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Modern communication systems have increasingly attempted to trade off the 

digital signal processing for analog circuitry. In performing this tradeoff, advanced 

algorithms have been implemented in both custom programmable hardware and in 

software; such systems are commonly called Software Defined Radios (SDR). Advanced 

software defined radios consist of highly configurable hardware and computers used as 

digital signal processing (DSP) platforms that provide the technology for realizing 

current and future generations of digital wireless communication infrastructure. Many 

sophisticated signal processing tasks are performed in SDR, including compression 

algorithms, channel estimation, equalization, forward error correction and protocol 

management. This research has focused on the custom and programmable hardware DSP 

devices which are commonly found prior to the baseband processor, performing critical 

tasks appearing after the analog to digital converter. The DSP techniques that are 

involved in this research are tuning, filtering and decimation of a received 

communication signal. 

The research activity performed the fixed-point algorithmic simulation in 

MATLAB and the Xilinx VHDL implementation of integer precision complex mixing, 



 
 

high rate filter decimation and two stage lower rate half-band filter decimation in order to 

develop a communication signal processor. In addition, a Xilinx based digital test data 

generator and output comparator design was developed to provide test data and analyze 

results in real time for the Xilinx communication signal processor developed. 
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INTRODUCTION 

 1.1 Motivation 

Long distance wireless communication has a century-old history, dating from the 

time when Guglielmo Marconi sent the telegraphic signals over a distance of 

approximately 1800 miles from Cornwall, across the Atlantic Ocean, to St. John 

Newfoundland in 1901 [1]. Since then, wireless communication has been one of the most 

important ways to transport voice and data using radio-frequencies (RF). Over the past 

century, wireless communication has progressed through the development and 

deployment of radios, radar, televisions, satellite and mobile telephone technologies.  

The growth of the cellular radio and personal communication systems began to 

accelerate in the late 1970s. Since then, mobile phones have been a successful platform 

for local and long distance wireless communication and there has been a dramatic 

increase in the number of mobile phone users. It is predicted that the mobile phone usage 

will grow even further as shown in the Figure 1-1 [2]. Even more striking, according to 

recent statistics and on a global scale, there are more mobile phone subscriptions than 

people with access to electricity or access to safe drinking water [4].  
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Figure 1-1 Growth of Cellphone Users [3] 

This growth has directly influenced the consumers demand for convenience of 

high-speed ubiquitous communication. Hence, wireless functionality is becoming a 

fundamental requirement for many electronic products. Furthermore, the rapid growth in 

the Internet of Things (IoT) is further driving the proliferation of various wirelessly 

connected devices, such as smart-phones, tablets, wearable computing devices, security 

and surveillance systems, lighting control systems, remote keyless entry, smart homes 

and appliances, wireless sensor networks, automated highways and factories [5]. A 

variety of radio technology standards have been proposed, and have significantly evolved 

over the last decade in order to meet the needs of diverse applications ranging from, 

Private Area Networks (PANs) to Local Area Networks (LANs) and Wide-Area cellular 

Networks  such as, Bluetooth, ZigBee, WiFi and the latest 4G-LTE systems [6]. 

In terms of hardware implementation, the wide range of radio technologies 

proposed involve a considerable amount of signal processing algorithms that have 

significant complexity. As a result, they generally requires one or more custom devices, 

such as Application Specific Integrated Circuits (ASICs) in order to achieve the high 

processing requirements, computation speeds and density needs by modern radio 



 

3 

standards for personal devices. Figure 1-2 illustrates an example of the current state of art 

system block diagram using a computer core and multimode ASICs as physical radios, 

where device functionality could be switched according to the selected mode of 

operation. The high cost of custom chip development implies the need for mass-market 

standards with significant volume in order to make a new concept viable. This in turn 

results in relatively long product development cycles. Also, the continuous increase in the 

number of competing standards and evolution occurring in the existing standards reduced 

the life span of products so dramatically that it is difficult to stay at the cutting edge of 

technology.  

 

Figure 1-2 Multimedia Chipset for Mobile Devices [7] 

The continued development of larger, faster, and more capable Field 

Programmable Gate Arrays (FPGAs) has supported increasingly more complex digital 
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signal processing implementations, including wireless communications. The large array 

of configurable logic blocks available within current FPGAs provides great flexibility 

and supports high speed processing. In combination, the rapid growth in the processing 

capabilities of FPGAs and DSPs has allowed Software Defined Radio (SDR) operations 

to be incorporated into prototype devices that can be readily transitioned into custom, 

high-volume wireless products capable of supporting a wide range of standards. 

 1.2 Research Objective 

Many sophisticated signal processing tasks are performed in FPGAs or custom 

ASICs, including Digital Up/Down Conversion (DUC/DDC), interpolation and 

decimation filtering, channel estimation and equalization. Among the highest data rate 

and computationally complex signal processing tasks performed in SDR wireless 

communication system is DUC/DDC, also referred to as receiver tune-filter-decimation 

and transmitter interpolation-filter-tune signal processing. This research will focus on the 

processing performed in post analog-to-digital conversion, involving the DDC operations 

of tuning, filtering and decimation of a received communication signal. 

The research activity performed and reported involves the fixed point integer 

arithmetic simulations of a narrow band Digital Down Converters (DDC) using 

MATLAB and the Register Transfer Level (RTL) implementation and verification on a 

Spartan 6 FPGA development board. The components of a DDC consist of a mixer and 

combinations lowpass filter decimators operating at the real-time sampling frequency of 

the communication system. To support such high-speed operation, distinct algorithmic 

techniques have been developed to perform the mixing and filtering required. For 
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complex mixing used for tuning, the COordinate Rotational Digital Computer (CORDIC) 

algorithm is implemented [8], while primary narrow-band filter decimation is performed 

using a Cascaded Integrator Comb (CIC) filter. Following this processing, two low rate 

half-band filter decimators were also implemented to enhance the passband and provide 

additional spectral shaping and stopband attenuation following the CIC filter. 

In addition to the signal processing tasks, a second FPGA based development 

board has been designed, developed, and implemented as a digital pattern generator and 

output comparator to provide predefined periodic integer test data and allow comparison 

of periodic output results in real time from the communication signal processor 

development board. The pattern generator and result comparison FPGA contains a 

Zylin’s open source 32-bit softcore processor called the Zylin CPU (ZPU) that is used to 

command, control, transfer and compare the data inside the FPGA. The finite precision 

integer test signals and the theoretical results of the signal processor are stored in an on-

board Pseudo Static Random Access Memory (PSRAM) from which the ZPU can source 

the pattern generator data and retrieve reference outputs to compare the collected 

processed result of the signal processing chain. The ZPUs software was written in C and 

complied using the open source ZPU - GNU Compiler Collection (GCC) tools. 

The project development and hardware test configuration is shown in Figure 1-3 

where the project consists of two Digilent Nexys 3 development boards which have 

Spartan 6 (xc6slx16-3-csg324) FPGAs. One board is used as the pattern generator and 

result comparison board and the other is used as the target board (communication signal 

processor). These boards are connected through a high speed Very High Density Cable 

(VHDC) connector for sending and receiving the test signals. 
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Target 

Pattern Generator

 

Figure 1-3 Thesis Hardware Setup 

 1.3 Structure of the Thesis 

This thesis is organized as follows: Chapter 2 provides an overview of digitization 

and digital signal processing in wireless communication, its evolution, and a description 

of Software Defined Radio (SDR) system. It also discusses the different architectures 

proposed to implement Digital Down Conversion chains, both for narrow band and wide 

band receivers. Chapter 3 describes the architecture of the Digital Down Converter chain 

proposed in this thesis and discusses the mathematical model of the Digital Down 

Conversion chain. This chapter includes the description of CORDIC high rate integer 

precision mixing and both, high rate and lower rate filter decimator’s. Chapter 4 

discusses the design of the signal processing board and describes the hardware 

implementation details of the Digital Down Converter model presented in Chapter 3. This 

chapter also discusses the finite precision MATLAB simulations of all the individual 
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components of the Digital Down Conversion chain. Chapter 5 discusses the architectural 

design of the pattern generator and comparator using an embedded softcore processor on 

FPGA. The chapter includes a short description of the softcore processor used and also 

discusses the pattern and result finite integer test data generation process using 

MATLAB. Chapter 6 describes the results of the signal processing board implementation 

and validates the theoretical results with the experimental results for each individual 

components of the Digital Down Converter chain. The final chapter summarizes the work 

performed, suggests further design and development activities and concludes this thesis. 
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OVERVIEW 

 2.1 Background of Software Defined Radio 

Historically the term radio is defined as any device which is used to exchange 

information from point A to point B using electromagnetic waves of radio frequency. In 

traditional radio systems, almost all the physical layer functions were implemented on 

specialized analog and digital components [9]. These fixed hardware implementations 

were restricted to specific standards and protocols and offered minimum in terms of 

interoperability. These systems also had fixed identities that could not be altered without 

modifications to the underlying hardware. The end result being high initial development 

costs and longer development and release cycles. 

In order to overcome these issues and achieve the flexibility of supporting 

multiple air interfaces and multiple modulation schemes, the concept of Software Defined 

Radio (SDR) came into existence [10]. The term software defined radio was first coined 

by Joseph Mitola in 1992 [11] and is defined as “a radio system where all or some of the 

physical layer functions are implemented in software” [12]. An ideal SDR is shown in the 

Figure 2-1. Here, the analog Radio Frequency (RF) spectrum is digitized as close to the 

antenna as possible so that all signal processing tasks are accomplished in digital domain. 

Digitizing at the antenna is currently not possible for the majority of high interest 

wireless signals as, Analog to Digital Convertor (ADC) do not have sufficient sample 
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rates to support desired frequency bands and bandwidths and also lack the required 

sensitivity and dynamic range. Despite current limitations, SDR does still attempt to 

digitize the signal as early as possible in the receiver chain while converting to the analog 

domain as late as possible in the transmit chain. 

Pre-

Amplifier

(LNA)

Power 

Amplifier

ADC

DAC

DSP

Antenna

Figure 2-1 Ideal Software Defined Radio 

 2.1.1 First Generation Software Defined Radios 

In the first generation software defined radio systems, technological limitations 

and cost considerations placed the ADCs and DACs at baseband. This meant only the 

baseband processing was in digital domain and the rest of the RF and IF stages were still 

in the analog domain. The architecture of a first generation SDR system is shown in the 

Figure 2-2 
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Pre-

Amplifier

(LNA)

Power 

Amplifier

ADC

DAC

Baseband 

Processor

Antenna

LPF

LO
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LO

Mixer

Analog Conversion Digital
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Figure 2-2 First Generation SDR 

 2.1.2 Second Generation Software Defined Radio 

In the second generation SDR systems, advancements in ADC technology 

allowed them to be utilized at the IF stage rather than at baseband. An example of the 

second generation SDR is shown in the Figure 2-3. 

Pre-

Amplifier

(LNA)

Power 

Amplifier

ADC

DAC

Baseband 

Processor

Antenna

LPF

LO

Mixer

LO

Mixer

Analog Conversion Digital

LPF

DDC

DUC

Digital Front-end
 

Figure 2-3 Second Generation SDR 

A description of the key elements of the SDR system follows: 
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1. RF front-end 

The RF front-end consists of Low Noise Amplifiers (LNA), mixers and filters. 

The RF signal received from the antenna is first amplified by the LNA and then mixed to 

either IF or baseband. Filtering is performed to remove the unwanted signals resulting 

from the mixing process and also to band limit the signal prior to the ADC. The reverse 

operation is performed at the transmit section of the FR frontend. 

2. ADC and DAC 

According to Nyquist-Shannon’s theorem, “in order for a bandlimited baseband 

signal to be reconstructed fully, the sampling rate of an ADC should be greater than or 

equal to twice the bandwidth of a bandlimited signal” [13]. However, the ADCs and 

DACs in current generation radios are sampling broader spectral bands at much higher 

rate than narrowband signals of interest, typically in the range of several hundred MHz. 

This allows the SDRs to provide multimode support and operate on any signal within the 

wider bandwidth. The high sampling rate also facilitates relaxing the requirements of the 

antialiasing filter thereby reducing the complexity and the cost of RF components. 

Furthermore, since software defined radios are also used in mobile devices, it is 

important that these ADCs/DACs consume little power. 

3. Digital Front-end 

The digital front end is used to perform additional signal processing tasks that are 

required as a result of the over sampling at the ADC. The front end acts as an interface 

between the high bandwidth, high sample rate ADC and the low bandwidth, low sample 

rate requirements of the baseband. On the receive side, the front end consists of a digital 
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down converter chain and on the transmit side its inverse, the digital up converter chain. 

The digital down converter first consist of a digital mixer to select the desired signal from 

the array of signals captured by the ADC. Filter-decimation in the DDC allows the 

bandwidth to be reduced to a range that is supported by the baseband processor, usually 

requiring much lower symbol rates. The digital up converter performs the opposite of all 

the operations described in the down converter. 

4. Baseband processor 

The baseband processor is responsible for modulation/demodulation, 

encoding/decoding, symbol and timing synchronization, timing recovery and a host of 

other signal processing tasks vital for the normal operation of the SDR. The baseband 

processor is usually implemented either on FPGA, General Purpose Processors (GPPs), 

Digital Signal Processors (DSPs) and Graphical Processing Units (GPUs) or a 

combination of multiple elements. The choice of the hardware element depends on the 

complexity of the signal processing required, the level of configurability and the cost of 

the overall system. 

 2.2 Research Prototypes for SDR 

For current and future development, a number of research prototypes for SDR 

platforms have been developed in the past few years, including the WARP board from 

Rice University [14], the USRP platforms from Ettus Research [15], the GENI SDR 

platform form Rutgers University [16], and the SORA from Microsoft [17]. These state-

of-the-art SDR platforms are more suitable for transceiver prototyping and reconfigurable 
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Access Points or Base Stations (BS) than consumer level devices due to the fact that they 

are expensive and consume a significant amount of power. 

 2.3 Overview of Digital Down Converter Chain 

The evolution towards SDR has been driven in part by the evolution of the 

enabling technologies such as ADC/DAC and digital integrated circuit technology 

(ASICs, FPGAs, GPPs, DSPs and GPUs). However, today’s GPPs and DSPs are not well 

suited for some computationally intensive processing and can be rather slow. Custom 

ASICs can have considerable development times and high initial costs. The advent of 

larger and faster FPGAs has opened up the field for digital signal processing 

implementation on FPGAs, where the large array of Configurable Logic Blocks (CLBs) 

within the FPGA gives great flexibility together with high speed for regular and 

structured algorithms. Once the FPGA is configured, it lacks the flexibility of a 

GPPs/DSPs but it can continuously perform computations with greater speed and 

efficiency and may be reconfigured. FPGAs are often used in communication systems 

where real time sample rate preprocessing with some degree of re-configurability is 

required. One such application is DDC and the mathematical inverse process DUC. DDC 

is a technique that takes a bandlimited high sample rate digitized signal, tunes the signal 

to a selected frequency, filters the tuned signal to a limited bandwidth and reduces the 

sample rate while still retaining all the signal information. DDCs are ubiquitously found 

in many devices such as cellular radios, radar systems, Wi-Fi radios, Bluetooth and 

ZigBee radios.  
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As mentioned before, the ADCs and DACs are operated at significantly higher 

rate in order to allow the SDRs to operate with wider bandwidths. But in many cases the 

signal of interest occupies only a small portion of that bandwidth. To filter the signal of 

interest at this high sample rate would require a prohibitively larger filter. As a result, 

special DSP techniques such as the combination of a complex mixer and CIC decimators 

or polyphase channelizers are used to tune to the desired bandwidth and reduce the 

sample rate of the received signal, to the rate which can be processed by concurrent 

processing elements efficiently. 

A typical narrow band Digital Down Converter chain consists of an oscillator, a 

complex mixer, a CIC filter decimator and a spectral reshaping filter as shown in Figure 

2-4. The first stage of the DDC is to down convert the stream of data from RF spectrum 

to baseband. This is accomplished through the process of multiplication or mixing with 

the complex sinusoidal waveform of the same frequency identical to the frequency of the 

signal of interest. 

H(n)

e-jØ0n 

Low-Pass Filter

CIC Filter 

Decimator

Complex Mixer

Local Oscillator

 

Figure 2-4 Digital Down Converter 

This process is graphically shown in the Figure 2-5 where the local oscillator 

generates a complex sinusoids of frequency −𝑓𝑐  this signal is mixed with the input signal 

at+𝑓𝑐, as a result input signal is down converted from 𝑓𝑐 to baseband. The amplitude 
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spectrum of both resulting in-phase and quadrature-phase component of the complex 

baseband signal must be maintained for further processing, which is why all filters in the 

in-phase and quadrature-phase path must be identical. 

-fc -IF

Signal of Interest Signal of Interest

-fc-fm -fc+fm fc-fm fc+fm
+fc

Other Signals Other Signals

+IF

Other Signals Other Signals

-fm +fm

LPF

Base-Band Signal  

Figure 2-5  Quadrature Mixing in Frequency Domain. 

Many techniques have been unveiled to efficiently implement the local oscillator 

in digital; including, Direct Digital Synthesizers (DDS) and Numerically Controlled 

Oscillator (NCO). In this thesis, COordinate Rotational Digital Computer (CORDIC) 

algorithm was used to implement as a numerically controlled oscillator and quadrature 

mixer combined together because of its simplicity and efficiency. The CORDIC was also 

used in early calculators and first computers for computing various complex functions 

like trigonometric, logarithms, complex number multiplications, divisions and square 

roots. Although the same functions can be implemented using Multiplier and 

Accumulator units (MAC’s), CORDIC can implement these functions just by using 

shifters and adders while saving a lot of hardware resources which is the primary criteria 

while designing a large system.  
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The second stage of the DDC is a filter decimators. Narrowband DDCs use a 

Cascaded Integrator Comb filter (CIC) since it offers many advantages, such as; 

implementing high decimation rates within the filter, providing a steep cut-off for a 

relatively few stages and it is implemented using only delays and adders which makes it 

very well suited for FPGA implementation. However, multistage CIC filters do not have 

a flat frequency response in the passband and need a compensating filter after the CIC 

filter. The response of this additional filter compensates for the droop introduced in the 

passband. Because of the need for the post compensating filter, CIC filters are preferred 

to be used with high decimation rates. 

RX

Front End
scaling scaling

CORDIC Digital Down Converter

CIC decimator CIC decimator

Small half-band

decimation filter

Small half-band

decimation filter

Large half-band

decimation filter

Large half-band

decimation filter

gain compensation

sample(31 downto 0)

sample(31 downto 16) sample(15 downto 0)

Q sample I sample

Figure 2-6 Digital Down Converter Chain 
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The techniques used in this thesis to implement a complex narrow band DDC is 

shown in the Figure 2-6. In this implementation, the filtering and down sampling was 

performed in two filter stages. First, a 3-stage CIC filter that performs filtering without 

multiplications while performing an internal M-to-1 decimation. This CIC filter is 

followed by a 2 stage half-band filters. The half-band filters can also be used to further 

decimate the input signal by the factor of 2 or 4 and provide stopband attenuation. This 

methodology of implementing a complex narrowband DDC is found in the popular 

Universal Software Defined Radio Peripheral (USRPs) form Ettus Research Inc. 
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THEORY OF CORDIC, CIC AND HALF-BAND FILTERS 

 3.1. CORDIC Processing 

The CORDIC processing stage performs the operations of a numerically 

controlled oscillator (NCO) and complex signal mixer on the incoming data. A 

numerically controlled oscillator is a digital signal generator which outputs a sinusoidal 

waveform based on converting a digitally programmed accumulated phase into the sine 

or cosine of the phase. NCOs offers various advantages for digital signal processing in 

terms of stability, accuracy, agility and reliability. NCOs offers various advantages for 

digital signal processing in terms of stability, accuracy, agility, exact repeatability, and 

reliability. NCOs are used in many digital communication systems, including DDC/DUC 

for digital radios, digital PLLs, radar systems, function generators, and modulators. There 

are numerous digital techniques for implementing an NCO with varying degree of 

complexity and efficiency. 

 3.1.1 CORDIC Overview 

Coordinate Rotational Digital Computer algorithm (CORDIC) was first developed 

by Jack E. Volder [8] in 1959 at aero-electronics department of Convair. His initial 

application was to replace the analog resolver in the B-58 bomber’s navigation system 

with a digital computer [18]. Recognizing the potential of the algorithm, it was later 

generalized and enhanced due to its potential for efficient and low cost implementation 
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for the computations of various complex functions, such as trigonometric, hyperbolic 

functions, logarithms, complex number multiplications, divisions and square roots [19]. 

While all these functions can be implemented using repeated computations with 

multipliers and accumulator units (MAC’s), a CORDIC processor can implement these 

functions efficiently with the use of a sequence of simple shift and add operations, saving 

a lot of hardware resources. Furthermore, the CORDIC computing technique is defined to 

use integer processing; a well-defined number of stages and clock cycles, and can achieve 

a well-defined numerical precision. 

The functionality of CORDIC can be described as the digital equivalent of an 

analog resolver [8]. Similar to the operation of such a resolver, there are two computing 

modes, a ROTATIONAL mode and a VECTROING mode. The CORDIC algorithm uses 

planar rotation and vectoring (𝑟, 𝜃) to compute elementary trigonometric functions when 

assigned with proper initial conditions. In the rotational mode, given the coordinate 

components of a vector (𝑋, 𝑌) and the angle of rotation 𝜃, the input vector is rotated by 

given rotation angle by performing a set of predetermined micro-rotations to obtain a new 

vector (𝑋′, 𝑌′) as shown in Figure 3-1. In the vectoring mode, the length 𝑟 and the angle 

𝜃 of the vector (𝑋, 𝑌) with respect to the x-axis can be computed. For this purpose, the 

vector is iteratively rotated towards the x-axis so that the y-component approaches zero. 

At this point, the sum of all angles is equal to the value of 𝜃, while the value remaining as 

the x-component corresponds to the length 𝑟 of the vector (𝑋, 𝑌). 
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Figure 3-1 CORDIC Micro-Rotations. 

 3.1.2 CORDIC Algorithm 

Consider a 2 dimensional vector at a point 𝑣 in a complex plane as shown in the 

Figure 3-2. The coordinate components of v can be represented as  

 𝑣 = 𝑥 + 𝑗 ∙ 𝑦 (1) 

If the vector is rotated by an angle 𝜙, then the coordinate components 

corresponding to the new vector v′ in a complex plane is given by [20] 
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𝑣′ = 𝑣 ∙ 𝑒𝑗𝜙 (2) 

we know that, the exponential term in the above equation can be expresses as 

𝑒𝑗𝜙 = 𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑠𝑖𝑛(𝜙) (3) 

v  = x +jy 

v = x+jy

Ø

Y

X

Figure 3-2 Two-Dimensional Vector Rotation 

Therefore, by substituting the exponential term in the equation (2) we get, 

𝑣′ = 𝑣 ∙ (𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑠𝑖𝑛(𝜙)) (4) 

By substituting for 𝑣 and 𝑣′, we can simplify the above equation as

𝑥′ + 𝑗 ∙ 𝑦′ = (𝑥 + 𝑗 ∙ 𝑦) ∙ (𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑠𝑖𝑛(𝜙)) (5) 

𝑥′ + 𝑗 ∙ 𝑦′ = 𝑥 ∙ 𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑥 ∙ 𝑠𝑖𝑛(𝜙) + 𝑗 ∙ 𝑦 ∙ 𝑐𝑜𝑠(𝜙) + 𝑗2 ∙ 𝑦

∙ 𝑠𝑖𝑛(𝜙)

(6) 

We know that, 𝑗 = √−1. Then, square of j would be equal to −1. Therefore, we can 

rewrite the above equation as 

𝑥′ + 𝑗 ∙ 𝑦′ = 𝑥 ∙ 𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑥 ∙ 𝑠𝑖𝑛(𝜙) + 𝑗 ∙ 𝑦 ∙ 𝑐𝑜𝑠(𝜙) − 𝑦 ∙ 𝑠𝑖𝑛(𝜙) (7) 

By separating the terms that contains 𝑗 and rewriting the above equation. We get 
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 𝑥′ + 𝑗 ∙ 𝑦′ = (𝑥 ∙ 𝑐𝑜𝑠(𝜙) − 𝑦 ∙ 𝑠𝑖𝑛(𝜙)) + 𝑗 ∙ (𝑥 ∙ 𝑠𝑖𝑛(𝜙) + 𝑦 ∙ 𝑐𝑜𝑠(𝜙)) (8) 

By equating both sides of the equation, the coordinate components of the new vector at 

the point 𝑣′ can be given as 

 𝑥′ = 𝑥 ∙ 𝑐𝑜𝑠(𝜙) − 𝑦 ∙ 𝑠𝑖𝑛(𝜙) (9) 

 𝑦′ = 𝑦 ∙ 𝑐𝑜𝑠(𝜙) + 𝑥 ∙ 𝑠𝑖𝑛(𝜙) (10) 

in order to simplify the CORDIC algorithm for hardware implementation, the equation 

(9) and (10) can written in matrix form as 

 
[
𝑥′

𝑦′] = [
𝑐𝑜𝑠(𝜙) − 𝑠𝑖𝑛(𝜙)

𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)
] ∙ [

𝑥
𝑦] 

(11) 

 
[
𝑥′

𝑦′] = 𝑅 ∙ [
𝑥
𝑦] 

(12) 

where 𝑅 is called rotational matrix and it is defined as 

 
𝑅 = [

𝑐𝑜𝑠(𝜙) − 𝑠𝑖𝑛(𝜙)

𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)
] 

(13) 

dividing the equation (13) by 𝑐𝑜𝑠(𝜙) we get 

 𝑅 = 𝑐𝑜𝑠(𝜙) ∙ [
1 − 𝑡𝑎𝑛(𝜙)

𝑡𝑎𝑛(𝜙) 1
] 

(14) 

Furthermore, using the one of the trigonometric identities for 𝑐𝑜𝑠(𝜙) =
1

√1+𝑡𝑎𝑛2(𝜙)
 , we 

can modify equation (14) to only have tangent terms as 

 𝑅 =
1

√1 + 𝑡𝑎𝑛2(𝜙)
∙ [

1 − 𝑡𝑎𝑛(𝜙)

𝑡𝑎𝑛(𝜙) 1
] 

(15) 

Therefore, computation of the coordinate components of a new vector 𝑣′ = [
𝑥′
𝑦′

] can be 

represented as  
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 𝑣′ =
1

√1 + 𝑡𝑎𝑛2(𝜙)
∙ [

1 − 𝑡𝑎𝑛(𝜙)

𝑡𝑎𝑛(𝜙) 1
] ∙ 𝑣 

(16) 

where angle 𝜙 is the rotation angle. 

In order to further develop the CORDIC algorithm, we can restrict the values of 

𝑡𝑎𝑛(𝜙) in the above equation such that the total rotation through a desired angle 𝜃 is 

performed as a series of angular rotation steps as shown in Figure 3-3. 
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Ø2 

θ 
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(X2, Y2)

(cos(θ ), sin(θ ))

(1, 0)
X

Y

 

Figure 3-3 Rotation through Iterative Micro-Rotations 

The process of rotating through angular rotation steps can be expresses as  

 
𝑣𝑖 =

1

√1 + 𝑡𝑎𝑛2(𝜙𝑖)
∙ [

1 − 𝑡𝑎𝑛(𝜙𝑖)

𝑡𝑎𝑛(𝜙𝑖) 1
] ∙ 𝑣𝑖−1 

(17) 

the above equation represents the sequence of CORDIC micro-rotations. Under ideal 

conditions, the sum of all these micro-rotations must be exactly equal to the total rotation 

angle. That is, 
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∑ 𝛿𝑖 ∙ 𝜙𝑖 = 𝜃

∞

𝑖=0

 
(18) 

where 𝛿𝑖 = ±1. For practical applications an infinite summation is not desired. 

Therefore, based on the desire numerical precision a limited summation can be formed 

approximating the angle  

 

∑ 𝛿𝑖 ∙ 𝜙𝑖 = 𝛿0 ∙ 𝜙0 + 𝛿1 ∙ 𝜙1 + ⋯ + 𝛿𝑁−1 ∙ 𝜙𝑁−1 ≈ 𝜃

𝑁−1

𝑖=0

 

(19) 

This is an important design consideration as the instantaneous phase is a numerically 

scaled integer representing 360 degrees or 2𝜋 radians. 

Furthermore, the complexity of the numerical calculations that need to be 

performed during each iterations can be reduced by restricting the 𝑡𝑎𝑛 (𝜙𝑖) in the 

equation (17) to take only the values of ±2−𝑖. Then, the angular steps that 𝑡𝑎𝑛(𝜙𝑖) takes 

can be expressed as, 

 
𝜙𝑖 = 𝑡𝑎𝑛−1 (

1

2𝑖
) 

(20) 

Resulting in 

 
𝑣𝑖 =

1

√1 + 2−2𝑖
∙ [ 1 −2−𝑖

2−𝑖 1
] ∙ 𝑣𝑖−1 

(21) 

From the above equation, we can say that the multiplication with a tangent can be 

replaced with a simple division operation by a power of 2. This division by power of 2, 

can be very efficiently implemented through a simple shift right operation on a shift 

register as shown in the Figure 3-4.  
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Figure 3-4 Division using Shift Register. 

Due to the restriction imposed on 𝑡𝑎𝑛(𝜙𝑖), we can substitute 𝑡𝑎𝑛(𝜙𝑖) = 𝛿𝑖 ∙ 2𝑖 in 

equation (17) as shown below 

 
𝑣𝑖 = 𝐾𝑖 ∙ [

1 −𝛿𝑖 ∗ 2−𝑖

𝛿𝑖 ∗ 2−𝑖 1
] ∙ 𝑣𝑖−1 

(22) 

where 𝐾𝑖 =  
1

√1+(𝛿∗2−𝑖)
2
 is the scale-factor. 

Until now the CORDIC algorithm is reduced to a few simple shifts and additions, 

except the multiplication with the scale-factor. During the implementation, the 

multiplication required by the term Ki in equation (22) can be performed later. In fact, all 

the multiplication factors can be combined into a single gain normalization step following 

the completion of all micro-rotations.  When this is done, the product of all the individual 

gains approaches a constant value, 

 
 lim
n→∞

K(n) = ∏ Ki

n

i=0

≈  0.60725294104140 
(23) 

At this point, a new term called “𝑍” is introduced. This term represents the 

intermediate micro-rotations in the CORDIC implementation and it can be represented as 
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𝑍𝑖+1 = 𝜃 − ∑ 𝜙𝑖

𝑁−1

𝑖=0

 

(24) 

where 𝜃 is the given rotational angle. On every rotation through an angle 𝜙𝑖, the term 𝑍 

and 𝛿𝑖+1 is computed, where 𝛿𝑖+1 is given as 

𝛿𝑖+1 = {
−1, 𝑍𝑖+1 < 0
+1, 𝑍𝑖+1 ≥ 0

(25) 

 3.1.3 CORDIC Pre-Rotation 

The CORDIC processor uses a series of micro-rotations that are defined as 

inverse tangent function as shown in equation (20). As a result, the CORDIC can only 

compute the coordinate components of vectors whose instantaneous phase values belongs 

to the region of convergence of inverse tangent function as shown in the Figure 3-5. Any 

phase angles which are not in this range cannot be processed without some prior 

manipulation and adjustment. 

Figure 3-5 Region of Convergence for Inverse Tangent Function 
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With the phase representation and the symmetry of sine and cosine functions, it is 

not difficult to define a set of simple pre-rotations based on the phase to allow the 

CORDIC processor to compute correct values. With the acceptable range of −
𝜋

2
< 𝜃 <

𝜋

2
, 

we need to pre-rotate for two additional regions, as shown in Figure 3-6, 
𝜋

2
 < 𝜃 < 𝜋 and 

−𝜋 < 𝜃 < −
∙𝜋

2
.  

For rotations within the first region, 
𝜋

2
 < 𝜃 < 𝜋 , if we apply the substitution 

based on the trigonometric identities  

 𝑐𝑜𝑠 (𝜃 +
𝜋

2
) = −𝑠𝑖𝑛(𝜃)  and  𝑠𝑖𝑛 (𝜃 +

𝜋

2
) = +𝑐𝑜𝑠(𝜃) (26) 

 𝑥 → 𝑦, −𝑦 → 𝑥, 𝜃 →  𝜃 −
𝜋

2
 

(27) 

The correct result will be computed.  

For the second region, −𝜋 < 𝜃 < −
∙𝜋

2
, the pre-rotation is based on 

 𝑐𝑜𝑠 (𝜃 −
𝜋

2
) = +𝑠𝑖𝑛(𝜃)  𝑎𝑛𝑑  𝑠𝑖𝑛 (𝜃 −

𝜋

2
) = −𝑐𝑜𝑠(𝜃) (28) 

 −𝑥 → 𝑦, 𝑦 → 𝑥, 𝜃 →  𝜃 +
𝜋

2
 

(29) 

and the correct result will be computed.  

The relationship between 𝑥 and 𝑦 used for pre-rotation can be summarized as 

shown in Table 3-1. Using this relationship, we can simplify the pre-rotation process as a 

simple negate and swap operation shown in the Figure 3-6. 
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Table 3-1 Technique used in CORDIC Pre-Rotation 

 𝜃 = 𝑓 (+
𝜋

2
 ~ + 𝜋) 

𝑥 𝑐𝑜𝑠 (𝜃 +
𝜋

2
) = 𝑐𝑜𝑠(𝜃) ∙ 𝑐𝑜𝑠 (

𝜋

2
) − 𝑠𝑖𝑛(𝜃) ∙ 𝑠𝑖𝑛 (

𝜋

2
) 

𝑐𝑜𝑠 (𝜃 +
𝜋

2
) = 0 ∙ 𝑐𝑜𝑠(𝜃) − 1 ∙ 𝑠𝑖𝑛(𝜃) 

− 𝑠𝑖𝑛(𝜃) = −𝑦 

𝑦 𝑠𝑖𝑛 (𝜃 +
𝜋

2
) = 𝑠𝑖𝑛(𝜃) ∙ 𝑐𝑜𝑠 (

𝜋

2
) + 𝑐𝑜𝑠(𝜃) ∙ 𝑠𝑖𝑛 (

𝜋

2
) 

𝑠𝑖𝑛(90 + 𝜃) = 0 ∙ 𝑐𝑜𝑠(𝜃) + 1 ∙ 𝑐𝑜𝑠(𝜃) 

𝑐𝑜𝑠(𝜃) = 𝑥 

 𝜃 = 𝑓 (−𝜋 ~  −
𝜋

2
 ) 

𝑥 𝑐𝑜𝑠 (𝜃 −
𝜋

2
) = 𝑐𝑜𝑠(𝜃) ∙ 𝑐𝑜𝑠 (

𝜋

2
) + 𝑠𝑖𝑛(𝜃) ∙ 𝑠𝑖𝑛 (

𝜋

2
) 

𝑐𝑜𝑠(270 + 𝜃) = 0 ∙ 𝑐𝑜𝑠(𝜃) + (1) ∙ 𝑠𝑖𝑛(𝜃) 

𝑠𝑖𝑛(𝜃) = 𝑦 

𝑦 𝑠𝑖𝑛 (𝜃 −
𝜋

2
) = 𝑠𝑖𝑛 (𝜃) ∙ 𝑐𝑜𝑠 (

𝜋

2
) − 𝑐𝑜𝑠 (𝜃) ∙ 𝑠𝑖𝑛 (

𝜋

2
) 

𝑠𝑖𝑛(90 + 𝜃) = 0 ∙ 𝑠𝑖𝑛(𝜃) − 1 ∙ 𝑐𝑜𝑠(𝜃) 

−𝑐𝑜𝑠(𝜃) = −𝑥 
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Figure 3-6 Methodology for Pre-Rotation 

 3.1.3 CORDIC as NCO 

We know that the coordinate components of the input vectors for CORDIC can be 

defined as 𝑣𝑖 = [
𝑥𝑖

𝑦𝑖
]. If the coordinate components of this vector is fixed to 𝑣𝑖 = [

1
0

], then 

the output of the CORDIC processor is actually the sine and cosine of an angle through 

which the CORDIC performed its rotation. Where the angle of rotation 𝜃 is defined as a 

fractional value defined by 

 
𝜃 =

(𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠)

2 ∗ 𝜋
 

(30) 

If this is defined as either an unsigned or signed fractional binary number the 

instantaneous phase would be represented as  

 

∑ 𝑏𝑖 ∙ 𝜑𝑖 = 𝑏0 ∙ 𝜋 + 𝑏1 ∙
𝜋

21
+ 𝑏2 ∙

𝜋

22
+ ⋯ + 𝑏𝑀−1 ∙

𝜋

2𝑀−1
≈ 𝜃

𝑀−1

𝑖=0

 

(31) 

or as a two’s complement representation, 

Pre-Rotation Range Normal Range

x' = -y

y' = x

θ' = θ - π/2

x' = y

y' = -x

θ' = θ + π/2

00± π

π/2

-π/2
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−𝑏0 ∙ 𝜋 + ∑ 𝑏𝑖 ∙ 𝜑𝑖 = −𝑏0 ∙ 𝜋 + 𝑏1 ∙
𝜋

21
+ ⋯ + 𝑏𝑀−1 ∙

𝜋

2𝑀−1
≈ 𝜃

𝑀−1

𝑖=1

 

(32) 

This significantly simplifies the pre-rotation process, as the quadrants may be directly 

defined based on the two most significant bits.  

With the binary representation, the CORDIC processor can be easily configured 

to become a NCO and compute the sine and cosine waveforms. This is usually done 

through the use of a computing a phase accumulator.  

The phase accumulator determines and outputs the instantaneous phase of the 

complex sinusoid. For each clock cycle or time event, the instantaneous phase is added to 

a predefined phase step to produce a new accumulated value. The phase step and time 

period between samples defines the frequency at which sine and cosine waveforms would 

oscillate if the instantaneous phases were presented to CORDIC processor. When the 

accumulator goes through a complete cycle or full range of summations for the integer 

width defined, the CORDIC processor would have generated one complete cycle of sine 

and cosine waveforms. After one cycle, the next phase step will cause a numerical 

overflow in the accumulator. This is allowed and, in fact, desired as phase is a modulo 2𝜋 

value and is expected to repeat. With the scaling performed to define the phase, the 

modulo phase operation perfectly aligns with the binary modulo operation of an integer 

adder or accumulator. 

As mentioned, the frequency of the sine and cosine waves generated by the phase 

accumulator and CORDIC is directly proportional to the phase accumulator step size. If 

the frequency is defined as the time derivative (or first order difference) of the 

instantaneous phase, we have 
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𝜃(𝑛) = 𝜃𝑠𝑡𝑒𝑝 ∙ 𝑛 (33) 

𝑓 =
𝜃(𝑛) − 𝜃(𝑛 − 1)

∆𝑡
=

𝜃𝑠𝑡𝑒𝑝

∆𝑡

(34) 

So, the smaller the step size, the lower the frequency, and the larger the step size, 

the higher the frequency. In addition, the number of bits, defined as 𝑀, will define 

specific frequencies and frequency steps that can be exactly represented as shown below 

𝑃ℎ𝑎𝑠𝑒𝑠𝑡𝑒𝑝(𝑟𝑎𝑑) =
𝑁𝐶𝑂𝑓𝑟𝑒𝑞 ∙ 2𝑀

2𝜋

(35) 

where 𝑁𝐶𝑂𝑓𝑟𝑒𝑞 is the required oscillator frequency in radians, and 2𝜋 is the normalized 

sampling rate. 

By incorporating the phase accumulator, the CORDIC processor can be used as a 

quadrature mixer and NCO. If the frequency of the NCO is chosen to be the carrier 

frequency of a signal of interest and the input vector represents the in-phase and 

quadrature-phase components of the signal sampled at RF, the output of the CORDIC 

processor represents the in-phase and quadrature-phase components of the down-

converted baseband signal. 

Finally, by using the equation (20), (22) and (24), we can easily implement the CORDIC 

processor either in hardware and software. The MATLAB and VHDL implementation 

details are explained in the next chapter of this thesis. 
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 3.2 Filter Decimation for Down Converters 

 3.2.1 Cascaded Integrator Comb Filter 

Many software defined radios are available in the market and each of them have 

their own set of digital filters used for realizing decimation and interpolation, digital 

filters are formed by a standard set of resources: memory or delays, adders, multipliers 

and resamplers. For hardware implementation, filter design can be characterized by the 

one that minimizes the number of multipliers and accumulators used in the architecture. 

In 1981, Eugene Hogenauer [21] suggested a new class of economical digital filter called 

Cascaded Integrator Comb filter also referred to as a CIC filter, the CIC filter belongs to 

a class of filter that does not require multipliers. Because of the simplicity of the 

implementation, CIC filter are used in many multirate signal processing applications such 

as, digital up-sampling/down-sampling. The filter has a lowpass frequency domain 

characteristics described by 𝑠𝑖𝑛𝑐 function with nulls at the output Nyquist rate and 

multiples, which for narrowband signals can ensures that after down sampling nothing 

aliases to DC.  

CIC filter design and response is derived from a multiplier free sliding window 

averaging filter also known as a boxcar filter shown in Figure 3-7, whose task is to 

smooth out the signals and unwanted noise [22]. This boxcar filter computes an output as 

follows, when a new data sample arrives, the previous contents in the shift register are 

shifted one place to the right, discards the oldest sample that had arrived 𝑀-samples ago. 

Next, the filter forms the sum of the contents of the register and outputs sum. The 
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performance of such a direct implementation of system is not very efficient as the 

summation is repeated for every new sample and the frequency response of this filter 

does not have significant attenuation outside of the passband. For large 𝑀, the number of 

additions is significant. Meanwhile, the maximum attenuation level of the first side lobe 

is just -13dB. In addition, it requires 𝑀 − 1 additions to compute every output, which 

may be a big cost if 𝑀 is very large. We can try to improve the filter characteristics and 

reduce signal processing complexity by investigating the mathematics involved behind a 

sliding window average filter.  

M21X(n)

Y(n)

M

 

Figure 3-7 FIR Implementation of Boxcar Filter 

The impulse response of the sliding window average filter is given by 

 

𝐻(𝑛) = ∑ 𝛿(𝑛 − 𝑘)

𝑀−1

𝑘=0

 

(36) 

Hence, the output of the boxcar filter can be written as  

 

𝑦(𝑛) =  ∑ 𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

 

(37) 
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The frequency response of a boxcar filter can be derived by taking the Fourier 

transform of the equation (36) as 

 

𝐻(𝑒𝑗𝜔) = ∑ 1𝑒−𝑗𝜔𝑛

𝑀−1

𝑛=0

  
(38) 

we can further simplify the above equation as 

𝐻(𝑒𝑗𝜔) =  ∑ 1 ∙ 𝑒−𝑗𝜔𝑛

∞

𝑛=0

−  ∑ 1 ∙ 𝑒−𝑗𝜔𝑛

∞

𝑛=𝑀

 

𝐻(𝑒𝑗𝜔) =  ∑ 1 ∙ 𝑒−𝑗𝜔𝑛

∞

𝑛=0

−  ∑ 1 ∙ 𝑒−𝑗𝜔(𝑛+𝑀)

∞

𝑛=0

 

𝐻(𝑒𝑗𝜔) =  ∑ 1 ∙ 𝑒−𝑗𝜔𝑛

∞

𝑛=0

−  ∑ 1 ∙ 𝑒−𝑗𝜔(𝑛)

∞

𝑛=0

∙ 𝑒−𝑗𝜔(𝑀) 

taking e−jωn common in the above expression we get, 

 
𝐻(𝑒𝑗𝜔) = (1 − 𝑒−𝑗𝜔(𝑀)) ∙ ∑ 1. 𝑒−𝑗𝜔(𝑛)

∞

𝑛=0

 
(39) 

By careful observations of the above expression, we get to know that it is an infinite 

series expression, which is also a geometric series. So by applying the notable geometric 

series identity 

1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ = ∑ 𝑥𝑛

∞

0

=
1

1 − 𝑥
 ∀ |𝑥| < 1 

We get 

 
𝐻(𝑒𝑗𝜔) = (1 − 𝑒−𝑗𝜔(𝑀)) ∙ (

1

1 − 𝑒−𝑗𝜔
) 

(40) 
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Taking 𝑒−
𝑗𝜔𝑀

2  common in the numerator and 𝑒−
𝑗𝜔

2  common in the denominator from the 

equation (40) we get the following equation 

 

𝐻(𝑒𝑗𝜔) = 𝑒−
𝑗𝜔𝑀

2 ∙ (𝑒
𝑗𝜔𝑀

2 − 𝑒−
𝑗𝜔𝑀

2 ) ∙ (
1

𝑒−
𝑗𝜔
2 ∙ (𝑒

𝑗𝜔
2 − 𝑒−

𝑗𝜔
2 )

) 

(41) 

we know that 𝑠𝑖𝑛(𝜃) =
𝑒𝑗𝜃−𝑒−𝑗𝜃

2𝑗
 by substituting in the equation (41). We get, 

 

𝐻(𝑒𝑗𝜔) = 𝑒−
𝑗𝜔𝑀

2 ∙ (2. 𝑗. 𝑠𝑖𝑛 (
𝜔𝑀

2
)) ∙ (

1

𝑒−
𝑗𝜔
2 ∙ (2. 𝑗. 𝑠𝑖𝑛 (

𝜔
2))

) 

(42) 

the above equation can be re-written as 

 

𝐻(𝑒𝑗𝜔) = 𝑒−
𝑗𝜔(1−𝑀)

2 ∙ (
𝑠𝑖𝑛 (

𝜔𝑀
2 )

𝑠𝑖𝑛 (
𝜔
2)

) 

(43) 

we know that 
𝑠𝑖𝑛(𝜃)

𝜃
= 𝑠𝑖𝑛𝑐(𝜃) we can simplify above expression further as shown below. 

 

𝐻(𝑒𝑗𝜔) = 𝑒−
𝑗𝜔(1−𝑀)

2 ∙ 𝑀 ∙ (
𝑠𝑖𝑛𝑐 (

𝜔𝑀
2 )

𝑠𝑖𝑛𝑐 (
𝜔
2)

) 

(44) 

Using MATLAB, we can plot the frequency response of an M length boxcar filter 

according to equation (44) as shown in the Figure 3-8. We notice that, in order to achieve 

higher attenuation outside the passband, the length of the filter should be significantly 

high. As a result, it requires huge amount of adders for realizing this filter in hardware. 

We also notice that nulls are at the integer multiples of 𝜔 =
2𝜋

𝑀
 which is as important 

property of this filter. 
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Figure 3-8 Boxcar Filter Frequency Response 

We can reduce the number of addition required to implement this filter by 

considering a recursive form of the boxcar filter. That is, by altering the previous sum by 

adding the new sample and subtracting the oldest sample, this recursive form can be 

expressed as 

 

𝑦(𝑛) = ∑ 𝑥(𝑛 − 𝑘) = 𝑥(𝑛) − 𝑥(𝑛 − 𝑀) +

𝑀−1

𝑘=0

∑ 𝑥(𝑛 − 1 − 𝑘)

𝑀−1

𝑘=0

 

(45) 

We know that 𝑦(𝑛 − 1) can be written as 

 

𝑦(𝑛 − 1) = ∑ 𝑥(𝑛 − 1 − 𝑘)

𝑀−1

𝑘=0

 

(46) 

Substituting the above expression in the equation (18), we get 

 𝑦(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 𝑀) + 𝑦(𝑛 − 1) (47) 
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The recursive implementation can be realized as shown in the Figure 3-9. The resulted 

filter structure is called as CIC filter and could be broken into two parts; one as a comb 

section of length 𝑀 and the other as an integrator section. In this type of implementation, 

the computation of each output sample would require only two adders as compared to 

𝑀 − 1 adders in the simple boxcar filter structure. 

+

M---21

Z
-1

-

X(n)

Y(n-1)

Y(n)

Z-M

 

Figure 3-9 Single Stage CIC Filter 

While the signal processing complexity is now reduced to just two simple adders, the 

frequency response of the filter has not changed from that seen in Figure 3-10.  

 

Figure 3-10 Frequency Response of Integrator Comb (CIC) Filter 
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We can improve the spectral domain performance of this filter by forming a 

cascade of multiple recursive boxcar filters. It is common to use 3-to-5 cascade stages 

with many applications. The transfer function and the corresponding frequency response 

is shown in equation (48) and (49). 

 
𝐻𝑘(𝑍) = [

1 − 𝑍𝑀

1 − 𝑍−1
]

𝐾

 
(48) 

 

|𝐻(𝑒𝑗𝜔)| = [𝑀 ∙
𝑠𝑖𝑛𝑐 (

𝜔𝑀
2 )

𝑠𝑖𝑛𝑐 (
𝜔
2)

]

𝐾

 

(49) 

where, 𝑀 is the length of the comb section in the CIC structure and 𝐾 is number of 

cascaded stages. The effect of this implementation is to increase attenuation of the first 

side-lobe level by multiples of -13dB at output of successive cascaded stages as shown in 

the Figure 3-11. Another possibly more important feature of this cascaded form is that the 

stopband nulls are getting broader, providing wider notches in the spectrum at 

frequencies of 𝜔 =
2𝜋

𝑀
 or 𝑓 =

𝑓𝑠

𝑀
. If the CIC low pass filter is decimated by a factor of 𝑀, 

the wider notches at multiples of the sampling rate in the spectrum fall exactly on the 

frequency images that would be aliased, as shown in Figure 3-12. 

The main disadvantage of this type of implementation is that the low pass filter 

passband is not flat and the -3dB point on the main-lobe is getting narrower as 𝐾 

increases. This effect is called “droop” in passband. To compensate for this droop, CIC 

filter decimators are usually followed by a cleanup filter which provides spectral 

flattening and reshaping. 
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Figure 3-11 Spectrum of a Multistage CIC 

 

Figure 3-12 Broadening Nulls at Successive Stages of CIC 
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Furthermore, when the CIC filter is applied for an up-sampling task, the comb 

section is placed at the input followed by resampling switch and then integrator section. 

On the other hand for down sampling applications the integrator section is place at the 

input followed resampling switch and then the comb section. This reordering is 

established to permit the application of multirate signal processing identity of the 

reordering the resampling switch and the comb filter as shown in Figure 3-13. When the 

CIC filter absorbs the resampling switch, the comb filter together with the resampling 

switch becomes a differentiator on the lower data rate side [21] and the filter structure is 

known as Hogenauer filter. A CIC filter with any number of stages can be converted to a 

Hogenauer filter by first ordering all the integrators on one side of the filter and the comb 

filters on the other side, then applying the sample rate identity to interchange the 

resampling switch and the comb filters. The goal of this thesis is to implement a 3 stage 

CIC filter as shown in the Figure 3-14. 

Z
-1

+

+

Z
-1

+

+

M:1

Integrator Differentiator
 

Figure 3-13 Hogenauer Filter Structure of a Single Stage CIC Filter 
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Figure 3-14 Hogenauer Structure of a 3-stage CIC Filter 

The integrators in a CIC filter is very unstable and can easily go to infinity will 

results in a register overflow in all integrator stages in the filter. However, it will not be a 

problem if these two condition are met [21]. 

1. The filter is implemented with a number system which allows “wrap-around” 

between the most positive and most negative numbers. 

2. The range of the number system is equal to or greater than the maximum 

output expected at the output stage of the entire decimation filter structure.  

Based on these conditions high attention to the bit growth in each successive 

stages of the accumulators of the CIC filter. From [22] and [21] the required bit width to 

design an accumulator which can accommodate the maximum and/or worst case register 

bit growth is defined as the maximum output magnitude from the worst possible input 

signal relative to the maximum input magnitude. Using this definition, the maximum 

register growth from the first stage up to and including the last stage is given by equation 

(50). 
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 𝐺𝑚𝑎𝑥 = 𝑅 ∙ 𝑀𝐾 (50) 

Where 𝑅 is the decimation rate, 𝑀 is the length of comb filter and 𝐾 is the 

number of cascaded stages. If the input data has a bit width of 𝐵𝑖𝑛, then the register 

growth is given by the equation (51). This growth is used in the CIC filter design process 

to insure that no data are lost or corrupted due to register overflow. 

 𝐵𝑚𝑎𝑥 = 𝐵𝑖𝑛 + 𝐶𝐸𝐼𝐿[𝑙𝑜𝑔2(𝐺𝑚𝑎𝑥)] (51) 

In most practical cases where decimation rate is very large, 𝐵𝑚𝑎𝑥 is very large 

hence it has to be truncated or rounded at the output stage. The bit growth in the CIC 

filter reflects the filter gain between the input and output of the filter. During down 

sampling, we can scale the output of the CIC filter to remove the filter processing gain by 

pruning the least significant bits to the level corresponding to the filter processing gain. 

The implementation details are further explained in the next chapter. 

 3.2.2 Half-Band Filters 

The second stage of filtering in the DDC chain consists of two half-band 

decimating filters. A half-band filter is a non-recursive Finite Impulse Response (FIR) 

filter designed to have a passband bandwidth between ±
1

4𝑡ℎ of the sampling rate as 

shown in the Figure 3-15. The impulse response of an ideal non-casual continuous half-

band filter with two sided bandwidth 
𝑓𝑠

2
 is shown in (52) [22]. 

 
ℎ𝐿𝑃(𝑡) =

𝑓𝑠

2
∙ 𝑠𝑖𝑛𝑐 (

2𝜋𝑓𝑆

2
2

𝑡) (52) 
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Based on the above equation, we can define the half-band filter as, a filter whose impulse 

response which has a 𝑠𝑖𝑛𝑐 characteristics that is symmetric about the origin and has zero 

crossing at the integer multiples of twice the sampling period. The frequency response of 

this filter has the same passband and stopband ripples. By zooming into the response, it 

can be verified that the peak-to-peak ripples in passband and stopband are the same.  

 

Figure 3-15 Zero-Phase Frequency Response 

The discrete impulse response can be obtained from the above equation (46) by 

sampling it with the sample rate of 𝑓𝑠 as shown in (53) and the simplified equation is 

shown in (54). 

 
ℎ𝐿𝑃(𝑛) =

𝑓𝑠

2
𝑓𝑠

∙ 𝑠𝑖𝑛𝑐 (
2𝜋𝑓𝑠/2 

2

𝑛

𝑓𝑠
 ) (53) 

 
ℎ𝐿𝑃(𝑛) =

1

2
∙ 𝑠𝑖𝑛𝑐 (

𝑛𝜋

2
) (54) 

The special property of (54) is that its discrete impulse response has multiple zero 

valued coefficients [23]. In fact, all the even numbered samples of ℎ(𝑛), except ℎ(0), are 
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equal to zero as shown in the equation (55). Figure 3-16 shows an example of the half-

band filter impulse response. 

 ℎ(2𝑛) =  {
𝑐     𝑛 = 0 
0     𝑛 ≠ 0

 
(55) 

 

Figure 3-16 Half-Band Impulse Response 

If the transfer function 𝐻(𝑍) is written in the form of a polyphase decomposition (56) we 

see immediately that the polyphase component 𝐸𝑜(𝑍) is a constant, i.e, 𝐸0(𝑍) = 𝑐 thus 

we get (57) [23]. 

 𝐻(𝑍) = 𝐸0(𝑍2) + 𝑍−1𝐸1(𝑍2) (56) 

 𝐻(𝑍) = 𝑐 + 𝑧−1𝐸1(𝑍2) (57) 

We know that by complementing the impulse response of a lowpass filter we 

would get a high pass filter since the complement operation is thought as a phase shift of 
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𝜋

2
, and adding both the responses together as shown in (58) we get a filter which has a flat 

frequency response from DC to 𝑓𝑠, which is also known as an all pass filter.  

 𝐻(𝑍) + 𝐻(−𝑍) = 2𝑐 (58) 

By default, the resulting sum should be equal to 1, therefore assuming that c in (58) is 

normalized to 0.5. This shows that, 𝐻 (𝑒𝑗(
𝜋

2
−𝜃)) and 𝐻 (𝑒𝑗(

𝜋

2
+𝜃)) add up to unity for 

all 𝜃. In other words, we have a symmetry with respect to the half-band frequency 
𝜋

2
, 

justifying the name “half-band filter”.  

A digital filter is basically a real-time processor with an arithmetic unit for 

additions and multiplications, and a memory to store the filter coefficients. A direct is 

shown in the Figure 3-17. As the number of filter coefficients increases, the 

implementation of this filter becomes more complicated and requires a larger number of 

multipliers and adders and the filter would consume a larger area. By proper design of the 

filter coefficients, many implementation methodology can be followed which can help us 

in saving the hardware resources required to implement this filter. 
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Figure 3-17 FIR Filter Structure 
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y(n)  

Figure 3-18 Symmetric FIR Filter Structure 

The efficiency of half-band filters derives from the fact that nearly 50 percent of 

the filter coefficients are zero and the remaining coefficients are symmetric with respect 
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to the single nonzero even coefficient. Hence, the input samples can be pre-added before 

multiplying with the coefficients as shown in the Figure 3-18. That is, 2 multiplications 

can be replaced by 1 addition and 1 multiplication operations. Table 3-2 summarizes the 

computational gain of the half-band filters over the conventional FIR filters. With this 

result, the half-band filter demonstrates a potentially saving of 
1

4
 the multiplications and 

1

2
 

the additions. 

Table 3-2 Half-Band Computation Efficiency 

Filter Category 

(FIR) Special Conditions Taps 

Number of 

Multiplications 

Number of 

Adders 

Conventional  4M 4M 4M-1 

Half-Band  4M+3 2M+3 2M+2 

Half-Band No multiplies at h(0) 4M+3 2M+2 2M+2 

Half-Band 
No multiplies at h(0) 

and symmetric 
4M+3 M+1 M+1 

 

In this thesis, two half-band filters were implemented which exhibits a strict linear 

passband characteristics, both the half-band filters also have a fixed decimation by a 

factor of 2. Amongst the two filters, the first half-band filter has only 7 coefficients. In 

which, only 3 coefficients are nonzero including the middle coefficient and it has a fairly 

poor performance in terms of out of band attenuation but in combination with the second 

filter provides improved transition bands and stopband. The impulse and frequency 

response of 7-Tap half-band filter is shown in the Figure 3-19. The second half-band 

filter has 31 coefficients constructed as a 2 path polyphase filter structure. Out of these 31 

coefficients, 14 coefficients are zeros and filter is constructed with only using 16 

coefficients since the center tap is considered to be equal to 1. This half-band filter has a 
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significantly better performance compared to first half-band filter with respect to the 

stopband attenuation levels as shown in Figure 3-20. The implementation details of these 

half-band filters are further explained in the next chapter. 

 

Figure 3-19 First Stage Half-Band Filter 

 

Figure 3-20 Second Stage Half-Band Filter 
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METHODOLOGY AND IMPLEMENTATON 

This section will provide a detailed description of MATLAB and VHDL 

implementation of the DDC chain discussed in the previous chapter. The communication 

signal processing board designed uses a fractional 2’s complement integer number 

system to represent the data samples. The processor is capable of receiving a 32-bit 

complex word as interleaved 16-bits of a quadrature phase sample and 16 bits of in phase 

sample. This configuration is intended to support the signal output of two quadrature 

sampling ADCs. If 16-bit ADCs are used, the data is fed directly into the in-phase and 

quadrature inputs. If an ADC with less than 16-bits is used, the data must be left shifted 

so that the ADC Most Significant Bits (MSBs) is the input MSBs and the remaining 

Least Significant Bits (LSBs) are zero filled. As an integer processor it is very important 

to maintain proper input bit positioning, as the processing stages have been designed to 

maximize dynamic range and performance for left aligned data inputs. 

After the input stages, the communication signal processor attempt to maintain a 

24 bit integer data path. This would allow a wider input ADC to be used in the future 

while maintaining a higher signal dynamic range in the current processing. The 24-bits 

representation is not maintained at all signal processing stages as 18x18 multipliers are 

used in half-band filtering and gain adjustment processing stages. Where this occurs, the 

signal will be reduced in dynamic range (typically rounded) prior to multiplication and 
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24-bit results will be maintained. The architectural model of the complex narrow band 

DDC chain implemented in this thesis is shown in the Figure 4-1. 

4.1 CORDIC Processing Unit 

The CORDIC processing unit implemented in this thesis can be conceptualized as 

a combination of NCO and quadrature mixer. The designed CORDIC processor is 

operating at a full sampling rate, and it allows the full bandwidth of a sampled signal to 

be down converted to baseband. 

Generally, the number of stages in CORDIC is dependent on the number of bits of 

precision required in the system. For a CORDIC processor working at 24 bits of 

precision, the maximum number of stages for an efficient implementation is 24, i.e., one 

stage per bit. Any additional stages would result in same output vectors with no or 

insignificant change. For a specific input bit precision, the expected operation and 

resultant vectors from each CORDIC micro-rotations are examined to determine at which 

stage, or after how many micro-rotations the CORDIC processor has approached the 

desired angle. As a result, the implementation of the CORDIC processor can be 

simplified in order to save the area required on the silicon die. 

For the architecture selected in this thesis, a 20 stage 24-bit CORDIC processor 

was designed on a Spartan 6 (xc6slx16-3-csg324) FPGA, and the design was verified 

with a fixed-point iterative model implemented in MATLAB. The necessary functional 

components and data flow for implementing the CORDIC processor is shown in the 

Figure 4-2. 



 

 

5
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Figure 4-1 Architecture of Communication Signal Processing Board
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Figure 4-2 CORDIC Processing Unit Core 

The CORDIC processor designed uses four fundamental blocks; the phase 

accumulator, the pre-rotator, the clipper and the actual CORDIC engine. 

The CORDIC processor computes an output as follows: 

1. The step size of the phase accumulator for a particular frequency that needs to 

be generated is predetermined and loaded into the phase accumulator. The 

phase accumulator is updated to the next phase value. 

2. The input vectors are first pre-rotated if necessary before the CORDIC engine. 

3. The CORDIC engine obtains the data from pre-rotation module and phase 

accumulator and rotates the coordinate components of the input vector 

through an angle specified by the phase accumulator. 

4. Finally, the outputs from the CORDIC engine are truncated to a required bits 

precision by the clipping module. 

This process is repeated infinitely and the output of CORDIC processing unit will 

be a frequency translated version of the input signal. The techniques involved in phase 
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accumulator, pre-rotation and CORDIC engine are explained individually in the 

following parts of this section.  

 4.1.1 Phase Accumulator 

The CORDIC implemented in this thesis uses a 32-bit phase accumulator, which 

is implemented as a simple 32-bit adder, which adds the previous phase with a specified 

step size on every clock cycle. The 32-bit value from phase accumulator is then truncated 

to a 24 MSBs before being used by the CORDIC engine. The extra 8 LSB in the phase 

accumulator are used to provide higher frequency resolution for the NCO and a better 

resolution in the output signal. 

A fixed-point 32-bit phase accumulator for the CORDIC processing unit was 

implemented in MATLAB using a wrap-around method to restrict the integers to a fixed 

number of bits as shown in the code below. 

% ############------[32 bit integer wrap around]------############ 
if (phase > 2147483647)% if > 2^31 - 1 roll it back to -ve's 
    phase = phase - 4294967295; %(2^31-1 + 2^31) 
else if(phase < -2147483648) % -2^31 
        phase = phase + 4294967295; 
    end  
end 

 

In the example shown, the datatype for the “phase” variable was chosen to be 

int64, and every time the “phase” gets a value greater than 232 − 1, the value is rolled 

back to a negative value within the range of a 32-bit integer. This wrap-around logic is 

shown in the Figure 4-3.  
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Figure 4-3 CORDIC Phase Accumulator 

 4.1.2 Pre-Rotation 

In the 24-bit MSBs of the phase accumulator, 223 is represented as −1800 and 

222 is represented as +900 and so on. Using this information, we can determine the 

quadrant of the instantaneous phase values. Therefore, we can implement the pre-rotation 

block as a multiplexer using quadrant information from 2 MSBs of angular arguments 

computed in the phase accumulator as shown in the Table 4-1. 

Table 4-1 Input Vector Quadrants 

Z(23) Z(22) Quadrant  

0 0 0 to 90 No pre-rotation 

0 1 90 to 180 Needs pre-rotation 

1 0 0 to -90 No pre-rotation 

1 1 -90 to -180 Needs pre-rotation 
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The pre-rotation of a 24-bit input angles was done using the MATLAB’s 

predefined bitwise operators in-order to closely match the hardware implementation and 

ease the verification process as shown in the code below. 

% Phase pre rotation since cordic is limited to +pi/2 to -pi/2 

if (zin>=2^22 && zin<2^23)% interval between 90 to 180 degrees 

    xpast = x; 

    x = -y; 

    y = xpast; 

    zin = bitand(zin, 4194303); 

 else if(zin>=-2^23 && zin<-2^22)% interval between -180 to -90 

degrees 

        xpast = x; 

        x = y; 

        y = -xpast; 

        zin = bitor(zin,-12582912); 

     end 

end 

 

The VHDL code snippet implementing the pre-rotation block as a multiplexer 

using the two most significant bits of the phase vector as the select lines is shown below. 

case (Zin(24-1 downto 24-2)) is 

 when "00" =>  -- interval between 0 to 90 degrees no pre-rotation 

  I0 <= (Iin_ext); 

  Q0 <= (Qin_ext); 

  Z0 <= (Zin); 

 when "01" => --interval between 90 to 180 degrees 

  I0 <= -(Qin_ext); 

  Q0 <= (Iin_ext); 

  Z0 <= ("00" & Zin(zwidth-2-1 downto 0)); -- phase 

rotation to -90 deg 

 when "10" => --interval between -180 to -90 degrees 

  I0 <= (Qin_ext); 

  Q0 <= -(Iin_ext); 

  Z0 <= ("11" & Zin(zwidth-2-1 downto 0)); -- Phase 

rotation to +90 deg 

 when "11" => -- interval between -90 to 0 degrees no pre-rotation 

  I0 <= (Iin_ext); 

  Q0 <= (Qin_ext); 

  Z0 <= (Zin); 

 when others => 

  I0 <= (others => '0'); 

  Q0 <= (others => '0'); 

  Z0 <= (others => '0'); 

end case; 
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 4.1.3 CORDIC Engine 

As mentioned before in Chapter 3, the CORDIC processor can be easily 

implemented using the simplified CORDIC equation (59). According to this equation, a 

single stage CORDIC processor could be implemented just by using two shift registers 

and three adders as shown in the Figure 4-4.  

 
𝑣𝑖 = 𝐾𝑖 ∗ [

1 −δi ∗ 2−i

δi ∗ 2−i 1
] ∗ 𝑣𝑖−1 

(59) 

SHIFTER

ADD/SUB

SHIFTER

ADD/SUB

MEMORY

ADD/SUB

X[j] Y[j]

j j j

δjδj δj

Z[j]

X[j+1] Y[j+1] Z[j+1]

δj+1 =  sign (Z[j+1])  

Figure 4-4 Single Stage CORDIC using Shift Registers 

Furthermore, to increase the throughput of the CORDIC processor, all micro-

rotations defined by the tangents are precomputed and stored on the block RAM or on the 

Look Up Tables (LUT). These precomputed micro-rotations for a 24-bit CORDIC is 

shown in the Table 4-2. 
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Table 4-2 CORDIC Constants or Arc Tangent Radix Constants 

Iterations 

Angle 

(radians) 

Angles 

(degrees) 

Phase Constants: 

24 Bits(radians) 

I = 1 tan−1(2−1) 45 2097152 

I = 2 tan−1(2−2) 26.56505118 1238021 

I = 3 tan−1(2−3) 14.03624347 654136 

I = 4 tan−1(2−4) 7.125016349 332050 

I = 5 tan−1(2−5) 3.576334375 166669 

I = 6 tan−1(2−6) 1.789910608 83416 

I = 7 tan−1(2−7) 0.89517371 41718 

I = 8 tan−1(2−8) 0.447614171 20860 

I = 9 tan−1(2−9) 0.2238105 10430 

I = 10 tan−1(2−10) 0.111905677 5215 

I = 11 tan−1(2−11) 0.055952892 2608 

I = 12 tan−1(2−12) 0.027976453 1304 

I = 13 tan−1(2−13) 0.013988227 652 

I = 14 tan−1(2−14) 0.006994114 326 

I = 15 tan−1(2−15) 0.003497057 163 

I = 16 tan−1(2−16) 0.001748528 81 

I = 17 tan−1(2−17) 0.000874264 41 

I = 18 tan−1(2−18) 0.000437132 20 

I = 19 tan−1(2−19) 0.000218566 10 

I = 20 tan−1(2−20) 0.000109283 5 
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 4.1.4 MATLAB Implementation 

A 24-bit fixed-point 20 stage CORDIC engine was implemented in MATLAB 

using an iterative method where 𝑗 is the iterative index. Each iteration in this 

implementation can be thought as an individual stage of CORDIC processing as shown in 

the code snippet below. 

while j < 20 

if (phase > 0) 

delta = 1; 

else 

delta = -1; 

end 

xpast = x; 

x=xpast - (y* delta *(1/2^j)); 

y=y + (xpast* delta *(1/2^j)); 

j = j+1; 

phase = phase - (delta *consts(j)); 

end 

 

In each stage, the input vectors (𝑥, 𝑦) are right shifted by 𝑗 times (division by 2𝑗 

operation) and added/subtracted together depending on the value of delta (𝛿𝑗) resulted 

from the previous iteration.  

In order to configure the CORDIC as a complex sine and cosine signal generator, 

the initial vectors (𝑥𝑖, 𝑦𝑖) has to be fixed at (1,0). By doing so, the phase difference 

between the vectors are explicitly specified as 
𝜋

2
 as shown in the Figure 4-5. In this 

example, the CORDIC is used as a NCO for generating a 250 Hz quadrature signals when 

the sampling rate is 100 KHz. The MATLAB frequency spectrum of the signal generator 

generating 250Hz is show in the Figure 4-6.  
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Figure 4-5 CORDIC Implemented as NCO 

 

Figure 4-6 Frequency Spectrum of the CORDIC Output (zoomed-in) 
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 4.1.5 VHDL Implementation 

The 24-bit input samples are sign extended to 25 bits in order to avoid the 

overflow involved in the 2’s complement arithmetic operations. These 25-bit samples are 

further sign extended by 3-bits inside the CORDIC engine to compensate with the gain 

involved in the CORDIC algorithmic. Hence, the CORDIC uses two-27 bit shift registers 

for (𝑥, 𝑦) and a 24-bit register for the phase register(𝑧). 

Each stage in the CORDIC processor was implemented as a multiplexer with the 

sign bit of the angular argument (𝛿𝑖) as the select line as shown in the Figure 4-7. In 

order to attain the highest possible throughput, a pipelined structure was used in this 

thesis.  A 20 stage pipelined CORDIC engine was implemented as a multiple component 

instantiation of single stage CORDIC as shown in the Figure 4-8.  

MUX

 

Figure 4-7 VHDL Implementation of a Single Stage CORDIC 

In the pipelined CORDIC architecture, each stage is represented as a separate 

CORDIC block and the pipeline registers are placed after each stage. Each stage in this 

architecture will be working independently. Thus, when the 𝑖𝑡ℎ block is performing the 



 

61 

 

corresponding rotation on the 𝑖𝑡ℎ data sample, then the (𝑖 − 1)𝑡ℎ block would be 

performing the rotation on (𝑖 + 1)𝑡ℎ data. This way, greater speeds could be achieved by 

computing many partial results in a parallel processing pipeline. 

Latch for Pipelining of data

Stage #0

Latch for Pipelining of data

Stage #N

SHIFTER

ADD/SUB

SHIFTER

ADD/SUB

TABLE

ADD/SUB

X[j] Y[j]

j j j

Z[j]

X[j+1] Y[j+1] Z[j+1]

δj+1

δj = sign (Z[j+1])

Clock

Clock

jth stage

 

Figure 4-8 CORDIC Pipelined Stages 

In the pipelined implementation of CORDIC, the series of micro rotations has to 

ripple through each stage. Hence, there is an initial 21 clock cycles of latency for the 
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CORDIC to compute the first output as shown in the Figure 4-9. In this example, once 

the ddc_en signal goes high (i. e., after the signal processor board is enabled) the signal 

processor starts capturing the incoming signal (rx_freq_in) and after 21 clock cycles the 

CORDIC processor result appears on the CORDIC outputs. 

 

Figure 4-9 CORDIC Initial Latency 

The output of the CORDIC is truncated to 24 bit samples and the remaining bits 

are discarded. In this research, the 27 bit output from the 20th stage of CORDIC is 

truncated as shown in the Figure 4-10. The bits in yellow represents the valid 24 bit word 

and the bits in green are discarded. This is done in order to avoid the overflow when the 

maximum strength of the signal is sent on both I and Q of the same DDC at the same 

time. The CORDIC operation can be conceptualized for a zero angular phase input as 

taking the original 16-bit I and Q input samples, shifting them left by 8-bits and then 

having the CORDIC processor multiplies it by approximately 
1.647

23 . 

26 25 2 1 0. . .. . .
 

Figure 4-10 CORDIC Output Truncation 

The CORDIC implementation was mapped to the target device (Spartan 6 – 

xc6slx16) as shown in 0Cordic_z24.vhd and CORDIC_STAGE.vhd. The resulted 
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resource utilization is shown in the Table 4-3. The 19% of LUT utilization is due to 

storing the CORDIC constants on the LUTs. 

Table 4-3 CORDIC Processor Device Utilization Summary 

Device Utilization Summary (estimated values)  

Logic Utilization Used Available Utilization 

Number of Slice Registers 1670 18224 9% 

Number of Slice LUTs 1791 9112 19% 

Number of fully used LUT-FF 

pairs 
1624 1837 88% 

Number of bonded IOBs 0 232 0% 

 

The ModelSim simulation of this CORDIC processor is shown in the Figure 4-11. 

Where the output of the CORDIC processor is shown in the analog format for the phase 

accumulator, in-phase data component and quadrature-phase data component outputs of 

the CORDIC. 

 

Figure 4-11 Modelsim Simulation of CORDIC 
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 4.2 Cascaded Integrator Comb Filter 

When implementing CIC filter decimator at the RTL level, many bit level 

implementation details need to be considered and are discussed. Both the CORDIC 

processor and the input data rate to the CIC filter implemented in this thesis must operate 

at the sampling rate of the incoming signal, while the output rate may be decimated by a 

factor of between 4 and 127. To design a high throughput CIC filter, the circuit must be 

implemented in such a way that a high frequency system clock could be used. The 

highest clock rate at which a combinational logic can be clocked is determined by the 

maximum delay through combinatorial logic between two adjacent registers.  

As we discussed in the previous chapter, the integrator section on the CIC filter is 

always placed at the higher clock rate when the CIC filters are employed to do 

decimation or interpolation operations. The clock rate at the integrator section is always 

higher than the comb section by the factor equivalent to the decimation or interpolation 

rate. Thus, the integrator section plays a main role in determining the maximum 

throughput of the whole CIC decimation filter.  

To maximize the performance of these CIC filters, a pipelined CIC filter was 

implemented as shown in the Figure 4-12. In this pipelined filter architecture, the 

integrator section was implemented as a pipelined structure and the comb section was 

implemented as a conventional non-pipelined structure [24]. Since, the throughput 

problem is not as critical in the comb stages of the CIC filter. We can see that in the 

pipelined CIC filter structure, the integrator stages have no additional pipeline registers. 

This is an important advantage of the pipelined CIC filter because not only the system 
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satisfies pipeline structure but also saves power consumption and reduces area on the 

chip implementation. 
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Figure 4-12 3-Stage Pipelined CIC Filter 

The register width of all the integrator and comb stages need to be determined to 

overcome the overflow problem in the integrator section. The maximum register growth 

is a finite number that can be determined form the sampling rate R and the number of 

stages used to implement CIC filter. Once these two parameters are determined, we can 

calculate the worst case bit growth for each individual comb-integrator stages from the 

equation (60). 

The worst case decimate rate that the designed CIC filter can decimate is 127, 

using this information the worst case bit growth can be calculated as  

 Bmax = Bin + CEIL[log2(Gmax)] ⇒ 24 + 3 ∗ log2(127) = 44.966 (60) 

where Bin is the bit width of input samples, Gmax is the maximum gain of the CIC filter 

given as Gmax = RMK. In this thesis, the bit width of all the registers in the CIC filter was 

considered as a constant width of 45 bits. 

 4.2.1 MATLAB Implementation 

The accurate MATLAB model of the CIC filter decimator enables functional 

verification of the designed CIC filter structure. The finite precision MATLAB script 
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which precisely describes the circuit is designed and incorporated into the model as 

shown in code below, where the add_2 function call performs integer addition based on 

the “bit-width” value provided.  

for ii = 1:1:nsamples 
    x_sign_ext(ii) = sign_ext(int64(x_in(ii)),24,(bitwidth-24)); 
    integrator(1) = add_2(int64(x_sign_ext(ii)), integrator(1), 

bitwidth); 
    stage1(ii+1) = integrator(1); 
    integrator(2) = add_2(stage1(ii), integrator(2), bitwidth); 
    stage2(ii+1) = integrator(2); 
    integrator(3) = add_2(stage2(ii), integrator(3), bitwidth); 
    stage3(ii+1) = integrator(3); 
end 

  
integrator_delay = zeros(1,3); -—accounting for the integrator delay 

is done here 
stage3 = [integrator_delay stage3];  

  
% Down sample the signal this is done in cic_strober.v 
sampler = stage3(1:actual_rate:length(stage3)); 

 
for jj = 1:1:length(sampler) 
    pipeline1(jj) = add_2(sampler(jj), -diff(1), bitwidth); 
    diff(1) = sampler(jj); 
    pipeline2(jj) = add_2(pipeline1(jj), -diff(2), bitwidth); 
    diff(2) = pipeline1(jj); 
    pipeline3(jj) = add_2(pipeline2(jj), -diff(3), bitwidth); 
    diff(3) = pipeline2(jj); 
end 

 

All the variables in this implementation have the data type of int64. The output of 

the CORDIC processor is truncated to 24 bits and stored into a file which was used as the 

input to this CIC filter. These samples are read into the base workspace of the MATLAB 

and processed in accordance with the CIC algorithm. 

Scaling is applied at the output of the CIC to remove the filter processing gain by 

discarding the lower order bits of the CIC process. We can prune lower order bits early in 

the filtering chain to the bit position in any stage that cannot grow beyond the least 

significant bit of the output word [22]. In this thesis, the bits are pruned at the final stage 
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of the filter. The number of least significant bits discarded/truncated is equal to the gain 

of the CIC filter decimator. The bit pruning was implemented on MATLAB as shown in 

the code snippet below.  

%% Bit pruning CIC decimation filter 
shift = round(N*(log2(actual_rate))); 
cic_out = bitshift(int64(pipeline3),-shift); 

 

 

The frequency response of the 3-stage CIC filter decimator implemented in this 

thesis is shown in the Figure 4-13. It can be noted that the attenuation level of the first 

side lobe is about 39dB and also nulls in the filter are providing wider notch at the 

multiple of the sampling rate. The droop in the passband is better demonstrated in the 

lower plot of Figure 4-14. 

 

Figure 4-13 Frequency Spectrum of the CIC Filter 
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Figure 4-14 Spectral Droop in the Passband 

The output of the filter at each intermediate stages is show in the Figure 4-15, the 

bit growth in the integrator stage is clearly visible as the magnitude of the signal at the 

integrator section, and the output of the last stage of the differentiator is the output of the 

CIC filter decimator before the truncation. 

 

Figure 4-15 Intermediate Outputs of CIC Filter Decimator 
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The output spectrum of the CIC filter decimator is shown in the Figure 4-16. The 

comparison between the output of the final stage of the differentiator and truncated 

samples is also shown in the same figure. It is very clear that the noise introduced by 

pruning the lease significant bits of the filter output is insignificant and almost negligible. 

 

Figure 4-16 3-stage CIC Filter Decimator Output 

 4.2.2 VHDL Implementation 

The pipelined architecture of the CIC filter decimator was implemented in VHDL, 

the RTL schematic showing the pipeline implementation on the FPGA is shown in the 

Figure 4-17. The wire connecting the integrator and the register is highlighted to show 

the pipeline structure at the first stage of the integrator.  

 

Figure 4-17 RTL Schematic of Pipelined CIC Filter 
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The resampling switch was implemented as a simple down counter which outputs 

a pulse of one clock cycle whenever the counter reaches to zero. This strobe enables the 

differentiator to capture the data from the integrator registers and process the data to 

compute the output of the CIC filter. The ModelSim simulator is used to verify the 

functional behavior of the filter as shown in the Figure 4-18.  

 

Figure 4-18 CIC Filter Output on ModelSim Simulator 

Once the input samples ripples through the integrator and differentiator sections, 

the 45-bit output from the final stage differentiator is rounded to 24-bit through 

truncation of the least significant bits. This truncation was hardcoded in the design using 

an 8-bit 22-to-1 multiplexer as shown in the cic_decim_prun.vhd code in the Appendix of 

this thesis.  

A direct mapping of this filter structure was done to a Spartan 6 (xc6slx16-3-

csg324) FPGA as shown in 0cic_decim.vhd results in the following resource utilization 

shown in the Table 4-4. 
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Table 4-4 CIC Filter Device Utilization Summary 

Device Utilization Summary (estimated values)  

Logic Utilization Used Available Utilization 

Number of Slice Registers 482 18224 2% 

Number of Slice LUTs 499 9112 5% 

Number of fully used LUT-FF 

pairs 
323 658 49% 

Number of bonded IOBs 59 232 25% 

Number of BUFG/BUFGCTRLs 1 16 6% 

 

 4.3 Half-Band Filters 

The two half-band filters can be enabled or disabled individually depending on 

the total system decimation factor. The coefficients for the half-band filters were 

generated according to [25]. The MATLAB function that implements this algorithm is 

provided in Appendix A - half-band filter generator MATLAB script. This function 

accepts a stopband width and the required order of the filter (N), and produces a full set 

of coefficients of order 4N − 1. The double precision floating point coefficients 

generated are then scaled to 17 bit integer values. 

The DDC chain implemented in this thesis includes two successive half-band 

filter decimators. The first stage half-band filter has relatively narrower passband with 

wider transition band. Hence it requires fewer coefficients. The second stage has 

relatively larger passband and narrower transition band. Therefore, this filter 

implementation needs a larger number of coefficients. As a result, if the application needs 

only requires a single half-band filter to be used, the first half-band filter is always 

bypassed and only the second one is used. 
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 4.3.1 First Stage Half-Band Filter 

The first stage half-band filter has 7 coefficients represented as 18 bit integers, the 

twos complement representation of these coefficients are shown in the Figure 4-19. As 

we can see; out of 7 coefficients, 2 of them are zero and the other coefficients are 

symmetric with respect to the center coefficient. 

 

Figure 4-19 7-Tap Half-Band Filter Responses 

A direct implementation of this filter would require a multiplier for each nonzero 

taps. Since, the multipliers are expensive in both hardware and software. This filter was 

designed much more efficiently with reduced number of required computationally 

intensive hardware resources by taking into the consideration of the following facts. 

1. The half-band filter decimators are implemented at the lower data rate side of 

the DDC chain and, 

2.  These filters are configured to decimate the input samples by a factor of 2. 
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 The following part of this section concentrates on the exploiting these two 

conditions and employing hardware resource sharing. This section also explains how the 

hardware resources were reused in order to compute the valid output of the filter.  

The half-band filter module receives the 24 bit integer samples from the CIC filter 

decimator and these samples are rounded/truncated to a 17 bit integers. The resulting 17 

bit samples are sign extend by 1 bit because the filter structure involves the 2’s 

complement addition of two 17 bit integers. The 18 bit multipliers available on the 

Spartan 6 FPGA were used to perform the multiplication with the filter coefficients.  

 4.3.1.1 MATLAB Implementation 

The functional block diagram of the first stage half-band filter is shown in the 

Figure 4-21. This filter was implemented by using 7 shift registers, 2 adders and a 

multiplier. The exact modeling of this filter was done on MATLAB by taking advantages 

of arrays as shown in Appendix A - Small (7-Tap) Half Band Filter script.  

By visually inspection of the filter structure, many methodologies can be followed 

to implement this filter on MATLAB. In this work, the filter implementation is divided 

into three parts.  

In the first part the, the outputs of adders and the samples corresponding to the 

delay element of the center tap were computed as shown in the code snippet below. 

for n = 1:1:length(round_in) 
        Z = Z*col_sh; 
        Z(1) = round_in(n); 
        add_1(n) = Z(1)+Z(7); 
        add_2(n) = Z(3)+Z(5); 
        middle(n) = int32(Z(4)*2); 
        m_reg(n) = bitshift(sign_ext(middle(n),18,2),10); 
end 
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In the second part, the decimation is employed on the computed samples by only 

considering every second element in the arrays and the coefficients are multiplied 

element by element with the summed result as shown in the code below. 

sum_a = add_1(1:2:length(round_in)); 
sum_b = add_2(1:2:length(round_in)); 
middle_reg = [double(m_reg(1:2:length(round_in))) 0]; 
product_1 = int64(sum_a*(-10690)); 
product_2 = int64(sum_b*(75808)); 
product_a = (bitshift(product_1,-(36-accum_W))); 
product_b = (bitshift(product_2,-(36-accum_W))); 

 

In the final stage, an accumulator was implemented that adds the samples vector from the 

center tap and product vectors from the multipliers as shown in the code below. 

% Final accumulator. 30 bit  
% NOTE: accum is of double datatype(2^53).  
% carefull about the input sizes as accum will overflow 
K = 1; 
for i = 1:2:nsamples 
    accum(i) = middle_reg(K)+product_a(K); 
    accum(i+1) = accum(i) + product_b(K); 
    K=K+1; 
end 

 

The fixed-point implementation for adders and multipliers were done using the 

finite precision wrap-around method. Figure 4-20 shows the input and output spectrum of 

this half-band filter.  
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Figure 4-20 Small Half-Band Filter Input and Output Spectrum
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Figure 4-21 Small (7-Tap) Half-Band Filter Circuit Diagram 
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 4.3.1.2 VHDL Implementation 

The half-band filter gets the input strobe and the data from the previous stage CIC 

filter. Since, the filter is intended to decimate the input sample rate by 2, the control logic 

block in the half-band filter divides this input strobe by 2 in-order to decimate the input 

as shown in the Figure 4-22. Where, the signal 𝑔𝑜 is 
𝑠𝑡𝑟𝑜𝑏𝑒ℎ𝑏

2
 (i.e. capturing every other 

samples) and the signals 𝑔𝑜𝑑1, 𝑔𝑜𝑑2, 𝑔𝑜𝑑3, 𝑔𝑜𝑑4 are the delayed version of the 𝑔𝑜 signal. 

These signals are used as the enable signals for adders, multipliers and the accumulator’s 

time window for performing operations. 

 

Figure 4-22 Strobe Logic for 7-Tap Half-Band Filter 

This filter computes an output as follows: 

1. A 17-bit input sample arrives and the data in the shift register shifts one place 

to the right and discards a sample that had arrived 7-samples ago to 

accommodate the new sample. 

2. On the rising edge of 𝑔𝑜 signal, both the adders are enabled and the samples 

at shift register corresponding to symmetric coefficients are added together. 

3. This addition operation takes one clock cycle to compute an output. 

Therefore, on the rising-edge of 𝑔𝑜𝑑1, the output from 𝑎𝑑𝑑𝑒𝑟𝑎is multiplied 
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with 𝑐𝑜𝑒𝑓𝑓𝑎 and on the next clock cycle corresponding to 𝑔𝑜𝑑2, the output 

from 𝑎𝑑𝑑𝑒𝑟𝑏 is multiplied with 𝑐𝑜𝑒𝑓𝑓𝑏. This way, the 18x18 multiplier on the 

FPGA was reused to compute the product on two consecutive clock cycles. 

4. The accumulator is enabled as soon as the multiplier computes its first product 

after one clock cycle. While the multiplier is still computing the second 

product, the accumulator starts accumulating the first product and the data 

from the shift register corresponding to the center tap. 

5. Finally, when the multiplier finishes computing the second product (i.e., on 

the next clock cycle at 𝑔𝑜𝑑3), the previously computed sum in the 

accumulator is again added with the second product (product of 𝑎𝑑𝑑𝑒𝑟𝑏 and 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑐𝑒𝑛𝑡𝑏). 

6. On the next clock cycle i.e., on 𝑔𝑜𝑑4, the output of the filter is computed and 

go_d4 is the strobe out of this 7-Tap filter. 

In this filter structure, a 30-bit accumulator was used. This means that the 36-bit 

output from the multiplier is truncated to 30-bits before being supplied to the 

accumulator. At the output stage, the 30-bit accumulator output is rounded/truncated to a 

24-bit output. 

A straight forward mapping of this structure was done onto the Xilinx Spartan 6 

(xc6slx16-3csg324) FPGA where all the filter coefficients, taped delay lines were 

implemented on Configurable Logic Blocks (CLB) slice register as shown in 

0small_hb_top.vhd. The resulting FPGA resource utilization is shown in Table 4-5. It is 

important to notice that the multiply and accumulated unit of the filter was synthesized as 
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a DSP48A1s slice which are available on Xilinx devices for computationally intensive 

DSP applications.  

Table 4-5 Small (7-Tap) Half-Band Device Utilization Summary 

Device Utilization Summary (estimated values)  

Logic Utilization Used Available Utilization 

Number of Slice Registers 430 18224 2% 

Number of Slice LUTs 296 9112 3% 

Number of fully used LUT-FF pairs 107 619 17% 

Number of bonded IOBs 54 232 23% 

Number of BUFG/BUFGCTRLs 1 16 6% 

Number of DSP48A1s 1 32 3% 

 

 4.3.2 Second Stage Half-Band Filter 

The second stage half-band filter has higher attenuation level, narrower passband, 

and steeper transition band when compared to the first stage filter as shown in Figure 

4-23. The coefficients for this half-band filter were generated using the same algorithm 

described in the previous section. 

This filter was implemented as a 2 path polyphase filter structure where one 

component corresponds to all the even coefficients and the other corresponds to all the 

odd coefficients as shown in the Figure 4-24. The even component has all zero 

coefficients with just one nonzero center tap which is equal to 1.0. Thus, we just need to 

add the corresponding delay line value to the output of the filter.  
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Figure 4-23 31-Tap Half-Band Filter Response 
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Figure 4-24 2-Path Polyphase Filter Structure Decomposition 

Apart from the center coefficient, there are 8 nonzero coefficients on either side, 

which are in the second component of the polyphase filter. A naive implementation 

would require a multiplier for each nonzero taps. Because of the symmetry, we can 

replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output sample, we 

need to perform only 8 multiplications since middle coefficient is 1.0. 
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The filter was implemented using only two multipliers, but it needs minimum of 4 

clock cycles to compute a single output. Therefore, this filter implementation can only 

accept a new data sample every 4 clock cycles. However, we know that this filter is 

intended to decimate the input samples by 2. Hence, this filter can accept new data 

sample every two clock cycles. Due to this implementation, the combination of the CIC 

filter and the first stage half-band filter has to decimate the input sample rate signal at 

least by a factor of 2. The 31-tap half-band filter structure implemented in this thesis is 

show in the Figure 4-25.  
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Figure 4-25 Large (31-Tap) Half-Band Filter Circuit Diagram
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 4.3.2.1 MATLAB Implementation 

An exact model of this filter was implemented on MATLAB using a 2 path 

polyphase structure constructed as a 2x16 matrix as shown in the Figure 4-24, the shift to 

the left operation was efficiently implemented using the matrix multiplication with the 

16x16 upper diagonal matrix. The input samples were rounded/truncated to 17 bit 

samples and these samples were shifted through the polyphase structure using the 

commutator. The commutator was implemented as an index generator which generates 

the corresponding even and odd indices. The MATLAB polyphase structure 

implementation is shown in the code below. 

Z = Z*Zshift; 
Tindex = 1+((ii-1)*lambda:ii*lambda-1); 
Z(:,1) = (round_in(Tindex))'; 

 

where, Z is the 2x16 polyphase structure, Zshift is the 16x16 upper diagonal matrix and 

Tindex is the index generator. Here lambda is equal to 2 since this is a 2 path polyphase 

structure. Once the indexes are generated, the data corresponding to the indexes are 

placed in the first column of the Z matrix.  

The 8 symmetric coefficients were divided into 2 sets, each consisting of 4 

coefficients emulating the coefficients circular buffer as shown in the code below 

coeff1 = [ -107   445  -1271  2959]; 
coeff2 = [-6107 11953 -24706 82359]; 

 

The sum of the input samples corresponding to the delay line value was computed first 

and then multiplied with the coefficient vectors. This results in two vectors of 1x4, these 

two vectors were added to form a sum of product vector and all the elements in the sum 
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of product vector were summed together to form a partial result in the accumulator. 

Finally, the sample corresponding to the delay line of the center tap was added to the 

partial accumulator result to form the final output of the filter. The iterative 

implementation of this filter is shown in the code below. 

for ii = 1:1:numblocks 
Z = Z*Zshift; 
Tindex = ((1+((ii-1)*lambda:ii*lambda-1)))'; 
Z(:,1) = (round_in(Tindex))'; 
sum1 = [Z(1,1)+Z(1,16) Z(1,2)+Z(1,15) Z(1,3)+Z(1,14) Z(1,4)+Z(1,13)]; 
sum2 = [Z(1,5)+Z(1,12) Z(1,6)+Z(1,11) Z(1,7)+Z(1,10) Z(1,8)+Z(1,9)]; 
prod1 = sum1 .* coeff1; % 36 bit product 
prod2 = sum2 .* coeff2; 
sum_of_prod = int64(prod1+prod2); % 36 bit 
round_sum = bitshift(sum_of_prod,-11); % round to 25 bit number for 

accumulator 
% actual place for middle is Z(2,8) but due to indexing it is Z(2,9) 
middle = bitshift(int32(Z(2,9)),6);%  
accum(ii) = sum(round_sum); 
final_sum(ii,:) = accum(ii)+ middle; %27 bit accumulator 
end 

 

The finite precision integer arithmetic operations described in the Figure 4-25 was 

exactly followed in the MATLAB implementation as shown in the Appendix A - Large 

(31-Tap) Half Band Filter script.  

The bit width of the intermediate results must be carefully accounted in order to 

avoid the overflow of the twos compliment number system. Although the double datatype 

in MATLAB can represent values up to 253 the integer representation was followed in 

the filter structure for the sake of convenience.  

This half-band filter implementation methodology can be easily verified by using 

the MATLAB simulations. The input vector and decimated output vector after processing 

by the filter is shown in the Figure 4-26. We can also observe the filter operation by the 
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looking at the frequency spectrum at the input and output of the filter as shown in the 

Figure 4-27. 

 

Figure 4-26 Large Half-Band Filter Input and Output Vectors 

 

Figure 4-27 Large Half-Band Filter Input and Output Spectrum 
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 4.3.2.2 VHDL Implementation 

The final stage half-band filter can get the input samples either form the CIC filter 

or from the previous stage half-band filter if it is enabled in the signal processing chain. 

As mentioned before, this filter needs 4 clock cycles to compute one single output 

sample, which means that this filter can only accept a new value every 4 clock cycles. 

However, since we're decimating by two we can accept a new input value every 2 cycles. 

In other words, if the DDC chain is operating at the full clock rate, then the overall 

decimation rate before the final stage half-band filter must be at least 2 in-order to make 

sure that this filter has 4 clock cycles. The strobe_in is asserted when there's a new input 

sample available. Depending on the overall decimation rate, strobe_in may be asserted 

less frequently than once every 2 clock cycles. On the output side, we assert strobe_out 

when the output contains a new sample. 

In the 2 path polyphase filter structure suggested, only the odd component which 

has nonzero coefficients needs to be implemented, since the even component only has 

zeros except the center tap which is equal to 1. This saves resources on the FPGA and 

achieves the same results as that of a conventional FIR filter with a fewer number of 

gates. In this thesis, the odd component shown in the Figure 4-24 was implemented as 

shown in the Figure 4-25. The filter has 4 circular buffers used to generate the address of 

the delay line corresponding to the nonzero coefficients and 2 circular buffers for holding 

8 symmetric coefficients. 
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The delay line was implemented using four sets of 17 SRL16E shift registers [26]. 

The arrangement of SRL16Es in each set can be thought as a 17-bit shift registers of 

length 16 as shown in Figure 4-28 below.  
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Figure 4-28 17-bit Shift-Register of length 16 using SRL16Es  

The Spartan generation FPGAs can configure the Look-Up Tables (LUT) of each 

slice (SLICEM) as a 16-bit shift register without using the flip-flops available. The Shift-

in operations are synchronous with the clock, and shift register length can be dynamically 

selectable using the length specified externally to this shift register. The use of SRL16E 

can improve performance and rapidly lead to cost saving of an order of magnitude. 

Although, SRL16 shift-registers are automatically inferred by the Xilinx Synthesis Tool 

(XST), the use of primitive instantiation was explicitly specified in this thesis.  

The half-band filter module has a counter that counts from 1 to 4 on every 

alternate input strobe. Depending on the count value, a sequence of output length of shift 
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register corresponding to the symmetric coefficients are places on the four select lines 

(addr_in) of these shift register elements as shown in the Table 4-6. 

Table 4-6 Values on the Select Line of SRL16Es 

clock counter shift_reg-1 shigt_reg-2 shift_reg-3 shift_Reg-4 

1 1 0 F 4 B 

2 2 1 E 5 A 

3 3 2 D 6 9 

4 4 3 C 7 8 

 

The 24 bit input samples are truncated to 17 bits at the input stage and loaded to 

all four shift registers blocks in parallel. The 17-bit output of the shift-registers were 

again sign extended to 18-bits and added with the delayed samples from other shift-

registers. Since this addition takes one clock cycle, the output of the coefficient circular 

buffer was delayed by one clock cycle to synchronize with the output of the adders, and 

then multiplied using dedicated 18x18 multipliers. The 36-bit products from two 

multipliers were further added together using a 36-bit adder to form a sum of product 

term as described in the filter structure. Until this point, it takes 3 clock cycles for the 

input samples to ripple through the adders and multipliers and appear at the output of sum 

of product adder. Hence, on the 3rd clock cycle the accumulator will be cleared and 

enabled on the 4th clock cycle. For the next 4 consecutive clock cycles, all the adders and 

multipliers work in parallel to compute the partial filter outputs and the accumulator will 

be accumulating the sum of products. At the end of the 7th clock cycle the accumulator is 

disabled and the sample corresponding to the center coefficient delay line value is added 

on the 8h clock cycle.  Hence at the end of 8th clock cycle the filter outputs its processed 
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output sample. The timing diagram illustrating the filter operation is shown in the Figure 

4-29. The clock_tab signal shows the number of clock cycles elapsed starting from the 

strobe input. 

 

Figure 4-29 Timing analysis of large half-band filter structure 

This filter uses a 27-bit accumulator to maintain the extra bits of precision. The 

final output is truncated to 24-bits. A straight forward mapping of this structure was done 

onto the Xilinx Spartan 6 (xc6slx16-3csg324) FPGA where all the filter coefficients and 

the taped delay lines are Configurable Logic Blocks (CLB) slice register based as shown 

in the 0large_hb_top.vhd. The following resource utilization was observed as shown in 

the Table 4-7. Notice that the Xilinx Synthesis Tool (XST) has synthesized 2-DSP48A1 

slices for implementing the multiply and accumulate unit of this filter. 
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Table 4-7 Large (31-Tap) Half-Band Device Utilization Summary 

Device Utilization Summary (estimated values)  

Logic Utilization Used Available Utilization 

Number of Slice Registers 264 18224 1% 

Number of Slice LUTs 365 9112 4% 

Number of fully used LUT-FF pairs 130 499 26% 

Number of bonded IOBs 62 232 26% 

Number of BUFG/BUFGCTRLs 1 16 6% 

Number of DSP48A1s 2 32 6% 

 

The half-band filters can be enabled or disabled using a control register that can 

be implemented on FPGA and programmed through an embedded softcore processor in 

the future. Although, the enable and bypass signals were included in the entity of this 

half-band filters, these signals are hardcoded and have to be manually changed in the 

FPGA bitstream.  

 4.4 DDC Chain Gain Adjustment 

There is implicit gain distributed throughout the signal processing chain to give 

the highest performance from the DDC under worst case signaling. Algorithmic gains 

anticipated from the signal processing performed is partially incorporated in the CIC and 

CORDIC processors in order to maximize the dynamic range available in the DDC, but a 

gain adjustment is applied after the DDC processing elements. 

The gain adjustment used in this thesis is given by the equation (61). Where, the 

numerator is the magnitude of the additional bit growth in CIC filter stage, the term 
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GAINCIC is the gain of the CIC filter given as Gmax = RMK and GAINCORDIC is the gain of 

the 20 stage CORDIC processor which is a constant equal to 1.65.  

 GAINfinal = 2
(

CEIL(log2(GAINCIC))
GAINCORDIC∗GAINCIC

)
 

(61) 

This gain was hardcoded and multiplied using the 18x18 multipliers available on 

the FPGA and the output of the multiplier was truncated to a 16-bit sample. Finally, a 32 

bit word was constructed as a concatenation of two 16 bit samples from the in-phase and 

quadrature-phase components of the DDC chain. Where, 16 most significant bits are in-

phase sample and 16 least significant bits are quadrature-phase sample. The DDC chain 

designed in this thesis can also be used as real mode processor by supplying only zeros to 

the quadrature-phase component. 

 4.5 Xilinx Clocking and Clock Distribution 

The communication signal processor requires two input clocks; dsp_sclk (SCLK) 

and dsp_mclk (MCLK). The dsp_sclk is used as the main clock for all the signal 

processing elements and the dsp_mclk is used for the de-interleave circuit at the input 

stage of the communication signal processor board. 

Both the clock inputs are driven from external source and do not use the on board 

clocking resources. They are specifically routed to the global clock input pads (GCLK15 

and GCLK17) through the VHDCI connector (EXP_IO9_P and EXP_IO10_P). The use 

of global clock with in the FPGA is a recommended way of providing low-skew clock 

routing to the logic resources within the FPGA. 

The Spartan 6 FPGA clock network consists of 4 types of connections [27]: 
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1. Global clock input pad (GCLK) 

2. Global clock multiplexers (BUFG, BUFGMUX) 

3. I/O clock buffers (BUFIO2, BUFPLL, BUFIO2_2CLK) 

4. Horizontal clock routing buffers (BUFH) 

The clock coming through the global input pads, is first routed through an input 

buffer (IBUF33) and then to the BUFGMUX located in the center of the device. The 

BUFGMUXes can be driven by different sources; clock inputs from the 4 different IO 

banks, clocks from the FPGA logic interconnect and the PLL/DCM. Then the 

BUFGMUXes drive a vertical spine which in turn drives the horizontal row clocks 

(HCLK). The HCLK consists of horizontal clock buffers that provide clock access to all 

the logic elements and primitives in the FPGA. 

 

Figure 4-30 Spartan 6 Clock Distribution [27] 
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Figure 4-30 shows the communication signal processor’s global clocking 

structure using two BUFGMUXes highlighted in red. The inputs to these BUFGMUXes 

comes from the global clock pads located at the FPGA I/O BANK 0. In this way, the 

dsp_mclk and dsp_sclk clocks are routed to all the individual elements in the design. 
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FPGA BASED DIGITAL PATTERN GENERATOR 

The Digilent Nexys 3 development board provided an excellent host for 

development and demonstration of the DDC signal processing chain for communications, 

but a means to both source and sink parallel test data to validate correct operation was 

desired. Assessing the resources and interfaces available on the Nexys 3, it was 

recognized that a second, identical development board with a different configuration 

could perform the task and potentially provide a useful resource for future FPGA 

developments within the WMU ECE Department. Therefore, the objective of this section 

is to design and develop a flexible FPGA based digital pattern generator and comparator 

on a Digilent Nexys 3 development board that could be used to source clock 

synchronized parallel test signals and analyze the synchronously transferred parallel 

results from any device that is connected. 

To successfully accomplish this task, first an architectural design based on the 

resource available on the Nexys 3 was defined and a parallel interface that could both 

source clock and data and receive clock and data identified.  The Nexys 3, previously 

described, has the following resources useful for this design: Spartan 6 FPGA, 16MB of 

Cellular RAM (CRAM) from Micron (Micron part number M45W8MW16), and a high 

speed 68-pin VHDC connector. The CRAM provides a large memory to hold test data 

that can be used to both source output patterns and provide reference result to compare to 

data received. The VHDC connector can be connected to another Nexys 3 using a 
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commercially available cable. Meanwhile, the Spartan 6 FPGA inherently interfaces to 

both the CRAM and VHDC interface and has sufficient programmable elements to 

perform the logical functions required of a pattern generator and result comparator. The 

following sections describe the test board architecture and the critical interface to a 

second board for testing.  

 5.1 Architecture of Digital Pattern Generator 

The basic functionality of this board is divided into two parts; first, pattern 

generator and second, output comparator. The pattern generator section uses a softcore 

processor operating at 50 MHz to read the predefined data samples stored in the Cellular 

RAM and provides a periodic 16-bit parallel integer samples using a FIFO at the output 

stage. The output comparator section receives the processed results through a FIFO at the 

input stage and the softcore processor reads those results and compares it with 

precomputed results stored in the Cellular RAM. The 50 MHz clock was generated using 

a Digital Clock Manager (DCM) on the Spartan 6 FPGA. The functional block diagram 

of the digital pattern generator and output comparator is shown in the Figure 5-1. 

The operating principle of the pattern generator is divided into two aspects; 

hardware and software that will be described after first considering the data interface.  

 5.2 Digital Pattern Generator Interface 

In order to send and receive the 16-bits of data in parallel, the high speed 68-pin 

VHDC connector available on Digilent Nexys 3 development board was used as shown 

in the Figure 5-2. 
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Figure 5-1 Nexys 3 Digital Pattern Generator and Output Comparator 

 

Figure 5-2 Digilent Nexys 3 VHDC Connector [28] 
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The VHDC connector has 40 data lines which can be routed as 20 impedance- controlled 

matched pairs or as 40 individual connections, 20 ground lines and 8 power signals. This 

connector is normally used for Small Computer System Interface (SCSI) 3 applications 

and each data line supports up to several hundred MHz data rates. The FPGA pins that 

are connected to the VHDC connector are located at I/O bank 0. The four Vcc pins from 

the VHDC connector are connected to FPGA I/O bank 0 power supply pins. Although, 

the VHDC connector are routed as matched pairs to support Low-Voltage Differential 

Signaling (LVDS), these differential data lines were used as an individual data line to 

send and receive data simultaneously. 

The communication signal processing board is capable of receiving two 

synchronous system clocks; master clock (MCLK) and dsp clock (SCLK). The master 

clock should be operating at a rate twice the rate of the dsp clock. The board receives 16-

bit data samples in synchronous to the master clock and sends 16-bit processed data 

samples in synchronous to SCLK. The design also supports a logical high reset and a 

logical high enable signals which could be used to reset or enable the signal processing 

chain. The communication signal processing board sends out an enable signal as a 

reference to the availability of new processed sample. Figure 5-3 shows these interfacing 

signals. 



98 

16 Bit Data

MCLK

SCLK

RST

Enable

16 Bit Data

SCLK

Enable

P
at

te
rn

 G
en

er
at

o
r S

ig
nal P

ro
cesso

r

Figure 5-3 Interfacing with Communication Signal Processor 

The operating principle of the pattern generator is divided into aspects; hardware and 

software. 

 5.2.1 Hardware Aspects 

The critical hardware components shown functionally in Figure 5-3 include, a 

softcore CPU, a Wishbone based peripheral interface bus, a single-port RAM for code 

and variables, the external CRAM data memory, parallel I/O interface for board 

resources, and both send and receive FIFOs to source clocked parallel outputs and receive 

clock enabled parallel inputs. The following sections describe each of these elements. 

 5.2.1.1 Wishbone - Zylin Processing Unit 

The pattern generator board design is based on an embedded softcore processor in 

order to aid in command, control and transfer of data inside the FPGA. Many FPGA 

vendors provide their own softcore processor solutions that could be implemented as an 
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Intellectual Property (IP) in the design. But, the use of an open-source processor was 

preferred in this thesis so that it can be used without any issues that may arise from 

copyright laws. One architecture that satisfies all the target features and also compact in 

size is the Zylin Processing Unit (ZPU) contributed by Salvador E. Tropea [29]. The ZPU 

is a 32-bit stack based Reduced Instruction Set Computing (RISC) processor and has a 

very minimal number of instructions. As a stack-based processor, all the operands for the 

instruction set are located on a memory stack except for load and store instructions [30]. 

The most important strength of this architecture is that, it has a simple, easy to read HDL 

design and is very easy to implement from scratch in-order to suit the specialized 

application and optimization [29]. This thesis uses the original source files was directly 

downloaded from [29]. The downloaded package consists of a Zealot version of ZPU 

processor along with the BRAM, a small peripheral input/output (Phi I/O) core which 

implements a 64 bit timer, a Universal Asynchronous Receive and Transmit (UART) 

module and a seven segment display unit. 

The architecture suggested in Figure 5-1 has a wishbone interconnect network, a 

BSD license based project from opencores.org, along with the ZPU core (also called a 

wishbone-ZPU). This wishbone network was setup as a slave/master architecture such 

that any number of slaves can be added on this network with very minimal design 

modifications and define an address space that could be accessed using the ZPU. In this 

network the ZPU was configured as wishbone master and a small peripheral input/output 

unit, a single port Random Access Memory (RAM), a Cellular RAM (CRAM) and two 

FIFOs were configured as the wishbone slaves.  
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The ZPU does not have any memory map defined in it. However, the software for 

the ZPU can be written using the memory map that could be defined in wishbone 

interconnect network as shown in the Table 5-1. The ZPU has 32 bit address space out of 

which, the 25 downto 2 bits are mapped to the memory map of the wishbone 

interconnect. The combinational logic designed in the wishbone interconnect uses the 

most significant 25-to-15 bits to select the individual slaves. The least significant 2nd, 

3rd and 4th bits to select specific register locations within the memory space of the 

selected slaves (other than CRAM and single port RAM) as shown in the Figure 5-4. 

Therefore, addresses 000000-7FFFFF are used to address slaves and specific memories in 

the slaves. Whereas, for the CRAM and signal port RAM, the entire memory space is 

mapped to that of the ZPU. So, any memory location in the CRAM or the single port 

RAM can be accessed contiguously by the ZPU starting from 0x00000000 for single port 

RAM and 0x01000000 for CRAM. 

Table 5-1 Wishbone Slaves Memory Map 

Slave Register type Address 

SinglePortRAM ZPU Memory 0x00000000 

CRAM Data 0x01000000 

Phi I/O GPIO Data 0x080A0004 

Phi I/O GPIO Dir 0x080A0008 

Phi I/O UART_TX 0x080A000C 

Phi I/O UART_RX 0x080A0010 

Phi I/O Counter_1 0x080A0014 

Phi I/O Counter_2 0x080A0018 

Phi I/O Segment_7 0x080A001C 

Output FIFO Status 0x080B0004 

Output FIFO Data 0x080B0008 

Input FIFO Status 0x080C0004 

Input FIFO Data 0x080C0008 
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Figure 5-4 Wishbone-ZPU Address Space  

When the ZPU software tries to communicate with the slaves, the ZPU places 

corresponding slave address and data on its address bus and data bus. The communication 

between ZPU and slaves is shown in Figure 5-5. This communication can be described as 

follows. 

1. All of the communication with the slaves goes through wishbone interconnect, 

the wishbone interconnect decodes the addresses from the address bus and 

enables the slave select signal of the corresponding slave.  

2. Wishbone interconnect further transfers the wishbone signals like strobe, 

cycle, write, address and data-out generated from the ZPU to the selected 

slave. 

3. The slave decodes these wishbone signals and performs the required operation 

such as writing and reading on a specified memory location.  

4. The slaves are responsible to generate an acknowledge signal and send it back 

to wishbone interconnect along with the data if requested by the ZPU. 

5. Upon receiving this acknowledgement signal, the ZPU disables all the 

wishbone signals and continues executing the next instruction. 
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Figure 5-5 ZPU-Slave Communication 

 5.2.1.2 Cellular RAM 

CRAM used in this design has 16-bit wide memory with 8M address spaces and 

can support both 8 bit and 16 bit data access. Since the ZPU supports 32-bit data 

transfers, the state machine for the memory interface was designed in such a way that 

every 32 bit write to or read from the CRAM operates on two consecutive memory 

locations. Therefore, we can address 4 Meg address spaces through software. This 

CRAM interface was designed as a part of the class project in ECE5570 in Fall-2013 at 

Western Michigan University. The detailed state machine design that performs 32-bit 

reads and writes is described in [31] and the VHDL implementation of the memory 

interface can be found in Appendix C - wb_slv_cram.vhd and cram_interface.vhd. 

 5.2.1.3 FIFOs 

For data interfacing to a target Nexys 3 board, the design has an input FIFO and 

output FIFO. The output FIFO is used to source the test signals and the input FIFO is 
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used to collect the processed signals. The FIFOs were implemented on a block RAM 

using the Xilinx Native Intellectual Property (IP) and include independent read and write 

clocks. The FIFO dimensions were chosen to be somewhat large, allowing a block of 

output data to be written as a block or burst and a block or burst of input data to be read. 

This allows the software programming in the ZPU to more efficiently support data 

transfers and have longer time intervals for other processing. The FIFOs are configured to 

generate the following status flags; full flag, almost-full flag, write acknowledge flag, 

half-full flag and empty flag.  

These flags are asserted on the following events. 

1. The full flag is asserted when the data is written to the 𝑁𝑡ℎ location on the 

FIFO. 

2. The almost full flag is asserted when the data is written to the (𝑁 − 1)𝑡ℎ 

location on the FIFO. 

3. The write acknowledge flag is asserted when the FIFO write is successful (one 

clock cycle after the write to the FIFO is initiated).  

4. The half full flag is asserted when the data available in the FIFO is less than 

half of the FIFO capacity. 

5. The empty flag is asserted when there is no data available on the FIFO. 

The FIFO also has a reset pin where all the locations in the FIFO are initialized to 

zeros on reset.  
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 5.2.1.3 Output FIFO 

The Output FIFO block consists of a wishbone wrapper which send the 

acknowledge signal upon receiving the wishbone cycle and strobe signals and a FIFO 

with the following dimensions. 

1. Write width of 32 bits wide and write depth of 512. 

2. Read width of 16 bits wide and read depth of 1024. 

The FIFO status flags were incorporated into an 8-bit status register as shown in 

the Figure 5-6. The 3 MSBs and the LSB bit are unused. The half full flag is negated in 

the register, so when the amount of data on the FIFO is less than half full, the register 

would contain the value “00001000”. The output FIFO interface was designed to send the 

acknowledge signal as soon as the wishbone strobe and cycle signals arrived. The data is 

captured into a 32 bit register (data register) which is then written into the FIFO. The 

status register implemented in this FIFO interface is read only, while the data register is 

write only. 

empty full 00 wr_ack0 0 ~half_full
 

Figure 5-6 Output FIFO Status Register 

The FIFO controller was designed as a state machine which is responsible to 

decode the read and write operations from the ZPU. The flowchart of this state machine 

can be described is shown in the Figure 5-7. The VHDL implementation is shown in the 

Appendix C - fifo_if.vhd source file. 
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Figure 5-7 Output FIFO State-Machine Flowchart 

As shown in the above flow chart, the state machine is designed with 5 states. The 

operation of the state machine can be described as follows: 

1. In the idle state, the state machine continuously checks for a read or write 

request from the ZPU and transfers control to the appropriate state. 

2. In the read state, the state machine checks if the ZPU is requesting to read the 

status register and copies the contents of status register onto the output data 

bus. If the ZPU is requesting to read something else then the control is 

transferred back to idle state. 

3. The wait read state is a dummy state, it was just designed to provide one clock 

cycle time before switching back to the idle state. 

4. Likewise, in write state, the state machine checks if the ZPU is writing to 

FIFO data register. Then the FIFO write enable signal is asserted and data is 

written onto the FIFO data bus through the FIFO data register.  
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5. In the wait write state, the FIFO write enable signal is disabled and returned to 

idle state depending on the write acknowledge flag. 

The FIFO write process using the above state machine is shown in the Figure 5-8 

 

Figure 5-8 Output FIFO Write Process 

The reading of the output FIFO and transfer of data to the target board does not 

occur until the output FIFO is almost filled. The interface was designed in such a way 

that, the almost full flag generated after writing (𝑁 − 1)𝑡ℎ word to the FIFO is used to 

toggle the enable signal for the target processor board.  

The read clock (rd_clk) for the FIFO was generated using a 16-bit counter whose 

count value is set to 0x007D as shown in the code snippet below. If a different read clock 

is required, the counter needs to be reconfigured to reflect the changes. 

rd_clk_thingy: 

process(clk_i, rst_i, rd_count) 

begin 

if rising_edge(clk_i) then 

    if rst_i = '1' then 

        rd_count <= (others => '0'); 

        rd_clk <= '0'; 

    else 

        if rd_count = x"007D" then --3F 

            rd_clk <= not(rd_clk); 

            rd_count <= (others => '0'); 

        else 

            rd_count <= rd_count + '1'; 

        end if; 
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    end if; 

end if; 

end process rd_clk_thingy; 

 

The above stated logic was used to generate the read clock because, the Digital 

Clock Manager (DCM) available on Spartan 6 FPGA operating with 100 MHz primary 

clock was unable to generate this low frequency clock signal. The data from the FIFO is 

read in synchronous to the read clock. This read clock is also used as the master clock 

(MCLK) for the communication signal processor. 

The serial clock (SCLK) for the communication signal processing board was 

implemented as a T-flip flop that toggles a signal on every falling edge of the master 

clock (MCLK). The master clock, serial clock, enable and reset signals, and the data read 

from the FIFO was sent over the VHDC cable as input signals to the communication 

signal processing board as shown in Figure 5-9 and Figure 5-10. 

 

Figure 5-9 Output of the Pattern Generator Board (ModelSim Simulator) 
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Figure 5-10 Output of the Pattern Generator Board (MSO-X 3034A) 

 5.2.1.3 Input FIFO 

The input FIFO has the exact opposite dimensions as the output FIFO. 

1. Write width of 16 bits wide and read depth of 1024. 

2. Read width of 32 bits wide and write depth of 512. 

Similar to the output FIFO, the input FIFO has a status register as shown below 

empty full 00 00 0 half_full
 

Figure 5-11 Input FIFO Status Register 

Here, the FIFO status register consists of half full, empty and full flags. The 4 MSBs and 

a LSB are unused bits in the register. The FIFO controller was designed as a state 

machine which decodes the read requests from the ZPU. In the input FIFO block, both 

the FIFO data register and the status register are read only. The flowchart of this state 

machine is shown below  
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Figure 5-12 Input FIFO State-Machine Flowchart 

The operation of the state machine can be described as follows: 

1. In the idle state, the state machine continuously checks for a FIFO data read or 

status register read request from the ZPU. 

a. If the state machine determines that it is a FIFO data read request, then 

the FIFO read enable is asserted and the control is transferred to 

rd_fifo state. 

b.  If the state machine determines that the ZPU is requesting for status 

register, then the control is transferred to rd_status state. 

2. In the rd_fifo state, the read enable signal is deasserted and the data output 

from the FIFO is sent to the ZPU. It also checks for valid flag if the data 

validate the data read from the FIFO and then the control is handed over to the 

idle state. 
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3. In the rd_status state, the current value in the status register is supplied to the 

ZPU and the command is returned back to idle state.  

The read operation of the state machine is shown in the ModelSim simulation below 

 

Figure 5-13 Input FIFO Read Process 

 5.2.1 Software Aspects 

The software components involve not only the composition of C code that 

executes on the ZPU but also data preparation and storage to the CRAM and  the 

appropriate file manipulations to generate appropriate Xilinx configuration code for 

loading. The following section describes the software and processes required for testing. 

 5.2.1.1 Generating Test Data 

In order to generate the patterns using pattern generator, The 32-bit integer 

samples were pre-computed in a *.bin file using MATLAB script as shown below 
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cram_top = 65535; 

data = (65535); 

x = zeros(1,cram_top); 

for k = 1:1: cram_top 

    x(k) = 2147418112;%% data format --> [16bit(I) 16bit(Q)] 

end 

fileID = fopen('cram_TestData.bin', 'w+','l');%%%%%%%%%% 

for i= 1:cram_top 

    fwrite(fileID,x(i),'int','l'); % int = 32 bits little endian 

end 

fclose(fileID); 

 

Currently, the ZPU supports only little endian data transfers. Hence, the patterns 

were created in a little endian fashion as shown in the in the Figure 5-14. Since, the 

pattern generator was used to emulate the data samples from two quadrature sampling 

ADCs, the data format of a 32 bit integer was designed such that the 16 MSBs represent 

in phase samples and 16 LSBs represent quadrature phase samples. 

 

Figure 5-14 32-bit Binary Pattern in Little Endian Fashion 

The above mentioned method is one way to generate 32-bit integer patterns. These 

samples can also be the captured directly from a 16 bit ADC, but it has to be arranged in 

a specified data format mention above. 

 5.2.1.2 Copying Data to CRAM 

The data generated in the previous section was copied to the on-board CRAM 

using Digilent adept software. The Digilent Adept software has an option for writing a 

file to the memory directly from the computer without actually configuring the FPGA. 

This process is shown in the Figure 5-15. In order to use the Adept memory write option, 
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the FPGA must be connected to the computer via USB. Once the Adept detects the FPGA 

board, it displays appropriate tabs as shown in the figure below. Under the memory tab, 

by selecting the RAM radio button and appropriate file, we can write the generated 

pattern file to CRAM. 

 

Figure 5-15 Writing Data to CRAM using Adept 

 5.2.1.3 ZPU Software 

The software for the ZPU was written in C language and is compiled using zpu-

gcc toolchain under Cygwin environment (Linux). In order to compile the ZPU software 

we need the following requirements: 

1. Cygwin 32-bit environment with bitutils, cmake, gcc, g++, gdb and make 

packages. 

2. ZPUGCC toolchain [32]. 

The project consists of a header file and a source code. The header file basically 

defines the pointers pointing to unsigned long int, these pointers were initialized to the 
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address spaces specified by the wishbone-slave memory map as we discussed in the 

previous section.  

The source code begins by initializing a pointer pointing to the base address of the 

CRAM. During the initialization cycle, the data is read from the CRAM and written to 

the output FIFO until the (𝑁 − 1)𝑡ℎ location. After which, the program enters into an 

infinite loop. In the infinite loop, the status register of the output FIFO is checked to see 

if the amount of data available is below half full or if the FIFO is empty. If either of them 

are true then the ZPU reads the data from the CRAM starting from the last location where 

it stopped and writes it to output FIFO as bursts. The data in the CRAM is valid until the 

65535th location. Hence, when the data is read from the 65535th location, the pointer is 

initialized back to the bottom of CRAM and this process is continued infinitely. During 

the time between the two consecutive burst writes to output FIFO, the ZPU checks the 

status register of input FIFO. If the input FIFO is more than half filled, then the ZPU 

reads a burst of 32-bit complex words from the FIFO and compares it with the results 

stored on CRAM. The process of ZPU burst writes and the comparison time between two 

consecutive burst writes is shown below. 

Half 

Full

Full

comparison window comparison window
 

Figure 5-16 ZPU Write and Comparison Scheme 
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The following process was used to compile the source code and generate the 

FPGA bit streams: 

1. zpu-elf-gcc command was used to compile the C code. This creates an *.elf 

file in the same director. 

2. The *.elf file created would be too big to write it to the BRAM of Spartan 5 

FPGA. Hence zpu-elf-strip command was used to strip the *.elf file. 

3. The resulting elf file is then converted to a *.bin using the command zpu-elf-

objcopy. 

4. Finally, the BRAM contents were generated as ASCII character in a *.txt from 

*.bin file. The *.txt file would contain the program data that needs to be 

loaded into BRAM.  

The detailed explanation for compiling the ZPU software can be found in Appendix D - 

Compiling process.  

Finally, the data2mem tool [33] from Xilinx was used to change the ZPU software 

source code directly in the FPGA bit stream file instead of re-initializing the ZPUs single 

port RAM in the design and synthesizing the entire design again. The data2mem tool 

accepts the *.elf file, *.bit file and *.bmm file and outputs an updated *.bit file which 

contains the updated ZPU software image and can be used to program the FPGA. 
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RESULTS AND PERFORMANCE 

The previous chapters have described the theory, operation and implementation of 

the DDC chain, NCO and CORDIC processor, CIC filter and half band filters. A test 

board that can provide clocked parallel data vectors as though provided by an ADC has 

also been described. This section describes the stand alone and combined testing of the 

circuitry and systems developed. 

 6.1 Signal Processing Chain Verification 

The individual blocks in the signal processing chain was tested using the VHDL 

test bench. The test vectors emulating the ADC data were created using MATLAB and 

stored into a file. The file was read by the VHDL test bench in interleaved fashion and 

fed to DDC chain. 

One way of testing this hardware is to feed the binary patterns of 0x7FFF and 

0x0000 in interleaved fashion synchronized with the master clock. As was discussed 

earlier, if the input of the CORDIC is fixed to (1, 0), the CORDIC would act as an NCO 

generating sine and cosine waveforms of a particular frequency defined by phase 

accumulator. This concept was exploited to generate 500Hz sine and cosine waveforms. 

In order to generate the waveforms of this frequency, the phase accumulator was loaded 

with 0x0147AE14. This value was calculated using the equation 
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𝑃ℎ𝑎𝑠𝑒𝑠𝑡𝑒𝑝(𝑟𝑎𝑑) =
𝑁𝐶𝑂𝑓𝑟𝑒𝑞 ∗ 232

𝑓𝑠𝑎𝑚𝑝𝑙𝑒

(62) 

where 𝑁𝐶𝑂𝑓𝑟𝑒𝑞 = 500 and 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 = 100 𝐾𝐻𝑧. 

When the phase accumulator steps through the given angle, the CORDIC 

computes the corresponding sine and cosine components at the output. The rate at which 

this calculation happens is directly proportional to the rate at which the CORDIC 

processor is clocked. In order to shorten the simulation time required for ModelSim 

simulator, a 50MHz clock was generated in the VHDL test bench. 

The output at each stage of the in-phase component of the DDC chain can be 

verified by plotting it against MATLAB computed data. In addition, the Chipscope 

results are also shown and compared to the ModelSim simulation and MATLAB 

simulation. 

1. CORDIC stage:

The output at the CORDIC stage is shown in the Figure 6-1. As we can see, the 

24 bit time domain samples computed using MATLAB almost exactly overlaps with the 

samples captured though the VHDL simulation. 
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Figure 6-1 CORDIC Time Domain Output 

The frequency spectrum was also generated in order to compare the received signal in 

frequency domain as depicted in the figure below. 

Figure 6-2 CORDIC Output Frequency Spectrum 

As we can see, the frequency spectrum of the MATLAB computed samples and the 

samples exported from ModelSim are nearly identical with each other and the peak is 
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shown at 500Hz. The error between these two implementation methodologies is shown 

below. 

 

Figure 6-3 Error between MATLAB and VHDL Implementation 

From the Figure 6-3 it can be seen that, there is no such significant error between both the 

implementation, as the error was limited to only 2 bits least significant. The error at the 

least signification bits can be ignored in this system since truncation on least significant 

bits are employed at multiple locations. A hardware comparison of the in-phase 

MATLAB data, Modelsim VHDL simulation, and Chipscope captured Xilinx device data 

is shown in Figure 6-4. As we can see, the output of the CORDIC processor on FPGA 

exactly matches with the ModelSim simulation tool.  

 

Figure 6-4 MATLAB-ModelSim-Chipscope Somparisons 
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2. CIC filter decimator:

The second stages in the signal processing chain is the CIC filter decimator, the 

24-bit samples of 500Hz signal sampled at 100 KHz are received at the input from the 

CORDIC processor. The decimation rate for CIC filter was chosen to be 5. The output of 

the CIC filter would have a sample rate of 20 KHz. The time domain comparison of the 

output from MATLAB and VHDL implementation.is shown in the figure below. 

Figure 6-5 CIC Filter – Time Domain Comparison 

As we can see, the time domain samples from both MATLAB and ModelSim exactly 

overlaps each other. The frequency response of the received samples is shown in the 

Figure 6-6. 
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Figure 6-6 Frequency Response of the CIC Filter Output 

Although, the time domain samples appear to overlap on each other, again there are small 

errors between the MATLAB computed samples and the samples exported from 

ModelSim is shown in the Figure 6-7. Again these errors corresponds to the LSB and can 

be ignored in this implementation since, the LSBs are going to be truncated in further 

stages of the signal processing chain. 

Figure 6-7 Error between MATLAB and VHDL implementation 
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3. First stage half-band filter: 

The next stage of the signal processing chain is the 7-tap half-band filter. The 

half-band filter implemented in this thesis has a fixed decimation of 2. Therefore, the 

output sample rate of this filter is always half of the input sample rate. The 24-bit samples 

of a 500Hz signal are received from the CIC filter decimator, the sampling rate at this 

stage would be 20 KHz. These samples are further truncated to 17 bits and processed 

through adders and multipliers involved in the filter structure as previously described. 

The output of this filter is a 24-bit processed time domain samples, the Figure 6-8 shows 

the time domain comparisons of the processed samples from MATLAB and VHDL 

implementation. 

 

Figure 6-8 First Stage Half-Band Filter – Time Domain Comparison 

The frequency spectrum of the half-band filter output is shown in the Figure 6-9. As we 

can see, the sample rate at the output is exactly half of the input sample rate. The sample 

by sample comparison of the 24 bit output is shown in the Figure 6-10. It is evident from 



122 

the figure that the VHDL implementation exactly matches with the MATLAB computed 

output. 

Figure 6-9 Output Spectrum of the First Half-Band Filter 

Figure 6-10 Error between MATLAB and VHDL Implementation 
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4. Final stage half-band filter

The final stage of the signal processing chain is a 31-tap half-band filter. The 24 

bit samples from the previous stage are filtered and further decimated by 2, providing the 

final bandwidth limitation. The time domain output of both MATLAB and VHDL 

implementation is shown in the Figure 6-11 

Figure 6-11 Final Stage Half-Band Filter – Time Domain Comparison 

The output spectrum of this half-band filter is depicted in the Figure 6-12. The output 

spectrum contains a small DC component because of 2’s complement truncation at the 

input stage. The sample by sample comparison of the MATLAB and VHDL 

implementations is shown in the Figure 6-13. The VHDL implementation exactly 

matched with the MATLAB implementation except for one sample. 
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Figure 6-12 Output Spectrum of the Final Stage half-Band Filter 

Figure 6-13 Error between MATLAB and VHDL Implementation 

The Figure 6-14 shows the Chipscope analyzer data and the corresponding 

ModelSim and MATLAB data. The data from MATLAB and ModelSim was correlated 

with Chipscope Pro after the initial transient response of the filter. Once the filter gets to 

a steady state, the simulated data exactly matches with the data in the hardware. 
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Figure 6-14 MATLAB-ModelSim-Chipscope Comparisons 

The final decimated output compared to the input signal can be seen on Chipscope Pro 

Analyzer (Version 14.7) as shown in the Figure 6-15. The total decimation rate achieved 

by the entire system was 5 x 2 x 2 or 20 (i.e., CIC=5, first half-band = 2 and final half-

band = 2). 

 

Figure 6-15 DDC Output using Chipscope-Pro Analyzer 
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 6.2 Pattern Generator Board Testing 

Once the system has been tested between MATLAB, Modelsim and Chipscope 

Pro, there was a desire to provide a parallel data input from a separate clock driven 

device. The following section describes testing performed with the Pattern Generation 

board implementation. 

 6.2.1 Maximum Data Rate Achieved using ZPU 

 The maximum data rate at which the pattern generator board is able to source the 

test data is directly proportional to the read clock that is generated for the output FIFO. 

The read clock rate was determined as follows: 

The CRAM takes about “70ns” [34] to read or write 16 bits of data in an 

asynchronous mode. When operating with 32 bit data transfers at a 50 MHz clock, the 

designed memory interface requires approximately “200ns” for two-16 bit data access. 

The ZPU being a stack based processor, the number of clock cycles required to execute a 

particular set of instructions is larger than compared to a regular register based processor. 

Based on these facts, the time taken by the ZPU to read the data from CRAM and write it 

to the FIFO is approximately 5.22us as shown in the Figure 6-16. In this figure, the 

~ℎ𝑎𝑙𝑓𝑓𝑢𝑙𝑙 flag (D7) and the FIFO 𝑤𝑟𝑖𝑡𝑒𝑒𝑛𝑎𝑏𝑙𝑒 (D15) signal are depicted. 
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Figure 6-16 Time Delay between 2 Successive FIFO Writes 

In order to maintain the periodicity at the output of the pattern generator, the ZPU 

software was designed in such a way that, a burst of 50 data samples of 32-bits gets 

written into the FIFO every time the amount of data available in the FIFO is less than half 

full as shown in the Figure 6-17. The total time taken by the ZPU to write these 50 data 

sample bursts was found to be approximately “260us”. Therefore, the maximum rate at 

which the data can be read from the FIFO was approximately 385.6 kilo samples per 

second (ksps). Since, the pattern generator board was also intended to do the results 

comparison, the read speed of the FIFO is limited to less than or equal to 200 ksps. The 

data read from the FIFO is actually the 16-bit interleaved data samples emulating the 

ADC. Thus, the actual sample rate for the communication signal processor is half of the 

rate at which the samples are read from the FIFO (i.e., 100 ksps). 
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Figure 6-17 FIFO Burst Write 

 6.2.2 MATLAB limitations to Account for Hardware Transients 

A major challenge with testing digital filters that are implemented in hardware 

involves the transient responses associated with initialization. Although, many techniques 

are suggested in the literature in order to eliminate these transients, their implementation 

was not considered in this thesis in order to save hardware resources. Instead, the initial 

set of output samples were simply discarded in this work. 

The transient effect is clearly visible at the output of the final stage half-band 

filter shown in Figure 6-18. Due to the difficulty in perfect time sample alignment when 

decimation is performed, an exact MATLAB modeling for this transients was not 

implemented. As a result, the pattern generator and result analyzer board was just used as 

pattern generator for this application. Overall, the pattern generator readily sends out the 
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stored patterns along with the necessary clocks and control signals in order to test the 

communication signal processor developed. 

Figure 6-18 Transient Response at the Output of the Final Stage Half-Band Filter 

 6.3 Signal Processor Device Utilization Summary 

The complete device utilization summary for the communication signal 

processing board is shown in the Table 6-1 below. It can be clearly seen that, only about 

55% of the slices have been utilized, the utilized memory both single port and dual port is 

also only 14% and only a quarter of the available 31-DSP48A1 slices have been utilized. 

In general, we can approximate about 50% of logic resources still available in the FPGA 

with significantly more DSP and memory resources available. This allows for more 

signal processing blocks like equalizers, FEC and other communication specific 

algorithms to be implemented. 
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Table 6-1 Signal Processor Device Utilization Summary 

Device Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 5,118 18,224 28% 

    Number used as Flip Flops 5,117 

    Number used as Latches 1 

Number of Slice LUTs 4,308 9,112 47% 

    Number used as logic 3,511 9,112 38% 

    Number used as Memory 323 2,176 14% 

        Number used as Shift Register 323 

    Number used exclusively as route-thrus 474 

        Number with same-slice register load 468 

        Number with same-slice carry load 6 

Number of occupied Slices 1,620 2,278 71% 

Number of MUXCYs used 2,864 4,556 62% 

Number of LUT Flip Flop pairs used 5,350 

    Number with an unused Flip Flop 994 5,350 18% 

    Number with an unused LUT 1,042 5,350 19% 

    Number of fully used LUT-FF pairs 3,314 5,350 61% 

    Number of unique control sets 97 

    Number of slice register sites lost 

        to control set restrictions 
418 18,224 2% 

Number of bonded IOBs 37 232 15% 

    Number of LOCed IOBs 37 37 100% 

Number of RAMB16BWERs 20 32 62% 

Number of RAMB8BWERs 1 64 1% 

Number of BUFG/BUFGMUXs 3 16 18% 

    Number used as BUFGs 3 

Number of BSCANs 1 4 25% 

Number of DSP48A1s 8 32 25% 

Number of RPM macros 9 

Average Fanout of Non-Clock Nets 3.26 

file:///C:/Users/Nagarjun/Desktop/Thesis-Final/working-DDC/SignalProcessor/DSPboard_TOP_map.xrpt?&DataKey=IOBProperties
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 6.4 Signal Processor Timing Verification 

In this section, we will analyze the worst case delay for the data path between the 

input and the output of the signal processor board. This analysis was performed using the 

Xilinx’s built-in timing analyzing tool. The table is shown in Figure 6-19 and contains 

the minimum and the maximum delay between the dsp_clk (SCLK) input and the FIFO 

output of the signal processor board. The theoretical minimum clock speed that the 

processor can be run is determined by the fifo_dout(15) signal. Based on this worst case 

delay, the maximum useable clock frequency is approximately 87 MHz, if operated at a 

higher frequency, invalid parallel output data would be generated. 

Figure 6-19 Signal Processor Timing Summary 



132 

CONCLUSION AND FUTURE WORK 

 7.1 Conclusion 

In this thesis, the successful implementation and verification of a narrowband 

digital down converter chain has been demonstrated on a Spartan 6 development board.  

In addition to this signal processor board, a digital pattern generator and output 

comparator system was developed on a second Spartan 6 development board. 

The DDC implemented in this thesis consists of a 20 stage pipelined CORDIC 

processor, implemented in VHDL. The corresponding iterative model was also designed 

in MATLAB for functional verification. A 3-stage CIC filter decimator was implemented 

in order to perform the high rate decimation followed by a 2 stage half-band filters, one 

with 7 taps and other with 31 taps both performing a fixed decimation by a factor of 2. 

Again, MATLAB was used to design a finite precision integer model of the CIC and half-

band filters in order to verify the functionality of the hardware developed. 

In addition, a pattern generator and result comparator board was designed using 

an embedded softcore processor called a Zylin Processing Unit. The pattern generator 

board consists of the CRAM containing the test vectors that are generated using 

MATLAB. The ZPU was used to source these test signals and collect the results from the 

device that is being tested in real time. For a more predictable combinatorial result 
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without transients, the board would also compare the results with the pre-computed 

results that are stored in the CRAM. 

 7.2 Future Work 

Based on the experiences gained during the course of this research, the following 

recommendations are possible areas that may be explored in the future: First specific 

improvements to the current system are described. This is followed by broader 

application of the elements developed. 

1. The CIC and the half-band filter stages contain sections that truncates the 24-bit data

input to the signal processing board. Though truncation serves multiple purposes, it 

does result in loss of precision as compared to options like rounding. More research is 

required in analyzing the cost and performance benefits of various rounding algorithm 

on the overall system, before such a technique can be incorporated in to the system. 

2. Another aspect of the implementation that can be significantly improved is the soft

core ZPU processor. The small footprint RISC based processor was an ideal candidate 

for the type of operations being performed in this research. But the large execution 

times in the ZPU, owing to its stack based architecture proved to be a limiting factor in 

the maximum throughput that can be achieved on a board to be tested. The latest Zynq 

based FPGA development boards combine the software programmability of an ARM 

core processor with the hardware programmability of an FPGA and would be an ideal 

replacement for the ZPU. 

3. The comparator section of the pattern generator could not be validated with MATLAB

results due to the presence of transients in the CORDIC and the filter stages. 
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Simulating CORDIC, CIC and half-band with all possible transients in MATLAB 

could provide a way to perform end to end testing the DDC chain. 

4. Most of the parameters of the CORDIC can be reconfigured to suit the DDC

requirements for a broad range of wireless communication technologies. However, the 

number of pipelined stages in CORDIC is fixed currently to 20-stages. This can be 

modified by using VHDL ‘generate’ statements to instantiate an array of CORDIC 

stages. 

The DDC processing elements developed provide key components required by 

Dr. Bazuin to develop a customized, open-source Xilinx design for real-time processing 

of narrowband signals. This could replace and/or extend the capability of existing Ettus 

Research USRP devices available or provide a means to use the existing USRP RF 

daughter cards with new Xilinx Zynq-based development boards. As defined, the DDC 

elements can also be readily configured for transmitting, performing the mathematical 

inverse operations involved in digital up-converting (DUC). A DUC reverses the 

processing element ordering and converts the CIC filter-decimator into a CIC 

interpolator-filter. 

 7.3 Summary 

In the course of this thesis, it was a great experience learning about multi-rate 

signal processing concepts. This thesis is a great way to learn about the implementation 

of digital filter on FPGA and employing hardware resource sharing to reduce the number 

of logic resources required. In addition, to further continue this research we can develop a 

Gigabit Ethernet interface on a Zynq-based development board to establish the 
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communication between PC and FPGA. This along with DDC/DUC chain and AD-

FMCOMMS1-EBZ [35] we can develop a custom software defined radio peripheral.
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Appendix A - MATLAB Scripts 

 CORDIC Processor 

% Cordic Implementation 

clc 

clear all 

close all 

nsamples = 4096; 

fftsize = 65536; 

fsample = 100e3; 

fsignal = 10e3; 

frange = (-0.5:1/fftsize:0.5-1/fftsize)*fsample; 

[I, Q] = TestSigGen(fsignal,fsample,nsamples,0); 

Isample = fix(I*2^14-1); 

Qsample = fix(Q*2^14-1); 

x_in = (I+i*Q)*2^14-1; 

fileID = fopen('C:\Users\Nagarjun\Documents\MATLAB\Thesis\cordicI.txt', 'w+');%%%%%%%%%% 

for i= 1:nsamples 

    fprintf(fileID, '%d\n',int32(Isample)); 

end 

fclose(fileID); 

fileID = fopen('C:\Users\Nagarjun\Documents\MATLAB\Thesis\cordicQ.txt', 'w+');%%%%%%%%%% 

for i= 1:nsamples 

    fprintf(fileID, '%d\n',int32(Qsample)); 

end 

fclose(fileID); 

figure('NumberTitle', 'off',... 

'Name', 'Received Signal'); 

plot(0:nsamples-1,x_in) 

title('\bfReceived Signal') 

xlabel('\bfTime') 

ylabel('\bfMagnitude') 

SigSpec = fftshift(fft(x_in,fftsize)); 

figure 
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plot(frange,dB(psdg(SigSpec/max(SigSpec)))); 

title('\bfFrequency Specturm Received Signal') 

xlabel('\bfFrequency') 

ylabel('\bfMagnitude in dB') 

ylim([-80,10]); grid on 

input_str = sprintf('Please enter center freq (less than %dHz)',fsample); 

NCO_Freq = input(input_str); 

PhaseInc = 2*(((NCO_Freq * 2^(32-1)) / fsample)) 

STG = 20;   % Number of rotations 

K = 0.60725294104140; % Cordic Gain 

for i = 0:1:(23) 

    c = (round((atan(1.0/(2^i))/(2*pi)) * (2^24))); 

    consts(i+1) = c; 

end 

% pre allocate the vectors and parameters 

phasepast = 0; 

init_0padding = 1; 

Isample = Isample*2^8; 

Qsample = Qsample*2^8; 

Is = int32([zeros(1,init_0padding) Isample(1:nsamples-init_0padding)]); 

Qs = int32([zeros(1,init_0padding) Qsample(1:nsamples-init_0padding)]); 

phase = (0); 

initial = 1; 

x = int32(1)*(2^(16)-1);% 24 bit input to cordic 

y = int32(0); 

for N = 1:nsamples 

%###################################################### 

%           CORDIC PROCESSOR 

%###################################################### 

   x = sign_ext(Is(N),24,1);% 25 bit Cordic processor 

   y = sign_ext(Qs(N),24,1); 

% Phase accumulator 

phase = phase + PhaseInc; 

% phasepast = phase; 

% ############------[32 bit Integer Wrap Around]------############ 

if (phase > 2147483647)% if > 2^31 - 1 roll it back to -ve's 

    phase = phase - 4294967295; %(2^31-1 + 2^31) 

else if(phase < -2147483648) % -2^31 

phase = phase + 4294967295; 
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    end 

end 

zin_24 = floor(phase/256);% right shift by 8 since zwidth is 24 

zin = int32(zin_24); 

% Phase pre rotation since cordic is limited to +pi/2 to -pi/2 

if (zin>=2^22 && zin<2^23)% interval between 90 to 180 degrees 

    xpast = x; 

    x = -y; 

    y = xpast; 

    zin = bitand(zin, 4194303); 

 else if(zin>=-2^23 && zin<-2^22)% interval between -180 to -90 degrees 

xpast = x; 

x = y; 

y = -xpast; 

zin = bitor(zin,-12582912); 

end 

end 

% 20 stage, 27 bit cordic pipeline 

x = sign_ext(x,25,2); % sign extend to accomodate bit growth 

y = sign_ext(y,25,2); 

j = 0; 

d=1; 

P_vec(N) = phase; 

% z = phase; 

while j < STG 

    if (zin > 0) 

d = 1; 

    else 

d = -1; 

    end 

    xpast = x; 

    x = xpast - (d*bitshift(y,-j)); 

    y = y + (d*bitshift(xpast,-j)); 

j = j+1; 

    zin = zin - (d*consts(j)); 

% ############------[27bit OverFlow Compensation]------############ 

    if (x > 134217727)% if > 2^27 -1 roll it back to -ve's 

x = x - 268435455; 

    else if(x < -134217728) 
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    x = x + 268435455; 

end 

    end 

    if (y > 134217727)% if > 2^27 -1 roll it back to -ve's 

y = y - 268435455; 

    else if(y < -134217728) 

    y = y + 268435455; 

end 

    end 

end 

% Clip the cordic output to 24 bit 

X(N) = bitshift(x,-2); 

Y(N) = bitshift(y,-2); 

Z(N) = zin; 

end 

% Save Real and Imaginary values to test.mat file. 

X_fft = fftshift(fft(double(X), fftsize)); 

save('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cordic_out.mat', 'X', 

'Y','X_fft','NCO_Freq', 'fsample','nsamples'); 

% Time Domain Plots. 

figure('NumberTitle', 'off',... 

'Name', 'CORDIC output'); 

plot(X,'b') 

hold 

plot(Y,'g') 

grid on 

title('CORDIC time domain') 

legend('Real Samples', 'Imag Samples') 

xlabel('Time') 

ylabel('Magnitute') 

% Frequency Plots 

figure('NumberTitle','off',... 

'Name','Power Spectral Desity plot') 

plot(frange, dB(psdg(X_fft/max(X_fft)))) 

axis([-fsample/2 fsample/2 -80 10]) 

grid on; 

title('Frequency domain plot of NCO') 

xlabel('Frequency') 

ylabel('Magnitude in dB') 
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% Phase shift the CORDIC output to match the FPGA 

cordic_delay  = 21; 

X = [zeros(1,cordic_delay) X]; 

fileID = fopen('C:\Users\Nagarjun\Documents\MATLAB\Thesis\cordicI2cic_TB.txt', 

'w+');%%%%%%%%%% 

for i= 1:nsamples 

    fprintf(fileID, '%d\n',(X(i))); 

end 

fclose(fileID); 

fileID = fopen('C:\Users\Nagarjun\Documents\MATLAB\Thesis\cordicQ2cic_TB.txt', 

'w+');%%%%%%%%%% 

for i= 1:nsamples 

    fprintf(fileID, '%d\n',(Y(i))); 

end 

fclose(fileID); 

 Cascaded Integrator Comb Filter 

% CIC Decimation Filter Design Simulation for SDR 

clc 

clear all 

close all 

load('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cordic_out.mat') % Cordic output 

fftsize = 65536; 

fsample_in = fsample; 

actual_rate = 5;% odd decimation would give better results; 

decim_rate = actual_rate-1; 

fsin = NCO_Freq; 

Fs_out = fsample_in/actual_rate; 

bits_in = 24; 

N = 3; %number of stages 

% nsamples = 512*4; 

maxbitgain = ceil(log2(127)); 

% input signal 

 

% x_in = (cos(2*pi*(0:nsamples-1)*(fsin/Fs_in)));%+rand(1,nsamples); %input signal 
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x_in = X; 

nsamples = length(x_in); 

figure 

plot((0:1:nsamples-1),x_in) 

title('Input signal') 

xlabel('Time') 

ylabel('Magnitude') 

freq_in = (-0.5:1/fftsize:0.5-1/fftsize)*fsample_in; 

x_infft = fftshift(fft(double(x_in), fftsize)); 

figure 

plot(freq_in,dB(psdg(x_infft/max(x_infft)))) 

stitle = sprintf('Input to the CIC filter with sampling rate of %g',fsample_in); 

title(stitle) 

xname = sprintf('Fsin = %g', fsin); 

xlabel('Frequency in Hz') 

ylabel('Magnitude in dB') 

hold on 

% CIC freq Response 

freqrange = (-0.5:1/fftsize:0.5-1/fftsize); 

ZeroIdx=find(freqrange==0); 

NotZeroIdx=find(freqrange~=0); 

H0freq(NotZeroIdx)= sin(pi*decim_rate*freqrange(NotZeroIdx)) ./ 

sin(pi*freqrange(NotZeroIdx)); 

H0freq(ZeroIdx)=decim_rate; 

H0freq=(H0freq/decim_rate).^N; 

plot(freq_in, dB(psdg(H0freq)),'r') 

hold off 

ylim([-80 10]) 

grid 

legend('Input Signal','CIC Filter') 

% integrator inplementation 

integrator = int64(zeros(1,N)); 

diff = int64(zeros(1, N)); 

% bitwidth=bits_in+ceil(N*log2(decim_rate)); 

bitwidth=bits_in+ceil(N*maxbitgain); 

for ii = 1:1:nsamples 

    x_sign_ext(ii) = sign_ext(int64(x_in(ii)),24,(bitwidth-24)); 

    integrator(1) = add_2(int64(x_sign_ext(ii)), integrator(1), bitwidth); 

    stage1(ii+1) = integrator(1); 
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    integrator(2) = add_2(stage1(ii), integrator(2), bitwidth); 

    stage2(ii+1) = integrator(2); 

    integrator(3) = add_2(stage2(ii), integrator(3), bitwidth); 

    stage3(ii+1) = integrator(3);  

end 

accu_delay = zeros(1,3); 

stage3 = [accu_delay stage3]; 

% Down sample the signal this is done in cic_strober.v 

sampler = stage3(1:actual_rate:length(stage3)); 

%Comb implementation 

for jj = 1:1:length(sampler) 

    pipeline1(jj) = add_2(sampler(jj), -diff(1), bitwidth); 

    diff(1) = sampler(jj); 

    pipeline2(jj) = add_2(pipeline1(jj), -diff(2), bitwidth); 

    diff(2) = pipeline1(jj); 

    pipeline3(jj) = add_2(pipeline2(jj), -diff(3), bitwidth); 

    diff(3) = pipeline2(jj);  

end 

%######### Integrator plots 

figure 

subplot(3,2,1) 

plot(stage1); 

title('\bfIntegrator stages output') 

ylabel('\bfMagnitude') 

subplot(3,2,3) 

plot(stage2); 

ylabel('\bfMagnitude') 

subplot(3,2,5); 

plot(stage3) 

ylabel('\bfMagnitude') 

xlabel('\bfNumber of samples')  

% ######### Differentiator plot 

subplot(3,2,2) 

plot(pipeline1); 

title('\bfDifferentiator stages output') 

ylabel('\bfMagnitude') 

subplot(3,2,4) 

plot(pipeline2); 

ylabel('\bfMagnitude') 
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subplot(3,2,6); 

plot(pipeline3) 

ylabel('\bfMagnitude') 

xlabel('\bfNumber of samples')  

% Bit pruning CIC decimation filter 

shift = round(N*(log2(actual_rate))); 

cic_out = double(bitshift(int64(pipeline3),-shift)); 

cic_out_24 = (add_2((cic_out),0, 24)); 

% Output Signal 

disp('Ploting multiple spectrum by rearrangin rows into columns') 

figure 

x_outfft = fftshift(fft(double(pipeline3), fftsize))'; 

x_outtohb = fftshift(fft(double(cic_out_24), fftsize))'; 

freq_out = freq_in/actual_rate; 

plot(freq_out, dB(psdg([x_outfft/max(x_outfft) x_outtohb/max(x_outtohb)]))); 

hold on 

stitle = sprintf('Output of the CIC filter with decimation srate of %g',actual_rate); 

title(stitle) 

xname = sprintf('Fsample in = %g, Fsample out = %g', fsample_in, fsample_in/actual_rate); 

xlabel(xname) 

ylabel('Magnitude in dB') 

% ylim([-50 10]) 

legend('Actual output','Pruned output') 

grid on 

save('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cic_out.mat','Fs_out', 'freq_out', 

'cic_out_24') 

fileID = fopen('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cic2shb_TB.txt', 

'w+');%%%%%%%%%% 

for i= 1:nsamples/actual_rate-1 

    fprintf(fileID, '%d\n',cic_out_24(i)); 

end 

fclose(fileID); 
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 Small (7-Tap) Half Band Filter 

clc 

clear all 

close all 

load('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cic_out') 

fftsize = 65536; 

decim_rate = 2;  % fixed decimation in usrp 

Fs_in = Fs_out;       % sampling rate input 

Fs_out = Fs_in/decim_rate;% decimated sampling rate 

samples_in = cic_out_24;% output from CIC 24bit precision 

nsamples = length(samples_in); 

freq_in = freq_out; 

freq_out = (-0.5:1/fftsize:0.5 - 1/fftsize)*Fs_out; 

bitsin_W = 24; 

round_W= 17; 

accum_W = 30; 

bitsin = 24; 

bitsout=17; 

%% Rounding the input to 18 bits using truncation 

round_in = int_round(samples_in,bitsin_W,round_W); 

figure 

subplot(2,1,1) 

plot(samples_in) 

title('samples in 24 bit') 

xlabel('Time') 

ylabel('Magnitude') 

subplot(2,1,2) 

plot(round_in) 

title('round in 17 bit') 

xlabel('Time') 

ylabel('Magnitude') 

figure 

Spec_filtIn24 = fftshift(fft(samples_in, fftsize))'; 

Spec_filtIn17 = fftshift(fft(round_in, fftsize))'; 

plot(freq_in, dB(psdg([Spec_filtIn17/max(Spec_filtIn17) 

Spec_filtIn17/max(Spec_filtIn17)]))); 

title('Input signal to small HB Filter') 
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xlabel('Frequency in Hertz') 

ylabel('Magnitude in dB') 

legend('actual input','rounded input') 

%% generating the filter coefficients for halfband filter 

shb_filt = fix(2^18 * halfgen4(0.75/8,2)) 

figure 

subplot(2,1,1) 

stem(shb_filt) 

title('Normalized HalfBand filter Taps = 7') 

xlabel('Time sample') 

ylabel('value') 

grid on 

fft_usrp_filt = fftshift(fft(shb_filt, fftsize)); 

subplot(2,1,2) 

plot(freq_in, dB(psdg(fft_usrp_filt/max(fft_usrp_filt)))); 

xlabel('Frequency') 

ylabel('Power(dB)') 

ylim([-80 10]) 

grid on 

%% Shift register Implementation 

Z = zeros(1, length(shb_filt)); 

col_sh = diag( ones(length(shb_filt)-1,1), 1); 

for n = 1:1:length(round_in) 

        Z = Z*col_sh; 

        Z(1) = round_in(n); 

        add_1(n) = Z(1)+Z(7);  

        add_2(n) = Z(3)+Z(5);  

        middle(n) = int32(Z(4)*2); 

        m_reg(n) = bitshift(sign_ext(middle(n),18,2),10); 

end 

% sum and product implementation 

% Decimating happens in the 2nd stage of the implementation taking advantage of HB Char's 

sum_a = add_1(1:2:length(round_in)); 

sum_b = add_2(1:2:length(round_in)); 

middle_reg = [double(m_reg(1:2:length(round_in))) 0]; 

product_1 = int64(sum_a.*(-10690)); 

product_2 = int64(sum_b.*(75809)); 

product_a = (bitshift(product_1,-(36-accum_W))); 

product_b = (bitshift(product_2,-(36-accum_W))); 
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product_a = [0 product_a]; % testing the phase delays 

% Final accumulator. 30 bit 

% NOTE: accum is of double datatype. carefull about the input sizes as 

% accum will not overflow as 30 bit number does. 

K = 1; 

for i = 1:2:nsamples 

    accum(i) = middle_reg(K)+product_a(K); 

    accum(i+1) = accum(i) + product_b(K); 

    K=K+1; 

end 

accum_round = int_round(accum(2:2:end), accum_W, 25); 

filt_out = clip(accum_round,25,24); 

save('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\hb0_out','filt_out','Fs_out') 

%% plot results 

figure 

plot(filt_out) 

title('samples out 24 bit samples') 

xlabel('Time') 

ylabel('Magnitude') 

Spec_filtOut = fftshift(fft(filt_out, fftsize)); 

figure 

plot(freq_out, dB(psdg(Spec_filtOut/max(Spec_filtOut)))); 

xlim([-Fs_out/2 Fs_out/2]) 

title('Output signal from small HB Filter') 

xlabel('Frequency in Hertz') 

ylabel('Magnitude in dB') 

grid on 

fileID = fopen('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\shb2lhb_TB.txt', 

'w+');%%%%%%%%%% 

for i= 1:nsamples/decim_rate 

    fprintf(fileID, '%d\n',accum_round(i)); 

end 

fclose(fileID); 
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 Large (31-Tap) Half Band Filter 

clc 

clear all 

close all 

load('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\hb0_out'); 

data_in = filt_out; 

clear('filt_out') 

fs_in = Fs_out; 

fftsize = 4096; 

nsamples = length(data_in); 

round_in = int_round(data_in, 24, 17); 

figure 

plot(round_in) 

title('Rounded Input Signal') 

xlabel('Time samples') 

ylabel('Magnitude') 

freq_in = (-0.5:1/fftsize:0.5-1/fftsize)*fs_in; 

%% generating the filter coefficients for halfband filter according to USRP 

myfilt = round(2^18 * halfgen4(.7/4,8)); 

Nord = length(myfilt); 

myfilt_fft = fftshift(fft(myfilt,fftsize)); 

figure 

subplot(2,1,1) 

stem(myfilt) 

title('\bfNormalized HalfBand filter Taps = 31') 

xlabel('Time sample') 

ylabel('value') 

grid 

subplot(2,1,2) 

plot(freq_in,dB(psdg(myfilt_fft/max(myfilt_fft)))) 

% title('frequency response of the large filter') 

ylabel('\itMagnitude in dB'); 

xlabel('\itFrequency') 

grid 

%% 31 tap HB has the 2 path polyphase implementation of the 31 tap halfband filter. 

lambda = 2; 

polyord = lambda*(ceil(Nord/lambda)); 
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polytaps = polyord/lambda; 

M = polytaps; 

myfilt_v1 = [myfilt zeros(1, polyord-Nord)]; 

poly_filt = reshape(myfilt_v1,lambda,polytaps); 

coeff1 = [-107 445 -1271 2959]; 

coeff2 = [-6107 11953 -24706 82359]; 

Z = zeros(lambda,polytaps); 

Zshift = diag( ones(polytaps-1,1), 1); 

numblocks = nsamples/lambda; 

accum(1)=0; 

for ii = 1:1:numblocks 

    Z = Z*Zshift; 

    Tindex = 1+((ii-1)*lambda:ii*lambda-1); 

    Z(:,1) = (round_in(Tindex))'; 

    sum1 = [Z(1,1)+Z(1,16) Z(1,2)+Z(1,15) Z(1,3)+Z(1,14) Z(1,4)+Z(1,13)]; 

    sum2 = [Z(1,5)+Z(1,12) Z(1,6)+Z(1,11) Z(1,7)+Z(1,10) Z(1,8)+Z(1,9)]; 

    prod1 = sum1 .* coeff1; % 36 bit product 

    prod2 = sum2 .* coeff2; 

    sum_of_prod = (prod1+prod2); % 36 bit 

    sum_of_prod = int64(prod1+prod2); % 36 bit 

    round_sum = bitshift(sum_of_prod,-11); % round to 25 bit number for accumulator 

%   round_sum = sum_of_prod; % uncomment to compare with Conventional polyphase 

implementation 

% actual place for middle is Z(2,8) but due to indexing issue it is Z(2,9) 

    middle = bitshift(int32(Z(2,9)),6);% should have rounded to 25 bit but its okay since 

it is double is 2^53 

    accum(ii) = sum(round_sum); 

    final_sum(ii,:) = accum(ii)+ middle; %27 bit accumulator 

    % Conventional polyphase implementation. Need to shift right by 11 bits 

    % to match the outputs. 

%     yvect(:,ii) = sum(((Z)) .* poly_filt,2); 

%     filt_out(ii) = sum(yvect(:,ii)).'; 

end 

% final_out = int_round() 

% filt_out = int64(sum(yvect).'); 

figure 

% subplot(1,2,1) 

plot(final_sum) 

title('31 TAP HB filt FPGA implementation Matched') 
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xlabel('Time samples') 

ylabel('Magnitude') 

% subplot(1,2,2) 

% plot(filt_out) 

% title('My polyphase output') 

% xlabel('Time samples') 

% ylabel('Magnitude') 

fft_final_sum = fftshift(fft(double(final_sum), fftsize)); 

figure 

plot(freq_in/2,dB(psdg(fft_final_sum/max(fft_final_sum)))) 

title('\bfFrequency spectrum') 

xlabel('\bfFrequency') 

ylabel('\bfMagnitude in dB') 

grid 

 Half-Band filter generator 

function A=halfgen4(up,N) 

% up is the stopband width, as a fraction of input sampling rate 

% N is the order of half-band filter to generate 

% A is the full set of FIR coefficients, 4*N-1 long 

npt=N*20; 

wmax=2*pi*up; 

x0=([0:npt]-.0)'/npt; 

yfit=1-x0.^2;   % possibly bogus, but good enough to get started 

wfit=yfit*wmax; 

q=[1:2:(2*N-1)]; 

target=.5*ones(length(wfit),1 
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Appendix B - VHDL Implementation 

 Cordic_z24.vhd 

-----------------------------------------------------------------------

----------- 

-- Company: Western Michigan University 

-- Engineer: Nagarjun Marappa 

--  

-- Create Date:    20:44:32 03/29/2014  

-- Design Name:  

-- Module Name:    Cordic_z24 - Behavioral  

-- 

-----------------------------------------------------------------------

----------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

use IEEE.STD_LOGIC_SIGNED.ALL; 

 

entity Cordic_z24 is 

generic (zwidth : natural := 24; 

            bitwidth : natural := 25; 

            D_CARE_VAL : std_logic:='X' 

            ); 

    Port ( CLK          : in    STD_LOGIC; 

              RST           : in    STD_LOGIC; 

              ddc_en        : in  STD_LOGIC; 

              Iin       : in  STD_LOGIC_VECTOR(bitwidth-1 downto 0); 

           Qin      : in  STD_LOGIC_VECTOR(bitwidth-1 downto 0); 

              Zin           : in  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

           Iout         : out STD_LOGIC_VECTOR(bitwidth-1 downto 0); 

           Qout         : out STD_LOGIC_VECTOR(bitwidth-1 downto 0); 

              Zout      : out STD_LOGIC_VECTOR(zwidth-1 downto 0) 

              ); 

end Cordic_z24; 

 

architecture Behavioral of Cordic_z24 is 

 

    COMPONENT CORDIC_STAGE is 

    generic (zwidth : natural := 24; 

            bitwidth : natural := 26;    

            shift : natural := 1 

            ); 

    Port ( CLK          : in    STD_LOGIC; 

              RST           : in    STD_LOGIC; 

              en            : in    STD_LOGIC; 

              Iin       : in  STD_LOGIC_VECTOR (bitwidth-1 downto 0); 

           Qin      : in  STD_LOGIC_VECTOR (bitwidth-1 downto 0); 

           zin      : in  STD_LOGIC_VECTOR (zwidth-1 downto 0); 
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              C_consts  : in    STD_LOGIC_VECTOR (zwidth-1 downto 0); 

           Iout         : out STD_LOGIC_VECTOR (bitwidth-1 downto 0); 

           Qout         : out STD_LOGIC_VECTOR (bitwidth-1 downto 0); 

           zout         : out STD_LOGIC_VECTOR (zwidth-1 downto 0)); 

    end COMPONENT; 

     

-- constants for 24 bit phase 

constant C0  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"200000"; 

constant C1  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"12E405"; 

constant C2  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"09FB38"; 

constant C3  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"051112"; 

constant C4  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"028B0D"; 

constant C5  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"0145D8"; 

constant C6  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00A2F6"; 

constant C7  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00517C"; 

constant C8  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"0028BE"; 

constant C9  : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00145F"; 

constant C10 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000A30"; 

constant C11 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000518"; 

constant C12 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00028C"; 

constant C13 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000146"; 

constant C14 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"0000A3"; 

constant C15 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000051"; 

constant C16 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000029"; 

constant C17 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000014"; 

constant C18 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00000A"; 

constant C19 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000005"; 

constant C20 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000003"; 

constant C21 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000001"; 

constant C22 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000001"; 

constant C23 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000000"; 

-- InPhase inter stage components 

signal I0 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I1 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I2 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I3 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I4 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I5 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I6 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I7 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I8 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I9 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I10:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I11:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I12:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I13:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I14:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I15:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I16:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I17:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I18:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal I19:  STD_LOGIC_VECTOR(bitwidth+1 downto 0);  

signal I20:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

 

attribute KEEP :string; 
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attribute KEEP of I0: signal is "TRUE"; 

attribute KEEP of I1: signal is "TRUE"; 

attribute KEEP of I2: signal is "TRUE"; 

attribute KEEP of I3: signal is "TRUE"; 

attribute KEEP of I4: signal is "TRUE"; 

attribute KEEP of I5: signal is "TRUE"; 

attribute KEEP of I6: signal is "TRUE"; 

attribute KEEP of I7: signal is "TRUE"; 

attribute KEEP of I8: signal is "TRUE"; 

attribute KEEP of I9: signal is "TRUE"; 

attribute KEEP of I10: signal is "TRUE"; 

attribute KEEP of I11: signal is "TRUE"; 

attribute KEEP of I12: signal is "TRUE"; 

attribute KEEP of I13: signal is "TRUE"; 

attribute KEEP of I14: signal is "TRUE"; 

attribute KEEP of I15: signal is "TRUE"; 

attribute KEEP of I16: signal is "TRUE"; 

attribute KEEP of I17: signal is "TRUE"; 

attribute KEEP of I18: signal is "TRUE"; 

attribute KEEP of I19: signal is "TRUE"; 

attribute KEEP of I20: signal is "TRUE"; 

-- QuadraturePhase inter stage components 

signal Q0 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q1 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q2 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q3 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q4 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q5 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q6 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q7 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q8 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q9 :  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q10:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q11:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q12:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q13:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q14:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q15:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q16:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q17:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q18:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q19:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

signal Q20:  STD_LOGIC_VECTOR(bitwidth+1 downto 0); 

 

attribute KEEP of Q0: signal is "TRUE"; 

attribute KEEP of Q1: signal is "TRUE"; 

attribute KEEP of Q2: signal is "TRUE"; 

attribute KEEP of Q3: signal is "TRUE"; 

attribute KEEP of Q4: signal is "TRUE"; 

attribute KEEP of Q5: signal is "TRUE"; 

attribute KEEP of Q6: signal is "TRUE"; 

attribute KEEP of Q7: signal is "TRUE"; 

attribute KEEP of Q8: signal is "TRUE"; 

attribute KEEP of Q9: signal is "TRUE"; 
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attribute KEEP of Q10: signal is "TRUE"; 

attribute KEEP of Q11: signal is "TRUE"; 

attribute KEEP of Q12: signal is "TRUE"; 

attribute KEEP of Q13: signal is "TRUE"; 

attribute KEEP of Q14: signal is "TRUE"; 

attribute KEEP of Q15: signal is "TRUE"; 

attribute KEEP of Q16: signal is "TRUE"; 

attribute KEEP of Q17: signal is "TRUE"; 

attribute KEEP of Q18: signal is "TRUE"; 

attribute KEEP of Q19: signal is "TRUE"; 

attribute KEEP of Q20: signal is "TRUE"; 

-- Inter Stage Phase Components 

signal Z0 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z1 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z2 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z3 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z4 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z5 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z6 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z7 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z8 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z9 :  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z10:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z11:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z12:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z13:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z14:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z15:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z16:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z17:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z18:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z19:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

signal Z20:  STD_LOGIC_VECTOR(zwidth-1 downto 0); 

 

attribute KEEP of Z0: signal is "TRUE"; 

attribute KEEP of Z1: signal is "TRUE"; 

attribute KEEP of Z2: signal is "TRUE"; 

attribute KEEP of Z3: signal is "TRUE"; 

attribute KEEP of Z4: signal is "TRUE"; 

attribute KEEP of Z5: signal is "TRUE"; 

attribute KEEP of Z6: signal is "TRUE"; 

attribute KEEP of Z7: signal is "TRUE"; 

attribute KEEP of Z8: signal is "TRUE"; 

attribute KEEP of Z9: signal is "TRUE"; 

attribute KEEP of Z10: signal is "TRUE"; 

attribute KEEP of Z11: signal is "TRUE"; 

attribute KEEP of Z12: signal is "TRUE"; 

attribute KEEP of Z13: signal is "TRUE"; 

attribute KEEP of Z14: signal is "TRUE"; 

attribute KEEP of Z15: signal is "TRUE"; 

attribute KEEP of Z16: signal is "TRUE"; 

attribute KEEP of Z17: signal is "TRUE"; 

attribute KEEP of Z18: signal is "TRUE"; 

attribute KEEP of Z19: signal is "TRUE"; 

attribute KEEP of Z20: signal is "TRUE"; 



 

157 

 

 

signal Iin_ext,Qin_ext: std_logic_vector(bitwidth+2 -1 downto 0); 

attribute KEEP of Iin_ext,Qin_ext: signal is "TRUE"; 

 

begin 

-- Sign extention to compensat the cordic gain 1.64xxxxxx 

-- one more option for sign extention is using resize() function from 

numeric_std library. 

--works on signed and unsigned. 

Iin_ext <= ((Iin(bitwidth-1)&Iin(bitwidth-1)) & Iin(bitwidth-1 downto 

0)); 

Qin_ext <= ((Qin(bitwidth-1)&Qin(bitwidth-1)) & Qin(bitwidth-1 downto 

0)); 

--phase_inc := phase_step; 

--Iin_ext <= resize(Iin,26); 

--Qin_ext <= resize(Qin,26); 

 

Qudrant_process :process(CLK, RST,Iin_ext,Qin_ext,Zin) 

begin  

if rising_edge(CLK) then 

    if RST = '1' then 

    I0 <= (others => '0'); 

    Q0 <= (others => '0'); 

    Z0 <= (others => '0'); 

    else 

--      case (Zin(Zin'high-1 downto Zin'high-2)) is -- error's out in 

modelsim "case expression must be logically static" 

        case (Zin(24-1 downto 24-2)) is 

            when "00" =>  -- no pre-rotation 

                I0 <= (Iin_ext); 

                Q0 <= (Qin_ext); 

                Z0 <= (Zin); 

            when "01" => --interval between 90 to 180 degrees 

                I0 <= -(Qin_ext); 

                Q0 <= (Iin_ext); 

                Z0 <= ("00" & Zin(zwidth-2-1 downto 0)); -- phase 

rotation to +90 deg 

            when "10" => --interval between -180 to -90 degrees 

                I0 <= (Qin_ext); 

                Q0 <= -(Iin_ext); 

                Z0 <= ("11" & Zin(zwidth-2-1 downto 0)); -- Phase 

rotatio to -90 deg 

            when "11" => ---- no pre-rotation 

                I0 <= (Iin_ext); 

                Q0 <= (Qin_ext); 

                Z0 <= (Zin); 

            when others => 

                I0 <= (others => '0'); 

                Q0 <= (others => '0'); 

                Z0 <= (others => '0'); 

        end case; 

    end if; 

end if; 

end process; 
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-- In this style of the portmap the order of the signals inside the 

braces are important 

 

STAGE_0     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 0) PORT 

MAP(CLK,RST,ddc_en,I0,Q0,Z0,C0,I1,Q1,Z1); 

STAGE_1     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 1) PORT 

MAP(CLK,RST,ddc_en,I1,Q1,Z1,C1,I2,Q2,Z2); 

STAGE_2     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 2) PORT 

MAP(CLK,RST,ddc_en,I2,Q2,Z2,C2,I3,Q3,Z3);  

STAGE_3     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 3) PORT 

MAP(CLK,RST,ddc_en,I3,Q3,Z3,C3,I4,Q4,Z4);  

STAGE_4     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 4) PORT 

MAP(CLK,RST,ddc_en,I4,Q4,Z4,C4,I5,Q5,Z5);  

STAGE_5     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 5) PORT 

MAP(CLK,RST,ddc_en,I5,Q5,Z5,C5,I6,Q6,Z6);  

STAGE_6     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 6) PORT 

MAP(CLK,RST,ddc_en,I6,Q6,Z6,C6,I7,Q7,Z7);  

STAGE_7     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 7) PORT 

MAP(CLK,RST,ddc_en,I7,Q7,Z7,C7,I8,Q8,Z8);  

STAGE_8     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 8) PORT 

MAP(CLK,RST,ddc_en,I8,Q8,Z8,C8,I9,Q9,Z9);  

STAGE_9     : CORDIC_STAGE generic map(zwidth, bitwidth+2, 9) PORT 

MAP(CLK,RST,ddc_en,I9,Q9,Z9,C9,I10,Q10,Z10);  

STAGE_10 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 10) PORT 

MAP(CLK,RST,ddc_en,I10,Q10,Z10,C10,I11,Q11,Z11);  

STAGE_11 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 11) PORT 

MAP(CLK,RST,ddc_en,I11,Q11,Z11,C11,I12,Q12,Z12);  

STAGE_12 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 12) PORT 

MAP(CLK,RST,ddc_en,I12,Q12,Z12,C12,I13,Q13,Z13);  

STAGE_13 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 13) PORT 

MAP(CLK,RST,ddc_en,I13,Q13,Z13,C13,I14,Q14,Z14);  

STAGE_14 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 14) PORT 

MAP(CLK,RST,ddc_en,I14,Q14,Z14,C14,I15,Q15,Z15);  

STAGE_15 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 15) PORT 

MAP(CLK,RST,ddc_en,I15,Q15,Z15,C15,I16,Q16,Z16);  

STAGE_16 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 16) PORT 

MAP(CLK,RST,ddc_en,I16,Q16,Z16,C16,I17,Q17,Z17); 

STAGE_17 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 17) PORT 

MAP(CLK,RST,ddc_en,I17,Q17,Z17,C17,I18,Q18,Z18); 

STAGE_18 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 18) PORT 

MAP(CLK,RST,ddc_en,I18,Q18,Z18,C18,I19,Q19,Z19); 

STAGE_19 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 19) PORT 

MAP(CLK,RST,ddc_en,I19,Q19,Z19,C19,I20,Q20,Z20); 

 

Iout <= I20(bitwidth+1 downto 2); 

Qout <= Q20(bitwidth+1 downto 2); 

Zout <= Z20; 

end Behavioral; 

 CORDIC_STAGE.vhd 

-----------------------------------------------------------------------

----------- 

-- Company: Western Michigan University 
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-- Engineer: Nagarjun Marappa 

--  

-- Create Date:    17:07:42 03/17/2014  

-- Design Name:  

-- Module Name:    CORDIC_STAGE - Behavioral  

-- Revised on the final implementation on 2/8/2015 

-----------------------------------------------------------------------

----------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

use IEEE.std_logic_arith.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.all; 

 

entity CORDIC_STAGE is 

generic (zwidth : natural := 24; 

            bitwidth : natural := 26; 

            shift : natural := 1 

            ); 

    Port ( CLK          : in    STD_LOGIC; 

              RST           : in    STD_LOGIC; 

              en            : in    STD_LOGIC; 

              Iin       : in  STD_LOGIC_VECTOR (bitwidth-1 downto 0); 

           Qin      : in  STD_LOGIC_VECTOR (bitwidth-1 downto 0); 

              zin       : in  STD_LOGIC_VECTOR (zwidth-1 downto 0); 

              C_consts  : in    STD_LOGIC_VECTOR (zwidth-1 downto 0); 

           Iout         : out  STD_LOGIC_VECTOR (bitwidth-1 downto 0); 

           Qout         : out  STD_LOGIC_VECTOR (bitwidth-1 downto 0); 

           zout         : out  STD_LOGIC_VECTOR (zwidth-1 downto 0)); 

end CORDIC_STAGE; 

 

architecture Behavioral of CORDIC_STAGE is 

 

begin 

main_process:   process (CLK, Iin, Qin , zin, C_consts) 

begin 

if rising_edge (CLK) then 

    if RST = '1' then 

        Iout <= (others=>'0'); 

        Qout <= (others=>'0'); 

        zout <= (others=>'0'); 

    else 

--      if en = '1' then 

            if(zin(zwidth - 1) = '1') then 

                Iout <= Iin + ((shift downto 0 => Qin(bitwidth-1)) & 

Qin(bitwidth-2 downto shift)); 

                Qout <= Qin - ((shift downto 0 => Iin(bitwidth-1)) & 

Iin(bitwidth-2 downto shift)); 

                zout <= zin + C_consts; 

            else 

                Iout <= Iin - ((shift downto 0 => Qin(bitwidth-1)) & 

Qin(bitwidth-2 downto shift)); 

                Qout<= Qin + ((shift downto 0 => Iin(bitwidth-1)) & 

Iin(bitwidth-2 downto shift)); 

                zout<= zin - C_consts; 
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            end if; 

--      end if; 

    end if; 

end if; 

end process; 

 

end Behavioral; 

 cic_decim.vhd 

-----------------------------------------------------------------------

----------- 

-- Company: Western Michigan University 

-- Engineer: Nagarjun Marappa 

--  

-- Create Date:    16:53:09 06/21/2014  

-- Design Name:     Dr.Bazuin-SDR-LAB 

-- Module Name:    ddc_chain - Behavioral  

-- 

-----------------------------------------------------------------------

----------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_SIGNED.ALL; 

 

use IEEE.NUMERIC_STD.ALL; 

 

entity cic_decim is 

    generic(bits_in: natural := 24; -- natural range 0 to integer'HIGH 

              log2_max_rate: natural := 7; 

              K : natural := 3 

              ); 

    port (CLK           : IN STD_LOGIC; 

            RST             : IN STD_LOGIC; 

            cic_en      : IN STD_LOGIC; 

            strobe_in   : IN STD_LOGIC; 

            strobe_out  : IN STD_LOGIC; 

            rate            : IN STD_LOGIC_VECTOR(8-1 downto 0); 

            signal_in   : IN STD_LOGIC_VECTOR(bits_in-1 downto 0); 

            signal_out  : OUT STD_LOGIC_VECTOR(bits_in-1 downto 0)   

            ); 

end cic_decim; 

 

architecture Behavioral of cic_decim is 

 

    component sign_extend is 

        generic(bitsin: natural := 24; 

                bitsout: natural := 25); 

        port (CLK : in std_logic; 

                RST : in std_logic; 

                signal_in : in std_logic_vector(bitsin-1 downto 0); 

                signal_out: out std_logic_vector(bitsout-1 downto 0) 

                ); 

    end component; 
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    component cic_decim_prun is 

    generic(bitsin: natural := 24; 

                maxbitgain: natural := 21); 

    port (rate: in std_logic_vector(8-1 downto 0); 

            signal_in : in std_logic_vector(bitsin+maxbitgain-1 downto 

0); 

            signal_out: out std_logic_vector(bitsin-1 downto 0) 

            ); 

    end component; 

     

constant maxbitgain : natural := K*log2_max_rate; 

 

type cic_reg is array (integer range <>) of 

std_logic_vector(bits_in+maxbitgain-1 downto 0); 

signal integrator       : cic_reg(K-1 downto 0); 

signal pipeline         : cic_reg(K-1 downto 0); 

signal differentiator: cic_reg(K-1 downto 0); 

 

signal signal_in_ext    : std_logic_vector(bits_in+maxbitgain-1 downto 

0); 

signal signal_out_prun: std_logic_vector(bits_in-1 downto 0):= (others 

=> '0'); 

signal sampler : std_logic_vector(bits_in+maxbitgain-1 downto 0):= 

(others => '0'); 

-- NOTE: Samples needs to be initialized or else there will be unknown 

signal out for some time period since  

-- integrator would have finished computing 

 

attribute KEEP: string; 

attribute KEEP of signal_in_ext : signal is "TRUE"; 

attribute KEEP of integrator        : signal is "TRUE"; 

attribute KEEP of pipeline          : signal is "TRUE"; 

attribute KEEP of differentiator    : signal is "TRUE"; 

 

begin 

 

--signal_in_ext <=((maxbitgain-1 downto 0 => signal_in(bits_in-1)) & 

signal_in); 

 

integrating: process (CLK, RST, strobe_out) 

begin 

    if rising_edge(CLK) then 

        if (RST = '1' or cic_en = '0') then 

            for i in 0 to K-1 loop 

                integrator(i) <= (others =>'0'); 

            end loop; 

        else if (strobe_in = '1') then 

         

                integrator(0) <= integrator(0)+ signal_in_ext; 

                for i in 1 to K-1 loop  

                    integrator(i) <= integrator(i)+integrator(i-1); 

                end loop; 

                end if; 

        end if; 
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    end if; 

end process; 

 

Comb_Filter: process (CLK, RST, strobe_out) 

begin 

    if rising_edge(CLK) then 

        if(RST = '1' or cic_en = '0') then 

            for i in 0 to K-1 loop 

                pipeline(i) <= (others => '0'); 

                differentiator(i) <= (others => '0'); 

            end loop; 

        else if (strobe_out = '1') then 

                    sampler <= integrator(K-1); 

                    differentiator(0) <= sampler; 

                    pipeline(0) <= sampler - differentiator(0); 

                    for i in 1 to K-1 loop 

                        differentiator(i) <= pipeline(i-1); 

                        pipeline(i) <= pipeline(i-1) - 

differentiator(i); 

                    end loop; 

            end if; 

        end if; 

    end if; 

end process; 

 

--signal_out_buff <= differentiator(K-1); 

--signal_out <= signal_out_buff(bits_in-1 downto 0); 

signal_out <= signal_out_prun when RST = '0' else (others => '0'); 

 

sign_ext: sign_extend generic map(bitsin => bits_in, 

                            bitsout=> bits_in+maxbitgain) 

                port map(CLK => CLK, 

                            RST => RST, 

                            signal_in =>signal_in, 

                            signal_out=>signal_in_ext); 

                             

cic_prun: cic_decim_prun generic map(bitsin => bits_in, 

                                maxbitgain => maxbitgain) 

                port map(rate => rate, 

                            signal_in =>pipeline(K-1), 

                            signal_out=>signal_out_prun); 

end Behavioral; 

 small_hb_top.vhd 

-----------------------------------------------------------------------

----------- 

-- Company: Western Michigan University 

-- Engineer: Nagarjun Marappa 

--  

-- Create Date:    16:53:09 06/21/2014  

-- Design Name:     Dr.Bazuin-SDR-LAB 

-- Module Name:    ddc_chain - Behavioral  

-- 
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-----------------------------------------------------------------------

----------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

USE IEEE.STD_LOGIC_UNSIGNED.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

 

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

library UNISIM; 

use UNISIM.VComponents.all; 

 

entity Small_HB_top is 

generic(    INWIDTH : natural := 24; 

            round_width : natural := 17; 

            accum_width : natural := 30; 

            D_CARE_VAL : std_logic:='X' 

            ); 

port ( 

        CLK         : in std_logic; 

        RST         : in std_logic; 

        enable      : in std_logic; 

        bypass      : in std_logic; 

--      IN_RATE     : in std_logic_vector(7 downto 0); 

        samples_in : in std_logic_vector(INWIDTH-1 downto 0); 

        samples_out : out std_logic_vector(INWIDTH-1 downto 0); 

        strobe_in   :   in std_logic; -- remove CIC strober!! 

        strobe_out : out std_logic 

        ); 

end Small_HB_top; 

 

architecture Behavioral of Small_HB_top is 

 

component round_sd is 

generic ( WIDTH_IN : natural := 24; 

             WIDTH_OUT: natural := 17); 

port( 

        CLK         : in std_logic; 

        RST         : in std_logic; 

        strobe_in: in std_logic; 

        data_in : in std_logic_vector(WIDTH_IN-1 downto 0); 

        data_out : out std_logic_vector(WIDTH_OUT-1 downto 0); 

        strobe_out: out std_logic 

        ); 

         

end component round_sd; 

 

component clip is 

    generic( bitsin: natural:=INWIDTH+1; 

                bitsout: natural := INWIDTH); 

    port( data_in : in std_logic_vector(bitsin-1 downto 0); 
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            data_out: out std_logic_vector(bitsout-1 downto 0) 

            ); 

end component clip; 

signal strobe_hb : std_logic; 

signal round_data_in : std_logic_vector(round_width-1 downto 0); 

 

--**************************************** 

-- | Filtering signals and constants | -- 

--**************************************** 

constant coeff_a : integer := -10690;--"111101011000111110" 

constant coeff_b : integer := 75809;--"010010100000100001" 

signal go, go_d1, go_d2, go_d3, go_d4: std_logic; 

signal phase : std_logic; 

signal Z1,Z2,Z3,Z4,Z5,Z6 : std_logic_vector(round_width-1 downto 0) := 

(others => '0'); 

signal sum_a, sum_b : std_logic_vector(round_width downto 0);-- := 

(others => '0'); 

signal extnd_in, extnd_Z2, extnd_Z4, extnd_Z6 : 

std_logic_vector(round_width downto 0):= (others => '0'); 

signal middle : std_logic_vector(round_width downto 0); 

 

signal coeff_reg    : std_logic_vector(round_width downto 0) := (others 

=> '0'); 

signal sum_reg      : std_logic_vector(round_width downto 0) := (others 

=> '0'); 

signal prod_reg : std_logic_vector(accum_width-1 downto 0):= (others => 

'0'); 

signal middle_reg, middle_d1 : std_logic_vector(accum_width-1 downto 

0):= (others => '0'); 

signal accum        : std_logic_vector(accum_width-1 downto 0); 

signal product      : std_logic_vector(36-1 downto 0); 

signal mult_CE      : std_logic; 

signal samples_out_buff : std_logic_vector(INWIDTH-1 downto 0); 

 

signal accum_rnd    : std_logic_vector(INWIDTH downto 0); 

signal stb_rnd : std_logic; 

attribute KEEP : string; 

attribute KEEP of round_data_in: signal is "TRUE"; 

attribute KEEP of Z1,Z2,Z3,Z4,Z5,Z6: signal is "TRUE"; 

attribute KEEP of phase: signal is "TRUE"; 

attribute KEEP of go, go_d1, go_d2, go_d3, go_d4: signal is "TRUE"; 

attribute KEEP of sum_a,sum_b: signal is "TRUE"; 

attribute KEEP of extnd_in,extnd_Z2,extnd_Z4,extnd_Z6: signal is 

"TRUE"; 

attribute KEEP of coeff_reg: signal is "TRUE"; 

attribute KEEP of sum_reg: signal is "TRUE"; 

attribute KEEP of middle,middle_d1,middle_reg: signal is "TRUE"; 

attribute KEEP of prod_reg: signal is "TRUE"; 

attribute KEEP of accum_rnd: signal is "TRUE"; 

 

type coeff_ram is array(1 downto 0) of std_logic_vector(17 downto 0); 

signal coeff : coeff_ram := 

( 

    0 => "111101011000111110", -- coeff_a 

    1 => "010010100000100001",-- coeff_b 
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    others => (others=>'0') 

); 

 

attribute KEEP of coeff: signal is "TRUE"; 

 

begin 

process (CLK, RST) 

begin 

    if rising_edge(CLK) then 

        if RST = '1' or enable = '0' then 

            phase <= '0'; 

        else  

            if strobe_hb = '1' then 

                phase <= not(phase); 

            end if; 

        end if; 

--      go <= strobe_hb and phase; 

    end if; 

end process; 

go <= strobe_hb and phase; 

--############################################################# 

triggre: process(CLK, RST) 

    begin 

        if rising_edge(CLK) then 

            if(RST = '1' or enable = '0')then 

                go_d1 <= '0'; 

                go_d2 <= '0'; 

                go_d3 <= '0'; 

                go_d4 <= '0'; 

            else 

                go_d1 <= go; 

                go_d2 <= go_d1; 

                go_d3 <= go_d2; 

                go_d4 <= go_d3; 

            end if; 

        end if; 

    end process triggre; 

--############################################################# 

shift_reg: process(CLK, RST) 

    begin 

        if rising_edge(CLK) then 

            if( RST = '1' or enable = '0')then 

                Z1 <= (others => '0'); 

                Z2 <= (others => '0'); 

                Z3 <= (others => '0'); 

                Z4 <= (others => '0'); 

                Z5 <= (others => '0'); 

                Z6 <= (others => '0'); 

            else if (strobe_hb = '1') then 

                Z1 <= round_data_in; 

                Z2 <= Z1; 

                Z3 <= Z2; 

                Z4 <= Z3; 

                Z5 <= Z4; 

                Z6 <= Z5; 



 

166 

 

                end if; 

            end if; 

        end if; 

    end process shift_reg; 

--############################################################# 

Sign_extend: process (CLK, RST) 

begin 

    if rising_edge(CLK) then 

        if RST = '1' then 

            extnd_in <= (others => '0'); 

            extnd_Z6 <= (others => '0'); 

            extnd_Z2 <= (others => '0'); 

            extnd_Z4 <= (others => '0'); 

        else 

            extnd_in <= (round_data_in(round_width-1) & 

round_data_in(round_width-1 downto 0));  

            extnd_Z6 <= (Z6(round_width-1) & Z6(round_width-1 downto 

0)); 

            extnd_Z2 <= (Z2(round_width-1) & Z2(round_width-1 downto 

0)); 

            extnd_Z4 <= (Z4(round_width-1) & Z4(round_width-1 downto 

0)); 

        end if; 

    end if; 

end process Sign_extend; 

-- 

----############################################################# 

filter_reg : process(CLK, RST, go_d1) 

begin 

    if rising_edge(CLK) then  

        if RST = '1' then 

            sum_reg <= (others => '0'); 

            coeff_reg <= (others => '0'); 

        else if (go_d1 = '1') then 

                    sum_reg <= sum_b; 

                    coeff_reg <= "010010100000100000"; 

                else  

                    sum_reg <= sum_a; 

                    coeff_reg <= "111101011000111110"; 

                end if; 

        end if; 

    end if; 

end process; 

 

----############################################################# 

-- 3/7/2015 -- timing adjustments for summing 

sum_process: process(CLK,RST,go) 

begin 

    if rising_edge(CLK) then 

        if RST = '1' then 

            sum_a <= (others=>'0'); 

            sum_b <= (others=>'0'); 

            middle <=(others=>'0'); 

        else 

            if go = '1' then 
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                sum_a <= extnd_in + extnd_Z6; 

                sum_b <= extnd_Z2 + extnd_Z4; 

                middle <= Z3 & '0'; 

            end if; 

        end if; 

    end if; 

end process; 

  

process(CLK, go_d1) 

begin 

if rising_edge(CLK) then 

    if go_d1 = '1' then 

        middle_reg <= 

(middle(round_width)&middle(round_width)&middle&((round_width-

1+accum_width-36)-1 downto 0 => '0')); 

    end if; 

end if; 

end process; 

 

mult_CE <= go_d1 or go_d2; 

--############################################################# 

accumulate: process(CLK, RST) 

begin  

    if rising_edge(CLK) then 

        if (RST = '1' or enable = '0') then 

            accum <= (others=>'0'); 

        else if go_d2 = '1' then 

                accum <= middle_reg + prod_reg; 

            else if go_d3 = '1' then 

                    accum <= accum + prod_reg; 

                end if; 

            end if; 

        end if; 

    end if; 

end process accumulate; 

 

Round_In: round_sd generic map( 

        WIDTH_IN => INWIDTH, 

        WIDTH_OUT => round_width) 

        port map( 

        CLK => CLK, 

        RST => RST, 

        strobe_in => strobe_in, 

        data_in => samples_in, 

        data_out => round_data_in, 

        strobe_out => strobe_hb 

        ); 

-- Multiplier Instantiation 

Multiplier : MULT18X18S port map 

        (P => product, 

         B => sum_reg, 

         A => coeff_reg, 

         C => CLK, 

         CE=> mult_CE, 

         R => RST 
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        ); 

prod_reg <= product(36-1 downto 36-accum_width);     

     

Round_Accum: round_sd generic map( 

        WIDTH_IN    => accum_width, 

        WIDTH_OUT => INWIDTH+1 

        ) 

        port map( 

        CLK => CLK, 

        RST => RST, 

        strobe_in => go_d4, 

        data_in => accum, 

        data_out => accum_rnd, 

        strobe_out=> stb_rnd 

        ); 

         

clip_shb_out: clip generic map( 

        bitsin => INWIDTH+1, 

        bitsout => INWIDTH) 

        port map( 

        data_in => accum_rnd, 

        data_out=> samples_out_buff 

        ); 

 

 

sync2clk: process(CLK, RST) 

begin 

if rising_edge(CLK)then 

    if bypass = '0' then 

        samples_out <= samples_out_buff; 

        strobe_out  <= stb_rnd; 

    else  

        samples_out <= samples_in; 

        strobe_out  <= strobe_in; 

    end if; 

end if; 

end process sync2clk; 

end Behavioral; 

 large_hb_top.vhd 

-----------------------------------------------------------------------

----------- 

-- Company: Western Michigan University 

-- Engineer: Nagarjun Marappa 

--  

-- Create Date:    16:53:09 06/21/2014  

-- Design Name:     Dr.Bazuin-SDR-LAB 

-- Module Name:    ddc_chain - Behavioral  

-----------------------------------------------------------------------

----------- 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 
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use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use IEEE.std_logic_arith.all; 

use IEEE.std_logic_misc.all; 

library UNISIM; 

use UNISIM.VComponents.all; 

 

entity large_hb is 

generic(WIDTH: natural := 24 

            ); 

port( CLK : in std_logic; 

        RST : in std_logic; 

        bypass: in std_logic; 

        run: in std_logic; 

        cpi : in std_logic_vector(8 downto 0); 

        strobe_in: in std_logic; 

        data_in : in std_logic_vector(WIDTH-1 downto 0); 

        data_out: out std_logic_vector(WIDTH-1 downto 0); 

        strobe_out: out std_logic 

        ); 

end large_hb; 

 

architecture Behavioral of large_hb is 

    component round_sd is 

        generic ( WIDTH_IN : natural := 24; 

                     WIDTH_OUT: natural := 17; 

                     DISABLE_SD: natural := 0); 

        port( 

                CLK         : in std_logic; 

                RST         : in std_logic; 

                strobe_in: in std_logic; 

                data_in : in std_logic_vector(WIDTH_IN-1 downto 0); 

                data_out : out std_logic_vector(WIDTH_OUT-1 downto 0); 

                strobe_out: out std_logic 

                ); 

    end component round_sd; 

    -- SRL16E SHIFT REGISTER MODULE 

    component srl_module is 

        generic(WIDTH : natural:= 17); 

        port( CLK : in std_logic; 

                RST : in std_logic; 

                enable: in std_logic; 

                data_in : in std_logic_vector(WIDTH-1 downto 0); 

                addr : in std_logic_vector(3 downto 0); 

                Q_out : out std_logic_vector(WIDTH-1 downto 0) 

                ); 

    end component srl_module; 

    -- ACCUMULATOR 27 bit 

    component acc is 

        generic(IWIDTH: natural:= 25; 

                  OWIDTH: natural:= 27); 

        port( 

            CLK         : in std_logic; 

            RST     : in std_logic; 

            clear   : in std_logic; 

            acc     : in std_logic; 
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            data_in : in std_logic_vector(IWIDTH-1 downto 0); 

            data_out    : out std_logic_vector(OWIDTH-1 downto 0) 

            ); 

    end component; 

    -- SIGN EXTENTION 

    component sign_extend is 

    generic( bitsin: natural := 24; 

                bitsout: natural := 25); 

         Port(CLK : in std_logic; 

                RST : in std_logic; 

                signal_in : in  STD_LOGIC_VECTOR (bitsin-1 downto 0); 

                signal_out : out  STD_LOGIC_VECTOR (bitsout-1 downto 0) 

                ); 

    end component sign_extend; 

    -- OUTPUT CLIP 

    component clip is 

    generic( bitsin: natural:=25; 

                bitsout: natural := 24); 

    port( data_in : in std_logic_vector(bitsin-1 downto 0); 

            data_out: out std_logic_vector(bitsout-1 downto 0) 

            ); 

    end component; 

     

constant INTWIDTH: natural:= 17; --integer width 

constant accwidth: natural:= WIDTH+3; --accumulator width 

constant SHIFT_FACTOR: natural:= 6; 

 

-- signals from/to input round module 

signal rnd_data_in: std_logic_vector(INTWIDTH-1 downto 0); 

signal stb_rnd: std_logic; 

 

-- DELAY ELEMENTS ADDR/DATA OF UPPER POLYPHASE STRUCTURE 

signal addr_odd_a, addr_odd_b, addr_odd_c, addr_odd_d : 

std_logic_vector(4-1 downto 0); 

signal data_odd_a, data_odd_b, data_odd_c, data_odd_d : 

std_logic_vector(INTWIDTH-1 downto 0); 

signal data_even : std_logic_vector(INTWIDTH-1 downto 0); 

-- signal RATE : std_logic_vector(8-1 downto 0) := x"12"; 

signal odd: std_logic:= '0'; 

signal write_odd, write_even : std_logic:= '0'; 

signal addr_even : std_logic_vector(4-1 downto 0); 

signal phase: std_logic_vector(2 downto 0):= "000"; 

signal phase_d1: std_logic_vector(2 downto 0):= "000"; 

 

-- LOGIC BLOCK ENABLE CONTROL SIGNALS 

signal stb_out_pre : std_logic_vector(15 downto 0); 

signal do_acc: std_logic := '0'; 

signal do_mult: std_logic := '1'; 

signal clear : std_logic:= '0'; 

signal coeff1, coeff2 : std_logic_vector(INTWIDTH downto 0):= 

(others=>'0'); --18 bit 

signal sum1, sum2 : std_logic_vector(INTWIDTH downto 0):= (others => 

'0'); --18 bit 

signal prod1, prod2 : std_logic_vector(2*INTWIDTH+1 downto 0):= (others 

=> '0'); --36 bit 
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signal sum_of_prod : std_logic_vector(2*INTWIDTH+1 downto 0):= (others 

=> '0'); 

signal acc_out : std_logic_vector(ACCWIDTH-1 downto 0); 

-- SIGNALS FOR EVEN PATH 

signal data_even_signext: std_logic_vector(ACCWIDTH-1 downto 0); 

 

signal final_sum : std_logic_vector(ACCWIDTH-1 downto 0); 

signal final_sum_clip: std_logic_vector(WIDTH-1 downto 0); 

 

signal selected_stb: std_logic; 

 

attribute KEEP:string; 

attribute KEEP of sum_of_prod   : signal is "TRUE"; 

attribute KEEP of acc_out   : signal is "TRUE"; 

attribute KEEP of final_sum : signal is "TRUE"; 

 

begin -- architecure 

 

process(CLK, RST) 

begin 

if rising_edge(CLK) then 

    if (RST = '1' or run = '0') then 

        odd <= '0'; 

    else if (stb_rnd = '1') then 

        odd <= not(odd); 

        end if; 

    end if; 

end if; 

end process; 

 

write_odd <= stb_rnd and odd; 

write_even<= stb_rnd  and not(odd); 

 

phase_counter: process(CLK, RST) 

begin 

if rising_edge(CLK) then 

    if (RST = '1' or run = '0')then 

        phase <= "000"; 

        else if((stb_rnd and odd) = '1' )then 

            phase <= "001"; 

            else if(phase = "100") then 

                phase <= "000"; 

                else if(phase /= "000") then 

                phase <= phase + '1'; 

                end if; 

            end if; 

        end if; 

    end if; 

end if; 

end process phase_counter; 

 

process(CLK) 

begin 

    if rising_edge(CLK) then 

        phase_d1 <= phase; 
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    end if; 

end process; 

 

acc_ctrl: process(CLK, RST) 

begin 

if rising_edge(CLK) then 

    if RST = '1' then 

        stb_out_pre <= (others => '0'); 

    else  

        stb_out_pre <= (stb_out_pre(14 downto 0) & (stb_rnd and odd)); 

    end if; 

end if; 

end process acc_ctrl; 

 

-- moved or operation 1 bit to left compared to original to compensate 

one clock cycle delay introduced from the process below\ 

-- Verilog reg data type would not require a clock cycle delay but VHDL 

signals do. 

--do_acc <= or_reduce(stb_out_pre(6 downto 3)); 

do_acc <= or_reduce(stb_out_pre(8 downto 5)); 

clear <= stb_out_pre(3); 

-- addr_control logic 

process (CLK,RST,phase) 

begin 

if(CLK'EVENT and CLK = '1') then 

    if RST = '1' then 

        addr_odd_a <= (others=>'0'); 

        addr_odd_b <= (others=>'0'); 

    else 

        case(phase) is  

            when "001" => 

                    addr_odd_a <= x"0"; 

                    addr_odd_b <= x"F"; 

            when "010" => 

                    addr_odd_a <= x"1"; 

                    addr_odd_b <= x"E"; 

            when "011" => 

                    addr_odd_a <= x"2"; 

                    addr_odd_b <= x"D"; 

            when "100" => 

                    addr_odd_a <= x"3"; 

                    addr_odd_b <= x"C"; 

            when others => 

                    addr_odd_a <= x"0"; 

                    addr_odd_b <= x"F"; 

            end case;    

    end if;--rst 

end if;--clk         

end process; 

process (CLK,RST,phase) 

begin 

if(CLK'EVENT and CLK = '1') then 

    if RST = '1' then 

        addr_odd_c <= (others=>'0'); 

        addr_odd_d <= (others=>'0'); 
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    else 

        case(phase) is  

            when "001" => 

                    addr_odd_c <= x"4"; 

                    addr_odd_d <= x"B"; 

            when "010" => 

                    addr_odd_c <= x"5"; 

                    addr_odd_d <= x"A"; 

            when "011" => 

                    addr_odd_c <= x"6"; 

                    addr_odd_d <= x"9"; 

            when "100" => 

                    addr_odd_c <= x"7"; 

                    addr_odd_d <= x"8"; 

            when others => 

                    addr_odd_c <= x"4"; 

                    addr_odd_d <= x"B"; 

            end case; 

    end if; 

end if;      

end process; 

 

 

-- data handling logic 

coefficient1:process(CLK,RST,phase_d1) 

begin 

if(CLK'EVENT and CLK = '1') then 

    if RST = '1' then 

        coeff1 <= (others=>'0'); 

    else 

        case phase_d1 is 

            when "001" =>  

                coeff1 <= conv_std_logic_vector(-107 , 18); 

            when "010" => 

                coeff1 <= conv_std_logic_vector(    445 , 18); 

            when "011" => 

                coeff1 <= conv_std_logic_vector(-1271, 18); 

            when "100" => 

                coeff1 <= conv_std_logic_vector(2959 , 18); 

            when others => 

                coeff1 <= conv_std_logic_vector(-107 , 18); 

        end case; 

    end if; 

end if; 

end process coefficient1; 

 

coefficient2:process(CLK,RST,phase_d1) 

begin 

if(CLK'EVENT and CLK = '1') then 

    if RST = '1' then 

        coeff2 <= (others=>'0'); 

    else 

        case phase_d1 is 

            when "001" =>  

                coeff2 <= conv_std_logic_vector(-6107 , 18); 
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            when "010" => 

                coeff2 <= conv_std_logic_vector(11963 , 18); 

            when "011" => 

                coeff2 <= conv_std_logic_vector(-24706, 18); 

            when "100" => 

                coeff2 <= conv_std_logic_vector(82359 , 18); 

            when others => 

                coeff2 <= conv_std_logic_vector(-6107 , 18); 

        end case; 

    end if; 

end if; 

end process coefficient2; 

 

process(CLK, RST, cpi) 

begin 

    case(cpi) is 

        when ('0'&x"02") => 

            addr_even <= x"9"; 

        when 

('0'&x"03")|('0'&x"04")|('0'&x"05")|('0'&x"06")|('0'&x"07") => 

            addr_even <= x"8"; 

        when others => 

            addr_even <= x"7"; 

    end case;            

end process; 

 

round_in: round_sd generic map( 

            WIDTH_IN => WIDTH, 

            WIDTH_OUT => INTWIDTH) 

            port map( 

            CLK => CLK, 

            RST => RST, 

            strobe_in => strobe_in, 

            data_in => data_in, 

            data_out => rnd_data_in, 

            strobe_out => stb_rnd 

            ); 

--

=======================================================================

======================= 

-- Polyphase 1st path filter  

--

=======================================================================

======================= 

srl_odd_a: srl_module generic map(INTWIDTH)port map(CLK, RST, 

write_odd, rnd_data_in, addr_odd_a, data_odd_a); 

srl_odd_b: srl_module generic map(INTWIDTH)port map(CLK, RST, 

write_odd, rnd_data_in, addr_odd_b, data_odd_b); 

srl_odd_c: srl_module generic map(INTWIDTH)port map(CLK, RST, 

write_odd, rnd_data_in, addr_odd_c, data_odd_c); 

srl_odd_d: srl_module generic map(INTWIDTH)port map(CLK, RST, 

write_odd, rnd_data_in, addr_odd_d, data_odd_d); 

 

accumulator: process(CLK) 

begin  
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    if rising_edge(CLK) then 

        sum1 <= (data_odd_a(INTWIDTH-1) & 

data_odd_a)+(data_odd_b(INTWIDTH-1) & data_odd_b); 

        sum2 <= (data_odd_c(INTWIDTH-1) & 

data_odd_c)+(data_odd_d(INTWIDTH-1) & data_odd_d); 

    end if; 

end process accumulator; 

 

do_mult <= '1'; -- multipliers are always enabled 

mult1: MULT18X18S port map( 

        C   => CLK,  

        CE => do_mult,  

        R   => RST,  

        P   => prod1, 

        A   => coeff1, 

        B   => sum1 

        ); 

mult2: MULT18X18S port map( 

        C   => CLK,  

        CE => do_mult,  

        R   => RST,  

        P   => prod2, 

        A   => coeff2, 

        B   => sum2 

        ); 

         

prod_summer: process(CLK) 

begin 

    if rising_edge(CLK) then 

        sum_of_prod <= prod1 + prod2; 

    end if; 

end process prod_summer; 

 

final_accum : acc generic map( 

        IWIDTH => ACCWIDTH-2,  

        OWIDTH => ACCWIDTH 

        ) 

        port map( 

        CLK => CLK,  

        RST => RST, 

        clear => clear, 

        acc => do_acc, 

        data_in => sum_of_prod(35 downto 38-ACCWIDTH), 

        data_out => acc_out 

        ); 

--

=======================================================================

=======================         

-- Polyphase 2nd path filter 

--

=======================================================================

======================= 

srl_even : srl_module generic map(INTWIDTH)port map(CLK, RST, 

write_even, rnd_data_in, addr_even, data_even); 
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data_eve_ext:  

        sign_extend generic map( 

        bitsin => INTWIDTH, 

        bitsout=> ACCWIDTH-SHIFT_FACTOR) 

        port map( 

        CLK => CLK, 

        RST => RST, 

        signal_in => data_even, 

        signal_out=> data_even_signext(ACCWIDTH-1 downto SHIFT_FACTOR) 

        ); 

data_even_signext(SHIFT_FACTOR-1 downto 0) <= (others => '0'); 

 

process (CLK, RST) 

begin 

    if rising_edge(CLK) then 

        if RST = '1' then 

            final_sum <= (others=> '0'); 

        else  

            final_sum <= acc_out + data_even_signext; 

        end if; 

    end if; 

end process; 

 

output_clip:  

clip generic map( 

        bitsin => ACCWIDTH, 

        bitsout=> WIDTH) 

        port map( 

        data_in => final_sum, 

        data_out=> final_sum_clip 

        ); 

 

selected_stb    <= stb_out_pre(10) when bypass = '0' else 

                    strobe_in; 

 

OutPut: process(CLK, RST) 

begin 

    if rising_edge(CLK)then 

    strobe_out <= selected_stb; 

        if RST = '1' then 

            data_out <= (others => '0'); 

        elsif selected_stb = '1' then 

            data_out <= final_sum_clip; 

--          end if; 

        end if; 

    end if; 

end process OutPut; 

 

end Behavioral; 
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Appendix C - Pattern Generator Code 

 wb_slv_cram.vhd 

-----------------------------------------------------------------------

----------- 

-- Company: Western Michigan University 

-- Engineer: Nagarjun Marappa 

--  

-- Create Date:    15:12:56 11/04/2013  

-- Design Name:  

-- Module Name:    wb_slv_cram - Behavioral  

-- 

-----------------------------------------------------------------------

----------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

library work; 

use work.zpu_memory.all; 

 

 

entity wb_slv_cram is 

   generic( 

      WORD_SIZE  : natural:=32;  -- 32 bits data path 

      MDATA_SIZE : natural:=16;  -- 32 bits data path 

      D_CARE_VAL : std_logic:='X'; -- Fill value 

      CLK_FREQ   : positive:=50; -- 50 MHz clock 

        ADDR_W     : natural:=25; -- M space = 32 MB, 16MB CRAM, 32 kB 

DRAM, I/O space 

      CRAM_ADDR_W  : natural:=24); -- CRAM space=128 Mb, 16MB 

       

    Port ( clk_i : in  STD_LOGIC; 

           rst_i : in  STD_LOGIC; 

              wbs3_dat_o : OUT unsigned(WORD_SIZE-1 downto 0); 

              wbs3_ack_o : OUT std_logic; 

              wbs3_dat_i : IN unsigned(WORD_SIZE-1 downto 0); 

              wbs3_we_i  : IN std_logic; 

              wbs3_sel_i : IN std_logic_vector(3 downto 0); 

              wbs3_adr_i : IN unsigned(ADDR_W-1 downto 2); 

              wbs3_cyc_i : IN std_logic; 

              wbs3_stb_i : IN std_logic; 

 

                CramOE  : out std_logic; 

                CramWR  : out std_logic; 

                CramClk  : out std_logic; 

                CramAdv  : out std_logic; 

                CramWait  : in std_logic; 

                CramCS  : out std_logic; 
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                CramLB  : out std_logic; 

                CramUB  : out std_logic; 

                CramCRE : out std_logic; 

 

                MemAdr_o  : out  unsigned(CRAM_ADDR_W-1 downto 1); 

                MemDB_i : in  unsigned(MDATA_SIZE-1 downto 0); 

                MemDB_o : out  unsigned(MDATA_SIZE-1 downto 0); 

                MemDB_dir : out  std_logic 

              ); 

 

end wb_slv_cram; 

 

architecture Behavioral of wb_slv_cram is 

   constant BYTE_BITS  : integer:=WORD_SIZE/16; -- # of bits in a word 

that addresses bytes 

 

    COMPONENT cram_interface 

   generic( 

      WORD_SIZE  : natural:=32;  -- 32 bits data path 

        MDATA_SIZE : natural:=16;  -- 16 bits data to cram 

      BYTE_BITS    : integer:=2;   -- Bits used to address bytes 

      D_CARE_VAL : std_logic:='X'; -- Fill value 

      CLK_FREQ   : positive:=50; -- 50 MHz clock 

        CRAM_ADDR_W     : natural:=24); -- 24 bits RAM space=16MB - 

128Mb 

    PORT( 

        clk_i : IN std_logic; 

        rst_i : IN std_logic; 

        we_i : IN std_logic; 

        en_i : IN std_logic; 

        addr_i : IN unsigned(CRAM_ADDR_W-1 downto BYTE_BITS); 

        write_i : IN unsigned(WORD_SIZE-1 downto 0); 

        MemDB_i : IN unsigned(MDATA_SIZE-1 downto 0);           

        read_o : OUT unsigned(WORD_SIZE-1 downto 0); 

        busy_o : OUT std_logic; 

        CramOE : OUT std_logic; 

        CramWR : OUT std_logic; 

        CramClk : OUT std_logic; 

        CramAdv : OUT std_logic; 

        CramWait : IN std_logic; 

        CramCS : OUT std_logic; 

        CramLB : OUT std_logic; 

        CramUB : OUT std_logic; 

        CramCRE : OUT std_logic; 

        MemAdr_o : OUT unsigned(CRAM_ADDR_W-1 downto 1); 

        MemDB_o : OUT unsigned(MDATA_SIZE-1 downto 0); 

        MemDB_dir : OUT std_logic 

        ); 

    END COMPONENT; 

 

   -- Memory (SinglePort_RAM) 

   signal ram_busy     : std_logic; 

   signal ram_we       : std_logic; 

   signal ram_en       : std_logic; 

--   signal slv_cycle     : std_logic; 



 

179 

 

   signal busy_ff       : std_logic; 

   signal busy_cond     : std_logic; 

     

    attribute KEEP : string; 

    attribute KEEP of ram_busy  : signal is "TRUE"; 

    attribute KEEP of ram_we    : signal is "TRUE"; 

    attribute KEEP of busy_ff   : signal is "TRUE"; 

    attribute KEEP of busy_cond: signal is "TRUE"; 

 

begin 

 

   cram_if: cram_interface 

      generic map( 

         WORD_SIZE => WORD_SIZE, 

            MDATA_SIZE => MDATA_SIZE, 

            BYTE_BITS => BYTE_BITS,  

            CLK_FREQ => CLK_FREQ, 

            CRAM_ADDR_W => CRAM_ADDR_W) 

             

      port map( 

         clk_i => clk_i, 

         rst_i => rst_i, 

         we_i => ram_we,  

            en_i => ram_en,  

            addr_i => wbs3_adr_i(CRAM_ADDR_W-1 downto 2), 

         write_i => wbs3_dat_i,  

            read_o => wbs3_dat_o,  

            busy_o => ram_busy, 

             

            CramOE => CramOE, 

            CramWR => CramWR, 

            CramClk => CramClk, 

            CramAdv => CramAdv, 

            CramWait => CramWait, 

            CramCS => CramCS, 

            CramLB => CramLB, 

            CramUB => CramUB, 

            CramCRE => CramCRE, 

 

            MemAdr_o => MemAdr_o(CRAM_ADDR_W-1 downto 1), 

            MemDB_i => MemDB_i, 

            MemDB_o => MemDB_o, 

            MemDB_dir => MemDB_dir           

        ); 

             

    ram_we <= wbs3_we_i and wbs3_stb_i; 

    ram_en <= wbs3_stb_i; 

     

    slave3_cycle: 

    process (clk_i) 

    begin 

        if rising_edge(clk_i) then 

            if rst_i = '1' then 

                busy_ff <= '1'; 

            else -- reset_i='0' 
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                if wbs3_stb_i = '1' then 

                    busy_ff <= '0'; 

                else 

                    busy_ff <= '1'; 

                end if; 

            end if; -- reset_i='0' 

        end if; 

    end process slave3_cycle; 

 

     

    busy_cond <= (busy_ff and wbs3_stb_i) or ram_busy; 

    wbs3_ack_o <= wbs3_stb_i and not(busy_cond); 

 

 

end Behavioral; 

 cram_interface.vhd 

-----------------------------------------------------------------------

----------- 

-- Company: Western Michigan University 

-- Engineer: Dr. Bradley J. Bazuin 

--  

-- Create Date:    09:42:12 11/06/2013  

-- Design Name:  

-- Module Name:    cram_interface - Behavioral  

-----------------------------------------------------------------------

----------- 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

-- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--use IEEE.NUMERIC_STD.ALL; 

 

-- Uncomment the following library declaration if instantiating 

-- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity cram_interface is 

   generic( 

      WORD_SIZE  : natural:=32;  -- 32 bits data path 

        MDATA_SIZE : natural:=16;  -- 16 bits data to cram 

      BYTE_BITS    : integer:=2;   -- Bits used to address bytes 

      D_CARE_VAL : std_logic:='X'; -- Fill value 

      CLK_FREQ   : positive:=50; -- 50 MHz clock 

        CRAM_ADDR_W     : natural:=24); -- 24 bits RAM space=16MB - 

128Mb 

 

    Port (  

      clk_i   : in  std_logic; 

      rst_i   : in  STD_LOGIC; 



 

181 

 

      we_i    : in  std_logic; 

      en_i    : in  std_logic; 

      addr_i  : in  unsigned(CRAM_ADDR_W-1 downto BYTE_BITS); 

      write_i : in  unsigned(WORD_SIZE-1 downto 0); 

      read_o  : out unsigned(WORD_SIZE-1 downto 0); 

        busy_o  : out std_logic; 

         

      CramOE  : out std_logic; 

      CramWR  : out std_logic; 

      CramClk  : out std_logic; 

      CramAdv  : out std_logic; 

        CramWait  : in std_logic; 

      CramCS  : out std_logic; 

      CramLB  : out std_logic; 

      CramUB  : out std_logic; 

        CramCRE : out std_logic; 

 

      MemAdr_o : out  unsigned(CRAM_ADDR_W-1 downto 1); 

        MemDB_i  : in   unsigned(MDATA_SIZE-1 downto 0); 

        MemDB_o  : out  unsigned(MDATA_SIZE-1 downto 0); 

        MemDB_dir : out  std_logic 

         

      ); 

end cram_interface; 

 

architecture Behavioral of cram_interface is 

 

     -- Cellular RAM Signals 

   signal ramOE       : std_logic; 

   signal ramWR       : std_logic; 

   signal ramCLK       : std_logic; 

   signal ramAdv       : std_logic; 

   signal ramWait      : std_logic; 

   signal ramCS      : std_logic; 

   signal ramLB      : std_logic; 

   signal ramUB      : std_logic; 

   signal ramCRE      : std_logic; 

     

    signal data_read        : unsigned (WORD_SIZE-1 downto 0); 

 

   signal ls_adr        : std_logic; 

   signal bus_busy      : std_logic; 

 

    -- Memory interface state descriptions 

   type mif_state_t is(st_idle, st_0, st_1, st_2, st_3, st_end);  

   signal mif_state : mif_state_t:=st_idle; 

 

begin 

 

    mem_cycle: 

    process(clk_i) 

    begin 

        if rising_edge(clk_i) then 

            if rst_i = '1' then 

                ls_adr <= '0'; 
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                bus_busy <= '0'; 

                 

                read_o <= (others => D_CARE_VAL); 

                 

                ramAdv <= '1'; 

                ramCS <= '1'; 

                ramWR <= '1'; 

                ramOE <= '1'; 

                ramLB <= '1'; 

                ramUB <= '1'; 

                ramCLK <= '0'; -- never needs to change 

                ramCRE <= '0'; -- never needs to change 

                MemAdr_o <= (others => D_CARE_VAL); 

                MemDB_o <= (others => D_CARE_VAL); 

                MemDB_dir <= '1'; 

                mif_state <= st_idle; 

            else 

                case mif_state is 

                    when st_idle => 

                        if en_i = '1' then 

                            ramAdv <= '0'; 

                            ramCS <= '0'; 

 

                            ramLB <= '0'; 

                            ramUB <= '0'; 

                             

                            ls_adr <= '0';                           

                            bus_busy <= '1'; 

                                 

                            MemAdr_o <= addr_i & '0'; 

                            mif_state <= st_0; 

                        else 

                            read_o <= (others => D_CARE_VAL); 

                            ramAdv <= '1'; 

                            ramCS <= '1'; 

                            ramWR <= '1'; 

                            ramOE <= '1'; 

                            ramLB <= '1'; 

                            ramUB <= '1'; 

                            MemAdr_o <= (others => D_CARE_VAL); 

                            MemDB_o <= (others => D_CARE_VAL); 

                            MemDB_dir <= '1'; 

                        end if; 

                    when st_0 =>        -- 0-20 ns 

                        if en_i = '1' then 

                            if we_i ='1' then 

                                ramWR <= '0'; 

                            else 

                                ramOE <= '0'; 

                            end if; 

                            mif_state <= st_1; 

                        else 

                            mif_state <= st_idle; 

                        end if; 
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                    when st_1 =>        -- 20-40 ns 

                        if en_i = '1' then 

                            if we_i ='0' then -- prepare to read from 

cram 

                                ramOE <= '0'; 

                            else                    -- write to cram 

                                MemDB_dir <= '0'; 

                                if ls_adr = '0' then 

                                    MemDB_o <= write_i(MDATA_SIZE-1 

downto 0); 

                                else 

                                    MemDB_o <= write_i(WORD_SIZE-1 

downto MDATA_SIZE); 

                                end if; 

                            end if; 

                            mif_state <= st_2; 

                        else 

                            mif_state <= st_idle; 

                        end if; 

                    when st_2 =>        -- 40-60 ns 

                        if en_i = '1' then 

                            mif_state <= st_3; 

                        else 

                            mif_state <= st_idle; 

                        end if; 

                    when st_3 =>        -- 60-80 ns 

                        if en_i = '1' then 

                            ramAdv <= '1'; 

                            ramCS <= '1'; 

                            ramWR <= '1'; 

                            ramOE <= '1'; 

                            ramLB <= '1'; 

                            ramUB <= '1'; 

                            ramWR <= '1'; 

                            MemAdr_o <= (others => D_CARE_VAL); 

                            MemDB_o <= (others => D_CARE_VAL); 

                            MemDB_dir <= '1'; 

                            if we_i = '0' then -- read the cram value 

                                if ls_adr = '0' then 

                                    read_o(MDATA_SIZE-1 downto 0)<= 

MemDB_i; 

                                else 

                                    read_o(WORD_SIZE-1 downto 

MDATA_SIZE)<= MemDB_i; 

                                end if; 

                            end if; 

                            if ls_adr = '1' then 

                                bus_busy <= '0'; 

                            end if; 

                            mif_state <= st_end; 

                        else 

                            mif_state <= st_idle; 

                        end if; 

                    when st_end =>      -- 80-100 ns 

                        if en_i = '1' then 
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                            if ls_adr = '0' then 

                                ls_adr <= '1'; 

                                ramAdv <= '0'; 

                                ramCS <= '0'; 

 

                                ramLB <= '0'; 

                                ramUB <= '0'; 

                                 

                                MemAdr_o <= addr_i & '1'; 

                             

                                mif_state <= st_0; 

                            else 

                                ls_adr <= '0'; 

                                mif_state <= st_idle; 

                            end if; 

                        else 

                            mif_state <= st_idle; 

                        end if; 

 

                    when others => 

                        mif_state <= st_idle; 

                end case; -- mif_state 

            end if; -- else reset_i='1' 

        end if; -- rising_edge(clk_i) 

         

    end process mem_cycle; 

 

    CramOE <= ramOE; 

   CramWR <= ramWR; 

   CramClk <= '0'; 

   CramAdv <= ramAdv; 

   CramCS <= ramCS; 

   CramLB <= ramLB; 

   CramUB <= ramUB; 

    CramCRE <= '0'; 

     

    ramWait <= CramWait; 

     

    busy_o <= bus_busy;  

 

end Behavioral; 

 fifo_if.vhd 

-----------------------------------------------------------------------

----------- 

-- Company: Western Michigan University 

-- Engineer: Nagarjun Marappa 

--  

-- Create Date:    15:53:21 11/29/2014  

-- Design Name:  

-- Module Name:    wb_slv_fifo - Behavioral  

-----------------------------------------------------------------------

----------- 
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library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

use ieee.std_logic_unsigned.all; 

 

library UNISIM; 

use UNISIM.VComponents.all; 

 

entity fifo_if is 

Generic(WORD_SIZE: natural:= 32; 

            ADDR_W : natural:= 25; 

            FIFO_W : natural:= 32); 

    port( 

        clk_i : in std_logic; 

        rst_i : in std_logic; 

        wbs4_dat_i : in unsigned(WORD_SIZE-1 downto 0); 

        wbs4_we_i : in std_logic; 

        wbs4_sel_i: in std_logic_vector(3 downto 0); 

        wbs4_adr_i: in unsigned(ADDR_W-1 downto 2); 

        wbs4_cyc_i: in std_logic; 

        wbs4_stb_i: in std_logic; 

        wbs4_dat_o : out unsigned(WORD_SIZE-1 downto 0); 

        -- fifo signals 

        fifo_data_out: out std_logic_vector(16-1 downto 0); 

        fifo_rd_clk: out std_logic; 

        dsp_rst:out std_logic; 

        ddc_en : out std_logic; 

        half_full: out std_logic; 

        fifo_wr_en_buff : out std_logic; 

        sclk : out std_logic 

        ); 

end fifo_if; 

 

 architecture Behavioral of fifo_if is 

    COMPONENT fifo_stage_o 

      PORT ( 

         rst : IN STD_LOGIC; 

         wr_clk : IN STD_LOGIC; 

         rd_clk : IN STD_LOGIC; 

         din : IN STD_LOGIC_VECTOR(31 DOWNTO 0); 

         wr_en : IN STD_LOGIC; 

         rd_en : IN STD_LOGIC; 

         dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0); 

         full : OUT STD_LOGIC; 

         almost_full : OUT STD_LOGIC; 

         wr_ack : OUT STD_LOGIC; 

         empty : OUT STD_LOGIC; 

         prog_full : OUT STD_LOGIC 

      ); 

    END COMPONENT; 

 

signal fifo_data_reg: std_logic_vector(WORD_SIZE-1 downto 0):= (others 

=> '0'); 

constant fifo_data_addr  : unsigned(3 downto 0):= "0010"; 
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signal fifo_ctrl1: std_logic_vector(7 downto 0):= (others => '0'); 

constant fifo_ctrl1_adr : unsigned(3 downto 0):= "0001"; 

 

 

signal wr_clk, rd_clk: std_logic := '0'; 

signal fifo_wr_en: std_logic:= '0'; 

signal fifo_rd_en:std_logic := '0'; 

signal fifo_din: std_logic_vector(32-1 downto 0); 

signal fifo_dout: std_logic_vector(16-1 downto 0); 

 

signal rd_busy : std_logic; 

signal wr_ack : std_logic; 

signal prog_full : std_logic; 

signal full : std_logic; 

signal empty : std_logic; 

signal almost_full: std_logic; 

 

signal my_start: std_logic:='1'; 

signal ddc_en_buff: std_logic:= '0'; 

 

 

signal phase_out : std_logic; 

signal rd_count: std_logic_vector(15 downto 0):=(others => '0'); 

signal dsp_rst_d1: std_logic:='1'; 

signal sclk_d1 : std_logic:='0'; 

 

type fifo_states is (idle_state, wr_state, rd_state, wait_write, 

wait_read); 

signal state : fifo_states; 

 

attribute KEEP: string; 

attribute KEEP of fifo_din      : signal is "TRUE"; 

attribute KEEP of fifo_dout : signal is "TRUE"; 

attribute KEEP of full          : signal is "TRUE"; 

attribute KEEP of prog_full : signal is "TRUE"; 

attribute KEEP of empty         : signal is "TRUE"; 

attribute KEEP of my_start      : signal is "TRUE"; 

attribute KEEP of rd_count      : signal is "TRUE"; 

attribute KEEP of fifo_wr_en    : signal is "TRUE"; 

attribute KEEP of fifo_rd_en    : signal is "TRUE"; 

attribute KEEP of almost_full   : signal is "TRUE"; 

 

begin 

 

auto_process: process(clk_i,rst_i,rd_clk) 

begin 

if rising_edge(clk_i) then 

    if rst_i = '1' then 

        fifo_wr_en <= '0'; 

        wbs4_dat_o <= (others => '0'); 

        fifo_din <= (others => '0'); 

        fifo_data_reg <= (others => '0'); 

        state <= idle_state; 

    else 

        case state is 
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        when idle_state =>  

                    rd_busy <= '0'; 

                    if(wbs4_stb_i = '1' and wbs4_cyc_i = '1') then 

                        if wbs4_we_i = '1' then 

                            state <= wr_state; 

                        else 

                            state <= rd_state; 

                        end if; 

                    else 

                        state <= idle_state; 

                    end if; 

        when wr_state => 

                    fifo_wr_en <= '1'; 

                    if((wbs4_adr_i(5 downto 2)) = fifo_data_addr) then 

                        fifo_din <= std_logic_vector(wbs4_dat_i(32-1 

downto 0)); 

--                  else 

--                      fifo_din <= fifo_din; 

                    end if; 

                    state <= wait_write; 

        when wait_write => -- Actual writing to fifo takes place in 

this state. 

                    fifo_wr_en <= '0'; 

                    if wr_ack = '1' then 

                        state <= idle_state; 

                    else 

                        state<= wait_write; 

                    end if; 

        when rd_state => 

                    rd_busy <= '1'; 

                    if((wbs4_adr_i(5 downto 2)) = fifo_ctrl1_adr) then 

                        wbs4_dat_o <= x"000000" & unsigned(fifo_ctrl1); 

                    end if; 

                    state <= wait_read; 

        when wait_read => 

                    rd_busy <= '0'; 

                    state <= idle_state; 

        when others =>  

                    state <= idle_state; 

        end case; 

    end if; 

end if; 

end process; 

 

rd_clk_thingy: 

process(clk_i, rst_i, rd_count) 

begin 

if rising_edge(clk_i) then 

    if rst_i = '1' then 

        rd_count <= (others => '0'); 

        rd_clk <= '0'; 

    else 

        if rd_count = x"007D" then --3F 

            rd_clk <= not(rd_clk); 

            rd_count <= (others => '0'); 
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        else 

            rd_count <= rd_count + '1'; 

        end if; 

    end if; 

end if; 

end process rd_clk_thingy; 

 

process(rd_clk) 

begin 

    if falling_edge(rd_clk) then 

--      if dsp_rst_d1 = '1' then 

--          sclk_d1 <= '0'; 

--      else 

            sclk_d1 <= not(sclk_d1); 

--      end if; 

    end if;  

end process; 

sclk<=sclk_d1;   

 

rd_en_thingy: 

process (clk_i,full,rst_i,my_start) 

begin  

if rising_edge(clk_i) then 

    if (rst_i = '1') then 

        my_start <= '1'; 

    else 

        if almost_full = '1' then 

            my_start <= '0'; 

        else 

            my_start <= my_start; 

        end if; 

    end if; 

end if; 

fifo_rd_en <= not(my_start); 

end process rd_en_thingy; 

 --################################################## 

 -- it takes approx one clk cycle for placing data on  

 -- fifo_dout so delay DDC enable for 1 rd_clk cycle 

 --################################################## 

ddc_enable: process(rd_clk, rst_i, fifo_rd_en) 

begin 

    if rising_edge(rd_clk) then 

        if fifo_rd_en = '1' then 

            ddc_en_buff <= '1'; 

        else 

            ddc_en_buff <= '0'; 

        end if; 

    end if; 

end process ddc_enable; 

ddc_en <= fifo_rd_en; 

 

--################################################## 

-- dsp board reset logic 

--################################################## 

dsp_reset: block 
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signal counter : std_logic_vector(15 downto 0):= x"0000"; 

signal init : std_logic := '0'; 

begin 

    process(rst_i, clk_i) 

    begin 

        if rising_edge(clk_i) then 

            if rst_i = '1' then 

                dsp_rst_d1 <= '1'; 

                counter <= (others => '0'); 

            else 

                if counter = x"1388" then 

                    dsp_rst_d1 <= '0'; 

                else 

                    counter <= counter + '1'; 

                end if; 

            end if; 

        end if; 

    dsp_rst <= dsp_rst_d1; 

    end process; 

 

 

end block dsp_reset; 

   

 fifo_rd_clk <= rd_clk; 

 fifo_data_out <= fifo_dout; 

 fifo_wr_en_buff <= fifo_wr_en; 

 half_full <= full; 

  

-- busy_out <= rd_busy or wr_ack; 

 

-- OutPut signals  

fifo_ctrl1(0) <= '0'; 

fifo_ctrl1(1) <= full; 

fifo_ctrl1(2) <= empty; 

fifo_ctrl1(3) <= not(prog_full); 

fifo_ctrl1(7 downto 4) <= (others => '0'); 

 

output_fifo: fifo_stage_o PORT MAP ( 

    rst => rst_i, 

    wr_clk => clk_i, 

    rd_clk => rd_clk, 

    din => fifo_din, 

    wr_en => fifo_wr_en, 

    rd_en => fifo_rd_en, 

    dout => fifo_dout, 

    full => full, 

     almost_full => almost_full, 

    wr_ack => wr_ack, 

    empty => empty, 

    prog_full => prog_full 

  ); 

  

end Behavioral; 
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Appendix D - ZPU Software 

 zpu_add.h 

#ifndef _zpu_H 

#define _zpu_H 

 

/* GPIO DEFINITIONS */ 

#define GPIO_DATA       *((volatile unsigned int *)0x080A0004) 

#define GPIO_DIR        *((volatile unsigned int *)0x080A0008) 

/* FIFO samples out Definitions*/ 

#define FIFO_CTRL1      *((volatile unsigned int *)0x080B0004) 

#define FIFO_DATA1      *((volatile unsigned int *)0x080B0008) 

//FIFO_CTRL1 

/* _ _ _ _ _________ _____ ____ _ */ 

/*|0|0|0|0|~PROG_FULL|EMPTY|FULL|0|*/ 

/*|_|_|_|_|__________|_____|____|_|*/ 

/* FIFO samples in Definitions*/ 

#define FIFO_CTRL2      *((volatile unsigned int *)0x080C0004) 

#define FIFO_DATA2      *((volatile unsigned int *)0x080C0008) 

#define WR_EN           0x01 

#define RD_EN           0x02 

/* CRAM Address Definitions*/ 

#define CRAM_BOT        0x001000000 

#define CRAM_TOP        0x002000000 

#define CRAM_SADDR      *((volatile unsigned int *)CRAM_BOT) 

/* Seven Segment Display Definitions*/ 

#define SEG7            0x0080a001C 

#define SEG7_WRITE      *((volatile unsigned int *)SEG7) 

/* timer definitions*/ 

#define TIMER1          *((volatile unsigned int *)0x080A0014) 

#define TIMER2          *((volatile unsigned int *)0x080A0018) 

#define TIMER_RST                   0x00000001 

#define TIMER_SAMP  0x00000002 

 

#endif 

 

 pattern_gen.c 

/* 

 * Small example, does not use printf() 

 */ 

//#include <stdio.h> 

#include "zpu_add.h" 

 

#define TIMER_RST                   0x00000001 

#define TIMER_SAMP_FAILURE_REPORT   0x00000002 

#define FIFO_SIZE 512 
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#define fifo_full 0x00000002 

 

 

 

volatile unsigned long i=1, j=0; 

 

/* void go_fill_fifo(void) 

{ 

    volatile unsigned long j=0; 

    for(j=0;j<20;j++) 

    { 

        FIFO_DATA1 = i; 

        i = i+1; 

    } 

} */ 

 

 

int main(int argc, char **argv) 

{ 

    unsigned long fifo_reg, fifo_ctrl, temp = 0x0000FFFF; 

    unsigned long int i=0,j=0; 

    //unsigned long int walk_1 = 0x00010001, walk_0 = 0xFFFEFFFE, 

cram_data; 

    //unsigned int k, test_cnt = 0x00; 

    volatile unsigned long int *ptr = 0x001000000,fifo_burst = 

0x000000000; 

    //SEG7_WRITE = test_cnt; 

/*  // Initial CRAM 

    for(j = CRAM_BOT; j<= CRAM_TOP; j=j+4) 

    { 

        *ptr = 0x0000FFFF; 

        ptr++; 

    } */ 

    // Initial FIFO fill-up 

    temp = 0x00000000; 

    ptr = CRAM_BOT; 

    fifo_burst = CRAM_BOT; 

    while(i<FIFO_SIZE-1) 

    { 

        FIFO_DATA1 = *ptr; 

        ptr++; 

        i = i+1; 

        /* if (i > 0){ 

            i = i-1; 

            ptr++; 

        } 

        else  

            i = 31; */ 

    } 

    while(1) 

    { 

     

    while (ptr<=(CRAM_BOT+65535)) 

        { 

            fifo_reg = FIFO_CTRL1; 
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            if(fifo_reg == 0x00000008 || fifo_reg == 0x0000000C) 

            { 

                for(i = fifo_burst; i<= fifo_burst+200; i=i+4) 

                { 

                    FIFO_DATA1 = *ptr; 

                    ptr++; 

                    //FIFO_DATA1 = cram_data; 

                } 

                fifo_burst = i; 

            } 

            //iprintf("%u",temp); 

        } 

    ptr = CRAM_BOT; 

    fifo_burst = CRAM_BOT; 

    }  

} 

 Compiling process 

Requirements: 

1. Cygwin 32‐bit environment with binutils, cmake, gcc, g++, gdb, and make. 

2. ZPUGCC toolchain (download from http://opensource.zylin.com/zpudownload.html) 

Procedure: 

a) Copy The ZPUGCC to a convenient location. You'll have to setup the environment 

variables to point to this location. 

Note: The GCC compiler may not like a path which has spaces in its names. Avoid 

this situation if possible. 

b) Open the cygwin terminal. If the path to the bin folder of the ZPUGCC toolchain is 

C:/zpugcc/toolchain/bin, then type export PATH=$PATH:C:/zpugcc/toolchain/bin 

c) Alternatively you can set the environment variables in windows 7 as shown below 

(My computer‐‐>Properties‐‐>Advanced System Settings‐‐>Environment Variables. 

An entry for PATH should already be present under system Variables.  

Append C:/zpugcc/toolchain/bin to the existing using ; for separator. 
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d) As a check type echo $PATH in the cygwin terminal to print the value for the PATH 

variable. You can also type zpu‐elf‐gcc ‐‐help to check if the installation was 

successful. 

e) To compile, go to cygwin and cd to the location of the helloworld example. To 

compile type  

f) zpu‐elf‐gcc ‐O3 ‐save‐temps ‐phi "`pwd'/hello.c" ‐o hello.elf ‐Wl,‐‐relax ‐ Wl,‐‐gc‐

sections ‐g If the compiling was successful then an elf file should be generated 

successfully. ls ‐s is the command to list the files in the current directory. 

g) Sometimes the elf file is too big for the BRAM in our FPGA. To strip the elf file use 

zpu‐elf‐strip hello.elf 

h) To convert the *.elf file into *.bin file use zpu‐elf‐objcopy ‐O binary hello.elf 

hello.bin 

i) Finally to get the BRAM contents use ./zpuromgen hello.bin > hello_bram.txt 

The *.txt file contains the program data that needs to get loaded into BRAM. After 

copying, implement the design again in ISE and download the bit file to the board. 
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