
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Masters Theses Graduate College

12-2015

Design of Digital Down Converter Chain for Software Defined Design of Digital Down Converter Chain for Software Defined

Radio Systems on FPGA Radio Systems on FPGA

Nagarjun Marappa
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Marappa, Nagarjun, "Design of Digital Down Converter Chain for Software Defined Radio Systems on
FPGA" (2015). Masters Theses. 664.
https://scholarworks.wmich.edu/masters_theses/664

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Masters Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/664?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F664&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

DESIGN OF DIGITAL DOWN CONVERTER CHAIN FOR

SOFTWARE DEFINED RADIO SYSTEMS ON FPGA

by

Nagarjun Marappa

A thesis submitted to the Graduate College

in partial fulfillment of the requirements

for the Degree of Master of Science in Engineering (Computer)

Electrical and Computer Engineering

Western Michigan University

December 2015

Thesis Committee:

Bradley J. Bazuin, Ph.D., Chair

Janos L. Grantner, Ph.D.

Lina Sawalha, Ph.D.

DESIGN OF DIGITAL DOWN CONVERTER CHAIN FOR

SOFTWARE DEFINED RADIO SYSTEMS ON FPGA

Nagarjun Marappa, M.S.E.

Western Michigan University, 2015

Modern communication systems have increasingly attempted to trade off the

digital signal processing for analog circuitry. In performing this tradeoff, advanced

algorithms have been implemented in both custom programmable hardware and in

software; such systems are commonly called Software Defined Radios (SDR). Advanced

software defined radios consist of highly configurable hardware and computers used as

digital signal processing (DSP) platforms that provide the technology for realizing

current and future generations of digital wireless communication infrastructure. Many

sophisticated signal processing tasks are performed in SDR, including compression

algorithms, channel estimation, equalization, forward error correction and protocol

management. This research has focused on the custom and programmable hardware DSP

devices which are commonly found prior to the baseband processor, performing critical

tasks appearing after the analog to digital converter. The DSP techniques that are

involved in this research are tuning, filtering and decimation of a received

communication signal.

The research activity performed the fixed-point algorithmic simulation in

MATLAB and the Xilinx VHDL implementation of integer precision complex mixing,

high rate filter decimation and two stage lower rate half-band filter decimation in order to

develop a communication signal processor. In addition, a Xilinx based digital test data

generator and output comparator design was developed to provide test data and analyze

results in real time for the Xilinx communication signal processor developed.

Copyright by

Nagarjun Marappa

2015

ii

ACKNOWLEDGMENTS

Firstly, I would like to express my deepest appreciation to my committee chair

and my academic advisor Dr. Bradley J. Bazuin for his continuous support, guidance,

motivation and immense knowledge. His guidance gleamed the way for my thesis. I

could not have imagined a better mentor and advisor than him and I am indebted to him

for sharing his expertise extended to me.

 Besides my advisor, I would also like to thank the rest of my thesis committee

members Dr. Janos L. Grantner and Dr. Lina Sawalha for their patience and

encouragement. Their encouragement led to widen the area of my research in various

prospective.

I also take this opportunity to thank my parents who stood by me at all times and

gave me moral support in achieving and reaching to this point of my life. A special

thanks to my all friends who supported me throughout my thesis, especially Lalith

Narasimhan for his unceasing support and guidance.

I also place on record, my sense of gratitude to one and all, who directly or

indirectly, have lent their hand in this venture.

 Nagarjun Marappa

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ii

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

CHAPTER

1. INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Research Objective ... 4

1.3 Structure of the Thesis .. 6

2. OVERVIEW .. 8

2.1 Background of Software Defined Radio ... 8

2.1.1 First Generation Software Defined Radios 9

2.1.2 Second Generation Software Defined Radio 10

2.2 Research Prototypes for SDR ... 12

2.3 Overview of Digital Down Converter Chain 13

3. THEORY OF CORDIC, CIC AND HALF-BAND FILTERS 18

3.1. CORDIC Processing .. 18

3.1.1 CORDIC Overview ... 18

3.1.2 CORDIC Algorithm .. 20

Table of Contents – Continued

iv

3.1.3 CORDIC Pre-Rotation .. 26

3.1.3 CORDIC as NCO .. 29

3.2 Filter Decimation for Down Converters ... 32

3.2.1 Cascaded Integrator Comb Filter .. 32

3.2.2 Half-Band Filters .. 42

4. METHODOLOGY AND IMPLEMENTATON ... 49

4.1 CORDIC Processing Unit ... 50

4.1.1 Phase Accumulator ... 53

4.1.2 Pre-Rotation .. 54

4.1.3 CORDIC Engine ... 56

4.1.4 MATLAB Implementation ... 58

4.1.5 VHDL Implementation ... 60

4.2 Cascaded Integrator Comb Filter .. 64

4.2.1 MATLAB Implementation ... 65

4.2.2 VHDL Implementation ... 69

4.3 Half-Band Filters .. 71

4.3.1 First Stage Half-Band Filter .. 72

4.3.1.1 MATLAB Implementation ... 73

CHAPTER

Table of Contents – Continued

v

4.3.1.2 VHDL Implementation ... 77

4.3.2 Second Stage Half-Band Filter ... 79

4.3.2.1 MATLAB Implementation ... 83

4.3.2.2 VHDL Implementation ... 86

4.4 DDC Chain Gain Adjustment ... 90

4.5 Xilinx Clocking and Clock Distribution ... 91

5. FPGA BASED DIGITAL PATTERN GENERATOR 94

5.1 Architecture of Digital Pattern Generator ... 95

5.2 Digital Pattern Generator Interface ... 95

5.2.1 Hardware Aspects ... 98

5.2.1.1 Wishbone - Zylin Processing Unit 98

5.2.1.2 Cellular RAM ... 102

5.2.1.3 FIFOs .. 102

5.2.1.3 Output FIFO .. 104

5.2.1.3 Input FIFO .. 108

5.2.1 Software Aspects .. 110

5.2.1.1 Generating Test Data .. 110

5.2.1.2 Copying Data to CRAM ... 111

5.2.1.3 ZPU Software ... 112

CHAPTER

Table of Contents – Continued

vi

6. RESULTS AND PERFORMANCE .. 115

6.1 Signal Processing Chain Verification ... 115

6.2 Pattern Generator Board Testing .. 126

6.2.1 Maximum Data Rate Achieved using ZPU 126

6.2.2 MATLAB limitations to Account for Hardware Transients ... 128

6.3 Signal Processor Device Utilization Summary 129

6.4 Signal Processor Timing Verification... 131

7. CONCLUSION AND FUTURE WORK .. 132

7.1 Conclusion .. 132

7.2 Future Work .. 133

7.3 Summary ... 134

REFERENCES .. 136

APPENDICES

A - MATLAB Scripts .. 139

B - VHDL Implementation .. 153

C - Pattern Generator Code .. 177

D - ZPU Software .. 190

CHAPTER

vii

LIST OF TABLES

3-1 Technique used in CORDIC Pre-Rotation .. 28

3-2 Half-Band Computation Efficiency ... 47

4-1 Input Vector Quadrants ... 54

4-2 CORDIC Constants or Arc Tangent Radix Constants... 57

4-3 CORDIC Processor Device Utilization Summary... 63

4-4 CIC Filter Device Utilization Summary .. 71

4-5 Small (7-Tap) Half-Band Device Utilization Summary .. 79

4-6 Values on the Select Line of SRL16Es ... 88

4-7 Large (31-Tap) Half-Band Device Utilization Summary .. 90

5-1 Wishbone Slaves Memory Map .. 100

6-1 Signal Processor Device Utilization Summary ... 130

viii

LIST OF FIGURES

1-1 Growth of Cellphone Users [3] ... 2

1-2 Multimedia Chipset for Mobile Devices [7].. 3

1-3 Thesis Hardware Setup .. 6

2-1 Ideal Software Defined Radio .. 9

2-2 First Generation SDR .. 10

2-3 Second Generation SDR .. 10

2-4 Digital Down Converter .. 14

2-5 Quadrature Mixing in Frequency Domain. ... 15

2-6 Digital Down Converter Chain .. 16

3-1 CORDIC Micro-Rotations. .. 20

3-2 Two-Dimensional Vector Rotation ... 21

3-3 Rotation through Iterative Micro-Rotations .. 23

3-4 Division using Shift Register. .. 25

3-5 Region of Convergence for Inverse Tangent Function ... 26

3-6 Methodology for Pre-Rotation... 29

3-7 FIR Implementation of Boxcar Filter .. 33

3-8 Boxcar Filter Frequency Response .. 36

3-9 Single Stage CIC Filter .. 37

3-10 Frequency Response of Integrator Comb (CIC) Filter .. 37

3-11 Spectrum of a Multistage CIC ... 39

List of Figures - Continued

ix

3-12 Broadening Nulls at Successive Stages of CIC ... 39

3-13 Hogenauer Filter Structure of a Single Stage CIC Filter 40

3-14 Hogenauer Structure of a 3-stage CIC Filter ... 41

3-15 Zero-Phase Frequency Response ... 43

3-16 Half-Band Impulse Response .. 44

3-17 FIR Filter Structure .. 46

3-18 Symmetric FIR Filter Structure ... 46

3-19 First Stage Half-Band Filter .. 48

3-20 Second Stage Half-Band Filter .. 48

4-1 Architecture of Communication Signal Processing Board 51

4-2 CORDIC Processing Unit Core ... 52

4-3 CORDIC Phase Accumulator .. 54

4-4 Single Stage CORDIC using Shift Registers ... 56

4-5 CORDIC Implemented as NCO .. 59

4-6 Frequency Spectrum of the CORDIC Output (zoomed-in) 59

4-7 VHDL Implementation of a Single Stage CORDIC ... 60

4-8 CORDIC Pipelined Stages... 61

4-9 CORDIC Initial Latency .. 62

4-10 CORDIC Output Truncation ... 62

4-11 Modelsim Simulation of CORDIC .. 63

4-12 3-Stage Pipelined CIC Filter.. 65

List of Figures - Continued

x

4-13 Frequency Spectrum of the CIC Filter .. 67

4-14 Spectral Droop in the Passband ... 68

4-15 Intermediate Outputs of CIC Filter Decimator .. 68

4-16 3-stage CIC Filter Decimator Output .. 69

4-17 RTL Schematic of Pipelined CIC Filter .. 69

4-18 CIC Filter Output on ModelSim Simulator ... 70

4-19 7-Tap Half-Band Filter Responses .. 72

4-20 Small Half-Band Filter Input and Output Spectrum .. 75

4-21 Small (7-Tap) Half-Band Filter Circuit Diagram .. 76

4-22 Strobe Logic for 7-Tap Half-Band Filter ... 77

4-23 31-Tap Half-Band Filter Response .. 80

4-24 2-Path Polyphase Filter Structure Decomposition... 80

4-25 Large (31-Tap) Half-Band Filter Circuit Diagram .. 82

4-26 Large Half-Band Filter Input and Output Vectors ... 85

4-27 Large Half-Band Filter Input and Output Spectrum .. 85

4-28 17-bit Shift-Register of length 16 using SRL16Es .. 87

4-29 Timing analysis of large half-band filter structure .. 89

4-30 Spartan 6 Clock Distribution [27] ... 92

5-1 Nexys 3 Digital Pattern Generator and Output Comparator.................................... 96

5-2 Digilent Nexys 3 VHDC Connector [28] .. 96

5-3 Interfacing with Communication Signal Processor ... 98

List of Figures - Continued

xi

5-4 Wishbone-ZPU Address Space ... 101

5-5 ZPU-Slave Communication ... 102

5-6 Output FIFO Status Register ... 104

5-7 Output FIFO State-Machine Flowchart ... 105

5-8 Output FIFO Write Process ... 106

5-9 Output of the Pattern Generator Board (ModelSim Simulator) 107

5-10 Output of the Pattern Generator Board (MSO-X 3034A) 108

5-11 Input FIFO Status Register .. 108

5-12 Input FIFO State-Machine Flowchart .. 109

5-13 Input FIFO Read Process ... 110

5-14 32-bit Binary Pattern in Little Endian Fashion .. 111

5-15 Writing Data to CRAM using Adept ... 112

5-16 ZPU Write and Comparison Scheme... 113

6-1 CORDIC Time Domain Output ... 117

6-2 CORDIC Output Frequency Spectrum .. 117

6-3 Error between MATLAB and VHDL Implementation ... 118

6-4 MATLAB-ModelSim-Chipscope Somparisons .. 118

6-5 CIC Filter – Time Domain Comparison .. 119

6-6 Frequency Response of the CIC Filter Output .. 120

6-7 Error between MATLAB and VHDL implementation.. 120

6-8 First Stage Half-Band Filter – Time Domain Comparison...................................... 121

List of Figures - Continued

xii

6-9 Output Spectrum of the First Half-Band Filter .. 122

6-10 Error between MATLAB and VHDL Implementation ... 122

6-11 Final Stage Half-Band Filter – Time Domain Comparison 123

6-12 Output Spectrum of the Final Stage half-Band Filter .. 124

6-13 Error between MATLAB and VHDL Implementation ... 124

6-14 MATLAB-ModelSim-Chipscope Comparisons .. 125

6-15 DDC Output using Chipscope-Pro Analyzer... 125

6-16 Time Delay between 2 Successive FIFO Writes ... 127

6-17 FIFO Burst Write ... 128

6-18 Transient Response at the Output of the Final Stage Half-Band Filter 129

6-19 Signal Processor Timing Summary ... 131

1

INTRODUCTION

 1.1 Motivation

Long distance wireless communication has a century-old history, dating from the

time when Guglielmo Marconi sent the telegraphic signals over a distance of

approximately 1800 miles from Cornwall, across the Atlantic Ocean, to St. John

Newfoundland in 1901 [1]. Since then, wireless communication has been one of the most

important ways to transport voice and data using radio-frequencies (RF). Over the past

century, wireless communication has progressed through the development and

deployment of radios, radar, televisions, satellite and mobile telephone technologies.

The growth of the cellular radio and personal communication systems began to

accelerate in the late 1970s. Since then, mobile phones have been a successful platform

for local and long distance wireless communication and there has been a dramatic

increase in the number of mobile phone users. It is predicted that the mobile phone usage

will grow even further as shown in the Figure 1-1 [2]. Even more striking, according to

recent statistics and on a global scale, there are more mobile phone subscriptions than

people with access to electricity or access to safe drinking water [4].

2

Figure 1-1 Growth of Cellphone Users [3]

This growth has directly influenced the consumers demand for convenience of

high-speed ubiquitous communication. Hence, wireless functionality is becoming a

fundamental requirement for many electronic products. Furthermore, the rapid growth in

the Internet of Things (IoT) is further driving the proliferation of various wirelessly

connected devices, such as smart-phones, tablets, wearable computing devices, security

and surveillance systems, lighting control systems, remote keyless entry, smart homes

and appliances, wireless sensor networks, automated highways and factories [5]. A

variety of radio technology standards have been proposed, and have significantly evolved

over the last decade in order to meet the needs of diverse applications ranging from,

Private Area Networks (PANs) to Local Area Networks (LANs) and Wide-Area cellular

Networks such as, Bluetooth, ZigBee, WiFi and the latest 4G-LTE systems [6].

In terms of hardware implementation, the wide range of radio technologies

proposed involve a considerable amount of signal processing algorithms that have

significant complexity. As a result, they generally requires one or more custom devices,

such as Application Specific Integrated Circuits (ASICs) in order to achieve the high

processing requirements, computation speeds and density needs by modern radio

3

standards for personal devices. Figure 1-2 illustrates an example of the current state of art

system block diagram using a computer core and multimode ASICs as physical radios,

where device functionality could be switched according to the selected mode of

operation. The high cost of custom chip development implies the need for mass-market

standards with significant volume in order to make a new concept viable. This in turn

results in relatively long product development cycles. Also, the continuous increase in the

number of competing standards and evolution occurring in the existing standards reduced

the life span of products so dramatically that it is difficult to stay at the cutting edge of

technology.

Figure 1-2 Multimedia Chipset for Mobile Devices [7]

The continued development of larger, faster, and more capable Field

Programmable Gate Arrays (FPGAs) has supported increasingly more complex digital

4

signal processing implementations, including wireless communications. The large array

of configurable logic blocks available within current FPGAs provides great flexibility

and supports high speed processing. In combination, the rapid growth in the processing

capabilities of FPGAs and DSPs has allowed Software Defined Radio (SDR) operations

to be incorporated into prototype devices that can be readily transitioned into custom,

high-volume wireless products capable of supporting a wide range of standards.

 1.2 Research Objective

Many sophisticated signal processing tasks are performed in FPGAs or custom

ASICs, including Digital Up/Down Conversion (DUC/DDC), interpolation and

decimation filtering, channel estimation and equalization. Among the highest data rate

and computationally complex signal processing tasks performed in SDR wireless

communication system is DUC/DDC, also referred to as receiver tune-filter-decimation

and transmitter interpolation-filter-tune signal processing. This research will focus on the

processing performed in post analog-to-digital conversion, involving the DDC operations

of tuning, filtering and decimation of a received communication signal.

The research activity performed and reported involves the fixed point integer

arithmetic simulations of a narrow band Digital Down Converters (DDC) using

MATLAB and the Register Transfer Level (RTL) implementation and verification on a

Spartan 6 FPGA development board. The components of a DDC consist of a mixer and

combinations lowpass filter decimators operating at the real-time sampling frequency of

the communication system. To support such high-speed operation, distinct algorithmic

techniques have been developed to perform the mixing and filtering required. For

5

complex mixing used for tuning, the COordinate Rotational Digital Computer (CORDIC)

algorithm is implemented [8], while primary narrow-band filter decimation is performed

using a Cascaded Integrator Comb (CIC) filter. Following this processing, two low rate

half-band filter decimators were also implemented to enhance the passband and provide

additional spectral shaping and stopband attenuation following the CIC filter.

In addition to the signal processing tasks, a second FPGA based development

board has been designed, developed, and implemented as a digital pattern generator and

output comparator to provide predefined periodic integer test data and allow comparison

of periodic output results in real time from the communication signal processor

development board. The pattern generator and result comparison FPGA contains a

Zylin’s open source 32-bit softcore processor called the Zylin CPU (ZPU) that is used to

command, control, transfer and compare the data inside the FPGA. The finite precision

integer test signals and the theoretical results of the signal processor are stored in an on-

board Pseudo Static Random Access Memory (PSRAM) from which the ZPU can source

the pattern generator data and retrieve reference outputs to compare the collected

processed result of the signal processing chain. The ZPUs software was written in C and

complied using the open source ZPU - GNU Compiler Collection (GCC) tools.

The project development and hardware test configuration is shown in Figure 1-3

where the project consists of two Digilent Nexys 3 development boards which have

Spartan 6 (xc6slx16-3-csg324) FPGAs. One board is used as the pattern generator and

result comparison board and the other is used as the target board (communication signal

processor). These boards are connected through a high speed Very High Density Cable

(VHDC) connector for sending and receiving the test signals.

6

Target

Pattern Generator

Figure 1-3 Thesis Hardware Setup

 1.3 Structure of the Thesis

This thesis is organized as follows: Chapter 2 provides an overview of digitization

and digital signal processing in wireless communication, its evolution, and a description

of Software Defined Radio (SDR) system. It also discusses the different architectures

proposed to implement Digital Down Conversion chains, both for narrow band and wide

band receivers. Chapter 3 describes the architecture of the Digital Down Converter chain

proposed in this thesis and discusses the mathematical model of the Digital Down

Conversion chain. This chapter includes the description of CORDIC high rate integer

precision mixing and both, high rate and lower rate filter decimator’s. Chapter 4

discusses the design of the signal processing board and describes the hardware

implementation details of the Digital Down Converter model presented in Chapter 3. This

chapter also discusses the finite precision MATLAB simulations of all the individual

7

components of the Digital Down Conversion chain. Chapter 5 discusses the architectural

design of the pattern generator and comparator using an embedded softcore processor on

FPGA. The chapter includes a short description of the softcore processor used and also

discusses the pattern and result finite integer test data generation process using

MATLAB. Chapter 6 describes the results of the signal processing board implementation

and validates the theoretical results with the experimental results for each individual

components of the Digital Down Converter chain. The final chapter summarizes the work

performed, suggests further design and development activities and concludes this thesis.

8

OVERVIEW

 2.1 Background of Software Defined Radio

Historically the term radio is defined as any device which is used to exchange

information from point A to point B using electromagnetic waves of radio frequency. In

traditional radio systems, almost all the physical layer functions were implemented on

specialized analog and digital components [9]. These fixed hardware implementations

were restricted to specific standards and protocols and offered minimum in terms of

interoperability. These systems also had fixed identities that could not be altered without

modifications to the underlying hardware. The end result being high initial development

costs and longer development and release cycles.

In order to overcome these issues and achieve the flexibility of supporting

multiple air interfaces and multiple modulation schemes, the concept of Software Defined

Radio (SDR) came into existence [10]. The term software defined radio was first coined

by Joseph Mitola in 1992 [11] and is defined as “a radio system where all or some of the

physical layer functions are implemented in software” [12]. An ideal SDR is shown in the

Figure 2-1. Here, the analog Radio Frequency (RF) spectrum is digitized as close to the

antenna as possible so that all signal processing tasks are accomplished in digital domain.

Digitizing at the antenna is currently not possible for the majority of high interest

wireless signals as, Analog to Digital Convertor (ADC) do not have sufficient sample

9

rates to support desired frequency bands and bandwidths and also lack the required

sensitivity and dynamic range. Despite current limitations, SDR does still attempt to

digitize the signal as early as possible in the receiver chain while converting to the analog

domain as late as possible in the transmit chain.

Pre-

Amplifier

(LNA)

Power

Amplifier

ADC

DAC

DSP

Antenna

Figure 2-1 Ideal Software Defined Radio

 2.1.1 First Generation Software Defined Radios

In the first generation software defined radio systems, technological limitations

and cost considerations placed the ADCs and DACs at baseband. This meant only the

baseband processing was in digital domain and the rest of the RF and IF stages were still

in the analog domain. The architecture of a first generation SDR system is shown in the

Figure 2-2

10

Pre-

Amplifier

(LNA)

Power

Amplifier

ADC

DAC

Baseband

Processor

Antenna

LPF

LO

Mixer

LO

Mixer

Analog Conversion Digital

LPF

Figure 2-2 First Generation SDR

 2.1.2 Second Generation Software Defined Radio

In the second generation SDR systems, advancements in ADC technology

allowed them to be utilized at the IF stage rather than at baseband. An example of the

second generation SDR is shown in the Figure 2-3.

Pre-

Amplifier

(LNA)

Power

Amplifier

ADC

DAC

Baseband

Processor

Antenna

LPF

LO

Mixer

LO

Mixer

Analog Conversion Digital

LPF

DDC

DUC

Digital Front-end

Figure 2-3 Second Generation SDR

A description of the key elements of the SDR system follows:

11

1. RF front-end

The RF front-end consists of Low Noise Amplifiers (LNA), mixers and filters.

The RF signal received from the antenna is first amplified by the LNA and then mixed to

either IF or baseband. Filtering is performed to remove the unwanted signals resulting

from the mixing process and also to band limit the signal prior to the ADC. The reverse

operation is performed at the transmit section of the FR frontend.

2. ADC and DAC

According to Nyquist-Shannon’s theorem, “in order for a bandlimited baseband

signal to be reconstructed fully, the sampling rate of an ADC should be greater than or

equal to twice the bandwidth of a bandlimited signal” [13]. However, the ADCs and

DACs in current generation radios are sampling broader spectral bands at much higher

rate than narrowband signals of interest, typically in the range of several hundred MHz.

This allows the SDRs to provide multimode support and operate on any signal within the

wider bandwidth. The high sampling rate also facilitates relaxing the requirements of the

antialiasing filter thereby reducing the complexity and the cost of RF components.

Furthermore, since software defined radios are also used in mobile devices, it is

important that these ADCs/DACs consume little power.

3. Digital Front-end

The digital front end is used to perform additional signal processing tasks that are

required as a result of the over sampling at the ADC. The front end acts as an interface

between the high bandwidth, high sample rate ADC and the low bandwidth, low sample

rate requirements of the baseband. On the receive side, the front end consists of a digital

12

down converter chain and on the transmit side its inverse, the digital up converter chain.

The digital down converter first consist of a digital mixer to select the desired signal from

the array of signals captured by the ADC. Filter-decimation in the DDC allows the

bandwidth to be reduced to a range that is supported by the baseband processor, usually

requiring much lower symbol rates. The digital up converter performs the opposite of all

the operations described in the down converter.

4. Baseband processor

The baseband processor is responsible for modulation/demodulation,

encoding/decoding, symbol and timing synchronization, timing recovery and a host of

other signal processing tasks vital for the normal operation of the SDR. The baseband

processor is usually implemented either on FPGA, General Purpose Processors (GPPs),

Digital Signal Processors (DSPs) and Graphical Processing Units (GPUs) or a

combination of multiple elements. The choice of the hardware element depends on the

complexity of the signal processing required, the level of configurability and the cost of

the overall system.

 2.2 Research Prototypes for SDR

For current and future development, a number of research prototypes for SDR

platforms have been developed in the past few years, including the WARP board from

Rice University [14], the USRP platforms from Ettus Research [15], the GENI SDR

platform form Rutgers University [16], and the SORA from Microsoft [17]. These state-

of-the-art SDR platforms are more suitable for transceiver prototyping and reconfigurable

13

Access Points or Base Stations (BS) than consumer level devices due to the fact that they

are expensive and consume a significant amount of power.

 2.3 Overview of Digital Down Converter Chain

The evolution towards SDR has been driven in part by the evolution of the

enabling technologies such as ADC/DAC and digital integrated circuit technology

(ASICs, FPGAs, GPPs, DSPs and GPUs). However, today’s GPPs and DSPs are not well

suited for some computationally intensive processing and can be rather slow. Custom

ASICs can have considerable development times and high initial costs. The advent of

larger and faster FPGAs has opened up the field for digital signal processing

implementation on FPGAs, where the large array of Configurable Logic Blocks (CLBs)

within the FPGA gives great flexibility together with high speed for regular and

structured algorithms. Once the FPGA is configured, it lacks the flexibility of a

GPPs/DSPs but it can continuously perform computations with greater speed and

efficiency and may be reconfigured. FPGAs are often used in communication systems

where real time sample rate preprocessing with some degree of re-configurability is

required. One such application is DDC and the mathematical inverse process DUC. DDC

is a technique that takes a bandlimited high sample rate digitized signal, tunes the signal

to a selected frequency, filters the tuned signal to a limited bandwidth and reduces the

sample rate while still retaining all the signal information. DDCs are ubiquitously found

in many devices such as cellular radios, radar systems, Wi-Fi radios, Bluetooth and

ZigBee radios.

14

As mentioned before, the ADCs and DACs are operated at significantly higher

rate in order to allow the SDRs to operate with wider bandwidths. But in many cases the

signal of interest occupies only a small portion of that bandwidth. To filter the signal of

interest at this high sample rate would require a prohibitively larger filter. As a result,

special DSP techniques such as the combination of a complex mixer and CIC decimators

or polyphase channelizers are used to tune to the desired bandwidth and reduce the

sample rate of the received signal, to the rate which can be processed by concurrent

processing elements efficiently.

A typical narrow band Digital Down Converter chain consists of an oscillator, a

complex mixer, a CIC filter decimator and a spectral reshaping filter as shown in Figure

2-4. The first stage of the DDC is to down convert the stream of data from RF spectrum

to baseband. This is accomplished through the process of multiplication or mixing with

the complex sinusoidal waveform of the same frequency identical to the frequency of the

signal of interest.

H(n)

e-jØ0n

Low-Pass Filter

CIC Filter

Decimator

Complex Mixer

Local Oscillator

Figure 2-4 Digital Down Converter

This process is graphically shown in the Figure 2-5 where the local oscillator

generates a complex sinusoids of frequency −𝑓𝑐 this signal is mixed with the input signal

at+𝑓𝑐, as a result input signal is down converted from 𝑓𝑐 to baseband. The amplitude

15

spectrum of both resulting in-phase and quadrature-phase component of the complex

baseband signal must be maintained for further processing, which is why all filters in the

in-phase and quadrature-phase path must be identical.

-fc -IF

Signal of Interest Signal of Interest

-fc-fm -fc+fm fc-fm fc+fm
+fc

Other Signals Other Signals

+IF

Other Signals Other Signals

-fm +fm

LPF

Base-Band Signal

Figure 2-5 Quadrature Mixing in Frequency Domain.

Many techniques have been unveiled to efficiently implement the local oscillator

in digital; including, Direct Digital Synthesizers (DDS) and Numerically Controlled

Oscillator (NCO). In this thesis, COordinate Rotational Digital Computer (CORDIC)

algorithm was used to implement as a numerically controlled oscillator and quadrature

mixer combined together because of its simplicity and efficiency. The CORDIC was also

used in early calculators and first computers for computing various complex functions

like trigonometric, logarithms, complex number multiplications, divisions and square

roots. Although the same functions can be implemented using Multiplier and

Accumulator units (MAC’s), CORDIC can implement these functions just by using

shifters and adders while saving a lot of hardware resources which is the primary criteria

while designing a large system.

16

The second stage of the DDC is a filter decimators. Narrowband DDCs use a

Cascaded Integrator Comb filter (CIC) since it offers many advantages, such as;

implementing high decimation rates within the filter, providing a steep cut-off for a

relatively few stages and it is implemented using only delays and adders which makes it

very well suited for FPGA implementation. However, multistage CIC filters do not have

a flat frequency response in the passband and need a compensating filter after the CIC

filter. The response of this additional filter compensates for the droop introduced in the

passband. Because of the need for the post compensating filter, CIC filters are preferred

to be used with high decimation rates.

RX

Front End
scaling scaling

CORDIC Digital Down Converter

CIC decimator CIC decimator

Small half-band

decimation filter

Small half-band

decimation filter

Large half-band

decimation filter

Large half-band

decimation filter

gain compensation

sample(31 downto 0)

sample(31 downto 16) sample(15 downto 0)

Q sample I sample

Figure 2-6 Digital Down Converter Chain

17

The techniques used in this thesis to implement a complex narrow band DDC is

shown in the Figure 2-6. In this implementation, the filtering and down sampling was

performed in two filter stages. First, a 3-stage CIC filter that performs filtering without

multiplications while performing an internal M-to-1 decimation. This CIC filter is

followed by a 2 stage half-band filters. The half-band filters can also be used to further

decimate the input signal by the factor of 2 or 4 and provide stopband attenuation. This

methodology of implementing a complex narrowband DDC is found in the popular

Universal Software Defined Radio Peripheral (USRPs) form Ettus Research Inc.

18

THEORY OF CORDIC, CIC AND HALF-BAND FILTERS

 3.1. CORDIC Processing

The CORDIC processing stage performs the operations of a numerically

controlled oscillator (NCO) and complex signal mixer on the incoming data. A

numerically controlled oscillator is a digital signal generator which outputs a sinusoidal

waveform based on converting a digitally programmed accumulated phase into the sine

or cosine of the phase. NCOs offers various advantages for digital signal processing in

terms of stability, accuracy, agility and reliability. NCOs offers various advantages for

digital signal processing in terms of stability, accuracy, agility, exact repeatability, and

reliability. NCOs are used in many digital communication systems, including DDC/DUC

for digital radios, digital PLLs, radar systems, function generators, and modulators. There

are numerous digital techniques for implementing an NCO with varying degree of

complexity and efficiency.

 3.1.1 CORDIC Overview

Coordinate Rotational Digital Computer algorithm (CORDIC) was first developed

by Jack E. Volder [8] in 1959 at aero-electronics department of Convair. His initial

application was to replace the analog resolver in the B-58 bomber’s navigation system

with a digital computer [18]. Recognizing the potential of the algorithm, it was later

generalized and enhanced due to its potential for efficient and low cost implementation

19

for the computations of various complex functions, such as trigonometric, hyperbolic

functions, logarithms, complex number multiplications, divisions and square roots [19].

While all these functions can be implemented using repeated computations with

multipliers and accumulator units (MAC’s), a CORDIC processor can implement these

functions efficiently with the use of a sequence of simple shift and add operations, saving

a lot of hardware resources. Furthermore, the CORDIC computing technique is defined to

use integer processing; a well-defined number of stages and clock cycles, and can achieve

a well-defined numerical precision.

The functionality of CORDIC can be described as the digital equivalent of an

analog resolver [8]. Similar to the operation of such a resolver, there are two computing

modes, a ROTATIONAL mode and a VECTROING mode. The CORDIC algorithm uses

planar rotation and vectoring (𝑟, 𝜃) to compute elementary trigonometric functions when

assigned with proper initial conditions. In the rotational mode, given the coordinate

components of a vector (𝑋, 𝑌) and the angle of rotation 𝜃, the input vector is rotated by

given rotation angle by performing a set of predetermined micro-rotations to obtain a new

vector (𝑋′, 𝑌′) as shown in Figure 3-1. In the vectoring mode, the length 𝑟 and the angle

𝜃 of the vector (𝑋, 𝑌) with respect to the x-axis can be computed. For this purpose, the

vector is iteratively rotated towards the x-axis so that the y-component approaches zero.

At this point, the sum of all angles is equal to the value of 𝜃, while the value remaining as

the x-component corresponds to the length 𝑟 of the vector (𝑋, 𝑌).

20

(X , Y)

(X1, Y1)

(X0, Y0)

(X3, Y3)

(X2, Y2)

Ø0

Ø1

Ø2

Øn
Y

A
xi

s

X Axis

Ø

(Xinit, Yinit)

Ø3

x = -y
y = x

x = y
y = -x

Needs pre-rotation Normal Range

Figure 3-1 CORDIC Micro-Rotations.

 3.1.2 CORDIC Algorithm

Consider a 2 dimensional vector at a point 𝑣 in a complex plane as shown in the

Figure 3-2. The coordinate components of v can be represented as

 𝑣 = 𝑥 + 𝑗 ∙ 𝑦 (1)

If the vector is rotated by an angle 𝜙, then the coordinate components

corresponding to the new vector v′ in a complex plane is given by [20]

21

𝑣′ = 𝑣 ∙ 𝑒𝑗𝜙 (2)

we know that, the exponential term in the above equation can be expresses as

𝑒𝑗𝜙 = 𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑠𝑖𝑛(𝜙) (3)

v = x +jy

v = x+jy

Ø

Y

X

Figure 3-2 Two-Dimensional Vector Rotation

Therefore, by substituting the exponential term in the equation (2) we get,

𝑣′ = 𝑣 ∙ (𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑠𝑖𝑛(𝜙)) (4)

By substituting for 𝑣 and 𝑣′, we can simplify the above equation as

𝑥′ + 𝑗 ∙ 𝑦′ = (𝑥 + 𝑗 ∙ 𝑦) ∙ (𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑠𝑖𝑛(𝜙)) (5)

𝑥′ + 𝑗 ∙ 𝑦′ = 𝑥 ∙ 𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑥 ∙ 𝑠𝑖𝑛(𝜙) + 𝑗 ∙ 𝑦 ∙ 𝑐𝑜𝑠(𝜙) + 𝑗2 ∙ 𝑦

∙ 𝑠𝑖𝑛(𝜙)

(6)

We know that, 𝑗 = √−1. Then, square of j would be equal to −1. Therefore, we can

rewrite the above equation as

𝑥′ + 𝑗 ∙ 𝑦′ = 𝑥 ∙ 𝑐𝑜𝑠(𝜙) + 𝑗 ∙ 𝑥 ∙ 𝑠𝑖𝑛(𝜙) + 𝑗 ∙ 𝑦 ∙ 𝑐𝑜𝑠(𝜙) − 𝑦 ∙ 𝑠𝑖𝑛(𝜙) (7)

By separating the terms that contains 𝑗 and rewriting the above equation. We get

22

 𝑥′ + 𝑗 ∙ 𝑦′ = (𝑥 ∙ 𝑐𝑜𝑠(𝜙) − 𝑦 ∙ 𝑠𝑖𝑛(𝜙)) + 𝑗 ∙ (𝑥 ∙ 𝑠𝑖𝑛(𝜙) + 𝑦 ∙ 𝑐𝑜𝑠(𝜙)) (8)

By equating both sides of the equation, the coordinate components of the new vector at

the point 𝑣′ can be given as

 𝑥′ = 𝑥 ∙ 𝑐𝑜𝑠(𝜙) − 𝑦 ∙ 𝑠𝑖𝑛(𝜙) (9)

 𝑦′ = 𝑦 ∙ 𝑐𝑜𝑠(𝜙) + 𝑥 ∙ 𝑠𝑖𝑛(𝜙) (10)

in order to simplify the CORDIC algorithm for hardware implementation, the equation

(9) and (10) can written in matrix form as

[
𝑥′

𝑦′] = [
𝑐𝑜𝑠(𝜙) − 𝑠𝑖𝑛(𝜙)

𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)
] ∙ [

𝑥
𝑦]

(11)

[
𝑥′

𝑦′] = 𝑅 ∙ [
𝑥
𝑦]

(12)

where 𝑅 is called rotational matrix and it is defined as

𝑅 = [

𝑐𝑜𝑠(𝜙) − 𝑠𝑖𝑛(𝜙)

𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)
]

(13)

dividing the equation (13) by 𝑐𝑜𝑠(𝜙) we get

 𝑅 = 𝑐𝑜𝑠(𝜙) ∙ [
1 − 𝑡𝑎𝑛(𝜙)

𝑡𝑎𝑛(𝜙) 1
]

(14)

Furthermore, using the one of the trigonometric identities for 𝑐𝑜𝑠(𝜙) =
1

√1+𝑡𝑎𝑛2(𝜙)
 , we

can modify equation (14) to only have tangent terms as

 𝑅 =
1

√1 + 𝑡𝑎𝑛2(𝜙)
∙ [

1 − 𝑡𝑎𝑛(𝜙)

𝑡𝑎𝑛(𝜙) 1
]

(15)

Therefore, computation of the coordinate components of a new vector 𝑣′ = [
𝑥′
𝑦′

] can be

represented as

23

 𝑣′ =
1

√1 + 𝑡𝑎𝑛2(𝜙)
∙ [

1 − 𝑡𝑎𝑛(𝜙)

𝑡𝑎𝑛(𝜙) 1
] ∙ 𝑣

(16)

where angle 𝜙 is the rotation angle.

In order to further develop the CORDIC algorithm, we can restrict the values of

𝑡𝑎𝑛(𝜙) in the above equation such that the total rotation through a desired angle 𝜃 is

performed as a series of angular rotation steps as shown in Figure 3-3.

Ø0

Ø1

Ø2

θ

(X1, Y1)

(X2, Y2)

(cos(θ), sin(θ))

(1, 0)
X

Y

Figure 3-3 Rotation through Iterative Micro-Rotations

The process of rotating through angular rotation steps can be expresses as

𝑣𝑖 =

1

√1 + 𝑡𝑎𝑛2(𝜙𝑖)
∙ [

1 − 𝑡𝑎𝑛(𝜙𝑖)

𝑡𝑎𝑛(𝜙𝑖) 1
] ∙ 𝑣𝑖−1

(17)

the above equation represents the sequence of CORDIC micro-rotations. Under ideal

conditions, the sum of all these micro-rotations must be exactly equal to the total rotation

angle. That is,

24

∑ 𝛿𝑖 ∙ 𝜙𝑖 = 𝜃

∞

𝑖=0

(18)

where 𝛿𝑖 = ±1. For practical applications an infinite summation is not desired.

Therefore, based on the desire numerical precision a limited summation can be formed

approximating the angle

∑ 𝛿𝑖 ∙ 𝜙𝑖 = 𝛿0 ∙ 𝜙0 + 𝛿1 ∙ 𝜙1 + ⋯ + 𝛿𝑁−1 ∙ 𝜙𝑁−1 ≈ 𝜃

𝑁−1

𝑖=0

(19)

This is an important design consideration as the instantaneous phase is a numerically

scaled integer representing 360 degrees or 2𝜋 radians.

Furthermore, the complexity of the numerical calculations that need to be

performed during each iterations can be reduced by restricting the 𝑡𝑎𝑛 (𝜙𝑖) in the

equation (17) to take only the values of ±2−𝑖. Then, the angular steps that 𝑡𝑎𝑛(𝜙𝑖) takes

can be expressed as,

𝜙𝑖 = 𝑡𝑎𝑛−1 (

1

2𝑖
)

(20)

Resulting in

𝑣𝑖 =

1

√1 + 2−2𝑖
∙ [1 −2−𝑖

2−𝑖 1
] ∙ 𝑣𝑖−1

(21)

From the above equation, we can say that the multiplication with a tangent can be

replaced with a simple division operation by a power of 2. This division by power of 2,

can be very efficiently implemented through a simple shift right operation on a shift

register as shown in the Figure 3-4.

25

0 0 1 0 0

0 0 0 1 00

Decimal

Value: 04

Decimal

Value: 02

Divide by 2

0

Decimal

Value: 04

Decimal

Value: 01

Divide by 4

0

0 0 1 0 0

0 0 0 0 1

Figure 3-4 Division using Shift Register.

Due to the restriction imposed on 𝑡𝑎𝑛(𝜙𝑖), we can substitute 𝑡𝑎𝑛(𝜙𝑖) = 𝛿𝑖 ∙ 2𝑖 in

equation (17) as shown below

𝑣𝑖 = 𝐾𝑖 ∙ [

1 −𝛿𝑖 ∗ 2−𝑖

𝛿𝑖 ∗ 2−𝑖 1
] ∙ 𝑣𝑖−1

(22)

where 𝐾𝑖 =
1

√1+(𝛿∗2−𝑖)
2
 is the scale-factor.

Until now the CORDIC algorithm is reduced to a few simple shifts and additions,

except the multiplication with the scale-factor. During the implementation, the

multiplication required by the term Ki in equation (22) can be performed later. In fact, all

the multiplication factors can be combined into a single gain normalization step following

the completion of all micro-rotations. When this is done, the product of all the individual

gains approaches a constant value,

 lim
n→∞

K(n) = ∏ Ki

n

i=0

≈ 0.60725294104140
(23)

At this point, a new term called “𝑍” is introduced. This term represents the

intermediate micro-rotations in the CORDIC implementation and it can be represented as

26

𝑍𝑖+1 = 𝜃 − ∑ 𝜙𝑖

𝑁−1

𝑖=0

(24)

where 𝜃 is the given rotational angle. On every rotation through an angle 𝜙𝑖, the term 𝑍

and 𝛿𝑖+1 is computed, where 𝛿𝑖+1 is given as

𝛿𝑖+1 = {
−1, 𝑍𝑖+1 < 0
+1, 𝑍𝑖+1 ≥ 0

(25)

 3.1.3 CORDIC Pre-Rotation

The CORDIC processor uses a series of micro-rotations that are defined as

inverse tangent function as shown in equation (20). As a result, the CORDIC can only

compute the coordinate components of vectors whose instantaneous phase values belongs

to the region of convergence of inverse tangent function as shown in the Figure 3-5. Any

phase angles which are not in this range cannot be processed without some prior

manipulation and adjustment.

Figure 3-5 Region of Convergence for Inverse Tangent Function

27

With the phase representation and the symmetry of sine and cosine functions, it is

not difficult to define a set of simple pre-rotations based on the phase to allow the

CORDIC processor to compute correct values. With the acceptable range of −
𝜋

2
< 𝜃 <

𝜋

2
,

we need to pre-rotate for two additional regions, as shown in Figure 3-6,
𝜋

2
 < 𝜃 < 𝜋 and

−𝜋 < 𝜃 < −
∙𝜋

2
.

For rotations within the first region,
𝜋

2
 < 𝜃 < 𝜋 , if we apply the substitution

based on the trigonometric identities

 𝑐𝑜𝑠 (𝜃 +
𝜋

2
) = −𝑠𝑖𝑛(𝜃) and 𝑠𝑖𝑛 (𝜃 +

𝜋

2
) = +𝑐𝑜𝑠(𝜃) (26)

 𝑥 → 𝑦, −𝑦 → 𝑥, 𝜃 → 𝜃 −
𝜋

2

(27)

The correct result will be computed.

For the second region, −𝜋 < 𝜃 < −
∙𝜋

2
, the pre-rotation is based on

 𝑐𝑜𝑠 (𝜃 −
𝜋

2
) = +𝑠𝑖𝑛(𝜃) 𝑎𝑛𝑑 𝑠𝑖𝑛 (𝜃 −

𝜋

2
) = −𝑐𝑜𝑠(𝜃) (28)

 −𝑥 → 𝑦, 𝑦 → 𝑥, 𝜃 → 𝜃 +
𝜋

2

(29)

and the correct result will be computed.

The relationship between 𝑥 and 𝑦 used for pre-rotation can be summarized as

shown in Table 3-1. Using this relationship, we can simplify the pre-rotation process as a

simple negate and swap operation shown in the Figure 3-6.

28

Table 3-1 Technique used in CORDIC Pre-Rotation

 𝜃 = 𝑓 (+
𝜋

2
 ~ + 𝜋)

𝑥 𝑐𝑜𝑠 (𝜃 +
𝜋

2
) = 𝑐𝑜𝑠(𝜃) ∙ 𝑐𝑜𝑠 (

𝜋

2
) − 𝑠𝑖𝑛(𝜃) ∙ 𝑠𝑖𝑛 (

𝜋

2
)

𝑐𝑜𝑠 (𝜃 +
𝜋

2
) = 0 ∙ 𝑐𝑜𝑠(𝜃) − 1 ∙ 𝑠𝑖𝑛(𝜃)

− 𝑠𝑖𝑛(𝜃) = −𝑦

𝑦 𝑠𝑖𝑛 (𝜃 +
𝜋

2
) = 𝑠𝑖𝑛(𝜃) ∙ 𝑐𝑜𝑠 (

𝜋

2
) + 𝑐𝑜𝑠(𝜃) ∙ 𝑠𝑖𝑛 (

𝜋

2
)

𝑠𝑖𝑛(90 + 𝜃) = 0 ∙ 𝑐𝑜𝑠(𝜃) + 1 ∙ 𝑐𝑜𝑠(𝜃)

𝑐𝑜𝑠(𝜃) = 𝑥

 𝜃 = 𝑓 (−𝜋 ~ −
𝜋

2
)

𝑥 𝑐𝑜𝑠 (𝜃 −
𝜋

2
) = 𝑐𝑜𝑠(𝜃) ∙ 𝑐𝑜𝑠 (

𝜋

2
) + 𝑠𝑖𝑛(𝜃) ∙ 𝑠𝑖𝑛 (

𝜋

2
)

𝑐𝑜𝑠(270 + 𝜃) = 0 ∙ 𝑐𝑜𝑠(𝜃) + (1) ∙ 𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) = 𝑦

𝑦 𝑠𝑖𝑛 (𝜃 −
𝜋

2
) = 𝑠𝑖𝑛 (𝜃) ∙ 𝑐𝑜𝑠 (

𝜋

2
) − 𝑐𝑜𝑠 (𝜃) ∙ 𝑠𝑖𝑛 (

𝜋

2
)

𝑠𝑖𝑛(90 + 𝜃) = 0 ∙ 𝑠𝑖𝑛(𝜃) − 1 ∙ 𝑐𝑜𝑠(𝜃)

−𝑐𝑜𝑠(𝜃) = −𝑥

29

Figure 3-6 Methodology for Pre-Rotation

 3.1.3 CORDIC as NCO

We know that the coordinate components of the input vectors for CORDIC can be

defined as 𝑣𝑖 = [
𝑥𝑖

𝑦𝑖
]. If the coordinate components of this vector is fixed to 𝑣𝑖 = [

1
0

], then

the output of the CORDIC processor is actually the sine and cosine of an angle through

which the CORDIC performed its rotation. Where the angle of rotation 𝜃 is defined as a

fractional value defined by

𝜃 =

(𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠)

2 ∗ 𝜋

(30)

If this is defined as either an unsigned or signed fractional binary number the

instantaneous phase would be represented as

∑ 𝑏𝑖 ∙ 𝜑𝑖 = 𝑏0 ∙ 𝜋 + 𝑏1 ∙
𝜋

21
+ 𝑏2 ∙

𝜋

22
+ ⋯ + 𝑏𝑀−1 ∙

𝜋

2𝑀−1
≈ 𝜃

𝑀−1

𝑖=0

(31)

or as a two’s complement representation,

Pre-Rotation Range Normal Range

x' = -y

y' = x

θ' = θ - π/2

x' = y

y' = -x

θ' = θ + π/2

00± π

π/2

-π/2

30

−𝑏0 ∙ 𝜋 + ∑ 𝑏𝑖 ∙ 𝜑𝑖 = −𝑏0 ∙ 𝜋 + 𝑏1 ∙
𝜋

21
+ ⋯ + 𝑏𝑀−1 ∙

𝜋

2𝑀−1
≈ 𝜃

𝑀−1

𝑖=1

(32)

This significantly simplifies the pre-rotation process, as the quadrants may be directly

defined based on the two most significant bits.

With the binary representation, the CORDIC processor can be easily configured

to become a NCO and compute the sine and cosine waveforms. This is usually done

through the use of a computing a phase accumulator.

The phase accumulator determines and outputs the instantaneous phase of the

complex sinusoid. For each clock cycle or time event, the instantaneous phase is added to

a predefined phase step to produce a new accumulated value. The phase step and time

period between samples defines the frequency at which sine and cosine waveforms would

oscillate if the instantaneous phases were presented to CORDIC processor. When the

accumulator goes through a complete cycle or full range of summations for the integer

width defined, the CORDIC processor would have generated one complete cycle of sine

and cosine waveforms. After one cycle, the next phase step will cause a numerical

overflow in the accumulator. This is allowed and, in fact, desired as phase is a modulo 2𝜋

value and is expected to repeat. With the scaling performed to define the phase, the

modulo phase operation perfectly aligns with the binary modulo operation of an integer

adder or accumulator.

As mentioned, the frequency of the sine and cosine waves generated by the phase

accumulator and CORDIC is directly proportional to the phase accumulator step size. If

the frequency is defined as the time derivative (or first order difference) of the

instantaneous phase, we have

31

𝜃(𝑛) = 𝜃𝑠𝑡𝑒𝑝 ∙ 𝑛 (33)

𝑓 =
𝜃(𝑛) − 𝜃(𝑛 − 1)

∆𝑡
=

𝜃𝑠𝑡𝑒𝑝

∆𝑡

(34)

So, the smaller the step size, the lower the frequency, and the larger the step size,

the higher the frequency. In addition, the number of bits, defined as 𝑀, will define

specific frequencies and frequency steps that can be exactly represented as shown below

𝑃ℎ𝑎𝑠𝑒𝑠𝑡𝑒𝑝(𝑟𝑎𝑑) =
𝑁𝐶𝑂𝑓𝑟𝑒𝑞 ∙ 2𝑀

2𝜋

(35)

where 𝑁𝐶𝑂𝑓𝑟𝑒𝑞 is the required oscillator frequency in radians, and 2𝜋 is the normalized

sampling rate.

By incorporating the phase accumulator, the CORDIC processor can be used as a

quadrature mixer and NCO. If the frequency of the NCO is chosen to be the carrier

frequency of a signal of interest and the input vector represents the in-phase and

quadrature-phase components of the signal sampled at RF, the output of the CORDIC

processor represents the in-phase and quadrature-phase components of the down-

converted baseband signal.

Finally, by using the equation (20), (22) and (24), we can easily implement the CORDIC

processor either in hardware and software. The MATLAB and VHDL implementation

details are explained in the next chapter of this thesis.

32

 3.2 Filter Decimation for Down Converters

 3.2.1 Cascaded Integrator Comb Filter

Many software defined radios are available in the market and each of them have

their own set of digital filters used for realizing decimation and interpolation, digital

filters are formed by a standard set of resources: memory or delays, adders, multipliers

and resamplers. For hardware implementation, filter design can be characterized by the

one that minimizes the number of multipliers and accumulators used in the architecture.

In 1981, Eugene Hogenauer [21] suggested a new class of economical digital filter called

Cascaded Integrator Comb filter also referred to as a CIC filter, the CIC filter belongs to

a class of filter that does not require multipliers. Because of the simplicity of the

implementation, CIC filter are used in many multirate signal processing applications such

as, digital up-sampling/down-sampling. The filter has a lowpass frequency domain

characteristics described by 𝑠𝑖𝑛𝑐 function with nulls at the output Nyquist rate and

multiples, which for narrowband signals can ensures that after down sampling nothing

aliases to DC.

CIC filter design and response is derived from a multiplier free sliding window

averaging filter also known as a boxcar filter shown in Figure 3-7, whose task is to

smooth out the signals and unwanted noise [22]. This boxcar filter computes an output as

follows, when a new data sample arrives, the previous contents in the shift register are

shifted one place to the right, discards the oldest sample that had arrived 𝑀-samples ago.

Next, the filter forms the sum of the contents of the register and outputs sum. The

33

performance of such a direct implementation of system is not very efficient as the

summation is repeated for every new sample and the frequency response of this filter

does not have significant attenuation outside of the passband. For large 𝑀, the number of

additions is significant. Meanwhile, the maximum attenuation level of the first side lobe

is just -13dB. In addition, it requires 𝑀 − 1 additions to compute every output, which

may be a big cost if 𝑀 is very large. We can try to improve the filter characteristics and

reduce signal processing complexity by investigating the mathematics involved behind a

sliding window average filter.

M21X(n)

Y(n)

M

Figure 3-7 FIR Implementation of Boxcar Filter

The impulse response of the sliding window average filter is given by

𝐻(𝑛) = ∑ 𝛿(𝑛 − 𝑘)

𝑀−1

𝑘=0

(36)

Hence, the output of the boxcar filter can be written as

𝑦(𝑛) = ∑ 𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

(37)

34

The frequency response of a boxcar filter can be derived by taking the Fourier

transform of the equation (36) as

𝐻(𝑒𝑗𝜔) = ∑ 1𝑒−𝑗𝜔𝑛

𝑀−1

𝑛=0

(38)

we can further simplify the above equation as

𝐻(𝑒𝑗𝜔) = ∑ 1 ∙ 𝑒−𝑗𝜔𝑛

∞

𝑛=0

− ∑ 1 ∙ 𝑒−𝑗𝜔𝑛

∞

𝑛=𝑀

𝐻(𝑒𝑗𝜔) = ∑ 1 ∙ 𝑒−𝑗𝜔𝑛

∞

𝑛=0

− ∑ 1 ∙ 𝑒−𝑗𝜔(𝑛+𝑀)

∞

𝑛=0

𝐻(𝑒𝑗𝜔) = ∑ 1 ∙ 𝑒−𝑗𝜔𝑛

∞

𝑛=0

− ∑ 1 ∙ 𝑒−𝑗𝜔(𝑛)

∞

𝑛=0

∙ 𝑒−𝑗𝜔(𝑀)

taking e−jωn common in the above expression we get,

𝐻(𝑒𝑗𝜔) = (1 − 𝑒−𝑗𝜔(𝑀)) ∙ ∑ 1. 𝑒−𝑗𝜔(𝑛)

∞

𝑛=0

(39)

By careful observations of the above expression, we get to know that it is an infinite

series expression, which is also a geometric series. So by applying the notable geometric

series identity

1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ = ∑ 𝑥𝑛

∞

0

=
1

1 − 𝑥
 ∀ |𝑥| < 1

We get

𝐻(𝑒𝑗𝜔) = (1 − 𝑒−𝑗𝜔(𝑀)) ∙ (

1

1 − 𝑒−𝑗𝜔
)

(40)

35

Taking 𝑒−
𝑗𝜔𝑀

2 common in the numerator and 𝑒−
𝑗𝜔

2 common in the denominator from the

equation (40) we get the following equation

𝐻(𝑒𝑗𝜔) = 𝑒−
𝑗𝜔𝑀

2 ∙ (𝑒
𝑗𝜔𝑀

2 − 𝑒−
𝑗𝜔𝑀

2) ∙ (
1

𝑒−
𝑗𝜔
2 ∙ (𝑒

𝑗𝜔
2 − 𝑒−

𝑗𝜔
2)

)

(41)

we know that 𝑠𝑖𝑛(𝜃) =
𝑒𝑗𝜃−𝑒−𝑗𝜃

2𝑗
 by substituting in the equation (41). We get,

𝐻(𝑒𝑗𝜔) = 𝑒−
𝑗𝜔𝑀

2 ∙ (2. 𝑗. 𝑠𝑖𝑛 (
𝜔𝑀

2
)) ∙ (

1

𝑒−
𝑗𝜔
2 ∙ (2. 𝑗. 𝑠𝑖𝑛 (

𝜔
2))

)

(42)

the above equation can be re-written as

𝐻(𝑒𝑗𝜔) = 𝑒−
𝑗𝜔(1−𝑀)

2 ∙ (
𝑠𝑖𝑛 (

𝜔𝑀
2)

𝑠𝑖𝑛 (
𝜔
2)

)

(43)

we know that
𝑠𝑖𝑛(𝜃)

𝜃
= 𝑠𝑖𝑛𝑐(𝜃) we can simplify above expression further as shown below.

𝐻(𝑒𝑗𝜔) = 𝑒−
𝑗𝜔(1−𝑀)

2 ∙ 𝑀 ∙ (
𝑠𝑖𝑛𝑐 (

𝜔𝑀
2)

𝑠𝑖𝑛𝑐 (
𝜔
2)

)

(44)

Using MATLAB, we can plot the frequency response of an M length boxcar filter

according to equation (44) as shown in the Figure 3-8. We notice that, in order to achieve

higher attenuation outside the passband, the length of the filter should be significantly

high. As a result, it requires huge amount of adders for realizing this filter in hardware.

We also notice that nulls are at the integer multiples of 𝜔 =
2𝜋

𝑀
 which is as important

property of this filter.

36

Figure 3-8 Boxcar Filter Frequency Response

We can reduce the number of addition required to implement this filter by

considering a recursive form of the boxcar filter. That is, by altering the previous sum by

adding the new sample and subtracting the oldest sample, this recursive form can be

expressed as

𝑦(𝑛) = ∑ 𝑥(𝑛 − 𝑘) = 𝑥(𝑛) − 𝑥(𝑛 − 𝑀) +

𝑀−1

𝑘=0

∑ 𝑥(𝑛 − 1 − 𝑘)

𝑀−1

𝑘=0

(45)

We know that 𝑦(𝑛 − 1) can be written as

𝑦(𝑛 − 1) = ∑ 𝑥(𝑛 − 1 − 𝑘)

𝑀−1

𝑘=0

(46)

Substituting the above expression in the equation (18), we get

 𝑦(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 𝑀) + 𝑦(𝑛 − 1) (47)

37

The recursive implementation can be realized as shown in the Figure 3-9. The resulted

filter structure is called as CIC filter and could be broken into two parts; one as a comb

section of length 𝑀 and the other as an integrator section. In this type of implementation,

the computation of each output sample would require only two adders as compared to

𝑀 − 1 adders in the simple boxcar filter structure.

+

M---21

Z
-1

-

X(n)

Y(n-1)

Y(n)

Z-M

Figure 3-9 Single Stage CIC Filter

While the signal processing complexity is now reduced to just two simple adders, the

frequency response of the filter has not changed from that seen in Figure 3-10.

Figure 3-10 Frequency Response of Integrator Comb (CIC) Filter

38

We can improve the spectral domain performance of this filter by forming a

cascade of multiple recursive boxcar filters. It is common to use 3-to-5 cascade stages

with many applications. The transfer function and the corresponding frequency response

is shown in equation (48) and (49).

𝐻𝑘(𝑍) = [

1 − 𝑍𝑀

1 − 𝑍−1
]

𝐾

(48)

|𝐻(𝑒𝑗𝜔)| = [𝑀 ∙
𝑠𝑖𝑛𝑐 (

𝜔𝑀
2)

𝑠𝑖𝑛𝑐 (
𝜔
2)

]

𝐾

(49)

where, 𝑀 is the length of the comb section in the CIC structure and 𝐾 is number of

cascaded stages. The effect of this implementation is to increase attenuation of the first

side-lobe level by multiples of -13dB at output of successive cascaded stages as shown in

the Figure 3-11. Another possibly more important feature of this cascaded form is that the

stopband nulls are getting broader, providing wider notches in the spectrum at

frequencies of 𝜔 =
2𝜋

𝑀
 or 𝑓 =

𝑓𝑠

𝑀
. If the CIC low pass filter is decimated by a factor of 𝑀,

the wider notches at multiples of the sampling rate in the spectrum fall exactly on the

frequency images that would be aliased, as shown in Figure 3-12.

The main disadvantage of this type of implementation is that the low pass filter

passband is not flat and the -3dB point on the main-lobe is getting narrower as 𝐾

increases. This effect is called “droop” in passband. To compensate for this droop, CIC

filter decimators are usually followed by a cleanup filter which provides spectral

flattening and reshaping.

39

Figure 3-11 Spectrum of a Multistage CIC

Figure 3-12 Broadening Nulls at Successive Stages of CIC

40

Furthermore, when the CIC filter is applied for an up-sampling task, the comb

section is placed at the input followed by resampling switch and then integrator section.

On the other hand for down sampling applications the integrator section is place at the

input followed resampling switch and then the comb section. This reordering is

established to permit the application of multirate signal processing identity of the

reordering the resampling switch and the comb filter as shown in Figure 3-13. When the

CIC filter absorbs the resampling switch, the comb filter together with the resampling

switch becomes a differentiator on the lower data rate side [21] and the filter structure is

known as Hogenauer filter. A CIC filter with any number of stages can be converted to a

Hogenauer filter by first ordering all the integrators on one side of the filter and the comb

filters on the other side, then applying the sample rate identity to interchange the

resampling switch and the comb filters. The goal of this thesis is to implement a 3 stage

CIC filter as shown in the Figure 3-14.

Z
-1

+

+

Z
-1

+

+

M:1

Integrator Differentiator

Figure 3-13 Hogenauer Filter Structure of a Single Stage CIC Filter

41

Z
-1

+

+
Z

-1

-
+

45 45 45 45 45 45

sign ext

24

bits

pruning
24

D
iff

e
re

n
ti

a
to

r

D
iff

e
re

n
ti

a
to

r

D
iff

e
re

n
ti

a
to

r

In
te

gr
a

to
r

In
te

gr
a

to
r

In
te

gr
a

to
r

Figure 3-14 Hogenauer Structure of a 3-stage CIC Filter

The integrators in a CIC filter is very unstable and can easily go to infinity will

results in a register overflow in all integrator stages in the filter. However, it will not be a

problem if these two condition are met [21].

1. The filter is implemented with a number system which allows “wrap-around”

between the most positive and most negative numbers.

2. The range of the number system is equal to or greater than the maximum

output expected at the output stage of the entire decimation filter structure.

Based on these conditions high attention to the bit growth in each successive

stages of the accumulators of the CIC filter. From [22] and [21] the required bit width to

design an accumulator which can accommodate the maximum and/or worst case register

bit growth is defined as the maximum output magnitude from the worst possible input

signal relative to the maximum input magnitude. Using this definition, the maximum

register growth from the first stage up to and including the last stage is given by equation

(50).

42

 𝐺𝑚𝑎𝑥 = 𝑅 ∙ 𝑀𝐾 (50)

Where 𝑅 is the decimation rate, 𝑀 is the length of comb filter and 𝐾 is the

number of cascaded stages. If the input data has a bit width of 𝐵𝑖𝑛, then the register

growth is given by the equation (51). This growth is used in the CIC filter design process

to insure that no data are lost or corrupted due to register overflow.

 𝐵𝑚𝑎𝑥 = 𝐵𝑖𝑛 + 𝐶𝐸𝐼𝐿[𝑙𝑜𝑔2(𝐺𝑚𝑎𝑥)] (51)

In most practical cases where decimation rate is very large, 𝐵𝑚𝑎𝑥 is very large

hence it has to be truncated or rounded at the output stage. The bit growth in the CIC

filter reflects the filter gain between the input and output of the filter. During down

sampling, we can scale the output of the CIC filter to remove the filter processing gain by

pruning the least significant bits to the level corresponding to the filter processing gain.

The implementation details are further explained in the next chapter.

 3.2.2 Half-Band Filters

The second stage of filtering in the DDC chain consists of two half-band

decimating filters. A half-band filter is a non-recursive Finite Impulse Response (FIR)

filter designed to have a passband bandwidth between ±
1

4𝑡ℎ of the sampling rate as

shown in the Figure 3-15. The impulse response of an ideal non-casual continuous half-

band filter with two sided bandwidth
𝑓𝑠

2
 is shown in (52) [22].

ℎ𝐿𝑃(𝑡) =

𝑓𝑠

2
∙ 𝑠𝑖𝑛𝑐 (

2𝜋𝑓𝑆

2
2

𝑡) (52)

43

Based on the above equation, we can define the half-band filter as, a filter whose impulse

response which has a 𝑠𝑖𝑛𝑐 characteristics that is symmetric about the origin and has zero

crossing at the integer multiples of twice the sampling period. The frequency response of

this filter has the same passband and stopband ripples. By zooming into the response, it

can be verified that the peak-to-peak ripples in passband and stopband are the same.

Figure 3-15 Zero-Phase Frequency Response

The discrete impulse response can be obtained from the above equation (46) by

sampling it with the sample rate of 𝑓𝑠 as shown in (53) and the simplified equation is

shown in (54).

ℎ𝐿𝑃(𝑛) =

𝑓𝑠

2
𝑓𝑠

∙ 𝑠𝑖𝑛𝑐 (
2𝜋𝑓𝑠/2

2

𝑛

𝑓𝑠
) (53)

ℎ𝐿𝑃(𝑛) =

1

2
∙ 𝑠𝑖𝑛𝑐 (

𝑛𝜋

2
) (54)

The special property of (54) is that its discrete impulse response has multiple zero

valued coefficients [23]. In fact, all the even numbered samples of ℎ(𝑛), except ℎ(0), are

44

equal to zero as shown in the equation (55). Figure 3-16 shows an example of the half-

band filter impulse response.

 ℎ(2𝑛) = {
𝑐 𝑛 = 0
0 𝑛 ≠ 0

(55)

Figure 3-16 Half-Band Impulse Response

If the transfer function 𝐻(𝑍) is written in the form of a polyphase decomposition (56) we

see immediately that the polyphase component 𝐸𝑜(𝑍) is a constant, i.e, 𝐸0(𝑍) = 𝑐 thus

we get (57) [23].

 𝐻(𝑍) = 𝐸0(𝑍2) + 𝑍−1𝐸1(𝑍2) (56)

 𝐻(𝑍) = 𝑐 + 𝑧−1𝐸1(𝑍2) (57)

We know that by complementing the impulse response of a lowpass filter we

would get a high pass filter since the complement operation is thought as a phase shift of

45

𝜋

2
, and adding both the responses together as shown in (58) we get a filter which has a flat

frequency response from DC to 𝑓𝑠, which is also known as an all pass filter.

 𝐻(𝑍) + 𝐻(−𝑍) = 2𝑐 (58)

By default, the resulting sum should be equal to 1, therefore assuming that c in (58) is

normalized to 0.5. This shows that, 𝐻 (𝑒𝑗(
𝜋

2
−𝜃)) and 𝐻 (𝑒𝑗(

𝜋

2
+𝜃)) add up to unity for

all 𝜃. In other words, we have a symmetry with respect to the half-band frequency
𝜋

2
,

justifying the name “half-band filter”.

A digital filter is basically a real-time processor with an arithmetic unit for

additions and multiplications, and a memory to store the filter coefficients. A direct is

shown in the Figure 3-17. As the number of filter coefficients increases, the

implementation of this filter becomes more complicated and requires a larger number of

multipliers and adders and the filter would consume a larger area. By proper design of the

filter coefficients, many implementation methodology can be followed which can help us

in saving the hardware resources required to implement this filter.

46

Z-1 Z-1 Z-1 Z-1

Σ

a0 a1 a2 a3 a4

x(n)

y(n)

Figure 3-17 FIR Filter Structure

Z-1 Z-1 Z-1 Z-1

Z-1 Z-1 Z-1 Z-1

+ + ++

Σ

a0 a1 a2 a3 a4

x(n)

y(n)

Figure 3-18 Symmetric FIR Filter Structure

The efficiency of half-band filters derives from the fact that nearly 50 percent of

the filter coefficients are zero and the remaining coefficients are symmetric with respect

47

to the single nonzero even coefficient. Hence, the input samples can be pre-added before

multiplying with the coefficients as shown in the Figure 3-18. That is, 2 multiplications

can be replaced by 1 addition and 1 multiplication operations. Table 3-2 summarizes the

computational gain of the half-band filters over the conventional FIR filters. With this

result, the half-band filter demonstrates a potentially saving of
1

4
 the multiplications and

1

2

the additions.

Table 3-2 Half-Band Computation Efficiency

Filter Category

(FIR) Special Conditions Taps

Number of

Multiplications

Number of

Adders

Conventional 4M 4M 4M-1

Half-Band 4M+3 2M+3 2M+2

Half-Band No multiplies at h(0) 4M+3 2M+2 2M+2

Half-Band
No multiplies at h(0)

and symmetric
4M+3 M+1 M+1

In this thesis, two half-band filters were implemented which exhibits a strict linear

passband characteristics, both the half-band filters also have a fixed decimation by a

factor of 2. Amongst the two filters, the first half-band filter has only 7 coefficients. In

which, only 3 coefficients are nonzero including the middle coefficient and it has a fairly

poor performance in terms of out of band attenuation but in combination with the second

filter provides improved transition bands and stopband. The impulse and frequency

response of 7-Tap half-band filter is shown in the Figure 3-19. The second half-band

filter has 31 coefficients constructed as a 2 path polyphase filter structure. Out of these 31

coefficients, 14 coefficients are zeros and filter is constructed with only using 16

coefficients since the center tap is considered to be equal to 1. This half-band filter has a

48

significantly better performance compared to first half-band filter with respect to the

stopband attenuation levels as shown in Figure 3-20. The implementation details of these

half-band filters are further explained in the next chapter.

Figure 3-19 First Stage Half-Band Filter

Figure 3-20 Second Stage Half-Band Filter

49

METHODOLOGY AND IMPLEMENTATON

This section will provide a detailed description of MATLAB and VHDL

implementation of the DDC chain discussed in the previous chapter. The communication

signal processing board designed uses a fractional 2’s complement integer number

system to represent the data samples. The processor is capable of receiving a 32-bit

complex word as interleaved 16-bits of a quadrature phase sample and 16 bits of in phase

sample. This configuration is intended to support the signal output of two quadrature

sampling ADCs. If 16-bit ADCs are used, the data is fed directly into the in-phase and

quadrature inputs. If an ADC with less than 16-bits is used, the data must be left shifted

so that the ADC Most Significant Bits (MSBs) is the input MSBs and the remaining

Least Significant Bits (LSBs) are zero filled. As an integer processor it is very important

to maintain proper input bit positioning, as the processing stages have been designed to

maximize dynamic range and performance for left aligned data inputs.

After the input stages, the communication signal processor attempt to maintain a

24 bit integer data path. This would allow a wider input ADC to be used in the future

while maintaining a higher signal dynamic range in the current processing. The 24-bits

representation is not maintained at all signal processing stages as 18x18 multipliers are

used in half-band filtering and gain adjustment processing stages. Where this occurs, the

signal will be reduced in dynamic range (typically rounded) prior to multiplication and

50

24-bit results will be maintained. The architectural model of the complex narrow band

DDC chain implemented in this thesis is shown in the Figure 4-1.

4.1 CORDIC Processing Unit

The CORDIC processing unit implemented in this thesis can be conceptualized as

a combination of NCO and quadrature mixer. The designed CORDIC processor is

operating at a full sampling rate, and it allows the full bandwidth of a sampled signal to

be down converted to baseband.

Generally, the number of stages in CORDIC is dependent on the number of bits of

precision required in the system. For a CORDIC processor working at 24 bits of

precision, the maximum number of stages for an efficient implementation is 24, i.e., one

stage per bit. Any additional stages would result in same output vectors with no or

insignificant change. For a specific input bit precision, the expected operation and

resultant vectors from each CORDIC micro-rotations are examined to determine at which

stage, or after how many micro-rotations the CORDIC processor has approached the

desired angle. As a result, the implementation of the CORDIC processor can be

simplified in order to save the area required on the silicon die.

For the architecture selected in this thesis, a 20 stage 24-bit CORDIC processor

was designed on a Spartan 6 (xc6slx16-3-csg324) FPGA, and the design was verified

with a fixed-point iterative model implemented in MATLAB. The necessary functional

components and data flow for implementing the CORDIC processor is shown in the

Figure 4-2.

5
1

Figure 4-1 Architecture of Communication Signal Processing Board

52

Σ

PRE-

ROTATE
CORDIC

Phase Accumulator

sample(31 downto 15)

sample(14 downto 0)

I sample

Q sample

Phase step

CLIP25

25

25

25

24

24

24

24

2 - MS bits

Figure 4-2 CORDIC Processing Unit Core

The CORDIC processor designed uses four fundamental blocks; the phase

accumulator, the pre-rotator, the clipper and the actual CORDIC engine.

The CORDIC processor computes an output as follows:

1. The step size of the phase accumulator for a particular frequency that needs to

be generated is predetermined and loaded into the phase accumulator. The

phase accumulator is updated to the next phase value.

2. The input vectors are first pre-rotated if necessary before the CORDIC engine.

3. The CORDIC engine obtains the data from pre-rotation module and phase

accumulator and rotates the coordinate components of the input vector

through an angle specified by the phase accumulator.

4. Finally, the outputs from the CORDIC engine are truncated to a required bits

precision by the clipping module.

This process is repeated infinitely and the output of CORDIC processing unit will

be a frequency translated version of the input signal. The techniques involved in phase

53

accumulator, pre-rotation and CORDIC engine are explained individually in the

following parts of this section.

 4.1.1 Phase Accumulator

The CORDIC implemented in this thesis uses a 32-bit phase accumulator, which

is implemented as a simple 32-bit adder, which adds the previous phase with a specified

step size on every clock cycle. The 32-bit value from phase accumulator is then truncated

to a 24 MSBs before being used by the CORDIC engine. The extra 8 LSB in the phase

accumulator are used to provide higher frequency resolution for the NCO and a better

resolution in the output signal.

A fixed-point 32-bit phase accumulator for the CORDIC processing unit was

implemented in MATLAB using a wrap-around method to restrict the integers to a fixed

number of bits as shown in the code below.

% ############------[32 bit integer wrap around]------############
if (phase > 2147483647)% if > 2^31 - 1 roll it back to -ve's
 phase = phase - 4294967295; %(2^31-1 + 2^31)
else if(phase < -2147483648) % -2^31
 phase = phase + 4294967295;
 end
end

In the example shown, the datatype for the “phase” variable was chosen to be

int64, and every time the “phase” gets a value greater than 232 − 1, the value is rolled

back to a negative value within the range of a 32-bit integer. This wrap-around logic is

shown in the Figure 4-3.

54

Figure 4-3 CORDIC Phase Accumulator

 4.1.2 Pre-Rotation

In the 24-bit MSBs of the phase accumulator, 223 is represented as −1800 and

222 is represented as +900 and so on. Using this information, we can determine the

quadrant of the instantaneous phase values. Therefore, we can implement the pre-rotation

block as a multiplexer using quadrant information from 2 MSBs of angular arguments

computed in the phase accumulator as shown in the Table 4-1.

Table 4-1 Input Vector Quadrants

Z(23) Z(22) Quadrant

0 0 0 to 90 No pre-rotation

0 1 90 to 180 Needs pre-rotation

1 0 0 to -90 No pre-rotation

1 1 -90 to -180 Needs pre-rotation

55

The pre-rotation of a 24-bit input angles was done using the MATLAB’s

predefined bitwise operators in-order to closely match the hardware implementation and

ease the verification process as shown in the code below.

% Phase pre rotation since cordic is limited to +pi/2 to -pi/2

if (zin>=2^22 && zin<2^23)% interval between 90 to 180 degrees

 xpast = x;

 x = -y;

 y = xpast;

 zin = bitand(zin, 4194303);

 else if(zin>=-2^23 && zin<-2^22)% interval between -180 to -90

degrees

 xpast = x;

 x = y;

 y = -xpast;

 zin = bitor(zin,-12582912);

 end

end

The VHDL code snippet implementing the pre-rotation block as a multiplexer

using the two most significant bits of the phase vector as the select lines is shown below.

case (Zin(24-1 downto 24-2)) is

 when "00" => -- interval between 0 to 90 degrees no pre-rotation

 I0 <= (Iin_ext);

 Q0 <= (Qin_ext);

 Z0 <= (Zin);

 when "01" => --interval between 90 to 180 degrees

 I0 <= -(Qin_ext);

 Q0 <= (Iin_ext);

 Z0 <= ("00" & Zin(zwidth-2-1 downto 0)); -- phase

rotation to -90 deg

 when "10" => --interval between -180 to -90 degrees

 I0 <= (Qin_ext);

 Q0 <= -(Iin_ext);

 Z0 <= ("11" & Zin(zwidth-2-1 downto 0)); -- Phase

rotation to +90 deg

 when "11" => -- interval between -90 to 0 degrees no pre-rotation

 I0 <= (Iin_ext);

 Q0 <= (Qin_ext);

 Z0 <= (Zin);

 when others =>

 I0 <= (others => '0');

 Q0 <= (others => '0');

 Z0 <= (others => '0');

end case;

56

 4.1.3 CORDIC Engine

As mentioned before in Chapter 3, the CORDIC processor can be easily

implemented using the simplified CORDIC equation (59). According to this equation, a

single stage CORDIC processor could be implemented just by using two shift registers

and three adders as shown in the Figure 4-4.

𝑣𝑖 = 𝐾𝑖 ∗ [

1 −δi ∗ 2−i

δi ∗ 2−i 1
] ∗ 𝑣𝑖−1

(59)

SHIFTER

ADD/SUB

SHIFTER

ADD/SUB

MEMORY

ADD/SUB

X[j] Y[j]

j j j

δjδj δj

Z[j]

X[j+1] Y[j+1] Z[j+1]

δj+1 = sign (Z[j+1])

Figure 4-4 Single Stage CORDIC using Shift Registers

Furthermore, to increase the throughput of the CORDIC processor, all micro-

rotations defined by the tangents are precomputed and stored on the block RAM or on the

Look Up Tables (LUT). These precomputed micro-rotations for a 24-bit CORDIC is

shown in the Table 4-2.

57

Table 4-2 CORDIC Constants or Arc Tangent Radix Constants

Iterations

Angle

(radians)

Angles

(degrees)

Phase Constants:

24 Bits(radians)

I = 1 tan−1(2−1) 45 2097152

I = 2 tan−1(2−2) 26.56505118 1238021

I = 3 tan−1(2−3) 14.03624347 654136

I = 4 tan−1(2−4) 7.125016349 332050

I = 5 tan−1(2−5) 3.576334375 166669

I = 6 tan−1(2−6) 1.789910608 83416

I = 7 tan−1(2−7) 0.89517371 41718

I = 8 tan−1(2−8) 0.447614171 20860

I = 9 tan−1(2−9) 0.2238105 10430

I = 10 tan−1(2−10) 0.111905677 5215

I = 11 tan−1(2−11) 0.055952892 2608

I = 12 tan−1(2−12) 0.027976453 1304

I = 13 tan−1(2−13) 0.013988227 652

I = 14 tan−1(2−14) 0.006994114 326

I = 15 tan−1(2−15) 0.003497057 163

I = 16 tan−1(2−16) 0.001748528 81

I = 17 tan−1(2−17) 0.000874264 41

I = 18 tan−1(2−18) 0.000437132 20

I = 19 tan−1(2−19) 0.000218566 10

I = 20 tan−1(2−20) 0.000109283 5

58

 4.1.4 MATLAB Implementation

A 24-bit fixed-point 20 stage CORDIC engine was implemented in MATLAB

using an iterative method where 𝑗 is the iterative index. Each iteration in this

implementation can be thought as an individual stage of CORDIC processing as shown in

the code snippet below.

while j < 20

if (phase > 0)

delta = 1;

else

delta = -1;

end

xpast = x;

x=xpast - (y* delta *(1/2^j));

y=y + (xpast* delta *(1/2^j));

j = j+1;

phase = phase - (delta *consts(j));

end

In each stage, the input vectors (𝑥, 𝑦) are right shifted by 𝑗 times (division by 2𝑗

operation) and added/subtracted together depending on the value of delta (𝛿𝑗) resulted

from the previous iteration.

In order to configure the CORDIC as a complex sine and cosine signal generator,

the initial vectors (𝑥𝑖, 𝑦𝑖) has to be fixed at (1,0). By doing so, the phase difference

between the vectors are explicitly specified as
𝜋

2
 as shown in the Figure 4-5. In this

example, the CORDIC is used as a NCO for generating a 250 Hz quadrature signals when

the sampling rate is 100 KHz. The MATLAB frequency spectrum of the signal generator

generating 250Hz is show in the Figure 4-6.

59

Figure 4-5 CORDIC Implemented as NCO

Figure 4-6 Frequency Spectrum of the CORDIC Output (zoomed-in)

60

 4.1.5 VHDL Implementation

The 24-bit input samples are sign extended to 25 bits in order to avoid the

overflow involved in the 2’s complement arithmetic operations. These 25-bit samples are

further sign extended by 3-bits inside the CORDIC engine to compensate with the gain

involved in the CORDIC algorithmic. Hence, the CORDIC uses two-27 bit shift registers

for (𝑥, 𝑦) and a 24-bit register for the phase register(𝑧).

Each stage in the CORDIC processor was implemented as a multiplexer with the

sign bit of the angular argument (𝛿𝑖) as the select line as shown in the Figure 4-7. In

order to attain the highest possible throughput, a pipelined structure was used in this

thesis. A 20 stage pipelined CORDIC engine was implemented as a multiple component

instantiation of single stage CORDIC as shown in the Figure 4-8.

MUX

Figure 4-7 VHDL Implementation of a Single Stage CORDIC

In the pipelined CORDIC architecture, each stage is represented as a separate

CORDIC block and the pipeline registers are placed after each stage. Each stage in this

architecture will be working independently. Thus, when the 𝑖𝑡ℎ block is performing the

61

corresponding rotation on the 𝑖𝑡ℎ data sample, then the (𝑖 − 1)𝑡ℎ block would be

performing the rotation on (𝑖 + 1)𝑡ℎ data. This way, greater speeds could be achieved by

computing many partial results in a parallel processing pipeline.

Latch for Pipelining of data

Stage #0

Latch for Pipelining of data

Stage #N

SHIFTER

ADD/SUB

SHIFTER

ADD/SUB

TABLE

ADD/SUB

X[j] Y[j]

j j j

Z[j]

X[j+1] Y[j+1] Z[j+1]

δj+1

δj = sign (Z[j+1])

Clock

Clock

jth stage

Figure 4-8 CORDIC Pipelined Stages

In the pipelined implementation of CORDIC, the series of micro rotations has to

ripple through each stage. Hence, there is an initial 21 clock cycles of latency for the

62

CORDIC to compute the first output as shown in the Figure 4-9. In this example, once

the ddc_en signal goes high (i. e., after the signal processor board is enabled) the signal

processor starts capturing the incoming signal (rx_freq_in) and after 21 clock cycles the

CORDIC processor result appears on the CORDIC outputs.

Figure 4-9 CORDIC Initial Latency

The output of the CORDIC is truncated to 24 bit samples and the remaining bits

are discarded. In this research, the 27 bit output from the 20th stage of CORDIC is

truncated as shown in the Figure 4-10. The bits in yellow represents the valid 24 bit word

and the bits in green are discarded. This is done in order to avoid the overflow when the

maximum strength of the signal is sent on both I and Q of the same DDC at the same

time. The CORDIC operation can be conceptualized for a zero angular phase input as

taking the original 16-bit I and Q input samples, shifting them left by 8-bits and then

having the CORDIC processor multiplies it by approximately
1.647

23 .

26 25 2 1 0.

Figure 4-10 CORDIC Output Truncation

The CORDIC implementation was mapped to the target device (Spartan 6 –

xc6slx16) as shown in 0Cordic_z24.vhd and CORDIC_STAGE.vhd. The resulted

63

resource utilization is shown in the Table 4-3. The 19% of LUT utilization is due to

storing the CORDIC constants on the LUTs.

Table 4-3 CORDIC Processor Device Utilization Summary

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slice Registers 1670 18224 9%

Number of Slice LUTs 1791 9112 19%

Number of fully used LUT-FF

pairs
1624 1837 88%

Number of bonded IOBs 0 232 0%

The ModelSim simulation of this CORDIC processor is shown in the Figure 4-11.

Where the output of the CORDIC processor is shown in the analog format for the phase

accumulator, in-phase data component and quadrature-phase data component outputs of

the CORDIC.

Figure 4-11 Modelsim Simulation of CORDIC

64

 4.2 Cascaded Integrator Comb Filter

When implementing CIC filter decimator at the RTL level, many bit level

implementation details need to be considered and are discussed. Both the CORDIC

processor and the input data rate to the CIC filter implemented in this thesis must operate

at the sampling rate of the incoming signal, while the output rate may be decimated by a

factor of between 4 and 127. To design a high throughput CIC filter, the circuit must be

implemented in such a way that a high frequency system clock could be used. The

highest clock rate at which a combinational logic can be clocked is determined by the

maximum delay through combinatorial logic between two adjacent registers.

As we discussed in the previous chapter, the integrator section on the CIC filter is

always placed at the higher clock rate when the CIC filters are employed to do

decimation or interpolation operations. The clock rate at the integrator section is always

higher than the comb section by the factor equivalent to the decimation or interpolation

rate. Thus, the integrator section plays a main role in determining the maximum

throughput of the whole CIC decimation filter.

To maximize the performance of these CIC filters, a pipelined CIC filter was

implemented as shown in the Figure 4-12. In this pipelined filter architecture, the

integrator section was implemented as a pipelined structure and the comb section was

implemented as a conventional non-pipelined structure [24]. Since, the throughput

problem is not as critical in the comb stages of the CIC filter. We can see that in the

pipelined CIC filter structure, the integrator stages have no additional pipeline registers.

This is an important advantage of the pipelined CIC filter because not only the system

65

satisfies pipeline structure but also saves power consumption and reduces area on the

chip implementation.

Z
-1

+
+

M:1

Integrator Differentiator

Z
-1+

+
Z

-1+

+
Z

-1+

+

Z
-1

+
+

Z
-1

+
+

Figure 4-12 3-Stage Pipelined CIC Filter

The register width of all the integrator and comb stages need to be determined to

overcome the overflow problem in the integrator section. The maximum register growth

is a finite number that can be determined form the sampling rate R and the number of

stages used to implement CIC filter. Once these two parameters are determined, we can

calculate the worst case bit growth for each individual comb-integrator stages from the

equation (60).

The worst case decimate rate that the designed CIC filter can decimate is 127,

using this information the worst case bit growth can be calculated as

 Bmax = Bin + CEIL[log2(Gmax)] ⇒ 24 + 3 ∗ log2(127) = 44.966 (60)

where Bin is the bit width of input samples, Gmax is the maximum gain of the CIC filter

given as Gmax = RMK. In this thesis, the bit width of all the registers in the CIC filter was

considered as a constant width of 45 bits.

 4.2.1 MATLAB Implementation

The accurate MATLAB model of the CIC filter decimator enables functional

verification of the designed CIC filter structure. The finite precision MATLAB script

66

which precisely describes the circuit is designed and incorporated into the model as

shown in code below, where the add_2 function call performs integer addition based on

the “bit-width” value provided.

for ii = 1:1:nsamples
 x_sign_ext(ii) = sign_ext(int64(x_in(ii)),24,(bitwidth-24));
 integrator(1) = add_2(int64(x_sign_ext(ii)), integrator(1),

bitwidth);
 stage1(ii+1) = integrator(1);
 integrator(2) = add_2(stage1(ii), integrator(2), bitwidth);
 stage2(ii+1) = integrator(2);
 integrator(3) = add_2(stage2(ii), integrator(3), bitwidth);
 stage3(ii+1) = integrator(3);
end

integrator_delay = zeros(1,3); -—accounting for the integrator delay

is done here
stage3 = [integrator_delay stage3];

% Down sample the signal this is done in cic_strober.v
sampler = stage3(1:actual_rate:length(stage3));

for jj = 1:1:length(sampler)
 pipeline1(jj) = add_2(sampler(jj), -diff(1), bitwidth);
 diff(1) = sampler(jj);
 pipeline2(jj) = add_2(pipeline1(jj), -diff(2), bitwidth);
 diff(2) = pipeline1(jj);
 pipeline3(jj) = add_2(pipeline2(jj), -diff(3), bitwidth);
 diff(3) = pipeline2(jj);
end

All the variables in this implementation have the data type of int64. The output of

the CORDIC processor is truncated to 24 bits and stored into a file which was used as the

input to this CIC filter. These samples are read into the base workspace of the MATLAB

and processed in accordance with the CIC algorithm.

Scaling is applied at the output of the CIC to remove the filter processing gain by

discarding the lower order bits of the CIC process. We can prune lower order bits early in

the filtering chain to the bit position in any stage that cannot grow beyond the least

significant bit of the output word [22]. In this thesis, the bits are pruned at the final stage

67

of the filter. The number of least significant bits discarded/truncated is equal to the gain

of the CIC filter decimator. The bit pruning was implemented on MATLAB as shown in

the code snippet below.

%% Bit pruning CIC decimation filter
shift = round(N*(log2(actual_rate)));
cic_out = bitshift(int64(pipeline3),-shift);

The frequency response of the 3-stage CIC filter decimator implemented in this

thesis is shown in the Figure 4-13. It can be noted that the attenuation level of the first

side lobe is about 39dB and also nulls in the filter are providing wider notch at the

multiple of the sampling rate. The droop in the passband is better demonstrated in the

lower plot of Figure 4-14.

Figure 4-13 Frequency Spectrum of the CIC Filter

68

Figure 4-14 Spectral Droop in the Passband

The output of the filter at each intermediate stages is show in the Figure 4-15, the

bit growth in the integrator stage is clearly visible as the magnitude of the signal at the

integrator section, and the output of the last stage of the differentiator is the output of the

CIC filter decimator before the truncation.

Figure 4-15 Intermediate Outputs of CIC Filter Decimator

69

The output spectrum of the CIC filter decimator is shown in the Figure 4-16. The

comparison between the output of the final stage of the differentiator and truncated

samples is also shown in the same figure. It is very clear that the noise introduced by

pruning the lease significant bits of the filter output is insignificant and almost negligible.

Figure 4-16 3-stage CIC Filter Decimator Output

 4.2.2 VHDL Implementation

The pipelined architecture of the CIC filter decimator was implemented in VHDL,

the RTL schematic showing the pipeline implementation on the FPGA is shown in the

Figure 4-17. The wire connecting the integrator and the register is highlighted to show

the pipeline structure at the first stage of the integrator.

Figure 4-17 RTL Schematic of Pipelined CIC Filter

70

The resampling switch was implemented as a simple down counter which outputs

a pulse of one clock cycle whenever the counter reaches to zero. This strobe enables the

differentiator to capture the data from the integrator registers and process the data to

compute the output of the CIC filter. The ModelSim simulator is used to verify the

functional behavior of the filter as shown in the Figure 4-18.

Figure 4-18 CIC Filter Output on ModelSim Simulator

Once the input samples ripples through the integrator and differentiator sections,

the 45-bit output from the final stage differentiator is rounded to 24-bit through

truncation of the least significant bits. This truncation was hardcoded in the design using

an 8-bit 22-to-1 multiplexer as shown in the cic_decim_prun.vhd code in the Appendix of

this thesis.

A direct mapping of this filter structure was done to a Spartan 6 (xc6slx16-3-

csg324) FPGA as shown in 0cic_decim.vhd results in the following resource utilization

shown in the Table 4-4.

71

Table 4-4 CIC Filter Device Utilization Summary

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slice Registers 482 18224 2%

Number of Slice LUTs 499 9112 5%

Number of fully used LUT-FF

pairs
323 658 49%

Number of bonded IOBs 59 232 25%

Number of BUFG/BUFGCTRLs 1 16 6%

 4.3 Half-Band Filters

The two half-band filters can be enabled or disabled individually depending on

the total system decimation factor. The coefficients for the half-band filters were

generated according to [25]. The MATLAB function that implements this algorithm is

provided in Appendix A - half-band filter generator MATLAB script. This function

accepts a stopband width and the required order of the filter (N), and produces a full set

of coefficients of order 4N − 1. The double precision floating point coefficients

generated are then scaled to 17 bit integer values.

The DDC chain implemented in this thesis includes two successive half-band

filter decimators. The first stage half-band filter has relatively narrower passband with

wider transition band. Hence it requires fewer coefficients. The second stage has

relatively larger passband and narrower transition band. Therefore, this filter

implementation needs a larger number of coefficients. As a result, if the application needs

only requires a single half-band filter to be used, the first half-band filter is always

bypassed and only the second one is used.

72

 4.3.1 First Stage Half-Band Filter

The first stage half-band filter has 7 coefficients represented as 18 bit integers, the

twos complement representation of these coefficients are shown in the Figure 4-19. As

we can see; out of 7 coefficients, 2 of them are zero and the other coefficients are

symmetric with respect to the center coefficient.

Figure 4-19 7-Tap Half-Band Filter Responses

A direct implementation of this filter would require a multiplier for each nonzero

taps. Since, the multipliers are expensive in both hardware and software. This filter was

designed much more efficiently with reduced number of required computationally

intensive hardware resources by taking into the consideration of the following facts.

1. The half-band filter decimators are implemented at the lower data rate side of

the DDC chain and,

2. These filters are configured to decimate the input samples by a factor of 2.

73

 The following part of this section concentrates on the exploiting these two

conditions and employing hardware resource sharing. This section also explains how the

hardware resources were reused in order to compute the valid output of the filter.

The half-band filter module receives the 24 bit integer samples from the CIC filter

decimator and these samples are rounded/truncated to a 17 bit integers. The resulting 17

bit samples are sign extend by 1 bit because the filter structure involves the 2’s

complement addition of two 17 bit integers. The 18 bit multipliers available on the

Spartan 6 FPGA were used to perform the multiplication with the filter coefficients.

 4.3.1.1 MATLAB Implementation

The functional block diagram of the first stage half-band filter is shown in the

Figure 4-21. This filter was implemented by using 7 shift registers, 2 adders and a

multiplier. The exact modeling of this filter was done on MATLAB by taking advantages

of arrays as shown in Appendix A - Small (7-Tap) Half Band Filter script.

By visually inspection of the filter structure, many methodologies can be followed

to implement this filter on MATLAB. In this work, the filter implementation is divided

into three parts.

In the first part the, the outputs of adders and the samples corresponding to the

delay element of the center tap were computed as shown in the code snippet below.

for n = 1:1:length(round_in)
 Z = Z*col_sh;
 Z(1) = round_in(n);
 add_1(n) = Z(1)+Z(7);
 add_2(n) = Z(3)+Z(5);
 middle(n) = int32(Z(4)*2);
 m_reg(n) = bitshift(sign_ext(middle(n),18,2),10);
end

74

In the second part, the decimation is employed on the computed samples by only

considering every second element in the arrays and the coefficients are multiplied

element by element with the summed result as shown in the code below.

sum_a = add_1(1:2:length(round_in));
sum_b = add_2(1:2:length(round_in));
middle_reg = [double(m_reg(1:2:length(round_in))) 0];
product_1 = int64(sum_a*(-10690));
product_2 = int64(sum_b*(75808));
product_a = (bitshift(product_1,-(36-accum_W)));
product_b = (bitshift(product_2,-(36-accum_W)));

In the final stage, an accumulator was implemented that adds the samples vector from the

center tap and product vectors from the multipliers as shown in the code below.

% Final accumulator. 30 bit
% NOTE: accum is of double datatype(2^53).
% carefull about the input sizes as accum will overflow
K = 1;
for i = 1:2:nsamples
 accum(i) = middle_reg(K)+product_a(K);
 accum(i+1) = accum(i) + product_b(K);
 K=K+1;
end

The fixed-point implementation for adders and multipliers were done using the

finite precision wrap-around method. Figure 4-20 shows the input and output spectrum of

this half-band filter.

75

Figure 4-20 Small Half-Band Filter Input and Output Spectrum

7
6

Figure 4-21 Small (7-Tap) Half-Band Filter Circuit Diagram

Z-1 Z-1 Z-1 Z-1 Z-1
Z-1

Data In

Z1 Z4Z3Z2 Z6Z5

H7 = -10690H2 = 0 H3 = 75808 H4 = 131072 H5 = 75808 H6 = 0

+

+

H1 = -10690

18

18

18 18 18

ACCUMULATOR(30-BIT)

36

18

30

Z0

@go

@go_d2
Prod + Middle

@go_d3
Acc + Prod

Co_a = -10690

(go_d1) || (go_d2)

36

17

strobe_in go go_d1 go_d2 go_d3 Strobe_out

Co_b = 75808

@go_d1

Control

logic

CLK

Strobe Int_rnd
24

sum_reg

77

 4.3.1.2 VHDL Implementation

The half-band filter gets the input strobe and the data from the previous stage CIC

filter. Since, the filter is intended to decimate the input sample rate by 2, the control logic

block in the half-band filter divides this input strobe by 2 in-order to decimate the input

as shown in the Figure 4-22. Where, the signal 𝑔𝑜 is
𝑠𝑡𝑟𝑜𝑏𝑒ℎ𝑏

2
 (i.e. capturing every other

samples) and the signals 𝑔𝑜𝑑1, 𝑔𝑜𝑑2, 𝑔𝑜𝑑3, 𝑔𝑜𝑑4 are the delayed version of the 𝑔𝑜 signal.

These signals are used as the enable signals for adders, multipliers and the accumulator’s

time window for performing operations.

Figure 4-22 Strobe Logic for 7-Tap Half-Band Filter

This filter computes an output as follows:

1. A 17-bit input sample arrives and the data in the shift register shifts one place

to the right and discards a sample that had arrived 7-samples ago to

accommodate the new sample.

2. On the rising edge of 𝑔𝑜 signal, both the adders are enabled and the samples

at shift register corresponding to symmetric coefficients are added together.

3. This addition operation takes one clock cycle to compute an output.

Therefore, on the rising-edge of 𝑔𝑜𝑑1, the output from 𝑎𝑑𝑑𝑒𝑟𝑎is multiplied

78

with 𝑐𝑜𝑒𝑓𝑓𝑎 and on the next clock cycle corresponding to 𝑔𝑜𝑑2, the output

from 𝑎𝑑𝑑𝑒𝑟𝑏 is multiplied with 𝑐𝑜𝑒𝑓𝑓𝑏. This way, the 18x18 multiplier on the

FPGA was reused to compute the product on two consecutive clock cycles.

4. The accumulator is enabled as soon as the multiplier computes its first product

after one clock cycle. While the multiplier is still computing the second

product, the accumulator starts accumulating the first product and the data

from the shift register corresponding to the center tap.

5. Finally, when the multiplier finishes computing the second product (i.e., on

the next clock cycle at 𝑔𝑜𝑑3), the previously computed sum in the

accumulator is again added with the second product (product of 𝑎𝑑𝑑𝑒𝑟𝑏 and

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑐𝑒𝑛𝑡𝑏).

6. On the next clock cycle i.e., on 𝑔𝑜𝑑4, the output of the filter is computed and

go_d4 is the strobe out of this 7-Tap filter.

In this filter structure, a 30-bit accumulator was used. This means that the 36-bit

output from the multiplier is truncated to 30-bits before being supplied to the

accumulator. At the output stage, the 30-bit accumulator output is rounded/truncated to a

24-bit output.

A straight forward mapping of this structure was done onto the Xilinx Spartan 6

(xc6slx16-3csg324) FPGA where all the filter coefficients, taped delay lines were

implemented on Configurable Logic Blocks (CLB) slice register as shown in

0small_hb_top.vhd. The resulting FPGA resource utilization is shown in Table 4-5. It is

important to notice that the multiply and accumulated unit of the filter was synthesized as

79

a DSP48A1s slice which are available on Xilinx devices for computationally intensive

DSP applications.

Table 4-5 Small (7-Tap) Half-Band Device Utilization Summary

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slice Registers 430 18224 2%

Number of Slice LUTs 296 9112 3%

Number of fully used LUT-FF pairs 107 619 17%

Number of bonded IOBs 54 232 23%

Number of BUFG/BUFGCTRLs 1 16 6%

Number of DSP48A1s 1 32 3%

 4.3.2 Second Stage Half-Band Filter

The second stage half-band filter has higher attenuation level, narrower passband,

and steeper transition band when compared to the first stage filter as shown in Figure

4-23. The coefficients for this half-band filter were generated using the same algorithm

described in the previous section.

This filter was implemented as a 2 path polyphase filter structure where one

component corresponds to all the even coefficients and the other corresponds to all the

odd coefficients as shown in the Figure 4-24. The even component has all zero

coefficients with just one nonzero center tap which is equal to 1.0. Thus, we just need to

add the corresponding delay line value to the output of the filter.

80

Figure 4-23 31-Tap Half-Band Filter Response

DataIn

Odd Component

Even Componet

1 2 3 16

Figure 4-24 2-Path Polyphase Filter Structure Decomposition

Apart from the center coefficient, there are 8 nonzero coefficients on either side,

which are in the second component of the polyphase filter. A naive implementation

would require a multiplier for each nonzero taps. Because of the symmetry, we can

replace 2 multiplies with 1 add and 1 multiply. Thus, to compute each output sample, we

need to perform only 8 multiplications since middle coefficient is 1.0.

81

The filter was implemented using only two multipliers, but it needs minimum of 4

clock cycles to compute a single output. Therefore, this filter implementation can only

accept a new data sample every 4 clock cycles. However, we know that this filter is

intended to decimate the input samples by 2. Hence, this filter can accept new data

sample every two clock cycles. Due to this implementation, the combination of the CIC

filter and the first stage half-band filter has to decimate the input sample rate signal at

least by a factor of 2. The 31-tap half-band filter structure implemented in this thesis is

show in the Figure 4-25.

8
2

Figure 4-25 Large (31-Tap) Half-Band Filter Circuit Diagram

add_odd_a
CircBuff

add_odd_b
CircBuff

add_odd_c
CircBuff

add_odd_d
CircBuff

ACC(27bit)

add_even

C
oe

ff
_1

 C
ir

cB
u

ff

C
oe

ff
_2

 C
ir

cB
u

ff

17
-S

R
L1

6E
s

17
-S

R
L1

6E
s

17
-S

R
L1

6E
s

17
-S

R
L1

6E
s

data_odd_a+data_odd_b data_odd_c+data_odd_d

Data_in

Data_in

write_odd write_odd write_odd write_odd

write_even

Final_sum_out

17
-S

R
L1

6E
s

Sum_of_product

Sum_1 Sum_2

prod_1 prod_2

Data_even

enable

clear

17

17

17 17 17

round

24

18 36 36 18

18 18

27

27

17

17

83

 4.3.2.1 MATLAB Implementation

An exact model of this filter was implemented on MATLAB using a 2 path

polyphase structure constructed as a 2x16 matrix as shown in the Figure 4-24, the shift to

the left operation was efficiently implemented using the matrix multiplication with the

16x16 upper diagonal matrix. The input samples were rounded/truncated to 17 bit

samples and these samples were shifted through the polyphase structure using the

commutator. The commutator was implemented as an index generator which generates

the corresponding even and odd indices. The MATLAB polyphase structure

implementation is shown in the code below.

Z = Z*Zshift;
Tindex = 1+((ii-1)*lambda:ii*lambda-1);
Z(:,1) = (round_in(Tindex))';

where, Z is the 2x16 polyphase structure, Zshift is the 16x16 upper diagonal matrix and

Tindex is the index generator. Here lambda is equal to 2 since this is a 2 path polyphase

structure. Once the indexes are generated, the data corresponding to the indexes are

placed in the first column of the Z matrix.

The 8 symmetric coefficients were divided into 2 sets, each consisting of 4

coefficients emulating the coefficients circular buffer as shown in the code below

coeff1 = [-107 445 -1271 2959];
coeff2 = [-6107 11953 -24706 82359];

The sum of the input samples corresponding to the delay line value was computed first

and then multiplied with the coefficient vectors. This results in two vectors of 1x4, these

two vectors were added to form a sum of product vector and all the elements in the sum

84

of product vector were summed together to form a partial result in the accumulator.

Finally, the sample corresponding to the delay line of the center tap was added to the

partial accumulator result to form the final output of the filter. The iterative

implementation of this filter is shown in the code below.

for ii = 1:1:numblocks
Z = Z*Zshift;
Tindex = ((1+((ii-1)*lambda:ii*lambda-1)))';
Z(:,1) = (round_in(Tindex))';
sum1 = [Z(1,1)+Z(1,16) Z(1,2)+Z(1,15) Z(1,3)+Z(1,14) Z(1,4)+Z(1,13)];
sum2 = [Z(1,5)+Z(1,12) Z(1,6)+Z(1,11) Z(1,7)+Z(1,10) Z(1,8)+Z(1,9)];
prod1 = sum1 .* coeff1; % 36 bit product
prod2 = sum2 .* coeff2;
sum_of_prod = int64(prod1+prod2); % 36 bit
round_sum = bitshift(sum_of_prod,-11); % round to 25 bit number for

accumulator
% actual place for middle is Z(2,8) but due to indexing it is Z(2,9)
middle = bitshift(int32(Z(2,9)),6);%
accum(ii) = sum(round_sum);
final_sum(ii,:) = accum(ii)+ middle; %27 bit accumulator
end

The finite precision integer arithmetic operations described in the Figure 4-25 was

exactly followed in the MATLAB implementation as shown in the Appendix A - Large

(31-Tap) Half Band Filter script.

The bit width of the intermediate results must be carefully accounted in order to

avoid the overflow of the twos compliment number system. Although the double datatype

in MATLAB can represent values up to 253 the integer representation was followed in

the filter structure for the sake of convenience.

This half-band filter implementation methodology can be easily verified by using

the MATLAB simulations. The input vector and decimated output vector after processing

by the filter is shown in the Figure 4-26. We can also observe the filter operation by the

85

looking at the frequency spectrum at the input and output of the filter as shown in the

Figure 4-27.

Figure 4-26 Large Half-Band Filter Input and Output Vectors

Figure 4-27 Large Half-Band Filter Input and Output Spectrum

86

 4.3.2.2 VHDL Implementation

The final stage half-band filter can get the input samples either form the CIC filter

or from the previous stage half-band filter if it is enabled in the signal processing chain.

As mentioned before, this filter needs 4 clock cycles to compute one single output

sample, which means that this filter can only accept a new value every 4 clock cycles.

However, since we're decimating by two we can accept a new input value every 2 cycles.

In other words, if the DDC chain is operating at the full clock rate, then the overall

decimation rate before the final stage half-band filter must be at least 2 in-order to make

sure that this filter has 4 clock cycles. The strobe_in is asserted when there's a new input

sample available. Depending on the overall decimation rate, strobe_in may be asserted

less frequently than once every 2 clock cycles. On the output side, we assert strobe_out

when the output contains a new sample.

In the 2 path polyphase filter structure suggested, only the odd component which

has nonzero coefficients needs to be implemented, since the even component only has

zeros except the center tap which is equal to 1. This saves resources on the FPGA and

achieves the same results as that of a conventional FIR filter with a fewer number of

gates. In this thesis, the odd component shown in the Figure 4-24 was implemented as

shown in the Figure 4-25. The filter has 4 circular buffers used to generate the address of

the delay line corresponding to the nonzero coefficients and 2 circular buffers for holding

8 symmetric coefficients.

87

The delay line was implemented using four sets of 17 SRL16E shift registers [26].

The arrangement of SRL16Es in each set can be thought as a 17-bit shift registers of

length 16 as shown in Figure 4-28 below.

15 14 >>>> 0

S
R

L
1

6
E

S
R

L
1

6
E

S
R

L
1

6
E

S
R

L
1
6

E

4

16

15 14 >>>> 016

.

addr_in

data_in

data_out

Figure 4-28 17-bit Shift-Register of length 16 using SRL16Es

The Spartan generation FPGAs can configure the Look-Up Tables (LUT) of each

slice (SLICEM) as a 16-bit shift register without using the flip-flops available. The Shift-

in operations are synchronous with the clock, and shift register length can be dynamically

selectable using the length specified externally to this shift register. The use of SRL16E

can improve performance and rapidly lead to cost saving of an order of magnitude.

Although, SRL16 shift-registers are automatically inferred by the Xilinx Synthesis Tool

(XST), the use of primitive instantiation was explicitly specified in this thesis.

The half-band filter module has a counter that counts from 1 to 4 on every

alternate input strobe. Depending on the count value, a sequence of output length of shift

88

register corresponding to the symmetric coefficients are places on the four select lines

(addr_in) of these shift register elements as shown in the Table 4-6.

Table 4-6 Values on the Select Line of SRL16Es

clock counter shift_reg-1 shigt_reg-2 shift_reg-3 shift_Reg-4

1 1 0 F 4 B

2 2 1 E 5 A

3 3 2 D 6 9

4 4 3 C 7 8

The 24 bit input samples are truncated to 17 bits at the input stage and loaded to

all four shift registers blocks in parallel. The 17-bit output of the shift-registers were

again sign extended to 18-bits and added with the delayed samples from other shift-

registers. Since this addition takes one clock cycle, the output of the coefficient circular

buffer was delayed by one clock cycle to synchronize with the output of the adders, and

then multiplied using dedicated 18x18 multipliers. The 36-bit products from two

multipliers were further added together using a 36-bit adder to form a sum of product

term as described in the filter structure. Until this point, it takes 3 clock cycles for the

input samples to ripple through the adders and multipliers and appear at the output of sum

of product adder. Hence, on the 3rd clock cycle the accumulator will be cleared and

enabled on the 4th clock cycle. For the next 4 consecutive clock cycles, all the adders and

multipliers work in parallel to compute the partial filter outputs and the accumulator will

be accumulating the sum of products. At the end of the 7th clock cycle the accumulator is

disabled and the sample corresponding to the center coefficient delay line value is added

on the 8h clock cycle. Hence at the end of 8th clock cycle the filter outputs its processed

89

output sample. The timing diagram illustrating the filter operation is shown in the Figure

4-29. The clock_tab signal shows the number of clock cycles elapsed starting from the

strobe input.

Figure 4-29 Timing analysis of large half-band filter structure

This filter uses a 27-bit accumulator to maintain the extra bits of precision. The

final output is truncated to 24-bits. A straight forward mapping of this structure was done

onto the Xilinx Spartan 6 (xc6slx16-3csg324) FPGA where all the filter coefficients and

the taped delay lines are Configurable Logic Blocks (CLB) slice register based as shown

in the 0large_hb_top.vhd. The following resource utilization was observed as shown in

the Table 4-7. Notice that the Xilinx Synthesis Tool (XST) has synthesized 2-DSP48A1

slices for implementing the multiply and accumulate unit of this filter.

90

Table 4-7 Large (31-Tap) Half-Band Device Utilization Summary

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slice Registers 264 18224 1%

Number of Slice LUTs 365 9112 4%

Number of fully used LUT-FF pairs 130 499 26%

Number of bonded IOBs 62 232 26%

Number of BUFG/BUFGCTRLs 1 16 6%

Number of DSP48A1s 2 32 6%

The half-band filters can be enabled or disabled using a control register that can

be implemented on FPGA and programmed through an embedded softcore processor in

the future. Although, the enable and bypass signals were included in the entity of this

half-band filters, these signals are hardcoded and have to be manually changed in the

FPGA bitstream.

 4.4 DDC Chain Gain Adjustment

There is implicit gain distributed throughout the signal processing chain to give

the highest performance from the DDC under worst case signaling. Algorithmic gains

anticipated from the signal processing performed is partially incorporated in the CIC and

CORDIC processors in order to maximize the dynamic range available in the DDC, but a

gain adjustment is applied after the DDC processing elements.

The gain adjustment used in this thesis is given by the equation (61). Where, the

numerator is the magnitude of the additional bit growth in CIC filter stage, the term

91

GAINCIC is the gain of the CIC filter given as Gmax = RMK and GAINCORDIC is the gain of

the 20 stage CORDIC processor which is a constant equal to 1.65.

 GAINfinal = 2
(

CEIL(log2(GAINCIC))
GAINCORDIC∗GAINCIC

)

(61)

This gain was hardcoded and multiplied using the 18x18 multipliers available on

the FPGA and the output of the multiplier was truncated to a 16-bit sample. Finally, a 32

bit word was constructed as a concatenation of two 16 bit samples from the in-phase and

quadrature-phase components of the DDC chain. Where, 16 most significant bits are in-

phase sample and 16 least significant bits are quadrature-phase sample. The DDC chain

designed in this thesis can also be used as real mode processor by supplying only zeros to

the quadrature-phase component.

 4.5 Xilinx Clocking and Clock Distribution

The communication signal processor requires two input clocks; dsp_sclk (SCLK)

and dsp_mclk (MCLK). The dsp_sclk is used as the main clock for all the signal

processing elements and the dsp_mclk is used for the de-interleave circuit at the input

stage of the communication signal processor board.

Both the clock inputs are driven from external source and do not use the on board

clocking resources. They are specifically routed to the global clock input pads (GCLK15

and GCLK17) through the VHDCI connector (EXP_IO9_P and EXP_IO10_P). The use

of global clock with in the FPGA is a recommended way of providing low-skew clock

routing to the logic resources within the FPGA.

The Spartan 6 FPGA clock network consists of 4 types of connections [27]:

92

1. Global clock input pad (GCLK)

2. Global clock multiplexers (BUFG, BUFGMUX)

3. I/O clock buffers (BUFIO2, BUFPLL, BUFIO2_2CLK)

4. Horizontal clock routing buffers (BUFH)

The clock coming through the global input pads, is first routed through an input

buffer (IBUF33) and then to the BUFGMUX located in the center of the device. The

BUFGMUXes can be driven by different sources; clock inputs from the 4 different IO

banks, clocks from the FPGA logic interconnect and the PLL/DCM. Then the

BUFGMUXes drive a vertical spine which in turn drives the horizontal row clocks

(HCLK). The HCLK consists of horizontal clock buffers that provide clock access to all

the logic elements and primitives in the FPGA.

Figure 4-30 Spartan 6 Clock Distribution [27]

93

Figure 4-30 shows the communication signal processor’s global clocking

structure using two BUFGMUXes highlighted in red. The inputs to these BUFGMUXes

comes from the global clock pads located at the FPGA I/O BANK 0. In this way, the

dsp_mclk and dsp_sclk clocks are routed to all the individual elements in the design.

94

FPGA BASED DIGITAL PATTERN GENERATOR

The Digilent Nexys 3 development board provided an excellent host for

development and demonstration of the DDC signal processing chain for communications,

but a means to both source and sink parallel test data to validate correct operation was

desired. Assessing the resources and interfaces available on the Nexys 3, it was

recognized that a second, identical development board with a different configuration

could perform the task and potentially provide a useful resource for future FPGA

developments within the WMU ECE Department. Therefore, the objective of this section

is to design and develop a flexible FPGA based digital pattern generator and comparator

on a Digilent Nexys 3 development board that could be used to source clock

synchronized parallel test signals and analyze the synchronously transferred parallel

results from any device that is connected.

To successfully accomplish this task, first an architectural design based on the

resource available on the Nexys 3 was defined and a parallel interface that could both

source clock and data and receive clock and data identified. The Nexys 3, previously

described, has the following resources useful for this design: Spartan 6 FPGA, 16MB of

Cellular RAM (CRAM) from Micron (Micron part number M45W8MW16), and a high

speed 68-pin VHDC connector. The CRAM provides a large memory to hold test data

that can be used to both source output patterns and provide reference result to compare to

data received. The VHDC connector can be connected to another Nexys 3 using a

95

commercially available cable. Meanwhile, the Spartan 6 FPGA inherently interfaces to

both the CRAM and VHDC interface and has sufficient programmable elements to

perform the logical functions required of a pattern generator and result comparator. The

following sections describe the test board architecture and the critical interface to a

second board for testing.

 5.1 Architecture of Digital Pattern Generator

The basic functionality of this board is divided into two parts; first, pattern

generator and second, output comparator. The pattern generator section uses a softcore

processor operating at 50 MHz to read the predefined data samples stored in the Cellular

RAM and provides a periodic 16-bit parallel integer samples using a FIFO at the output

stage. The output comparator section receives the processed results through a FIFO at the

input stage and the softcore processor reads those results and compares it with

precomputed results stored in the Cellular RAM. The 50 MHz clock was generated using

a Digital Clock Manager (DCM) on the Spartan 6 FPGA. The functional block diagram

of the digital pattern generator and output comparator is shown in the Figure 5-1.

The operating principle of the pattern generator is divided into two aspects;

hardware and software that will be described after first considering the data interface.

 5.2 Digital Pattern Generator Interface

In order to send and receive the 16-bits of data in parallel, the high speed 68-pin

VHDC connector available on Digilent Nexys 3 development board was used as shown

in the Figure 5-2.

96

Single-Port

RAM

CRAM

Control

Signals

32 Bit

32 Bit

32 Bit

16 Bit

16 Bit

Digital Clock Manager

32x512

FIFO

Samples In

32x512

FIFO

Samples Out

Soft Core

Processor

(ZPU)

With

WishBone

40 Pin VHDC
W

is
h
b

o
n
e
 b

u
s

In
te

rc
o
n
n

ec
t

32 Bit

16 Bits (I, Q) Output

DSP MCLK

DSP SCLK

DSP RST

DDC enable

16 Bits (I, Q) Input

Strobe In

32 Bit

Phi I/O
32 Bit

=> wishbone wrapper

Figure 5-1 Nexys 3 Digital Pattern Generator and Output Comparator

Figure 5-2 Digilent Nexys 3 VHDC Connector [28]

97

The VHDC connector has 40 data lines which can be routed as 20 impedance- controlled

matched pairs or as 40 individual connections, 20 ground lines and 8 power signals. This

connector is normally used for Small Computer System Interface (SCSI) 3 applications

and each data line supports up to several hundred MHz data rates. The FPGA pins that

are connected to the VHDC connector are located at I/O bank 0. The four Vcc pins from

the VHDC connector are connected to FPGA I/O bank 0 power supply pins. Although,

the VHDC connector are routed as matched pairs to support Low-Voltage Differential

Signaling (LVDS), these differential data lines were used as an individual data line to

send and receive data simultaneously.

The communication signal processing board is capable of receiving two

synchronous system clocks; master clock (MCLK) and dsp clock (SCLK). The master

clock should be operating at a rate twice the rate of the dsp clock. The board receives 16-

bit data samples in synchronous to the master clock and sends 16-bit processed data

samples in synchronous to SCLK. The design also supports a logical high reset and a

logical high enable signals which could be used to reset or enable the signal processing

chain. The communication signal processing board sends out an enable signal as a

reference to the availability of new processed sample. Figure 5-3 shows these interfacing

signals.

98

16 Bit Data

MCLK

SCLK

RST

Enable

16 Bit Data

SCLK

Enable

P
at

te
rn

 G
en

er
at

o
r S

ig
nal P

ro
cesso

r

Figure 5-3 Interfacing with Communication Signal Processor

The operating principle of the pattern generator is divided into aspects; hardware and

software.

 5.2.1 Hardware Aspects

The critical hardware components shown functionally in Figure 5-3 include, a

softcore CPU, a Wishbone based peripheral interface bus, a single-port RAM for code

and variables, the external CRAM data memory, parallel I/O interface for board

resources, and both send and receive FIFOs to source clocked parallel outputs and receive

clock enabled parallel inputs. The following sections describe each of these elements.

 5.2.1.1 Wishbone - Zylin Processing Unit

The pattern generator board design is based on an embedded softcore processor in

order to aid in command, control and transfer of data inside the FPGA. Many FPGA

vendors provide their own softcore processor solutions that could be implemented as an

99

Intellectual Property (IP) in the design. But, the use of an open-source processor was

preferred in this thesis so that it can be used without any issues that may arise from

copyright laws. One architecture that satisfies all the target features and also compact in

size is the Zylin Processing Unit (ZPU) contributed by Salvador E. Tropea [29]. The ZPU

is a 32-bit stack based Reduced Instruction Set Computing (RISC) processor and has a

very minimal number of instructions. As a stack-based processor, all the operands for the

instruction set are located on a memory stack except for load and store instructions [30].

The most important strength of this architecture is that, it has a simple, easy to read HDL

design and is very easy to implement from scratch in-order to suit the specialized

application and optimization [29]. This thesis uses the original source files was directly

downloaded from [29]. The downloaded package consists of a Zealot version of ZPU

processor along with the BRAM, a small peripheral input/output (Phi I/O) core which

implements a 64 bit timer, a Universal Asynchronous Receive and Transmit (UART)

module and a seven segment display unit.

The architecture suggested in Figure 5-1 has a wishbone interconnect network, a

BSD license based project from opencores.org, along with the ZPU core (also called a

wishbone-ZPU). This wishbone network was setup as a slave/master architecture such

that any number of slaves can be added on this network with very minimal design

modifications and define an address space that could be accessed using the ZPU. In this

network the ZPU was configured as wishbone master and a small peripheral input/output

unit, a single port Random Access Memory (RAM), a Cellular RAM (CRAM) and two

FIFOs were configured as the wishbone slaves.

100

The ZPU does not have any memory map defined in it. However, the software for

the ZPU can be written using the memory map that could be defined in wishbone

interconnect network as shown in the Table 5-1. The ZPU has 32 bit address space out of

which, the 25 downto 2 bits are mapped to the memory map of the wishbone

interconnect. The combinational logic designed in the wishbone interconnect uses the

most significant 25-to-15 bits to select the individual slaves. The least significant 2nd,

3rd and 4th bits to select specific register locations within the memory space of the

selected slaves (other than CRAM and single port RAM) as shown in the Figure 5-4.

Therefore, addresses 000000-7FFFFF are used to address slaves and specific memories in

the slaves. Whereas, for the CRAM and signal port RAM, the entire memory space is

mapped to that of the ZPU. So, any memory location in the CRAM or the single port

RAM can be accessed contiguously by the ZPU starting from 0x00000000 for single port

RAM and 0x01000000 for CRAM.

Table 5-1 Wishbone Slaves Memory Map

Slave Register type Address

SinglePortRAM ZPU Memory 0x00000000

CRAM Data 0x01000000

Phi I/O GPIO Data 0x080A0004

Phi I/O GPIO Dir 0x080A0008

Phi I/O UART_TX 0x080A000C

Phi I/O UART_RX 0x080A0010

Phi I/O Counter_1 0x080A0014

Phi I/O Counter_2 0x080A0018

Phi I/O Segment_7 0x080A001C

Output FIFO Status 0x080B0004

Output FIFO Data 0x080B0008

Input FIFO Status 0x080C0004

Input FIFO Data 0x080C0008

101

. 25 2 1 0. . .. 15 ..31

Slave select

Slave address space

Figure 5-4 Wishbone-ZPU Address Space

When the ZPU software tries to communicate with the slaves, the ZPU places

corresponding slave address and data on its address bus and data bus. The communication

between ZPU and slaves is shown in Figure 5-5. This communication can be described as

follows.

1. All of the communication with the slaves goes through wishbone interconnect,

the wishbone interconnect decodes the addresses from the address bus and

enables the slave select signal of the corresponding slave.

2. Wishbone interconnect further transfers the wishbone signals like strobe,

cycle, write, address and data-out generated from the ZPU to the selected

slave.

3. The slave decodes these wishbone signals and performs the required operation

such as writing and reading on a specified memory location.

4. The slaves are responsible to generate an acknowledge signal and send it back

to wishbone interconnect along with the data if requested by the ZPU.

5. Upon receiving this acknowledgement signal, the ZPU disables all the

wishbone signals and continues executing the next instruction.

102

Figure 5-5 ZPU-Slave Communication

 5.2.1.2 Cellular RAM

CRAM used in this design has 16-bit wide memory with 8M address spaces and

can support both 8 bit and 16 bit data access. Since the ZPU supports 32-bit data

transfers, the state machine for the memory interface was designed in such a way that

every 32 bit write to or read from the CRAM operates on two consecutive memory

locations. Therefore, we can address 4 Meg address spaces through software. This

CRAM interface was designed as a part of the class project in ECE5570 in Fall-2013 at

Western Michigan University. The detailed state machine design that performs 32-bit

reads and writes is described in [31] and the VHDL implementation of the memory

interface can be found in Appendix C - wb_slv_cram.vhd and cram_interface.vhd.

 5.2.1.3 FIFOs

For data interfacing to a target Nexys 3 board, the design has an input FIFO and

output FIFO. The output FIFO is used to source the test signals and the input FIFO is

103

used to collect the processed signals. The FIFOs were implemented on a block RAM

using the Xilinx Native Intellectual Property (IP) and include independent read and write

clocks. The FIFO dimensions were chosen to be somewhat large, allowing a block of

output data to be written as a block or burst and a block or burst of input data to be read.

This allows the software programming in the ZPU to more efficiently support data

transfers and have longer time intervals for other processing. The FIFOs are configured to

generate the following status flags; full flag, almost-full flag, write acknowledge flag,

half-full flag and empty flag.

These flags are asserted on the following events.

1. The full flag is asserted when the data is written to the 𝑁𝑡ℎ location on the

FIFO.

2. The almost full flag is asserted when the data is written to the (𝑁 − 1)𝑡ℎ

location on the FIFO.

3. The write acknowledge flag is asserted when the FIFO write is successful (one

clock cycle after the write to the FIFO is initiated).

4. The half full flag is asserted when the data available in the FIFO is less than

half of the FIFO capacity.

5. The empty flag is asserted when there is no data available on the FIFO.

The FIFO also has a reset pin where all the locations in the FIFO are initialized to

zeros on reset.

104

 5.2.1.3 Output FIFO

The Output FIFO block consists of a wishbone wrapper which send the

acknowledge signal upon receiving the wishbone cycle and strobe signals and a FIFO

with the following dimensions.

1. Write width of 32 bits wide and write depth of 512.

2. Read width of 16 bits wide and read depth of 1024.

The FIFO status flags were incorporated into an 8-bit status register as shown in

the Figure 5-6. The 3 MSBs and the LSB bit are unused. The half full flag is negated in

the register, so when the amount of data on the FIFO is less than half full, the register

would contain the value “00001000”. The output FIFO interface was designed to send the

acknowledge signal as soon as the wishbone strobe and cycle signals arrived. The data is

captured into a 32 bit register (data register) which is then written into the FIFO. The

status register implemented in this FIFO interface is read only, while the data register is

write only.

empty full 00 wr_ack0 0 ~half_full

Figure 5-6 Output FIFO Status Register

The FIFO controller was designed as a state machine which is responsible to

decode the read and write operations from the ZPU. The flowchart of this state machine

can be described is shown in the Figure 5-7. The VHDL implementation is shown in the

Appendix C - fifo_if.vhd source file.

105

idle_state

wr_state

wait_write_state

Write or Read?rd_state

wait_read_state

Read Write

True True

True
Write ack?

False

False False

Figure 5-7 Output FIFO State-Machine Flowchart

As shown in the above flow chart, the state machine is designed with 5 states. The

operation of the state machine can be described as follows:

1. In the idle state, the state machine continuously checks for a read or write

request from the ZPU and transfers control to the appropriate state.

2. In the read state, the state machine checks if the ZPU is requesting to read the

status register and copies the contents of status register onto the output data

bus. If the ZPU is requesting to read something else then the control is

transferred back to idle state.

3. The wait read state is a dummy state, it was just designed to provide one clock

cycle time before switching back to the idle state.

4. Likewise, in write state, the state machine checks if the ZPU is writing to

FIFO data register. Then the FIFO write enable signal is asserted and data is

written onto the FIFO data bus through the FIFO data register.

106

5. In the wait write state, the FIFO write enable signal is disabled and returned to

idle state depending on the write acknowledge flag.

The FIFO write process using the above state machine is shown in the Figure 5-8

Figure 5-8 Output FIFO Write Process

The reading of the output FIFO and transfer of data to the target board does not

occur until the output FIFO is almost filled. The interface was designed in such a way

that, the almost full flag generated after writing (𝑁 − 1)𝑡ℎ word to the FIFO is used to

toggle the enable signal for the target processor board.

The read clock (rd_clk) for the FIFO was generated using a 16-bit counter whose

count value is set to 0x007D as shown in the code snippet below. If a different read clock

is required, the counter needs to be reconfigured to reflect the changes.

rd_clk_thingy:

process(clk_i, rst_i, rd_count)

begin

if rising_edge(clk_i) then

 if rst_i = '1' then

 rd_count <= (others => '0');

 rd_clk <= '0';

 else

 if rd_count = x"007D" then --3F

 rd_clk <= not(rd_clk);

 rd_count <= (others => '0');

 else

 rd_count <= rd_count + '1';

 end if;

107

 end if;

end if;

end process rd_clk_thingy;

The above stated logic was used to generate the read clock because, the Digital

Clock Manager (DCM) available on Spartan 6 FPGA operating with 100 MHz primary

clock was unable to generate this low frequency clock signal. The data from the FIFO is

read in synchronous to the read clock. This read clock is also used as the master clock

(MCLK) for the communication signal processor.

The serial clock (SCLK) for the communication signal processing board was

implemented as a T-flip flop that toggles a signal on every falling edge of the master

clock (MCLK). The master clock, serial clock, enable and reset signals, and the data read

from the FIFO was sent over the VHDC cable as input signals to the communication

signal processing board as shown in Figure 5-9 and Figure 5-10.

Figure 5-9 Output of the Pattern Generator Board (ModelSim Simulator)

108

Figure 5-10 Output of the Pattern Generator Board (MSO-X 3034A)

 5.2.1.3 Input FIFO

The input FIFO has the exact opposite dimensions as the output FIFO.

1. Write width of 16 bits wide and read depth of 1024.

2. Read width of 32 bits wide and write depth of 512.

Similar to the output FIFO, the input FIFO has a status register as shown below

empty full 00 00 0 half_full

Figure 5-11 Input FIFO Status Register

Here, the FIFO status register consists of half full, empty and full flags. The 4 MSBs and

a LSB are unused bits in the register. The FIFO controller was designed as a state

machine which decodes the read requests from the ZPU. In the input FIFO block, both

the FIFO data register and the status register are read only. The flowchart of this state

machine is shown below

109

state_idle

rd_fifo

valid

Read

fifo or status?
rd_status status fifo

True

True

Read valid?
False

False

Figure 5-12 Input FIFO State-Machine Flowchart

The operation of the state machine can be described as follows:

1. In the idle state, the state machine continuously checks for a FIFO data read or

status register read request from the ZPU.

a. If the state machine determines that it is a FIFO data read request, then

the FIFO read enable is asserted and the control is transferred to

rd_fifo state.

b. If the state machine determines that the ZPU is requesting for status

register, then the control is transferred to rd_status state.

2. In the rd_fifo state, the read enable signal is deasserted and the data output

from the FIFO is sent to the ZPU. It also checks for valid flag if the data

validate the data read from the FIFO and then the control is handed over to the

idle state.

110

3. In the rd_status state, the current value in the status register is supplied to the

ZPU and the command is returned back to idle state.

The read operation of the state machine is shown in the ModelSim simulation below

Figure 5-13 Input FIFO Read Process

 5.2.1 Software Aspects

The software components involve not only the composition of C code that

executes on the ZPU but also data preparation and storage to the CRAM and the

appropriate file manipulations to generate appropriate Xilinx configuration code for

loading. The following section describes the software and processes required for testing.

 5.2.1.1 Generating Test Data

In order to generate the patterns using pattern generator, The 32-bit integer

samples were pre-computed in a *.bin file using MATLAB script as shown below

111

cram_top = 65535;

data = (65535);

x = zeros(1,cram_top);

for k = 1:1: cram_top

 x(k) = 2147418112;%% data format --> [16bit(I) 16bit(Q)]

end

fileID = fopen('cram_TestData.bin', 'w+','l');%%%%%%%%%%

for i= 1:cram_top

 fwrite(fileID,x(i),'int','l'); % int = 32 bits little endian

end

fclose(fileID);

Currently, the ZPU supports only little endian data transfers. Hence, the patterns

were created in a little endian fashion as shown in the in the Figure 5-14. Since, the

pattern generator was used to emulate the data samples from two quadrature sampling

ADCs, the data format of a 32 bit integer was designed such that the 16 MSBs represent

in phase samples and 16 LSBs represent quadrature phase samples.

Figure 5-14 32-bit Binary Pattern in Little Endian Fashion

The above mentioned method is one way to generate 32-bit integer patterns. These

samples can also be the captured directly from a 16 bit ADC, but it has to be arranged in

a specified data format mention above.

 5.2.1.2 Copying Data to CRAM

The data generated in the previous section was copied to the on-board CRAM

using Digilent adept software. The Digilent Adept software has an option for writing a

file to the memory directly from the computer without actually configuring the FPGA.

This process is shown in the Figure 5-15. In order to use the Adept memory write option,

112

the FPGA must be connected to the computer via USB. Once the Adept detects the FPGA

board, it displays appropriate tabs as shown in the figure below. Under the memory tab,

by selecting the RAM radio button and appropriate file, we can write the generated

pattern file to CRAM.

Figure 5-15 Writing Data to CRAM using Adept

 5.2.1.3 ZPU Software

The software for the ZPU was written in C language and is compiled using zpu-

gcc toolchain under Cygwin environment (Linux). In order to compile the ZPU software

we need the following requirements:

1. Cygwin 32-bit environment with bitutils, cmake, gcc, g++, gdb and make

packages.

2. ZPUGCC toolchain [32].

The project consists of a header file and a source code. The header file basically

defines the pointers pointing to unsigned long int, these pointers were initialized to the

113

address spaces specified by the wishbone-slave memory map as we discussed in the

previous section.

The source code begins by initializing a pointer pointing to the base address of the

CRAM. During the initialization cycle, the data is read from the CRAM and written to

the output FIFO until the (𝑁 − 1)𝑡ℎ location. After which, the program enters into an

infinite loop. In the infinite loop, the status register of the output FIFO is checked to see

if the amount of data available is below half full or if the FIFO is empty. If either of them

are true then the ZPU reads the data from the CRAM starting from the last location where

it stopped and writes it to output FIFO as bursts. The data in the CRAM is valid until the

65535th location. Hence, when the data is read from the 65535th location, the pointer is

initialized back to the bottom of CRAM and this process is continued infinitely. During

the time between the two consecutive burst writes to output FIFO, the ZPU checks the

status register of input FIFO. If the input FIFO is more than half filled, then the ZPU

reads a burst of 32-bit complex words from the FIFO and compares it with the results

stored on CRAM. The process of ZPU burst writes and the comparison time between two

consecutive burst writes is shown below.

Half

Full

Full

comparison window comparison window

Figure 5-16 ZPU Write and Comparison Scheme

114

The following process was used to compile the source code and generate the

FPGA bit streams:

1. zpu-elf-gcc command was used to compile the C code. This creates an *.elf

file in the same director.

2. The *.elf file created would be too big to write it to the BRAM of Spartan 5

FPGA. Hence zpu-elf-strip command was used to strip the *.elf file.

3. The resulting elf file is then converted to a *.bin using the command zpu-elf-

objcopy.

4. Finally, the BRAM contents were generated as ASCII character in a *.txt from

*.bin file. The *.txt file would contain the program data that needs to be

loaded into BRAM.

The detailed explanation for compiling the ZPU software can be found in Appendix D -

Compiling process.

Finally, the data2mem tool [33] from Xilinx was used to change the ZPU software

source code directly in the FPGA bit stream file instead of re-initializing the ZPUs single

port RAM in the design and synthesizing the entire design again. The data2mem tool

accepts the *.elf file, *.bit file and *.bmm file and outputs an updated *.bit file which

contains the updated ZPU software image and can be used to program the FPGA.

115

RESULTS AND PERFORMANCE

The previous chapters have described the theory, operation and implementation of

the DDC chain, NCO and CORDIC processor, CIC filter and half band filters. A test

board that can provide clocked parallel data vectors as though provided by an ADC has

also been described. This section describes the stand alone and combined testing of the

circuitry and systems developed.

 6.1 Signal Processing Chain Verification

The individual blocks in the signal processing chain was tested using the VHDL

test bench. The test vectors emulating the ADC data were created using MATLAB and

stored into a file. The file was read by the VHDL test bench in interleaved fashion and

fed to DDC chain.

One way of testing this hardware is to feed the binary patterns of 0x7FFF and

0x0000 in interleaved fashion synchronized with the master clock. As was discussed

earlier, if the input of the CORDIC is fixed to (1, 0), the CORDIC would act as an NCO

generating sine and cosine waveforms of a particular frequency defined by phase

accumulator. This concept was exploited to generate 500Hz sine and cosine waveforms.

In order to generate the waveforms of this frequency, the phase accumulator was loaded

with 0x0147AE14. This value was calculated using the equation

116

𝑃ℎ𝑎𝑠𝑒𝑠𝑡𝑒𝑝(𝑟𝑎𝑑) =
𝑁𝐶𝑂𝑓𝑟𝑒𝑞 ∗ 232

𝑓𝑠𝑎𝑚𝑝𝑙𝑒

(62)

where 𝑁𝐶𝑂𝑓𝑟𝑒𝑞 = 500 and 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 = 100 𝐾𝐻𝑧.

When the phase accumulator steps through the given angle, the CORDIC

computes the corresponding sine and cosine components at the output. The rate at which

this calculation happens is directly proportional to the rate at which the CORDIC

processor is clocked. In order to shorten the simulation time required for ModelSim

simulator, a 50MHz clock was generated in the VHDL test bench.

The output at each stage of the in-phase component of the DDC chain can be

verified by plotting it against MATLAB computed data. In addition, the Chipscope

results are also shown and compared to the ModelSim simulation and MATLAB

simulation.

1. CORDIC stage:

The output at the CORDIC stage is shown in the Figure 6-1. As we can see, the

24 bit time domain samples computed using MATLAB almost exactly overlaps with the

samples captured though the VHDL simulation.

117

Figure 6-1 CORDIC Time Domain Output

The frequency spectrum was also generated in order to compare the received signal in

frequency domain as depicted in the figure below.

Figure 6-2 CORDIC Output Frequency Spectrum

As we can see, the frequency spectrum of the MATLAB computed samples and the

samples exported from ModelSim are nearly identical with each other and the peak is

118

shown at 500Hz. The error between these two implementation methodologies is shown

below.

Figure 6-3 Error between MATLAB and VHDL Implementation

From the Figure 6-3 it can be seen that, there is no such significant error between both the

implementation, as the error was limited to only 2 bits least significant. The error at the

least signification bits can be ignored in this system since truncation on least significant

bits are employed at multiple locations. A hardware comparison of the in-phase

MATLAB data, Modelsim VHDL simulation, and Chipscope captured Xilinx device data

is shown in Figure 6-4. As we can see, the output of the CORDIC processor on FPGA

exactly matches with the ModelSim simulation tool.

Figure 6-4 MATLAB-ModelSim-Chipscope Somparisons

119

2. CIC filter decimator:

The second stages in the signal processing chain is the CIC filter decimator, the

24-bit samples of 500Hz signal sampled at 100 KHz are received at the input from the

CORDIC processor. The decimation rate for CIC filter was chosen to be 5. The output of

the CIC filter would have a sample rate of 20 KHz. The time domain comparison of the

output from MATLAB and VHDL implementation.is shown in the figure below.

Figure 6-5 CIC Filter – Time Domain Comparison

As we can see, the time domain samples from both MATLAB and ModelSim exactly

overlaps each other. The frequency response of the received samples is shown in the

Figure 6-6.

120

Figure 6-6 Frequency Response of the CIC Filter Output

Although, the time domain samples appear to overlap on each other, again there are small

errors between the MATLAB computed samples and the samples exported from

ModelSim is shown in the Figure 6-7. Again these errors corresponds to the LSB and can

be ignored in this implementation since, the LSBs are going to be truncated in further

stages of the signal processing chain.

Figure 6-7 Error between MATLAB and VHDL implementation

121

3. First stage half-band filter:

The next stage of the signal processing chain is the 7-tap half-band filter. The

half-band filter implemented in this thesis has a fixed decimation of 2. Therefore, the

output sample rate of this filter is always half of the input sample rate. The 24-bit samples

of a 500Hz signal are received from the CIC filter decimator, the sampling rate at this

stage would be 20 KHz. These samples are further truncated to 17 bits and processed

through adders and multipliers involved in the filter structure as previously described.

The output of this filter is a 24-bit processed time domain samples, the Figure 6-8 shows

the time domain comparisons of the processed samples from MATLAB and VHDL

implementation.

Figure 6-8 First Stage Half-Band Filter – Time Domain Comparison

The frequency spectrum of the half-band filter output is shown in the Figure 6-9. As we

can see, the sample rate at the output is exactly half of the input sample rate. The sample

by sample comparison of the 24 bit output is shown in the Figure 6-10. It is evident from

122

the figure that the VHDL implementation exactly matches with the MATLAB computed

output.

Figure 6-9 Output Spectrum of the First Half-Band Filter

Figure 6-10 Error between MATLAB and VHDL Implementation

123

4. Final stage half-band filter

The final stage of the signal processing chain is a 31-tap half-band filter. The 24

bit samples from the previous stage are filtered and further decimated by 2, providing the

final bandwidth limitation. The time domain output of both MATLAB and VHDL

implementation is shown in the Figure 6-11

Figure 6-11 Final Stage Half-Band Filter – Time Domain Comparison

The output spectrum of this half-band filter is depicted in the Figure 6-12. The output

spectrum contains a small DC component because of 2’s complement truncation at the

input stage. The sample by sample comparison of the MATLAB and VHDL

implementations is shown in the Figure 6-13. The VHDL implementation exactly

matched with the MATLAB implementation except for one sample.

124

Figure 6-12 Output Spectrum of the Final Stage half-Band Filter

Figure 6-13 Error between MATLAB and VHDL Implementation

The Figure 6-14 shows the Chipscope analyzer data and the corresponding

ModelSim and MATLAB data. The data from MATLAB and ModelSim was correlated

with Chipscope Pro after the initial transient response of the filter. Once the filter gets to

a steady state, the simulated data exactly matches with the data in the hardware.

125

Figure 6-14 MATLAB-ModelSim-Chipscope Comparisons

The final decimated output compared to the input signal can be seen on Chipscope Pro

Analyzer (Version 14.7) as shown in the Figure 6-15. The total decimation rate achieved

by the entire system was 5 x 2 x 2 or 20 (i.e., CIC=5, first half-band = 2 and final half-

band = 2).

Figure 6-15 DDC Output using Chipscope-Pro Analyzer

126

 6.2 Pattern Generator Board Testing

Once the system has been tested between MATLAB, Modelsim and Chipscope

Pro, there was a desire to provide a parallel data input from a separate clock driven

device. The following section describes testing performed with the Pattern Generation

board implementation.

 6.2.1 Maximum Data Rate Achieved using ZPU

 The maximum data rate at which the pattern generator board is able to source the

test data is directly proportional to the read clock that is generated for the output FIFO.

The read clock rate was determined as follows:

The CRAM takes about “70ns” [34] to read or write 16 bits of data in an

asynchronous mode. When operating with 32 bit data transfers at a 50 MHz clock, the

designed memory interface requires approximately “200ns” for two-16 bit data access.

The ZPU being a stack based processor, the number of clock cycles required to execute a

particular set of instructions is larger than compared to a regular register based processor.

Based on these facts, the time taken by the ZPU to read the data from CRAM and write it

to the FIFO is approximately 5.22us as shown in the Figure 6-16. In this figure, the

~ℎ𝑎𝑙𝑓𝑓𝑢𝑙𝑙 flag (D7) and the FIFO 𝑤𝑟𝑖𝑡𝑒𝑒𝑛𝑎𝑏𝑙𝑒 (D15) signal are depicted.

127

Figure 6-16 Time Delay between 2 Successive FIFO Writes

In order to maintain the periodicity at the output of the pattern generator, the ZPU

software was designed in such a way that, a burst of 50 data samples of 32-bits gets

written into the FIFO every time the amount of data available in the FIFO is less than half

full as shown in the Figure 6-17. The total time taken by the ZPU to write these 50 data

sample bursts was found to be approximately “260us”. Therefore, the maximum rate at

which the data can be read from the FIFO was approximately 385.6 kilo samples per

second (ksps). Since, the pattern generator board was also intended to do the results

comparison, the read speed of the FIFO is limited to less than or equal to 200 ksps. The

data read from the FIFO is actually the 16-bit interleaved data samples emulating the

ADC. Thus, the actual sample rate for the communication signal processor is half of the

rate at which the samples are read from the FIFO (i.e., 100 ksps).

128

Figure 6-17 FIFO Burst Write

 6.2.2 MATLAB limitations to Account for Hardware Transients

A major challenge with testing digital filters that are implemented in hardware

involves the transient responses associated with initialization. Although, many techniques

are suggested in the literature in order to eliminate these transients, their implementation

was not considered in this thesis in order to save hardware resources. Instead, the initial

set of output samples were simply discarded in this work.

The transient effect is clearly visible at the output of the final stage half-band

filter shown in Figure 6-18. Due to the difficulty in perfect time sample alignment when

decimation is performed, an exact MATLAB modeling for this transients was not

implemented. As a result, the pattern generator and result analyzer board was just used as

pattern generator for this application. Overall, the pattern generator readily sends out the

129

stored patterns along with the necessary clocks and control signals in order to test the

communication signal processor developed.

Figure 6-18 Transient Response at the Output of the Final Stage Half-Band Filter

 6.3 Signal Processor Device Utilization Summary

The complete device utilization summary for the communication signal

processing board is shown in the Table 6-1 below. It can be clearly seen that, only about

55% of the slices have been utilized, the utilized memory both single port and dual port is

also only 14% and only a quarter of the available 31-DSP48A1 slices have been utilized.

In general, we can approximate about 50% of logic resources still available in the FPGA

with significantly more DSP and memory resources available. This allows for more

signal processing blocks like equalizers, FEC and other communication specific

algorithms to be implemented.

130

Table 6-1 Signal Processor Device Utilization Summary

Device Utilization Summary

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 5,118 18,224 28%

 Number used as Flip Flops 5,117

 Number used as Latches 1

Number of Slice LUTs 4,308 9,112 47%

 Number used as logic 3,511 9,112 38%

 Number used as Memory 323 2,176 14%

 Number used as Shift Register 323

 Number used exclusively as route-thrus 474

 Number with same-slice register load 468

 Number with same-slice carry load 6

Number of occupied Slices 1,620 2,278 71%

Number of MUXCYs used 2,864 4,556 62%

Number of LUT Flip Flop pairs used 5,350

 Number with an unused Flip Flop 994 5,350 18%

 Number with an unused LUT 1,042 5,350 19%

 Number of fully used LUT-FF pairs 3,314 5,350 61%

 Number of unique control sets 97

 Number of slice register sites lost

 to control set restrictions
418 18,224 2%

Number of bonded IOBs 37 232 15%

 Number of LOCed IOBs 37 37 100%

Number of RAMB16BWERs 20 32 62%

Number of RAMB8BWERs 1 64 1%

Number of BUFG/BUFGMUXs 3 16 18%

 Number used as BUFGs 3

Number of BSCANs 1 4 25%

Number of DSP48A1s 8 32 25%

Number of RPM macros 9

Average Fanout of Non-Clock Nets 3.26

file:///C:/Users/Nagarjun/Desktop/Thesis-Final/working-DDC/SignalProcessor/DSPboard_TOP_map.xrpt?&DataKey=IOBProperties

131

 6.4 Signal Processor Timing Verification

In this section, we will analyze the worst case delay for the data path between the

input and the output of the signal processor board. This analysis was performed using the

Xilinx’s built-in timing analyzing tool. The table is shown in Figure 6-19 and contains

the minimum and the maximum delay between the dsp_clk (SCLK) input and the FIFO

output of the signal processor board. The theoretical minimum clock speed that the

processor can be run is determined by the fifo_dout(15) signal. Based on this worst case

delay, the maximum useable clock frequency is approximately 87 MHz, if operated at a

higher frequency, invalid parallel output data would be generated.

Figure 6-19 Signal Processor Timing Summary

132

CONCLUSION AND FUTURE WORK

 7.1 Conclusion

In this thesis, the successful implementation and verification of a narrowband

digital down converter chain has been demonstrated on a Spartan 6 development board.

In addition to this signal processor board, a digital pattern generator and output

comparator system was developed on a second Spartan 6 development board.

The DDC implemented in this thesis consists of a 20 stage pipelined CORDIC

processor, implemented in VHDL. The corresponding iterative model was also designed

in MATLAB for functional verification. A 3-stage CIC filter decimator was implemented

in order to perform the high rate decimation followed by a 2 stage half-band filters, one

with 7 taps and other with 31 taps both performing a fixed decimation by a factor of 2.

Again, MATLAB was used to design a finite precision integer model of the CIC and half-

band filters in order to verify the functionality of the hardware developed.

In addition, a pattern generator and result comparator board was designed using

an embedded softcore processor called a Zylin Processing Unit. The pattern generator

board consists of the CRAM containing the test vectors that are generated using

MATLAB. The ZPU was used to source these test signals and collect the results from the

device that is being tested in real time. For a more predictable combinatorial result

133

without transients, the board would also compare the results with the pre-computed

results that are stored in the CRAM.

 7.2 Future Work

Based on the experiences gained during the course of this research, the following

recommendations are possible areas that may be explored in the future: First specific

improvements to the current system are described. This is followed by broader

application of the elements developed.

1. The CIC and the half-band filter stages contain sections that truncates the 24-bit data

input to the signal processing board. Though truncation serves multiple purposes, it

does result in loss of precision as compared to options like rounding. More research is

required in analyzing the cost and performance benefits of various rounding algorithm

on the overall system, before such a technique can be incorporated in to the system.

2. Another aspect of the implementation that can be significantly improved is the soft

core ZPU processor. The small footprint RISC based processor was an ideal candidate

for the type of operations being performed in this research. But the large execution

times in the ZPU, owing to its stack based architecture proved to be a limiting factor in

the maximum throughput that can be achieved on a board to be tested. The latest Zynq

based FPGA development boards combine the software programmability of an ARM

core processor with the hardware programmability of an FPGA and would be an ideal

replacement for the ZPU.

3. The comparator section of the pattern generator could not be validated with MATLAB

results due to the presence of transients in the CORDIC and the filter stages.

134

Simulating CORDIC, CIC and half-band with all possible transients in MATLAB

could provide a way to perform end to end testing the DDC chain.

4. Most of the parameters of the CORDIC can be reconfigured to suit the DDC

requirements for a broad range of wireless communication technologies. However, the

number of pipelined stages in CORDIC is fixed currently to 20-stages. This can be

modified by using VHDL ‘generate’ statements to instantiate an array of CORDIC

stages.

The DDC processing elements developed provide key components required by

Dr. Bazuin to develop a customized, open-source Xilinx design for real-time processing

of narrowband signals. This could replace and/or extend the capability of existing Ettus

Research USRP devices available or provide a means to use the existing USRP RF

daughter cards with new Xilinx Zynq-based development boards. As defined, the DDC

elements can also be readily configured for transmitting, performing the mathematical

inverse operations involved in digital up-converting (DUC). A DUC reverses the

processing element ordering and converts the CIC filter-decimator into a CIC

interpolator-filter.

 7.3 Summary

In the course of this thesis, it was a great experience learning about multi-rate

signal processing concepts. This thesis is a great way to learn about the implementation

of digital filter on FPGA and employing hardware resource sharing to reduce the number

of logic resources required. In addition, to further continue this research we can develop a

Gigabit Ethernet interface on a Zynq-based development board to establish the

135

communication between PC and FPGA. This along with DDC/DUC chain and AD-

FMCOMMS1-EBZ [35] we can develop a custom software defined radio peripheral.

136

REFERENCES

[1]
Falciasecca, G; Valotti, B., "Guglielmo Marconi: The pioneer of wireless

communications," Microwave Conference, 2009. EuMC 2009. European,

vol. no., pp. 544-546, Sept. 29 2009-Oct. 1 2009.

[2]
www.gsma.com, "The Mobile Economy 2015," GSM Association, 2015.

[3]
"Annual wireless Industry Survey," CTIA The wireless Association, [Online].

Available: http://www.ctia.org/docs/default-source/Facts-

Stats/ctia_survey_ye_2014_graphics.pdf?sfvrsn=2. [Accessed 7 10 2015].

[4]
G. Manganaro and D. Leenaerts, RF IC Design for Wireless Communication

Systems, MA, USA: Elsevier's Science & Technology, 2013.

[5]
M. Maupin, "Implementing Sub-GHz wireless connectivity in Embedded

Devices," Wireless Design and Development, pp. 32-36, June 2014.

[6]
Raychaudhuri, D.; Mandayam, Narayan B., "Frontiers of Wireless and Mobile

Communication," Proceedings of the IEEE, Vols. 100, no.4,, pp. 824-840,

April 2012.

[7]
Texas Instruments, "OMAP3430 Processor," [Online]. Available:

http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?contentId=14

649&navigationId=12643&templateId=6123#chipDiagram. [Accessed 11

November 2015].

[8]
Volder, Jack E., "The CORDIC trigonometric computing technique," Electronic

Computers, IRE Transactions on, Vols. EC-8, no.3, pp. 330-334, Sept.

1959.

[9]
Harris,F.J.;Dick,C.;Rice,M., "Digital receivers and transmitters using polyphase

filter banks for wireless communications," Microwave Theory and

Techniques, IEEE Transactions, Vols. 51, no.4, pp. 1395-1412, Apr 2003.

[10]
W. Tuttlebee, Software Defined Radio: Origins, Drivers and International

Perspectives, New York: John Wiley, 2002.

137

[11]
Mitola, J., III, "Software radios: Survey, critical evaluation and future directions,"

Aerospace and Electronic Systems Magazine, IEEE , Vols. 8, no.4, pp. 25-

36, April 1993.

[12]
"Wireless Innovation Forum," June 2015. [Online]. Available:

http://www.wirelessinnovation.org/Introduction_to_SDR.

[13]
Shannon, C.E., "Communication In The Presence Of Noise," Proceedings of the

IEEE, no. vol.86, no.2, pp.447-457, Feb. 1998.

[14]
"WARP: Wireless Open Reasearch Platform," [Online]. Available:

http://warp.rice.edu/. [Accessed June 2015].

[15]
"USRP Software Defined Radios," [Online]. Available: http://www.ettus.com/.

[16]
"GENI Cognitive Radio Kit," [Online]. Available: http://crkit.orbit-lab.org.

[17]
"SORA: SDR Platform from Microsoft," [Online]. Available:

http://research.microsoft.com/en-us/projects/sora/. [Accessed June 2015].

[18]
"CORDIC," Wikipedia The Free Encyclopedia, [Online]. Available:

http://en.wikipedia.org/wiki/CORDIC. [Accessed April 2015].

[19]
J.S. Walther, "A unified algorithm for elementary functions," in AFIPS Spring

Joint Computer Conference, 1971.

[20]
Monash University, "A VHDL Implementation of a CORDIC Airthmetic

Processor Chip," Monash University, Australia, Clayton VIC 3168, 1994.

[21]
Hogenauer, E., "An economical class of digital filters for decimation and

interpolation," Acoustics, Speech and Signal Processing, IEEE

Transactions, Vols. 29, no.2, pp. 155-162, Apr 1981.

[22]
fredric harris, Multirate Signal Processing for Communication Systems, San Diego,

California: Pearson Education, Inc., 2011.

[23]
Vaidyanathan, P.P., "Multirate digital filters, filter banks, polyphase networks, and

applications: a tutorial," Proceedings of the IEEE, Vols. 78, no.1, pp. 56-

93, Jan 1990.

[24]
Xilinx, "LogiCORE IP CIC Compiler v3.0," Xilinx, Inc, San Jose, CA, June 22,

2011.

138

[25]
Larry Doolittle, LBNL, "Filtering and Decimation by Eight in an FPGA for SDR

and Other Applications," November, 2006.

[26]
K. Chapman, "Saving Costs with the SRL16E," White Paper: Xilinx FPGAs, 2008.

[27]
Xilinx, "Spartan-6 FPGA Clocking Resources," www.xilinx.com, June 19, 2015.

[28]
"Digilent, Inc," [Online]. Available:

https://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf.

[Accessed 21 October 2015].

[29]
"ZPU Repository," [Online]. Available:

http://repo.or.cz/w/zpu.git?a=blob_plain;f=zpu/docs/zpu_arch.html.

[Accessed 21 October 2015].

[30]
A. Lopes, "ZPUino, 32 bit processor, for all your needs," [Online]. Available:

http://www.alvie.com/zpuino/zpu_instructions.html. [Accessed 21 October

2015].

[31]
Dr. Bradley J. Bazuin, "ECE 5570 Web Site: Dr. Bazuin," [Online]. Available:

http://homepages.wmich.edu/~bazuinb/ECE5570/CellularRam-

External%20Memory%20Interface.pdf. [Accessed 22 October 2015].

[32]
Á. Lopes, "GitHub," 28 April 2015. [Online]. Available:

https://github.com/zylin/zpugcc. [Accessed 3 November 2015].

[33]
Xilinx Inc, "Data2MEM User Guide," www.xilinx.com, June 24, 2009.

[34]
Micron Technology, "Micron Technology, Inc.," [Online]. Available:

http://www.micron.com/parts/psram/cellularram/mt45w8mw16bgx-701-it.

[Accessed 22 October 2015].

[35]
Analog Devices, "AD-FMCOMMS1-EBZ User Guide," 15 July 2015. [Online].

Available: https://wiki.analog.com/resources/eval/user-guides/ad-

fmcomms1-ebz. [Accessed 19 November 2015].

139

Appendix A - MATLAB Scripts

 CORDIC Processor

% Cordic Implementation

clc

clear all

close all

nsamples = 4096;

fftsize = 65536;

fsample = 100e3;

fsignal = 10e3;

frange = (-0.5:1/fftsize:0.5-1/fftsize)*fsample;

[I, Q] = TestSigGen(fsignal,fsample,nsamples,0);

Isample = fix(I*2^14-1);

Qsample = fix(Q*2^14-1);

x_in = (I+i*Q)*2^14-1;

fileID = fopen('C:\Users\Nagarjun\Documents\MATLAB\Thesis\cordicI.txt', 'w+');%%%%%%%%%%

for i= 1:nsamples

 fprintf(fileID, '%d\n',int32(Isample));

end

fclose(fileID);

fileID = fopen('C:\Users\Nagarjun\Documents\MATLAB\Thesis\cordicQ.txt', 'w+');%%%%%%%%%%

for i= 1:nsamples

 fprintf(fileID, '%d\n',int32(Qsample));

end

fclose(fileID);

figure('NumberTitle', 'off',...

'Name', 'Received Signal');

plot(0:nsamples-1,x_in)

title('\bfReceived Signal')

xlabel('\bfTime')

ylabel('\bfMagnitude')

SigSpec = fftshift(fft(x_in,fftsize));

figure

140

plot(frange,dB(psdg(SigSpec/max(SigSpec))));

title('\bfFrequency Specturm Received Signal')

xlabel('\bfFrequency')

ylabel('\bfMagnitude in dB')

ylim([-80,10]); grid on

input_str = sprintf('Please enter center freq (less than %dHz)',fsample);

NCO_Freq = input(input_str);

PhaseInc = 2*(((NCO_Freq * 2^(32-1)) / fsample))

STG = 20; % Number of rotations

K = 0.60725294104140; % Cordic Gain

for i = 0:1:(23)

 c = (round((atan(1.0/(2^i))/(2*pi)) * (2^24)));

 consts(i+1) = c;

end

% pre allocate the vectors and parameters

phasepast = 0;

init_0padding = 1;

Isample = Isample*2^8;

Qsample = Qsample*2^8;

Is = int32([zeros(1,init_0padding) Isample(1:nsamples-init_0padding)]);

Qs = int32([zeros(1,init_0padding) Qsample(1:nsamples-init_0padding)]);

phase = (0);

initial = 1;

x = int32(1)*(2^(16)-1);% 24 bit input to cordic

y = int32(0);

for N = 1:nsamples

%##

% CORDIC PROCESSOR

%##

 x = sign_ext(Is(N),24,1);% 25 bit Cordic processor

 y = sign_ext(Qs(N),24,1);

% Phase accumulator

phase = phase + PhaseInc;

% phasepast = phase;

% ############------[32 bit Integer Wrap Around]------############

if (phase > 2147483647)% if > 2^31 - 1 roll it back to -ve's

 phase = phase - 4294967295; %(2^31-1 + 2^31)

else if(phase < -2147483648) % -2^31

phase = phase + 4294967295;

141

 end

end

zin_24 = floor(phase/256);% right shift by 8 since zwidth is 24

zin = int32(zin_24);

% Phase pre rotation since cordic is limited to +pi/2 to -pi/2

if (zin>=2^22 && zin<2^23)% interval between 90 to 180 degrees

 xpast = x;

 x = -y;

 y = xpast;

 zin = bitand(zin, 4194303);

 else if(zin>=-2^23 && zin<-2^22)% interval between -180 to -90 degrees

xpast = x;

x = y;

y = -xpast;

zin = bitor(zin,-12582912);

end

end

% 20 stage, 27 bit cordic pipeline

x = sign_ext(x,25,2); % sign extend to accomodate bit growth

y = sign_ext(y,25,2);

j = 0;

d=1;

P_vec(N) = phase;

% z = phase;

while j < STG

 if (zin > 0)

d = 1;

 else

d = -1;

 end

 xpast = x;

 x = xpast - (d*bitshift(y,-j));

 y = y + (d*bitshift(xpast,-j));

j = j+1;

 zin = zin - (d*consts(j));

% ############------[27bit OverFlow Compensation]------############

 if (x > 134217727)% if > 2^27 -1 roll it back to -ve's

x = x - 268435455;

 else if(x < -134217728)

142

 x = x + 268435455;

end

 end

 if (y > 134217727)% if > 2^27 -1 roll it back to -ve's

y = y - 268435455;

 else if(y < -134217728)

 y = y + 268435455;

end

 end

end

% Clip the cordic output to 24 bit

X(N) = bitshift(x,-2);

Y(N) = bitshift(y,-2);

Z(N) = zin;

end

% Save Real and Imaginary values to test.mat file.

X_fft = fftshift(fft(double(X), fftsize));

save('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cordic_out.mat', 'X',

'Y','X_fft','NCO_Freq', 'fsample','nsamples');

% Time Domain Plots.

figure('NumberTitle', 'off',...

'Name', 'CORDIC output');

plot(X,'b')

hold

plot(Y,'g')

grid on

title('CORDIC time domain')

legend('Real Samples', 'Imag Samples')

xlabel('Time')

ylabel('Magnitute')

% Frequency Plots

figure('NumberTitle','off',...

'Name','Power Spectral Desity plot')

plot(frange, dB(psdg(X_fft/max(X_fft))))

axis([-fsample/2 fsample/2 -80 10])

grid on;

title('Frequency domain plot of NCO')

xlabel('Frequency')

ylabel('Magnitude in dB')

143

% Phase shift the CORDIC output to match the FPGA

cordic_delay = 21;

X = [zeros(1,cordic_delay) X];

fileID = fopen('C:\Users\Nagarjun\Documents\MATLAB\Thesis\cordicI2cic_TB.txt',

'w+');%%%%%%%%%%

for i= 1:nsamples

 fprintf(fileID, '%d\n',(X(i)));

end

fclose(fileID);

fileID = fopen('C:\Users\Nagarjun\Documents\MATLAB\Thesis\cordicQ2cic_TB.txt',

'w+');%%%%%%%%%%

for i= 1:nsamples

 fprintf(fileID, '%d\n',(Y(i)));

end

fclose(fileID);

 Cascaded Integrator Comb Filter

% CIC Decimation Filter Design Simulation for SDR

clc

clear all

close all

load('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cordic_out.mat') % Cordic output

fftsize = 65536;

fsample_in = fsample;

actual_rate = 5;% odd decimation would give better results;

decim_rate = actual_rate-1;

fsin = NCO_Freq;

Fs_out = fsample_in/actual_rate;

bits_in = 24;

N = 3; %number of stages

% nsamples = 512*4;

maxbitgain = ceil(log2(127));

% input signal

% x_in = (cos(2*pi*(0:nsamples-1)*(fsin/Fs_in)));%+rand(1,nsamples); %input signal

144

x_in = X;

nsamples = length(x_in);

figure

plot((0:1:nsamples-1),x_in)

title('Input signal')

xlabel('Time')

ylabel('Magnitude')

freq_in = (-0.5:1/fftsize:0.5-1/fftsize)*fsample_in;

x_infft = fftshift(fft(double(x_in), fftsize));

figure

plot(freq_in,dB(psdg(x_infft/max(x_infft))))

stitle = sprintf('Input to the CIC filter with sampling rate of %g',fsample_in);

title(stitle)

xname = sprintf('Fsin = %g', fsin);

xlabel('Frequency in Hz')

ylabel('Magnitude in dB')

hold on

% CIC freq Response

freqrange = (-0.5:1/fftsize:0.5-1/fftsize);

ZeroIdx=find(freqrange==0);

NotZeroIdx=find(freqrange~=0);

H0freq(NotZeroIdx)= sin(pi*decim_rate*freqrange(NotZeroIdx)) ./

sin(pi*freqrange(NotZeroIdx));

H0freq(ZeroIdx)=decim_rate;

H0freq=(H0freq/decim_rate).^N;

plot(freq_in, dB(psdg(H0freq)),'r')

hold off

ylim([-80 10])

grid

legend('Input Signal','CIC Filter')

% integrator inplementation

integrator = int64(zeros(1,N));

diff = int64(zeros(1, N));

% bitwidth=bits_in+ceil(N*log2(decim_rate));

bitwidth=bits_in+ceil(N*maxbitgain);

for ii = 1:1:nsamples

 x_sign_ext(ii) = sign_ext(int64(x_in(ii)),24,(bitwidth-24));

 integrator(1) = add_2(int64(x_sign_ext(ii)), integrator(1), bitwidth);

 stage1(ii+1) = integrator(1);

145

 integrator(2) = add_2(stage1(ii), integrator(2), bitwidth);

 stage2(ii+1) = integrator(2);

 integrator(3) = add_2(stage2(ii), integrator(3), bitwidth);

 stage3(ii+1) = integrator(3);

end

accu_delay = zeros(1,3);

stage3 = [accu_delay stage3];

% Down sample the signal this is done in cic_strober.v

sampler = stage3(1:actual_rate:length(stage3));

%Comb implementation

for jj = 1:1:length(sampler)

 pipeline1(jj) = add_2(sampler(jj), -diff(1), bitwidth);

 diff(1) = sampler(jj);

 pipeline2(jj) = add_2(pipeline1(jj), -diff(2), bitwidth);

 diff(2) = pipeline1(jj);

 pipeline3(jj) = add_2(pipeline2(jj), -diff(3), bitwidth);

 diff(3) = pipeline2(jj);

end

%######### Integrator plots

figure

subplot(3,2,1)

plot(stage1);

title('\bfIntegrator stages output')

ylabel('\bfMagnitude')

subplot(3,2,3)

plot(stage2);

ylabel('\bfMagnitude')

subplot(3,2,5);

plot(stage3)

ylabel('\bfMagnitude')

xlabel('\bfNumber of samples')

% ######### Differentiator plot

subplot(3,2,2)

plot(pipeline1);

title('\bfDifferentiator stages output')

ylabel('\bfMagnitude')

subplot(3,2,4)

plot(pipeline2);

ylabel('\bfMagnitude')

146

subplot(3,2,6);

plot(pipeline3)

ylabel('\bfMagnitude')

xlabel('\bfNumber of samples')

% Bit pruning CIC decimation filter

shift = round(N*(log2(actual_rate)));

cic_out = double(bitshift(int64(pipeline3),-shift));

cic_out_24 = (add_2((cic_out),0, 24));

% Output Signal

disp('Ploting multiple spectrum by rearrangin rows into columns')

figure

x_outfft = fftshift(fft(double(pipeline3), fftsize))';

x_outtohb = fftshift(fft(double(cic_out_24), fftsize))';

freq_out = freq_in/actual_rate;

plot(freq_out, dB(psdg([x_outfft/max(x_outfft) x_outtohb/max(x_outtohb)])));

hold on

stitle = sprintf('Output of the CIC filter with decimation srate of %g',actual_rate);

title(stitle)

xname = sprintf('Fsample in = %g, Fsample out = %g', fsample_in, fsample_in/actual_rate);

xlabel(xname)

ylabel('Magnitude in dB')

% ylim([-50 10])

legend('Actual output','Pruned output')

grid on

save('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cic_out.mat','Fs_out', 'freq_out',

'cic_out_24')

fileID = fopen('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cic2shb_TB.txt',

'w+');%%%%%%%%%%

for i= 1:nsamples/actual_rate-1

 fprintf(fileID, '%d\n',cic_out_24(i));

end

fclose(fileID);

147

 Small (7-Tap) Half Band Filter

clc

clear all

close all

load('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\cic_out')

fftsize = 65536;

decim_rate = 2; % fixed decimation in usrp

Fs_in = Fs_out; % sampling rate input

Fs_out = Fs_in/decim_rate;% decimated sampling rate

samples_in = cic_out_24;% output from CIC 24bit precision

nsamples = length(samples_in);

freq_in = freq_out;

freq_out = (-0.5:1/fftsize:0.5 - 1/fftsize)*Fs_out;

bitsin_W = 24;

round_W= 17;

accum_W = 30;

bitsin = 24;

bitsout=17;

%% Rounding the input to 18 bits using truncation

round_in = int_round(samples_in,bitsin_W,round_W);

figure

subplot(2,1,1)

plot(samples_in)

title('samples in 24 bit')

xlabel('Time')

ylabel('Magnitude')

subplot(2,1,2)

plot(round_in)

title('round in 17 bit')

xlabel('Time')

ylabel('Magnitude')

figure

Spec_filtIn24 = fftshift(fft(samples_in, fftsize))';

Spec_filtIn17 = fftshift(fft(round_in, fftsize))';

plot(freq_in, dB(psdg([Spec_filtIn17/max(Spec_filtIn17)

Spec_filtIn17/max(Spec_filtIn17)])));

title('Input signal to small HB Filter')

148

xlabel('Frequency in Hertz')

ylabel('Magnitude in dB')

legend('actual input','rounded input')

%% generating the filter coefficients for halfband filter

shb_filt = fix(2^18 * halfgen4(0.75/8,2))

figure

subplot(2,1,1)

stem(shb_filt)

title('Normalized HalfBand filter Taps = 7')

xlabel('Time sample')

ylabel('value')

grid on

fft_usrp_filt = fftshift(fft(shb_filt, fftsize));

subplot(2,1,2)

plot(freq_in, dB(psdg(fft_usrp_filt/max(fft_usrp_filt))));

xlabel('Frequency')

ylabel('Power(dB)')

ylim([-80 10])

grid on

%% Shift register Implementation

Z = zeros(1, length(shb_filt));

col_sh = diag(ones(length(shb_filt)-1,1), 1);

for n = 1:1:length(round_in)

 Z = Z*col_sh;

 Z(1) = round_in(n);

 add_1(n) = Z(1)+Z(7);

 add_2(n) = Z(3)+Z(5);

 middle(n) = int32(Z(4)*2);

 m_reg(n) = bitshift(sign_ext(middle(n),18,2),10);

end

% sum and product implementation

% Decimating happens in the 2nd stage of the implementation taking advantage of HB Char's

sum_a = add_1(1:2:length(round_in));

sum_b = add_2(1:2:length(round_in));

middle_reg = [double(m_reg(1:2:length(round_in))) 0];

product_1 = int64(sum_a.*(-10690));

product_2 = int64(sum_b.*(75809));

product_a = (bitshift(product_1,-(36-accum_W)));

product_b = (bitshift(product_2,-(36-accum_W)));

149

product_a = [0 product_a]; % testing the phase delays

% Final accumulator. 30 bit

% NOTE: accum is of double datatype. carefull about the input sizes as

% accum will not overflow as 30 bit number does.

K = 1;

for i = 1:2:nsamples

 accum(i) = middle_reg(K)+product_a(K);

 accum(i+1) = accum(i) + product_b(K);

 K=K+1;

end

accum_round = int_round(accum(2:2:end), accum_W, 25);

filt_out = clip(accum_round,25,24);

save('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\hb0_out','filt_out','Fs_out')

%% plot results

figure

plot(filt_out)

title('samples out 24 bit samples')

xlabel('Time')

ylabel('Magnitude')

Spec_filtOut = fftshift(fft(filt_out, fftsize));

figure

plot(freq_out, dB(psdg(Spec_filtOut/max(Spec_filtOut))));

xlim([-Fs_out/2 Fs_out/2])

title('Output signal from small HB Filter')

xlabel('Frequency in Hertz')

ylabel('Magnitude in dB')

grid on

fileID = fopen('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\shb2lhb_TB.txt',

'w+');%%%%%%%%%%

for i= 1:nsamples/decim_rate

 fprintf(fileID, '%d\n',accum_round(i));

end

fclose(fileID);

150

 Large (31-Tap) Half Band Filter

clc

clear all

close all

load('C:\Users\Nagarjun\Desktop\MathWorks\Matfiles\hb0_out');

data_in = filt_out;

clear('filt_out')

fs_in = Fs_out;

fftsize = 4096;

nsamples = length(data_in);

round_in = int_round(data_in, 24, 17);

figure

plot(round_in)

title('Rounded Input Signal')

xlabel('Time samples')

ylabel('Magnitude')

freq_in = (-0.5:1/fftsize:0.5-1/fftsize)*fs_in;

%% generating the filter coefficients for halfband filter according to USRP

myfilt = round(2^18 * halfgen4(.7/4,8));

Nord = length(myfilt);

myfilt_fft = fftshift(fft(myfilt,fftsize));

figure

subplot(2,1,1)

stem(myfilt)

title('\bfNormalized HalfBand filter Taps = 31')

xlabel('Time sample')

ylabel('value')

grid

subplot(2,1,2)

plot(freq_in,dB(psdg(myfilt_fft/max(myfilt_fft))))

% title('frequency response of the large filter')

ylabel('\itMagnitude in dB');

xlabel('\itFrequency')

grid

%% 31 tap HB has the 2 path polyphase implementation of the 31 tap halfband filter.

lambda = 2;

polyord = lambda*(ceil(Nord/lambda));

151

polytaps = polyord/lambda;

M = polytaps;

myfilt_v1 = [myfilt zeros(1, polyord-Nord)];

poly_filt = reshape(myfilt_v1,lambda,polytaps);

coeff1 = [-107 445 -1271 2959];

coeff2 = [-6107 11953 -24706 82359];

Z = zeros(lambda,polytaps);

Zshift = diag(ones(polytaps-1,1), 1);

numblocks = nsamples/lambda;

accum(1)=0;

for ii = 1:1:numblocks

 Z = Z*Zshift;

 Tindex = 1+((ii-1)*lambda:ii*lambda-1);

 Z(:,1) = (round_in(Tindex))';

 sum1 = [Z(1,1)+Z(1,16) Z(1,2)+Z(1,15) Z(1,3)+Z(1,14) Z(1,4)+Z(1,13)];

 sum2 = [Z(1,5)+Z(1,12) Z(1,6)+Z(1,11) Z(1,7)+Z(1,10) Z(1,8)+Z(1,9)];

 prod1 = sum1 .* coeff1; % 36 bit product

 prod2 = sum2 .* coeff2;

 sum_of_prod = (prod1+prod2); % 36 bit

 sum_of_prod = int64(prod1+prod2); % 36 bit

 round_sum = bitshift(sum_of_prod,-11); % round to 25 bit number for accumulator

% round_sum = sum_of_prod; % uncomment to compare with Conventional polyphase

implementation

% actual place for middle is Z(2,8) but due to indexing issue it is Z(2,9)

 middle = bitshift(int32(Z(2,9)),6);% should have rounded to 25 bit but its okay since

it is double is 2^53

 accum(ii) = sum(round_sum);

 final_sum(ii,:) = accum(ii)+ middle; %27 bit accumulator

 % Conventional polyphase implementation. Need to shift right by 11 bits

 % to match the outputs.

% yvect(:,ii) = sum(((Z)) .* poly_filt,2);

% filt_out(ii) = sum(yvect(:,ii)).';

end

% final_out = int_round()

% filt_out = int64(sum(yvect).');

figure

% subplot(1,2,1)

plot(final_sum)

title('31 TAP HB filt FPGA implementation Matched')

152

xlabel('Time samples')

ylabel('Magnitude')

% subplot(1,2,2)

% plot(filt_out)

% title('My polyphase output')

% xlabel('Time samples')

% ylabel('Magnitude')

fft_final_sum = fftshift(fft(double(final_sum), fftsize));

figure

plot(freq_in/2,dB(psdg(fft_final_sum/max(fft_final_sum))))

title('\bfFrequency spectrum')

xlabel('\bfFrequency')

ylabel('\bfMagnitude in dB')

grid

 Half-Band filter generator

function A=halfgen4(up,N)

% up is the stopband width, as a fraction of input sampling rate

% N is the order of half-band filter to generate

% A is the full set of FIR coefficients, 4*N-1 long

npt=N*20;

wmax=2*pi*up;

x0=([0:npt]-.0)'/npt;

yfit=1-x0.^2; % possibly bogus, but good enough to get started

wfit=yfit*wmax;

q=[1:2:(2*N-1)];

target=.5*ones(length(wfit),1

153

Appendix B - VHDL Implementation

 Cordic_z24.vhd

-- Company: Western Michigan University

-- Engineer: Nagarjun Marappa

--

-- Create Date: 20:44:32 03/29/2014

-- Design Name:

-- Module Name: Cordic_z24 - Behavioral

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

entity Cordic_z24 is

generic (zwidth : natural := 24;

 bitwidth : natural := 25;

 D_CARE_VAL : std_logic:='X'

);

 Port (CLK : in STD_LOGIC;

 RST : in STD_LOGIC;

 ddc_en : in STD_LOGIC;

 Iin : in STD_LOGIC_VECTOR(bitwidth-1 downto 0);

 Qin : in STD_LOGIC_VECTOR(bitwidth-1 downto 0);

 Zin : in STD_LOGIC_VECTOR(zwidth-1 downto 0);

 Iout : out STD_LOGIC_VECTOR(bitwidth-1 downto 0);

 Qout : out STD_LOGIC_VECTOR(bitwidth-1 downto 0);

 Zout : out STD_LOGIC_VECTOR(zwidth-1 downto 0)

);

end Cordic_z24;

architecture Behavioral of Cordic_z24 is

 COMPONENT CORDIC_STAGE is

 generic (zwidth : natural := 24;

 bitwidth : natural := 26;

 shift : natural := 1

);

 Port (CLK : in STD_LOGIC;

 RST : in STD_LOGIC;

 en : in STD_LOGIC;

 Iin : in STD_LOGIC_VECTOR (bitwidth-1 downto 0);

 Qin : in STD_LOGIC_VECTOR (bitwidth-1 downto 0);

 zin : in STD_LOGIC_VECTOR (zwidth-1 downto 0);

154

 C_consts : in STD_LOGIC_VECTOR (zwidth-1 downto 0);

 Iout : out STD_LOGIC_VECTOR (bitwidth-1 downto 0);

 Qout : out STD_LOGIC_VECTOR (bitwidth-1 downto 0);

 zout : out STD_LOGIC_VECTOR (zwidth-1 downto 0));

 end COMPONENT;

-- constants for 24 bit phase

constant C0 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"200000";

constant C1 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"12E405";

constant C2 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"09FB38";

constant C3 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"051112";

constant C4 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"028B0D";

constant C5 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"0145D8";

constant C6 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00A2F6";

constant C7 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00517C";

constant C8 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"0028BE";

constant C9 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00145F";

constant C10 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000A30";

constant C11 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000518";

constant C12 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00028C";

constant C13 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000146";

constant C14 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"0000A3";

constant C15 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000051";

constant C16 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000029";

constant C17 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000014";

constant C18 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"00000A";

constant C19 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000005";

constant C20 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000003";

constant C21 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000001";

constant C22 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000001";

constant C23 : STD_LOGIC_VECTOR(zwidth-1 downto 0) := x"000000";

-- InPhase inter stage components

signal I0 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I1 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I2 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I3 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I4 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I5 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I6 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I7 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I8 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I9 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I10: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I11: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I12: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I13: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I14: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I15: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I16: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I17: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I18: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I19: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal I20: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

attribute KEEP :string;

155

attribute KEEP of I0: signal is "TRUE";

attribute KEEP of I1: signal is "TRUE";

attribute KEEP of I2: signal is "TRUE";

attribute KEEP of I3: signal is "TRUE";

attribute KEEP of I4: signal is "TRUE";

attribute KEEP of I5: signal is "TRUE";

attribute KEEP of I6: signal is "TRUE";

attribute KEEP of I7: signal is "TRUE";

attribute KEEP of I8: signal is "TRUE";

attribute KEEP of I9: signal is "TRUE";

attribute KEEP of I10: signal is "TRUE";

attribute KEEP of I11: signal is "TRUE";

attribute KEEP of I12: signal is "TRUE";

attribute KEEP of I13: signal is "TRUE";

attribute KEEP of I14: signal is "TRUE";

attribute KEEP of I15: signal is "TRUE";

attribute KEEP of I16: signal is "TRUE";

attribute KEEP of I17: signal is "TRUE";

attribute KEEP of I18: signal is "TRUE";

attribute KEEP of I19: signal is "TRUE";

attribute KEEP of I20: signal is "TRUE";

-- QuadraturePhase inter stage components

signal Q0 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q1 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q2 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q3 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q4 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q5 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q6 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q7 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q8 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q9 : STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q10: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q11: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q12: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q13: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q14: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q15: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q16: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q17: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q18: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q19: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

signal Q20: STD_LOGIC_VECTOR(bitwidth+1 downto 0);

attribute KEEP of Q0: signal is "TRUE";

attribute KEEP of Q1: signal is "TRUE";

attribute KEEP of Q2: signal is "TRUE";

attribute KEEP of Q3: signal is "TRUE";

attribute KEEP of Q4: signal is "TRUE";

attribute KEEP of Q5: signal is "TRUE";

attribute KEEP of Q6: signal is "TRUE";

attribute KEEP of Q7: signal is "TRUE";

attribute KEEP of Q8: signal is "TRUE";

attribute KEEP of Q9: signal is "TRUE";

156

attribute KEEP of Q10: signal is "TRUE";

attribute KEEP of Q11: signal is "TRUE";

attribute KEEP of Q12: signal is "TRUE";

attribute KEEP of Q13: signal is "TRUE";

attribute KEEP of Q14: signal is "TRUE";

attribute KEEP of Q15: signal is "TRUE";

attribute KEEP of Q16: signal is "TRUE";

attribute KEEP of Q17: signal is "TRUE";

attribute KEEP of Q18: signal is "TRUE";

attribute KEEP of Q19: signal is "TRUE";

attribute KEEP of Q20: signal is "TRUE";

-- Inter Stage Phase Components

signal Z0 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z1 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z2 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z3 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z4 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z5 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z6 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z7 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z8 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z9 : STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z10: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z11: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z12: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z13: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z14: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z15: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z16: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z17: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z18: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z19: STD_LOGIC_VECTOR(zwidth-1 downto 0);

signal Z20: STD_LOGIC_VECTOR(zwidth-1 downto 0);

attribute KEEP of Z0: signal is "TRUE";

attribute KEEP of Z1: signal is "TRUE";

attribute KEEP of Z2: signal is "TRUE";

attribute KEEP of Z3: signal is "TRUE";

attribute KEEP of Z4: signal is "TRUE";

attribute KEEP of Z5: signal is "TRUE";

attribute KEEP of Z6: signal is "TRUE";

attribute KEEP of Z7: signal is "TRUE";

attribute KEEP of Z8: signal is "TRUE";

attribute KEEP of Z9: signal is "TRUE";

attribute KEEP of Z10: signal is "TRUE";

attribute KEEP of Z11: signal is "TRUE";

attribute KEEP of Z12: signal is "TRUE";

attribute KEEP of Z13: signal is "TRUE";

attribute KEEP of Z14: signal is "TRUE";

attribute KEEP of Z15: signal is "TRUE";

attribute KEEP of Z16: signal is "TRUE";

attribute KEEP of Z17: signal is "TRUE";

attribute KEEP of Z18: signal is "TRUE";

attribute KEEP of Z19: signal is "TRUE";

attribute KEEP of Z20: signal is "TRUE";

157

signal Iin_ext,Qin_ext: std_logic_vector(bitwidth+2 -1 downto 0);

attribute KEEP of Iin_ext,Qin_ext: signal is "TRUE";

begin

-- Sign extention to compensat the cordic gain 1.64xxxxxx

-- one more option for sign extention is using resize() function from

numeric_std library.

--works on signed and unsigned.

Iin_ext <= ((Iin(bitwidth-1)&Iin(bitwidth-1)) & Iin(bitwidth-1 downto

0));

Qin_ext <= ((Qin(bitwidth-1)&Qin(bitwidth-1)) & Qin(bitwidth-1 downto

0));

--phase_inc := phase_step;

--Iin_ext <= resize(Iin,26);

--Qin_ext <= resize(Qin,26);

Qudrant_process :process(CLK, RST,Iin_ext,Qin_ext,Zin)

begin

if rising_edge(CLK) then

 if RST = '1' then

 I0 <= (others => '0');

 Q0 <= (others => '0');

 Z0 <= (others => '0');

 else

-- case (Zin(Zin'high-1 downto Zin'high-2)) is -- error's out in

modelsim "case expression must be logically static"

 case (Zin(24-1 downto 24-2)) is

 when "00" => -- no pre-rotation

 I0 <= (Iin_ext);

 Q0 <= (Qin_ext);

 Z0 <= (Zin);

 when "01" => --interval between 90 to 180 degrees

 I0 <= -(Qin_ext);

 Q0 <= (Iin_ext);

 Z0 <= ("00" & Zin(zwidth-2-1 downto 0)); -- phase

rotation to +90 deg

 when "10" => --interval between -180 to -90 degrees

 I0 <= (Qin_ext);

 Q0 <= -(Iin_ext);

 Z0 <= ("11" & Zin(zwidth-2-1 downto 0)); -- Phase

rotatio to -90 deg

 when "11" => ---- no pre-rotation

 I0 <= (Iin_ext);

 Q0 <= (Qin_ext);

 Z0 <= (Zin);

 when others =>

 I0 <= (others => '0');

 Q0 <= (others => '0');

 Z0 <= (others => '0');

 end case;

 end if;

end if;

end process;

158

-- In this style of the portmap the order of the signals inside the

braces are important

STAGE_0 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 0) PORT

MAP(CLK,RST,ddc_en,I0,Q0,Z0,C0,I1,Q1,Z1);

STAGE_1 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 1) PORT

MAP(CLK,RST,ddc_en,I1,Q1,Z1,C1,I2,Q2,Z2);

STAGE_2 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 2) PORT

MAP(CLK,RST,ddc_en,I2,Q2,Z2,C2,I3,Q3,Z3);

STAGE_3 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 3) PORT

MAP(CLK,RST,ddc_en,I3,Q3,Z3,C3,I4,Q4,Z4);

STAGE_4 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 4) PORT

MAP(CLK,RST,ddc_en,I4,Q4,Z4,C4,I5,Q5,Z5);

STAGE_5 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 5) PORT

MAP(CLK,RST,ddc_en,I5,Q5,Z5,C5,I6,Q6,Z6);

STAGE_6 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 6) PORT

MAP(CLK,RST,ddc_en,I6,Q6,Z6,C6,I7,Q7,Z7);

STAGE_7 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 7) PORT

MAP(CLK,RST,ddc_en,I7,Q7,Z7,C7,I8,Q8,Z8);

STAGE_8 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 8) PORT

MAP(CLK,RST,ddc_en,I8,Q8,Z8,C8,I9,Q9,Z9);

STAGE_9 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 9) PORT

MAP(CLK,RST,ddc_en,I9,Q9,Z9,C9,I10,Q10,Z10);

STAGE_10 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 10) PORT

MAP(CLK,RST,ddc_en,I10,Q10,Z10,C10,I11,Q11,Z11);

STAGE_11 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 11) PORT

MAP(CLK,RST,ddc_en,I11,Q11,Z11,C11,I12,Q12,Z12);

STAGE_12 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 12) PORT

MAP(CLK,RST,ddc_en,I12,Q12,Z12,C12,I13,Q13,Z13);

STAGE_13 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 13) PORT

MAP(CLK,RST,ddc_en,I13,Q13,Z13,C13,I14,Q14,Z14);

STAGE_14 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 14) PORT

MAP(CLK,RST,ddc_en,I14,Q14,Z14,C14,I15,Q15,Z15);

STAGE_15 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 15) PORT

MAP(CLK,RST,ddc_en,I15,Q15,Z15,C15,I16,Q16,Z16);

STAGE_16 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 16) PORT

MAP(CLK,RST,ddc_en,I16,Q16,Z16,C16,I17,Q17,Z17);

STAGE_17 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 17) PORT

MAP(CLK,RST,ddc_en,I17,Q17,Z17,C17,I18,Q18,Z18);

STAGE_18 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 18) PORT

MAP(CLK,RST,ddc_en,I18,Q18,Z18,C18,I19,Q19,Z19);

STAGE_19 : CORDIC_STAGE generic map(zwidth, bitwidth+2, 19) PORT

MAP(CLK,RST,ddc_en,I19,Q19,Z19,C19,I20,Q20,Z20);

Iout <= I20(bitwidth+1 downto 2);

Qout <= Q20(bitwidth+1 downto 2);

Zout <= Z20;

end Behavioral;

 CORDIC_STAGE.vhd

-- Company: Western Michigan University

159

-- Engineer: Nagarjun Marappa

--

-- Create Date: 17:07:42 03/17/2014

-- Design Name:

-- Module Name: CORDIC_STAGE - Behavioral

-- Revised on the final implementation on 2/8/2015

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.std_logic_arith.ALL;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity CORDIC_STAGE is

generic (zwidth : natural := 24;

 bitwidth : natural := 26;

 shift : natural := 1

);

 Port (CLK : in STD_LOGIC;

 RST : in STD_LOGIC;

 en : in STD_LOGIC;

 Iin : in STD_LOGIC_VECTOR (bitwidth-1 downto 0);

 Qin : in STD_LOGIC_VECTOR (bitwidth-1 downto 0);

 zin : in STD_LOGIC_VECTOR (zwidth-1 downto 0);

 C_consts : in STD_LOGIC_VECTOR (zwidth-1 downto 0);

 Iout : out STD_LOGIC_VECTOR (bitwidth-1 downto 0);

 Qout : out STD_LOGIC_VECTOR (bitwidth-1 downto 0);

 zout : out STD_LOGIC_VECTOR (zwidth-1 downto 0));

end CORDIC_STAGE;

architecture Behavioral of CORDIC_STAGE is

begin

main_process: process (CLK, Iin, Qin , zin, C_consts)

begin

if rising_edge (CLK) then

 if RST = '1' then

 Iout <= (others=>'0');

 Qout <= (others=>'0');

 zout <= (others=>'0');

 else

-- if en = '1' then

 if(zin(zwidth - 1) = '1') then

 Iout <= Iin + ((shift downto 0 => Qin(bitwidth-1)) &

Qin(bitwidth-2 downto shift));

 Qout <= Qin - ((shift downto 0 => Iin(bitwidth-1)) &

Iin(bitwidth-2 downto shift));

 zout <= zin + C_consts;

 else

 Iout <= Iin - ((shift downto 0 => Qin(bitwidth-1)) &

Qin(bitwidth-2 downto shift));

 Qout<= Qin + ((shift downto 0 => Iin(bitwidth-1)) &

Iin(bitwidth-2 downto shift));

 zout<= zin - C_consts;

160

 end if;

-- end if;

 end if;

end if;

end process;

end Behavioral;

 cic_decim.vhd

-- Company: Western Michigan University

-- Engineer: Nagarjun Marappa

--

-- Create Date: 16:53:09 06/21/2014

-- Design Name: Dr.Bazuin-SDR-LAB

-- Module Name: ddc_chain - Behavioral

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_SIGNED.ALL;

use IEEE.NUMERIC_STD.ALL;

entity cic_decim is

 generic(bits_in: natural := 24; -- natural range 0 to integer'HIGH

 log2_max_rate: natural := 7;

 K : natural := 3

);

 port (CLK : IN STD_LOGIC;

 RST : IN STD_LOGIC;

 cic_en : IN STD_LOGIC;

 strobe_in : IN STD_LOGIC;

 strobe_out : IN STD_LOGIC;

 rate : IN STD_LOGIC_VECTOR(8-1 downto 0);

 signal_in : IN STD_LOGIC_VECTOR(bits_in-1 downto 0);

 signal_out : OUT STD_LOGIC_VECTOR(bits_in-1 downto 0)

);

end cic_decim;

architecture Behavioral of cic_decim is

 component sign_extend is

 generic(bitsin: natural := 24;

 bitsout: natural := 25);

 port (CLK : in std_logic;

 RST : in std_logic;

 signal_in : in std_logic_vector(bitsin-1 downto 0);

 signal_out: out std_logic_vector(bitsout-1 downto 0)

);

 end component;

161

 component cic_decim_prun is

 generic(bitsin: natural := 24;

 maxbitgain: natural := 21);

 port (rate: in std_logic_vector(8-1 downto 0);

 signal_in : in std_logic_vector(bitsin+maxbitgain-1 downto

0);

 signal_out: out std_logic_vector(bitsin-1 downto 0)

);

 end component;

constant maxbitgain : natural := K*log2_max_rate;

type cic_reg is array (integer range <>) of

std_logic_vector(bits_in+maxbitgain-1 downto 0);

signal integrator : cic_reg(K-1 downto 0);

signal pipeline : cic_reg(K-1 downto 0);

signal differentiator: cic_reg(K-1 downto 0);

signal signal_in_ext : std_logic_vector(bits_in+maxbitgain-1 downto

0);

signal signal_out_prun: std_logic_vector(bits_in-1 downto 0):= (others

=> '0');

signal sampler : std_logic_vector(bits_in+maxbitgain-1 downto 0):=

(others => '0');

-- NOTE: Samples needs to be initialized or else there will be unknown

signal out for some time period since

-- integrator would have finished computing

attribute KEEP: string;

attribute KEEP of signal_in_ext : signal is "TRUE";

attribute KEEP of integrator : signal is "TRUE";

attribute KEEP of pipeline : signal is "TRUE";

attribute KEEP of differentiator : signal is "TRUE";

begin

--signal_in_ext <=((maxbitgain-1 downto 0 => signal_in(bits_in-1)) &

signal_in);

integrating: process (CLK, RST, strobe_out)

begin

 if rising_edge(CLK) then

 if (RST = '1' or cic_en = '0') then

 for i in 0 to K-1 loop

 integrator(i) <= (others =>'0');

 end loop;

 else if (strobe_in = '1') then

 integrator(0) <= integrator(0)+ signal_in_ext;

 for i in 1 to K-1 loop

 integrator(i) <= integrator(i)+integrator(i-1);

 end loop;

 end if;

 end if;

162

 end if;

end process;

Comb_Filter: process (CLK, RST, strobe_out)

begin

 if rising_edge(CLK) then

 if(RST = '1' or cic_en = '0') then

 for i in 0 to K-1 loop

 pipeline(i) <= (others => '0');

 differentiator(i) <= (others => '0');

 end loop;

 else if (strobe_out = '1') then

 sampler <= integrator(K-1);

 differentiator(0) <= sampler;

 pipeline(0) <= sampler - differentiator(0);

 for i in 1 to K-1 loop

 differentiator(i) <= pipeline(i-1);

 pipeline(i) <= pipeline(i-1) -

differentiator(i);

 end loop;

 end if;

 end if;

 end if;

end process;

--signal_out_buff <= differentiator(K-1);

--signal_out <= signal_out_buff(bits_in-1 downto 0);

signal_out <= signal_out_prun when RST = '0' else (others => '0');

sign_ext: sign_extend generic map(bitsin => bits_in,

 bitsout=> bits_in+maxbitgain)

 port map(CLK => CLK,

 RST => RST,

 signal_in =>signal_in,

 signal_out=>signal_in_ext);

cic_prun: cic_decim_prun generic map(bitsin => bits_in,

 maxbitgain => maxbitgain)

 port map(rate => rate,

 signal_in =>pipeline(K-1),

 signal_out=>signal_out_prun);

end Behavioral;

 small_hb_top.vhd

-- Company: Western Michigan University

-- Engineer: Nagarjun Marappa

--

-- Create Date: 16:53:09 06/21/2014

-- Design Name: Dr.Bazuin-SDR-LAB

-- Module Name: ddc_chain - Behavioral

--

163

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

library UNISIM;

use UNISIM.VComponents.all;

entity Small_HB_top is

generic(INWIDTH : natural := 24;

 round_width : natural := 17;

 accum_width : natural := 30;

 D_CARE_VAL : std_logic:='X'

);

port (

 CLK : in std_logic;

 RST : in std_logic;

 enable : in std_logic;

 bypass : in std_logic;

-- IN_RATE : in std_logic_vector(7 downto 0);

 samples_in : in std_logic_vector(INWIDTH-1 downto 0);

 samples_out : out std_logic_vector(INWIDTH-1 downto 0);

 strobe_in : in std_logic; -- remove CIC strober!!

 strobe_out : out std_logic

);

end Small_HB_top;

architecture Behavioral of Small_HB_top is

component round_sd is

generic (WIDTH_IN : natural := 24;

 WIDTH_OUT: natural := 17);

port(

 CLK : in std_logic;

 RST : in std_logic;

 strobe_in: in std_logic;

 data_in : in std_logic_vector(WIDTH_IN-1 downto 0);

 data_out : out std_logic_vector(WIDTH_OUT-1 downto 0);

 strobe_out: out std_logic

);

end component round_sd;

component clip is

 generic(bitsin: natural:=INWIDTH+1;

 bitsout: natural := INWIDTH);

 port(data_in : in std_logic_vector(bitsin-1 downto 0);

164

 data_out: out std_logic_vector(bitsout-1 downto 0)

);

end component clip;

signal strobe_hb : std_logic;

signal round_data_in : std_logic_vector(round_width-1 downto 0);

--**

-- | Filtering signals and constants | --

--**

constant coeff_a : integer := -10690;--"111101011000111110"

constant coeff_b : integer := 75809;--"010010100000100001"

signal go, go_d1, go_d2, go_d3, go_d4: std_logic;

signal phase : std_logic;

signal Z1,Z2,Z3,Z4,Z5,Z6 : std_logic_vector(round_width-1 downto 0) :=

(others => '0');

signal sum_a, sum_b : std_logic_vector(round_width downto 0);-- :=

(others => '0');

signal extnd_in, extnd_Z2, extnd_Z4, extnd_Z6 :

std_logic_vector(round_width downto 0):= (others => '0');

signal middle : std_logic_vector(round_width downto 0);

signal coeff_reg : std_logic_vector(round_width downto 0) := (others

=> '0');

signal sum_reg : std_logic_vector(round_width downto 0) := (others

=> '0');

signal prod_reg : std_logic_vector(accum_width-1 downto 0):= (others =>

'0');

signal middle_reg, middle_d1 : std_logic_vector(accum_width-1 downto

0):= (others => '0');

signal accum : std_logic_vector(accum_width-1 downto 0);

signal product : std_logic_vector(36-1 downto 0);

signal mult_CE : std_logic;

signal samples_out_buff : std_logic_vector(INWIDTH-1 downto 0);

signal accum_rnd : std_logic_vector(INWIDTH downto 0);

signal stb_rnd : std_logic;

attribute KEEP : string;

attribute KEEP of round_data_in: signal is "TRUE";

attribute KEEP of Z1,Z2,Z3,Z4,Z5,Z6: signal is "TRUE";

attribute KEEP of phase: signal is "TRUE";

attribute KEEP of go, go_d1, go_d2, go_d3, go_d4: signal is "TRUE";

attribute KEEP of sum_a,sum_b: signal is "TRUE";

attribute KEEP of extnd_in,extnd_Z2,extnd_Z4,extnd_Z6: signal is

"TRUE";

attribute KEEP of coeff_reg: signal is "TRUE";

attribute KEEP of sum_reg: signal is "TRUE";

attribute KEEP of middle,middle_d1,middle_reg: signal is "TRUE";

attribute KEEP of prod_reg: signal is "TRUE";

attribute KEEP of accum_rnd: signal is "TRUE";

type coeff_ram is array(1 downto 0) of std_logic_vector(17 downto 0);

signal coeff : coeff_ram :=

(

 0 => "111101011000111110", -- coeff_a

 1 => "010010100000100001",-- coeff_b

165

 others => (others=>'0')

);

attribute KEEP of coeff: signal is "TRUE";

begin

process (CLK, RST)

begin

 if rising_edge(CLK) then

 if RST = '1' or enable = '0' then

 phase <= '0';

 else

 if strobe_hb = '1' then

 phase <= not(phase);

 end if;

 end if;

-- go <= strobe_hb and phase;

 end if;

end process;

go <= strobe_hb and phase;

--###

triggre: process(CLK, RST)

 begin

 if rising_edge(CLK) then

 if(RST = '1' or enable = '0')then

 go_d1 <= '0';

 go_d2 <= '0';

 go_d3 <= '0';

 go_d4 <= '0';

 else

 go_d1 <= go;

 go_d2 <= go_d1;

 go_d3 <= go_d2;

 go_d4 <= go_d3;

 end if;

 end if;

 end process triggre;

--###

shift_reg: process(CLK, RST)

 begin

 if rising_edge(CLK) then

 if(RST = '1' or enable = '0')then

 Z1 <= (others => '0');

 Z2 <= (others => '0');

 Z3 <= (others => '0');

 Z4 <= (others => '0');

 Z5 <= (others => '0');

 Z6 <= (others => '0');

 else if (strobe_hb = '1') then

 Z1 <= round_data_in;

 Z2 <= Z1;

 Z3 <= Z2;

 Z4 <= Z3;

 Z5 <= Z4;

 Z6 <= Z5;

166

 end if;

 end if;

 end if;

 end process shift_reg;

--###

Sign_extend: process (CLK, RST)

begin

 if rising_edge(CLK) then

 if RST = '1' then

 extnd_in <= (others => '0');

 extnd_Z6 <= (others => '0');

 extnd_Z2 <= (others => '0');

 extnd_Z4 <= (others => '0');

 else

 extnd_in <= (round_data_in(round_width-1) &

round_data_in(round_width-1 downto 0));

 extnd_Z6 <= (Z6(round_width-1) & Z6(round_width-1 downto

0));

 extnd_Z2 <= (Z2(round_width-1) & Z2(round_width-1 downto

0));

 extnd_Z4 <= (Z4(round_width-1) & Z4(round_width-1 downto

0));

 end if;

 end if;

end process Sign_extend;

--

----###

filter_reg : process(CLK, RST, go_d1)

begin

 if rising_edge(CLK) then

 if RST = '1' then

 sum_reg <= (others => '0');

 coeff_reg <= (others => '0');

 else if (go_d1 = '1') then

 sum_reg <= sum_b;

 coeff_reg <= "010010100000100000";

 else

 sum_reg <= sum_a;

 coeff_reg <= "111101011000111110";

 end if;

 end if;

 end if;

end process;

----###

-- 3/7/2015 -- timing adjustments for summing

sum_process: process(CLK,RST,go)

begin

 if rising_edge(CLK) then

 if RST = '1' then

 sum_a <= (others=>'0');

 sum_b <= (others=>'0');

 middle <=(others=>'0');

 else

 if go = '1' then

167

 sum_a <= extnd_in + extnd_Z6;

 sum_b <= extnd_Z2 + extnd_Z4;

 middle <= Z3 & '0';

 end if;

 end if;

 end if;

end process;

process(CLK, go_d1)

begin

if rising_edge(CLK) then

 if go_d1 = '1' then

 middle_reg <=

(middle(round_width)&middle(round_width)&middle&((round_width-

1+accum_width-36)-1 downto 0 => '0'));

 end if;

end if;

end process;

mult_CE <= go_d1 or go_d2;

--###

accumulate: process(CLK, RST)

begin

 if rising_edge(CLK) then

 if (RST = '1' or enable = '0') then

 accum <= (others=>'0');

 else if go_d2 = '1' then

 accum <= middle_reg + prod_reg;

 else if go_d3 = '1' then

 accum <= accum + prod_reg;

 end if;

 end if;

 end if;

 end if;

end process accumulate;

Round_In: round_sd generic map(

 WIDTH_IN => INWIDTH,

 WIDTH_OUT => round_width)

 port map(

 CLK => CLK,

 RST => RST,

 strobe_in => strobe_in,

 data_in => samples_in,

 data_out => round_data_in,

 strobe_out => strobe_hb

);

-- Multiplier Instantiation

Multiplier : MULT18X18S port map

 (P => product,

 B => sum_reg,

 A => coeff_reg,

 C => CLK,

 CE=> mult_CE,

 R => RST

168

);

prod_reg <= product(36-1 downto 36-accum_width);

Round_Accum: round_sd generic map(

 WIDTH_IN => accum_width,

 WIDTH_OUT => INWIDTH+1

)

 port map(

 CLK => CLK,

 RST => RST,

 strobe_in => go_d4,

 data_in => accum,

 data_out => accum_rnd,

 strobe_out=> stb_rnd

);

clip_shb_out: clip generic map(

 bitsin => INWIDTH+1,

 bitsout => INWIDTH)

 port map(

 data_in => accum_rnd,

 data_out=> samples_out_buff

);

sync2clk: process(CLK, RST)

begin

if rising_edge(CLK)then

 if bypass = '0' then

 samples_out <= samples_out_buff;

 strobe_out <= stb_rnd;

 else

 samples_out <= samples_in;

 strobe_out <= strobe_in;

 end if;

end if;

end process sync2clk;

end Behavioral;

 large_hb_top.vhd

-- Company: Western Michigan University

-- Engineer: Nagarjun Marappa

--

-- Create Date: 16:53:09 06/21/2014

-- Design Name: Dr.Bazuin-SDR-LAB

-- Module Name: ddc_chain - Behavioral

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

169

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_misc.all;

library UNISIM;

use UNISIM.VComponents.all;

entity large_hb is

generic(WIDTH: natural := 24

);

port(CLK : in std_logic;

 RST : in std_logic;

 bypass: in std_logic;

 run: in std_logic;

 cpi : in std_logic_vector(8 downto 0);

 strobe_in: in std_logic;

 data_in : in std_logic_vector(WIDTH-1 downto 0);

 data_out: out std_logic_vector(WIDTH-1 downto 0);

 strobe_out: out std_logic

);

end large_hb;

architecture Behavioral of large_hb is

 component round_sd is

 generic (WIDTH_IN : natural := 24;

 WIDTH_OUT: natural := 17;

 DISABLE_SD: natural := 0);

 port(

 CLK : in std_logic;

 RST : in std_logic;

 strobe_in: in std_logic;

 data_in : in std_logic_vector(WIDTH_IN-1 downto 0);

 data_out : out std_logic_vector(WIDTH_OUT-1 downto 0);

 strobe_out: out std_logic

);

 end component round_sd;

 -- SRL16E SHIFT REGISTER MODULE

 component srl_module is

 generic(WIDTH : natural:= 17);

 port(CLK : in std_logic;

 RST : in std_logic;

 enable: in std_logic;

 data_in : in std_logic_vector(WIDTH-1 downto 0);

 addr : in std_logic_vector(3 downto 0);

 Q_out : out std_logic_vector(WIDTH-1 downto 0)

);

 end component srl_module;

 -- ACCUMULATOR 27 bit

 component acc is

 generic(IWIDTH: natural:= 25;

 OWIDTH: natural:= 27);

 port(

 CLK : in std_logic;

 RST : in std_logic;

 clear : in std_logic;

 acc : in std_logic;

170

 data_in : in std_logic_vector(IWIDTH-1 downto 0);

 data_out : out std_logic_vector(OWIDTH-1 downto 0)

);

 end component;

 -- SIGN EXTENTION

 component sign_extend is

 generic(bitsin: natural := 24;

 bitsout: natural := 25);

 Port(CLK : in std_logic;

 RST : in std_logic;

 signal_in : in STD_LOGIC_VECTOR (bitsin-1 downto 0);

 signal_out : out STD_LOGIC_VECTOR (bitsout-1 downto 0)

);

 end component sign_extend;

 -- OUTPUT CLIP

 component clip is

 generic(bitsin: natural:=25;

 bitsout: natural := 24);

 port(data_in : in std_logic_vector(bitsin-1 downto 0);

 data_out: out std_logic_vector(bitsout-1 downto 0)

);

 end component;

constant INTWIDTH: natural:= 17; --integer width

constant accwidth: natural:= WIDTH+3; --accumulator width

constant SHIFT_FACTOR: natural:= 6;

-- signals from/to input round module

signal rnd_data_in: std_logic_vector(INTWIDTH-1 downto 0);

signal stb_rnd: std_logic;

-- DELAY ELEMENTS ADDR/DATA OF UPPER POLYPHASE STRUCTURE

signal addr_odd_a, addr_odd_b, addr_odd_c, addr_odd_d :

std_logic_vector(4-1 downto 0);

signal data_odd_a, data_odd_b, data_odd_c, data_odd_d :

std_logic_vector(INTWIDTH-1 downto 0);

signal data_even : std_logic_vector(INTWIDTH-1 downto 0);

-- signal RATE : std_logic_vector(8-1 downto 0) := x"12";

signal odd: std_logic:= '0';

signal write_odd, write_even : std_logic:= '0';

signal addr_even : std_logic_vector(4-1 downto 0);

signal phase: std_logic_vector(2 downto 0):= "000";

signal phase_d1: std_logic_vector(2 downto 0):= "000";

-- LOGIC BLOCK ENABLE CONTROL SIGNALS

signal stb_out_pre : std_logic_vector(15 downto 0);

signal do_acc: std_logic := '0';

signal do_mult: std_logic := '1';

signal clear : std_logic:= '0';

signal coeff1, coeff2 : std_logic_vector(INTWIDTH downto 0):=

(others=>'0'); --18 bit

signal sum1, sum2 : std_logic_vector(INTWIDTH downto 0):= (others =>

'0'); --18 bit

signal prod1, prod2 : std_logic_vector(2*INTWIDTH+1 downto 0):= (others

=> '0'); --36 bit

171

signal sum_of_prod : std_logic_vector(2*INTWIDTH+1 downto 0):= (others

=> '0');

signal acc_out : std_logic_vector(ACCWIDTH-1 downto 0);

-- SIGNALS FOR EVEN PATH

signal data_even_signext: std_logic_vector(ACCWIDTH-1 downto 0);

signal final_sum : std_logic_vector(ACCWIDTH-1 downto 0);

signal final_sum_clip: std_logic_vector(WIDTH-1 downto 0);

signal selected_stb: std_logic;

attribute KEEP:string;

attribute KEEP of sum_of_prod : signal is "TRUE";

attribute KEEP of acc_out : signal is "TRUE";

attribute KEEP of final_sum : signal is "TRUE";

begin -- architecure

process(CLK, RST)

begin

if rising_edge(CLK) then

 if (RST = '1' or run = '0') then

 odd <= '0';

 else if (stb_rnd = '1') then

 odd <= not(odd);

 end if;

 end if;

end if;

end process;

write_odd <= stb_rnd and odd;

write_even<= stb_rnd and not(odd);

phase_counter: process(CLK, RST)

begin

if rising_edge(CLK) then

 if (RST = '1' or run = '0')then

 phase <= "000";

 else if((stb_rnd and odd) = '1')then

 phase <= "001";

 else if(phase = "100") then

 phase <= "000";

 else if(phase /= "000") then

 phase <= phase + '1';

 end if;

 end if;

 end if;

 end if;

end if;

end process phase_counter;

process(CLK)

begin

 if rising_edge(CLK) then

 phase_d1 <= phase;

172

 end if;

end process;

acc_ctrl: process(CLK, RST)

begin

if rising_edge(CLK) then

 if RST = '1' then

 stb_out_pre <= (others => '0');

 else

 stb_out_pre <= (stb_out_pre(14 downto 0) & (stb_rnd and odd));

 end if;

end if;

end process acc_ctrl;

-- moved or operation 1 bit to left compared to original to compensate

one clock cycle delay introduced from the process below\

-- Verilog reg data type would not require a clock cycle delay but VHDL

signals do.

--do_acc <= or_reduce(stb_out_pre(6 downto 3));

do_acc <= or_reduce(stb_out_pre(8 downto 5));

clear <= stb_out_pre(3);

-- addr_control logic

process (CLK,RST,phase)

begin

if(CLK'EVENT and CLK = '1') then

 if RST = '1' then

 addr_odd_a <= (others=>'0');

 addr_odd_b <= (others=>'0');

 else

 case(phase) is

 when "001" =>

 addr_odd_a <= x"0";

 addr_odd_b <= x"F";

 when "010" =>

 addr_odd_a <= x"1";

 addr_odd_b <= x"E";

 when "011" =>

 addr_odd_a <= x"2";

 addr_odd_b <= x"D";

 when "100" =>

 addr_odd_a <= x"3";

 addr_odd_b <= x"C";

 when others =>

 addr_odd_a <= x"0";

 addr_odd_b <= x"F";

 end case;

 end if;--rst

end if;--clk

end process;

process (CLK,RST,phase)

begin

if(CLK'EVENT and CLK = '1') then

 if RST = '1' then

 addr_odd_c <= (others=>'0');

 addr_odd_d <= (others=>'0');

173

 else

 case(phase) is

 when "001" =>

 addr_odd_c <= x"4";

 addr_odd_d <= x"B";

 when "010" =>

 addr_odd_c <= x"5";

 addr_odd_d <= x"A";

 when "011" =>

 addr_odd_c <= x"6";

 addr_odd_d <= x"9";

 when "100" =>

 addr_odd_c <= x"7";

 addr_odd_d <= x"8";

 when others =>

 addr_odd_c <= x"4";

 addr_odd_d <= x"B";

 end case;

 end if;

end if;

end process;

-- data handling logic

coefficient1:process(CLK,RST,phase_d1)

begin

if(CLK'EVENT and CLK = '1') then

 if RST = '1' then

 coeff1 <= (others=>'0');

 else

 case phase_d1 is

 when "001" =>

 coeff1 <= conv_std_logic_vector(-107 , 18);

 when "010" =>

 coeff1 <= conv_std_logic_vector(445 , 18);

 when "011" =>

 coeff1 <= conv_std_logic_vector(-1271, 18);

 when "100" =>

 coeff1 <= conv_std_logic_vector(2959 , 18);

 when others =>

 coeff1 <= conv_std_logic_vector(-107 , 18);

 end case;

 end if;

end if;

end process coefficient1;

coefficient2:process(CLK,RST,phase_d1)

begin

if(CLK'EVENT and CLK = '1') then

 if RST = '1' then

 coeff2 <= (others=>'0');

 else

 case phase_d1 is

 when "001" =>

 coeff2 <= conv_std_logic_vector(-6107 , 18);

174

 when "010" =>

 coeff2 <= conv_std_logic_vector(11963 , 18);

 when "011" =>

 coeff2 <= conv_std_logic_vector(-24706, 18);

 when "100" =>

 coeff2 <= conv_std_logic_vector(82359 , 18);

 when others =>

 coeff2 <= conv_std_logic_vector(-6107 , 18);

 end case;

 end if;

end if;

end process coefficient2;

process(CLK, RST, cpi)

begin

 case(cpi) is

 when ('0'&x"02") =>

 addr_even <= x"9";

 when

('0'&x"03")|('0'&x"04")|('0'&x"05")|('0'&x"06")|('0'&x"07") =>

 addr_even <= x"8";

 when others =>

 addr_even <= x"7";

 end case;

end process;

round_in: round_sd generic map(

 WIDTH_IN => WIDTH,

 WIDTH_OUT => INTWIDTH)

 port map(

 CLK => CLK,

 RST => RST,

 strobe_in => strobe_in,

 data_in => data_in,

 data_out => rnd_data_in,

 strobe_out => stb_rnd

);

--

===

=======================

-- Polyphase 1st path filter

--

===

=======================

srl_odd_a: srl_module generic map(INTWIDTH)port map(CLK, RST,

write_odd, rnd_data_in, addr_odd_a, data_odd_a);

srl_odd_b: srl_module generic map(INTWIDTH)port map(CLK, RST,

write_odd, rnd_data_in, addr_odd_b, data_odd_b);

srl_odd_c: srl_module generic map(INTWIDTH)port map(CLK, RST,

write_odd, rnd_data_in, addr_odd_c, data_odd_c);

srl_odd_d: srl_module generic map(INTWIDTH)port map(CLK, RST,

write_odd, rnd_data_in, addr_odd_d, data_odd_d);

accumulator: process(CLK)

begin

175

 if rising_edge(CLK) then

 sum1 <= (data_odd_a(INTWIDTH-1) &

data_odd_a)+(data_odd_b(INTWIDTH-1) & data_odd_b);

 sum2 <= (data_odd_c(INTWIDTH-1) &

data_odd_c)+(data_odd_d(INTWIDTH-1) & data_odd_d);

 end if;

end process accumulator;

do_mult <= '1'; -- multipliers are always enabled

mult1: MULT18X18S port map(

 C => CLK,

 CE => do_mult,

 R => RST,

 P => prod1,

 A => coeff1,

 B => sum1

);

mult2: MULT18X18S port map(

 C => CLK,

 CE => do_mult,

 R => RST,

 P => prod2,

 A => coeff2,

 B => sum2

);

prod_summer: process(CLK)

begin

 if rising_edge(CLK) then

 sum_of_prod <= prod1 + prod2;

 end if;

end process prod_summer;

final_accum : acc generic map(

 IWIDTH => ACCWIDTH-2,

 OWIDTH => ACCWIDTH

)

 port map(

 CLK => CLK,

 RST => RST,

 clear => clear,

 acc => do_acc,

 data_in => sum_of_prod(35 downto 38-ACCWIDTH),

 data_out => acc_out

);

--

===

=======================

-- Polyphase 2nd path filter

--

===

=======================

srl_even : srl_module generic map(INTWIDTH)port map(CLK, RST,

write_even, rnd_data_in, addr_even, data_even);

176

data_eve_ext:

 sign_extend generic map(

 bitsin => INTWIDTH,

 bitsout=> ACCWIDTH-SHIFT_FACTOR)

 port map(

 CLK => CLK,

 RST => RST,

 signal_in => data_even,

 signal_out=> data_even_signext(ACCWIDTH-1 downto SHIFT_FACTOR)

);

data_even_signext(SHIFT_FACTOR-1 downto 0) <= (others => '0');

process (CLK, RST)

begin

 if rising_edge(CLK) then

 if RST = '1' then

 final_sum <= (others=> '0');

 else

 final_sum <= acc_out + data_even_signext;

 end if;

 end if;

end process;

output_clip:

clip generic map(

 bitsin => ACCWIDTH,

 bitsout=> WIDTH)

 port map(

 data_in => final_sum,

 data_out=> final_sum_clip

);

selected_stb <= stb_out_pre(10) when bypass = '0' else

 strobe_in;

OutPut: process(CLK, RST)

begin

 if rising_edge(CLK)then

 strobe_out <= selected_stb;

 if RST = '1' then

 data_out <= (others => '0');

 elsif selected_stb = '1' then

 data_out <= final_sum_clip;

-- end if;

 end if;

 end if;

end process OutPut;

end Behavioral;

177

Appendix C - Pattern Generator Code

 wb_slv_cram.vhd

-- Company: Western Michigan University

-- Engineer: Nagarjun Marappa

--

-- Create Date: 15:12:56 11/04/2013

-- Design Name:

-- Module Name: wb_slv_cram - Behavioral

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.all;

library work;

use work.zpu_memory.all;

entity wb_slv_cram is

 generic(

 WORD_SIZE : natural:=32; -- 32 bits data path

 MDATA_SIZE : natural:=16; -- 32 bits data path

 D_CARE_VAL : std_logic:='X'; -- Fill value

 CLK_FREQ : positive:=50; -- 50 MHz clock

 ADDR_W : natural:=25; -- M space = 32 MB, 16MB CRAM, 32 kB

DRAM, I/O space

 CRAM_ADDR_W : natural:=24); -- CRAM space=128 Mb, 16MB

 Port (clk_i : in STD_LOGIC;

 rst_i : in STD_LOGIC;

 wbs3_dat_o : OUT unsigned(WORD_SIZE-1 downto 0);

 wbs3_ack_o : OUT std_logic;

 wbs3_dat_i : IN unsigned(WORD_SIZE-1 downto 0);

 wbs3_we_i : IN std_logic;

 wbs3_sel_i : IN std_logic_vector(3 downto 0);

 wbs3_adr_i : IN unsigned(ADDR_W-1 downto 2);

 wbs3_cyc_i : IN std_logic;

 wbs3_stb_i : IN std_logic;

 CramOE : out std_logic;

 CramWR : out std_logic;

 CramClk : out std_logic;

 CramAdv : out std_logic;

 CramWait : in std_logic;

 CramCS : out std_logic;

178

 CramLB : out std_logic;

 CramUB : out std_logic;

 CramCRE : out std_logic;

 MemAdr_o : out unsigned(CRAM_ADDR_W-1 downto 1);

 MemDB_i : in unsigned(MDATA_SIZE-1 downto 0);

 MemDB_o : out unsigned(MDATA_SIZE-1 downto 0);

 MemDB_dir : out std_logic

);

end wb_slv_cram;

architecture Behavioral of wb_slv_cram is

 constant BYTE_BITS : integer:=WORD_SIZE/16; -- # of bits in a word

that addresses bytes

 COMPONENT cram_interface

 generic(

 WORD_SIZE : natural:=32; -- 32 bits data path

 MDATA_SIZE : natural:=16; -- 16 bits data to cram

 BYTE_BITS : integer:=2; -- Bits used to address bytes

 D_CARE_VAL : std_logic:='X'; -- Fill value

 CLK_FREQ : positive:=50; -- 50 MHz clock

 CRAM_ADDR_W : natural:=24); -- 24 bits RAM space=16MB -

128Mb

 PORT(

 clk_i : IN std_logic;

 rst_i : IN std_logic;

 we_i : IN std_logic;

 en_i : IN std_logic;

 addr_i : IN unsigned(CRAM_ADDR_W-1 downto BYTE_BITS);

 write_i : IN unsigned(WORD_SIZE-1 downto 0);

 MemDB_i : IN unsigned(MDATA_SIZE-1 downto 0);

 read_o : OUT unsigned(WORD_SIZE-1 downto 0);

 busy_o : OUT std_logic;

 CramOE : OUT std_logic;

 CramWR : OUT std_logic;

 CramClk : OUT std_logic;

 CramAdv : OUT std_logic;

 CramWait : IN std_logic;

 CramCS : OUT std_logic;

 CramLB : OUT std_logic;

 CramUB : OUT std_logic;

 CramCRE : OUT std_logic;

 MemAdr_o : OUT unsigned(CRAM_ADDR_W-1 downto 1);

 MemDB_o : OUT unsigned(MDATA_SIZE-1 downto 0);

 MemDB_dir : OUT std_logic

);

 END COMPONENT;

 -- Memory (SinglePort_RAM)

 signal ram_busy : std_logic;

 signal ram_we : std_logic;

 signal ram_en : std_logic;

-- signal slv_cycle : std_logic;

179

 signal busy_ff : std_logic;

 signal busy_cond : std_logic;

 attribute KEEP : string;

 attribute KEEP of ram_busy : signal is "TRUE";

 attribute KEEP of ram_we : signal is "TRUE";

 attribute KEEP of busy_ff : signal is "TRUE";

 attribute KEEP of busy_cond: signal is "TRUE";

begin

 cram_if: cram_interface

 generic map(

 WORD_SIZE => WORD_SIZE,

 MDATA_SIZE => MDATA_SIZE,

 BYTE_BITS => BYTE_BITS,

 CLK_FREQ => CLK_FREQ,

 CRAM_ADDR_W => CRAM_ADDR_W)

 port map(

 clk_i => clk_i,

 rst_i => rst_i,

 we_i => ram_we,

 en_i => ram_en,

 addr_i => wbs3_adr_i(CRAM_ADDR_W-1 downto 2),

 write_i => wbs3_dat_i,

 read_o => wbs3_dat_o,

 busy_o => ram_busy,

 CramOE => CramOE,

 CramWR => CramWR,

 CramClk => CramClk,

 CramAdv => CramAdv,

 CramWait => CramWait,

 CramCS => CramCS,

 CramLB => CramLB,

 CramUB => CramUB,

 CramCRE => CramCRE,

 MemAdr_o => MemAdr_o(CRAM_ADDR_W-1 downto 1),

 MemDB_i => MemDB_i,

 MemDB_o => MemDB_o,

 MemDB_dir => MemDB_dir

);

 ram_we <= wbs3_we_i and wbs3_stb_i;

 ram_en <= wbs3_stb_i;

 slave3_cycle:

 process (clk_i)

 begin

 if rising_edge(clk_i) then

 if rst_i = '1' then

 busy_ff <= '1';

 else -- reset_i='0'

180

 if wbs3_stb_i = '1' then

 busy_ff <= '0';

 else

 busy_ff <= '1';

 end if;

 end if; -- reset_i='0'

 end if;

 end process slave3_cycle;

 busy_cond <= (busy_ff and wbs3_stb_i) or ram_busy;

 wbs3_ack_o <= wbs3_stb_i and not(busy_cond);

end Behavioral;

 cram_interface.vhd

-- Company: Western Michigan University

-- Engineer: Dr. Bradley J. Bazuin

--

-- Create Date: 09:42:12 11/06/2013

-- Design Name:

-- Module Name: cram_interface - Behavioral

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.all;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity cram_interface is

 generic(

 WORD_SIZE : natural:=32; -- 32 bits data path

 MDATA_SIZE : natural:=16; -- 16 bits data to cram

 BYTE_BITS : integer:=2; -- Bits used to address bytes

 D_CARE_VAL : std_logic:='X'; -- Fill value

 CLK_FREQ : positive:=50; -- 50 MHz clock

 CRAM_ADDR_W : natural:=24); -- 24 bits RAM space=16MB -

128Mb

 Port (

 clk_i : in std_logic;

 rst_i : in STD_LOGIC;

181

 we_i : in std_logic;

 en_i : in std_logic;

 addr_i : in unsigned(CRAM_ADDR_W-1 downto BYTE_BITS);

 write_i : in unsigned(WORD_SIZE-1 downto 0);

 read_o : out unsigned(WORD_SIZE-1 downto 0);

 busy_o : out std_logic;

 CramOE : out std_logic;

 CramWR : out std_logic;

 CramClk : out std_logic;

 CramAdv : out std_logic;

 CramWait : in std_logic;

 CramCS : out std_logic;

 CramLB : out std_logic;

 CramUB : out std_logic;

 CramCRE : out std_logic;

 MemAdr_o : out unsigned(CRAM_ADDR_W-1 downto 1);

 MemDB_i : in unsigned(MDATA_SIZE-1 downto 0);

 MemDB_o : out unsigned(MDATA_SIZE-1 downto 0);

 MemDB_dir : out std_logic

);

end cram_interface;

architecture Behavioral of cram_interface is

 -- Cellular RAM Signals

 signal ramOE : std_logic;

 signal ramWR : std_logic;

 signal ramCLK : std_logic;

 signal ramAdv : std_logic;

 signal ramWait : std_logic;

 signal ramCS : std_logic;

 signal ramLB : std_logic;

 signal ramUB : std_logic;

 signal ramCRE : std_logic;

 signal data_read : unsigned (WORD_SIZE-1 downto 0);

 signal ls_adr : std_logic;

 signal bus_busy : std_logic;

 -- Memory interface state descriptions

 type mif_state_t is(st_idle, st_0, st_1, st_2, st_3, st_end);

 signal mif_state : mif_state_t:=st_idle;

begin

 mem_cycle:

 process(clk_i)

 begin

 if rising_edge(clk_i) then

 if rst_i = '1' then

 ls_adr <= '0';

182

 bus_busy <= '0';

 read_o <= (others => D_CARE_VAL);

 ramAdv <= '1';

 ramCS <= '1';

 ramWR <= '1';

 ramOE <= '1';

 ramLB <= '1';

 ramUB <= '1';

 ramCLK <= '0'; -- never needs to change

 ramCRE <= '0'; -- never needs to change

 MemAdr_o <= (others => D_CARE_VAL);

 MemDB_o <= (others => D_CARE_VAL);

 MemDB_dir <= '1';

 mif_state <= st_idle;

 else

 case mif_state is

 when st_idle =>

 if en_i = '1' then

 ramAdv <= '0';

 ramCS <= '0';

 ramLB <= '0';

 ramUB <= '0';

 ls_adr <= '0';

 bus_busy <= '1';

 MemAdr_o <= addr_i & '0';

 mif_state <= st_0;

 else

 read_o <= (others => D_CARE_VAL);

 ramAdv <= '1';

 ramCS <= '1';

 ramWR <= '1';

 ramOE <= '1';

 ramLB <= '1';

 ramUB <= '1';

 MemAdr_o <= (others => D_CARE_VAL);

 MemDB_o <= (others => D_CARE_VAL);

 MemDB_dir <= '1';

 end if;

 when st_0 => -- 0-20 ns

 if en_i = '1' then

 if we_i ='1' then

 ramWR <= '0';

 else

 ramOE <= '0';

 end if;

 mif_state <= st_1;

 else

 mif_state <= st_idle;

 end if;

183

 when st_1 => -- 20-40 ns

 if en_i = '1' then

 if we_i ='0' then -- prepare to read from

cram

 ramOE <= '0';

 else -- write to cram

 MemDB_dir <= '0';

 if ls_adr = '0' then

 MemDB_o <= write_i(MDATA_SIZE-1

downto 0);

 else

 MemDB_o <= write_i(WORD_SIZE-1

downto MDATA_SIZE);

 end if;

 end if;

 mif_state <= st_2;

 else

 mif_state <= st_idle;

 end if;

 when st_2 => -- 40-60 ns

 if en_i = '1' then

 mif_state <= st_3;

 else

 mif_state <= st_idle;

 end if;

 when st_3 => -- 60-80 ns

 if en_i = '1' then

 ramAdv <= '1';

 ramCS <= '1';

 ramWR <= '1';

 ramOE <= '1';

 ramLB <= '1';

 ramUB <= '1';

 ramWR <= '1';

 MemAdr_o <= (others => D_CARE_VAL);

 MemDB_o <= (others => D_CARE_VAL);

 MemDB_dir <= '1';

 if we_i = '0' then -- read the cram value

 if ls_adr = '0' then

 read_o(MDATA_SIZE-1 downto 0)<=

MemDB_i;

 else

 read_o(WORD_SIZE-1 downto

MDATA_SIZE)<= MemDB_i;

 end if;

 end if;

 if ls_adr = '1' then

 bus_busy <= '0';

 end if;

 mif_state <= st_end;

 else

 mif_state <= st_idle;

 end if;

 when st_end => -- 80-100 ns

 if en_i = '1' then

184

 if ls_adr = '0' then

 ls_adr <= '1';

 ramAdv <= '0';

 ramCS <= '0';

 ramLB <= '0';

 ramUB <= '0';

 MemAdr_o <= addr_i & '1';

 mif_state <= st_0;

 else

 ls_adr <= '0';

 mif_state <= st_idle;

 end if;

 else

 mif_state <= st_idle;

 end if;

 when others =>

 mif_state <= st_idle;

 end case; -- mif_state

 end if; -- else reset_i='1'

 end if; -- rising_edge(clk_i)

 end process mem_cycle;

 CramOE <= ramOE;

 CramWR <= ramWR;

 CramClk <= '0';

 CramAdv <= ramAdv;

 CramCS <= ramCS;

 CramLB <= ramLB;

 CramUB <= ramUB;

 CramCRE <= '0';

 ramWait <= CramWait;

 busy_o <= bus_busy;

end Behavioral;

 fifo_if.vhd

-- Company: Western Michigan University

-- Engineer: Nagarjun Marappa

--

-- Create Date: 15:53:21 11/29/2014

-- Design Name:

-- Module Name: wb_slv_fifo - Behavioral

185

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use ieee.std_logic_unsigned.all;

library UNISIM;

use UNISIM.VComponents.all;

entity fifo_if is

Generic(WORD_SIZE: natural:= 32;

 ADDR_W : natural:= 25;

 FIFO_W : natural:= 32);

 port(

 clk_i : in std_logic;

 rst_i : in std_logic;

 wbs4_dat_i : in unsigned(WORD_SIZE-1 downto 0);

 wbs4_we_i : in std_logic;

 wbs4_sel_i: in std_logic_vector(3 downto 0);

 wbs4_adr_i: in unsigned(ADDR_W-1 downto 2);

 wbs4_cyc_i: in std_logic;

 wbs4_stb_i: in std_logic;

 wbs4_dat_o : out unsigned(WORD_SIZE-1 downto 0);

 -- fifo signals

 fifo_data_out: out std_logic_vector(16-1 downto 0);

 fifo_rd_clk: out std_logic;

 dsp_rst:out std_logic;

 ddc_en : out std_logic;

 half_full: out std_logic;

 fifo_wr_en_buff : out std_logic;

 sclk : out std_logic

);

end fifo_if;

 architecture Behavioral of fifo_if is

 COMPONENT fifo_stage_o

 PORT (

 rst : IN STD_LOGIC;

 wr_clk : IN STD_LOGIC;

 rd_clk : IN STD_LOGIC;

 din : IN STD_LOGIC_VECTOR(31 DOWNTO 0);

 wr_en : IN STD_LOGIC;

 rd_en : IN STD_LOGIC;

 dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

 full : OUT STD_LOGIC;

 almost_full : OUT STD_LOGIC;

 wr_ack : OUT STD_LOGIC;

 empty : OUT STD_LOGIC;

 prog_full : OUT STD_LOGIC

);

 END COMPONENT;

signal fifo_data_reg: std_logic_vector(WORD_SIZE-1 downto 0):= (others

=> '0');

constant fifo_data_addr : unsigned(3 downto 0):= "0010";

186

signal fifo_ctrl1: std_logic_vector(7 downto 0):= (others => '0');

constant fifo_ctrl1_adr : unsigned(3 downto 0):= "0001";

signal wr_clk, rd_clk: std_logic := '0';

signal fifo_wr_en: std_logic:= '0';

signal fifo_rd_en:std_logic := '0';

signal fifo_din: std_logic_vector(32-1 downto 0);

signal fifo_dout: std_logic_vector(16-1 downto 0);

signal rd_busy : std_logic;

signal wr_ack : std_logic;

signal prog_full : std_logic;

signal full : std_logic;

signal empty : std_logic;

signal almost_full: std_logic;

signal my_start: std_logic:='1';

signal ddc_en_buff: std_logic:= '0';

signal phase_out : std_logic;

signal rd_count: std_logic_vector(15 downto 0):=(others => '0');

signal dsp_rst_d1: std_logic:='1';

signal sclk_d1 : std_logic:='0';

type fifo_states is (idle_state, wr_state, rd_state, wait_write,

wait_read);

signal state : fifo_states;

attribute KEEP: string;

attribute KEEP of fifo_din : signal is "TRUE";

attribute KEEP of fifo_dout : signal is "TRUE";

attribute KEEP of full : signal is "TRUE";

attribute KEEP of prog_full : signal is "TRUE";

attribute KEEP of empty : signal is "TRUE";

attribute KEEP of my_start : signal is "TRUE";

attribute KEEP of rd_count : signal is "TRUE";

attribute KEEP of fifo_wr_en : signal is "TRUE";

attribute KEEP of fifo_rd_en : signal is "TRUE";

attribute KEEP of almost_full : signal is "TRUE";

begin

auto_process: process(clk_i,rst_i,rd_clk)

begin

if rising_edge(clk_i) then

 if rst_i = '1' then

 fifo_wr_en <= '0';

 wbs4_dat_o <= (others => '0');

 fifo_din <= (others => '0');

 fifo_data_reg <= (others => '0');

 state <= idle_state;

 else

 case state is

187

 when idle_state =>

 rd_busy <= '0';

 if(wbs4_stb_i = '1' and wbs4_cyc_i = '1') then

 if wbs4_we_i = '1' then

 state <= wr_state;

 else

 state <= rd_state;

 end if;

 else

 state <= idle_state;

 end if;

 when wr_state =>

 fifo_wr_en <= '1';

 if((wbs4_adr_i(5 downto 2)) = fifo_data_addr) then

 fifo_din <= std_logic_vector(wbs4_dat_i(32-1

downto 0));

-- else

-- fifo_din <= fifo_din;

 end if;

 state <= wait_write;

 when wait_write => -- Actual writing to fifo takes place in

this state.

 fifo_wr_en <= '0';

 if wr_ack = '1' then

 state <= idle_state;

 else

 state<= wait_write;

 end if;

 when rd_state =>

 rd_busy <= '1';

 if((wbs4_adr_i(5 downto 2)) = fifo_ctrl1_adr) then

 wbs4_dat_o <= x"000000" & unsigned(fifo_ctrl1);

 end if;

 state <= wait_read;

 when wait_read =>

 rd_busy <= '0';

 state <= idle_state;

 when others =>

 state <= idle_state;

 end case;

 end if;

end if;

end process;

rd_clk_thingy:

process(clk_i, rst_i, rd_count)

begin

if rising_edge(clk_i) then

 if rst_i = '1' then

 rd_count <= (others => '0');

 rd_clk <= '0';

 else

 if rd_count = x"007D" then --3F

 rd_clk <= not(rd_clk);

 rd_count <= (others => '0');

188

 else

 rd_count <= rd_count + '1';

 end if;

 end if;

end if;

end process rd_clk_thingy;

process(rd_clk)

begin

 if falling_edge(rd_clk) then

-- if dsp_rst_d1 = '1' then

-- sclk_d1 <= '0';

-- else

 sclk_d1 <= not(sclk_d1);

-- end if;

 end if;

end process;

sclk<=sclk_d1;

rd_en_thingy:

process (clk_i,full,rst_i,my_start)

begin

if rising_edge(clk_i) then

 if (rst_i = '1') then

 my_start <= '1';

 else

 if almost_full = '1' then

 my_start <= '0';

 else

 my_start <= my_start;

 end if;

 end if;

end if;

fifo_rd_en <= not(my_start);

end process rd_en_thingy;

 --##

 -- it takes approx one clk cycle for placing data on

 -- fifo_dout so delay DDC enable for 1 rd_clk cycle

 --##

ddc_enable: process(rd_clk, rst_i, fifo_rd_en)

begin

 if rising_edge(rd_clk) then

 if fifo_rd_en = '1' then

 ddc_en_buff <= '1';

 else

 ddc_en_buff <= '0';

 end if;

 end if;

end process ddc_enable;

ddc_en <= fifo_rd_en;

--##

-- dsp board reset logic

--##

dsp_reset: block

189

signal counter : std_logic_vector(15 downto 0):= x"0000";

signal init : std_logic := '0';

begin

 process(rst_i, clk_i)

 begin

 if rising_edge(clk_i) then

 if rst_i = '1' then

 dsp_rst_d1 <= '1';

 counter <= (others => '0');

 else

 if counter = x"1388" then

 dsp_rst_d1 <= '0';

 else

 counter <= counter + '1';

 end if;

 end if;

 end if;

 dsp_rst <= dsp_rst_d1;

 end process;

end block dsp_reset;

 fifo_rd_clk <= rd_clk;

 fifo_data_out <= fifo_dout;

 fifo_wr_en_buff <= fifo_wr_en;

 half_full <= full;

-- busy_out <= rd_busy or wr_ack;

-- OutPut signals

fifo_ctrl1(0) <= '0';

fifo_ctrl1(1) <= full;

fifo_ctrl1(2) <= empty;

fifo_ctrl1(3) <= not(prog_full);

fifo_ctrl1(7 downto 4) <= (others => '0');

output_fifo: fifo_stage_o PORT MAP (

 rst => rst_i,

 wr_clk => clk_i,

 rd_clk => rd_clk,

 din => fifo_din,

 wr_en => fifo_wr_en,

 rd_en => fifo_rd_en,

 dout => fifo_dout,

 full => full,

 almost_full => almost_full,

 wr_ack => wr_ack,

 empty => empty,

 prog_full => prog_full

);

end Behavioral;

190

Appendix D - ZPU Software

 zpu_add.h

#ifndef _zpu_H

#define _zpu_H

/* GPIO DEFINITIONS */

#define GPIO_DATA *((volatile unsigned int *)0x080A0004)

#define GPIO_DIR *((volatile unsigned int *)0x080A0008)

/* FIFO samples out Definitions*/

#define FIFO_CTRL1 *((volatile unsigned int *)0x080B0004)

#define FIFO_DATA1 *((volatile unsigned int *)0x080B0008)

//FIFO_CTRL1

/* _ _ _ _ _________ _____ ____ _ */

/*|0|0|0|0|~PROG_FULL|EMPTY|FULL|0|*/

/*|_|_|_|_|__________|_____|____|_|*/

/* FIFO samples in Definitions*/

#define FIFO_CTRL2 *((volatile unsigned int *)0x080C0004)

#define FIFO_DATA2 *((volatile unsigned int *)0x080C0008)

#define WR_EN 0x01

#define RD_EN 0x02

/* CRAM Address Definitions*/

#define CRAM_BOT 0x001000000

#define CRAM_TOP 0x002000000

#define CRAM_SADDR *((volatile unsigned int *)CRAM_BOT)

/* Seven Segment Display Definitions*/

#define SEG7 0x0080a001C

#define SEG7_WRITE *((volatile unsigned int *)SEG7)

/* timer definitions*/

#define TIMER1 *((volatile unsigned int *)0x080A0014)

#define TIMER2 *((volatile unsigned int *)0x080A0018)

#define TIMER_RST 0x00000001

#define TIMER_SAMP 0x00000002

#endif

 pattern_gen.c

/*

 * Small example, does not use printf()

 */

//#include <stdio.h>

#include "zpu_add.h"

#define TIMER_RST 0x00000001

#define TIMER_SAMP_FAILURE_REPORT 0x00000002

#define FIFO_SIZE 512

191

#define fifo_full 0x00000002

volatile unsigned long i=1, j=0;

/* void go_fill_fifo(void)

{

 volatile unsigned long j=0;

 for(j=0;j<20;j++)

 {

 FIFO_DATA1 = i;

 i = i+1;

 }

} */

int main(int argc, char **argv)

{

 unsigned long fifo_reg, fifo_ctrl, temp = 0x0000FFFF;

 unsigned long int i=0,j=0;

 //unsigned long int walk_1 = 0x00010001, walk_0 = 0xFFFEFFFE,

cram_data;

 //unsigned int k, test_cnt = 0x00;

 volatile unsigned long int *ptr = 0x001000000,fifo_burst =

0x000000000;

 //SEG7_WRITE = test_cnt;

/* // Initial CRAM

 for(j = CRAM_BOT; j<= CRAM_TOP; j=j+4)

 {

 *ptr = 0x0000FFFF;

 ptr++;

 } */

 // Initial FIFO fill-up

 temp = 0x00000000;

 ptr = CRAM_BOT;

 fifo_burst = CRAM_BOT;

 while(i<FIFO_SIZE-1)

 {

 FIFO_DATA1 = *ptr;

 ptr++;

 i = i+1;

 /* if (i > 0){

 i = i-1;

 ptr++;

 }

 else

 i = 31; */

 }

 while(1)

 {

 while (ptr<=(CRAM_BOT+65535))

 {

 fifo_reg = FIFO_CTRL1;

192

 if(fifo_reg == 0x00000008 || fifo_reg == 0x0000000C)

 {

 for(i = fifo_burst; i<= fifo_burst+200; i=i+4)

 {

 FIFO_DATA1 = *ptr;

 ptr++;

 //FIFO_DATA1 = cram_data;

 }

 fifo_burst = i;

 }

 //iprintf("%u",temp);

 }

 ptr = CRAM_BOT;

 fifo_burst = CRAM_BOT;

 }

}

 Compiling process

Requirements:

1. Cygwin 32‐bit environment with binutils, cmake, gcc, g++, gdb, and make.

2. ZPUGCC toolchain (download from http://opensource.zylin.com/zpudownload.html)

Procedure:

a) Copy The ZPUGCC to a convenient location. You'll have to setup the environment

variables to point to this location.

Note: The GCC compiler may not like a path which has spaces in its names. Avoid

this situation if possible.

b) Open the cygwin terminal. If the path to the bin folder of the ZPUGCC toolchain is

C:/zpugcc/toolchain/bin, then type export PATH=$PATH:C:/zpugcc/toolchain/bin

c) Alternatively you can set the environment variables in windows 7 as shown below

(My computer‐‐>Properties‐‐>Advanced System Settings‐‐>Environment Variables.

An entry for PATH should already be present under system Variables.

Append C:/zpugcc/toolchain/bin to the existing using ; for separator.

193

d) As a check type echo $PATH in the cygwin terminal to print the value for the PATH

variable. You can also type zpu‐elf‐gcc ‐‐help to check if the installation was

successful.

e) To compile, go to cygwin and cd to the location of the helloworld example. To

compile type

f) zpu‐elf‐gcc ‐O3 ‐save‐temps ‐phi "`pwd'/hello.c" ‐o hello.elf ‐Wl,‐‐relax ‐ Wl,‐‐gc‐

sections ‐g If the compiling was successful then an elf file should be generated

successfully. ls ‐s is the command to list the files in the current directory.

g) Sometimes the elf file is too big for the BRAM in our FPGA. To strip the elf file use

zpu‐elf‐strip hello.elf

h) To convert the *.elf file into *.bin file use zpu‐elf‐objcopy ‐O binary hello.elf

hello.bin

i) Finally to get the BRAM contents use ./zpuromgen hello.bin > hello_bram.txt

The *.txt file contains the program data that needs to get loaded into BRAM. After

copying, implement the design again in ISE and download the bit file to the board.

	Design of Digital Down Converter Chain for Software Defined Radio Systems on FPGA
	Recommended Citation

	tmp.1458242521.pdf.sVeHf

