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Microcalcifications are residual calcium deposits that are often the first signs of 

developing breast abnormalities that may lead to breast cancer. Up to 30% of 

cancerous lesion in diagnosed breast cancer cases could have been detected earlier 

through mammogram screenings if the right tools were available. While the detection 

of calcifications may be easier in fatty backgrounds, it is challenging in dense 

parenchyma, suggesting the need for more sensitive tools for accurately identifying 

suspicious regions in mammograms and propping a computer-aided system for further 

target classification. Therefore, the objective of the research work in this dissertation is 

to develop a novel highly sensitive method for the detection of microcalcification that 

is independent of the characteristics of background tissue. 

Continuous wavelet transform is employed to detect singularities in 

mammograms by tracking modulus maxima along maxima lines. This work is based on 

convolving the mammogram with Gaussian kernel to detect and extract 

microcalcifications that are modeled as smoothed impulse functions. Two significant 

characteristics of the local modulus maxima of the wavelet transform with respect to 

the smoothed impulse function are investigated: magnitude of general maximum and 

fractal dimension of the detected sets of singularities. It is also essential to select the 



suitable computation parameters such as thresholds of magnitude, argument, and 

frequency range in accordance with spatial and numerical resolution of the analyzed 

mammogram. This detection approach is independent of the background tissue and is 

complementary to a computer-aided diagnosis system based on shape, morphology, 

and spatial distribution of individual microcalcifications. 

Experimental work is performed on a set of images with empirically selected 

parameters for 200 urn/pixel spatial and 8 bits/pixel numerical resolution. Results are 

indicating that in abnormal regions the selected general maxima have larger 

magnitudes and tend to have higher fractal dimension than in surrounding normal 

regions. Findings are promising since they can be integrated into any framework for 

breast cancer detection and diagnosis. 
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1 

CHAPTER I 

INTRODUCTION 

Cancer is a disease that causes cells in the body to change and grow out of 

control. There are many of the known relative breast cancer risk factors, such as age, 

family history, age at first full-term pregnancy, early menarche, late menopause, and 

breast density, postmenopausal obesity, use of post-menopausal hormones, alcohol 

consumption, and physical inactivity, but dominant cause is still unknown [1]. 

Excluding skin cancers, breast cancer accounts for more than 25% cancers 

diagnosed in US women. Unlike lung cancer, science does not know any significant 

prevention methods for breast cancer. On the other hand, it is a slow developing 

cancer and in most cases it needs 5 to 15 years to become palpable. 

The earlier the breast cancer is diagnosed the higher chance is to be 

curable [2]. Early detection and diagnosis is the most important for the surgical cure 

while the disease is still bounded. From 1990-2004 death rates decreased by 3.3% per 

year among women younger than 50 and by 2.0% per year among women 50 and 

older [3]. The decline in breast cancer mortality since 1990 has been attributed to 

both improvements in breast cancer treatment and to early detection related to 

screening mammography [4]. 

Men are generally at low risk for developing breast cancer, accounting for 

approximately 1% of breast cancer cases in the US. Since mammography is 

recommended for women only, men are more likely than women to be diagnosed with 

advanced disease and have poorer survival [5]. 



The goal of numerous researcher efforts is to develop the tools for early 

detection of breast cancer. 

Breast and Breast Abnormalities 

The breast is mammary gland made up of lobules, glands for milk production, 

and the ducts that connect lobules to the nipple. The remainder of the breast is made 

up of fatty, connective, and lymphatic tissue surrounded by skin. The breast is 

separated from the chest wall pectoral muscles by connective tissue. The glandular 

tissue consists of 15-16 lobes, with varying numbers of ducts and lobules, arranged 

radially from the nipple. The skin forms a smooth convex surface, surrounding the 

parenchyma, and separated from it by a layer of fat. 

Breast can vary greatly in form, size and composition. The breast converges 

toward the nipple, and is generally symmetrical in shape. 

Breast is dominantly of three basic compositions: fatty, fatty/glandular and 

dense. Some breasts are being comprised primarily of fat, while the others are 

glandular with variable amounts of fatty tissue. In some breasts the fibro-glandular 

region appears as an island-like density, while in the others it appears as a sparse 

assemblage of tissue. The composition of the breast may also change over time. 

There is no a precise qualitative and quantitative definition of normal 

mammogram although it is possible to describe normal and undisturbed patterns. 

There are a number of abnormal signs, which allow a suspected breast cancer 

to be detected, including masses, microcalcifications, asymmetric densities, and 

architectural distortion. 

Breast cancer begins in breast tissue eventually forming mass. A mass is 

defined as a three-dimensional dense region with margins distinguishing it from the 



surrounding parenchyma. Masses are classified by location, density, size, shape (round, 

ovoid, lobulated), and margins (circumscribed, ill-defined, stellate, or spiculated). 

Some masses are benign. They do not grow uncontrollably and they are not life-

threatening. Breast cancer usually appears with disturbed ductal patterns. Some breast 

cancers are called in situ because they are confined within the ducts or lobules of the 

breast and can be cured. Moreover lobular carcinoma in situ, known as lobular 

neoplasia, is not a true cancer because it doesn't develop into cancer but it is an 

indicator of increased risk for developing invasive cancer in the future. Most cancerous 

breast tumors are invasive starting in the lobules or ducts of the breast and breaking 

through the duct or glandular walls invade the surrounding tissue of the breast. The 

seriousness of invasive breast cancer is strongly influenced by the stage of the disease 

when it is first diagnosed. 

Microcalcifications are tiny granule-like deposits of calcium frequently 

associated with malignant or benign findings. They appear as bright spots in 

mammograms. Shape, morphology, and spatial distribution of individual 

microcalcifications are some of the features detectable in X-ray mammograms that 

suggest benign or malignant breast disease. Researchers have made few breast tissue 

classifications and have recognized more than twenty of those conventional features 

[6]-[8]. They have varying characteristics, regular in size and shape or heterogeneous, 

fine or coarse, smooth or jagged. They may be punctate, branching, linear, spherical, 

cylindrical. One acceptable simplification is to describe microcalcifications as ellipsoids 

of diameters between 0.05 mm and 1 mm. For early cancer detection, calcifications 

with spatial extent less than 0.5 mm are most important for clinical diagnosis. 

Particularly, this corresponds to calcifications in the order of roughly 0.1 mm in 



diameter. Also, it agreed on that microcalcifications appearing in clusters may suggest 

malignancy while individual occurrences are of low clinical significance [9]. 

Breast asymmetry exhibits as breast tissue that is greater in volume or denser in 

one breast than the other. 

The structures of the breast tissue converge toward the nipple. The disturbance 

in this symmetrical flow is called architectural distortion. 

Breast Imaging Modalities 

Numerous randomized trials and population-based screening evaluations have 

clearly shown that involvement of breast imaging technologies greatly improve breast 

cancer survival [10]. Treatment is more successful when cancer is discovered early, 

several years before physical symptoms develop. 

X-ray mammography is highly sensitive, but often nonspecific whether or not a 

suspicious region is benign or malignant. The limitations of X-ray mammograms are 

that the 3-D compressed structures of the breast are projected into a 2-D image. 

In many cases breast abnormal masses can be detected with magnetic 

resonance imaging that are not visible in X-ray mammography, particularly with the 

patients with silicon implants, with scars after breast surgery, and patients with 

mammographically dense breast tissue. Sensitivity of magnetic resonance imaging for 

breast cancer detection is often higher than that of X-ray mammography or 

ultrasonography separately [11]. One of the limitations of magnetic resonance is low 

specificity, which reduces the effectiveness in the differentiation of benign from 

malignant abnormalities, but the use of magnetic resonance images is to determine the 

stage of a disease, when the abnormality was already detected. 



Ultrasound has been used as an adjunct to X-ray mammography in detecting 

breast cancer. Ultrasonography as a diagnostic modality has been documented on well 

differentiation of cyst vs. solid tissue appearance. The degree of probe pressure 

applied can cause anatomy to change shape, location, affect acoustic impedance or 

change the appearance of blood flow. The ultrasound energy can easily penetrate 

dense tissues, which are opaque and difficult to X-ray. In pregnant or lactating women 

or women with dense breast tissue or with radio-opaque breast implants ultrasound 

imaging modality can be a non-ionizing alternative to conventional X-ray 

mammography to detect microcalcifications. 

Microwave (radar) system is not a tool for diagnosing breast cancer yet, but 

along with other screening tools may improve detection and limit false positive 

findings. 

Further development of ultrasound, magnetic resonance imaging and computed 

tomography combined with X-ray mammography may lead to a novel effective system 

for breast cancer control. If an X-ray mammogram was found positive it might be 

followed by a ultrasound or magnetic resonance examination to reduce the number of 

unnecessary invasive biopsies. 

In following section I will shortly discuss each of imaging modalities. 

X-ray Mammography 

X-ray mammography is the primary imaging modality used in the early 

detection of breast cancer. X-ray mammograms are typically obtained by applying 

compression to the breast using two plates parallel to the image plane. Mammography 

is a low dose X-ray procedure that allows visualization of the internal structure of the 



breast. Today's modern screen-film units result in higher quality images with 

considerably lower X-ray dose than the general-purpose X-ray equipment used in the 

past. The application of digital mammograms is still significantly more expensive, but 

they are more accurate, especially for women with dense breasts. 

The 25-30 kV tube voltages are used to produce low energy X-rays in the 

range of 15 to 25 keV, considered optimal in terms of relative attenuation of X-rays in 

breast tissue. Higher energy levels of X-rays decrease the attenuation losing the 

mammogram details. The X-ray photons are transduced by a rare-earth screen into 

visible photons on the photographic film in contact with the screen. Superimposition of 

the densities from hundreds or thousands of about 1 mm diameter breast lobules and 

the ductal structures result an X-ray image, unlike most other X-ray or computed 

tomography images has an inherent fuzzy or diffuse appearance. A mammogram is 

composed of radiolucent or dark areas associated with fat, soft-tissue densities in 

various grayscale intensities, and radiodense bright area associated with calcium in 

calcifications or with other abnormal tissue growth. 

Like most medical tests mammography is not perfect. Toady's mammography 

is very accurate detecting about 80 - 90 % of breast cancers in women without 

symptoms. Testing is more accurate in postmenopausal than in premenopausal women 

[12]. Despite advances in mammographic techniques, there are few shortcomings. The 

first of these limitations is the inherent 2-D nature of mammograms. This results in 

both the consolidation of the 3D structures of the breast into a 2-D projection image 

and the deformation of internal structures during compression. 

The standard mammographic screening may yield four images; the 

medio-lateral-oblique and cranio-caudal view of each of the left and right breast. In a 

medio-lateral-oblique projection, compression is applied sidewise from the centre of 



the chest wall toward the outer surface of the breast. In the cranio-caudal projection, 

compression is applied from the top of the breast toward the caudal surface [13]. 

The medio-lateral-oblique projection is considered the most useful view since it 

allows the greatest amount of breast tissue to be visualized. The cranio-caudal view 

offers additional information, improving the understanding of the three-dimensional 

structure of the breast. Usually the patients who undergo biopsy have diagnostic 

mammograms that include special views, other than medio-lateral-oblique and 

cranio-caudal projection. 

Mammograms are often interpreted by analyzing a pair of corresponding views 

of each of the left and right breasts, and, when available, examining the same view of 

the same breast from previous studies. Temporal analysis relates to the comparison of 

corresponding mammograms of the same patient taken at different times, while 

bilateral analysis relates to the comparison of the left and right breast images within the 

same study. A deviation from the symmetry can be a signal of the presence of an 

abnormality. Masses appearing brighter than surrounding tissue are the most important 

asymmetric indication of a potentially suspicious region. Another indication of an 

abnormality may be a disturbance in the normally symmetrical flow of structures 

toward the nipple [14]-[15]. 

In conventional screen-film system small emulsion continuity faults may exist 

on the X-ray mammogram films, looking like microcalcifications [16]. These artifacts 

are usually sharply defined and brighter than the microcalcifications, and the size of the 

artifacts is within 3x3 pixels in most experiments. 

Full field digital mammography is an imaging technology with flat panel digital 

detector with the capability to acquire and processes images in near-real time. It 

provides a quick check of positioning and possible motion blur. The system eliminates 



photocell placement identifying the densest portion of the breast. This enables the 

technologist to focus on the patient rather than the system [17]. 

The newest digital full-field mammography systems use phase contrast 

imaging. The X-ray attenuates after passing through the object due to photoelectric 

effect and Compton scattering changing its amplitude. At the same time, after the 

penetration of the X-ray through the object, an X-ray shifts its phase in addition to the 

amplitude change. The phase shift is observed generally as refraction and interference. 

The interference takes place in only with coherent waves [18]. Detection of the phase 

shift as a difference in X-ray intensity is defined as phase imaging, while the difference 

in image density due to the phase shift is defined as phase contrast. 

In the image quality of a phantom, the phase contrast mammography exceeded 

the screen film system. In the case of both mass and microcalcification, the ROC 

analysis Az values of the phase contrast mammography clinical images overpass the 

screen film images'." Clinical trials suggest superior defection of both mass and 

microcalcification by full-field digital phase contrast mammography over conventional 

SF mammography [19]-[20]. 

Magnetic Resonance Imaging of the Breast 

Magnetic resonance imaging uses magnetic field to align nuclear magnetization 

of particularly hydrogen atoms in water, i.e. radio frequency waves are used to extract 

image information from the human body through the interaction of these waves with 

the magnetic properties of atomic nuclei, according to their varying density and 

chemical binding in the tissues [21]. 



Sensitivity of magnetic resonance imaging for breast cancer detection is often 

higher than that of X-ray mammography or ultrasonography. One of the limitations of 

magnetic resonance is low specificity, which reduces the effectiveness in the 

differentiation of benign from malignant abnormalities [11]. Once the presence of a 

malignancy has been confirmed, the use of magnetic resonance images is to determine 

the stage of a disease or how far it has progressed. Factors used in determining the 

stage are the number, size, and shape of tumors. In many cases suspicious entity that 

are not visible in X-ray mammography, can be detected with magnetic resonance 

imaging. A mammogram that is positive may be followed by a magnetic resonance 

examination to reduce the number of unnecessary invasive biopsies. 

Contrast-enhanced magnetic resonance imaging of the breast was first 

introduced in 1986 [22]. A contrast-enhanced magnetic resonance study of the breast 

is acquired as a sequence of 3-D images, before and after the administration of a 

paramagnetic contrast agent. A contrast agent is a pharmaceutical which changes 

signal intensity of one tissue relative to another and thus increases the tissue 

information content of an image [23]. The first image, referred to as the pre-contrast 

image, is acquired prior to the introduction of the contrast agent. The contrast agent is 

preferentially deposited into certain tissues changing the signal intensity of the tissues 

in the post-contrast magnetic resonance image. The contrast-enhanced magnetic 

resonance imaging takes post-contrast images at some time intervals depending on the 

interaction of the contrast agent and studied tissue. 

Magnetic resonance images allow the time visualization of the contrast agent 

as it passes through the breast. Malignant abnormalities exhibit early rapid 

enhancement, followed by a period of slower enhancement. Benign abnormalities, on 

the other hand, tend to show a slow rate of enhancement [24]. 



In a magnetic resonance image, glandular and connective tissue has low signal 

intensity, while fat is visualized with moderate signal intensity. The contrast agent does 

not normally enhance glandular, fatty and connective tissue i.e. these structures do not 

change their appearance in pre-contrast and post-contrast images. Potentially 

suspicious regions as well as vascular structures can be traced through the images as 

enhanced structures of high signal intensity. For example, the pre-contrast image, the 

cyst appears as a bright region, while in the post-contrast image the cyst appears as a 

darker region. Particularly, a cyst and an enhancing mass are set to behave exactly 

opposite in signal intensity on the pre-contrast and post-contrast images. The change 

can be evaluated by comparing the pre-contrast magnetic resonance image with the 

corresponding post-contrast magnetic resonance images in a manner of comparing 

temporal mammograms. 

The 3-D MR images could be visualized by few different approaches: volume 

rendering, volume slicing and surface rendering [25]. Isosurface rendering is an 

extraction of an intermediate surface description of the relevant structures from the 

3-D information. In volume slicing, a 3-D image is presented as a series of 2-D slices 

which represent sections through the volume, normally taken in all three spatial 

dimensions. A maximum intensity projection is a form of surface-rendering, and is 

commonly used in the visualization of vasculature. The intensity changes in the tumor, 

associated vasculature and the cyst are easily observed. 

Ultrasound Breast Imaging 

Ultrasound based diagnostic medical imaging uses the frequencies above 

human hearing of 20 kHz. Typical operating frequencies are 2 to 18 MHz, where 



higher frequencies are used more for breast imaging because of better image resolution 

in that range. Ultrasound is very efficient in making difference between cyst and solid 

but does not allow differentiation of a malignant from a benign appearance [26]-[27]. 

Probe pressure is critical in the evaluation of superficial anatomy. Light probe 

pressure applied over a suspected breast lesion may result in shadowing, indicating 

malignancy. Varying probe and graduated pressure flattens the tissue and the posterior 

shadowing is diminished or completely disappears, reducing suspicion for malignancy. 

Ultrasound has been used as in addition to X-ray mammography in detecting 

breast cancer, because in the detection of microcalcifications the resulting sensitivity of 

ultrasound is low comparing with mammograms [28]-[29]. 

The breast is composed primarily of soft tissue and it deforms substantially 

during the ultrasound scanning procedure. Application of three-dimensional ultrasound 

imaging has better disease assessment capabilities than conventional two-dimensional 

imaging of the breast. Using a block matching scheme and local statistics to estimate 

local tissue deformation, Xiao et al. developed fully automatic algorithm for 3-D 

nonlinear registration of free-hand ultrasound data [30]. 

Spiculation is a stellate distortion caused by the intrusion of breast cancer into 

surrounding tissue. 2-D ultrasound cannot easily find spiculations because they 

normally appear parallel to the surface of the skin. In [31] the tumors found by the 

physicians are analyzed from 3-D ultrasonic volume data. Huang et al. proposed 

algorithm estimates the direction of the edge of each pixel around the central region. A 

pixel whose edge points toward the central region is marked as a potential spiculation. 



Mammography Using Microwave 

Mammography using microwave is not a tool for diagnosing breast cancer yet, 

but the studies show its ability in enhancing the results. Radar systems used along with 

other screening tools may improve detection and limit false positive findings. 

Radar reflections depend on other materials and it can be used to detect 

diseased tissue, because of the difference between dielectric properties of diseased and 

regular breast tissue at very high frequencies. 

Tissue sensing adaptive radar sends an extremely short pulse to the breast at 

each scan position and observes the reflected signal. The presence of an abnormality 

could be detected by analyzing the signal reflection by the sophisticatedly developed 

algorithms. 

Radar systems avoid X-ray radiation and breast compression in mammography. 

They have potential of detecting very small cancer. Power of radar pulse is low as well 

as that of cellphone. 

The fact that breast tumor exhibits electrical properties different from those of 

healthy breast tissues supports using to microwaves in breast imaging. Two 

approaches of active microwave imaging are applicable: analysis of reflected signal 

(confocal technique) and analysis of scattered signal (microwave tomographic 

technique). 

Fear et al. described initial experimental verification of confocal microwave 

imaging for breast tumor detection using simple phantoms, consisting of a poly-vinyl-

chloride pipe and objects representing tumors. They employed resistively loaded 

monopole or horn antennas to demonstrate reduction of clutter and detection of a 

variety of two-dimensional objects [32]. 



Shorter wavelengths improve spatial resolution, but at the cost of increased 

propagation loss in analysis of bio-systems. Similarly to ultrasound, a suitable coupling 

medium may improve the spatial resolution and provide less attenuation. Bindu et al. 

studied propagation loss of the medium and the radiation characteristics of the antenna 

in corn syrup as a coupling medium in microwave breast imaging. They reported 

improved resolution dealing with two-dimensional microwave tomographic imaging of 

a breast tissue sample immersed in corn syrup [33]. In the addition breast permittivity 

profiles are obtained in [34] based on variation of dielectric permittivity in breast 

samples. 

The heterogeneous target zone within the antenna array can be modeled using 

the finite-element method, while the surrounding coupling medium is homogeneous 

and should be modeled with the boundary-element, which is important feature of a 

Gauss-Newton iterative scheme for microwave breast image reconstruction. The 

interface between these two zones may be arbitrary in shape and position with the 

restriction that the boundary-element region contains only the homogeneous coupling 

liquid. Li et al. demonstrated that the detection of tumor inclusions could be enhanced 

as the target zone approaches the exact breast perimeter and showed that central 

artifacts that appear in the reconstructed images is potentially reduced ability to 

distinguish benign and malignant tumor [35]. 

Early Detection in Breast Cancer Screening Procedure 

In this work I discuss mammography as high resolution X-ray imaging of the 

compressed breast by projection of 3-D anatomical information to a 2-D screen. 

Although often nonspecific in terms of benign versus malignant, high spatial resolution 

of X-ray mammogram and adequate contrast separation allows radiologists to observe 



fine structures in breast tissue. Reading mammograms requires excellent experience, 

but studies show high rate up to 30% of breast cancer fails to be detected at screening 

not only because of human eye limits and radiologists fatigue but also the complex 

image structure of the breast and the subtlety of the cancer [36]. False positive reading 

rate of negative or benign noncancerous mammograms may vary up to 15.9% [37] 

putting the patients emotionally to survive cancer. 

If cancer is detected a woman is usually required to undergo further testing 

which may include an ultrasound scan of the breast, fine core needle aspiration, core 

biopsy, and diagnostic open biopsy - a surgical biopsy performed with a needle 

localization technique. 

Overview of the Dissertation 

The detection of microcalcifications can be easy over fatty background but 

challenging over dense parenchyma. The goal of numerous researcher efforts is to 

develop the tools for early detection of breast cancer. 

Magnetic resonance imaging is high sensitive method that produces many false 

positive readings. Ultrasonography has high ability to make difference between 

malignant and benign masses, but its low sensitivity can cause false negative reading. 

Both methods magnetic resonance imaging and ultrasound has been used as an 

addition to X-ray mammography in detecting breast cancer. The goal of this work is to 

develop a method that is able to detect more suspicious regions in X-ray 

mammograms and let the radiologist to, focusing on those regions, make the decision. 

In this work I propose a novel highly sensitive method for detection 

microcalcification that is not dependent on background tissue characteristics. I use 



detected singularities, modeled as smoothed impulse functions, as seed points to 

perform microcalcification segmentation process. 

Background on the detection and diagnosis methods, continuous wavelet 

transform, modulus maxima method, and fractal dimensions and their applications in 

mammography are presented in Chapter II. 

In Chapter III I present the details of the proposed framework of 

microcalcification localization using general modulus maxima while in Chapter IV the 

performance of the proposed method is analyzed on a set of 25 microcalcification 

clusters. In Chapter V I show how to detect microcalcification cluster and employ 

local intensity maximum of underlying mammogram to reduce false positive and false 

negative findings along with a segmentation algorithm based on localized 

microcalcification and its initial edge detection to demonstrate efficiency of the method 

in breast cancer early detection. Conclusions and future work are presented in 

Chapter VI. 
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CHAPTER II 

BACKGROUND 

Reading mammograms requires extensive experience and up to 30% of breast 

cancer fails to be detected at screening by radiologists [36]. Disease diagnosis depends 

on radiologist's limitations related to mammogram interpretation due to the 

nonsystematic search patterns of humans, the presence of structure noise in the image, 

and the presentation of complex disease states requiring the integration of vast 

amounts of image data and clinical information [38]. It is also well known that human 

eye is not able to make difference if a region differs from its surroundings by less than 

2% in luminance [39]. 

An early sign of 30-50% of breast cancer detected mammographically is the 

appearance of micro calcification clusters, i.e. upon histological examination 60-80% 

of breast carcinomas reveal microcalcifications [40]. The fact that microcalcifications 

appear in mammograms as spots in the range from 50 um to 1 mm brighter than their 

surroundings enabled development of many computer aided methods for early 

detection and diagnosis. For examples, the computer aided methods have been able to 

increase microcalcification detection Receiver Operating Characteristic (ROC) area 

index Az = 0.92 [41] or microcalcification diagnosis sensitivity (true positive fraction) 

up to 100 % for a false positive fraction of 85 % with receiver operating characteristic 

area index Az = 0.98 [8], for tested data set. 

Standard procedure of a medical detection method evaluation using ROC 

curve and area index Az is illustrated on Fig. 2.1. 
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Figure 2.1. A threshold value yields the true positive, false positive, true negative and 
false negative findings from the distribution of the normal and abnormal 
targets - Fig. 2.1 (a). Changing the threshold ROC curve is defined as 
TPF vs. FPF. True positive fraction (TPF=sensitivity) is the number of 
abnormal targets classified as abnormal over total abnormal. True 
negative fraction (TNF=specificity) is the number of normal targets 
classified as normal over total normal. False positive fraction 
(FPF=1-specificity) is the number of normal targets classified as abnormal 
over total normal. False negative fraction (FNF=1 -sensitivity) is the 
number of abnormal targets classified as normal over total abnormal. 

R2 Technology Inc., Hewlett Packard Co., Sterling Diagnostic Imaging, 

Siemens, GE, and MedDetect/Lockheed Martin are the commercial companies that 

have developed and designed mammography systems for clinical applications. 

ImageChecker (R2 Technology Inc.) is a commercial algorithm approved by the US 

Food and Drug Administration (1998), by the Japanese Ministry of Health and Welfare 

(2000) by CE Mark certification in European Union (2000). 

The performance obtained on a large set of cancer cases accomplished 98% 

sensitivity with a false-positive rate of 0.3 clusters per image [42]. 

Because five year survival rate is significantly higher if breast cancer was 

discovered early [2], the goal of numerous researcher efforts is to develop the tools for 



early detection of breast cancer and particularly the presence of microcalcifications as 

an important sign for the detection of early breast carcinoma. 

The directions for future research are designing better algorithms for 

enhancement, segmentation, feature detection, and target selection, improving 

classifiers that reduce both false positive and false negative results, standardizing test 

sets - databases, and standardizing evaluation criterions. Also, new work in 

computer-aided detection of abnormalities in mammograms should address evaluation 

issues properly since investigators need to know if and why new proposed methods 

really are improving existing ones. The use of phase-contrast imaging 

techniques [19], [43] may improve the contrast of radiographs and lead to enhanced 

imaging of the soft-tissue of the breast. 

In this work I will focus on wavelet transform modulus maxima method 

because of its high sensitivity to detect and localize signal singularities and supported 

by fractal theory to classify them. 

In the following five subsections I present a review of existing computer-aided 

methods of microcalcification detection and diagnosis, as well as some of the 

necessary background material on wavelet transform modulus maxima method and 

fractals, and their application in mammography. 

Computer Aided Detection and Diagnosis of Microcalcifications 

There are many computer aided systems developed for automated detection 

and classification of microcalcifications. In this sub-section, I review the algorithms 

used for the computer-aided mammographic feature detection, enhancement and 

segmentation, and classification. 



One of the reasons for employing automated computer-aided analysis 

techniques in the interpretation of mammograms is the inability of the human vision 

system to distinguish more than 30 shades of gray [44], while a standard 12-bit 

mammogram contains 212 = 4096 shades of gray. 

Computerized detection involves isolation of the breast region of the 

mammogram, identification of regions containing possible disease signs, and analysis 

of the features within these suspicious regions [45]-[46]. 

There are two general approaches explored in the detection of potential 

abnormalities in mammograms: single-image analysis, which analyzes a single 

mammogram for evidence of suspicious regions, and comparative analysis, which 

compares various corresponding mammograms. 

In first step, the regions of interests selected from the digitized mammogram 

should be appropriately de-noised and enhanced for better performance. In second 

step, the segmentation is designed to find suspicious areas containing 

microcalcification clusters, and to separate them from the background. In third step, 

the features of microcalcifications are selected and extracted. In fourth step, 

microcalcifications are classified into benign, malignant or normal [40]. 

Enhancement of Microcalcifications 

Image enhancement is performed by employing image processing techniques 

that have high contrast output protecting and/or enhancing previously defined 

significant signal features on one side or/and suppressing signal feature that are 

irrelevant or disturbing for the image analysis on another side. 



Indirect contrast enhancement modifies the histograms without denning the 

contrast, while direct approach first defines the contrast and then enhance the contrast 

based on the defined measurements. Contrast enhancement algorithms can use global 

information. If the significant features have local variation contrast enhancement 

algorithms can use local or both global and local information. The enhancement image 

techniques are more efficient when input signal and desired and/or suppressed features 

are well known. If it is not the case, the contrast enhancement algorithms can under or 

over enhance different regions of an image, causing false negative and false positive 

classification decisions. 

Image enhancement methods applicable in mammography can be categorized 

as conventional (contrast stretching, histogram equalization, convolution mask 

enhancement, fixed and adaptive pixel neighborhood enhancement), region-based 

enhancement, and microcalcification feature-based enhancement. Conventional 

enhancement methods often enhance or suppress both significant and irrelevant 

features in mammograms because of their high level of randomness [47]-[49]. 

Region based methods can enhance more anatomical details and can be more 

effective with dense breast where the contrast between microcalcification and the 

tissue is low [50]. Contrast is enhanced by empirically formulated transformation 

based on seed pixel value, contrast and background of each region. Feature based 

enhancement is performed by image sub-band decomposition and then higher order 

statistics (skewness, kurtosis) is calculated in the bandpass subimages [51]-[52]. This 

technique assumes that the analyzed region has normal (Gaussian) distribution if value 

of skewness and kurtosis is close to zero implying no microcalcifications were present. 

Similarly, fuzzy set theory was used to increase contrast of microcalcifications since 

mammograms have some degree of fuzziness as indistinct borders, ill-defined shapes, 



and different densities [53]. Microcalcifications were enhanced by using high 

frequency subimage if healthy breast tissue is considered as smooth low frequency 

background [54]. Fractal approach could be used to model breast tissue background 

that differs from microcalcification if high local self-similarity of healthy tissue is 

considered as the pattern [55] 

The fractal and morphological approaches showed higher efficiency in 

background healthy tissue structures removal, but multiresolution approach were able 

to preserve the shapes of image details better than fractals. 

Segmentation of Microcalcifications 

Segmentation is a procedure that divides an image into non-overlapping 

regions. The goal of segmentation is that by defining the suspicious areas in 

mammograms to assist radiologists to classify the abnormalities in benign or malignant. 

Some segmentation techniques use global and/or local statistics (statistical and 

Markov random field based methods), others group pixels in homogenous groups 

(region-based method), thirds use morphological filters to extract the edges and to 

threshold the region (mathematical morphology), fourths use subband images for 

further processing (multiscale analysis), fives use local self-similarity to model fractal 

objects (fractal model analysis), and some techniques use fuzzy rules which is 

appropriate due to variable shapes of microcalcifications, but difficult for fuzzy 

membership definition. 

Statistical methods use global or local statistics such as histogram, mean, 

standard deviation, just to name a few. There is no need for a priori information for the 

histogram thresholding of the image. They work very well with low computation 



complexity, but they are parameter dependent and do not work without 

peaks [56]-[59]. 

Region-based approach groups pixels into homogeneous regions. It works well 

if there exist the region homogeneity criteria easy to define. It depends on the selection 

of seed region and the termination conditions. Region growing approach needs a 

previously determined seed pixel and groups the neighborhood pixels using similarity 

metrics to the seed pixel. If the average intensity of the grown region is greater than 

the surrounding region, the pixel is classified to belong to the microcalcification. The 

procedure is repeated while every pixel in the image is classified [60]-[61]. 

Mathematical morphology is a method that extracts the edges or skeleton 

information using morphological filters. The results are not affected by the complex 

background. It is efficient with geometric analytic aspects of image analysis problems. 

It is able to adapt to the sizes and shapes of the structure elements in multiscale and 

multi-structuring analysis if a priori knowledge of the resolution level of the 

mammograms is available. Edge detection using Sobel gradient, Prewitt gradient and 

Laplacian operator is a traditional method for segmentation. Erosion, top-hat 

transformation and more complicated morphological filters with multi-structure 

elements are applicable mathematical morphological operation [62]. 

Multiscale analysis is a wavelet-based transform of the image from spatial 

domain to spatial-frequency domain, preparing for further processing. The method 

does not require the use of a prior knowledge of the size and the resolution of the 

mammogram. The cancerous mass will be visible in lower frequency subimage while 

finer microcalcifications will be detected in a high frequency level. Using wavelet 

transform, the detection of microcalcification is a reconstruction of the image from 

transform coefficients modified at each level by local and global nonlinear operators. 



The wavelet transform could separate small objects (microcalcifications) from large 

objects (background structures) [63]-[65]. 

The fractal model uses the fact mammograms possess structures with high 

local self-similarity, which is the basic property of fractal object. General 

mammographic parenchymal and ductal patterns can be modeled by a set of 

parameters of affine transformations. Microcalcifications can be enhanced by taking 

the difference between the original image and the modeled image. This method is able 

to improve the detection and classification of microcalcifications in a computer-aided 

diagnosis system [66]. 

Fuzzy operators, property, and inference rules have high ability to handle the 

uncertainty inherent in the mammograms. Using fuzzy rules fuzzy approach perform 

approximate inference efficiently due to variable shapes of microcalcifications. The 

determination of fuzzy membership is usually very complex [67]-[68]. 

Microcalcification Detection 

There are several microcalcification detection approaches based on feature 

extraction methods: template matching, individual microcalcification features, 

microcalcification detection based on statistical texture features, microcalcification 

detection based on multiscale texture features, microcalcification detection based on 

fractal dimension features, and microcalcification cluster detection using clustering 

features [40]. 

Individual microcalcification features originate from the experience of 

radiologists [69]-[72]. Based on the feature description (perimeter, area, compactness, 

elongation, eccentricity, thickness, orientation, direction, line, background, 



foreground, distance, and contrast) they are easy to be extracted from mammogram 

directly. 

Co-occurrence features are features extracted from spatial gray level 

dependence matrix (co-occurrence matrix) [73]-[75]. Surround region dependence 

features are four directional weighted sums: horizontal, vertical, diagonal, and 

grid [76]. A grey-level run is a set of consecutive and collinear pixel points having the 

same gray level value and its length is the number of pixel points in the run. Gray level 

difference is a set of five features that can be extracted from estimated probability 

density function. This method is based on the occurrence of two pixels having a given 

absolute difference in gray levels and separated by a specific displacement (contrast, 

angular second moment, entropy, mean, and inverse difference moment) [76]-[77]. 

Providing a powerful framework for multiresolution analysis, wavelet theory 

can be used for texture analysis [78]-[82]. A set of features related to a region of 

interest can be extracted from each scale of the wavelet transform. The features that 

reflect scale dependent properties are developed from wavelet coefficients. The most 

frequently used features are energy, entropy, and norm of the coefficients [69]-[70], 

[75]. For example, two wavelet transform coefficients and two local statistic features 

(median contrast and normalized gray level value) were capable to result 93% true 

positive and 1 false alarm per image on the tests of 40 images fromNijmegen database 

[69]. Same authors used same methodology when applied a set of 31 features. They 

reduced the false alarm rate to 0.5 per image, but the true positive detection rate also 

dropped to 90% [70]. 

Texture features extracted from co-occurrence matrix and wavelets as the 

inputs to a neural network resulted a maximum area index Az = 0.74 under ROC curve 



in detection of the microcalcifications in 191 hard to diagnose mammograms [83]. The 

area under ROC curve increased to Az = 0.86 by adding more cluster features [75]. 

Scale-space features are features extracted from the image processed by 

Laplacian of Gaussian filter. By changing the size of the filter, this method transforms 

the original image into different scale spaces. The Laplacian of Gaussian response at 

different scales is calculated as the feature. The magnitude of Laplacian of Gaussian 

response of microcalcification was compared with a threshold to make decision if a 

spot is considered microcalcification or not [63]. 

Fractal dimension is a feature extracted from fractal model of the image. Image 

roughness can be measured by numerical value of its fractal dimension. Smoother and 

rougher areas of the images have different fractal dimension values. The fractal 

dimension or fractal capacity is the exponent D in n{s)-s~D, where n(s) is the 

rninimal number of balls of diameter s needed to cover the fractal set in each scale and 

D is a constant characteristic of the surface. More discussion on fractal dimension will 

be presented in Section II.5. 

Cluster features are features used to describe the distribution of the 

microcalcification, cluster area, and number of microcalcifications in an area. They 

include spatial features, morphology features, and the cluster description features 

and/or the distance between the microcalcifications as a measure to group 

microcalcifications into clusters. After individual microcalcifications are detected, 

cluster features are used to group them into clusters. The number of 

microcalcifications could be used within a region of a fixed area. Based on medical 

databases, a cluster is declared if there is at least three microcalcifications in 1 cm 

square [84]-[87]. 



Malignancy Analysis 

The feature sets are mostly the same with those used for microcalcification 

detection: wavelet features, co-occurrence features, surround region dependence 

features, individual microcalcification features, and cluster features. 

Wavelet features are energy, entropy, and norm extracted from the wavelet 

decomposition of the original mammogram into its sub-images [83],[88]. 

Co-occurrence features can be metrics for image texture. They are being 

extracted from the gray level co-occurrence (spatial dependence) matrix [83], 

[88]-[91]. 

In surround region dependence method the features are four directional-

weighted sums that represent directionality in a pixel-surrounding region [92]. 

Compactness, moments, average of the gray level are individual 

microcalcification features extracted directly from a mammogram [89]-[93]. 

Cluster area and number of rnicrocalcifications in an area are cluster features 

used as the metrics for the distribution description of the local features in the detected 

clusters [90]-[91], [93]. 

Four different classifiers (neural networks, K-nearest neighbor, Bayesian 

classifier, and decision tree) employ the features or a subset of these features and 

classify rnicrocalcifications into benign and malignant [40]. 

An artificial neural network (NN) is a parallel-distributed information 

processing structure consisting of artificial neurons functionally related by directional 

connections. An artificial neuron carries out local operations. The neural networks are 

used for solving artificial intelligence problems without necessarily creating a model of 

a real biological system. The neural networks are suitable for applications where an 

input-output complex nonlinear relation is not known in advance and needs to be 



learned. They process a large input data making only a few decisions. Through 

examples contained in a training set, artificial neural networks may provide a better 

solution than expert systems. If the expert knowledge cannot be represented in terms 

of statistically independent rules or there is no explicit rule definition artificial neural 

networks can efficiently conduct complex decision making. Simultaneously artificial 

neural networks can learn how to find a new data pattern during the classification 

procedure. For example, a set of 10 surrounding gray level difference features 

extracted from 85 difficult-to-diagnose mammograms produced a classification 

accuracy of 74% [94]. The neural network were able classify correctly 89% of the 40 

cases from Nijmegen database [93]. A simulated annealing optimization technique may 

improve the optimal neural network architecture [95]-[96] as well as genetic 

algorithms for differentiating malignant from benign [97]-[99]. 

K-nearest neighbor (KNN) algorithm classifies objects based on closest 

training examples in the feature space. This is one of the simplest learning methods 

which uses the similarity of the unknown patterns to known samples and computes the 

distances from an unknown pattern to every sample. K-nearest neighbor classifier 

selects the K nearest samples as the base for classification. The unknown pattern is 

assigned to the class by a majority of its neighbors containing the most samples among 

the K-nearest samples [100]-[101]. An experimental comparison of microcalcification 

classification performance showed higher classification accuracy of NN than KNN 

based classifiers [102]. 

Bayesian belief network (BBN) is an optimal pattern recognition method, 

which determines an optimal segmentation given a specific database using a probability 

value associated to each variable with at least two discrete states. The total of 

probability values for all states and for each node equals 1. The probabilistic 



independence of two variables is indicated if there is no path between any two nodes 

belonging to the variables. Despite the early results showed that Bayesian classifiers 

may outperform artificial neural networks [103], the performance of the two 

techniques should converge to the same level. The performance of a CAD system 

should be dependent on feature selection and training database, but generally 

independent of any particular classifier. 

Binary decision tree is a data structure used to represent a Boolean function. 

Each decision node is labeled by a Boolean variable and has two descendent nodes, 

differentiated by a threshold value of the feature. This procedure will continue until it 

arrives at a terminal node that assigns a classification. The threshold of a feature which 

best separate the current data into two classes sets the control parameters at each 

node. The process generates a tree by recursively partitioning the remaining training 

samples [104]. 

Comparing with neural networks, the decision tree approach is much simpler 

with low computational overhead. In addition it does not need extensive knowledge of 

the probability distribution of the features such as the case with Bayesian classifier. 

In mammograms binary decision tree might not be efficient and fuzzy logic 

could be used to improve the performance of decision tree [105]-[107]. Using a 

grading membership the algorithm follows the alternative paths on both sides of the 

threshold of the test. 

Pertinent Literature 

There are many approaches how to improve computer analysis for the 

detection and diagnosis of breast cancer. Among the first uses of mathematical 

microscope in mammograms is Wang and Karayiannis [108] who proposed searching 



for microcalcifications by using high frequency energy blobs in wavelet decomposed 

mammograms. They took advantage of the fast algorithm which is based on filter 

banks. In practice, only the dyadic wavelet transform is considered to take advantage 

of the fast algorithms implemented by filter banks. Also, high frequency energy blobs 

are not the sign of disease in mammograms by themselves and normal signal 

fluctuation in mammograms may have dominant energy blobs in some scales making a 

mask over significant disease related information. Indeed, an energy blob is just a 

location where further analysis should follow. 

Zhang et al. [41]. studied the size of microcalcifications and developed an 

optimally weighted wavelet transform method by which, before image reconstruction, 

they multiplied dyadic wavelet coefficients by 0.4, 1.6, 1.0, and 0.05 for the scales 

corresponding to 100 um, 200 um, 400 um, and 800 um respectively. This means that 

information related to second and third level of dyadic decomposition for the given 

resolution of 100 um is the most significant for microcalcification detection. They 

achieved Az = 0.92 under ROC curve, outperforming Az = 0.86 for difference-image 

technique. Their results are based on the microcalcification size appearing in their 

database showing that the most common microcalcification diameter is in the order of 

200 um. This weighting coefficients method has shown a lower recognition capability 

for the targets smaller than 200 um and bigger than 800 um. Their weighting 

coefficients should be adjusted to spatial resolution of other databases. 

Wavelet transform modulus maxima method was developed for detection and 

characterization of signal singularities by Mallat and his collaborators [109]-[111] in 

1992. Their method detects signal singularities by tracking the wavelet coefficients 

magnitude maximum across the scales. They proved that, if a wavelet function is 

derivative of a Gaussian, wavelet transform modulus maxima must propagate towards 



finer scales. Although the representation by discrete wavelet maxima is not complete 

since several signals may exhibit the same wavelet maxima [112], Mallat's numerical 

experiments have shown that it is possible to reconstruct signals with a relatively small 

mean square error (smaller than 10"2) [111]. 

Bruce and Adhami [113] introduced three new multiresolution features related 

to the detected singular points in suspicious areas that quantify the mass shapes. They 

proposed using Gaussian filters in modulus maxima method with dyadic wavelet 

transformation and an optimization procedure to calculate Holder exponent, 

magnitude and standard deviation of smoothed impulse function. Comparing with 

traditional uniresolutional shape features, they were able to improve discrimination 

shape classes. Their method used dyadic wavelet transform by which they were able to 

detect normal signal fluctuation in mammograms. However, they were not able to 

sense sharp signal transition that often appears and disappears in less than one octave. 

Their diagnostic conclusions were based on non-differentiated normal signal 

fluctuation and sharp signal transition. 

Tang et al. proposed a modulus maxima based method to detect and analyze 

Dirac-structure edges and reached to the conclusion that the edges are slope invariant, 

grey-level invariant, and width light dependent [114] which may prove to be useful in 

spiculated mass analysis or boundary analysis. 

The regularity of a wavelet basis is also used to improve identification of 

clustered microcalcification in its early phases. Lemaur et al.[l 15] work pointed to the 

advantages of highly regular wavelets in the detection of microcalcifications in 

mammograms over Daubechies' [116]. They designed highly Sobolev regular wavelets 

with the purpose of detection of sophisticated signal singularities. They experimentally 

compared new wavelets' performance to the "classic" Daubechies wavelets' obtaining 



larger wavelet coefficients modulus in true positive and smaller in false positive 

detection. 

Scale-space theory is a framework for handling image structures at different 

scales [117]. In scale-space theory convolution with Gaussian kernels and their 

derivatives is regarded as a canonical class of low-level operators, i.e. the first stage of 

image processing should be as uncommitted as possible, with no particular bias. 

Medical studies have shown there are many biological processes that can be 

successfully modeled by linear Gaussian derivative operators or their non-linear 

combinations [118] and [119]. 

Similarly, microcalcifications in mammogram analysis may be modeled as an 

impulse function smoothed by a Gaussian filter. Strickland and Hahn [120] recognized 

Gaussian nature of microcalcifications spatial intensity and applied 2-D Gaussian filters 

for microcalcification detection. They inserted inter-scales to increase detection 

sensitivity for wide range of possible microcalcifications. 

A significant problem for a feature detection method expressed within a multi-

scale framework has been how to determine at what scale an image feature has to be 

extracted or if the feature detection is performed at several scales what image feature 

has to be considered as significant. Significant features of microcalcifications may be 

fast changing over scale and coarse scale increment in the range of Vi or !4 of an 

octave makes feature changes still invisible. Lindberg [121]-[122] developed a method 

for automatic scale detection in which a feature can be optimally recognized. He 

successfully applied the method for ridge and edge detection. Scale levels were 

selected at a certain blob measurement assumed local maxima over scales. Lindberg 

proposed a general heuristic principle stating that local maxima of the signal convolved 



with combinations of normalized Gaussian derivatives over scales serve as a useful 

indicator that reflects the spatial extent of corresponding image structures. 

Arneodo and his team [123]-[126] focused on how to recognize a sharp signal 

transition by tracking its behavior over scale. Specifically algorithms based on 

continuous wavelet transform modulus maxima method are able to detect singular 

points in a discrete 2-D signals and supported by fractal analysis to give the metrics for 

the local signal regularity. Arneodo's team developed fractal based algorithm [126] 

supported by modulus maxima method to analyze turbulent 2-D and 3-D signals. They 

showed that wavelet transform modulus maxima provides an adaptive space-scale 

partitioning from which they were able to extract the singularity spectrum via scaling 

exponents of some partition function defined on the skeleton of the modulus maxima. 

They described the methodology with some test applications to random monofractals 

and multifractal self-affine surfaces displaying isotropic or anisotropic scale similarity 

properties. They presented wavelet transform as a mathematical microscope that has 

been well suited for characterizing the local regularity of rough surfaces. 2-D wavelet 

transform modulus maxima method has been a natural generalization of box-counting 

algorithms and structure function techniques that had been used for multifractal 

analysis of isotropic self-similar interfaces and multiafflne surfaces. They showed that 

2-D wavelet transform modulus maxima method could be used in image processing 

edge detection, pattern recognition, and image denoising. 

In his doctoral dissertation [127] Pierre Kestener applied the algorithm 

developed by Arneodo et al. [126] to study the texture segmentation of rough surfaces 

and also he applied it to microcalcification detection in mammograms. Kestener used 

the algorithm to demonstrate its efficiency for breast texture classification. He showed 

that there are only two classes of fractal features, a dense one, which is characterized 



by Hurst exponent of if =0.65 having persistent correlation and a fatty one, 

characterized by H= 0.30 having anti-persistent correlation. He initially segmented the 

image using Holder exponent (or local roughness characterization) separating the 

areas with h > 0.58 for dense tissue and h < 0.38 for fatty tissue. Then, he constructed 

maxima skeleton and tracked modulus maxima in scale. Supervised classification of 

maxima lines pointing to microcalcifications can be based on growth of modulus 

maxima from higher to lower scale, existence of a specific transition scale in the border 

of the microcalcifications, and modulus maxima at lowest scales with magnitude 

characteristic for microcalcifications. 

Using Marathon database (55 um/pixel, 14 bits/pixel) and based on singularity 

spectrum, Kestener found that the detected slope h ~ -0.4 is pointing toward 

microcalcifications and asymptotic h~ -1 has not been reached because of finite size 

effects (the maxima lines become overlapped by normal signal fluctuation in higher 

scales). He also concluded that the average microcalcification diameter is about 200 

um which is in agreement with results in [41] because their weighted coefficients are 

1.6 for the scale corresponding to 200 um and 1.0 or less for other dyadic scales. Also, 

he concluded that microcalcifications have typical sharp transitions h ~ 0.0 in scale 1.4 

(corresponding to 70 to 80 um) in which a microcalcification border is best visible, 

with detected slope h ~ -0.4 in the higher scales. He gave an example that fractal 

dimension for two malignant clusters are DF= 1.45 and DF= 1.65 in the same 

mammogram. For unsupervised classification Kestener suggested using neural 

networks or genetic algorithm based method to reinforce further microcalcification 

selection. 

In this work, I propose to build on Lindberg's idea of feature extraction 

[121]-[122] to identify general modulus maximum and the scale in which it appears. I 



also show that general modulus maximum is a significant tool for microcalcification 

detection. I identify the scale in which Holder exponent of smoothed impulse function 

approaches h~0.0 and use detected magnitude as the most significant local 

information. I propose to achieve our goals by combining local spatial signal intensity 

with the scale of general maximum to improve microcalcification classification results. 

Wavelet Transform and Localization of Isolated Structures in Images 

The conjecture that Holder exponent of a strong singularity is negative has 

been confirmed in many experiments and successfully used in turbulent process 

modeling [128]. 

In mammograms the presence of strong local singularities is characterized by 

negative Holder exponent while normal fluctuation is characterized by positive Holder 

exponent. This makes an isolated singularity detectable by analyzing the behavior of a 

modulus maximum along its maxima line. 

Mallat and Hwang [109] proved that the magnitudes of the wavelet 

coefficients are bounded as shown in (2.1): 

\Wj{x,y\<A-aa (2.1) 

where |)^a/(x, y\ is magnitude of the wavelet coefficient at point (x, y) in scale a, a is 

Lipschitz (Holder) exponent at (x, y) and A > 0 is a constant [109]. 

When Holder exponent at (x, y) is positive the magnitude of wavelet coefficient 

will increase with scale while when it is negative, as in case of impulse function, the 

magnitude of the wavelet coefficient will decrease. In practice local microcalcification 

of the mammogram signal may be represented as impulse function convolved by a 

Gaussian smoothing function. 
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In general, suppose in the neighborhood of a sharp transition at a point u a 

smoothed function is defined by f=fo*go where f0 is uniformly Lipschitz a on the 

interval [u-Ax, u+Ax] and 

g* = • 
1 

-iJ27T 
exp 

( t2 ^ 

v 2 c r y 
(2.2) 

where g-0 is Gaussian smoothing function with variance a2. 

Convolving the function/by n& derivative of a Gaussian filter with variance p2 

yields the wavelet coefficient that is bounded by 

\Wf(u,s\<Aa 
i / 

a+-
2 

.2 \ 

1 + -
P2a2 (2.3) 

For further analysis of behavior of magnitude of wavelet coefficients in scale, a 

regression of (2.3) was performed yielding a wavelet coefficient magnitude 

approximation [111] 

l o g 2 | ^ ( « , j ) | * b g 2 ( ^ ) - a+ — 
2) 

\ogia —-log. 
. 2 A 

1+- 2„2 pza 
(2.4) 

If a tends to - 1 , then the wavelet coefficient increases up to a maximum of 

• a , which is followed by a decrease [64], as shown in Fig. 2.2 

and Fig. 2.3. 
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Figure 2.2. Illustration of expected bound for the evolution of modulus maximum 
along the scale for an impulse function of magnitude = 1 smoothed by 
Gaussian a = 1 (left, maximum is at scale =1) and a = 3 (right, maximum 
is at scale = 3). 

Modulus Maximum Representation 

A Gaussian smoothing function 

1 <t>{x,y)-. 
2ncr' -exp 

f x2
+y2^ 

2a2 (2.5) 

has been used as a kernel for wavelet transform discrete filters. The horizontal and 

vertical wavelet coefficients at scale a are defined as 

W^{f)=f* y* (2.6) 

and 

wr{f)=f*Wy (2.7) 

respectively, where the horizontal and vertical derivatives of smoothing function <j> are 

defined by 



/ x d<j)(x, y) 
y/Ax>y)=—^—- (2-8) 

and 

r,ky)-&F* (2.9) 
By 

respectively. 

A wavelet coefficient at a scale a is represented by its magnitude and argument 

as follows, 

wa(fh(Ma{f\Aif)) (2-io) 

where Ma(f) = ^ (/))" + (wr(f)J and Aa(f) = Arg{w^{f) + j -Wr(f% 

with horizontal and vertical wavelet coefficients W^°\f )-(f,Wx)
 an^ 

Wv
a

er{f) = (f,y/\ in scale a, respectively. 

A modulus maximum at (xo, yo) in scale a is represented by its magnitude if it is 

equal or greater than wavelet transform magnitude in its neighborhood. There is no 

detected modulus maximum at (xo,yo) in scale a if any surrounding wavelet transform 

magnitude is grater than magnitude at (x0,yo), i.e. 

xn* ( \ P ^ f o ^ o ) A^(*o»J'o)^, max Ma{x,y) 
MMa{x0,y0) = -\ *,^K(WO) (2.11) 

[ 0 otherwise 

where K(x0,^0) is 8-neighborhood of (xo,yo). 
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Figure 2.3. Typical log-log characteristics Modulus Maxima vs. scale for a normal 
signal fluctuation (•) and a microcalcification (A) in mammogram 
mdb226 - MIAS database 

While a maxima line consists of the wavelet transform modulus maxima 

corresponding to the same local feature but in different scales, the general modulus 

maximum is a point on the maxima line characterized by maximal magnitude gM and 

scale agM in which it is detected. Wavelet transform general modulus maximum will 

appear with a magnitude gM and in a scale agM that depends on the initial variance of 

the smoothing Gaussian in the initial scale CIQ = 1. 

In the higher scales of agM corresponding maxima line will exist as long as the 

smoothed impulse function is the dominant singularity in its neighborhood. In that 

range the slope of the log-log diagram Modulus maxima vs. scale will tend to -1 if the 

maxima line is long enough, i.e. until it is overlapped by a modulus maximum of 

another dominant singularity. If in higher scales the singularity stops being dominant in 
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its neighborhood, the maxima line tracking process should be interrupted to prevent 

misleading singularity detection. The magnitude and the scale in which the general 

modulus maximum is detected as well as the length of maxima line afterward are 

significant starting points for evaluating the isolated singularities 

2-D Wavelet y ( o = 4 and size = 33031 2-D Wavelet i f [CT= i and size = 33*33) 

'-5l 

1 

0 .5 - • 
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•0.5 

M •rWte 
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Figure 2.4. Horizontal and vertical 2-D wavelets (a = 4 for 33x33 pixels) 

Fractals, Partition Function and Fractal Dimension 

A fractal is an object or quantity that displays self-similarity in all scales. A plot 

of the quantity on a log-log graph versus scale then gives a straight line, whose slope is 

said to be the fractal dimension. The prototypical example for a fractal is the length of 

a coastline measured with different length ruler. The shorter the ruler, the larger the 

length measured, a paradox known as the coastline paradox or 'the Richardson effect' 

(L.F. Richardson, 1881-1953) [129]. 

By definition fractal dimension or capacity dimension of a fractal is the 

exponent D in n(s) -s~D, where n(s) is the minimal number of balls of diameter s 

needed to cover the fractal set in each scale. Employing wavelets provides a natural 

generalization of the classical box-counting techniques to fractal signals, i.e. the 



40 

wavelets are playing the role of generalized boxes. The wavelet transform as a 

mathematical microscope can be used to extract microscopic information about scaling 

properties of fractal objects [126]. Partition function can be derived from maxima line 

skeleton as 

Z{q,a) = X sup Mv[f{{x,y)M ,qeK (2.12) 

The analogy related to multifractal formalism in thermodynamics allows the 

following definition of the exponent x(q) for the behavior of partition function along 

the scale: 

Z(q,a)azaT{q),a-±0+ (2.13) 

where q and x(q) represent inverse temperature and free energy in statistical 

mechanics [126]. For homogenous fractal functions - monofractals and q = 0, the 

value of -x(q) is associated to fractal dimension of the set of all detected 

singularities [125]. 

Discussion 

Existing methods for microcalcification detection are originated from 

standard image processing techniques. Some of very successful techniques in imaging 

can't reach satisfactory efficiency in mammogram analysis. For example, mammogram 

denoising should be delicately performed because noise and normal signal fluctuation 

in mammograms as well as microcalcifications are characterized by high frequencies in 

similar ranges. Also, there is no precise morphological description of 

microcalcification and morphological filters can enhance some targets but miss the 

others that do not fit to the filter specification. Statistical methods are efficient and 



robust if the target appearance is statistically significant, which may not be the case in 

the early stage of the disease. Dyadic wavelet transform has been promisingly efficient 

detection tool, but some targets may be missed because their features were detectable 

in an inter-octave. 

The singularity detection method proposed in this work is sensitive in the level 

of a single pixel lowering the need for additional breast screenings using MR or US 

medical imaging modalities. 

Early detection using this method can be improved by focusing on investigation 

of behavior of microcalcifications detected in lowest scales. 

I assume that a microcalcification may be characterized as a sharp signal 

transition detectable by wavelet transform as a mathematical microscope. I propose to 

build on Lindberg's idea of feature extraction [121]-[122] to identify general modulus 

maximum and the scale in which it appears. I take advantage of the capabilities of 

continuous wavelet transform modulus maxima method to detect signal singularities 

and differentiate microcalcifications and normal signal fluctuation using Holder 

exponent values. I accept consideration that microcalcifications are sharp signal 

transitions modeled as impulse functions smoothed by a Gaussian and characterized by 

negative Holder exponent. I detect smoothed impulse functions and select those with 

dominant magnitudes of general maxima. 

I show that general modulus maximum is a significant tool for 

microcalcification detection. I identify the scale in which Holder exponent of smoothed 

impulse function approaches h ~ 0.0 and use detected magnitude as the most 

significant local information. 

I focus on general modulus maxima because a selected smoothed function with 

dominant magnitude of its general maximum matches to the microcalcification nature. 



Microcalcifications in mammograms appear as the spots brighter than their 

surroundings.' 

I propose to improve the detection performance by combining local spatial 

signal intensity with the scale of general maximum to improve microcalcification 

classification results 

I employ local intensity maximum presence in the neighborhood of a selected 

singularity as a requirement for microcalcification detection to reduce false positive 

and false negative findings and hence to improve the detection method performance. 

The general modulus maximum of a smoothed impulse function could be a 

complement to other features in existing detection algorithms to improve the 

algorithms' performance. 

The method performance will be presented by analyzing 25 regions containing 

microcalcification clusters from diagnosed 20 mammograms and comparing the results 

to the results of 20 regions with healthy tissue from the same mammograms. Since 

general modulus maximum is a significant source of information about local signal 

behavior, I proceed with fractal dimension analysis of selected singularities in same 

regions. The algorithm recognizes microcalcification itself but not its transition border 

because of mammogram's coarse resolution used in this research. The scale of 

microcalcification detection depends on the size of the microcalcification since 

microcalcification size differs from one to another. The magnitude of a general 

maximum doesn't depend on the negative slope within the detection procedure. This 

makes general modulus maximum stronger and more independent feature i.e. that is an 

excellent candidate to integrate with other features. 
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CHAPTER III 

SINGULARITY LOCALIZATION USING WAVELETS 

In this chapter I will develop a method how to detect smoothed impulse 

function in a 2-D signal and show that general modulus maximum of smoothed 

impulse function is a significant feature for microcalcification detection in 

mammograms. 

Singularity Selection and Microcalcification Localization 

Normal signal fluctuation in mammograms can be recognized by positive 

Holder exponent at a point. A microcalcification in mammogram can be modeled as 

smoothed impulse function characterized by negative Holder exponent tending to -1. 

Changing the scale, Gaussian filters are used to compute wavelet transform 

coefficients of supervised images in vertical and horizontal direction in three octaves. 

The framework proposed here is based on using wavelet transform modulus maxima 

to identify the maxima lines in a mammogram and extract the general modulus 

maximum gM from each maxima line. Simultaneously the algorithm determines the 

scale agM in which the general modulus maximum is detected. In the step that follows 

the algorithm searches for local magnitude minimum belonging to same maxima line in 

the scales a that satisfy a > agM before the maxima line fades out. If it exists, the local 

magnitude minimum gm will be detected and corresponding scale agm > agM will be 

determined. Singularities pointed by maxima lines with no identified minirnums are 

considered as normal signal fluctuation and rejected from further analysis. Singularities 

with detected eligible minirnums have negative Holder exponents. The fact that 



described maximum and minimum are clearly detected means the log-log characteristic 

modulus maxima vs. scale has negative slope and isolated smoothed impulse function 

is localized at the point where maxima line propagates to scale a - 1. A maxima line 

might not propagate to a single point at scale a = 1 because of fast oscillations in the 

cone of influence around terminal point of the maxima line in the lowest detected 

scale. This location will be classified as an eligible singularity if the general maximum 

and its corresponding minimum are detected. An illustration of the framework is 

shown in Fig. 3.1. 

Singular point selection is performed using a threshold value of magnitude of 

general maximum. Variance of smoothed impulse function can be estimated by the 

scale in which general maximum is detected [64]. This information will be employed in 

searching for eligible local intensity maximum around detected singularity in the 

process of microcalcification segmentation. If the intensity maximum doesn't exist, 

detected singularity should not be related to microcalcification. Similarly, additional 

information of the targeted singularity can be involved in further singularity sub-

classification. 

In this work I study magnitude and spatial distribution of general maxima of 

three different sets of the detected singularities in areas of diagnosed 25 

microcalcification clusters: 

1. All detected singularities which show negative Holder exponent which 

resemble smoothed impulse function, 

2. The subsets of the set selected in 1 with dominant magnitudes of 

computed general maxima which resemble microcalcifications, and 

3. The sets of singularities that correspond to diagnosed 

microcalcifications in 25 clusters. 
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Assuming that the nature of malignant and benign microcalcification clusters is 

different, I additionally study each category described above separately. 
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Figure 3.1. General maximum detection and microcalcification localization block 
diagram 

Moreover, I investigate magnitude and spatial distribution of general maxima 

of three different sets of detected singularities in 20 healthy areas of same 

mammograms 

4. All detected singularities which show negative Holder exponent and 

resembling smoothed impulse function in healthy areas and 



5. The subsets of 4 that have dominant magnitudes of computed general 

maxima in healthy areas. 

In this section, I describe the steps of the algorithm procedure presented in 

Fig. 3.1. Wavelet transform modulus maxima computation, maxima line construction, 

smoothed impulse function localization, and general maximum evaluation are 

discussed in separate sub-section. Blocks of size 128x128 pixels were taken from 

MIAS database [130] as the test mammograms. MIAS mammogram are digitized at 50 

um pixel edge and reduced to spatial resolution 200 urn pixel edge and clipped/padded 

so that every image is 1024 x 1024 pixels. The area of a pixel represents 0.04 mm2 of 

breast tissue. Numerical resolution is 8 bits/pixel. 

In this work the center of a cluster was chosen to be the center of the 

sub-image of 128x128 pixels. To prevent the border caused inaccuracy, the central 

part of a sub-image is used while the parts next to sub-image borders were excluded 

from further processing. 

The algorithm parameters should be accordingly adjusted for other 

mammogram databases with different spatial and numerical resolution. 

Wavelet Transform Modulus Maxima Computation 

Although Mallat and collaborators [111] successfully applied spline based filter 

banks in dyadic wavelet transform for singularity detection, Arneodo et al. [126] 

suggested continuous wavelet transform to be performed with Gaussian kernel. 

Gaussian kernels and their derivatives are used to enable image processing with no 

particular bias in the space-scale analysis. Significant fractal properties can change very 

fast in scale. They often become invisible within less than a Vi of an octave and with 
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coarse scale increment the trend of modulus maxima behavior in scale could not be 

detected. 

The scale is changing in three octaves covering all possible microcalcifications 

in mammograms with spatial and numerical resolution of MIAS database. Notice that 

three octaves cover scales from 1 to 8, i.e. microcalcification sizes in the range 0.2 to 

1.6 mm. Scale change has been defined by 

where variance cr^ of the Gaussian wavelet applied in initial scale a = 1 and scale 

increment inc have empirically been determined to increase computational accuracy 

and convergence. 

Gaussian Filter Coefficients 

If smoothing function is Gaussian a modulus maxima must propagate toward 

finer scales along its maxima line [109]. 

A 2-D Gaussian smoothing function 

^{x,y) = -^e~^r (3.2) 

of a scale independent size 31x31 pixels with initial variance cr0
2 at scale a0= I is 

constructed and horizontal and vertical derivative are calculated per (3) and (4), 

¥iX,y)JJ^£ (3.3) 
OX 

^(^^fez) (3.4, 
dy 



Discretization of a Gaussian smoothing function using (3.2) is typically 

achieved by sampling the Gaussian at discrete points corresponding to the central 

points of each pixel. The pixels at a distance of more than 3a are small enough and 

often can be ignored. For the very small kernel filters, accuracy is maintained by 

integration of the Gaussian function over each pixel's area [131]. 

Computational Accuracy in Spatial and Frequency Domain 

Wavelet coefficients computation may be performed with properly chosen filter 

coefficients in either spatial or frequency domain. The magnitude and location of the 

peak values of the 1-D Gaussian first derivative have been employed for the metrics of 

the accuracy assessment. The 9-tap Gaussian kernel with a = 1 has yielded 76 % and 

107 % of expected peak values of its first derivative at ±a, i.e. at +1, as shown in 

Fig. 3.2 (a) calculating in spatial and frequency domain respectively. Similarly, the 

17-tap Gaussian kernel with a = 2 has yielded 98 % and 100 % of expected peak 

values of its first derivative again at ±<r, i.e. at ±2 calculating in spatial and frequency 

domain respectively, as shown in Fig. 3.2 (b). 

The experimental results presented in Fig. 3.2 show the advantage of 

computation in frequency domain particularly when smaller variance of Gaussian is 

employed. 

Frequency Range 

Wavelet reconstruction from Gaussian samples is performed to estimate both 

minimal variance and minimal filter length that may be acceptable in the terms of 
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computational accuracy. Minimal length of 3 taps and the variance a2 = 0.252 generally 

can't satisfy desired accuracy as shown in Fig. 3.3 (a). Filter lengths of 7 or more taps 

and a variance a2 = 0.752 generally satisfy the desired accuracy as shown in 

Fig. 3.3 (b). 

Smoothing function fa = 1, size = 9) and its Derivative 
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Figure 3.2. Red lines are filter coefficients calculated from Gaussian smoothing 
functions (red lines) with s = 1 - (a) and s = 2 - (b). The wavelet filter 
coefficients are calculated in time (blue) and frequency (purple) domain. 

^ ( ! , p p 



50 

The lengths of 3 and 5 taps can satisfy desired accuracy in terms of localization 

because the peak values may match their locations but not their magnitude as shown in 

Fig. 3.3(c) and Fig. 3.3(d). 
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Figure 3.3. Reconstruction of 1-D scaling (green) and normalized wavelet (black) 
function for computation accuracy testing. The red lines are desired 
function performance, while accomplished scaling and wavelet functions 
are green and black lines respectively. 
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Filter coefficients of a Gaussian first derivative are normalized using the 

formula 

MAx,y)=^J¥Fh¥rJ (3.5) 

The coefficient 

C,={^Yff-^dca 3.6) 

where <y = (<wAor, cover)and \co\ = cohor • cover, enables the wavelet transform to be 

invertible i.e. Cv < co represents admissibility condition. The admissibility condition 

Cv < co means that the wavelet has a zero mean. Employing coefficient Cw improves 

modulus maxima analysis along a maxima line, i.e. smoothed impulse function and 

corresponding general maximum detection. 

Maxima Line Construction 

Each maxima line points to a singularity and each singularity is analyzed based 

on the modulus maxima behavior along its maxima line. Detected singularities 

gradually change in scale both the magnitude M and the argument 9 of their modulus 

maxima. Two maxima points in two consecutive scale layers belong to same maxima 

line if their spatial locations and their arguments are similar. The level of similarity of 

their arguments is measured by empirically determined thresholds. The experiments 

show that the detection process converges if the scale increment in (1) between two 

consecutive scale layers is as low as inc - 21/16 [132]. Then the algorithm will properly 
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iorm a maxima line with the argument threshold dA = ——- rad or 
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A6 < dA- — rad in the simulations presented in Chapter IV. 
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The procedure starts by connecting maxima points detected in the highest 

scales to the maxima points in adjacent scale layer below. When eligible connections 

are found for all maxima points in a scale layer the algorithm switches to adjacent scale 

layer below and repeats the connection search. The algorithm stops when it reaches 

the lowest scale in which the singularity is localized. The block diagram of maxima 

lines construction algorithm is presented in Fig. 3.4. 

In some specific situations when maxima line switches from one point to 

another and both belong to the same feature, the argument difference can be 

significantly larger than the argument threshold and then magnitude threshold will be 

checked as an alternative to argument threshold. The magnitude threshold applied in 

the simulations presented in this work was dMa0 = 3xabs(Ma!-Ma2), where Ma! and 

Ma2 are the modulus maxima detected in two higher consecutive scales as can seen 

in Fig 3.5. 

Smoothed Impulse Function Localization 

The singularities with positive Holder exponent have been considered as 

normal signal fluctuation, while negative Holder exponent is the feature of smoothed 

impulse function. The expected shape of the log-log characteristics of modulus 

maxima vs. scale is shown in Fig. 2.1 and Fig. 2.2. Negative Holder exponent is 

detected by negative slope of the characteristics in the scales above the scale agM in 

which general maximum gM was detected. 
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Figure 3.4. Maxima line construction block diagram 

The algorithm first detects general modulus maximum gM and corresponding 

scale agM in a maxima line and then eligible minimum gm along the maxima line in the 

higher scales such that agm > agM- The distance in scale between two of them 
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Aa = agm - agM must be large enough to show modulus decreasing tendency in higher 

scales, i.e. smoothed impulse function nature at the singularity pointed in the lowest 

scale of maxima line. In this work I consider Aa < da where da = XA of an octave as a 

minimal distance between general modulus maximum and eligible minimum. This 

location will be classified as an eligible singularity. 
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Figure 3.5. Example of maxima line construction from three singular points 
belonging to the same sharp transition. Three singular points around the 
pixel (55, 60), shown in (a), that can compose a maxima line as shown in 
bold and colored symbols in (b). Their arguments are significantly 
different representing the tangential directions of an edge around pixel 
(55, 60) but in higher scales they converge to the same limit as clearly 
illustrated in (c). Bolder symbols in the diagrams represent the values that 
belong to detected maxima line representing the same higher scale 
structure. 
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The scale agM in which general modulus maximum is detected determines the 

expected maximal spatial distance between the singularity and local intensity 

maximum. Notice that the singularities pointed by maxima lines with no identified 

eligible minimums are considered as normal signal fluctuation and excluded from 

further analysis. General maximum classification block diagram is presented in 

Fig. 3.6. 

Adaptive frequency threshold can be an interesting extension for a future 

research. 
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Figure 3.6. Integration of fractal dimension in the proposed framework to identify 
and classify the microcalcification related singularity 

General Maximum Evaluations via Fractals 

In this framework I propose to integrate general maximum average analysis 

and fractal dimension analysis for three different types of data of selected singularities 



from abnormal tissue and two different types of data of selected singularities from 

healthy tissue. The results of fractal dimension computation show that dominant 

general maxima have similar fractal dimension for a given dataset as diagnosed 

microcalcifications supporting the assumption that the microcalcifications can be 

modeled as smoothed impulse function with dominant magnitude. This fractal 

dimension similarity approves that the spatial distribution nature of microcalcifications 

in mammograms is preserved general modulus maxima metric. 

According to (2.13), fractal dimension of a selected set of singularities is 

determined as the negative value of the slope of log-log characteristics partition 

function Z(g, a) vs. scale a with q = 0 as shown in Chapter 4 for each of the datasets 

propo sed in S ection 3.1. 

Discussion 

Continuous wavelet transform was employed to detect singularities in 

mammograms by tracking modulus maxima along maxima lines across the scale and 

integrating it with fractal dimension to differentiate between normal signal fluctuation 

and irregular ones in breast tissue. 

In this work, microcalcifications in mammograms were modeled by smoothed 

impulse functions and detected by their negative Holder exponent. Proposed 

procedure for maxima line classification enables selected general maxima to be 

analyzed by their magnitudes. 

The algorithm parameters should be carefully determined. For example, it was 

very difficult to determine an argument threshold that was able to result in consistent 

maxima line construction with scale increment as low as inc = 21/4. In this work, I have 

used inc = 2me instead. It is important to note that not only dyadic wavelet transform 



cannot keep track of modulus maxima over scale but also scale increments of 2 was 

not sensitive enough and experimental work indicated that it may be that there is no 

threshold value that will lead to convergence. In particular, the advantage of fast 

wavelet transform computation by quadrature mirror filter banks is not applicable 

because the dyadic wavelet transform is too coarse in both general maximum detection 

and Holder exponent computation. 

This approach should be easily applicable to other mammogram databases with 

different spatial and numerical resolution if proper adjustment to the estimates of the 

parameters values were taken into consideration. It is important to note that, 1) 

argument threshold was fixed at low values enough to enable detection process to 

converge while compromising execution time, 2) frequency threshold was fixed low 

enough compromising false positive results, 3) modulus threshold were set to be 

adaptive, and 3) general maximum threshold was the average of eligible general 

modulus maxima to correlate between dominant general modulus maxima and the 

clinical diagnosis. 

It is important to note that the slope measurement depends on the frequency 

range in which smoothed impulse function was recognized because only isolated and 

dominant singularities will have the frequency range wide enough to be recognized by 

the slope tending to -1. 
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CHAPTER IV 

DETECTION PERFORMANCE ANALYSIS OF MICROCALCIFICATIONS IN 
DIGITIZED MAMMOGRAMS 

The 25 sub-images of size 128x128 pixels were taken from MIAS database 

[130] covering the areas over the centers of the diagnosed microcalcification clusters 

along with other 20 healthy regions selected from the same mammograms are used. 

Mammograms Used in this Work 

In this work 12 malignant and 13 benign microcalcification clusters detected in 

20 mammograms of MIAS database have been used. The clusters' information is 

presented in Table 1 as well as the details related to the tissue classification and type of 

disease per MIAS report [130]. 

Statistical Analysis of Singularities in Breast Tissue with Microcalcifications 

In this work, a magnitude threshold of the general modulus maxima was 

determined as the local average of all gM of all eligible maxima lines with detected 

negative Holder exponent in the area 64x64 pixels centered in a diagnosed cluster. 

This choice of the threshold has reduced the number of dominant singularities 

(Table 2, columns 5 and 6) down to 31.1 % of all eligible singularities (Table 2, 

columns 3 and 4). I selected the regions with diagnosed microcalcifications and 

counted the number of maxima lines and computed the average of the general modulus 

maxima that correspond to the microcalcifications (Table 2, columns 7 and 8). Total 
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number of maxima lines in the regions with microcalcifications represents 37.8% of all 

detected eligible singularities. 

Table 1 

Microcalcifications information taken from MIAS database 

Case 

1 
1 
2 
^ 
j 
4 
5 
6 
7 
8 
9 
10 

.11 
12 
13 " 
14 
15" 
16 
17 
18 
19 
20 
21 
22 
23" ' 
24 
25 

Mammogram 

2 
209 
211 

'213 
218 
219 
222 
223 
223 
226 
226 
226 
227 
231 
236 
238 
239 
239 
240 
241, 
248 
249 
249 
252 
253 
256 
Tissue: 

Cluster 

3 

2 , 

i i 

2 
( 1 

Tissue 

4 
G 
G 
G. 
G 
G 
D 
D 
D 
D 
D 
D 
G 
F ' 
D 
F 
D 
D 
D 

• D . 

F 
D 
D 
F 
D 
F 

Fatty-glandular (G), 

Disease 

5 
" M 

M 
M 
B 
B 
B 
B ' 
B 
B 
B 
B 
B 
M 
B 
M 
M 
M 
B 

^ M-
B 
M 
M 
B " 
M 
M 

Radius 

6 
87 
13 
45 
8 

29 
17 
29 -
6 
7 

25 
,8 
9 

* 44 
14 

"* * 17 
40 
25 
23 
38 
10 
48 ' 
64 
23 
28 
37 

Center 
(row) 

7 
522 
698 
505 
396 
269 
598 
543 
496 
415 
475 
304" 
558 
487 ' 
201 
4?2 . 
270 
217 ' 
411 
347 ' 
424 
517 
386 
658 
461 
541 

Dense-glandular (D), Fatty (F) 

Center 
(column) 

8 
647' 
680 
547 
519 
546 
398 
523 
591 
287 
329 

,531 
504 
603 
276 
522 
645 
567,.,, 
643 
453 k 

378 
544 
575 
439 
733 
400 

Disease: Malignant (M), Benign (B) 
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Detection results for each cluster, disease detection statistics, and detection 

performance are presented in Table 2, Table 3, and Table 4 respectively. 

Table 2 

Detection results in 25 clusters 

Case 

1 

j . 

1 

2 

3 
4 
5 
6 

7 
8 

9 

10. 
11 
12 

13 
14 

15 
16 , 

17 
18 - ~ 

19 

20 
21 
22 

23 
24 
25 

Mammogram 

2 

209 
211 
213 

218 
219 
222 

223 
223 
226 

226 
226 
227 / 
231 
236 
238 
239 

239 
,240 ^ 
241 

248 
249 
249 
252 

253 
256 

No ot 
eligible 
maxima 

lires 

3 

129 
124 

94 

136 
122 
118 
148 
143 

169 
140. 
75 
115 
149 
rib1 

121 
141 -

103 

25 '• 

121 
147 • 

121 
176 
146 

105 
149 

Threshold 
(average of 

eligible 
gM) 

4 

xlO-5 

4 09 

4.01 
4 42 
3.71 
5 47 

3.88 
4.57 
4 13 
5.33 
3.58 
3.49 
3 63 
3.96 
3.62 
4.09 
3 59t 

3 68 
3.62 -

5.28 
4.12 

5.23 
3.96 
4.58 
3.53 
3.84 

No of 
dominant 
maxima ' 

lines 

5 

45 

41 
27 
47 
24 

36 
49 

52 
30 

56 
26 

* 35 . 
49 

40 
44 

37 
6 ' 

45 
27 
34 
56 
37 

40 
52 

Average 
of 

dominant 
gM 

6 

"xlO-5 

5.61 

5.29 
6.76 

4.83 
13.63 
5.55 
6.80 

5.57 
12.69 
4.32 
4.34 
4-94^ 
5.58 
4.64 
5.60 
4.67 „ 
4.63 

5-40. 
8.04 

7.93 
9.25 
5.49 
7.89 
4.34 

5.09 

No of 
accurate > 
maxima 

lines 

7 

69 

23 
46 

10 
66 
36 

86 
9 / 
11 

75 
12 

.' 9 , ' 
93 

- 19 "" 
27 
73 
52 
12 

71 
12 
63 
98 
75 
56 
16 

Average 
of 

accurate 

8 

xlO-5 

4.15 

5.01 
4.72 

5.28 
6.24 
4.15 

4.83 
7.16 
5.46 
3.64 
4.40 
5.70 
4.17 
4.12 
4.97 
3.64 

3.67 
3.87 

5.96 

11.10 
4 92 
4.05 

5.03 
3.61 
4.08 
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In this work, 3115 maxima lines in 25 regions of size 64x64 pixels were 

considered eligible representation of smoothed impulse function. To estimate method 

performance the dominant maxima lines with general maximum above the local 

average were selected. Out of the 3115 maxima lines 970 (31.1%) were accepted after 

general maximum gM thresholding (were above the local average), while 1179 

(37.8%) were representing either malignant or benign microcalcifications. The fact that 

the total true positively selected maxima lines (Table 4), yielding the detection 

sensitivity of 65.2%, 64.1%, and 67.1% for all, malignant, and benign clusters 

respectively, show that general maxima magnitude can be utilized as an important tool 

in microcalcification detection. 

Table 3 

Disease 

1 

Total (all) 
Total 

(malignant) 
Total 

(benign) , 

Disease detection statistics in 25 analyzed clusters 

No of eligible No of dominant Column (3)/(2). No of accurate Column (5)/(2) 
Maxima lines maxima lines % maxima lines % 

3115 

1533 

1582 

970 

510 

460 

31 1 

33 3 

29 1 

1179 

747 

37.8 

48.7 

27.3 

Average magnitude of general maxima of microcalcification was 4.58x10", 

while the average of all eligible maxima lines was 4.18xl0"5, leaving additional room 

for selection improvement based on the magnitude of general maxima. Similar 

conclusion holds for separately analyzed both malignant and benign clusters where 

average magnitudes corresponding to microcalcifications were 4.34x10"5 and 
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5.02xl0"5 respectively while threshold averages were 4.12xl0"5 and 4.23xl0"5 

respectively. The details of detection performance are given in Table 4. 

Table 4 

Microcalcification detection performance in 25 analyzed clusters 

All clusters Malign clusters Benign clusters 

-_ / -^ ,* - "-No of ]l, t J 'No-of j c " V ^ N o of \t^„X 
- '" ^eligible —̂ i eligible^ _° *- ^eligible ~ " -J ? 

' " - - ~~"~ r,- ~~ "maxima < ~^ ^maxima -j *-"', »-.jnaxuna** "-."a 
- " «<~ J "v lines" - ""j%»3 * ,lines"tJ" tS%„" _ lines J_, *-% J , 

1 2 3 4 5 6 7 

" "Total eligible *-3J15 , ' ^loV '^1533 U'JpO , 7-1582 " jNoOj 

Trae classified 2504 80 4 1234 80 5 1270 80 3 

False classified *] — o i l ' - l ^ ' i * J299V" '19 5 - . 312; ' J 1 9 ? j 

True Positive 769 24 7 479 312 290 18 3 

' True Negative ; -1735 ""' ^55 7 '< ~~755* ' - 4 9 2" 980 ' ^ 1 9-1 

False Positive 201 6 5 31 2 0 170 10 7 

* False Negative J F ,410 r """ 3 3 2 ' ^ 2 6 8 ^ * ' ^17*5 f42^ ^ 9 0 1 

In the areas that included 12 malignant clusters (limited to the size of 64x64 

pixels) in 10 mammograms, 1533 maxima lines were considered eligible and after 

average thresholding 510 (33.3%) were declared as rnicrocalcifications. In the same 

cluster samples, 747 maxima lines (47.8%) were pointing to diagnosed malignant 

rnicrocalcifications. 
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Detection Performance Estimation 
Area index Az = 0.77 

1 -I ^ - j 

1 0.8 - _ _ _ ^ ^ ^ ^ 
0 _ - - — 

2 ^-———' • °-6 - r 
• — / 

1 0.4- / 
0) / 
5 0.2 - / 
H / 

0 +• 1 1 , , 1 

0 0.2 0.4 0.6 0.8 1 

False Positive Fraction 

Figure 4.1. Area index estimation calculated from detection performance using local 
average threshold of general maxima 

In the areas that included 13 benign clusters (also limited to the size of 

64x64 pixels) in 10 mammograms, 1582 maxima lines were considered eligible and 

after average thresholding 460 (29.1%) were accepted as microcalcifications. In the 

same cluster sample, 432 maxima lines (27.3%) were pointing to diagnosed benign 

microcalcifications. The false positive and false negative detection results are shown in 

last two rows of Table 4. 

Assuming that the average magnitude of general maxima was a threshold for 

detection classifier, the area index Az representing detection performance for all cluster 

data in Table 4 was 0.77, as shown in Fig. 4.1. Similarly, area index Az representing 

detection performance estimated separately for malignant and benign 

microcalcifications was 0.80 and 0.76 respectively. 



Fractal Analysis of Singularities in Breast Tissue with Microcalcifications 

Fractal dimension is originated from statistical mechanics. Fractal dimension 

can be estimated using the equations 2.12 and 2.13 when scale a -> 0. Having the 

mammogram data with finite resolution the requirement a -» 0 is reduced to a —> 1, 

i.e. log(a) -> 0. Saturation effect is caused by maxima lines with general modulus 

maxima detected in the lowest scales, in which the eligibility condition can not be 

clearly assigned to developed microcalcifications because coarse mammogram 

resolution allows detection of the microcalcifications themselves but not the properties 

in their borders. 

For the purpose of computation accuracy of fractal dimension when the 

accuracy is higher if the sample data is larger, in the following sub-sections, the 

categories of data, rather than single clusters, were investigated: 

1. All detected singularities that resemble smoothed impulse function in all 

analyzed microcalcification clusters, as well as separately in malignant 

and benign clusters. 

2. The detected smoothed impulse functions with dominant general 

modulus maxima in all analyzed clusters, as well as separately in 

malignant and benign clusters. 

3. The detected singularities that correspond to all diagnosed 

microcalcification clusters, as well as separately in malignant and 

benign clusters. 

In all experiment, the end lines of the characteristics for all 25 clusters, 12 

malignant clusters, and 13 benign clusters are determined in the range 



0.5 < logiia) < 1.5, where the characteristics are linear, showing their monofractals 

property. It is worth to notice that the characteristics show saturation effect in the 

range 0.0 < log2(a) < 0.5, while in the range 1.5 < log2(a) the characteristics tend to 

diverge i.e. lose their linearity. 

Eligible Singularities that Resemble Smoothed Impulse Functions 

Log-log characteristics of partition functions Z(q, a) vs. scale a, with q = 0, for 

all detected eligible singularities in 25 microcalcification clusters are shown in 

Figure 4.2. Specifically negative slopes of log2(Z(Q, a)) vs. logi (a), 

0.5 < logiia) < 1.5, correspond to the fractal dimension of the sets of singularities for 

all detected singularities (rhombi), as well as for 12 malignant (squares) and 13 benign 

(triangles) clusters. The tend-lines show the slope is close to 2 in all three analyzed 

datasets. The results show that the eligible singularities are uniformly distributed 

everywhere in the analyzed mammogram subimages. 

All Eligible Singularities above Average Threshold 

Log-log characteristics of partition functions Z(q, a) vs. scale a, with q = 0, for 

all detected eligible singularities with dominant general modulus maxima in 25 

microcalcification clusters are shown in Figure 4.3. The negative slopes of 

logi{Z{Q, a)) vs. log2(a), 0.5 < logiia) < 1.5, correspond to the fractal dimension of 

the sets of singularities for all detected singularities (rhombi), as well as for 12 

malignant (squares) and 13 benign (triangles) clusters. The tend-lines show the slope is 
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1.43, 1.46, and 1.40 for all three analyzed datasets, total, malignant, and benign 

respectively. 

Figure 4.2. Partition function Z{q, a) with q = 0, for all detected singularities in the 
25 analyzed microcalcification clusters - rhombi. The squares and 
triangles represent partition functions for the detected singularities in the 
areas of malignant and benign clusters respectively. The fractal dimension 
in all three sets of data (the slope of the tend lines) is close to 2, showing 
that the singular points are distributed everywhere in the clusters. 

MIAS Suggested Diagnosis 

Log-log characteristics of partition functions Z(q, a) vs. scale a, with q = 0, for 

all detected eligible singularities with dominant general modulus maxima in 25 

microcalcification clusters are shown in Fig. 4.4. The negative slopes of log2(Z(0, a)) 

vs. logi(a), 0.5 < log2(a) < 1.5, correspond to the fractal dimension of the sets of 

singularities for all detected singularities (rhombi), as well as for 12 malignant 
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(squares) and 13 benign (triangles) clusters. The tend-lines show the slopes are around 

1.47 for all three analyzed datasets, total, malignant, and benign. 

Detected Singularities - Threshold 

12 

10 

_ 8 
"5? 
o" 
3 6 
O) 

o 

0.3 0.6 0.9 
log2(a) 

y = -1.4313x + 9.5433 
R? = 0.9977 

^^===rrT^---^^ 
-• • Log(Z(0,a) 

• Log(Zm(0,a) 

-- A Log(Zb(0,a) 

Linear (Log(Z(0,a)) 

-• Linear (Log(Zm(0,a)) 

Linear (Log(Zb(0,a)) 

y = -1.4574x +8.6863 
R2 = 0.9934 

y = -1,4003x + 8.3844 
R? = 0.9982 

1 1 1 

1.2 1.5 

Figure 4.3. Partition function Z(q, a) with q = 0, for all detected singularities above 
the local average in the areas of 25 analyzed microcalcification clusters -
rhombi. The squares and triangles represent partition functions for the 
detected singularities in the areas of malignant and benign clusters 
respectively. The fractal dimension in all data sets (the slope of the tend 
lines) is 1.43, 1.46, and 1.40 for all, malignant, and benign detected 
dominant singularities respectively. 

All three datasets yield fractal dimension of around 1.47, which is similar to the 

results of the thresholding, presented in Fig. 4.4. Fractal dimension of singularities 

selected by thresholding of all detected smoothed impulse functions and accurate 

microcalcification singularities are 1.43 and 1.46 and 1.40 for all, malignant, and 

benign microcalcification clusters respectively, supporting the assumption that 
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smoothed impulse functions with dominant general modulus maxima correspond to 

diagnosed microcalcifications. 

Figure 4.4. Partition function Z(q, a) with q = 0, for all detected singularities 
pointing to diagnosed microcalcifications in the regions of 25 analyzed 
microcalcification clusters - rhombi. The squares and triangles represent 
partition functions for the detected singularities in the areas of malignant 
and benign clusters respectively. The fractal dimension in all three data 
sets (the slope of the tend lines) is 1.47 for all, malignant, and benign 
diagnosed microcalcifications respectively. 

Healthy Tissue Analysis 

For comparison purposes, 20 areas with no microcalcifications from each 

analyzed mammogram were selected and the general modulus maxima were tested. 

The information of selected areas is listed in Table 5 as well as the details related to 

the tissue classification. 
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Statistical Results of Healthy Tissue Analysis 

The average of general maximum magnitude in areas with microcalcification 

clusters is higher than the averages with no clusters. The average of detected general 

modulus maxima in the areas of 64x64 pixel in healthy tissue areas was in the order of 

3.6xl0"5 with about 120 eligible maxima lines. Similar results were produced for all 

three types of analyzed tissue, i.e. 3.6xl0"5, 3.5xl0"5, and 3.7x10° with fatty-

glandular, dense-glandular, and fatty tissue respectively. This result shows that 

proposed metric is not sensitive on background tissue. 

The results for each mammogram are presented in column 10 of Table 6. For 

each mammogram, number of detected dominant singularities and their average 

general maximum in the area with microcalcification cluster is compared to data of 

selected area without microcalcifications. Columns 6 and 10 in Table 6 represent 

increase rate in the number of detected dominant singularities and average magnitude 

of general maxima, respectively. Randomly chosen samples caused the exception in the 

case of mammograms mdb226 and mdb227 with benign microcalcification clusters. 

Columns 6 and 10 approve that the areas with microcalcifications have more dominant 

smooth impulse function singularities and their average is larger than in the case 

without microcalcification clusters. In future work, both local and global averages 

should be analyzed for optimum threshold selections. 

When average criterion was used then 37.3% false positive results were 

produced. False positive rate doesn't change significantly in all three types of tissue, 

i.e. 35.6%, 38.3%, and 37.8% with fatty-glandular, dense-glandular, and fatty tissue 



respectively. If a requirement for presence of a local intensity maximum in the 

neighborhood of a singularity was applied the false positive rate detection fell down to 

17.5%, i.e. 15.2%, 17.8%, and 19.2% with fatty-glandular, dense-glandular, and fatty 

tissue respectively. This result implies low sensitivity of proposed metric on 

background tissue. 

Table 5 

List of mammograms from MIAS database with selected testing areas without 
microcalcifications (healthy tissue) 

Case 

1 

1 
2 

3 
4 

5 

6 
7-8 

9-11 

12 

13 
14 

15 

16-17 

18 

19 
20 

21-22 

23 

24 

25 

Mammogram 

2 

209 
211 

213 

218 
219 

222 
223 

226 

227 
231 

236" 

238 
239 

240 

' 241 

248 

249 
252 

253 
256 

Tissue 

4 

G 
G 

G 
G 

G > 

D 

D 
D 

G 
F 

D 
F 

"D 
D 

D 
F 

D 
F 

D 
F 

Center (row) 

5 
394 

570 
633 

524 
397 

726 
'671 

543 

686 
615 

329 
600 

' ' . 398 

539 

' 475 

552 

645 
530 

589 
669 

Center 
(column) 

6 
519 
552 

547 
519 
418 

526 
651 

415 
, 632 

731 
404 -

522 

645 
515 

' 453 

506 
672 

439 

605 
528 

Tissue: Fatty-glandular (G), Dense-glandular (D), Fatty (F) 
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Statistical results of healthy tissue analysis detection results in 20 healthy areas of 
64x64 pixels 

- Case 

1 

*>_ ~_ - J 

f - J*" _' 
2 

j \ 3 " .J 

4 
T" 5* _" 

6 
7-"8"l 
9-11 

7. & ~, 
13 
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15 

r i 6 - r f 
18 
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20 
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•• „ " i 
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Fractal Analysis of Healthy Tissue 

In this sub-section fractal dimension for two data sets, all eligible singularities 

and dominant singularities, are analyzed separately. 

All detected singularities that resemble smoothed impulse function are analyzed 
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first. The fractal dimension of the detected smoothed impulse functions in all 20 

healthy areas was 1.73 which is lower than 2.0 determined in breast areas with 

microcalcifications. Notice that a fractal dimension approaching 2 is a sign that normal 

signal fluctuation is present everywhere in the plane. 

Partition function and its linear regressions of all detected singularities in 

healthy area are presented in Fig. 4.5. 

12 

10 

o" 
3 6 
O) 
O 

Detected Singularities -Total 

• Log(2(0,a) 

Linear (Log(Z(0, a)) 

0.3 0.6 0.9 
log2(a) 

y = -1.7335x +10.27 
R2 = 0.9938 

1.2 1.5 

Figure 4.5. Partition function Z(q, a) with q = 0, for all detected singularities in the 
20 analyzed mammograms. The fractal dimension (the slope of the 
partition function, q = 0 and a —> 0) for 20 healthy areas is 1.73 - linear 
regression slope. 

Dominant singularities in healthy areas have significantly lower fractal 

dimension, i.e. tending to 1 for the average of all 20 mammograms. Fractal dimension 

approaching 1 is the sign of linear structures typical for detected edges. Fractal 
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analysis shows that smoother signal transition is uniformly distributed everywhere 

producing fractal dimension tending to 2 in both normal and abnormal breast tissue. 

On another hand fractal dimension of detected dominant signal transition in normal 

tissue is tending to 1 implying that they belong to the line structures. Partition function 

and its linear regressions of dominant singularities in healthy area are presented in 

Fig. 4.6. 

Detected False Positive Singularities 
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Figure 4.6. Partition function Z(q, a) with q = 0, for all detected singularities above 
the average magnitude in the 20 analyzed mammograms. The fractal 
dimension (the slope of the partition function with q = 0) is 1.03, - linear 
regression slope. 

Healthy tissue fractal analysis shows that the set of all detected singularities has 

fractal dimension of 1.73 while the set of locally dominant singularities has fractal 

dimension tending to 1. This is in agreement with the results on the significance of 
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general modulus maxima in the detection of microcalcification. Fractal dimension of 1 

is typical for the linear structures in the tissue and can be used in mammogram 

segmentation which can be a future extension of this work. 

Healthy tissue statistical analysis confirms our expectation that general maxima 

of normal fluctuation with negative Holder exponent are lower than the general 

maxima belonging to the maxima lines representing the abnormalities suggesting that a 

combination of global and local thresholding need to employed. 

Notice that for microcalcification cluster classification purposes spatial 

resolution of 200um doesn't allow zooming at 70um where microcalcification edge 

becomes visible and malignancy analysis possible. 

Detection Result Example 

Our proposed algorithm successfully localized both malignant and benign 

microcalcification clusters and it is worthy to notice that no other features but 

dominant general modulus maximum with average threshold is employed in the 

detection of microcalcification clusters such as those shown in Fig. 4.7 and Fig. 4.8. 

Discussion 

Detection sensitivity for all, malignant, and benign clusters were 65.2%, 

64.1%, and 67.1% respectively, while area index Az was 0.77, 0.80, and 0.76 

respectively, implying that general maxima magnitude can be utilized as an important 

tool in microcalcification detection. 
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MIAS mdb238, F, Malignant, R = 17 at [472 522] 

(a) 
Targets in mdb238, Malignant, R = 17 at [472 522] 
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Figure 4.7. A malignant microcalcification cluster of radius R= 17 pixels is 
diagnosed in the area bordered by black squared line in the mammogram 
MIAS mdb238 - Fig. 4.7 (a). The centers of highlighted squares in Fig. 
4.7 (b) are detected dominant singularities resembling smoothed impulse 
functions. 



MIAS mdb252, F, Benign, R = 23 at [658 439] 
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(a) 
Targets in mdb252, Benign, R = 23 at [658 439] 
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Figure 4.8. A benign microcalcification cluster of radius R = 23 pixels is diagnosed in 
the area bordered by black squared line in the mammogram MIAS 
mdb252 - (a). The detected dominant singularities resembling smoothed 
impulse functions shown as the centers of bordered area - (b). 
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Average magnitude of general maxima in the healthy regions was 3.6xl0~\ 

3.5xl0'5, and 3.7xl0"5 with fatty-glandular, dense-glandular, and fatty tissue 

respectively. When average criterion was used then 37.3% false positive results were 

produced in the healthy regions. False positive rate doesn't change significantly in all 

three types of tissue, i.e. 35.6%, 38.3%, and 37.8% with fatty-glandular, dense-

glandular, and fatty tissue respectively. Very similar statistical results, including the 

number of 120 detected eligible maxima lines (per area of 64x64 pixels) in all three 

types of analyzed healthy tissue imply that proposed metric is not sensitive on the 

background tissue. This is very important because microcalcification detection in dense 

parenchyma can be particularly challenging task. 

Average magnitude of general maxima of microcalcifications was 4.58xl0"5, 

while the average of all eligible maxima lines in the same regions was 4.18xl0"5 vs. 

3.6xl0"5 in healthy regions, leaving additional room for selection improvement based 

on the magnitude of general maxima. 

Average threshold for malignant and benign clusters was 4.12xlCr5 and 

4.23x10"5 respectively, having relative difference in the order of 2.5 %, while average 

magnitude of benign microcalcifications was 13.6% higher than average magnitude for 

malignant microcalcification (4.34x10"5 and 5.02x10"5 respectively). The average 

threshold generated significantly less false positive than false negative malignant 

findings (2.0% vs. 17.5%), which was not the case with benign findings 

(10.7%o vs. 9.0%). This statistics implies that general modulus maxima of malignant 

findings might be detected in lower scales. Further investigation of possible differences 



between malignant and benign calcification should be focused on the detection 

parameters in the lower scales. 

Both log-log characteristics modulus maxima vs. scale and partition function 

vs. scale are smooth allowing reliable threshold selections in the singularity 

classification process. The results of fractal dimension computation show that 

dominant general maxima have similar fractal dimension for a given dataset as 

diagnosed microcalciflcations supporting the assumption that the microcalcifications 

can be modeled as smoothed impulse function with dominant magnitude. This fractal 

dimension similarity approves that the spatial distribution nature of microcalcifications 

in mammograms is preserved by general modulus maxima metric. 

Dominant general modulus maxima highly map into diagnosed 

microcalcifications in terms of average magnitude and spatial distribution. Simulation 

results demonstrated that smoothed impulse function, recognized by their fractal 

properties of localized wavelet transform modulus maxima, can be considered a 

reliable feature for microcalcification detection in mammograms. Moreover, 

comparison of healthy and calcified breast tissue based on both statistical and fractal 

results show that selected general modulus maximum is a significant feature in 

microcalcification detection and classification. The results show that proposed metric 

for microcalcification detection is not sensitive on background tissue and particularly 

convenient for dense parenchyma background. It also worthy of noting that the 

implementation of this proposed work including all parameter values is appropriate for 

the 200 um/pixel spatial resolution and 8 bits/pixel numerical resolution. 
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CHAPTER V 

DETECTION OF MICROCALCIFICATION FRAMEWORK INTEGRATING 
SPATIAL FREQUENCY LOCALIZATION AND SEGMENTATION 

Using magnitude of general maxima of smoothed impulse function in previous 

chapter I detected singular points that are candidates for microcalcifications in 

mammograms. High sensitivity of the algorithm yields high false positive results which 

is a deciding factor on the viability of using this algorithm as a computer aided 

detection tool. 

In this chapter, I would like to show that (1) a microcalcification cluster can be 

located by energy blob of selected dominant general modulus maxima and (2) false 

positive and false negative single microcalcification findings can significantly be 

reduced by incorporating additional knowledge about target. Microcalcification is a 

residual calcium deposit causing higher X-ray attenuation and appearing as a spot 

brighter than its surrounding. Thus, in the area of a microcalcification, a pixel with 

local intensity maximum must exist. 

Microcalcification Cluster Detection 

Wang and Karayiannis [108] suggested detection of high frequency energy 

blobs with no differentiation between sharp transition characterized as smoothed 

impulse function and normal high frequency signal fluctuation in mammograms. 

For the selection of the suspicious spots in mammograms I propose detection 

of energy blobs of dominant general modulus maxima. This simple procedure will be 

explained in detail by following detection procedure performed on mammogram 
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mdb223 [130] with two benign microcalcification clusters and a film damage as shown 

in Fig. 5.1. Notice that missing of local intensity maximum in the neighborhood of the 

sharp transition in the border of film damage caused elimination of related singular 

points from energy blob analysis. 
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Figure 5.1. Mammogram mdb223 with two microcalcification clusters and a film 
damage 

The input for energy blob detection is an image consisting of detected 

dominant smoothed impulse function shown in Fig. 5.2 - (a). Singularities with a local 

intensity maximum in the neighborhood are selected and represented by their 

magnitudes of general maxima. 

A result of low-pass filtering of image in Fig. 5.2 - (a) is shown in 

Fig. 5.2 - (b). Applied filter was averaging non-zero magnitudes from Fig. 5.2 - (a). 

The size of the filter applied in Fig. 52 - (b) was 48x48 pixels. 
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Singularities with local maximums in the neighborhood 

(a) 
Energy in MIAS mdb223-1, Average filter, size 48 pixels 
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Figure 5.2. Detected dominant singularities with local intensity maximums in the 
neighborhood - (a), detected energy blobs, filter size 48x48 pixels - (b) 
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Energy in MIAS mdb223-1, Average filter, size 8 pixels 

-r̂ * 

• - • • » • * . -a 

Energy in MIAS mdb223-1, Average filter, size 8 pixels 
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Figure 5.3. Detected energy blobs, filter size 8x8 pixels - (a), significant energy 
peaks are represented by yellow-orange-red isoenergy lines - (b) 

Both larger cluster 1 and smaller cluster 2 are represented with areas locally 

brighter than its neighborhood as shown in Fig. 5.2 - (b). Film damage was not 
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disturbing the detection process, because of missing local maximums in the eligible 

neighborhood of the detected singularities in the border of film damage. 

The procedure is repeated with a filter size of 8x8 pixels as shown in Fig 5.3. 

Microcalcification Segmentation 

The microcalcification clusters were located in Section 5.1. In this section the 

single microcalcifications will segmented by procedure that follows. 

A detected eligible singular point s is located in the edge of the 

microcalcification where the signal transition is sharpest. Accepting the simplification 

that microcalcification is an ellipsoid, its radiuses are in the order of standard deviation 

of located smoothed impulse function. 

Region Growing Segmentation Method 

In this section I give short description of region growing segmentation method. 

Region growing method can be classified as one of the pixel-based image 

segmentation because it involves the selection of initial seed point. 

This approach to segmentation examines the neighboring pixels of the initial 

seed point and determines the level of similarity to the seed point. The level of 

similarity is previously defined cost function which will allow or prevent a 

neighborhood pixel to be added to the pixel set that belongs to the region of the seed 

point. In next iteration the region will be allowed to grow from the pixels added to the 

region in previous iteration. The process is terminated when in last iteration no pixels 

are added to the regions that grow. 
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The region growing segmentation methods can correctly separate the regions 

that have the same previously defined properties. They can provide the original 

images which have clear edges particularly if applied multiple criteria at the same time. 

A weakness of the methods is the computation is consuming. Noise or variation of 

intensity may result in holes or over-segmentation, which can be prevented by using 

some mask to filter the holes or outlier. 

An illustration of developed segmentation method is presented in Fig. 5.4. 

Region Growing Seed Point 

Region growing seed point c is determined as local intensity maximum in the 

8-connected neighborhood of an eligible singularity s. The radius of the neighborhood 

can be estimated from standard deviation of smoothed impulse function which depends 

on the scale in which the general maximum is detected, i.e. (T = 2yl2-p-a [64]. An 

eligible local maximum defined by (1) is detected in the distance less than standard 

deviation of smoothed impulse function from detected eligible singular point, i.e. 

fl Sa{xc,yc)= max S{x,y) 

[0 otherwise 

where S is input mammogram and K5 is a part of 8-connected neighborhood 

surrounding singularity s by diameter that corresponds to the scale agM in which 

general modulus of singular point s was detected. 

For the microcalcification segmentation purpose the local maximum is 

convenient to be a seed point in a region growing segmentation procedure. 



Dual Point 

85 

When a general modulus maximum is detected in scale a, its wavelet transform 

argument will point to the direction of the sharpest 2-D signal transition. It is accepted 

assumption that the smoothest change or edge will point to the direction orthogonal to 

the modulus maximum argument. Following the angle that is orthogonal on the local 

wavelet argument, edge detection in the scale a can be achieved. The 

rnicrocaicification might not be dominant local structure that detected edge would 

follow. Having the seed point and the singularity incorporated in the edge I estimate a 

location of the edge on the opposite side of the ellipsoid by 

- > 
d =c-cs (5.2) 

where d* is temporary dual point, c is location of local intensity maximum of 

underlying mammogram and cs is a vector representing the distance from seed point c 

and singularity s. I define dual point of the singularity as a point d with largest wavelet 

transform coefficient magnitude in the neighborhood of the estimated location d', i.e. 

. . [\ Wa(xd,yd)= max W„(x,y) 
d{*»y*)=L /'•>**<• (5-3) 

[0 otherwise 

The dual point will be assigned as a point belonging to the edge on opposite 

side of the detected singularity. 

Edge Detection 

Argument of wavelet coefficients points the direction in which the signal 

change is maximal. The assumption here is that the direction in which the change is 

minimal is orthogonal to the direction of the sharpest transition. I construct the edges 



in scale a by spreading the singularity and its dual point in the direction of 

Oedse{^y)-^{Wa{x,y))±^ (5.4) 

Spreading Limitation 

In higher scales, constructed maxima chains will follow dominant in scales 

image structures. In accordance to the expectation of the size of a microcalcification 

i.e. the scale as=agM in which corresponding general modulus maximum of the 

singularity is detected, I stop initial edge detection after a number of iterations that 

correspond to the scale as. 

Segmentation Process 

The segmentation process developed in this work is based on employing spatial 

(gray-scale values) and wavelet transform coefficients magnitude at the scale in which 

a singularity is detected, in a region-growing manner, to generate the segmented 

microcalcification. This is framework allows for other microcalcification features to be 

incorporated in the model. In general, models may include any characteristics such as 

homogenous regions in the image, objects of certain shapes, or of specific texture 

[133]. The more constraints are imposed, the more the algorithm is application 

dependent. In this work the input information are magnitude of wavelet transform 

coefficients computed for every pixel in scale agM and intensities of the underlying 

mammogram. The algorithm is initiated by accepting the results of the 

spatial-frequency singularity localization in 2-D signals explained in the previous 

section. 



The algorithm follows singularity detection as described in Chapter III. 
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(1) Translate wavelet coefficient magnitudes in the detected scale to set a 

general modulus maximum to be positioned at the location of 

corresponding singular point s in the lowest scale. 

(2) Locate a local intensity maximum c of underlying mammogram to be a 

seed point. If there is no local intensity maximum in the scale agM 

dependent neighborhood of singular point s, singular point s is not 

related to a microcalcification and segmentation process is terminated. 

(3) Having the seed point as a reference point, determine temporary dual 

point on opposite side of the microcalcification local maximum by (5.2) 

and then localize the dual point with maximal modulus maximum in the 

8-connected neighborhood of temporary dual point per equation (5.3). 

(4) Starting from singularity and its dual point, perform initial 

microcalcification edge detection following wavelet transform 

argument per (5.4); 

(5) Determine maximal area that a region can grow by spreading initial 

edges and seed point to their 8-connected neighborhood repeating the 

spreading up to the scale limitation. 

(6) Modify wavelet coefficient magnitude using the formula 

K «(wo)| = g
 {7^tyo) (5-5) 

where Ne(*0, y0) is the part of 8-connected neighborhood of (x0, y0) 

in which 
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KM>Ww<J (5-6) 

and ne is number of the neighborhood magnitudes satisfying the 

condition (5.6), while a=agM is the scale in which general maximum of 

the singularity is detected. 

(7) Compute the wavelet transform coefficient magnitude average and its 

standard deviation of 8-connected neighborhood i.e. 

ZKM 

and 

K sA^ohJii EkM-K —(wot (5-8) 

where \Wa_MaB)1(jc0J^0)| and \Wa std{xQ,y0\wQ the neighborhood 

average and standard deviation of wavelet transform coefficients at 

(x0,y0) in scale a=agM respectively. 

(8) Compute the average intensity and its standard deviation of underlying 

of 8-connected neighborhood 

I ' M 
^JWo)=(^(70) (5-9) 

a std ( v o K & S f c M - ' a ^k^o))2 (5-io) 

(9) Each pixel adjacent to the growing region of a microcalcification add to 

the growing region if satisfies (5.11) and (5.12) 
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K _ m C W o ) | ^ Wa_meaXX0,y0)+kfrWa_std{xQ,yQ) ( 5 . 1 1 ) 

and 

l - K V o ) ! ^ Imean{xQ,yo)+ * / 4 r f ( w < > ) ( 5 - 1 2 ) 

(10) Stop repeating the region growing procedure if in the last iteration no 

new pixels are added in the growing region or the region has 

overgrown the initial segmentation region. 

The region growing procedure is performed when an eligible singularity and 

corresponding seed point and dual point are detected. The growing decision is based 

on wavelet transform coefficient magnitude in the scale where a singularity is detected 

and underlying mammogram. 

Experimental Results 

In this sub-section I show the performance of the proposed region growing 

algorithm using the cluster 1 from mammogram mdb223, MIAS database [130]. 

A benign microcalcification cluster is presented on Fig. 5.5 (a) with a squared 

detail microcalcification zoomed onto the cluster. Despite its smoothness, the zoomed 

microcalcification is properly detected in spatial - frequency localization algorithm. 
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Figure 5.4. Region growing segmentation block diagram incorporated in the 
framework to further enhance the results 
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MIAS mdb223-1, DG, Benign, R = 29 at [543 523] 

(a) 
MIAS mdb223 - detail 

Figure 5.5. Mammogram mdb223, cluster 1 - (a) and rnicrocalcification detail - (b) 
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Initial Segmentation - detail 

(b) 

Figure 5.6. Mammogram mdb223, cluster 1 - detail with initial edge detection 
following wavelet coefficient argument from detected singularity and its 
dual point (a) and initial segmentation based on initial edge detection (b) 



The detected singularity, local maximum, and the dual point of the 

zoomed microcalcification are shown on Fig. 5.6 - (a). Initial edge detection using 

formula (5.4) is highlighted on Fig. 5.6 - (a) with inserted arrows showing how the 

initial edges are constructed. Initial segmentation shown on Fig. 5.6 - (b) is the outer 

limit for the segmentation process. 

Final segmentation is performed using the formulas (5.12) and (5.13). The 

resulting segmentation is shown on Fig. 5.7 - (a), while the zoomed detail is given on 

Fig. 5.7 - (b), showing that initially detected edges are preserved. 

It is worth to say that the algorithm in Cluster 1, mammogram mdb223 initially 

found eligible 148 smoothed impulse functions with the average of4.57xl0"5, while 49 

were assigned as (above average) dominant singularities with the average 6.80xl0"5, 

requiring locally adaptive threshold technique. The high number of microcalcifications 

in the cluster increased the average of general modulus maxima and the local 

magnitude average leading to high false negative results. The proposed segmentation 

algorithm with just one constraint, local maximum presence, was able to significantly 

decrease false positive findings from total 148 to 86 with no magnitude threshold. 

Average threshold selected 49 findings with 37 false negative. Employing local 

intensity maximum of underlying mammogram, the algorithm has become less 

dependent on the threshold value which allows higher level of freedom in the election 

of lower general modulus maximum threshold. 



Final Segmentation 
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(a) 
Final Segmentation - detail 

(b) 

Figure 5.7. Mammogram mdb223, cluster 1- segmented image-(a) and segmented 
detail - (b) 



Discussion 
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In this section I present how to employ detected singularity and local maximum 

as well as local wavelet coefficients i.e. their magnitudes and arguments to improve the 

proposed framework's performance. 

The selection of dominant smoothed impulse function enabled detection of 

energy peaks which are the sign of a suspicious spot. The size of a suspicious spot can 

be estimated by an optimization technique that uses different filter sizes. 

Desired high sensitivity of this detection algorithm combined with a 

non-adaptive threshold yields high false positive and false negative findings and thus 

low specificity becomes the most significant concern that need to be resolved if this 

algorithm to be put into practical use. 

In this chapter, I showed that using additional knowledge about target I was 

able to decrease false findings significantly not compromising high sensitivity of the 

algorithm. In the case of microcalcifications appearing as spots brighter than their 

surroundings, performance was improved even with decreasing threshold. 

This framework can be used to process any specific by adding more 

constraints. To generate a segmented image the modulus maxima values were 

incorporated into growing region segmentation process over several iterations. It is 

significant to emphasize that there was no pre-processing of any data nor there is any 

post-processing of results. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

Microcalcifications are residual calcium deposits that are often the first signs of 

developing breast abnormalities that may lead to breast cancer. Up to 30% of 

cancerous lesion in diagnosed breast cancer cases could have been detected earlier 

through mammogram screenings if the right tools were available. While the detection 

of calcifications may be easier in fatty backgrounds, it is challenging in dense 

parenchyma, suggesting the need for more sensitive tools for accurately identifying 

suspicious regions in mammograms and propping a computer-aided system for further 

target classification. 

Summary and Conclusions 

Continuous wavelet transform is employed to detect singularities in 

mammograms by tracking modulus maxima along maxima lines. This work is based on 

convolving the mammogram with Gaussian kernel to detect and extract 

microcalcifications that are modeled as smoothed impulse functions. Two significant 

characteristics of the local modulus maxima of the wavelet transform with respect to 

the smoothed impulse function are investigated: magnitude of general maximum and 

fractal dimension of the detected sets of singularities. 



This detection approach is independent of the background tissue and is 

complementary to a computer-aided diagnosis system based on shape, morphology, 

and spatial distribution of individual microcalcifications. 

Experimental work is performed on a set of images with empirically selected 

parameters for 200 um/pixel spatial and 8 bits/pixel numerical resolution. Results are 

indicating that in abnormal regions the selected general maxima have larger 

magnitudes and tend to have higher fractal dimension than in surrounding normal 

regions. Findings are promising since they can be integrated into any framework for 

breast cancer detection and diagnosis. 

Dissertation Contributions 

This Dissertation has addressed the problem of singularity analysis in 2-D 

signals and its use for the microcalcification detection in mammograms. This work has 

the following contributions, 

• Developed a tool that is able accurately to compute wavelet 

coefficients, detect singular points in a 2-D signal, and classify the 

detected singularities in accordance to their known properties. 

• Showed that dominant general modulus maximum of the smoothed 

impulse function is a significant feature for microcalcification detection 

leading to both microcalcification cluster localization and 

microcalcification segmentation. 



• Showed that general modulus maximum of smoothed impulse function 

can be modeled as a general framework that can be used independently 

or integrated with other microcalcification detection algorithms. 

• Showed that the magnitudes of the general maxima of smoothed 

impulse functions are not sensitive on background tissue in 

mammogram, which is particularly important because microcalcification 

detection in dense parenchyma can be a very challenging task. 

Future Work 

A number of research projects can be pursued by carrying extension of this 

dissertation. An example of such are, 

« Malignant clusters appeared with lower average of general modulus 

maxima than benign clusters', which implies that general modulus 

maximum related to a malignant microcalcification corresponds to 

lower scale than the scale of the general modulus maximum related to a 

benign one. The investigation of the scale and the shape of smoothed 

impulse function could improve detection of particularly malignant 

microcalcification clusters and hence this framework can be used as a 

diagnosis tool. 

• The computed fractal dimension of detected smoothed impulse function 

supports the assumption that general modulus maximum feature 

preserves spatial distribution of microcalcifications, i.e. the areas with 

microcalcification clusters tend to have higher fractal dimension than 



the healthy areas. Practical implementation of how to use fractal 

dimension in microcalcification detection and/or classification can be a 

significant of a future work. 

• The overall system is computationally intensive that can be optimized 

and accelerated by using a multi-processor hardware. Real time 

processing during the screening procedure can be beneficiary in many 

ways. It will, reduce the amount of radiation a patient is exposed to, no 

need for an additional screening, and it would save the patients from 

having to endure the uncomfortable feelings during the procedure and 

more importantly, emotionally surviving cancer while waiting for 

additional test results. Real time implementation of this dissertation can 

be an interesting and challenging extension. 
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