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ON ROBUSTIFICATION OF SOME PROCEDURES
USED IN ANALYSIS OF COVARIANCE

Kuanwong Watcharotone, Ph.D.

Western Michigan University, 2010

This study discusses robust procedures for the analysis of covariance
(ANCOVA) models. These methods are based on rank-based (R) fitting procedures,
which are quite analogous to the traditional ANCOVA methods based on least
squares fits. Our initial empirical results show that the validity of R procedures is
similar to the least squares procedures. In terms of power, there is a small loss in
efficiency to least squares methods when the random errors have a normal distribution
but the rank-based procedures are much more powerful for the heavy-tailed error
distributions in our study.

Rank-based analogs are also developed for pick-a-point, adjusted mean, and
the Johnson-Neyman procedures. Instead of regions of significance, pick-a-point
procedures obtain the confidence interval for treatment differences at any selected
covariate point. For the traditional adjusted means procedures, it is established that
they can be derived from the underlying design by using the normal equations. This is
then used to derive the rank-based adjusted means, showing that they have the desired
asymptotic representation. This study compares these with their LS counterparts, the
naive adjusted Hodges-Lehmann, and adjusted medians. A rank-based analog is
developed for the Johnson-Neyman technique which obtains a region of significant
differences of the treatments. Examples illustrate the rank-based procedures. For each

of these ANCOVA procedures, Monte Carlo analysis is conducted to compare



empirically the differences of the traditional and robust methods. The results indicate
that these robust, rank-based, procedures have more power than the traditional least

squares for longer-tailed distributions for the situations investigated.
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CHAPTER 1
INTRODUCTION

The analysis of covariance (ANCOVA) is a technique that combines the features of analysis
of variance (ANOVA) and regression (Snedecor and Cochran, 1980, p.365). The analysis
of covariance is used to assess whether the means of two or more population groups are
equal; this is similar to analysis of variance. However, the analysis of covariance has an
advantage in that it reduces bias and increases power. In experimental studies involving ran-
dom assignment of units to conditions, the covariate, when related to the response variable,
reduces the error variance, resulting in increased statistical power and greater precision in
the estimation of group effects (Keselman et al., 1998). An adjustment of the treatment
effect is included as a standard part of analysis of covariance to reduce bias. Snedecor
and Cochran (1980, p.380) show that the covariance adjustment removes all the bias if
we have random samples and the regression of Y on X is linear with the same slope for
each group. The homogeneity of within group slopes is assumed under the analysis of co-
variance model. If this assumption is not met, an alternative technique is required. There
are several alternative techniques available; however, we are interested in the pick-a-point
technique (Huitema, 1980; Rogosa, 1980) and the Johnson-Neyman technique (Johnson
and Neyman, 1936).

The techniques we mentioned above rely on traditional least square type methods.
These methods are optimal if the underlying errors have a normal distribution but they
generally become less efficient tools under violations of normality. For example, one outlier
can spoil the least squares fit, its associated inference, and even its diagnostic procedures

(i.e., methods which should detect the outliers), (Kloke and McKean, 2010). Least squares



procedures are thus sensitive to outliers and we say that these procedures are not robust.
The outliers that cause the longer tails have an effect on the least squares fit (McKean and
Vidmar, 1994). Hettmansperger and McKean (1998, p.259) suggest using a rank-based
analysis based on R estimation for the analysis of covariance in case of outliers. This
analysis is easy to interpret because it involves substituting another norm for the Euclidean
norm of least squares; see Hettmansperger and McKean (1998). The analysis is robust,
being much less sensitive to outliers than the traditional analysis. The norm depends on a
score function.

The R estimate we use in this study is Weighted Wilcoxon (WW), which can be
obtained from wwest function for the R statistical software package (R Development Core
Team, 2005) created by Terpstra and McKean (2005). The Wilcoxon weights correspond
to b;; = 1 for ¢ # j and O otherwise, and yield the well known rank-based Wilcoxon (WIL)
estimate (Terpstra and McKean, 2005). We primarily use the weighted Wilcoxon in this
study, but our procedures can be generalized to other weights and by other rank regres-
sion score functions. The efficiency of the Wilcoxon estimates for normal distributed data
is 0.955, and is much higher for longer-tailed distribution (Hettmansperger and McKean,
1998, p.163).

In this study, we present the robust technique and are interested in comparing the re-
sults between the LS and R estimates. In Chapter 2, we compare the validity of ANCOVA
between the traditional least squares and the R estimate. Furthermore, the pick-a-point
method is established. We develop rank-based analogues of pick-a-point and compare the
simulation results with the traditional procedure under different distributions of response
variable, slopes, and sample sizes at different points on X. In Chapter 3 we illustrate two
ways (simple and design matrix) to obtain the adjusted means. We also discuss the tradi-
tional adjusted means and develop R analogues for adjusted means, including the robust

adjusted median, robust naive adjusted Hodges-Lehmann, robust adjusted median design,



and robust adjusted signed-rank. These LS and R adjusted means estimates are compared
when outliers occur. The simulation is also conducted on standard normal and contami-
nated normal distributions. The R analog for the Johnson-Neyman technique is developed
and presented in Chapter 4. The power of the Johnson-Neyman region of significance,
as well as the power of the simultaneous region of significance based on the LS and R

procedures are compared at different points of X and at different distributions of Y.



CHAPTER 11
ANALYSIS OF COVARIANCE

Consider the situation where we are observing data from & groups of subjects. Assume that
the sample size from Group ¢ is n;, 7 = 1,2, ..., k and denote the total sample size as n =
Zle n;. Along with the response variable Y, we observe a covariate variable x. Although
much of what we do can be generalized to more than one covariate, a single covariate is
convenient. Let Y;; denote the jth response from the ith group and, correspondingly, let
z;; denote the value of the covariate. The suitable analysis of Y is based on the analysis of

covariance (ANCOVA) model. Suppose the following linear model holds,
Y1]=)U"L+xz_7/81,+ez]a ]:1727an1)2=172’7k7 (21)

where (; is the slope parameter for the ith group, p; is the intercept parameter for the
ith group, and the random errors e;; are independent and identically distributed (iid) with
probability density function (pdf) f(¢) and cumulative distribution function (cdf) F(t).
This is the general model in this paper and we generally call it the full model.

At times, matrix notation will be helpful. Denote the vector of responses by Y =
M, oo Yangs Yor, oo Yong, oo, Y, oo, Yag,)'. Denote the corresponding vectors
of covariates and errors by x and e, respectively. Denote the n x 1 dummy vector for
the ¢th group by ¢, i.e., the value of ¢; is one at the coordinate corresponding to Y;; for
j =1,...,n; with all other values zero. Let d; = x*c;, where the * denotes coordinatewise
multiplication. Let p = 2k and define the n x p matrix X tobe [¢; ¢g -+ ¢k di d2 -~ di].

Denote the vector of parameters by b = (u1, o, - - ., ptx, 51,02, - -, Bc)’. Then we can



write Model (2.1) as
Y =Xb+e 2.2)

An equivalent model to Model (2.2) is the incremental model. Without loss of
generality, we reference the first group. Let X* = [1, ¢2 -+ ¢k = dp -+ dg, where
1, is an n x 1 vector of ones and r = Zle d;. Note that the column spaces of the
matrices X and X* are the same but the parameter space differs. If we let p;; = p; —
p1 and B = B; — B, J = 2,...,k then the vector of parameters for X* is b* =

(11, to1y - - - 5 k1, B1, B21, - - -, Br1)’- Then we can write Model (2.2) as
Y =X"b*+e

If X and Y are closely related, we may expect this model to fit the Y;; values better
than the analysis of variance model (Snedecor and Cochran, 1980, p.365). This implies the
random errors (e) in ANCOVA are smaller than those in ANOVA; hence, the power of the
ANCOVA is generally higher. The analysis of covariance has numerous uses (Snedecor and
Cochran, 1980, p.365-366): (1) to increase precision in randomized experiments, (2) to ad-
just for sources of bias in observational studies, (3) to throw light on the nature of treatment
effects in randomized experiments, and (4) to study regressions in multiple classifications.

An important issue in the application of ANCOVA is the equality of slopes of
the different treatment regression lines (Neter, Kuner, Nachtshem, and Wasserman, 1996,
p.1019).

Hy:61=...= 0

It must be demonstrated that the slopes are not statistically different before conducting
ANCOVA (White, 2003). If Hy : §; = ... = B is not true then the covariate and the

levels interact (Hogg, McKean, and Craig, 2005). If we accept Hy : §; = ... = [ then



the model can be written as

K]=/Ll+x”ﬁz+e”, j=1,2,...,n,~,i=1,2,...,k.

In this case, the hypothesis of interest is that the treatments are the same; that is,

Hy:pp=...=

The second hypothesis of interest is to see if the covariate is needed; that is,

Linear model procedures based on the robust R fit are discussed in general in Chap-
ter 3 and 4 of Hettmansperger and McKean (1998). This includes a discussion of robust
analysis of covariance in section 4.5 of Hettmansperger and McKean (1998). In this chap-

ter, we want to investigate the validity of these procedures to test the following hypotheses:
(H1) The slopes are the same

(H2) The treatments have no effects (assume the slopes are the same)

(H3) The treatments have no effects (no assumption that the slopes are the same)

(H4) The covariates have no effects (assume the slopes are the same)

2.1 General R-Estimates

We describe the robust estimates for a general linear model. Let Y; denote the ith

response, i = 1,2, ..., n, and let z, denote a p x 1 vector of the independent variables. The



general linear model can be expressed as
Yi=a+z8+e (2.3)

where « is the intercept parameter, 3 is a vector of regression coefficients, and the errors
e; are independent and identically distributed (iid) normal distribution with mean equal to
0 and variance equal to o2

LetY =(Y;,...,Y,) and X is an n X p matrix. We can write the model (2.3) as
Y=1,0+XG+e (2.4

where 1,, is an n x 1 vector of ones, « is the intercept parameter, 3 is a p x 1 vector of slope
parameters, and the random errors are €' = (e, . . ., €,). The LS estimate of 3 is estimated

by minimizing the distance between Y rsandY
B.s = Argmin HY - ?LSH = Argmin ||Y — X3,

where ||.||; 5 is the Euclidean norm.
For our generator R-estimators, another norm is used. Let ¢(u) be a nondecreasing
function on (0, 1). Assume that j;,l o(u)du = 0 and j;)l ¢*(u)du = 1. The scores generated

by @ are given by a(i) = ¢[i/(n+1)], i=1,2,...,n. Consider the pseudo-norm

oll, = 3 a(R@)v, i=12,...,n

This is shown to be pseudo-norm on R"; see Hettmansperger and McKean (1998). Define

the R-estimator as

-~

B, = Argmin ||Y — Xg]|,



The Wilcoxon scores discussed in Chapter 2 of Hettmansperger and McKean (1998)
are generated by ¢(u) = v/12(u — 1). Another example is the sign scores generated by
(w) = sgn(u - 3).

At times, dispersion notation is useful. Jaeckel’s dispersion function for a general

score function p(u) is
D,(B) = Z a,[R(y; — =,0)|(y; — ;)
i=1

where z; denotes the ith row of X, and R(y; — z,03) is the rank of y; — x4 among y; — .3,

s UYn — z/nﬁ. Recall that the errors e; = y; — x;ﬁ. Hence we arrive at a linear combination
of ordered residuals. The outlying residuals are no longer squared but instead are weighted
according to their rank (Hettmansperger and McKean, 1977). This would decrease the
effects of outliers (Huber, 1973). Therefore, this would be recommended for the longer
tailed distributions. The function D, (/) is a continuous and convex function of 4. Hence,

the R estimator of 3 can also be written as

o~

B, = ArgminD,(8).

As we can see, instead of using the Euclidean norm, D, (5) utilizes the pseudo-
norm: [Jwl|, = 32, a[R(w;)]w;. The intercept parameter plays an important role in ad-
justed means. Because the scores sum to zero and the raﬁks are invariant to a constant
shift, the intercept cannot be estimated using the norm (Kloke and McKean, 2010). The
intercept can be estimated by using the median of the residuals: &, = med {Y — X’,@v}
(Hettmansperger and McKean, 1998, p.147). Recall that the LS intercept estimator is the
mean of the LS residuals, hence this R intercept estimator is analogous to the LS intercept

estimator. Note that this R estimate of intercept does not require symmetrically distributed



errors (Hettmansperger and McKean, 1998, p.164).

Under regularity conditions, Theorem 3.5.11 (Hettmansperger and McKean, 1998,

() MG )
B, 3 0 7(X'X)

where 75 and 7, are the scale parameters which are defined as:

p-166) shows

s = (2F(0)
= (VE [ P

Note that the asymptotic relative efficiency of the R estimate in relation to LS is

2

the ratio of 02/7%. For Wilcoxon scores, this is the familiar value 1202( [ f?)2, which

for normal errors is 0.955 (McKean and Vidmar, 1994). On the other hand, if the true
distribution has tails heavier than the normal, then this efficiency is usually much larger

than 1 (McKean, 2004). For Wilcoxon scores,

Dw(B) =K Y > |(vi— ) — (& — ;) Bl

where K is constant. Hence, the Wilcoxon estimate can also be written as
By = ArgminDy (3).

2.2 Simulation Study

We created a full and reduced design matrix function using R code for each hypoth-

esis:



(H1) The slopes are the same:

Xut = ,
1o, ln, Zn,
1,, zn,
Xreduced =
1., Zn,



Xreduced =

The dependent variable, covariate, and vector indicators of levels/groups are in-
putted. The full and reduced model residuals are obtained for each hypothesis from fitting
the full and reduced models. A simulation is conducted for each assumption in the case of
one covariate and two groups from a standard normal distribution with 30 observations at
the 5% level of significance. We run 10000 simulations for each scenario. The validity of

each scenario 1s shown in the Table 1.

Table 1: Validity Results

Test | Procedure Validity
a=010|a=005|a=0.01
H1 LS 0.098 0.0496 0.0082
WWIL 0.0999 0.0487 0.009
H2 LS 0.1046 0.0505 0.0079
WWIL 0.0957 0.0457 0.0074
H3 LS 0.1046 0.0529 0.0101
WWIL 0.1026 0.0516 0.0097
H4 LS 0.0994 0.0507 0.0107
WWIL 0.0954 0.0489 0.009

The results show that the validity of WWIL estimate is slightly lower than that of
LS estimate except the case of H1 at & = 0.10 and at o« = 0.01. However, the validity of
both estimates is very close to the level of significance.

The weighted Wilcoxon (WW) routine is written by Terpstra and McKean (2005)
via the R statistical software package (R Development Core Team, 2005). Our computation

is performed by using this R collection. We denote it by WWIL in this study.
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2.3 Pick-A-Point

One of the important assumptions in the use of analysis of covariance is that the
regression slopes are homogeneous. Heterogeneous regression slopes associated with anal-
ysis of covariance present interpretation problems because the magnitude of the treatment
effect is not the same at different levels of X (Huitema, 1980, p.270). Heterogeneous slopes
are shown in Figure 1. Figure 1a shows that the adjusted means are different as most of the
data in group 1 are higher than that in group 2. This would mislead the conclusion because
it seems to have no treatment effects at the lower levels of X, and the higher X, the larger
effects. Figure 1b shows that both groups differ in slopes and in adjusted means. Group 1
is higher than group 2 at all levels of X. Figure lc shows both groups have the different
slopes where group 1 is inferior to group 2 at the lower values of X, then appears to overlap
in the middle of X, and is superior to group 2 at the higher values of X.

We focus on obtaining the confidence interval at any covariate point we choose for
the treatment effects. Consider the case of two groups and one covariate. Assume that
the sample size of group i is n;, ¢+ = 1,2. Let Y;; denote the jth response from the ith
group and let X;; be the covariate. Assume that the response variable Y is normally and

independently distributed, the conditional distribution of ¥ given X is

E(Y;|Xsy) = o + B X5,

where «; is the intercept and (3; is the slope parameters for the ith group. The difference at
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Figure 1: Three types of heterogeneous slopes

point X between both groups is

A(X)

t

E(Yy5|X) — E(Yy;|X)
(ag + 52X) — (01 + 51 X)

(g — o) + (B2 — B1) X.
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Thus, the estimator of the difference is
A(X) = (@ - @) + (B - )X

2.3.1 The Traditional Pick-A-Point Procedure

A 100(1 — @)% confidence interval for A(X) for any specified individual point X
is given by

A(X) £ tr1-a/al SEXA(X)V?, 2.5)

where

Xex1 = (X1, X2,..., Xi)

SE(A(X)) = 6/(WX'X)1h
h o= (-1,1,-1,1)

f = ni+n,—4

2.3.2 The Rank-Based Pick-A-Point Procedure

For R estimate, a 100(1 — «)% confidence interval for A(X) for any specified
individual point X is the same as formulation above (2.5) except the standard error for R

estimate equals to

SE,(A(X)) = #/H(X'X) h,

where 7 is the estimate of 7 (Koul, Sievers, and McKean, 1987). This estimate is consistent
under both symmetrical and asymmetrical errors (Hettmansperger, McKean, and Sheather,

2003).
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2.3.3 Simulation Study
Consider the case of two groups and one covariate, the matrix X can be written as
Qp 01 Q2 O3

o, loy Ty Tny (2.6)

1n2 0’n2 m'nz On2

Suppose the point we choose is zx*, therefore

E(Ylj|X=$*) = g+ a1 + X * +a3T *

E()/Q]|X=x*) = Qg+ QaZ *.

Let xo be the point that the regression lines of both groups cross, we then have

E(}/QJ'X=$O)—E()/1J,X:.’BG) = 0
oy +azxrg = 0

oy = —Q3Tg.
A simulation is conducted to obtain the power of the 95% confidence interval at 5

different points of X, which are:

(1) minimum value of X (qo)

(2) 1st quartile (g1)

(3) median of X (g2)

(4) 3rd quartile (g3)

(5) maximum value of X (q4)

15



The confidence intervals are calculated based on the least square and R estimate approaches.
The powers of the treatment effects at 10%, 5%, and 1% level of significance are also ob-
tained. The covariate is generated from normal distribution with x = 100 and o = 20. The

response variable is generated from:
(1) Normal distribution
(2) Laplace distribution
(3) Cauchy distribution

The sample sizes are 20, 40, and 80. The a5 ranges from 0 to 1.9. We run 10000 simulations
for each scenario.

The power of the treatment effects test based on R estimate is slightly lower than the
least squares procedure for all three levels of significance and all different 3. The power at
az = 0 at 10% level of significance almost equals to its level of significance; e.g., 10% (LS
=9.94% and WWIL = 9.74%), likewise, at 5% and 1% level of significance. Moreover, the
powers of both procedures are higher when o is higher (Table 2).

For the power of the 95% confidence interval at pick-a-point, the power of LS pro-
cedure at a3 = 0 is close to 5% at all pick-a-points, while the power of WWIL procedure
is slightly lower than 5%. The power based on R estimate is lower than the least square
procedure at all points. Both procedures have higher power when o is higher except at the
median of X (g;). The powers at g, are all close to 5% for all values of a3 (Table 3). Figure
2 shows the plots of the power for the treatment test and for 95% confidence interval at g,

and ¢4 between LS and R procedures.
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Table 2: Hy: 3 = 0 when Y is normal, n = 20

Procedure Power
a=010| a=005| a=0.01
az =10 LS 0.0994 0.0506 0.0108
WWIL 0.0974 0.0462 0.0089
ag = 0.3 LS 0.1415 0.0768 0.0191
WWIL 0.1395 0.0758 0.0158
az = 0.6 LS 0.2427 0.1535 0.0457
WWIL 0.2274 0.1395 0.0358
az = 0.9 LS 0.4308 0.3032 0.1161
WWIL 0.4010 0.2683 0.0851
az =1.2 LS 0.7026 0.5644 0.2871
WWIL 0.6637 0.5142 0.2269
az=1.9 LS 0.9483 0.8949 0.6967
WWIL 0.9303 0.8594 0.5927

Table 3: Pick-a-point when Y is normal, n = 20

Procedure Power
do q1 q2 q3 g4
ag =10 LS 0.0472 | 0.0505 | 0.0459 | 0.0489 | 0.0485
WWIL | 0.0325 | 0.0352 | 0.0320 | 0.0365 | 0.0360
as = 0.3 LS 0.0697 | 0.0766 | 0.0513 | 0.0560 | 0.0795
WWIL | 0.0460 | 0.0510 | 0.0372 | 0.0389 | 0.0519
az = 0.6 LS 0.1147 | 0.1538 | 0.0483 | 0.1046 | 0.1491
WWIL | 0.0790 | 0.1070 | 0.0340 | 0.0738 | 0.1043
az = 0.9 LS 0.2798 | 0.3030 | 0.0523 | 0.1365 | 0.2697
WWIL | 0.1933 | 0.2092 | 0.0359 | 0.0893 | 0.1850
a3 =1.2 LS 0.4438 | 0.5636 | 0.0493 | 0.4296 | 0.6037
WWIL | 0.3256 | 0.4225 | 0.0353 | 0.3112 | 0.4599
a3 =1.9 LS 0.8342 | 0.8947 | 0.0508 | 0.5140 | 0.8772
WWIL | 0.7005 | 0.7792 | 0.0352 | 0.3723 | 0.7585
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Figure 2: Y is normal, n = 20
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The power of the treatment effects test based on R estimate is slightly lower than
the least squares procedure for all three levels of significance and all different 3. The
powers at a3 = 0 at 10%, 5%, and 1% level of significance are similar to its level of
significance; e.g., at 10% level of significance: LS = 10.27% and WWIL = 9.81%, at 5%
level of significance: LS = 4.98% and WWIL = 4.97%, and at 1% level of significance: LS
=0.92% and WWIL = 0.87%. The powers of both procedures are also higher when as; is
higher (Table 4).

For the power of the 95% confidence interval at pick-a-point, the power of LS pro-
cedure at a3 = 0 is close to 5% at the minimum of X (go) and at 1st quartile (g;), and
slightly higher than 5% at the median of X (g3), at 3rd quartile (g3), and at the maximum
of X (q4). While the power of WWIL procedure, for all points, is slightly lower than 5%.
At all points, the power based on R estimate is lower than the least square procedure. Both
procedures have higher power when «j is higher except at the median of X (g2). The pow-
ers at g, are all close to 5% at all values of o3 (Table 5). Figure 3 shows the plots of the
power for the treatment test and for 95% confidence interval at ¢; and g4 between LS and

R procedures at n = 40.
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Table 4: Hy: 3 = 0 when Y is normal, n = 40

Procedure Power
a=0.10]|a=0.05| a=0.01

a3 =10 LS 0.1027 0.0498 0.0092
WWIL 0.0981 0.0497 0.0087

az =0.3 LS 0.1857 0.1074 0.0275
WWIL 0.1817 0.1053 0.0258

az = 0.6 LS 04775 0.3568 0.1519
WWIL 0.4603 0.3382 0.1343

az = 0.9 LS 0.8530 0.7695 0.5343
WWIL 0.8357 0.7422 0.4855

oz = 1.2 LS 0.9880 0.9689 0.8817
WWIL 0.9812 0.9588 0.8432

Table 5: Pick-a-point when Y is normal, n = 40

Procedure Power
q0 0 Q2 g3 da
as =10 LS 0.0496 | 0.0497 | 0.0539 | 0.0532 | 0.0514
WWIL | 0.0414 | 0.0416 | 0.0457 | 0.0477 | 0.0444
as = 0.3 LS 0.1008 | 0.1074 | 0.0565 | 0.0727 | 0.1033
WWIL | 0.0844 | 0.0877 | 0.0472 | 0.0584 | 0.0849
az = 0.6 LS 0.2708 | 0.3562 | 0.0493 | 0.2920 | 0.3920
WWIL | 0.2299 | 0.3023 | 0.0416 | 0.2399 | 0.3313
asg =09 LS 0.7210 | 0.7690 | 0.0525 | 0.4258 | 0.7631
WWIL | 0.6492 | 0.7029 | 0.0446 | 0.3610 | 0.6973
az = 1.2 LS 0.9544 | 0.9688 | 0.0537 | 0.5016 | 0.9344
WWIL | 0.9234 | 0.9484 | 0.0465 | 0.4313 | 0.8925
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Table 6: Hy: # = 0 when Y is normal, n = 80

Procedure Power
a=0.10]|a=0.05| a=0.01

az =10 LS 0.1010 0.0492 0.0101
WWIL 0.0994 0.0503 0.0096

az = 0.3 LS 0.2923 0.1966 0.0692
WWIL 0.2849 0.1893 0.0667

az = 0.45 LS 0.6629 0.5403 0.2940
WWIL 0.6414 0.5136 0.2730

az = 0.6 LS 0.8499 0.7709 0.5404
WWIL 0.8361 0.7464 0.5015

az =09 LS 0.9921 0.9795 0.9257
WWIL 0.9885 0.9747 0.9065

a3 = 1.2 LS 0.9998 0.9997 0.9977
WWIL 0.9998 0.9994 0.9961

Table 7: Pick-a-point when Y is normal, n = 80

Procedure Power
90 a1 a2 q3 q4

az =0 LS 0.0484 | 0.0492 | 0.0518 | 0.0508 | 0.0506
WWIL | 0.0471 | 0.0463 | 0.0468 | 0.0491 | 0.0470

a3 =03 LS 0.1702 1 0.1964 | 0.0481 | 0.1055 | 0.1958
WWIL | 0.1529 | 0.1776 | 0.0434 { 0.0962 | 0.1775

az = 0.45 LS 0.4729 | 0.5397 | 0.0475 | 0.2235 | 0.5453
WWIL | 04312 | 0.4932 { 0.0460 | 0.1983 | 0.5037

az = 0.6 LS 0.6947 | 0.7703 | 0.0508 | 0.4283 | 0.7542
WWIL | 0.6480 | 0.7268 | 0.0465 | 0.3920 | 0.7103

az = 0.9 LS 0.9315 | 0.9793 | 0.0510 | 0.8357 | 0.9931
WWIL | 0.9091 | 0.9710 | 0.0469 | 0.7990 | 0.9873

oz = 1.2 LS 0.9986 | 0.9997 | 0.0512 | 0.9519 | 0.9998
WWIL | 0.9976 | 0.9994 | 0.0448 | 0.9359 | 0.9991
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The power of the treatment effects test based on R estimate is slightly lower than the
least squares procedure except at 5% level of significance and a3 = 0, and at 10% level of
significance and a3 = 1.2. The powers at a3 = 0 at 10%, 5%, and 1% level of significance
are similar to its level of significance; e.g., at 10% level of significance: LS = 10.10% and
WWIL = 9.94%, at 5% level of significance: LS = 4.92% and WWIL = 5.03%, and at 1%
level of significance: LS = 1.01% and WWIL = 0.96%. The powers of both procedures are
also higher when «; is higher (Table 6).

For the power of the 95% confidence interval at pick-a-point, both powers of LS
and R procedures at a3 = 0 is close to 5% for all points. At all points, the power based
on R estimate is lower than the least square procedure. Both procedures have higher power
when a3 is higher except at the median of X (g). The powers at g, are all close to 5% at
all values of a3 (Table 7). Figure 4 shows the plots of the power for the treatment test and
for 95% confidence interval at ¢go and g4 between LS and R procedures at n = 80.

When comparing all different sample sizes, the powers of the treatment test of both
procedures reach high power at the lower value of o3 when the sample size is larger. For
instance, at n = 20 and 10% level of significance, the power is greater than 90% when
a3 = 1.9, while the power of n = 40 is greater than 90% when a3 = 1.2, and when
a3 = 0.9 when n = 80 (Table 2, 4, and 6). For the power of the 95% confidence interval at
pick-a-point, the powers of both procedures are higher when the sample size is larger. For
instance, at g = 1.2, the powers of maximum value of X (q4) from both procedures are

higher as the sample size is higher (Table 3, 5, and 7).
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Table 8: Hy: = 0 when Y is Laplace, n = 20

Procedure Power
a=0.10 | a=0.05| a=0.01
a3 =0 LS 0.1048 0.0563 0.0129
WWIL 0.1118 0.0573 0.0097
oz = 0.3 LS 0.1647 0.0908 0.0214
WWIL 0.1677 0.0930 0.0204
az = 0.6 LS 0.2389 0.1516 0.0478
WWIL 0.2606 0.1609 0.0485
a3 =0.9 LS 0.5291 0.3963 0.1799
WWIL 0.5805 0.4438 0.1921
az =1.2 LS 0.7024 0.5773 0.3227
WWIL 0.7491 0.6256 0.3282
a3 =19 LS 0.9310 0.8770 0.6919
WWIL 0.9495 0.8988 0.7085

Table 9: Pick-a-point when Y is Laplace, n = 20

Procedure Power
do ) 92 as ga
as =10 LS 0.0562 | 0.0560 | 0.0472 | 0.0465 | 0.0504
WWIL | 0.0452 [ 0.0438 | 0.0279 | 0.0323 | 0.0338
as = 0.3 LS 0.0786 | 0.0911 | 0.0461 | 0.0597 | 0.0816
WWIL | 0.0570 | 0.0673 | 0.0301 | 0.0441 | 0.0600
az = 0.6 LS 0.1403 { 0.1519 | 0.0452 | 0.0846 | 0.1235
WWIL | 0.1152 | 0.1217 | 0.0311 | 0.0594 | 0.0940
az = 0.9 LS 0.2605 | 0.3960 | 0.0456 | 0.1750 | 0.3877
WWIL | 0.2237 | 0.3616 | 0.0305 | 0.1443 | 0.3541
az =12 LS 0.5280 | 0.5772 | 0.0504 | 0.2640 | 0.4750
WWIL | 0.4855 | 0.5388 | 0.0298 | 0.2195 | 0.4366
az = 1.9 LS 0.7886 | 0.8770 | 0.0474 | 0.5658 | 0.8153
WWIL | 0.7616 | 0.8548 | 0.0292 | 0.5217 | 0.7976
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The power of the treatment effects test based on R estimate is slightly higher than
the least squares procedure except at 1% level of significance when a3 equals to 0 and
equals to 0.3. The powers at a3 = 0 at 10%, 5%, and 1% level of significance are similar
to its level of significance; e.g., at 10% level of significance: LS = 10.48% and WWIL =
11.18%, at 5% level of significance: LS = 5.63% and WWIL = 5.73%, and at 1% level of
significance: LS = 1.29% and WWIL = 0.97%. Moreover, the powers of both procedures
are higher when a3 is higher (Table 8).

For the power of the 95% confidence interval at pick-a-point, the powers of both
LS and R procedures at a3 = 0 is close to 5% at all pick-a-points. The power based on R
estimate is lower than the least square procedure at all points. Both procedures have higher
power when ag is higher except at the median of X (g2). The powers at ¢, are all close to
5% for all values of a3 (Table 9). Figure 5 shows the plots of the power for the treatment

test and for 95% confidence interval at ¢; and g4 between LS and R procedures.
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Table 10: Hy: 0 = 0 when Y is Laplace, n = 40

Procedure Power
a=0.10 | a=0.05| a=0.01

azg =0 LS 0.1003 0.0491 0.0095
WWIL 0.1028 0.0524 0.0104

as = 0.3 LS 0.2714 0.1781 0.0592
WWIL 0.3323 0.2188 0.0722

az = 0.6 LS 0.6531 0.5201 0.2823
WWIL 0.7393 0.6170 0.3632

a3 =0.9 LS 0.6627 0.5416 0.3016
WWIL 0.7504 0.6407 0.3862

a3 =1.2 LS 0.9806 0.9604 0.8750
WWIL 0.9913 0.9815 0.9271

Table 11: Pick-a-point when Y is Laplace, n = 40

Procedure Power
do Q1 a2 q3 qsa

az =10 LS 0.0501 | 0.0492 | 0.0505 | 0.0430 | 0.0460
WWIL | 0.0441 | 0.0454 | 0.0361 | 0.0392 | 0.0429

az = 0.3 LS 0.1550 | 0.1779 | 0.0459 | 0.0943 | 0.1715
WWIL | 0.1661 | 0.1923 | 0.0371 | 0.0871 | 0.1884

az = 0.6 LS 0.4263 | 0.5193 | 0.0473 | 0.1770 | 0.4687
WWIL | 0.4779 | 0.5852 | 0.0371 | 0.1861 | 0.5316

az = 0.9 LS 0.4153 | 0.5412 | 0.0459 | 0.3151 } 0.5267
WWIL | 0.4691 | 0.6123 | 0.0374 | 0.3524 | 0.5969

ag =1.2 LS 0.9559 | 0.9606 | 0.0478 | 0.5228 | 0.9090
WWIL 10.9768 | 0.9803 | 0.0380 | 0.5904 | 0.9456
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The power of the treatment effects test based on R estimate is slightly higher than
the least squares procedure at all values of level of significance and of a3. The powers at
az = 0 at 10%, 5%, and 1% level of significance are similar to its level of significance;
e.g., at 10% level of significance: LS = 10.03% and WWIL = 10.28%, at 5% level of
significance: LS = 4.91% and WWIL = 5.24%, and at 1% level of significance: LS =
0.95% and WWIL = 1.04%. Moreover, the powers of both procedures are higher when a3
is higher (Table 10).

For the power of the 95% confidence interval at pick-a-point, the powers of both
LS and R procedures at a3 = 0 is close to 5% at all pick-a-points. The power based on R
estimate is higher than the least square procedure except at all points when o3 = 0 and at
the median of X (go) for all values of a3. Both procedures have higher power when as is
higher except at g,. The powers at g, are all close to 5% for all values of a3 (Table 11).
Figure 6 shows the plots of the power for the treatment test and for 95% confidence interval

at ¢; and g4 between LS and R procedures for n = 40.
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Table 12: Hy: § = 0 when Y is Laplace, n = 80

Procedure Power
a=0.10 | a=0.05| a=0.01

az =10 LS 0.1049 0.0534 0.0113
WWIL 0.1061 0.0548 0.0118

az; = 0.3 LS 0.3294 0.2206 0.0773
WWIL 0.4078 0.2893 0.1142

ag = 0.45 LS 0.6974 0.5808 0.3313
WWIL 0.8078 0.7116 0.4622

az = 0.6 LS 0.8272 0.7334 0.4983
WWIL 0.9120 0.8517 0.6594

az; = 0.9 LS 0.9611 0.9249 0.7967
WWIL 0.9884 0.9740 0.9082

a3 = 1.2 LS 0.9992 0.9979 0.9855
WWIL 1.0000 1.0000 0.9973

Table 13: Pick-a-point when Y is Laplace, n = 80

Procedure Power
do q1 q2 q3 d4

az =0 LS 0.0524 | 0.0534 | 0.0482 | 0.0503 | 0.0562
WWIL | 0.0511 | 0.0507 | 0.0453 | 0.0480 | 0.0522

as =03 LS 0.2045 | 0.2207 | 0.0497 | 0.0863 | 0.1895
WWIL | 0.2473 | 0.2701 | 0.0440 | 0.0907 | 0.2399

ag = 0.45 LS 0.5498 | 0.5806 | 0.0493 | 0.1461 | 0.4909
WWIL | 0.6682 | 0.6991 | 0.0433 | 0.1682 | 0.6001

a3 =0.6 LS 0.6934 i 0.7327 | 0.0473 | 0.1877 | 0.6738
WWIL | 0.8128 | 0.8441 | 0.0380 | 0.2310 | 0.7927

a3 =0.9 LS 0.8818 | 0.9242 | 0.0475 | 0.6632 | 0.9420
WWIL | 0.9505 | 0.9745 | 0.0398 | 0.7798 | 0.9814

a3 =1.2 LS 0.9919 | 0.9979 | 0.0488 | 0.8769 | 0.9961
WWIL | 0.9990 | 1.0000 | 0.0422 | 0.9433 | 0.9996
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Figure 7: Y is Laplace, n = 80
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The power of the treatment effects test based on R estimate is slightly higher than
the least squares procedure at all values of level of significance and of a3. The powers
at a3 = 0 at 10%, 5%, and 1% level of significance are slightly higher to its level of
significance; e.g., at 10% level of significance: LS = 10.49% and WWIL = 10.61%, at 5%
level of significance: LS = 5.34% and WWIL = 5.48%, and at 1% level of significance: LS
= 1.13% and WWIL = 1.18%. Moreover, the powers of both procedures are higher when
a3 is higher (Table 12).

For the power of the 95% confidence interval at pick-a-point, the powers of both
LS and R procedures at a3 = 0 is close to 5% at all pick-a-points. The power based on R
estimate is higher than the least square procedure except at all points when o3 = 0 and at
the median of X (g2) for all values of a3. Both procedures have higher power when as is
higher except at g;. The powers at ¢, are all close to 5% for all values of o3 (Table 13).
Figure 7 shows the plots of the power for the treatment test and for 95% confidence interval
at g, and ¢4 between LS and R for procedures for n = 80.

Comparing among n = 20, 40, and 80, the power of treatment effects test is higher
when the o3 is higher. The R estimate has slightly higher power than the least square
procedure except when n = 20, a3 = 0 and 0.3, and level of significance = 1%. When the
sample size is larger, both procedures reach 90% of power at the lower value of o3 (Table
8, 10, and 12). For 95 % level of significance, the power of R estimate is slightly lower
than the least square procedure for all cases of n = 20. Some pick-a-points of X when
n = 40 have higher power than the least square. For n = 80, the power of R estimate
is higher except all points of X when a3 = 0 and at the point of median of X (g2) when

az = 0.3,0.45,0.6,0.9, and 1.2 (Table 9, 11, and 13).

33



Table 14: Hy: G = 0 when Y is Cauchy, n = 20

Procedure Power
a=010| aa=0.05| a=0.01
a3 =10 LS 0.1074 0.0661 0.0156
WWIL 0.0957 0.0457 0.0083
az = 0.3 LS 0.1152 0.0561 0.0069
WWIL 0.1046 0.0524 0.0085
az = 0.6 LS 0.1466 0.0898 0.0290
WWIL 0.2093 0.1225 0.0284
a3 =109 LS 0.1789 0.1124 0.0346
WWIL 0.2642 0.1665 0.0454
a3 =12 LS 0.2728 0.1869 0.0746
WWIL 0.5193 0.3893 0.1654
a3 =1.9 LS 0.3684 0.2855 0.1580
WWIL 0.7225 0.6169 0.3512

Table 15: Pick-a-point when Y is Cauchy, n = 20

Procedure Power
do q1 a2 a3 q4

az =0 LS 0.0671 | 0.0662 | 0.0210 | 0.0277 | 0.0368

WWIL | 0.0433 | 0.0420 | 0.0200 | 0.0194 | 0.0288

az = 0.3 LS 0.0462 | 0.0560 | 0.0376 | 0.0484 | 0.0543
WWIL | 0.0330 { 0.0399 | 0.0249 | 0.0332 | 0.0408

oz = 0.6 LS 0.0732 | 0.0895 | 0.0220 | 0.0311 | 0.0957
WWIL | 0.0809 { 0.0973 | 0.0193 | 0.0244 | 0.0902

az = 0.9 LS 0.0749 | 0.1125 | 0.0226 | 0.0713 | 0.1187
WWIL | 0.0717 | 0.1285 | 0.0180 | 0.0638 | 0.1457

oz = 1.2 LS 0.1622 | 0.1867 | 0.0216 | 0.1094 | 0.1566
WWIL | 0.2488 | 0.3150 | 0.0194 | 0.1586 | 0.2586

a3 =19 LS 0.2930 | 0.2855 | 0.0269 | 0.0465 | 0.1603
WWIL | 0.5701 | 0.5440 | 0.0164 | 0.0435 | 0.2616
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The power of the treatment effects test based on R estimate is slightly higher than
the least squares procedure except at 10% level of significance when a3 = 0 and 0.3, at 5%
level of significance when a3 = 0 and 0.3, and at 1% level of significance when a3 = 0.
The powers at a3 = 0 at 10%, 5%, and 1% level of significance are similar to its level of
significance; e.g., at 10% level of significance: LS = 10.74% and WWIL = 9.57%, at 5%
level of significance: LS = 6.61% and WWIL = 4.57%, and at 1% level of significance: LS
=1.56% and WWIL = 0.83%. Moreover, the powers of both procedures are higher when a;
is higher. The power of R estimate is approximately 2 times higher than the LS procedure
at a3 = 1.9 at all levels of significance. At 10% level of significance and a3 = 1.9, the
R estimate already reaches 72% of power, while the power of the least square is only 37%
(Table 14).

For the power of the 95% confidence interval at pick-a-point, the powers of both
LS and R procedures at a3 = 0 is close to 5% at go and ¢;, and is lower at ¢, g3, and g4.
The power based on R estimate is lower than the least square procedure except at go when
az = 0.6,1.2, and 1.9, at ¢; when a3 = 0.6, 0.9, 1.2, and 1.9, at g3 when a3 = 1.2, and
at g4 when a3 = 0.9, 1.2, and 1.9. Both procedures have higher power when o is higher
except at g;. The powers at ¢, are all lower than 5% for all values of oz (Table 15). Figure
8 shows the plots of the power for the treatment test and for 95% confidence interval at g,

and g4 between LS and R for procedures for n = 20.
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Table 16: Hy: § = 0 when Y is Cauchy, n = 40

Procedure Power
a=010| aa=0.05| a=0.01

a3 =0 LS 0.0949 0.0501 0.0178
WWIL 0.1089 0.0507 0.0099

a3 = 0.3 LS 0.1021 0.0614 0.0185
WWIL 0.1700 0.0965 0.0245

az = 0.6 LS 0.1472 0.0899 0.0251
WWIL 0.3651 0.2466 0.0867

a3 = 0.9 LS 0.1446 0.0907 0.0380
WWIL 0.4316 0.3080 0.1179

a3 =1.2 LS 0.2145 0.1391 0.0537
WWIL 0.6670 0.5449 0.3000

Table 17: Pick-a-point when Y is Cauchy, n = 40

Procedure Power
do 0N q2 q3 q4
az =10 LS 0.0491 { 0.0501 | 0.0225 | 0.0380 | 0.0615
WWIL | 0.0486 | 0.0499 | 0.0263 | 0.0339 | 0.0495
a3 = 0.3 LS 0.0594 | 0.0614 | 0.0240 | 0.0412 | 0.0647
WWIL | 0.0765 | 0.0790 | 0.0260 | 0.0413 | 0.0709
as = 0.6 LS 0.0851 | 0.0900 | 0.0196 | 0.0394 | 0.0727
WWIL | 0.1882 | 0.2107 | 0.0266 | 0.0490 | 0.1487
az =0.9 LS 0.0870 | 0.0908 | 0.0252 | 0.0456 | 0.0881
WWIL | 0.2360 | 0.2658 | 0.0242 | 0.0824 | 0.2280
oz = 1.2 LS 0.1301 | 0.1391 | 0.0222 | 0.0848 | 0.1308
WWIL | 0.4468 | 0.5007 | 0.0279 { 0.2216 | 0.4414
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The power of the treatment effects test based on R estimate is higher than the least
squares procedure except at 1% level of significance when a3 = 0. The powers at a3 = 0
at 10%, 5%, and 1% level of significance are similar to its level of significance; e.g., at 10%
level of significance: LS = 9.49% and WWIL = 10.89%, at 5% level of significance: LS
=5.01% and WWIL = 5.07%, and at 1% level of significance: LS = 1.78% and WWIL =
0.99%. Moreover, the powers of both procedures are higher when «j is higher. The power
of R estimate is 2 times higher at a3 = 0.6 at all levels of significance. At 10% level of
significance and a3 = 0.6, the R estimate reaches 36.51% of power, while the power of the
least square is only 14.72% (Table 16).

For the power of the 95% confidence interval at pick-a-point, the powers of both LS
and R procedures at a3 = 0 is close to 5% at all points. The power based on R estimate is
higher than the least square procedure except at gy when a3 = 0, at ¢; when a3 = 0, at g»
when a3 = 0.9, at g3 when a3 = 0, and at g4 when a3 = 0. Both procedures have higher
power when « is higher except at ¢o. The powers at ¢ are all lower than 5% for all values
of a3 (Table 17). Figure 9 shows the plots of the power for the treatment test and for 95%

confidence interval at ¢, and g4 between LS and R for procedures for n = 40.

39



Table 18: Hy: 8 = 0 when Y is Cauchy, n = 80

Procedure Power
a=0.10 a=0.05| aa=0.01

ag =10 LS 0.0861 0.0441 0.0160
WWIL 0.1051 0.0513 0.0113

az = 0.3 LS 0.1246 0.0700 0.0164
WWIL 0.2395 0.1498 0.0473

az = 0.45 LS 0.1267 0.0699 0.0165
WWIL 0.3566 0.2427 0.0864

az = 0.6 LS 0.1438 0.0845 0.0235
WWIL 0.5896 0.4624 0.2324

az = 0.9 LS 0.1641 0.0911 0.0234
WWIL 0.7501 0.6459 0.4088

a3 = 1.2 LS 0.2323 0.1545 0.0664
WWIL 0.9448 0.9076 0.7756

Table 19: Pick-a-point when Y is Cauchy, n = 80

Procedure Power
do q1 g2 43 q4

az =0 LS 0.0448 | 0.0441 | 0.0283 | 0.0386 | 0.0480
WWIL | 0.0529 | 0.0523 | 0.0370 | 0.0406 | 0.0451

oz =0.3 LS 0.0654 | 0.0699 | 0.0188 | 0.0439 | 0.0615
WWIL | 0.1218 | 0.1367 | 0.0334 | 0.0667 | 0.1256

a3z = 0.45 LS 0.0669 | 0.0698 | 0.0202 | 0.0463 | 0.0634
WWIL | 0.1916 | 0.2223 | 0.0319 | 0.1012 | 0.2157

o3z = 0.6 LS 0.0889 | 0.0845 | 0.0229 | 0.0357 | 0.0555
WWIL | 0.4370 | 0.4420 | 0.0335 | 0.1038 | 0.2640

az = 0.9 LS 0.0749 | 0.0909 | 0.0225 | 0.0654 | 0.0998
WWIL | 0.5074 | 0.6289 | 0.0380 | 0.3437 | 0.6518

o3 = 1.2 LS 0.1440 | 0.1544 | 0.0222 | 0.1018 | 0.1546
WWIL | 0.8863 | 0.9109 | 0.0347 | 0.7126 | 0.9137
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The power of the treatment effects test based on R estimate is higher than the least
squares procedure except at 1% level of significance when a3 = 0. The powers at a3 = 0
at 10%, 5%, and 1% level of significance are similar to its level of significance; e.g., at 10%
level of significance: LS = 8.61% and WWIL = 10.51%, at 5% level of significance: LS
=4.41% and WWIL = 5.13%, and at 1% level of significance: LS = 1.60% and WWIL =
1.13%. Moreover, the powers of both procedures are higher when a3 is higher. The power
of the R estimate has 2 times higher of power than the LS procedure when a3 = 0.3, and
has much more higher power at a3 = 1.2 for all levels of significance. At 10% level of
significance and a3 = 1.2, the R estimate reaches 94.48% of power, while the power of the
least square is only 23.23% (Table 18).

For the power of the 95% confidence interval at pick-a-point, the powers of both
LS and R procedures at a3 = 0 is close to 5% at all points. The power based on R estimate
is higher than the least square procedure except at ¢4 when oz = 0. Both procedures have
higher power when a3 is higher except at ¢,. The powers at g, are all lower than 5% for all
values of a3 (Table 19). Figure 10 shows the plots of the power for the treatment test and
for 95% confidence interval at g, and g4 between LS and R for procedures for n = 80.

When comparing among the different sample sizes, the power of the treatment ef-
fects test for the R procedure reaches 2 times higher than that of the LS procedure at the
lower value of a3 when the sample size is larger. The powers of both procedures are higher
when the a3 is higher. The R estimate has higher power in some pick-a-points of X in
some cases. It seems that R estimate gains more power when the sample size and the o3
are larger; for instance, at oz = 1.2, the powers of the maximum of X (g4) of n = 20, 40,
and 80 based on R estimate are 0.2586, 0.4414, and 0.9137, respectively (Table 15, 17, and
19).

When comparing the power among three distributions, the Cauchy distribution

seems to be worst for the least square and R methods. However, the power of R is higher
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when the sample size and the ag are higher.

2.4 Conditional Test

Several conditional tests are used in practice. We describe several such tests. We
are now interested in doing the conditional test: (1) for pick-a-point (condition A), and (2)
for analysis of variance (condition B). We compare conditional tests with the pick-a-point

at the grand mean (Z).
Method I: Condition A

1. Test homogeneity of slopes

Hop: By =...= 0

1.1 If the null hypothesis is accepted, we then do the pooled level test (ANCOVA)

Hy:8;=p0;, i1#]

1.2 If the null hypothesis is rejected, we then do the pick-a-point at grand mean of

the X's
Method II: Condition B

1. Test homogeneity of slopes

Hoy:6=...= 06k

1.1 If the null hypothesis is accepted, we then do the pooled level test (ANCOVA)

Hy:B8i=p0;, 1#]

1.2 If the null hypothesis is rejected, we then do the analysis of variance
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Method III

1. Test homogeneity of slopes

Hoy:8i=...= 0

2. Pick-a-point at grand mean of the X's

We are interested in all these questions:
1. Which methods are more powerful?
2. Is there a difference in the powers of the traditional and rank-based analysis?

To answer these questions, we conduct the following empirical study. Recall the matrix X
(2.6) for the case of two groups with one covariate, and we consider the point at mean of X
instead of median of X. Let a; = —(u, — 4 X 0;) - a3. We conduct a simulation in which
the sample sizes are 20, 40, and 80. The covariate is generated from normal distribution

with p = 100 and ¢ = 20. The response variable is generated from:

(1) Normal distribution

(2) Laplace distribution

(3) Cauchy distribution

The powers of the homogeneity of slopes at 10%, 5%, and 1% level of significance are also

obtained. For each scenario, 10000 simulations are conducted at 5% level of significance.

2.4.1 Condition A and Condition B Simulation Results
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Table 20: Condition A when Y is normal

Procedure Power
n=20|n=40 | n =80
a3 =0 LS 0.0481 | 0.0525 | 0.0530
WWIL | 0.0432 | 0.0501 | 0.0486
as = 0.3 LS 0.7184 | 0.9535 | 0.9982
WWIL | 0.6557 | 0.9364 | 0.9972
as = 0.6 LS 0.9894 | 1.0000 | 1.0000
WWIL | 09763 | 1.0000 | 1.0000
a3 =09 LS 1.0000 { 1.0000 | 1.0000
WWIL | 1.0000 | 1.0000 | 1.0000

Table 21: Condition B when Y is normal

Procedure Power
n=20|n=40{n=280
az =10 LS 0.0462 | 0.0520 | 0.0527
WWIL | 0.0415 | 0.0488 | 0.0482
az = 0.3 LS 0.7099 | 0.9572 | 0.9981
WWIL | 0.6496 | 0.9407 | 0.9969
asz = 0.6 LS 0.9882 | 1.0000 | 1.0000
WWIL | 09741 | 1.0000 | 1.0000
a3 =0.9 LS 1.0000 | 1.0000 | 1.0000
WWIL 1.0000 | 1.0000 | 1.0000
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Figure 11: Condition A and B when Y is normal

For normal distribution, the powers of both least squares and R estimate procedures

are slightly different in both Condition A and B, they are identical when a3 > 0.6 and
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n > 40 (Table 20, 21). At a3 = 0, the powers of both LS and robust procedures are close
to 5% at all different sample sizes for both conditions. When the sample size is larger, the
power is higher as well except for WWIL at o3 = 0 and n = 80 for both procedures. Figure

11 shows the power of Condition A and B at n = 20, 40, and 80.

Table 22: Condition A when Y is Laplace

Procedure Power
n=20|n=40|n=80
a3 =10 LS 0.0487 | 0.0524 | 0.0482

WWIL | 0.0395 | 0.0474 | 0.0468
ag = 0.3 LS 0.6347 | 0.9481 | 0.9991
WWIL | 0.6797 | 0.9787 | 0.9999
o3 =10.6 LS 0.9684 | 1.0000 | 1.0000
WWIL | 0.9779 | 1.0000 | 1.0000
o3 = 0.9 LS 1.0000 | 1.0000 | 1.0000
WWIL | 1.0000 | 1.0000 | 1.0000

Table 23: Condition B when Y is Laplace

Procedure Power
n=20{n=40|n=8&0
az =10 LS 0.0467 | 0.0513 | 0.0480

WWIL | 0.0372 | 0.0465 | 0.0462
oz =0.3 LS 0.6242 | 0.9452 | 0.9993
WWIL | 0.6693 | 0.9769 | 0.9999
oz = 0.6 LS 0.9667 | 1.0000 | 1.0000
WWIL | 0.9765 | 1.0000 | 1.0000
ag =09 LS 1.0000 | 1.0000 | 1.0000
WWIL | 1.0000 | 1.0000 | 1.0000
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n > 40 (Table 22, 23). At a3z = 0, the powers of both LS and robust procedures are close
to 5% at all different sample sizes for both conditions. When the sample size is larger, the
power is higher as well except for LS and WWIL at a3 = 0 and n = 80 for both procedures.
Figure 12 shows the power of Condition A and B at n = 20, 40, and 80.

Table 24: Condition A when Y is Cauchy

Procedure Power
n=20{n=40|n=280
az =10 LS 0.0500 | 0.0232 | 0.0207

WWIL | 0.0680 | 0.0373 | 0.0420
a3 =0.3 LS 0.1686 | 0.1763 | 0.1620
WWIL | 0.3862 | 0.7382 | 0.9339
o3 =0.6 LS 0.3553 | 0.4143 | 0.3894
WWIL | 0.7305 | 0.9864 | 0.9999
oz =09 LS 0.5426 | 0.5390 | 0.5517
WWIL | 0.9289 | 0.9979 | 1.0000

Table 25: Condition B when Y is Cauchy
Procedure Power
n=20|n=40 | n=_80
ag =0 LS 0.0210 | 0.0222 | 0.0200
WWIL | 0.0243 | 0.0367 | 0.0415
az =0.3 LS 0.1660 | 0.1738 | 0.1605
WWIL | 0.3843 | 0.7389 | 0.9331
as = 0.6 LS 0.3494 | 0.4127 | 0.3875
WWIL | 0.7476 | 0.9867 | 0.9998
a3 =09 LS 0.5391 | 0.5387 | 0.5507
WWIL | 0.9304 | 0.9980 | 1.0000
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Figure 13: Condition A and B when Y is Cauchy

In case of Cauchy distribution, the power of the R estimate procedures are higher

than the LS procedure in both Condition A and B (Table 24, 25). At all values of as, the
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robust procedures have more powerful for all values of a3 and all sample size. The power
of R procedure is about 2 times higher than that of the least squares when the a3 and 7 are
higher in both procedures. Figure 13 shows the power of Condition A and B at n = 20, 40,
and 80.

For normal and Laplace cases, the powers of both least squares and R estimate
procedures are slightly different in both Condition A and B, they are identical when a3 >
0.6 and n > 40 (Table 20, 21, 22, and 23). In case of Cauchy, the least squares and the R
procedures are close to each other when a3 = 0 in both conditions. However, the power
of R procedure is about 2 times higher than that of the least squares when the o3 and n are

higher (Table 24, and 25).

2.4.2 Method III Simulation Results

Table 26: Hy: 31 = (52 and pick-a-point at grand mean when Y’ is normal, n = 20

Procedure Power
a=0.10 | a=0.05 | a =0.01 | Pick-a-point at T
az =0 LS 0.1028 0.0502 0.0094 0.0459
WWIL 0.0990 0.0477 0.0090 0.0313
a3 = 0.3 LS 0.1524 0.0830 0.0219 0.7104
WWIL 0.1431 0.0777 0.0168 0.5643
asz = 0.6 LS 0.2495 0.1549 0.0465 0.9899
WWIL 0.2311 0.1371 0.0359 0.9578
az=0.9 LS 0.4493 0.3232 0.1265 1.0000
WWIL 0.4191 0.2843 0.0984 1.0000
a3 = 1.2 LS 0.7236 0.5879 0.3095 1.0000
WWIL 0.6901 0.5401 0.2493 1.0000

The power of the LS and R procedures are slightly different for all o3 and for all
levels of significance. The power of the 95% confidence interval at grand mean of both
procedures is higher when the o is higher (Table 26, 27, 28). The plots of the power for

homogeneity at 5% level of significance and that for pick-a-point at grand mean for normal
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Table 27: Hy: (1 = (3» and pick-a-point at grand mean when Y is normal, n = 40

Procedure Power
a=0.10| a=0.05 | o =0.01 | Pick-a-point at &

az =0 LS 0.0981 0.0488 0.0102 0.0521
WWIL 0.1033 0.0522 0.0088 0.0444

a3 = 0.3 LS 0.2327 0.1450 0.0478 0.9504
WWIL 0.2299 0.1366 0.0426 0.9196

a3 = 0.6 LS 0.4915 0.3645 0.1574 1.0000
WWIL 0.4741 0.3473 0.1418 1.0000

a3 =0.9 LS 0.7594 0.6451 0.3857 1.0000
WWIL 0.7367 0.6193 0.3424 1.0000

as =1.2 LS 0.9363 0.8808 0.6957 1.0000
WWIL 0.9261 0.8636 0.6462 1.0000

Table 28: Hy: 31 = 3> and pick-a-point at grand mean when Y is normal, n = 80

Procedure Power
a=0.10 | a=0.05| a=0.01 | Pick-a-point at T

a3 =0 LS 0.1045 0.0507 0.0097 0.0522
WWIL 0.1034 0.0475 0.0093 0.0458

ag = 0.3 LS 0.3851 0.2751 0.1101 0.9983
WWIL 0.3727 0.2602 0.0994 0.9968

az = 0.6 LS 0.7692 0.6633 0.4150 1.0000
WWIL 0.7508 0.6423 0.3834 1.0000

a3 =0.9 LS 0.9693 0.9380 0.8165 1.0000
WWIL 0.9608 0.9236 0.7857 1.0000

a3 = 1.2 LS 0.9999 0.9997 0.9880 1.0000
WWIL 0.9998 0.9997 0.9978 1.0000

distribution is shown in Figure 14 - 16.

In case of Laplace distribution, the power of the LS and R procedures are slightly
different for all 3 and all levels of significance. The power of the 95% confidence interval
at grand mean of both procedures is higher when the o3 is higher (Table 29, 30, 31). The
plots of the power for homogeneity at 5% level of significance and that for pick-a-point at

grand mean is shown in Figure 17 - 19.
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Table 29: Hy: 31 = 3, and pick-a-point at grand mean when Y is Laplace, n = 20

Procedure Power
a=0.10| o =0.05 | o =0.01 | Pick-a-point at T

o3 =0 LS 0.1024 0.0515 0.0120 0.0475
WWIL 0.1083 0.0519 0.0097 0.0299

a3 = 0.3 LS 0.1477 0.0864 0.0253 0.6400
WWIL 0.1690 0.0987 0.0242 0.6244

asz = 0.6 LS 0.2520 0.1566 0.0492 0.9704
WWIL 0.2669 0.1672 0.0456 0.9683

az = 0.9 LS 0.6105 0.4738 0.2378 1.0000
WWIL 0.6563 0.5186 0.2450 1.0000

Table 30: Hy: 81 = [3» and pick-a-point at grand mean when Y is Laplace, n = 40

Procedure Power
a=0.10 | « =0.05 | &« =0.01 | Pick-a-point at Z

a3 =10 LS 0.1055 0.0537 0.0099 0.0515
WWIL 0.1089 0.0563 0.0087 0.0398

a3 = 0.3 LS 0.2310 0.1441 0.0436 0.9480
WWIL 0.2667 0.1691 0.0545 0.9743

a3z = 0.6 LS 0.5085 0.3833 0.1831 1.0000
WWIL 0.5898 0.4612 0.2339 1.0000

az = 0.9 LS 0.8672 0.7828 0.5621 1.0000
WWIL 0.9234 0.8607 0.6778 1.0000

Table 31: Hy: (1 = B, and pick-a-point at grand mean when Y is Laplace, n = 80

Procedure Power
a=0.10 | a=0.05| o = 0.01 | Pick-a-point at Z

a3 =10 LS 0.0972 0.0491 0.0097 0.0478
WWIL 0.0986 0.0497 0.0099 0.0435

az = 0.3 LS 0.3430 0.2423 0.0900 0.9991
WWIL 0.4339 0.3148 0.1315 0.9999

a3 = 0.6 LS 0.7815 0.6767 0.4338 1.0000
WWIL 0.8843 0.8090 0.5850 1.0000

a3 =09 LS 0.9931 0.9840 0.9400 1.0000
WWIL 0.9982 0.9960 0.9791 1.0000
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Figure 14: Y is normal, n = 20
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Figure 19: Y is Laplace, n = 80
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Table 32: Hy: (5, = 5, and pick-a-point at grand mean when Y is Cauchy, n = 20

Procedure Power
a=0.10| a=10.05| a =0.01 | Pick-a-point at Z

a3 =0 LS 0.0929 0.0649 0.0387 0.0481
WWIL 0.1602 0.1057 0.0332 0.0637

az = 0.3 LS 0.1024 0.0411 0.0054 0.1637
WWIL 0.1057 0.0463 0.0069 0.2904

az = 0.6 LS 0.1547 0.1088 0.0465 0.3314
WWIL 0.2412 0.1550 0.0470 0.6371

a3 = 0.9 LS 0.1699 0.0891 0.0218 0.5402
WWIL 0.2764 0.1718 0.0472 0.9037

Table 33: Hy: 3; = B2 and pick-a-point at grand mean when Y is Cauchy, n = 40

Procedure Power
a=0.10| a=0.05| a=0.01 | Pick-a-point at Z
as =10 LS 0.1069 0.0533 0.0071 0.0229
WWIL 0.0906 0.0430 0.0080 0.0278
azg =0.3 LS 0.1190 0.0651 0.0102 0.1742
WWIL 0.1572 0.0856 0.0197 0.6992
az = 0.6 LS 0.1469 0.0749 0.0173 0.4136
WWIL 0.3246 0.2173 0.0746 0.9860
az =0.9 LS 0.1792 0.1071 0.0364 0.5350
WWIL 0.5485 0.4261 0.2021 0.9976

Table 34: Hy: (3, = (B2 and pick-a-point at grand mean when Y is Cauchy, n = 80

Procedure Power
a=010| a=0.05| a=0.01 | Pick-a-point at T

a3 =0 LS 0.1061 0.0585 0.0128 0.0207
WWIL 0.0987 0.0473 0.0091 0.0362

as = 0.3 LS 0.1148 0.0571 0.0090 0.1618
WWIL 0.2520 0.1587 0.0501 0.9352

a3 = 0.6 LS 0.1485 0.0825 0.0247 0.3893
WWIL 0.6395 0.5151 0.2763 0.9999

az =0.9 LS 0.1709 0.1008 0.0330 0.5515
WWIL 0.8000 0.7075 0.4745 1.0000
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For Cauchy distribution, the power of robust procedure is much higher than that
of the LS procedure when a3 is higher as well as the case of pick-a-point (Table 32, 33,
and 34). The plots of the power for homogeneity at 5% level of significance and that for
pick-a-point at grand mean is shown in Figure 20 - 22.

Getting back to the two questions above, the results based on normal and Laplace
distributions show that the power of Condition A, which is the pick-a-point, is equal to
or slightly higher than the power of Condition B except the power from LS procedure at
a3 = 0.3 and n = 40 in case of normal distribution, and at oz3 = 0.3 and n = 80 in case of
Laplace distribution. For Cauchy distribution, the power of Condition A of both LS and R
procedures is slightly higher than the power of Condition B except the power of WWIL at
a3 = 0.3 and n = 40.

Second question can be answered based on the simulation results from Condition
A, Condition B, and Method III, the powers of the traditional and rank-based analysis is

different especially when the distribution is the heavy-tailed distribution.
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CHAPTER 111
ADJUSTED MEANS

Consider a data set with k& groups in which group ¢ has sample size n;, forz = 1,2,.. ., k.
Note that the total sample size is n = Zle n;. Let Y;; denotes the jth response from the
ith group and let X;; denotes the value of the jth covariate of the ith group. We assume

that the slopes are homogenous in this chapter. The centered design is
}/ij = az—+-ﬁ(XU —j(-”)—{-eij, ]= 1,2,...,7’1/7;, 1= 1,2,...,k,

where «; is the effect of the ith treatment and [ is the slope. The mean of the ¢th treatment
is

Vi=ai+p(Xi—X)+ey

Now suppose E is an estimate of 4. Then an estimator of ¢; is

—_— o~ J——

o =Y; —B(Xi - X.) (3.1

The second term on the right-hand side is the adjustment introduced by the covariance

analysis (Snedecor and Cochran, 1980, p.367). If we take the expected value of &; we get
Ela)=o +ﬂ(—X—i. - 7..) - 5(71. -X)=a.

Hence, the covariance adjustment removes all the bias if we have random sample
and the regression of Y on X is linear with the same slope in each population; see also

Snedecor and Cochran, 1980, p.380. Note in (3.1), the mean of the :th group is adjusted
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by the covariate term. Hence, @; is called the adjusted mean of the ith group. We denote it

as

Yie =Yi— (X — X ) (3.2)

where Y; .4 denotes the adjusted mean of the ith group, Y; denotes the unadjusted mean,
B denotes the estimator of the slope parameter, X; denotes the covariate mean of the ith
group, and X _ denotes the grand covariate mean. The adjusted mean is employed to reduce
the bias by adjusting the mean of treatments to the point that we would expect the mean
response variable to occur when the covariate means of all groups are the same as the grand
covariate mean (Huitema, 1980, p.15).

These estimators motivate some simple naive robust analogs. For example, consider

the ith (naive) adjusted median given by

where }71 denotes the ith groups median and ER denotes a robust estimator of common
slope. Another example is the adjusted Hodges-Lehmann (HL) estimate of location. The
HL estimator of the ith group is

Yi; + Y

5 (3.3)

Y," = med;<r<jcn;
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Hence, the ith adjusted naive HL estimate is

YE. =Yt - Bp(Xi - X.) (3.4)

i,adj
where B r denotes a robust estimator of the common slope parameter. The properties of
these naive robust adjusted “means” are not apparent because the Y;’s are not identically
distributed. In particular, the standard errors for these simple robust analogs are difficult
to obtain. For example, for the median analog, we need the asymptotic distribution of
the sample median of non-identically distributed random variables. Other one-sample R
estimators of center (and hence adjusted center estimators) are discussed below.

As we discuss next, the LS adjusted mean estimators (3.2) are easily obtained from
the full model LS fit of model (3.6). From this point of view, standard errors for these
estimators readily follow. Even though they are the same for LS, we call these adjusted
means for the design. Our robust analog based on the design will differ from the naive
ones given above. We then consider the robust analogues of adjusted means based on the
design and establish the asymptotic theory for these robust estimators. Besides efficiency
comparisons between the robust and LS estimators, the theory leads to the standard errors

for these robust estimators.

3.1 LS Adjusted Means via the Design Matrix

The design matrix implementation of LS adjusted means is given on page 65 of
Huitema (1980) without proof. To gain an understanding of this development design, we
present a proof of it now. As we show later, this proof motivates the robust analog.

Consider the design matrix
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a b B2 - Br-1
(1 1,, 0 0
1 0 1, 0
X =
1 0 O |
|1 0 0 O 0
A second way of writingitis X = | 1, ¢, ¢y

Cr_1 X |»wherel,

(3.5)

18 an

n X 1 vector of ones, c; is the n X 1 dummy vector for the ith group, and x is the vector

of covariate. Write X as X = [1, x]. Let Y = (y,¥5,. .-

,y;c)’, where y; is the vector

of responses for the ith group. Let b = (a, ')’ denote the vector of parameters. The LS

estimates satisfy the normal equations given by

X'Xb=X'Y

Equivalently, this expression can be written as

n n %) e N1 Z Z .’I?,;j

(1 1 0 cer 0 Z T1j
T 0 Ty e 0 PR 2T
Ng—1 0 0 e N1 Y Ty

| Xmy my Xmy o Xmee1y 22T |

b

Br

_ 2D Y
> Y1

Zyk—lj

B DI

(3.6)

where . z;; denote the summation of the covariate for the i¢th group. This leads to
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the system of equations

na+n1ﬁ1+"'+nk—1ﬁk—1+ﬂkzz$z’j ZZZ%J‘ (D

mo+nif+ B Y Ty =Yy )

e + 2y + Bk Y Tay = Y U 3)

0

ko101 Bpo1 + B D Tho1j = D Uk-1 | (k)

azzﬂ%’ + B 2x1j+'"+5k—lzxk—1j+ﬁkzzx%j = szijyzj (k+1)

Dividing both sides of equation (2) by n;, we have

a+ B+ Bk = .

Then subtract off Gx(Z;. — Z_) from both sides to get

a+ b+ BT — BT — Z.) =G — Be(Z1. — Z.).

Therefore, the adjusted mean of the 1st group is

a+ B+ 0eZ. =51 — Be(T1. — Z.) = Y1,a0- (3.7

For the 2nd group, divide both sides of equation (3) by n»

a+ B2 + Bk = o

Then subtract off G (Z2. — Z.) from both sides.
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a+ Ba + PrZa. — Bk(T2. — Z.) = Jo. — (T2 — Z.)

The adjusted mean of the 2nd group is

a+ P+ OeZ. =Go — Bk(ZT2. — T..) = V2,045 (3.8)

Continuing this was, we can show that ¢ adjusted mean, fors=1,--- |k —11s
o+ B + BeZ.. = Ukadj-

For the kth adjusted mean, we proceed as follows. Because n = n; +np+- - - +ny,

we can rewrite equation (1) as

(n1+"'+nk)a+n1ﬁ1+"'+nk—1ﬁk—1+ﬂkzzxz’j = Zzyij
n16¥+"‘+nka+n1ﬂ1+"'+nk—1ﬂk—1+ﬁkzzwij = Zzyij (3.9

Taking the difference of equation (3.9) from the sum of equation (2), equation (3),

-, and equation (k), we have

mot A+ naBr e+ 1Bt + B Y 3 T

—(nia + n1fr + Br Y. x15) — (nec + nafy + B D T25)
= = (1@ + o1 Be1 + Bk X0 Th-15) = DD Yy oWy~ T DYk
Meet+ Be DT — BTy~ BTty = Vi — 2 T Yk

nee+ Be(Q- D Tig — DTy — 0 — D0 Th-1j) = YD Ui — oY= 2 Yk
(3.10)

Because

Sy Yoy~ Yy = Y
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and
Zzyij - Zylj — Zyk—lj = Zykj,

Equation (3.10) becomes

nea+ B D TH; = Y Uiy (3.11)

Dividing both sides of equation (3.11) by n, we have

a+ BkZk. = Y.

Then subtracting from both sides with 8, (Zx. — Z.), we have an expression for the

kth adjusted mean; i.e.,

a+ GkZ. =Yk — Be(Tk. — Z..) = Ur,ads- (3.12)

Because the LS estimates solve the normal equations, we rewrite equations (3.7), (3.8), and

(3.12) with the estimates; i.e.,

Jiagg = Ui — Ou(@i — ) =a+ i+ 6z, i=12... k-1 (3.13)

and

Uk,adi = Yk — BTk — Z.) = G + hZ. (3.14)

Thus, we have expressed the adjusted means in terms of the LS estimator based on the
design matrix X (3.5).
Notice from this formulation that the standard error of the LS adjusted mean is

easily obtained. Fori = 1,2,...,k — 1, the ith adjusted mean is ; oq4; = a;BLS where the
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jth component of the vector a; is given by

1 j=1

1 j=i+1
aij‘—‘ﬁ _ '
T j=k+1

\ 0 elsewhere.

The kth adjusted mean is § qay = a}cIA)L s where the components of a;, are

1 j=1
ak; =4 T j=k+1
0 elsewhere.

The standard error of the ¢th adjusted mean is the square root of
V(Gipg) = 0,62(XX)ta;, i=1,2,...,k.

3.2 Preliminary Notation

Rewrite model (2.3) as

Y=1a+X,8+e

(3.135)

where X of (2.5)is X =[1 X;]. As in Chapter 2, let ¢(u) be a given nondecreasing score

function defined on the interval (0, 1). Recall that F'(¢) is the c.d.f of the random errors and

p(u) = V12(u — 3). Let ELP denote the R estimator (; i.e.,

B, = Argmin | Y — X, 4],
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A result that will prove useful is the asymptotic representation of faw which is given

n1/2(3¢, - B) = 7,(nIX'X) " In 72X p(F(Y — X)) + 0,(1); (3.16)

see page 163 of Hettmansperger and McKean (1998).
The R estimator of the intercept that we discussed in Chapter 2 is the median of the
residuals,
as = med {Y - X’,Z:Iq,} )
It solves the equation
SiI(Y — Lo —XB,) =) _sgn(Y; — a — 7;8,) = 0. (3.17)

i=1

We next show the asymptotic representation of &g. Without loss of generality, the true
intercept and slopes are assumed as 0. According to Lemma 3.5.8 of Hettmansperger and

McKean (1998, p.165), for all S(a),
n~1/2 ’SI(Y —an~?1 — X,/B\w) — 51(Y —an™V21) Zo.

Lettinga = 0, /2 | S (Y — X,ap) — 5,(Y)| 5 0, which implies that the asymp-

totic distribution of n~1/25,(Y — X,ap) and n~1/28,(Y) are the same.
Furthermore, Lemma 3.5.8 leads to the asymptotic linearity result for the equation
3.17),
nV28, (Y — an~V?1 — XB,) = n"V28(Y) — arg? + 0,(1),

see Hettmansperger and McKean (1998).

The intercept solves S;(Y — 1,0 — Xﬁ‘p) =0 and n'/2aig is bounded in probability,
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hence, we have

0=n"Y25,(Y) — n'2asrs! + 0,(1).

This we can write as
0=n""2> "sgn(¥;) — n'/28is75" + 0,(1).
=1
This yield the asymptotic representation

ag =n"V2rgn 12 Z sgn(Y;) + op(1).

i=1

Thus, the asymptotic representation of the R estimate of the intercept with « as the true
intercept is

n?(ag — a) = Tgn /2 Z sgn(Y; — o) + 0,(1).

i=1
The intercept can also be estimated based on signed-rank location process. To dis-

cuss this, first consider the simple location model
Zi=0+e; (3.18)

where e, .. ., e, are iid with pdf f(z) and cdf F(z). For theory, we need to assume also
that f is symmetric about 0. Recall that the optimal rank regression scores are generated

by the score function

A W)
P = 5T

But then by symmetry ¢ (u) is odd about £; i.e.,

pr(u) = —pr(1 - w).
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Note that such scores satisfy: ¢(3) = 0 and ¢(u) > 0 for u > 1 (Hettmansperger and

1
2
i

McKean, 1998, p.101). The corresponding signed-rank scores are a™ (i) = o™ (725

), where

¢ (u) = p(*). These scores are positive and decreasing. Consider the norm
vl =S @ Rlul) ful, v e R"
i=1
The signed-rank estimate of 4 in the location model, (3.18), is
6 = Argmin ||Z — 61]|, ,

where Z/ = (2., ..., Z,) .

The gradient function of this norm is
S*(9) = 2”: at(R|Z; — 0))sgn(Z; — 0).
i=1
Hence, the estimate also satisfies the equation
5*(8) = 0.

If sign scores are used then § = medZ;, while if Wilcoxon scores are used then

ZZ+ZJ

é\ = mediSj 5

The above representation is under the assumption that the true location parameter
is 8, is 0. There is no loss in generality because ¢ is an equivariant location estimator,

which is true for any norm-based estimator; see Chapter 1 of Hettmabsperger and McKean
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(1998). In general, the representation is
b =0, +7,nt — SH(Z - 0,1) + 0,(1/v/n).

Returning to the linear model, the estimate of the intercept is based on the residuals
of the R fit using the score function ¢, where ¢*(u) = p(¥$}). Denote the residuals €
=Y — Xlﬁ and E is the R estimate of J in model (3.15). That is, using the gradient

formulation, the estimate of the intercept is & such that

St(a) = z at(R|e; — &|)sgn(e; — @) = 0.

i=1

The function above is applied to the residuals for obtaining the estimate of the

intercept. Therefore, we have
(o) = Za+(R le; — a|)sgn(e; — )
i=1

where e; = y; — xﬁp. The intercept estimator is & that solves S*(a) = 0. The estimate of
HL estimator based on residuals, if we use Wilcoxon scores; i.e, p(u) = v/12(u — %), while
if we use sign scores then the estimate of intercept is the median of the residuals. As shown
in Theorem A.2.11 of Hettmansperger and McKean (1998, p.410), the representation for

the intercept is similar as #7; i.e.,

Q)

= a, + 7,015 (e) + 0p(1/v/n),

T =a,+ T lZga (e5)] + 0p(1/v/n), (3.19)

where e; = y; — x;ﬁo are the true errors.
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3.3 Adjusted Means via Signed-Rank Estimate of the Intercept

Consider the analysis of covariance model (2.2). Let X be the design matrix (3.5).

Recall LS development is based on the normal equations (3.6)

X'Xb=X'Y.

Write X as X = [1 X;]. Then the right-hand side is

1’ 1Y
XY = Y =
X) XY
Also left-hand side is
n 1'X; o
X'Xb =

X1 X 8
no+ 1'X, 0
na + nx'g

nxXo + Xllxlﬁ

So putting these two results together, we have

na +nx g 1Y
= . (3.20)
nXo + X;Xlﬂ X'lY

Next, recall that the asymptotic representation for the R estimators na;} (3.19) and

a,, (3.16), namely

nay = 11,p[F(e)] (3.21)
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X X8, = X.rpp[F(e)] (3.22)

However with the design matrix X = [1 X;], we want the uncentered intercept; i.e.,
-% B, Therefore, the asymptotic representation of the robust estimates of the
regression coefficients is

na} +nx B, = 1'1,0F(e)] (3.23)
X, XB, = X rp0[F(e)]. (3.24)

Recall that X, = X; — 211'X; = X; — 1X". Hence the right side of (3.24) is

X, o0l F(e)] = X 70[F(e)] — Xr,1 ¢[F(e)],

While the left side of (3.24) is

X X8, = (X;-=x1)X,-1%)B,
= (XX, - nxx)B,

= X,X,8, - nxx B,
So (3.24) is equivalent to

X;XIB‘/, — m‘o‘clap = X, 7,0|F(e)] — 7,1 p[F(e)).

But by (3.23)

%7,1' p[F(e)] = nx&, + nkx B,,.
So (3.24) is equivalent to
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n&&, + X, X18, = X;7,[F(e)].

Therefore, the R asymptotic representation is equivalent to

n&, +nx B, = 17,0[F(e)

nka, + X, X8, = Xir.0lF(e)].

By (3.22) we have

X'Xb, = X'7,0[F(e)] + o(1/v/n) (3.25)

where Bw = [aq, ,Z\'B‘p] . Note that by replacing Y in (3.6) with 7,p[F(e)], we get
equation (3.25).
Denote the errors for the ith group as e;;,j = 1,...,n;. Therefore, the asymptotic

representation for our adjusted means follows as in (3.13) by replacing Y with 7,¢[F(e)].

Fori=1,...,k — 1, the asymptotic representation of the ith adjusted mean is
N 1 ¢ o
G+ By + BirZ = Tp— > ¢lF(ei;)] = Byx(E: — T) +0(1/v/n) (3.26)
7 j=1

Likewise, the asymptotic representation for the kth adjusted mean is
- 1 & ~
Gy BT = T > " @[Flexj)] = By (k. — F) + o(1/v/n) (3.27)
j=1

By (3.19), Ty 275, @[ F'(ex;)] +0(1/+/n) is the asymptotic representation for the
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signed-rank estimate of location for the ith group. Hence (3.26) and (3.27) are indeed the
asymptotic representations for the signed-rank adjusted mean for the ¢th group.
We can use this process and obtain the asymptotic representation for the LS adjusted

mean. It is

LS ek~ Busa(e —2) +ol1/vA).
j=1

3.3.1 Standard Error

It follows immediately that the standard error of the ith signed-rank adjusted mean

is the square root of

V(Jpray) = a72(XX) ', i=1,2,...,k

where, fori = 1,2,...,k — 1, the vector a; is given by
(
1 j=1
1 7=i+1
Qij = 4
T j=k+1
\ 0 elsewhere.

The components of aj are

1 j=1
ag; =4 T j=k+1

0 elsewhere.
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34 Example

A sample of 30 freshmen biology students are randomly selected (Huitema, 1980,
p-38) to analyze the difference among three type of behavioral objectives, which consist of
(1) General, (2) Specific, and (3) Specific with study time allocations. The sample sizes
of the three groups are equal with the common value 10. The response (Y') is the biology

achievement test scores, and the covariate (X) is the aptitude test scores.

Table 35: Behavioral Objectives Data
1 2 3
X Y| X|Y|X|Y
2911512220 |33 |14
49119124 13414520
48 | 21 {49128 35|30
3512746 |35|39 32
5335|5242 |36 34
4713943 |44 |48 | 42
46 |23 |64 |46 |63 |40
74 | 38 | 61 | 47 | 57 | 38
72 133 |55|40 |56 |54
67 |50 5454|7856

The adjusted means for each group are computed using: (1) the simple way (for-
mula (3.2)), and (2) the design matrix way (formula (3.11) and (3.12)). In addition, the
adjusted means based on R estimates are considered. For the simple way, we estimate:
(1) adjusted means by LS (AMLS), (2) robust adjusted median naive (RAMMN), and (3)
robust adjusted Hodges-Lehmann naive (RAHL). Note that the standard errors for these
simple robust analogs, which are RAMMN and RAHL, are difficult to obtain. In case of
the design matrix way, we estimate: (1) adjusted means by LS (AMLS), (2) robust adjusted
median design (RAMMD), and (3) robust adjusted signed-rank (RASR). Recall that the
AMLS from both ways are the same. The results are in Table 36.

As can be seen, the adjusted means from both ways give exactly the same value.
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Table 36: Estimate (Standard Error)

Simple Way Design Matrix Way

Yiag | Youd | Y3eg Yiad | Y2u4 | Y3adi

AMLS 28.48 | 4033 | 36.19 | AMLS 28.48 | 40.33 | 36.19
(0.152) | (0.133) | (0.019) (0.152) | (0.133) | (0.019)

RAMMN | 28.57 | 42.25 | 36.18 | RAMMD | 27.14 | 39.35 | 36.16
(NA) (NA) (NA) (0.286) | (0.035) | (0.016)

RAHL 28.07 | 41.25 | 36.18 | RASR 28.09 | 40.29 | 37.10
(NA) (NA) (NA) (0.191) | (0.129) | (0.110)

The adjustments based on R estimate are slightly different but close. The R estimate is
different from LS primarily because the R estimate is more resistant to y-outliers. (McKean,
Naranjo, and Sheather, 1999). To investigate the robustness of our adjusted means, we
replace several the response values with outliers.

First, we replace the biology achievement test score of the first group with 100
(Y11 = 100). The outlier has a big impact on the AMLS of the first group (71,(1(1]-) (Table
37). When comparing between the simple and the design matrix ways, the RAMMN and
RAHL in the simple way have both —}71,adj and 72,adj higher than the RAMMD and RASR
in the design matrix way; however, —}73,adj in the simple way is lower and it is more closer

to the original value.

Table 37: Estimate (Standard Error): 1 outlier

Simple Way Design Matrix Way

Yl,adj Y2,adj Y3,a,dj Yl,adj Y2,a,dj YS,adj

AMLS 37.89 | 39.53 | 36.08 | AMLS 37.89 | 39.53 | 36.08
(0.789) | (0.053) | (0.008) (0.789) | (0.053) | (0.008)

RAMMN | 32.73 | 42.11 | 36.16 | RAMMD | 30.37 | 40.68 | 36.89
(NA) (NA) (NA) (0.037) | (0.168) | (0.089)

RAHL 3273 | 41.11 | 36.16 | RASR 30.11 | 4043 | 36.64
(NA) (NA) (NA) (0.011) | (0.143) | (0.064)

Next, another outlier is applied but in a different group. The biology achievement

test score of the second group is replaced by the outlier; that is, Y2; = 150. Now, we then
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have two outliers, one is in the first group, another is in the second group. The results in
Table 38 show that the AMLS is very sensitive to the outliers. Both Y 44 and Y o4 of

the RAMMN and RAHL in the simple way are higher than the RAMMD and RASR in the

design matrix way.

Table 38: Estimate (Standard Error): 2 outliers

Simple Way Design Matrix Way

Yiag | Youd | Y34 Yiag | Youd | Y3ag

AMLS 3941 51.20 35.89 | AMLS 3941 51.20 35.89
0.941) | (1.220) | (0.011) (0.941) | (1.220) | (0.011)

RAMMN | 33.17 | 43.73 36.10 | RAMMD | 30.73 41.85 35.67
(NA) (NA) (NA) (0.073) | (0.285) | (0.033)

RAHL 33.17 43.73 36.10 | RASR 31.26 42.39 36.20
(NA) (NA) (NA) (0.126) | (0.339) | (0.020)

We then add another outlier to the biology achievement test score of the third group;
that is, Y3; = 180. Therefore, all groups have one outlier. The outliers have an impact on

the AMLS of both simple and design matrix ways. The RAMMD and RASR are less

sensitive to the outliers (Table 39).

Table 39: Estimate (Standard Error): 3 outliers

Simple Way Design Matrix Way

Yiat | Yoed | Y3ag Yiati | Yoad | Y34

AMLS 40.66 | 50.11 | 52.33 | AMLS 40.66 | 50.11 | 52.33
(1.066) | (1.111) | (1.633) (1.066) | (1.111) | (1.633)

RAMMN | 3337 | 4355 | 39.08 | RAMMD | 30.20 | 41.55 | 38.37
(NA) (NA) (NA) (0.020) | (0.255) | (0.237)

RAHL 33.37 | 43.55 | 40.08 | RASR 31.37 | 4273 | 39.55
(NA) (NA) (NA) (0.137) | (0.373) | (0.355)

3.5 Simulation Study

We next present the results of a simulation study for one covariate, and three groups

with 10 observations in each group. Both covariate and response variables are generated
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from: (1) standard normal distribution, and (2) contaminated normal distribution. The
group means for the covariate are 4, 5, and 6, respectively; the standard deviation is 1 for
all groups. Recall that we assume the slopes are homogenous. We run 10000 simulations.

Let3=[0 4 6 1]. Recall the model
Yij =a+ 0+ X + ey,
where j=1,2,...,n;, 1=1,2,..., k, and the adjusted means is

Yiawi =Y — B(X: — —X_..)

Note that we use the same X for all 10000 simulations. The grand mean of X (7(—)
is 5.627, the means for each group are 3.076, 6.250, and 7.557, respectively.

Therefore, we have

Groupl : E(Yin,) = 0+4+(1)(3.076)+0 = 7.076
E(Yi.;) = 7.076—(1)(3.076 —5.627) = 9.627
Group2: E(Ya,,) =  0+6+(1)(6.250)+0 = 12.250
E(Y2.y) = 12.250 — (1)(6.250 — 5.627) = 11.627
Group3: E(Ys,,) =  0+0+(1)(7.557)+0 = 7.557
E(Y1.4) = 7.557—(1)((7.557 —5.627) = 5.627

We then have the true adjusted means for 1st, 2nd, and 3rd groups as 9.63, 11.63,
and 5.63, respectively. The average of each adjusted estimate and the error are obtained as
shown in Table 40.

All estimates from the design matrix way are the identical except for AMLS of the

3rd group. As a check for LS, for the simple way the AMLS estimates are the same as the
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Table 40: Adjusted Mean Simulation: Standard Normal Distribution

Simple Way Design Matrix Way

Yiad | Y2ad | Y30 Yiadi | Y24 | Y3ag

AMLS 9.63 | 11.63 | 5.62 | AMLS 9.63 | 11.63 | 5.62
(0.12) | (0.10) | (0.11) (0.12) | (0.10) | (0.11)

RAMMN | 10.30 | 12.60 | 6.29 | RAMMD | 9.63 | 11.63 | 5.63
(NA) | (NA) | (NA) (0.14) | (0.12) | (0.13)

RAHL 9.80 | 11.59 | 6.02 | RASR 963 | 11.63 | 5.63
(NA) | (NA) | (NA) (0.12) | (0.11) | (0.12)

estimates of the design matrix way. The RAMMN and RAHL are a little higher than the
true mean except the RAHL of the 2nd group.

Next simulation is conducted in similar scenario except the response variable is
generated from contaminated normal with ¢ = 0.3, and ¢ = 9. The covariate we use
here is the same as for standard normal distribution. Note that the true adjusted means of
1st, 2nd, and 3rd groups for this contaminated normal distribution are exactly the same as

for standard normal distribution. The average of each adjusted estimate and the error are

obtained (Table 41).

Table 41: Adjusted Mean Simulation: Contaminated Normal Distribution

Simple Way Design Matrix Way

Yiag | Youd | Y304 Yiadi | Yoadi | Y3ag

AMLS 9.63 | 11.64 | 563 | AMLS 9.63 | 11.64 | 5.63
(3.04) | (2.46) | (2.74) (3.04) | (2.46) | (2.74)

RAMMN | 10.07 | 12.08 | 6.17 | RAMMD | 963 | 11.64 | 5.64
(NA) | (NA) | (NA) (0.67) | (0.54) | (0.63)

RAHL 9.75 | 11.70 | 5.86 | RASR 9.63 | 11.63 | 5.64
(NA) | (NA) | (NA) (0.70) | (0.57) | (0.64)

The AMLS estimates from both ways are identical. The errors of AMLS are much
higher than those of RAMMD and RASR. The R estimates of the design matrix way are

lower and are close to the true mean than those of the simple way.
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CHAPTER 1V
THE JOHNSON-NEYMAN TECHNIQUE

As we stated before, the important assumption of analysis of covariance is that the regres-
sion slopes are homogenous. If this assumption is not true, then the pick-a-point method
of Chapter 2 can be used to investigate differences among treatment levels. In this chapter,
we discuss an alternative test which is called the Johnson-Neyman technique. The pur-
pose of the Johnson-Neyman procedure is to identify the values of X that are associated
with significant group differences on Y (Huitema, 1980, p.271). Recall that the treatment
effects in the analysis of covariance are assessed at the grand mean. However, the Johnson-
Neyman technique determines a region in X -space where these differences are significant.
The Johnson-Neyman technique was originally designed for the situation with two groups;
however, it can be used to the case of multiple groups by comparing the pairs of groups.
In this study, we will consider the case of two groups and one covariate. The
Johnson-Neyman technique based on LS is discussed. We then develop the robust ana-
log to the Johnson-Neyman technique based on R estimates. We follow this development

with a simulation study comparing the LS and robust Johnson-Neyman procedures.

4.1 Traditional and Robust Johnson-Neyman Procedures

Assume that the sample size of group ¢ is n;, ¢ = 1,2, ..., k. Let Y;; denote the jth

response from the ith group and let X;; be the covariate. The model is written as

Yij = ai + BiXy; + ey,
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where «; is the intercept and f; is the slope parameters for the ith group. The errors e;;
are independent and identically distributed with pdf f(¢) and cdf F(¢). The conditional

distribution of Y given X is
E(Y;]1Xi5) = ai + BiXy;.
The difference at point X between both groups is

A(X) = E(Yy|X) - E(Yy|X)
= (a2 + B X) — (o + 5 X)

= (@2 ~a)+ (62— p1)X.
Given a fitting procedure, the estimator of the difference is
AX) = @ — @) + (B - B)X. @.1)

First we outline the Johnson-Neyman procedure based on LS estimates. The Johnson-
Neyman technique is used to obtain a point set or ’region of significance” of values of the
X variables for which one would reject, at a specified level a, the null hypothesis that
the two groups have the same expected Y value (Potthoff (1964, 1983)). This region of

significance,” which will be referred to as R, consists of the set of all points X such that

[AGOP = 31 1/2a¥(X)S2 > 0,
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where

erl = (X},Xz, Ces ,XT),
v(X) = Z[(l/ni) +(X - X)CNX - X))

s2 = Y Y- (1/n)(Y{1)? - B W)
=1

Crxr = XiX]— (1/m)(Xi1)(X,1)

Wi = XY — (1/n)(X:1)(Yi1)
f = Z(ni—r—-l).

The region R allows one to reject the null hypothesis (A(X) = 0). This implies that
one can be at least 100(1 — «)% confident in making a statement about the difference
between the two groups for any specified individual point X in R. However, one cannot be
100(1 — a)% confident in making the statements about the differences simultaneously for
all points in R (Potthoff, 1964, 1983). For simultaneous inference, consider the region R’

defined by the set of all points X such that
[AX))? = (r 4+ 1) Frp151-0(X)S? > 0.

With confidence coefficient > 100(1 — «)% one can state simultaneously for all points X
in R’ that the two groups differ (Potthoff, 1964, 1983). The region R’ is smaller than R at
a given « level; however, R’ can be larger by choosing a larger « level for R’ than that for
R. In summary, a 100(1 — )% confidence interval for A(X) for any specified individual

point X (whether inside or outside R) is given by

A(X) £ tg-a/zalv(X)STY?,
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while 100(1 — )% simultaneous confidence intervals for the functions A(X) for all pos-

sible points X in the r-dimensional X -space are given by
AX) £ [(r+ D Fran,a-av(X) S22,

(Potthoff, 1964, 1983). Note that for exact confidence, we need to assume that the errors
have a normal distribution. Otherwise the confidences are approximate.

It is common practice to make a preliminary test of the hypothesis 3, = 32 before
using the Johnson-Neyman technique: If this hypothesis is rejected by the test, then the
Johnson-Neyman technique is applied, but if it is not rejected, then analysis of covariance
is applied rather than the Johnson-Neyman technique (Potthoff, 1964, 1983).

Next we want to develop the robust analog to the Johnson-Neyman technique. This

is easier to do if the non-incremental model is used. So consider the matrix

10 X, O
01 0 X

We then center X

1 0 X;—-X, 0
01 0 X, — Xo

Therefore,

n, 0 0 0

0 N9 0 0

XX = , 4.2)
0 0 C1 0
0 0 0 c
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where ¢; = 307, (Xi; — X;)? for j = 1,2.

The inverse of matrix 4.2 is

L 0 00
0o L 0 0
(X'X)! = n2
0o 0 L o0
c1
0 0 0 L
L c2

Let X be a point of interest, then it easily follows that
2
v(Xo) = Y _[(1/n:) + (Xo — X:) C7H(X — Xi)).
i=1

Let 8 = (61, B2, s, B4) denote the parameters for this design matrix X. Note that
03 and j, for this design are the same as for the incremental design but the intercepts; 3,

and 3,, differ from «; and o4 as discuss below.
Let B = (=1,1,—(Xo — X1),(Xo — X3)) and ' = (B4, B2, Bs, 04), then the

estimate of interest (A(XO)) is the linear combination A’ B,

WB = Bo— B+ (Xo— X2)Bs— (Xo— X1)Bs

= (B2 — X284) — (B — X1s) + (B — B5) Xo. (4.3)
Recall that the R estimate of § we discuss in Chapter 2 is given by

IB¢ = ArgmlnD‘P(/B))

where D, () utilizes the pseudo-norm: ||w||, = Y=, a[R(w;)w;. A weighted Wilcoxon

estimate corresponds to a minimum of the following function
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Dw,(8) = Z bij (w; — w;],

1<i<j<n
where b;; denotes a weight to be used in the (7, j)th comparison (Terpstra and McKean,

2005).

The estimate of interest is A Ls(Xo) = W (35 and for the R estimate A r(Xo) =

h’B r. Comparing the estimator of the difference (4.1) with A’ [3 above (4.3), we have

é22 = ﬁ2_72[§4

b1 = fri— X165
Note that the LS intercept estimator is the mean of the LS residuals; therefore,

Gy = Bo—Xofly = mean(Y; — 34 X>)

& = Bi—Xif;s = mean(Y; - B:X1).

For the Wilcoxon estimate, let Y = X ﬂA(p. The intercept o can be estimated by
a location estimate based on the residuals é = Y — Y (Hettmansperger and McKean,
1998, p.147). Let p(u) is a nondecreasing function on (0, 1). The scores are generated
by a(i) = ¢li/(n +1)], 3 = 1,2,...,n, where p(u) = V12 (u—1). Let p*(u) =

ol(u+1)/2] = V3u. Leta* (i) = ¢*[i/(n + 1)]. Consider the norm
lolgy = a*(Rlwil) [uil, i=1,2,...,n,

(Hettmansperger and McKean, 1998, p.42).

Letée, =Y — }A"p. The signed-rank procedure is applied to the residuals in order

to obtain an estimate of the intercept. That is, the estimate of the intercept minimizes the
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norm ||é, — 041||;L or equivalently solves S(é, — a) = 0 where
Sy(ér—al) = Za(R |éri — a|)sgn(ér; — a1);

(Hettmansperger and McKean, 1998, p.169).

For Wilcoxon scores, the estimate is the median of the Walsh averages (Hettmansperger
and McKean, 1998, p.169), which is called the HL estimator based on residuals. Let
A (Xo) = (Gpy — Q) + (B\m - BWXO. Hence, we have

dtm = HL(Yé“B4X2)

dcpl = HL()/I‘BS-Xl):

where HL(Z) = medianiSj(Zi—;Zj ).

For LS, the point X, is significant if

[A(X0)]2 ~ £, /3.m-09(X0)6? > 0, (4.4)
and X, is simultaneous significant if

[A(X0) = 2F(2n-4y0(X0)6? > 0. (4.5)

For R estimate, we replace 52 in the residual part in the equation 4.4 and 4.5 with

#2; therefore, the equations become

Ao (Xo)) = 12/ m-00(X0)72 > 0, (4.6)
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and

[Bp(Xo)]* = 2Fi0,2m-2y0(X0)7? > 0. 4.7

4.2 Simulation Study

Table 42 shows the aggression scores on behavioral checklist data (Huitema, 1980,
p.272). The data are based on an experiment in which two methods of therapy are the
treatments, and scores on a sociability scale are employed as the covariate. The response
is the aggressiveness score on behavioral checklist. Based on a 5% level of significance,
the treatment effects test indicates no difference; however, the homogeneity of slopes is
significant. That is, the slopes are heterogeneous. The scatterplot shows heterogeneous
regression slopes in which the regression line of Therapy 1 is higher than that of Therapy
2 at low values of covariate (X) and is lower at high values of X than that of Therapy 2

(Figure 23).

Table 42: Therapy Data

Therapy 1 | Therapy 2
X Y X Y
1 10 1 5
2 10 |15 6
2 11 |25 6
3 10 {35 7
4 11 45 8
5 11 |45 9
5 10 5 9
6 11 6 9
6 | 115 | 6 | 105
7 12 7 11
8 12 7 | 125
8 11 |75 125
9 11 8 14
10| 125 | 9 | 145
11 12 10 | 16
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Figure 23: Plot of the behavioral checklist data

We do 10000 simulations for the response variable under three different distribu-
tions of error, which are (1) Standard normal distribution, (2) Normal distribution at ;. = 0,
o = 30, and (3) Contaminated normal distribution with ¢ = 0.3 and o = 9, as following

step:
Response Variable Simulation Steps

1. Obtain é using the original X and Y’
2. Compute Y=Y-¢
3. Simulate 10000 of é from

3.1 Standard normal distribution

3.2 Normal distribution with 1 = 0 and o = 30
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3.3 Contaminated normal distribution withe = 0.3 and 0 = 9
4. Obtain Y for each distribution by

41 Y =Y + éutandard normal

42 Y =Y + énormal

43 Y =Y + €contaminated normal

Note that the covariate (X)) is the same for all 10000 simulations. Let ay, as, b;, and
b, be the intercept of Therapy 1, intercept of Therapy 2, slope of Therapy 1, and slope of
Therapy 2, respectively. Let X, be the point that the regression lines of the groups cross.

Then we have

a; + leO = as+ b2X0

Ao —

Xo = ——

0 b1 — bg
= 6.516461

At the crossing point, the power of the region of significance (4.2) and simultaneous
region of significance (4.3), called INLS method, is compared with that of the robust region
of significance (4.4) and robust simultaneous region of significance (4.5), called INWL
method. The power between JNLS and INWL of the other points: (1) Minimum of X
(Min(X)), (2) 1st quartile of X (@), (3) Point between 1st quartile and Xy (Q15), (4)
Point at % + 34& (@newl), and (5) Point at % + 78ﬁ (Qnew?), is also investigated. Note
that we use 5% level of significance for all cases here.

The power of the simultaneous region of significance is lower than that of the region
of significance except at Min(X) for both JNLS and INWL methods, and at ¢); for JNLS
method only. At X, the power of the region of significance based on JNLS and JNWL is

close to 5%, while the power of the simultaneous region of significance is about 1%-2%.
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Table 43: Standard Normal Distribution
Method Type Power

Xo Min(X) (O} Q15 | Qnewl | Qnew?
JNLS Region 0.0492 | 1.0000 | 1.0000 | 0.9778 | 0.5365 | 0.1685
Simultaneous | 0.0155 | 1.0000 | 1.0000 | 0.9314 | 0.3332 | 0.0757
JNWL Region | 0.0392 | 1.0000 | 1.0000 | 0.9503 | 0.4480 | 0.1308
Simultaneous | 0.0125 | 1.0000 | 0.9994 | 0.8588 | 0.2557 | 0.0519

The power is lower for the points which are closer to X,. The closer points to X, from
nearest to and further from X, are Qnew?2, Qnewl, @15, @1, and Min(X). The power
of Qnew?2 is the lowest among the other points, and the power of Min(X) is the highest
for both regions and both methods. When comparing between JNLS and JNWL, both the
region and the simultaneous region, the empirical power of JNLS are slightly higher than

those of INWL, except at Min(X) and at ); (Table 43).

Table 44: Normal Distribution with 4 = 0, o = 30
Method Type Power
Xo | Min(X)| @ Q15 | Qnewl | Qnew?2
JNLS Region 0.0488 | 0.0561 | 0.0535 | 0.0490 | 0.0473 | 0.0487
Simultaneous | 0.0139 | 0.0193 | 0.0182 | 0.0166 | 0.0150 | 0.0138
JNWL Region 0.0361 | 0.0456 | 0.0432 | 0.0382 | 0.0367 | 0.0377
Simultaneous | 0.0093 | 0.0151 | 0.0137 | 0.0123 | 0.0105 | 0.0097

For a normal distribution with 4 = 0 and ¢ = 30, the power of the simultaneous
region of significance is lower than that of the region of significance at all points for both
JNLS and JNWL methods. The power of the region of significance at all points based on
JNLS and JNWL is close to 5%, while the power of the simultaneous region of significance
is about 1%-2%. When comparing between JNLS and INWL, both region and simultane-
ous region of the empirical power of JNLS are slightly higher than those of JNWL at all
points (Table 44).

In case of contaminated normal distribution, the power of the simultaneous region
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Table 45: Contaminated Normal Distribution withe = 0.3,0 =9
Method Type Power

Xo Min(X) h Q15 | Qnewl | Qnew?
JNLS Region 0.0428 | 0.3860 | 0.2998 | 0.1501 | 0.0717 | 0.0473
Simultaneous | 0.0088 | 0.2322 | 0.1663 | 0.0650 | 0.0214 | 0.0119
JNWL Region 0.0318 | 0.8235 | 0.7223 | 0.3672 | 0.1138 | 0.0464
Simultaneous | 0.0093 | 0.6908 | 0.5540 | 0.2039 | 0.0415 | 0.0139

of significance is lower than that of the region of significance at all points both JNLS and
JNWL methods. At X, the power of the region of significance based on JNLS and JNWL
is close to 5%, while the power of the region of significance is about 1%. The power is
lower when the points are closer to the X;. The closer points to X, from nearest to further
are Qnew?2, Qnewl, @15, @1, and Min(X), fespectively. The empirical power at Qnew?2
is the lowest among the other points, and the power at Min(X) is the highest for both
regions and both methods. The further the point is from Xj, the higher power. When
comparing between JNLS and JNWL, the region of significance of the empirical power of
JNWL is higher than that of JNLS for all points except at X,. The power is even much
higher at the points that further from X,. The power of the simultaneous region of INWL

is also much more higher than that of JNLS at the further points from X, (Table 45).

97



CHAPTER V

CONCLUSIONS

Robust procedures for the analysis of covariance (ANCOVA) model are provided in this
study. For the traditional ANCOVA, our empirical results show that the validity of our
robust analog is similar to the least squares procedures.

The main thrust of the study develops robust analogs of alternative methods to the
ANCOVA. There are important methods associated with the ANCOVA. One such pro-
cedure developed is the pick-a-point method. Rank-based analogs are developed for the
pick-a-point. The simulation study is conducted and compared between the traditional and
R procedures under differences in distribution of response variable, slopes, and sample
sizes at different pick-a-point. The simulations results of the treatment effects test and the
95% confidence interval for pick-a-point show that the power is higher when the absolute
difference in slopes (a3) is larger. When n = 20, the power of R estimate is close to that of
the least square procedure but the power of R estimate is approximately 2 times higher at
ag = 1.9, at all level of significances. For n = 40, the power of R estimate is more than 2
times higher at a3 = 0.6 at all level of significances. In case of n = 80, R estimate has 2
times higher of power when a3 = 0.3. Comparing the power among three distributions, the
simulation results indicate that the R procedure can handle the Cauchy distribution, which
is the heavy-tailed distribution, better than the LS procedure.

An second important method associated with the ANCOVA is the set of adjusted
means. Two ways (simple and design matrix) to obtain the adjusted means are illustrated.
We also develop R analogues for adjusted means, which are the robust naive adjusted me-

dian, robust naive adjusted Hodges-Lehmann, robust adjusted median design, and robust
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adjusted signed-rank. Our empirical studies show that the LS procedure is sensitive to
outliers. The comparisons of different way of computing adjusted means indicate that the
design matrix way is superior, and that it is the preferred method. Simulation results also
show that the robust procedures are useful for longer-tailed distributions.

The third procedure used in the analysis of covariance that we are interested in
is the Johnson-Neyman technique. The robust procedure for the region and simultaneous
region of significance is developed and compared with the traditional procedure at different
points of X. Simulation results show that the robust procedure is more powerful for the
heavy-tailed error distributions. The power of the simultaneous region of significance is
lower than that of the region of significance at all points in both JNLS and JNWL methods.
When comparing between JNLS and JNWL, the region of significance of JNLS equals to
that of JNWL in case of standard normal distribution at Min(X) and @), and is slightly
higher than that of JINWL at the other points of standard normal and all points of normal
distribution with = 0 and ¢ = 30. Likewise, the simultaneous region of JNLS equals
to INWL in case of standard normal distribution at Min(X), and is slightly higher than
JNWL at the other points of standard normal and all points of normal with 4 = 0 and
o = 30. However, for contaminated normal distribution, the region of significance of
JNWL has higher power than JNLS except at X, and Jnew2. The simultaneous region of

JNWL is higher than that of JNLS for all points of contaminated normal distribution.
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