = 80 

a3 = 0 

a 3 = 0.3 

a3 = 0.45 

a 3 = 0.6 

a3 = 0.9 

a3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 

% 
0.0484 
0.0471 
0.1702 
0.1529 
0.4729 
0.4312 
0.6947 
0.6480 
0.9315 
0.9091 
0.9986 
0.9976 

9i 
0.0492 
0.0463 
0.1964 
0.1776 
0.5397 
0.4932 
0.7703 
0.7268 
0.9793 
0.9710 
0.9997 
0.9994 

92 
0.0518 
0.0468 
0.0481 
0.0434 
0.0475 
0.0460 
0.0508 
0.0465 
0.0510 
0.0469 
0.0512 
0.0448 

93 
0.0508 
0.0491 
0.1055 
0.0962 
0.2235 
0.1983 
0.4283 
0.3920 
0.8357 
0.7990 
0.9519 
0.9359 

94 
0.0506 
0.0470 
0.1958 
0.1775 
0.5453 
0.5037 
0.7542 
0.7103 
0.9931 
0.9873 
0.9998 
0.9991 
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Figure 4: Y is normal, n = 80 
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The power of the treatment effects test based on R estimate is slightly lower than the 

least squares procedure except at 5% level of significance and as = 0, and at 10% level of 

significance and a3 = 1.2. The powers at a3 = 0 at 10%, 5%, and 1% level of significance 

are similar to its level of significance; e.g., at 10% level of significance: LS = 10.10% and 

WWIL = 9.94%, at 5% level of significance: LS = 4.92% and WWIL = 5.03%, and at 1% 

level of significance: LS = 1.01% and WWIL = 0.96%. The powers of both procedures are 

also higher when a3 is higher (Table 6). 

For the power of the 95% confidence interval at pick-a-point, both powers of LS 

and R procedures at a3 = 0 is close to 5% for all points. At all points, the power based 

on R estimate is lower than the least square procedure. Both procedures have higher power 

when a3 is higher except at the median of X (q2). The powers at q2 are all close to 5% at 

all values of a3 (Table 7). Figure 4 shows the plots of the power for the treatment test and 

for 95% confidence interval at q2 and g4 between LS and R procedures at n = 80. 

When comparing all different sample sizes, the powers of the treatment test of both 

procedures reach high power at the lower value of a3 when the sample size is larger. For 

instance, at n = 20 and 10% level of significance, the power is greater than 90% when 

a3 = 1.9, while the power of n = 40 is greater than 90% when a3 = 1.2, and when 

a3 = 0.9 when n = 80 (Table 2, 4, and 6). For the power of the 95% confidence interval at 

pick-a-point, the powers of both procedures are higher when the sample size is larger. For 

instance, at a3 = 1.2, the powers of maximum value of X (g4) from both procedures are 

higher as the sample size is higher (Table 3, 5, and 7). 
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Table 8: H0: (3 = 0 when Y is Laplace, n = 20 

«3 = 0 

a3 = 0.3 

0:3 = 0.6 

a3 = 0.9 

a3 = 1.2 

0:3 = 1.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1048 
0.1118 
0.1647 
0.1677 
0.2389 
0.2606 
0.5291 
0.5805 
0.7024 
0.7491 
0.9310 
0.9495 

a = 0.05 
0.0563 
0.0573 
0.0908 
0.0930 
0.1516 
0.1609 
0.3963 
0.4438 
0.5773 
0.6256 
0.8770 
0.8988 

a = 0.01 
0.0129 
0.0097 
0.0214 
0.0204 
0.0478 
0.0485 
0.1799 
0.1921 
0.3227 
0.3282 
0.6919 
0.7085 

Table 9: Pick-a-point when Y is Laplace, n = 20 

a3 = 0 

a3 = 0.3 

a3 = 0.6 

a 3 = 0.9 

a3 = 1.2 

a3 = 1.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 

Qo 
0.0562 
0.0452 
0.0786 
0.0570 
0.1403 
0.1152 
0.2605 
0.2237 
0.5280 
0.4855 
0.7886 
0.7616 

<?i 
0.0560 
0.0438 
0.0911 
0.0673 
0.1519 
0.1217 
0.3960 
0.3616 
0.5772 
0.5388 
0.8770 
0.8548 

92 
0.0472 
0.0279 
0.0461 
0.0301 
0.0452 
0.0311 
0.0456 
0.0305 
0.0504 
0.0298 
0.0474 
0.0292 

93 
0.0465 
0.0323 
0.0597 
0.0441 
0.0846 
0.0594 
0.1750 
0.1443 
0.2640 
0.2195 
0.5658 
0.5217 

<?4 
0.0504 
0.0338 
0.0816 
0.0600 
0.1235 
0.0940 
0.3877 
0.3541 
0.4750 
0.4366 
0.8153 
0.7976 
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Figure 5: Y is Laplace, n = 20 
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The power of the treatment effects test based on R estimate is slightly higher than 

the least squares procedure except at 1% level of significance when a3 equals to 0 and 

equals to 0.3. The powers at a3 = 0 at 10%, 5%, and 1% level of significance are similar 

to its level of significance; e.g., at 10% level of significance: LS = 10.48% and WWIL = 

11.18%, at 5% level of significance: LS = 5.63% and WWIL = 5.73%, and at 1% level of 

significance: LS = 1.29% and WWIL = 0.97%. Moreover, the powers of both procedures 

are higher when 0:3 is higher (Table 8). 

For the power of the 95% confidence interval at pick-a-point, the powers of both 

LS and R procedures at 0:3 = 0 is close to 5% at all pick-a-points. The power based on R 

estimate is lower than the least square procedure at all points. Both procedures have higher 

power when a3 is higher except at the median of X (q2). The powers at q2 are all close to 

5% for all values of a3 (Table 9). Figure 5 shows the plots of the power for the treatment 

test and for 95% confidence interval at q2 and g4 between LS and R procedures. 
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Table 10: H0: (3 = 0 when Y is Laplace, n = 40 

a 3 = 0 

a3 = 0.3 

a3 = 0.6 

a 3 = 0.9 

a 3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1003 
0.1028 
0.2714 
0.3323 
0.6531 
0.7393 
0.6627 
0.7504 
0.9806 
0.9913 

a = 0.05 
0.0491 
0.0524 
0.1781 
0.2188 
0.5201 
0.6170 
0.5416 
0.6407 
0.9604 
0.9815 

a = 0.01 
0.0095 
0.0104 
0.0592 
0.0722 
0.2823 
0.3632 
0.3016 
0.3862 
0.8750 
0.9271 

Table 11: Pic] 

«3 = 0 

a3 = 0.3 

as = 0.6 

a3 = 0.9 

<*3 = 1-2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

c-a-point when Y is Laplace , n = 40 
Power 

<?o 
0.0501 
0.0441 
0.1550 
0.1661 
0.4263 
0.4779 
0.4153 
0.4691 
0.9559 
0.9768 

9i 
0.0492 
0.0454 
0.1779 
0.1923 
0.5193 
0.5852 
0.5412 
0.6123 
0.9606 
0.9803 

92 
0.0505 
0.0361 
0.0459 
0.0371 
0.0473 
0.0371 
0.0459 
0.0374 
0.0478 
0.0380 

93 
0.0430 
0.0392 
0.0943 
0.0871 
0.1770 
0.1861 
0.3151 
0.3524 
0.5228 
0.5904 

94 
0.0460 
0.0429 
0.1715 
0.1884 
0.4687 
0.5316 
0.5267 
0.5969 
0.9090 
0.9456 
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Figure 6: Y is Laplace, n = 40 
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The power of the treatment effects test based on R estimate is slightly higher than 

the least squares procedure at all values of level of significance and of a3. The powers at 

0:3 = 0 at 10%, 5%, and 1% level of significance are similar to its level of significance; 

e.g., at 10% level of significance: LS = 10.03% and WWIL = 10.28%, at 5% level of 

significance: LS = 4.91% and WWIL = 5.24%, and at 1% level of significance: LS = 

0.95% and WWIL = 1.04%. Moreover, the powers of both procedures are higher when a3 

is higher (Table 10). 

For the power of the 95% confidence interval at pick-a-point, the powers of both 

LS and R procedures at a3 = 0 is close to 5% at all pick-a-points. The power based on R 

estimate is higher than the least square procedure except at all points when a3 = 0 and at 

the median of X {q2) for all values of a3. Both procedures have higher power when a3 is 

higher except at q2. The powers at g2 are all close to 5% for all values of a3 (Table 11). 

Figure 6 shows the plots of the power for the treatment test and for 95% confidence interval 

at q2 and qA between LS and R procedures for n = 40. 
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Table 12: H0: f3 = 0 when Y is Laplace, n = 80 

a 3 = 0 

Q 3 = 0.3 

a 3 = 0.45 

a3 = 0.6 

a 3 = 0.9 

a 3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1049 
0.1061 
0.3294 
0.4078 
0.6974 
0.8078 
0.8272 
0.9120 
0.9611 
0.9884 
0.9992 
1.0000 

a = 0.05 
0.0534 
0.0548 
0.2206 
0.2893 
0.5808 
0.7116 
0.7334 
0.8517 
0.9249 
0.9740 
0.9979 
1.0000 

a = 0.01 
0.0113 
0.0118 
0.0773 
0.1142 
0.3313 
0.4622 
0.4983 
0.6594 
0.7967 
0.9082 
0.9855 
0.9973 

Table 13: Pick-a-point when Y is Laplace, n = 80 

a3 = 0 

a3 = 0.3 

a3 = 0.45 

a 3 = 0.6 

a3 = 0.9 

«3 = 1-2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 

<?o 
0.0524 
0.0511 
0.2045 
0.2473 
0.5498 
0.6682 
0.6934 
0.8128 
0.8818 
0.9505 
0.9919 
0.9990 

9i 
0.0534 
0.0507 
0.2207 
0.2701 
0.5806 
0.6991 
0.7327 
0.8441 
0.9242 
0.9745 
0.9979 
1.0000 

92 
0.0482 
0.0453 
0.0497 
0.0440 
0.0493 
0.0433 
0.0473 
0.0380 
0.0475 
0.0398 
0.0488 
0.0422 

93 
0.0503 
0.0480 
0.0863 
0.0907 
0.1461 
0.1682 
0.1877 
0.2310 
0.6632 
0.7798 
0.8769 
0.9433 

94 
0.0562 
0.0522 
0.1895 
0.2399 
0.4909 
0.6001 
0.6738 
0.7927 
0.9420 
0.9814 
0.9961 
0.9996 
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Figure 7: Y is Laplace, n = 80 
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The power of the treatment effects test based on R estimate is slightly higher than 

the least squares procedure at all values of level of significance and of a3. The powers 

at a3 = 0 at 10%, 5%, and 1% level of significance are slightly higher to its level of 

significance; e.g., at 10% level of significance: LS = 10.49% and WWIL = 10.61%, at 5% 

level of significance: LS = 5.34% and WWIL = 5.48%, and at 1% level of significance: LS 

= 1.13% and WWIL = 1.18%. Moreover, the powers of both procedures are higher when 

a3 is higher (Table 12). 

For the power of the 95% confidence interval at pick-a-point, the powers of both 

LS and R procedures at a3 = 0 is close to 5% at all pick-a-points. The power based on R 

estimate is higher than the least square procedure except at all points when a3 = 0 and at 

the median of X (q2) for all values of a3. Both procedures have higher power when a3 is 

higher except at q2. The powers at q2 are all close to 5% for all values of a3 (Table 13). 

Figure 7 shows the plots of the power for the treatment test and for 95% confidence interval 

at q2 and q± between LS and R for procedures for n = 80. 

Comparing among n = 20, 40, and 80, the power of treatment effects test is higher 

when the a3 is higher. The R estimate has slightly higher power than the least square 

procedure except when n = 20, a3 = 0 and 0.3, and level of significance =1%. When the 

sample size is larger, both procedures reach 90% of power at the lower value of a3 (Table 

8, 10, and 12). For 95 % level of significance, the power of R estimate is slightly lower 

than the least square procedure for all cases of n = 20. Some pick-a-points of X when 

n = 40 have higher power than the least square. For n = 80, the power of R estimate 

is higher except all points of X when a3 = 0 and at the point of median of X (q2) when 

a3 = 0.3,0.45,0.6,0.9, and 1.2 (Table 9, 11, and 13). 
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Table 14: H0: (3 = 0 when Y is Cauchy, n = 20 

«3 = 0 

a3 = 0.3 

a 3 = 0.6 

a3 = 0.9 

a 3 = 1.2 

a 3 = 1.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1074 
0.0957 
0.1152 
0.1046 
0.1466 
0.2093 
0.1789 
0.2642 
0.2728 
0.5193 
0.3684 
0.7225 

a = 0.05 
0.0661 
0.0457 
0.0561 
0.0524 
0.0898 
0.1225 
0.1124 
0.1665 
0.1869 
0.3893 
0.2855 
0.6169 

a = 0.01 
0.0156 
0.0083 
0.0069 
0.0085 
0.0290 
0.0284 
0.0346 
0.0454 
0.0746 
0.1654 
0.1580 
0.3512 

a 3 = 

as = 

az = 

az = 

a 3 = 

a 3 = 

= 0 

0.3 

0.6 

0.9 

1.2 

1.9 

rable 15: Pic 
Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

c-a-point when Y is Cauchy , n = 20 
Power 

<?o 
0.0671 
0.0433 
0.0462 
0.0330 
0.0732 
0.0809 
0.0749 
0.0717 
0.1622 
0.2488 
0.2930 
0.5701 

9i 
0.0662 
0.0420 
0.0560 
0.0399 
0.0895 
0.0973 
0.1125 
0.1285 
0.1867 
0.3150 
0.2855 
0.5440 

12 
0.0210 
0.0200 
0.0376 
0.0249 
0.0220 
0.0193 
0.0226 
0.0180 
0.0216 
0.0194 
0.0269 
0.0164 

93 
0.0277 
0.0194 
0.0484 
0.0332 
0.0311 
0.0244 
0.0713 
0.0638 
0.1094 
0.1586 
0.0465 
0.0435 

94 
0.0368 
0.0288 
0.0543 
0.0408 
0.0957 
0.0902 
0.1187 
0.1457 
0.1566 
0.2586 
0.1603 
0.2616 
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Figure 8: Y is Cauchy, n — 20 
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The power of the treatment effects test based on R estimate is slightly higher than 

the least squares procedure except at 10% level of significance when a3 = 0 and 0.3, at 5% 

level of significance when a3 = 0 and 0.3, and at 1% level of significance when a3 = 0. 

The powers at a3 = 0 at 10%, 5%, and 1% level of significance are similar to its level of 

significance; e.g., at 10% level of significance: LS = 10.74% and WWIL = 9.57%, at 5% 

level of significance: LS = 6.61% and WWIL = 4.57%, and at 1% level of significance: LS 

= 1.56% and WWIL = 0.83%. Moreover, the powers of both procedures are higher when a3 

is higher. The power of R estimate is approximately 2 times higher than the LS procedure 

at a3 = 1.9 at all levels of significance. At 10% level of significance and a3 = 1.9, the 

R estimate already reaches 72% of power, while the power of the least square is only 37% 

(Table 14). 

For the power of the 95% confidence interval at pick-a-point, the powers of both 

LS and R procedures at a3 = 0 is close to 5% at q0 and qi, and is lower at q2, q3, and q^. 

The power based on R estimate is lower than the least square procedure except at q0 when 

a3 = 0.6,1.2, and 1.9, at q\ when a3 = 0.6, 0.9, 1.2, and 1.9, at q3 when a3 = 1.2, and 

at g4 when a3 = 0.9, 1.2, and 1.9. Both procedures have higher power when a3 is higher 

except at q2. The powers at q2 are all lower than 5% for all values of a3 (Table 15). Figure 

8 shows the plots of the power for the treatment test and for 95% confidence interval at q2 

and q^ between LS and R for procedures for n = 20. 
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Table 16: H0: (3 = 0 when Y is Cauchy, n = 40 

a 3 = 0 

a 3 = 0.3 

a3 = 0.6 

a3 = 0.9 

a3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.0949 
0.1089 
0.1021 
0.1700 
0.1472 
0.3651 
0.1446 
0.4316 
0.2145 
0.6670 

a = 0.05 
0.0501 
0.0507 
0.0614 
0.0965 
0.0899 
0.2466 
0.0907 
0.3080 
0.1391 
0.5449 

a = 0.01 
0.0178 
0.0099 
0.0185 
0.0245 
0.0251 
0.0867 
0.0380 
0.1179 
0.0537 
0.3000 

« 3 

a 3 = 

a 3 = 

a3 = 

a 3 = 

= 0 

= 0.3 

= 0.6 

= 0.9 

= 1.2 

fable 17: Pic 
Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

c-a-point when Y is Cauchy n = 40 
Power 

Qo 
0.0491 
0.0486 
0.0594 
0.0765 
0.0851 
0.1882 
0.0870 
0.2360 
0.1301 
0.4468 

9i 
0.0501 
0.0499 
0.0614 
0.0790 
0.0900 
0.2107 
0.0908 
0.2658 
0.1391 
0.5007 

<?2 
0.0225 
0.0263 
0.0240 
0.0260 
0.0196 
0.0266 
0.0252 
0.0242 
0.0222 
0.0279 

93 
0.0380 
0.0339 
0.0412 
0.0413 
0.0394 
0.0490 
0.0456 
0.0824 
0.0848 
0.2216 

94 
0.0615 
0.0495 
0.0647 
0.0709 
0.0727 
0.1487 
0.0881 
0.2280 
0.1308 
0.4414 

37 



0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Level test ° 
CI at Max(X) + 
CI at Median(X) v 

Figure 9: Y is Cauchy, n = 40 
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The power of the treatment effects test based on R estimate is higher than the least 

squares procedure except at 1% level of significance when a3 = 0. The powers at Q3 = 0 

at 10%, 5%, and 1% level of significance are similar to its level of significance; e.g., at 10% 

level of significance: LS = 9.49% and WWIL = 10.89%, at 5% level of significance: LS 

= 5.01% and WWIL = 5.07%, and at 1% level of significance: LS = 1.78% and WWIL = 

0.99%. Moreover, the powers of both procedures are higher when a3 is higher. The power 

of R estimate is 2 times higher at a3 = 0.6 at all levels of significance. At 10% level of 

significance and a3 = 0.6, the R estimate reaches 36.51% of power, while the power of the 

least square is only 14.72% (Table 16). 

For the power of the 95% confidence interval at pick-a-point, the powers of both LS 

and R procedures at a3 = 0 is close to 5% at all points. The power based on R estimate is 

higher than the least square procedure except at qQ when a3 = 0, at qi when a3 = 0, at q2 

when a3 = 0.9, at q3 when a3 = 0, and at g4 when a3 = 0. Both procedures have higher 

power when a3 is higher except at q2. The powers at q2 are all lower than 5% for all values 

of a3 (Table 17). Figure 9 shows the plots of the power for the treatment test and for 95% 

confidence interval at q2 and q± between LS and R for procedures for n = 40. 
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Table 18: H0: (3 = 0 when Y is Cauchy, n = 80 

a 3 = 0 

a 3 = 0.3 

a3 = 0.45 

a3 = 0.6 

0:3 = 0.9 

a3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.0861 
0.1051 
0.1246 
0.2395 
0.1267 
0.3566 
0.1438 
0.5896 
0.1641 
0.7501 
0.2323 
0.9448 

a = 0.05 
0.0441 
0.0513 
0.0700 
0.1498 
0.0699 
0.2427 
0.0845 
0.4624 
0.0911 
0.6459 
0.1545 
0.9076 

a = 0.01 
0.0160 
0.0113 
0.0164 
0.0473 
0.0165 
0.0864 
0.0235 
0.2324 
0.0234 
0.4088 
0.0664 
0.7756 

Table 19: Pick-a-point when Y is Cauchy, n = 80 

a3 = 0 

a3 = 0.3 

a3 = 0.45 

«3 = 0.6 

a3 = 0.9 

a3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 

<?o 
0.0448 
0.0529 
0.0654 
0.1218 
0.0669 
0.1916 
0.0889 
0.4370 
0.0749 
0.5074 
0.1440 
0.8863 

9i 
0.0441 
0.0523 
0.0699 
0.1367 
0.0698 
0.2223 
0.0845 
0.4420 
0.0909 
0.6289 
0.1544 
0.9109 

12 
0.0283 
0.0370 
0.0188 
0.0334 
0.0202 
0.0319 
0.0229 
0.0335 
0.0225 
0.0380 
0.0222 
0.0347 

93 
0.0386 
0.0406 
0.0439 
0.0667 
0.0463 
0.1012 
0.0357 
0.1038 
0.0654 
0.3437 
0.1018 
0.7126 

94 
0.0480 
0.0451 
0.0615 
0.1256 
0.0634 
0.2157 
0.0555 
0.2640 
0.0998 
0.6518 
0.1546 
0.9137 
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Figure 10: Y is Cauchy, n = 80 
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The power of the treatment effects test based on R estimate is higher than the least 

squares procedure except at 1% level of significance when a3 = 0. The powers at a3 = 0 

at 10%, 5%, and 1% level of significance are similar to its level of significance; e.g., at 10% 

level of significance: LS = 8.61% and WWIL = 10.51%, at 5% level of significance: LS 

= 4.41% and WWIL = 5.13%, and at 1% level of significance: LS = 1.60% and WWIL = 

1.13%. Moreover, the powers of both procedures are higher when a3 is higher. The power 

of the R estimate has 2 times higher of power than the LS procedure when a3 = 0.3, and 

has much more higher power at a3 = 1.2 for all levels of significance. At 10% level of 

significance and a3 = 1.2, the R estimate reaches 94.48% of power, while the power of the 

least square is only 23.23% (Table 18). 

For the power of the 95% confidence interval at pick-a-point, the powers of both 

LS and R procedures at a3 = 0 is close to 5% at all points. The power based on R estimate 

is higher than the least square procedure except at g4 when a3 = 0. Both procedures have 

higher power when a3 is higher except at q2. The powers at q2 are all lower than 5% for all 

values of a3 (Table 19). Figure 10 shows the plots of the power for the treatment test and 

for 95% confidence interval at q2 and #4 between LS and R for procedures for n = 80. 

When comparing among the different sample sizes, the power of the treatment ef­

fects test for the R procedure reaches 2 times higher than that of the LS procedure at the 

lower value of a3 when the sample size is larger. The powers of both procedures are higher 

when the a3 is higher. The R estimate has higher power in some pick-a-points of X in 

some cases. It seems that R estimate gains more power when the sample size and the a3 

are larger; for instance, at a3 = 1.2, the powers of the maximum of X (q^) of n = 20, 40, 

and 80 based on R estimate are 0.2586, 0.4414, and 0.9137, respectively (Table 15, 17, and 

19). 

When comparing the power among three distributions, the Cauchy distribution 

seems to be worst for the least square and R methods. However, the power of R is higher 
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when the sample size and the a3 are higher. 

2.4 Conditional Test 

Several conditional tests are used in practice. We describe several such tests. We 

are now interested in doing the conditional test: (1) for pick-a-point (condition A), and (2) 

for analysis of variance (condition B). We compare conditional tests with the pick-a-point 

at the grand mean (x). 

Method I: Condition A 

1. Test homogeneity of slopes 

H01 : ft = ... = /3k 

1.1 If the null hypothesis is accepted, we then do the pooled level test (ANCOVA) 

1.2 If the null hypothesis is rejected, we then do the pick-a-point at grand mean of 

the X's 

Method II: Condition B 

1. Test homogeneity of slopes 

#o i = A = • • • = & 

1.1 If the null hypothesis is accepted, we then do the pooled level test (ANCOVA) 

1.2 If the null hypothesis is rejected, we then do the analysis of variance 
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Method III 

1. Test homogeneity of slopes 

# 0 1 '• Pi = • • • = Pk 

2. Pick-a-point at grand mean of the X's 

We are interested in all these questions: 

1. Which methods are more powerful? 

2. Is there a difference in the powers of the traditional and rank-based analysis? 

To answer these questions, we conduct the following empirical study. Recall the matrix X 

(2.6) for the case of two groups with one covariate, and we consider the point at mean of X 

instead of median of X. Let a\ = — (/j,x — 4 x ax) • a3. We conduct a simulation in which 

the sample sizes are 20, 40, and 80. The covariate is generated from normal distribution 

with /J, = 100 and a = 20. The response variable is generated from: 

(1) Normal distribution 

(2) Laplace distribution 

(3) Cauchy distribution 

The powers of the homogeneity of slopes at 10%, 5%, and 1% level of significance are also 

obtained. For each scenario, 10000 simulations are conducted at 5% level of significance. 

2.4.1 Condition A and Condition B Simulation Results 
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Table 20: Condition A when Y is normal 

a 3 = 0 

a 3 = 0.3 

0:3 = 0.6 

a 3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
n = 20 
0.0481 
0.0432 
0.7184 
0.6557 
0.9894 
0.9763 
1.0000 
1.0000 

n = 40 
0.0525 
0.0501 
0.9535 
0.9364 
1.0000 
1.0000 
1.0000 
1.0000 

n = 80 
0.0530 
0.0486 
0.9982 
0.9972 
1.0000 
1.0000 
1.0000 
1.0000 

Table 21: Condition B when Y is normal 

a3 = 0 

az = 0.3 

a 3 = 0.6 

a 3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
n = 20 
0.0462 
0.0415 
0.7099 
0.6496 
0.9882 
0.9741 
1.0000 
1.0000 

n = 40 
0.0520 
0.0488 
0.9572 
0.9407 
1.0000 
1.0000 
1.0000 
1.0000 

n = 80 
0.0527 
0.0482 
0.9981 
0.9969 
1.0000 
1.0000 
1.0000 
1.0000 
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Figure 11: Condition A and B when Y is normal 

For normal distribution, the powers of both least squares and R estimate procedures 

are slightly different in both Condition A and B, they are identical when a3 > 0.6 and 
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n > 40 (Table 20, 21). At a3 = 0, the powers of both LS and robust procedures are close 

to 5% at all different sample sizes for both conditions. When the sample size is larger, the 

power is higher as well except for WWIL at a3 = 0 and n = 80 for both procedures. Figure 

11 shows the power of Condition A and B at n = 20, 40, and 80. 

Table 22: Condition A when Y is Laplace 

a3 = 0 

a3 = 0.3 

a3 = 0.6 

a3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
n = 20 
0.0487 
0.0395 
0.6347 
0.6797 
0.9684 
0.9779 
1.0000 
1.0000 

n = 40 
0.0524 
0.0474 
0.9481 
0.9787 
1.0000 
1.0000 
1.0000 
1.0000 

n = 80 
0.0482 
0.0468 
0.9991 
0.9999 
1.0000 
1.0000 
1.0000 
1.0000 

Table 23: Condition B when Y is Laplace 

a3 = 0 

a3 = 0.3 

a3 = 0.6 

a3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
n = 20 
0.0467 
0.0372 
0.6242 
0.6693 
0.9667 
0.9765 
1.0000 
1.0000 

n = 40 
0.0513 
0.0465 
0.9452 
0.9769 
1.0000 
1.0000 
1.0000 
1.0000 

n = 80 
0.0480 
0.0462 
0.9993 
0.9999 
1.0000 
1.0000 
1.0000 
1.0000 
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Figure 12: Condition A and B when Y is Laplace 

For Laplace distribution, the powers of both least squares and R estimate procedures 

are slightly different in both Condition A and B, they are identical when a3 > 0.6 and 
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n > 40 (Table 22, 23). At a3 = 0, the powers of both LS and robust procedures are close 

to 5% at all different sample sizes for both conditions. When the sample size is larger, the 

power is higher as well except for LS and WWIL at a3 = 0 and n = 80 for both procedures. 

Figure 12 shows the power of Condition A and B at n = 20, 40, and 80. 

Table 24: Condition A when Y is Cauchy 

a 3 = 0 

a3 = 0.3 

a3 = 0.6 

a 3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
n = 20 
0.0500 
0.0680 
0.1686 
0.3862 
0.3553 
0.7305 
0.5426 
0.9289 

n = 40 
0.0232 
0.0373 
0.1763 
0.7382 
0.4143 
0.9864 
0.5390 
0.9979 

n = 80 
0.0207 
0.0420 
0.1620 
0.9339 
0.3894 
0.9999 
0.5517 
1.0000 

Table 25: Condition B when Y is Cauchy 

a 3 = 0 

a3 = 0.3 

a3 = 0.6 

a3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
n = 20 
0.0210 
0.0243 
0.1660 
0.3843 
0.3494 
0.7476 
0.5391 
0.9304 

n = 40 
0.0222 
0.0367 
0.1738 
0.7389 
0.4127 
0.9867 
0.5387 
0.9980 

n = 80 
0.0200 
0.0415 
0.1605 
0.9331 
0.3875 
0.9998 
0.5507 
1.0000 
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Figure 13: Condition A and B when Y is Cauchy 

In case of Cauchy distribution, the power of the R estimate procedures are higher 

than the LS procedure in both Condition A and B (Table 24, 25). At all values of as, the 
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robust procedures have more powerful for all values of a3 and all sample size. The power 

of R procedure is about 2 times higher than that of the least squares when the a3 and n are 

higher in both procedures. Figure 13 shows the power of Condition A and B at n = 20, 40, 

and 80. 

For normal and Laplace cases, the powers of both least squares and R estimate 

procedures are slightly different in both Condition A and B, they are identical when a3 > 

0.6 and n > 40 (Table 20, 21, 22, and 23). In case of Cauchy, the least squares and the R 

procedures are close to each other when a3 = 0 in both conditions. However, the power 

of R procedure is about 2 times higher than that of the least squares when the a3 and n are 

higher (Table 24, and 25). 

2.4.2 Method III Simulation Results 

Table 26: HQ\ (3\= /32 and pick-a-point at grand mean when Y is normal, n = 20 

« 3 = 0 

« 3 = 0.3 

a3 = 0.6 

a3 = 0.9 

Q3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1028 
0.0990 
0.1524 
0.1431 
0.2495 
0.2311 
0.4493 
0.4191 
0.7236 
0.6901 

a = 0.05 
0.0502 
0.0477 
0.0830 
0.0777 
0.1549 
0.1371 
0.3232 
0.2843 
0.5879 
0.5401 

a = 0.01 
0.0094 
0.0090 
0.0219 
0.0168 
0.0465 
0.0359 
0.1265 
0.0984 
0.3095 
0.2493 

Pick-a-point at x 
0.0459 
0.0313 
0.7104 
0.5643 
0.9899 
0.9578 
1.0000 
1.0000 
1.0000 
1.0000 

The power of the LS and R procedures are slightly different for all a3 and for all 

levels of significance. The power of the 95% confidence interval at grand mean of both 

procedures is higher when the 0:3 is higher (Table 26, 27, 28). The plots of the power for 

homogeneity at 5% level of significance and that for pick-a-point at grand mean for normal 
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Table 27: H0: f3x = /32 and pick-a-point at grand mean when Y is normal, n = 40 

a-3 = 0 

a3 = 0.3 

Q!3 = 0.6 

a3 = 0.9 

a3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.0981 
0.1033 
0.2327 
0.2299 
0.4915 
0.4741 
0.7594 
0.7367 
0.9363 
0.9261 

a = 0.05 
0.0488 
0.0522 
0.1450 
0.1366 
0.3645 
0.3473 
0.6451 
0.6193 
0.8808 
0.8636 

a = 0.01 
0.0102 
0.0088 
0.0478 
0.0426 
0.1574 
0.1418 
0.3857 
0.3424 
0.6957 
0.6462 

Pick-a-point at x 
0.0521 
0.0444 
0.9504 
0.9196 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

Table 28: HQ: fa = (32 and pick-a-point at grand mean when Y is normal, n = 80 

a3 = 0 

a3 = 0.3 

a3 = 0.6 

c*3 = 0.9 

a3 = 1.2 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1045 
0.1034 
0.3851 
0.3727 
0.7692 
0.7508 
0.9693 
0.9608 
0.9999 
0.9998 

a = 0.05 
0.0507 
0.0475 
0.2751 
0.2602 
0.6633 
0.6423 
0.9380 
0.9236 
0.9997 
0.9997 

a = 0.01 
0.0097 
0.0093 
0.1101 
0.0994 
0.4150 
0.3834 
0.8165 
0.7857 
0.9880 
0.9978 

Pick-a-point at x 
0.0522 
0.0458 
0.9983 
0.9968 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

distribution is shown in Figure 14 - 16. 

In case of Laplace distribution, the power of the LS and R procedures are slightly 

different for all a3 and all levels of significance. The power of the 95% confidence interval 

at grand mean of both procedures is higher when the a3 is higher (Table 29, 30, 31). The 

plots of the power for homogeneity at 5% level of significance and that for pick-a-point at 

grand mean is shown in Figure 17 - 19. 
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Table 29: H0: /?i = /32 and pick-a-point at grand mean when Y is Laplace, n = 20 

a 3 = 0 

a 3 = 0.3 

a 3 = 0.6 

a 3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1024 
0.1083 
0.1477 
0.1690 
0.2520 
0.2669 
0.6105 
0.6563 

a = 0.05 
0.0515 
0.0519 
0.0864 
0.0987 
0.1566 
0.1672 
0.4738 
0.5186 

a = 0.01 
0.0120 
0.0097 
0.0253 
0.0242 
0.0492 
0.0456 
0.2378 
0.2450 

Pick-a-point at x 
0.0475 
0.0299 
0.6400 
0.6244 
0.9704 
0.9683 
1.0000 
1.0000 

Table 30: H0: flx = /j2 and pick-a-point at grand mean when Y is Laplace, n = 40 

a3 = 0 

a3 = 0.3 

a3 = 0.6 

a 3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1055 
0.1089 
0.2310 
0.2667 
0.5085 
0.5898 
0.8672 
0.9234 

a = 0.05 
0.0537 
0.0563 
0.1441 
0.1691 
0.3833 
0.4612 
0.7828 
0.8607 

a = 0.01 
0.0099 
0.0087 
0.0436 
0.0545 
0.1831 
0.2339 
0.5621 
0.6778 

Pick-a-point at x 
0.0515 
0.0398 
0.9480 
0.9743 
1.0000 
1.0000 
1.0000 
1.0000 

Table 31: H0: Pi = j32 and pick-a-point at grand mean when Y is Laplace, n = 80 

a 3 = 0 

a 3 = 0.3 

a 3 = 0.6 

a 3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.0972 
0.0986 
0.3430 
0.4339 
0.7815 
0.8843 
0.9931 
0.9982 

a = 0.05 
0.0491 
0.0497 
0.2423 
0.3148 
0.6767 
0.8090 
0.9840 
0.9960 

a = 0.01 
0.0097 
0.0099 
0.0900 
0.1315 
0.4338 
0.5850 
0.9400 
0.9791 

Pick-a-point at x 
0.0478 
0.0435 
0.9991 
0.9999 
1.0000 
1.0000 
1.0000 
1.0000 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 

CI at Mean(X) o 
Slope test + 

Figure 14: Y is normal, n = 20 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 

CI at Mean(X) o 
Slope test + 

Figure 15: Y is normal, n — 40 
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J I I L 

0) 

o 
CL 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

CI at Mean(X) o 
Slope test + 

Figure 16: Y is normal, n = 80 
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<*3 

CI at Mean(X) o 
Slope test + 

Figure 17: Y is Laplace, n = 20 
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O 
Q. 

0.0 0.2 0.4 0.6 0.8 

OC3 

CI at Mean(X) o 
Slope test + 

Figure 18: Y is Laplace, n = 40 
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Least Squares 
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Wilcoxon 
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0.6 
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o 
Q_ 

0.4 
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0.0 

a3 

CI at Mean(X) o 
Slope test + 

Figure 19: Y is Laplace, n = 80 
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Table 32: H0: f3x= (52 and pick-a-point at grand mean when Y is Cauchy, n = 20 

a 3 = 0 

a3 = 0.3 

a3 = 0.6 

a 3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.0929 
0.1602 
0.1024 
0.1057 
0.1547 
0.2412 
0.1699 
0.2764 

a = 0.05 
0.0649 
0.1057 
0.0411 
0.0463 
0.1088 
0.1550 
0.0891 
0.1718 

a = 0.01 
0.0387 
0.0332 
0.0054 
0.0069 
0.0465 
0.0470 
0.0218 
0.0472 

Pick-a-point at x 
0.0481 
0.0637 
0.1637 
0.2904 
0.3314 
0.6371 
0.5402 
0.9037 

Table 33: H0: f3\ - fo and pick-a-point at grand mean when Y is Cauchy, n = 40 

a 3 = 0 

a3 = 0.3 

a 3 = 0.6 

a 3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1069 
0.0906 
0.1190 
0.1572 
0.1469 
0.3246 
0.1792 
0.5485 

a = 0.05 
0.0533 
0.0430 
0.0651 
0.0856 
0.0749 
0.2173 
0.1071 
0.4261 

a = 0.01 
0.0071 
0.0080 
0.0102 
0.0197 
0.0173 
0.0746 
0.0364 
0.2021 

Pick-a-point at x 
0.0229 
0.0278 
0.1742 
0.6992 
0.4136 
0.9860 
0.5350 
0.9976 

Table 34: H0: (3\ = fo and pick-a-point at grand mean when Y is Cauchy, n = 80 

a3 = 0 

a3 = 0.3 

a3 = 0.6 

a3 = 0.9 

Procedure 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

LS 
WWIL 

Power 
a = 0.10 
0.1061 
0.0987 
0.1148 
0.2520 
0.1485 
0.6395 
0.1709 
0.8000 

a = 0.05 
0.0585 
0.0473 
0.0571 
0.1587 
0.0825 
0.5151 
0.1008 
0.7075 

a = 0.01 
0.0128 
0.0091 
0.0090 
0.0501 
0.0247 
0.2763 
0.0330 
0.4745 

Pick-a-point at x 
0.0207 
0.0362 
0.1618 
0.9352 
0.3893 
0.9999 
0.5515 
1.0000 
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«3 

CI at Mean(X) o 
Slope test + 

Figure 20: Y is Cauchy, n = 20 
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o 
0_ 

«3 

CI at Mean(X) o 
Slope test + 

Figure 21: F is Cauchy, n = 40 
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o 
Q. 

a3 

CI at Mean(X) o 
Slope test + 

Figure 22: Y is Cauchy, n = 80 
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For Cauchy distribution, the power of robust procedure is much higher than that 

of the LS procedure when a3 is higher as well as the case of pick-a-point (Table 32, 33, 

and 34). The plots of the power for homogeneity at 5% level of significance and that for 

pick-a-point at grand mean is shown in Figure 20 - 22. 

Getting back to the two questions above, the results based on normal and Laplace 

distributions show that the power of Condition A, which is the pick-a-point, is equal to 

or slightly higher than the power of Condition B except the power from LS procedure at 

a3 = 0.3 and n — 40 in case of normal distribution, and at a3 = 0.3 and n = 80 in case of 

Laplace distribution. For Cauchy distribution, the power of Condition A of both LS and R 

procedures is slightly higher than the power of Condition B except the power of WWIL at 

a3 = 0.3 and n = 40. 

Second question can be answered based on the simulation results from Condition 

A, Condition B, and Method III, the powers of the traditional and rank-based analysis is 

different especially when the distribution is the heavy-tailed distribution. 
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CHAPTER III 

ADJUSTED MEANS 

Consider a data set with k groups in which group i has sample size n i ; for i = 1,2,... ,k. 

Note that the total sample size is n = ̂ i = 1 n^. Let Y^ denotes the jth response from the 

ith group and let Xij denotes the value of the jth covariate of the ith group. We assume 

that the slopes are homogenous in this chapter. The centered design is 

Yij = ai + P(Xij - X„) + etj, j = 1,2, . . . , nh i = l,2,...,k, 

where a.i is the effect of the ith treatment and /? is the slope. The mean of the ith treatment 

is 

Yi. =ai + (3(Xi.-X..) + eij 

Now suppose p is an estimate of /?. Then an estimator of a, is 

ai = Yi.-P(Xi.-X..) (3.1) 

The second term on the right-hand side is the adjustment introduced by the covariance 

analysis (Snedecor and Cochran, 1980, p.367). If we take the expected value of at we get 

E[Si] =at+ /3(Xi. - X..) - (3(XL - X..) = a,. 

Hence, the covariance adjustment removes all the bias if we have random sample 

and the regression of Y on X is linear with the same slope in each population; see also 

Snedecor and Cochran, 1980, p.380. Note in (3.1), the mean of the ith group is adjusted 
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by the covariate term. Hence, a* is called the adjusted mean of the ith group. We denote it 

as 

YiMj=Yi-p(Xi.-X..) (3.2) 

where YiAdj denotes the adjusted mean of the ith group, Yi denotes the unadjusted mean, 

P denotes the estimator of the slope parameter, X; denotes the covariate mean of the ith 

group, and X„ denotes the grand covariate mean. The adjusted mean is employed to reduce 

the bias by adjusting the mean of treatments to the point that we would expect the mean 

response variable to occur when the covariate means of all groups are the same as the grand 

covariate mean (Huitema, 1980, p. 15). 

These estimators motivate some simple naive robust analogs. For example, consider 

the ith (naive) adjusted median given by 

Yitadj —Y{— ^B.{Xi. — X.) 

where Yi denotes the ith groups median and (3R denotes a robust estimator of common 

slope. Another example is the adjusted Hodges-Lehmann (HL) estimate of location. The 

HL estimator of the ith group is 

Y+ = medigiKjXn. l3 (3.3) 
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Hence, the ith adjusted naive HL estimate is 

K* = Y+ - &(*<• - X.) (3.4) 

where (3R denotes a robust estimator of the common slope parameter. The properties of 

these naive robust adjusted "means" are not apparent because the V '̂s are not identically 

distributed. In particular, the standard errors for these simple robust analogs are difficult 

to obtain. For example, for the median analog, we need the asymptotic distribution of 

the sample median of non-identically distributed random variables. Other one-sample R 

estimators of center (and hence adjusted center estimators) are discussed below. 

As we discuss next, the LS adjusted mean estimators (3.2) are easily obtained from 

the full model LS fit of model (3.6). From this point of view, standard errors for these 

estimators readily follow. Even though they are the same for LS, we call these adjusted 

means for the design. Our robust analog based on the design will differ from the naive 

ones given above. We then consider the robust analogues of adjusted means based on the 

design and establish the asymptotic theory for these robust estimators. Besides efficiency 

comparisons between the robust and LS estimators, the theory leads to the standard errors 

for these robust estimators. 

3.1 LS Adjusted Means via the Design Matrix 

The design matrix implementation of LS adjusted means is given on page 65 of 

Huitema (1980) without proof. To gain an understanding of this development design, we 

present a proof of it now. As we show later, this proof motivates the robust analog. 

Consider the design matrix 
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X = 

a fa (32 ••• (3k-i Pk 

0 x 1 l n i 0 

1 0 LU2 0 x 

1 0 0 ••• lnfc_1 x 

1 0 0 0 O x 

(3.5) 

A second way of writing it is X = Cl C 2 Cfc_l X , where l n is an 

n x l vector of ones, C; is the n x l dummy vector for the ith group, and x is the vector 

of covariate. Write X as X = [ l n x]. Let Y = (y'j, y'2,..., y^)', where y, is the vector 

of responses for the ith group. Let b = (a, /?')' denote the vector of parameters. The LS 

estimates satisfy the normal equations given by 

X 'Xb = X 'Y (3.6) 

Equivalently, this expression can be written as 

n n\ n2 

n\ rii 0 

n2 0 n2 

njfc-i 0 0 

E xij E xij E x2j 

nk-\ 

0 

0 

nk-\ 

E xk-ij 

Zw Z-i Xij 

J2xu 

HX2j 

E xk-lj 

EE4 

a 

Pi 

Pk 

E E Vij 

EE 

where Yl Xij denote the summation of the covariate for the ith group. This leads to 
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the system of equations 

na + ni/?i H h nfe_i/?fc_i + (3k ^ ^ xtj = ^ ^ y^ (1) 

nja + n i ^ + A ^ X i j = J ] y i j (2) 

n 2 a + n2p2 + Pk ̂  x2 i = ^ y2j (3) 

i 0) 

Dividing both sides of equation (2) by ni, we have 

OL + Pi + Pk%l. = Vl. 

Then subtract off Pk(x\. — x.) from both sides to get 

oc + Pi + PhXi. - Pk{xi. - x.) = Vi. - Pk(xi. - £..)• 

Therefore, the adjusted mean of the 1st group is 

a + Pi + Pkx.. = Vi- Pk{xi. ~ x.) = yi)0dj. (3.7) 

For the 2nd group, divide both sides of equation (3) by n2 

a + P2 + PkX2. = 2/2. 

Then subtract off Pk(x2. — x„) from both sides. 
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a + (32 + PkX2. ~ Pk(x2. - x.) = y2. - Pk(x2. - x.) 

The adjusted mean of the 2nd group is 

a + (32 + j3kx„ = y2- Pk(x2, - x„) = y2Mj. (3.8) 

Continuing this was, we can show that i adjusted mean, for i = 1, • • • , k — 1 is 

a + Pi + pkx„ = ykMj. 

For the kth adjusted mean, we proceed as follows. Because n = ni+n2-\ h nk, 

we can rewrite equation (1) as 

(ni -\ 1- nk)a + n1p1 -\ h nfc_i/?fc_i + j3k ^ ^ x{j = ^ ^ ytj 

nioH \-nka + ni0i-\ hn^ . i + ft^^Xjj = ^^Vij (3.9) 

Taking the difference of equation (3.9) from the sum of equation (2), equation (3), 

• • , and equation (k), we have 

nxa H h nka + nxfi\ -{ 1- nfc_i/?fc_i + (3k £ E xij 

-{nxa + ni/?i + f3k ]T xXj) - {n2a + n2(3x + /?fc E x2j) 

(nfc_ia + nfc_1/3fc_1 + /3kY
xk-ij) = E E S A j -J2vij E^-ij 

nka + PkYH2xij- PkY2xn PkT,xk-ij = E E ^ - E y y E^-ij 

nka + pk($2 Y,Xij - YxXj Yxk-ij) = E E Vij ~ E Vij E Vk-ij-
(3.10) 

Because 

/ j / j xij ~ 2—* Xl3 ~ ' _ L^/ Xk~13 = 2—t Xfcj' 
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and 

Equation (3.10) becomes 

nka + Pk^2 xkj = ^2vkj- (3.11) 

Dividing both sides of equation (3.11) by n^, we have 

a + PkXk. = Vk. 

Then subtracting from both sides with /3k(xk, — x.), we have an expression for the 

kth adjusted mean; i.e., 

a + /3kx„ = yk. ~ Pk{xk. - x.) = yk,adj- (3.12) 

Because the LS estimates solve the normal equations, we rewrite equations (3.7), (3.8), and 

(3.12) with the estimates; i.e., 

ViMj = Vi - Pk{xi. -x.) = & + & + fax.., i = 1,2, . . . , / c - 1 (3.13) 

and 

y~k,adj = Vk~ Pk{xk. - x.) = a + $kx.. (3.14) 

Thus, we have expressed the adjusted means in terms of the LS estimator based on the 

design matrix X (3.5). 

Notice from this formulation that the standard error of the LS adjusted mean is 

easily obtained. For i = 1, 2 , . . . , k — 1, the ith adjusted mean is yiiadj = a'^Ls where the 
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jth component of the vector o, is given by 

*i] 

1 j = l 

1 j=i+l 

x j = k + 1 

0 elsewhere. 

The kth adjusted mean is y~k,adj = U^LS where the components of Ofc are 

akj = < 

1 3 = 1 

x j = k + 1 

0 elsewhere. 

The standard error of the ith adjusted mean is the square root of 

V(yi<adj) = aj(72(X X) Oi, i = 1,2, . . . , k. 

2>2 Preliminary Notation 

Rewrite model (2.3) as 

Y = lna + X1p + e (3.15) 

where X of (2.5) is X = [1 Xi]. As in Chapter 2, let tp(u) be a given nondecreasing score 

function defined on the interval (0,1). Recall that F(t) is the c.d.f of the random errors and 

<f(u) = \/T2(u — §)• Let (3V denote the R estimator (3; i.e., 

3 „ = A igmin | |Y-X 1 )9 | | v 
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by 

A result that will prove useful is the asymptotic representation of (3 which is given 

nl'2(pv -P) = rv(n-1X'X)-1n-1 /2XV(F(Y - X/?)) + op(l); (3.16) 

see page 163 of Hettmansperger and McKean (1998). 

The R estimator of the intercept that we discussed in Chapter 2 is the median of the 

residuals, 

S5-med{Y-X'3v}. 

It solves the equation 

n 

S.iY - lna - X3„) = J>gn(Y, - a - x'fy = 0. (3.17) 

We next show the asymptotic representation of S5. Without loss of generality, the true 

intercept and slopes are assumed as 0. According to Lemma 3.5.8 of Hettmansperger and 

McKean (1998, p. 165), for all S{a), 

n 
-1/2 5i(Y - an-1'2! - X0V) - Si(Y - an"1 / 2 l) 1/21 0. 

0, which implies that the asymp-Letting a = 0, n~1'2 SX(Y - XfiJ - 5i(Y) 

totic distribution of n~1/2Si(Y - x 3 v ) and n~1/2Si(Y) are the same. 

Furthermore, Lemma 3.5.8 leads to the asymptotic linearity result for the equation 

(3.17), 

n"1 /25i(Y - an- 1 / 2 l - x 3 v ) = n^S^Y) - ar^1 + op(l), 

see Hettmansperger and McKean (1998). 

The intercept solves S\ (Y — lna — X/3 ,̂) = 0 and nl/2a.s is bounded in probability, 
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hence, we have 

0 = n - ^ S i t Y ) - n^otsTs1 + op(l). 

This we can write as 

n 

0 = n"1/2 J2 sgn(Yi) - n1/2S5rs-
1 + 0 p(l) . 

This yield the asymptotic representation 
n 

S 5 = n-^Vsn" 1 ^ J2 sgn(Y<) + op(l). 
t= i 

Thus, the asymptotic representation of the R estimate of the intercept with a as the true 

intercept is 
n 

n 1 / 2 (S s - a) = TSn-xl2 J ] s g n ^ - a) + op(l). 

The intercept can also be estimated based on signed-rank location process. To dis­

cuss this, first consider the simple location model 

Zi = 6 + ei (3.18) 

where e i , . . . , en are iid with pdf f(x) and cdf F(x). For theory, we need to assume also 

that / is symmetric about 0. Recall that the optimal rank regression scores are generated 

by the score function 

w ( t t ) - = / ( F - ' W ) 

But then by symmetry <Pf(u) is odd about | ; i.e., 

<ff(u) = -ipf{l - u). 
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Note that such scores satisfy: </?(|) = 0 and <p(u) > 0 for u > \ (Hettmansperger and 

McKean, 1998, p.101). The corresponding signed-rank scores are a+(i) = f+{^i), where 

(p+(u) = ¥'(3i^). These scores are positive and decreasing. Consider the norm 

n 

l|v||+ = £ V ( i * H ) M , ve iT 

The signed-rank estimate of 9 in the location model, (3.18), is 

9 = Argmin | |Z-01 | |+ , 

where Z' = {Zx, ..., ZJ. 

The gradient function of this norm is 

n 

t = i 

Hence, the estimate also satisfies the equation 

S+{9) = 0. 

If sign scores are used then 9 

The above representation is under the assumption that the true location parameter 

is 90 is 0. There is no loss in generality because 9 is an equivariant location estimator, 

which is true for any norm-based estimator; see Chapter 1 of Hettmabsperger and McKean 

= medZj, while if Wilcoxon scores are used then 

Zi + Z j 
9 — medj<j : J3 
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(1998). In general, the representation is 

B+ = eo + Tvn-1 - S+(Z - 0O1) + op(l/Vn). 

Returning to the linear model, the estimate of the intercept is based on the residuals 

of the R fit using the score function (p, where ip+{u) = ifC1*^)- Denote the residuals e 

= Y — Xi(3 and /3 is the R estimate of (3 in model (3.15). That is, using the gradient 

formulation, the estimate of the intercept is a such that 

n 

S+(a) = YJ a+(R |ej — a|)sgn(ej — a) = 0. 

The function above is applied to the residuals for obtaining the estimate of the 

intercept. Therefore, we have 

n 

i = l 

where e, = yi — x'j3v. The intercept estimator is a+ that solves S+(a) = 0. The estimate of 

HL estimator based on residuals, if we use Wilcoxon scores; i.e, <p(u) = y/l2(u — | ) , while 

if we use sign scores then the estimate of intercept is the median of the residuals. As shown 

in Theorem A.2.11 of Hettmansperger and McKean (1998, p.410), the representation for 

the intercept is similar as 6+; i.e., 

a = a0 + Tvn~1S+{e) + op(l/v
/n), 

n 

K = ot0 + Tvn~l J2 v[F{ei)\ + op{l/y/n), (3.19) 
i=i 

where ê  = j/j — xfi0 are the true errors. 
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3.3 Adjusted Means via Signed-Rank Estimate of the Intercept 

Consider the analysis of covariance model (2.2). Let X be the design matrix (3.5). 

Recall LS development is based on the normal equations (3.6) 

X 'Xb = X'Y. 

Write X as X = [1 X ^ . Then the right-hand side is 

X 'Y = 
1' 

_x;_ 
Y = 

l'Y 

X;Y 

Also left-hand side is 

X ' X b = 
n l 'X i 

x;i xi 

na + l 'Xi/? 

X' j lo + X'jXi/3 

na + nx'/3 

nx« + X^Xi/3 

So putting these two results together, we have 

na + nx/3 l ' Y 

nxa + X'jXi/3 X\Y 
(3.20) 

Next, recall that the asymptotic representation for the R estimators na+ (3.19) and 

(3^ (3.16), namely 

na+ = l ' v ^ [ F ( e ) ] (3.21) 
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< X C 3 V = <rMF(e)} (3-22) 

However with the design matrix X = [1 Xi], we want the uncentered intercept; i.e., 

av = a+ — x p ^ . Therefore, the asymptotic representation of the robust estimates of the 

regression coefficients is 

na% + nx '3 v = l ' r^[F(e)] (3.23) 

X ; x J v = X ; r ^ [ F ( e ) ] . (3.24) 

Recall that Xc = Xi - £ l l 'X i = Xi - l x . Hence the right side of (3.24) is 

KrMF(e)] = X ' l W [F(e) ] - xrv lV[F(e)], 

While the left side of (3.24) is 

x'cxc^ - (x'1-xi')(x1-ix')3v 

= (XiXx - rcxx')3„ 

= XiXi3v - nxx'3v. 

So (3.24) is equivalent to 

X ' j X ^ - nxx '3 v - X;r^[F(e)] - *Tvl'tp[F(e)}. 

But by (3.23) 

XTpl'<p[F(e)] = n x a v + nxx (3V. 

So (3.24) is equivalent to 

78 



nxS^ + XjXi/3^, = X'1rv[F(e)]. 

Therefore, the R asymptotic representation is equivalent to 

na.^ + nx/3^ = l'r¥,<^[F(e)] 

ratav + X!1X.3ip = X'1r^^[F(e)]. 

By (3.22) we have 

X'Xtv = XV^[F(e)] + o[\/y/n) (3.25) 

where b^, = av (3^ . Note that by replacing Y in (3.6) with Tvtp[F(e)), we get 

equation (3.25). 

Denote the errors for the ith group as e^, j = 1 , . . . , nt. Therefore, the asymptotic 

representation for our adjusted means follows as in (3.13) by replacing Y with rv(/p[F(e)]. 

For i = 1 , . . . , k — 1, the asymptotic representation of the ith adjusted mean is 

1 rii 

5 , + 3„,i + K* = rv— J2 viF(e^ - Pv,k&i. - *) + o(l/y/n) (3.26) 

Likewise, the asymptotic representation for the kth adjusted mean is 

K+K,k* = TV— £ PPM] - K,k(^- - *) +°(vv^) (3-27) 

By (3.19), T^^- YTjti <p[F(ekj)] + °(l/\/™) is t n e asymptotic representation for the 

79 



signed-rank estimate of location for the ith group. Hence (3.26) and (3.27) are indeed the 

asymptotic representations for the signed-rank adjusted mean for the ith group. 

We can use this process and obtain the asymptotic representation for the LS adjusted 

mean. It is 

n J=I 

3.3.1 Standard Error 

It follows immediately that the standard error of the ith signed-rank adjusted mean 

is the square root of 

V(y^ad]) = air
2(X'X)-1ai, i = l,2,...,fc, 

where, for i — 1,2,..., k — 1, the vector â  is given by 

1 j = l 

1 j=i+l 

x j = k + 1 

0 elsewhere. 

aij = < 

The components of a& are 

akj - \ 

1 3 = 1 

x j = k + 1 

0 elsewhere. 

80 



3.4 Example 

A sample of 30 freshmen biology students are randomly selected (Huitema, 1980, 

p.38) to analyze the difference among three type of behavioral objectives, which consist of 

(1) General, (2) Specific, and (3) Specific with study time allocations. The sample sizes 

of the three groups are equal with the common value 10. The response (Y) is the biology 

achievement test scores, and the covariate (X) is the aptitude test scores. 

Table 35: Behavioral Objectives Data 
1 

X 
29 
49 
48 
35 
53 
47 
46 
74 
72 
67 

Y 
15 
19 
21 
27 
35 
39 
23 
38 
33 
50 

2 
X 
22 
24 
49 
46 
52 
43 
64 
61 
55 
54 

Y 
20 
34 
28 
35 
42 
44 
46 
47 
40 
54 

3 
X 
33 
45 
35 
39 
36 
48 
63 
57 
56 
78 

Y 
14 
20 
30 
32 
34 
42 
40 
38 
54 
56 

The adjusted means for each group are computed using: (1) the simple way (for­

mula (3.2)), and (2) the design matrix way (formula (3.11) and (3.12)). In addition, the 

adjusted means based on R estimates are considered. For the simple way, we estimate: 

(1) adjusted means by LS (AMLS), (2) robust adjusted median naive (RAMMN), and (3) 

robust adjusted Hodges-Lehmann naive (RAHL). Note that the standard errors for these 

simple robust analogs, which are RAMMN and RAHL, are difficult to obtain. In case of 

the design matrix way, we estimate: (1) adjusted means by LS (AMLS), (2) robust adjusted 

median design (RAMMD), and (3) robust adjusted signed-rank (RASR). Recall that the 

AMLS from both ways are the same. The results are in Table 36. 

As can be seen, the adjusted means from both ways give exactly the same value. 
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AMLS 

RAMMN 

RAHL 

Table 3t >: Estimate (Standard 
Simple Way 

^ l,adj 

28.48 
(0.152) 
28.57 
(NA) 
28.07 
(NA) 

*2,adj 

40.33 
(0.133) 
42.25 
(NA) 
41.25 
(NA) 

•* 3,adj 

36.19 
(0.019) 
36.18 
(NA) 
36.18 
(NA) 

AMLS 

RAMMD 

RASR 

irror) 
Design Matrix Way 

Yl.adj 
28.48 

(0.152) 
27.14 

(0.286) 
28.09 

(0.191) 

* 2 , adj 

40.33 
(0.133) 
39.35 

(0.035) 
40.29 

(0.129) 

* 3 , adj 

36.19 
(0.019) 
36.16 

(0.016) 
37.10 

(0.110) 

The adjustments based on R estimate are slightly different but close. The R estimate is 

different from LS primarily because the R estimate is more resistant to y-outliers. (McKean, 

Naranjo, and Sheather, 1999). To investigate the robustness of our adjusted means, we 

replace several the response values with outliers. 

First, we replace the biology achievement test score of the first group with 100 

(Yn = 100). The outlier has a big impact on the AMLS of the first group (Yi^dj) (Table 

37). When comparing between the simple and the design matrix ways, the RAMMN and 

RAHL in the simple way have both YiAdj and Y2,adj higher than the RAMMD and RASR 

in the design matrix way; however, Y^adj in the simple way is lower and it is more closer 

to the original value. 

Table 37: Estimate (Standard Error): 1 outlier 

AMLS 

RAMMN 

RAHL 

Simple Way 
Yl,adj 
37.89 

(0.789) 
32.73 
(NA) 
32.73 
(NA) 

* 2 , adj 

39.53 
(0.053) 
42.11 
(NA) 
41.11 
(NA) 

J^3,adj 

36.08 
(0.008) 
36.16 
(NA) 
36.16 
(NA) 

AMLS 

RAMMD 

RASR 

Design Matrix Way 
Yl,adj 
37.89 

(0.789) 
30.37 

(0.037) 
30.11 

(0.011) 

^2,adj 

39.53 
(0.053) 
40.68 

(0.168) 
40.43 

(0.143) 

•* 3,adj 

36.08 
(0.008) 
36.89 

(0.089) 
36.64 

(0.064) 

Next, another outlier is applied but in a different group. The biology achievement 

test score of the second group is replaced by the outlier; that is, Y2\ = 150. Now, we then 
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have two outliers, one is in the first group, another is in the second group. The results in 

Table 38 show that the AMLS is very sensitive to the outliers. Both Y\Adj and Y^Mi °f 

the RAMMN and RAHL in the simple way are higher than the RAMMD and RASR in the 

design matrix way. 

AMLS 

RAMMN 

RAHL 

Table 38: Estimate (Standard Error) 
Simple Way 

Yl,adj 

39.41 
(0.941) 
33.17 
(NA) 
33.17 
(NA) 

*2,adj 

51.20 
(1.220) 
43.73 
(NA) 
43.73 
(NA) 

Yz,adj 
35.89 

(0.011) 
36.10 
(NA) 
36.10 
(NA) 

AMLS 

RAMMD 

RASR 

: 2 outliers 
Design Matrix Way 

* l,adj 

39.41 
(0.941) 
30.73 

(0.073) 
31.26 

(0.126) 

*2,adj 

51.20 
(1.220) 
41.85 

(0.285) 
42.39 

(0.339) 

* 3,adj 

35.89 
(0.011) 
35.67 

(0.033) 
36.20 

(0.020) 

We then add another outlier to the biology achievement test score of the third group; 

that is, F31 = 180. Therefore, all groups have one outlier. The outliers have an impact on 

the AMLS of both simple and design matrix ways. The RAMMD and RASR are less 

sensitive to the outliers (Table 39). 

AMLS 

RAMMN 

RAHL 

Table 39: Estimate (Standard Error] 
Simple Way 

^ l,a<# 

40.66 
(1.066) 
33.37 
(NA) 
33.37 
(NA) 

*2,adj 

50.11 
(1.111) 
43.55 
(NA) 
43.55 
(NA) 

* 3,adj 

52.33 
(1.633) 
39.08 
(NA) 
40.08 
(NA) 

AMLS 

RAMMD 

RASR 

: 3 outliers 
Design Matrix Way 

Yl,adj 

40.66 
(1.066) 
30.20 

(0.020) 
31.37 

(0.137) 

*2,adj 

50.11 
(1.111) 
41.55 

(0.255) 
42.73 

(0.373) 

•* 3,adj 

52.33 
(1.633) 
38.37 

(0.237) 
39.55 

(0.355) 

3.5 Simulation Study 

We next present the results of a simulation study for one covariate, and three groups 

with 10 observations in each group. Both covariate and response variables are generated 
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from: (1) standard normal distribution, and (2) contaminated normal distribution. The 

group means for the covariate are 4, 5, and 6, respectively; the standard deviation is 1 for 

all groups. Recall that we assume the slopes are homogenous. We run 10000 simulations. 

Let/?=[0 4 6 1]. Recall the model 

Yij = a + Pi + Xtj + eij, 

where j = 1,2,... ,rii, i = 1, 2 , . . . , k, and the adjusted means is 

Yi,adj = Yi. ~ P(Xi, — X,) 

Note that we use the same X for all 10000 simulations. The grand mean of A" (X.) 

is 5.627, the means for each group are 3.076, 6.250, and 7.557, respectively. 

Therefore, we have 

Group! : E(Ylni) = 0 + 4 + (1)(3.076) + 0 = 7.076 

E(Y1Mj) = 7.076 - ( 1 ) ( 3 . 0 7 6 - 5.627) = 9.627 

Group2: E{Y2n2) = 0 + 6 + (1)(6.250) + 0 = 12.250 

E(Y2,adj) = 12.250-(1)(6.250-5.627) = 11.627 

GroupS: E(Y3n3) = 0 + 0 + (1)(7.557) + 0 = 7.557 

E(Ji,adi) = 7 .557-(1)((7 .557-5.627) = 5.627 

We then have the true adjusted means for 1st, 2nd, and 3rd groups as 9.63, 11.63, 

and 5.63, respectively. The average of each adjusted estimate and the error are obtained as 

shown in Table 40. 

All estimates from the design matrix way are the identical except for AMLS of the 

3rd group. As a check for LS, for the simple way the AMLS estimates are the same as the 
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Table 40: Adjusted Mean Simulation: Standard Normal Distribution 

AMLS 

RAMMN 

RAHL 

Simple Way 
^ l . a d j 

9.63 
(0.12) 
10.30 
(NA) 
9.80 
(NA) 

l2,adj 

11.63 
(0.10) 
12.60 
(NA) 
11.59 
(NA) 

•* 3,ad; 

5.62 
(0.11) 
6.29 
(NA) 
6.02 
(NA) 

AMLS 

RAMMD 

RASR 

Design Matrix Way 
y 
1 l.arfj 
9.63 

(0.12) 
9.63 

(0.14) 
9.63 

(0.12) 

*2 ,ad j 

11.63 
(0.10) 
11.63 
(0.12) 
11.63 
(0.11) 

* 3,adj 

5.62 
(0.11) 
5.63 

(0.13) 
5.63 

(0.12) 

estimates of the design matrix way. The RAMMN and RAHL are a little higher than the 

true mean except the RAHL of the 2nd group. 

Next simulation is conducted in similar scenario except the response variable is 

generated from contaminated normal with e = 0.3, and a — 9. The covariate we use 

here is the same as for standard normal distribution. Note that the true adjusted means of 

1st, 2nd, and 3rd groups for this contaminated normal distribution are exactly the same as 

for standard normal distribution. The average of each adjusted estimate and the error are 

obtained (Table 41). 

Table 41: Adjusted Mean Simulation: Contaminated Normal Distribution 

AMLS 

RAMMN 

RAHL 

Simple Way 
Y\,adj 

9.63 
(3.04) 
10.07 
(NA) 
9.75 
(NA) 

Y2,adi 

11.64 
(2.46) 
12.08 
(NA) 
11.70 
(NA) 

* 3,adj 

5.63 
(2.74) 
6.17 
(NA) 
5.86 
(NA) 

AMLS 

RAMMD 

RASR 

Design Matrix Way 
* l , a d j 

9.63 
(3.04) 
9.63 

(0.67) 
9.63 

(0.70) 

* 2 , a < # 

11.64 
(2.46) 
11.64 
(0.54) 
11.63 
(0.57) 

•* 3,adj 

5.63 
(2.74) 
5.64 

(0.63) 
5.64 

(0.64) 

The AMLS estimates from both ways are identical. The errors of AMLS are much 

higher than those of RAMMD and RASR. The R estimates of the design matrix way are 

lower and are close to the true mean than those of the simple way. 
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CHAPTER IV 

THE JOHNSON-NEYMAN TECHNIQUE 

As we stated before, the important assumption of analysis of covariance is that the regres­

sion slopes are homogenous. If this assumption is not true, then the pick-a-point method 

of Chapter 2 can be used to investigate differences among treatment levels. In this chapter, 

we discuss an alternative test which is called the Johnson-Neyman technique. The pur­

pose of the Johnson-Neyman procedure is to identify the values of X that are associated 

with significant group differences on Y (Huitema, 1980, p.271). Recall that the treatment 

effects in the analysis of covariance are assessed at the grand mean. However, the Johnson-

Neyman technique determines a region in X-space where these differences are significant. 

The Johnson-Neyman technique was originally designed for the situation with two groups; 

however, it can be used to the case of multiple groups by comparing the pairs of groups. 

In this study, we will consider the case of two groups and one covariate. The 

Johnson-Neyman technique based on LS is discussed. We then develop the robust ana­

log to the Johnson-Neyman technique based on R estimates. We follow this development 

with a simulation study comparing the LS and robust Johnson-Neyman procedures. 

4.1 Traditional and Robust Johnson-Neyman Procedures 

Assume that the sample size of group i is n,, i = 1, 2 , . . . , k. Let Y^ denote the jth 

response from the ith group and let Xij be the covariate. The model is written as 

* ij ™ i ~v Pi •**• ij i &ij i 
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where a, is the intercept and $ is the slope parameters for the ith group. The errors e^ 

are independent and identically distributed with pdf f(t) and cdf F(t). The conditional 

distribution of Y given X is 

E(Yij\Xij) = oii + PiXij. 

The difference at point X between both groups is 

A(X) = E{Y2i\X) - E{Yl3\X) 

= (a2 + p2X)-(a1+fi1X) 

= {a2 - a,) + (fa - A ) X 

Given a fitting procedure, the estimator of the difference is 

A(X) = [cT2 - ST) + 02 - fyx. (4.1) 

First we outline the Johnson-Neyman procedure based on LS estimates. The Johnson-

Neyman technique is used to obtain a point set or "region of significance" of values of the 

X variables for which one would reject, at a specified level a, the null hypothesis that 

the two groups have the same expected Y value (Potthoff (1964, 1983)). This "region of 

significance," which will be referred to as R, consists of the set of all points X such that 

[A(X)]2 - tlx_{l/2)av{X)Sl > 0, 
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where 

Xrxl — (Xi,X2,---,Xr) 

v(X) = Y^l/n^ + iX-XjC-'iX-X)] 
i=l 

%=\ 

crxr = XiX'i-ii/mXXiixXiiy 

wrxl = XiYi-WmXXiiHYiiy 
2 

i = l 

The region R allows one to reject the null hypothesis (A(X) = 0). This implies that 

one can be at least 100(1 — a)% confident in making a statement about the difference 

between the two groups for any specified individual point X in R. However, one cannot be 

100(1 — a)% confident in making the statements about the differences simultaneously for 

all points in R (Potthoff, 1964, 1983). For simultaneous inference, consider the region R' 

defined by the set of all points X such that 

[A(X)\2 - (r + l )F r + l i / i l _ a t ; (X)^ > 0. 

With confidence coefficient > 100(1 — a)% one can state simultaneously for all points X 

in R' that the two groups differ (Potthoff, 1964, 1983). The region R' is smaller than R at 

a given a level; however, R! can be larger by choosing a larger a level for R! than that for 

R. In summary, a 100(1 — a)% confidence interval for A(X) for any specified individual 

point X (whether inside or outside R) is given by 

A{X)±tf^{l/2)a[v{X)Sl\l,\ 
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while 100(1 — a)% simultaneous confidence intervals for the functions A(X) for all pos­

sible points X in the r-dimensional X-space are given by 

&{X)±[(r + l)Fr+1jil-av(X)Sfi1*2, 

(Potthoff, 1964, 1983). Note that for exact confidence, we need to assume that the errors 

have a normal distribution. Otherwise the confidences are approximate. 

It is common practice to make a preliminary test of the hypothesis /?i = (32 before 

using the Johnson-Neyman technique: If this hypothesis is rejected by the test, then the 

Johnson-Neyman technique is applied, but if it is not rejected, then analysis of covariance 

is applied rather than the Johnson-Neyman technique (Potthoff, 1964, 1983). 

Next we want to develop the robust analog to the Johnson-Neyman technique. This 

is easier to do if the non-incremental model is used. So consider the matrix 

X = 
1 0 Xi 0 

0 1 0 X2 

We then center X 

X = 
1 0 X i - X i 0 

0 1 0 X2-X2 

Therefore, 

X X = 

nj 0 0 0 

0 n2 0 0 

0 0 ci 0 

0 0 0 c2 

(4.2) 
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where Cj = Y^ii(xij ~ xi)2 f o r 3 = 1>2-

The inverse of matrix 4.2 is 

' Y W (X'X) 

^ 0 0 0 
n i 

0 ^ 0 0 
712 

0 0 ^ 0 
CI 

0 0 0 ^ 
C2 

Let X0 be a point of interest, then it easily follows that 

2 

v(X0) = $ } ( 1 M ) + (X0 - Xi)'Crl(X - Xi)]. 

Let /3 = (/3i, /32, /?3, AO denote the parameters for this design matrix X. Note that 

/33 and /?4 for this design are the same as for the incremental design but the intercepts; j3i 

and /32, differ from ax and a2 as discuss below. 

Let h' = ( -1 ,1 , - (X 0 - XX),(X0 - X2)) and 0' = (ft, &, ft, ft), then the 

estimate of interest (A(X0)) is the linear combination /i'ft 

^ = ft - A + (X„ - X2)ft - (X„ - X :)ft 

= (ft - X2ft) - (A - Xjft) + (ft - ft)X0. (4.3) 

Recall that the R estimate of (3 we discuss in Chapter 2 is given by 

3 V = ArgminD^), 

where Dv(f3) utilizes the pseudo-norm: ||io|| = YA=I a[R(wi)]wi. A weighted Wilcoxon 

estimate corresponds to a minimum of the following function 
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DWv{0) = ^2 bii \wi-wj\, 
l<i<j<n 

where btj denotes a weight to be used in the (i,j)th comparison (Terpstra and McKean, 

2005). 

The estimate of interest is A i 5(X0) = h'$LS and for the R estimate AR(X0) = 

h'PR. Comparing the estimator of the difference (4.1) with h'J3 above (4.3), we have 

Oil = fc- X2J3i 

&i = Pi-XA. 

Note that the LS intercept estimator is the mean of the LS residuals; therefore, 

«2 = fa- X2J3i = mean(y2 - hX2) 

«! = Pi-Xj3 = m e a n ^ - ft*i)-

For the Wilcoxon estimate, let Y — XJ3V. The intercept a can be estimated by 

a location estimate based on the residuals e = Y — Y (Hettmansperger and McKean, 

1998, p.147). Let ip(u) is a nondecreasing function on (0,1). The scores are generated 

by a(i) = <p[i/(n + 1)], i = 1,2,... ,n, where ip(u) = \ / l2 (u - | ) . Let <p+(u) = 

tp[(u + l)/2] = y/3u. Let a+(i) = <p+[i/(n + 1)]. Consider the norm 

Wv\\w = Yl a+(R ^ \Vi\' * = 1.2, • • •, n, 

(Hettmansperger and McKean, 1998, p.42). 

Let ev = Y — Yv. The signed-rank procedure is applied to the residuals in order 

to obtain an estimate of the intercept. That is, the estimate of the intercept minimizes the 
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norm p^, — a l | | * or equivalently solves S(ev — a) = 0 where 

Sv{eR -al) = ^2 a(R \em ~ a|)sgn(effi - al); 

(Hettmansperger and McKean, 1998, p. 169). 

For Wilcoxon scores, the estimate is the median of the Walsh averages (Hettmansperger 

and McKean, 1998, p. 169), which is called the HL estimator based on residuals. Let 

AV(X0) = (aV2 -SV1) + ((3V2 - PVlXo. Hence, we have 

aVa = HL(Y2-/34X2) 

&V1 = HL(Y1-P3X1), 

where HL(Z) = m e d i a n * ^ ^ ± % 

For LS, the point XQ is significant if 

[A(X0)]
2 - t2

(a/2tn_4)v(X0)a
2 > 0, (4.4) 

and XQ is simultaneous significant if 

[A(X0)]
2 - 2F{aa^i)v{X0)a

2 > 0. (4.5) 

For R estimate, we replace a2 in the residual part in the equation 4.4 and 4.5 with 

f2; therefore, the equations become 

[A„(X0)]
2 - t2

{a/Xn_A)v{X0)r
2 > 0, (4.6) 
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[ A ^ X Q ) ] 2 - 2F(Q,2,„_4)v(Xo)f2 > 0. (4.7) 

4.2 Simulation Study 

Table 42 shows the aggression scores on behavioral checklist data (Huitema, 1980, 

p.272). The data are based on an experiment in which two methods of therapy are the 

treatments, and scores on a sociability scale are employed as the covariate. The response 

is the aggressiveness score on behavioral checklist. Based on a 5% level of significance, 

the treatment effects test indicates no difference; however, the homogeneity of slopes is 

significant. That is, the slopes are heterogeneous. The scatterplot shows heterogeneous 

regression slopes in which the regression line of Therapy 1 is higher than that of Therapy 

2 at low values of covariate (X) and is lower at high values of X than that of Therapy 2 

(Figure 23). 

Table 42: Therapy Data 
Therapy 1 

X 
1 
2 
2 
3 
4 
5 
5 
6 
6 
7 
8 
8 
9 
10 
11 

Y 
10 
10 
11 
10 
11 
11 
10 
11 
11.5 
12 
12 
11 
11 
12.5 
12 

Therapy 2 

X 
1 
1.5 
2.5 
3.5 
4.5 
4.5 
5 
6 
6 
7 
7 
7.5 
8 
9 
10 

Y 
5 
6 
6 
7 
8 
9 
9 
9 

10.5 
11 
12.5 
12.5 
14 
14.5 
16 
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Figure 23: Plot of the behavioral checklist data 

We do 10000 simulations for the response variable under three different distribu­

tions of error, which are (1) Standard normal distribution, (2) Normal distribution at // = 0, 

a = 30, and (3) Contaminated normal distribution with e = 0.3 and a = 9, as following 

step: 

Response Variable Simulation Steps 

1. Obtain e using the original X and Y 

2. Compute Y = Y - e 

3. Simulate 10000 of e from 

3.1 Standard normal distribution 

3.2 Normal distribution with fi = 0 and a = 30 

94 



3.3 Contaminated normal distribution with e = 0.3 and a = 9 

4. Obtain Y for each distribution by 

^ • - l •* -* i ^standard normal 

^•*> I — I ~\~ ^normal 

^••5 •* •* "r (^contaminated normal 

Note that the covariate (X) is the same for all 10000 simulations. Let ax, a2, bx, and 

62 be the intercept of Therapy 1, intercept of Therapy 2, slope of Therapy 1, and slope of 

Therapy 2, respectively. Let X0 be the point that the regression lines of the groups cross. 

Then we have 

ax + fri^o = «2 + b2X0 

_ a2- ai 

&i -b2 

= 6.516461 

At the crossing point, the power of the region of significance (4.2) and simultaneous 

region of significance (4.3), called JNLS method, is compared with that of the robust region 

of significance (4.4) and robust simultaneous region of significance (4.5), called JNWL 

method. The power between JNLS and JNWL of the other points: (1) Minimum of X 

(Min(X)), (2) 1st quartile of X (Qx), (3) Point between 1st quartile and X0 (Q1.5), (4) 

Point at ^ + ^ (Qnewl), and (5) Point at ^ + ^ (Qnew2), is also investigated. Note 

that we use 5% level of significance for all cases here. 

The power of the simultaneous region of significance is lower than that of the region 

of significance except at Min(X) for both JNLS and JNWL methods, and at Qi for JNLS 

method only. At X0, the power of the region of significance based on JNLS and JNWL is 

close to 5%, while the power of the simultaneous region of significance is about l%-2%. 
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Table 43: Standard Normal Distribution 
Method 

JNLS 

JNWL 

Type 

Region 
Simultaneous 

Region 
Simultaneous 

Power 
X0 

0.0492 
0.0155 
0.0392 
0.0125 

Min(X) 
1.0000 
1.0000 
1.0000 
1.0000 

Qx 
1.0000 
1.0000 
1.0000 
0.9994 

Qx.b 
0.9778 
0.9314 
0.9503 
0.8588 

Qnewl 
0.5365 
0.3332 
0.4480 
0.2557 

Qnew2 
0.1685 
0.0757 
0.1308 
0.0519 

The power is lower for the points which are closer to X0. The closer points to X0 from 

nearest to and further from X0 are Qnewl, Qnewl, Q15, Qi, and Min(X). The power 

of Qnew2 is the lowest among the other points, and the power of Min(X) is the highest 

for both regions and both methods. When comparing between JNLS and JNWL, both the 

region and the simultaneous region, the empirical power of JNLS are slightly higher than 

those of JNWL, except at Min(X) and at Qx (Table 43). 

Table 44: Normal Distribution with // = 0, a = 30 
Method 

JNLS 

JNWL 

Type 

Region 
Simultaneous 

Region 
Simultaneous 

Power 
XQ 

0.0488 
0.0139 
0.0361 
0.0093 

Min(X) 
0.0561 
0.0193 
0.0456 
0.0151 

Qx 
0.0535 
0.0182 
0.0432 
0.0137 

Q1.5 
0.0490 
0.0166 
0.0382 
0.0123 

Qnewl 
0.0473 
0.0150 
0.0367 
0.0105 

Qnew2 
0.0487 
0.0138 
0.0377 
0.0097 

For a normal distribution with // = 0 and a = 30, the power of the simultaneous 

region of significance is lower than that of the region of significance at all points for both 

JNLS and JNWL methods. The power of the region of significance at all points based on 

JNLS and JNWL is close to 5%, while the power of the simultaneous region of significance 

is about l%-2%. When comparing between JNLS and JNWL, both region and simultane­

ous region of the empirical power of JNLS are slightly higher than those of JNWL at all 

points (Table 44). 

In case of contaminated normal distribution, the power of the simultaneous region 
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Table 45: Contaminated Normal Distribution with e = 0.3, o = 9 
Method 

JNLS 

JNWL 

Type 

Region 
Simultaneous 

Region 
Simultaneous 

Power 
X0 

0.0428 
0.0088 
0.0318 
0.0093 

Min(X) 
0.3860 
0.2322 
0.8235 
0.6908 

Qi 
0.2998 
0.1663 
0.7223 
0.5540 

Ql.5 
0.1501 
0.0650 
0.3672 
0.2039 

Qnewl 
0.0717 
0.0214 
0.1138 
0.0415 

Qnew2 
0.0473 
0.0119 
0.0464 
0.0139 

of significance is lower than that of the region of significance at all points both JNLS and 

JNWL methods. At XQ, the power of the region of significance based on JNLS and JNWL 

is close to 5%, while the power of the region of significance is about 1%. The power is 

lower when the points are closer to the X0. The closer points to X0 from nearest to further 

are Qnewl, Qnewl, Q1.5, Qi, and Min(X), respectively. The empirical power at Qnewl 

is the lowest among the other points, and the power at Min(X) is the highest for both 

regions and both methods. The further the point is from X0, the higher power. When 

comparing between JNLS and JNWL, the region of significance of the empirical power of 

JNWL is higher than that of JNLS for all points except at X0. The power is even much 

higher at the points that further from X0. The power of the simultaneous region of JNWL 

is also much more higher than that of JNLS at the further points from X0 (Table 45). 
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CHAPTER V 

CONCLUSIONS 

Robust procedures for the analysis of covariance (ANCOVA) model are provided in this 

study. For the traditional ANCOVA, our empirical results show that the validity of our 

robust analog is similar to the least squares procedures. 

The main thrust of the study develops robust analogs of alternative methods to the 

ANCOVA. There are important methods associated with the ANCOVA. One such pro­

cedure developed is the pick-a-point method. Rank-based analogs are developed for the 

pick-a-point. The simulation study is conducted and compared between the traditional and 

R procedures under differences in distribution of response variable, slopes, and sample 

sizes at different pick-a-point. The simulations results of the treatment effects test and the 

95% confidence interval for pick-a-point show that the power is higher when the absolute 

difference in slopes (a3) is larger. When n = 20, the power of R estimate is close to that of 

the least square procedure but the power of R estimate is approximately 2 times higher at 

a3 = 1.9, at all level of significances. For n = 40, the power of R estimate is more than 2 

times higher at a3 = 0.6 at all level of significances. In case of n = 80, R estimate has 2 

times higher of power when a^ — 0.3. Comparing the power among three distributions, the 

simulation results indicate that the R procedure can handle the Cauchy distribution, which 

is the heavy-tailed distribution, better than the LS procedure. 

An second important method associated with the ANCOVA is the set of adjusted 

means. Two ways (simple and design matrix) to obtain the adjusted means are illustrated. 

We also develop R analogues for adjusted means, which are the robust naive adjusted me­

dian, robust naive adjusted Hodges-Lehmann, robust adjusted median design, and robust 
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adjusted signed-rank. Our empirical studies show that the LS procedure is sensitive to 

outliers. The comparisons of different way of computing adjusted means indicate that the 

design matrix way is superior, and that it is the preferred method. Simulation results also 

show that the robust procedures are useful for longer-tailed distributions. 

The third procedure used in the analysis of covariance that we are interested in 

is the Johnson-Neyman technique. The robust procedure for the region and simultaneous 

region of significance is developed and compared with the traditional procedure at different 

points of X. Simulation results show that the robust procedure is more powerful for the 

heavy-tailed error distributions. The power of the simultaneous region of significance is 

lower than that of the region of significance at all points in both JNLS and JNWL methods. 

When comparing between JNLS and JNWL, the region of significance of JNLS equals to 

that of JNWL in case of standard normal distribution at Min(X) and Qu and is slightly 

higher than that of JNWL at the other points of standard normal and all points of normal 

distribution with fi — 0 and a = 30. Likewise, the simultaneous region of JNLS equals 

to JNWL in case of standard normal distribution at Min(X), and is slightly higher than 

JNWL at the other points of standard normal and all points of normal with n = 0 and 

a — 30. However, for contaminated normal distribution, the region of significance of 

JNWL has higher power than JNLS except at X0 and Qnew2. The simultaneous region of 

JNWL is higher than that of JNLS for all points of contaminated normal distribution. 
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