
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Masters Theses Graduate College

12-2015

A High Performance Architecture for an Exact Match Short-Read A High Performance Architecture for an Exact Match Short-Read

Aligner Using Burrows-Wheeler Aligner on FPGAs Aligner Using Burrows-Wheeler Aligner on FPGAs

Dana Abdul Qader
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Qader, Dana Abdul, "A High Performance Architecture for an Exact Match Short-Read Aligner Using
Burrows-Wheeler Aligner on FPGAs" (2015). Masters Theses. 668.
https://scholarworks.wmich.edu/masters_theses/668

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Masters Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/668?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A High Performance Architecture for an Exact Match Short-Read Aligner

Using Burrows-Wheeler Transform on FPGAs

by

Dana Abdul Qader

A thesis submitted to the Graduate College

in partial fulfillment of the requirements

for the degree of Master of Science in Engineering (Electrical)

Department of Computer and Electrical Engineering

Western Michigan University

December 2015

Thesis Committee:

Fahad Saeed, Ph.D., Chair

Elise de Doncker, Ph.D

Janos Grantner , Ph.D

qader.dana@gmail.com

A High Performance Architecture for an Exact Match Short-Read Aligner Using

Burrows-Wheeler Transform on FPGAs

Dana Abdul Qader, M.S.E.

Western Michigan University, 2015

Due to modern DNA sequencing technologies vast amount of short DNA

sequences known as short-reads is generated. Biologists need to be able to align

the short-reads to a reference genome to be able to make scientific use of the data.

Fast and accurate short-read aligner programs are needed to keep up with the

pace at which this data is generated. Field Programmable Gate Arrays have been

widely used to accelerate many data-intensive bioinformatics applications.

Burrows-Wheeler Transform has been used in the theory of string matching which

has led to the development of many short-read alignment programs. This thesis

presents a hardware implementation of Burrows-Wheeler Aligner on a Field Pro-

grammable Gate Array (FPGA). We specifically concentrated on the exact match

of the short-reads and our implementation resulted in execution that is 82X faster

than that of a CPU implementation.

c© 2015 Dana Abdul Qader

Acknowledgements

I would like to express my sincere gratitude and appreciation to my advisor,

Prof. Fahad Saeed, for his continuous support, patience, and motivation in my

academic study and this thesis research. His guidance helped me in all the time

of research and writing of this thesis.

Further I would like to thank my family for their continuous support and for

encouraging me in all of my pursuits and inspiring me to follow my dreams for

without them this would not have been possible. I would also like to thank my

friends who helped me during my study at Western Michigan University.

Dana Abdul Qader

ii

Contents

Acknowledgements ii

List of Figures v

List of Tables vii

1 Introduction and Objectives 1

1.1 Introduction . 1

1.2 Objectives . 3

2 Background 4

2.1 DNA . 4

2.1.1 DNA: Overview . 4

2.1.2 DNA Sequencing . 5

2.1.2.1 Next Generation Sequencing 6

2.1.2.2 Costs . 7

2.2 Short-Read Alignment . 8

2.2.1 Algorithms . 9

2.2.1.1 Hash-Table based Algorithms 9

2.2.1.2 Algorithms based on Suffix/Prefix tries 10

2.3 FPGA: Field Programmable Gate Array 12

2.3.1 FPGA Components . 13

2.3.2 Hardware Description Languages 15

2.4 Previous Work . 16

3 Algorithm 20

3.1 Prefix Trie . 20

3.2 Burrows-Wheeler Transform and the FM-index 22

3.2.1 Backward Search . 24

3.3 Burrows-Wheeler Aligner . 26

4 FPGA Implementation 30

iii

4.1 Software Component . 32

4.1.1 Random String Generator 32

4.1.2 Burrows-Wheeler Transform 33

4.2 Hardware Design . 34

4.2.1 Occurrence Array Unit . 34

4.2.2 C Array Unit . 36

4.2.3 Exact Matcher Unit . 37

5 Experimental Setup and Results 40

5.1 Experimental Setup . 40

5.2 Results . 41

6 Conclusion and Future Work 45

6.1 Conclusion . 45

6.2 Future Work . 46

Bibliography 47

iv

List of Figures

2.1 DNA Sequencing [1] . 6

2.2 The decrease in the cost for sequencing the human genome with
time from the NHGRI genome sequencing program [2] 8

2.3 Short-read alignment . 9

2.4 Hash-table index for short-read alignment 10

2.5 The Prefix Trie for the string X =“AGGAGT”. The path shown in
red is the path taken when searching for the string “AGG” 11

2.6 The Prefix Tree for the string X = “AGGAGT”. 12

2.7 FPGA Architecture with CLB’s, I/O blocks and Interconnect . . . 14

3.1 Suffix array for string X = AGGAGT 21

3.2 BWT for input string X = AGGAGT 23

3.3 The left table shows the O (.) arrays for each symbol and the right
table shows the C (.) arrays for each symbol 25

3.4 Reducing the occurrence array by using a bucket size of 3 nucleotides 27

3.5 Algorithm for exact matching . 28

3.6 This figure shows how the algorithm from figure 3.5 works when
searching for the substring AGG in the original reference string
AGGAGT . 28

4.1 Flow chart describing the data flow of the algorithm 31

4.2 Short-read generator . 32

4.3 This figure shows how the Burrows-Wheeler Transform can be found
without generating all the cyclic rotations of the string 33

4.4 Overall architecture of our design 35

4.5 Occurrence array unit . 36

4.6 C array unit . 37

4.7 Exact matcher unit . 38

5.1 Performance in terms of the number of clock cycles as the length of
the short-read increases . 42

5.2 Time in ms as the number of short-reads vary 43

5.3 Performance comparison between exact match of BWA and FPGA
with a short-read length of 128 bp 44

v

6.1 Future work . 46

vi

List of Tables

5.1 Resource Utilization . 41

vii

Chapter 1

Introduction and Objectives

1.1 Introduction

Next generation DNA sequencing technologies are able to generate millions

and billions of short DNA sequences in a single run of the machine. The data

produced by the sequencing machine is short, fragmented DNA base-pair strings

known as short-reads. These short-reads represent the genome to be sequenced,

however, the orientation of the short-read relative to the genome is unknown.

Hence, the short-reads need to be reconstructed into their original genome to be

able to make use of the data.

The short-reads are mapped to a reference genome. The process of finding

the corresponding location of each short-read in the reference genome is known as

short-read mapping or short-read alignment. The size of the reference genome is

typically in billions of base-pairs. A base-pair (bp) is a pair of two complementary

nucleotide bases. For example, the size of a human genome is about 3 billion base-

pairs. By finding the location of the short-reads in the reference genome, the full

sequence can be reconstructed, and differences can be found between the reference

genome and the constructed sequence. Scientists usually have an interest in how

1

and where the data is different from the reference genome, which means that the

short-read alignment problem involves searching for inexact matches as well as

exact matches in the reference genome. The complete sequencing of an organism

helps scientist in exploring genetic diseases and cancer genomes, it is an important

aspect of modern molecular biology.

Many algorithms have been proposed and used to solve this problem. These

algorithms can be divided into two main categories. The first category is algo-

rithms that are based on hash tables. Algorithms in this category work by either

hashing the short-reads and scanning through the reference genome, or by hashing

the genome and similarly scanning through the short-reads. When hashing the

short-reads, there is the advantage of having a flexible memory footprint while

having the overhead of scanning through the large reference genome. As for hash-

ing the genome, the program can be easily parallelized, however, a large memory

is required as the genome is very large. Programs in this category include RMAP

[3], MAQ [4], SOAP [5], BFAST [6] and many others.

The second category includes algorithms based on the concept of prefix/suffix

tries. Algorithms under this category usually use Burrows-Wheeler transform.

The total size required for the human genome under these algorithms is very

small (approximately 2GB). This has led to the development of SOAPV2 [7],

BOWTIE [8] and Burrows-Wheeler Aligner [9]. The Burrows-Wheeler Aligner

(BWA) mimics the top-down traversal of a prefix trie with the advantage of not

having to save the prefix trie in memory. Also, since exact repeats are collapsed in

one path on the prefix trie, the short reads do not need to be aligned with every

repeat in the reference [9].

Many programs have been developed to solve the short-read alignment prob-

lem. However, higher processing speeds could have an enormous impact on fields

such as biology, chemistry, and bioinformatics. The use of Field Programmable

Gate Arrays (FPGAs) could accelerate the short-read alignment process. FPGAs

2

are widely used for many reasons, one of which is to accelerate different data inten-

sive applications. FPGAs are reconfigurable hardware that can be programmed on

a bit level. Hence, they can be much more efficient than software programs. Due

to the large memory and processing speed required to solve the short-read align-

ment problem, our proposed method is to implement Burrows-Wheeler Aligner

on an FPGA, while concentrating on exact match of the short-reads against the

reference genome.

1.2 Objectives

In this thesis, we introduce a high-performance architecture for short-read

alignment using an FPGA and support more than 1 million short-reads. In chapter

2, we give a background on various concepts needed in this thesis. Chapter 3

describes the algorithm used in this thesis in detail. In chapter 4, we demonstrate

our novel FPGA implementation for exact match short-read alignment. Finally,

chapter 5 and 6 present our results, conclusion, and future work.

3

Chapter 2

Background

In this chapter, we will describe the scientific importance of identifying differ-

ent genomes of different species. We will further explain the short-read alignment

problem and the various approaches for solving the problem.

2.1 DNA

2.1.1 DNA: Overview

DNA, or deoxyribonucleic acid, is a molecule that consists of four types of

nucleotides namely adenine (A), thymine (T), guanine (G), and cytosine (C). Each

nucleotide is composed of nucleobases and sugars. The DNA has a double helix

structure with two strands of a sugar-phosphate backbone with nitrogenous bases

attached, running in opposite directions. The nucleobases on each strand always

pair up such that adenine always pairs with thymine, and guanine always pairs

with cytosine. The bases along the strands are held together by strong covalent

bonds, whereas the base-pairs between the strands are held together with weaker

4

hydrogen bonds. The pair of two such opposite nucleobases that are attached are

known as a base-pair [10].

A gene consists of DNA that codes for a protein. An organism’s complete set

of DNA is known as its genome. The genome, hence, contains all the information

required to build the entire human body, and describes every genetic trait of an

individual. The difference in the genome between any two individuals is roughly

0.1%. So for every species, there is a single genome that is used as a representative

of all the genomes of that species [10].

Under certain circumstances the DNA sequence may change, this is known as

mutation. DNA mutation could lead to good outcomes such as causing a species

to evolve or it could lead to a bad outcome such as a certain disease. Studying

the DNA molecule is therefore very important in the fields of biology, chemistry,

and medicine.

2.1.2 DNA Sequencing

Genome sequencing is the process of finding out the order of the DNA nu-

cleotides in a genome. Being able to identify the genome is important to scientists

as it gives them the opportunity to explore and understand different genetic dis-

eases and cancer genomes. It could also help scientists improve diagnosis of dis-

eases as disease gene identification could lead to a more accurate diagnosis. Also,

it gives them the possibility of detecting genetic diseases earlier.

5

Figure 2.1: DNA Sequencing [1]

2.1.2.1 Next Generation Sequencing

Sequencing technology is evolving rapidly. Next generation sequencing is the

term used to describe the new evolving technologies used for DNA sequencing.

DNA sequencing is the process in which the precise order of the four nucleotide

bases within a DNA molecule is found. Several available sequencing methods have

been developed over the years.

Frederick Sanger developed the primary “first generation” method in 1977.

The Sanger sequencing method was based on a chain-termination method. This

way of DNA sequencing was very expensive and required radioactive materials.

In 1987, an automatic sequencing machine called the AB370 was developed that

was based on capillary electrophoresis which resulted in a much faster sequencing

and around 500,000 bases were sequenced in a day. Both the Sanger sequencing

and AB370 were used in completing the Human Genome Project. The Human

Genome Project was a project that involved finding the exact sequence of the four

nucleotide bases that make up the human genome [11].

The Next Generation Sequencing systems include the following:

• Roche 454 System: The 454 system was one of the first next generation

sequencing machines which is based on pyrosequencing. This machine could

generate up to 14 Gb per run of the machine with each short-read having a

length up to 700 bp [11].

6

• SOLid System: This system does DNA sequencing by Oliga Ligation De-

tection. The output of such a machine is 100 Gb per run with a read length

of up to 85 bp [12].

• Illumina: The Illumina machine uses sequencing by synthesis for DNA

sequencing. The output of the machine is as high as 1800 Gb per run of a

machine with a short-read length of 150 bp.[1].

• Compact PGM Sequencers: Compact PGM sequencers include Ion

Personal Genome Machine (PGM) and MiSeq which were launched by Ion

Torrent and Illumina [11].

The input to such a system is usually a biological sample or a collection

of cloned molecules. The systems output is not the full genome that consists of

the exact nucleotide base-pair pattern, but rather short sequences of the genome

known as the short-reads (see figure 2.1). The length of the short-reads depends

on the system used, as discussed above, and usually varies from 25 base-pairs to

up to 700 base-pairs.

2.1.2.2 Costs

The enormous amount of short-reads generated by DNA sequencing machines

has been possible due to the reduced cost of DNA sequencing that has led to a

growth in DNA research. The cost associated with DNA sequencing has decreased

significantly over the years, figure 2.2 illustrates the reducing cost per genome.

This figure is from the U.S. based National Institute of Health [2].

7

Figure 2.2: The decrease in the cost for sequencing the human genome with
time from the NHGRI genome sequencing program [2]

2.2 Short-Read Alignment

The generated short-reads must be aligned against a reference genome to

be able to reconstruct the sample genome. This process is known as short-read

alignment or short-read mapping. Figure 2.3 illustrates the process of short-read

alignment. Since the difference between the genomes of a given species is very

small, this process simply involves finding the location of the short-reads in the

reference genome. These locations can be determined by finding the locations in

the reference genome at which an exact match of the short-read is found. Inexact

matches can be of interest as well when mutations are considered. For the purpose

of this thesis we will concentrate only on exact matches of the short-reads.

8

Figure 2.3: Short-read alignment

With the next generation sequencing machines generating billions of reads

in a fast and inexpensive way, analyzing the data has become a challenge due

to the size of the data involved. The reference genome can be very large. For

example, the size of the human genome is around 3 billion nucleotide bases. Also,

the number of short-reads is increasing rapidly and can be in the order of billions

of reads. Searching for billions of reads in a large reference has led to an increase

in execution time for software based solutions as the CPU and memory resource

usage has increased.

2.2.1 Algorithms

Various algorithms are used to solve the short-read alignment problem. These

algorithms are usually based on either hash-tables or prefix/ suffix tries.

2.2.1.1 Hash-Table based Algorithms

Algorithms based on hash-indexing method usually create an index of the

entire reference genome. This index will include the location of all possible N

base-pair combinations present in the reference genome as shown in figure 2.4,

where N is the length of the short-read. Another approach is to use a seed-and-

extend method where an index of the reference genome is created using a seed

size smaller than the length of the short-read. When a portion of the short-read

9

is matched, and the location is found in the reference genome, it is then extended

until a complete match is found.

Figure 2.4: Hash-table index for short-read alignment

The drawback of using a hash-table approach is that it requires large memory

as the reference genome is usually very large. Also, the smaller the short-read or

the seed is, the larger the table.

2.2.1.2 Algorithms based on Suffix/Prefix tries

Algorithms in this category rely on a certain representation of suffix or prefix

tries. The tries can be represented as either a tree, an array or FM-index [13]. One

way to approach the problem is by building a prefix trie of the reference genome

and searching through it. The prefix trie is simply a data structure that stores all

the prefixes of the string. Figure 2.5 gives an example of a prefix trie for the string

“AGGAGT” where the symbol ‘ ˆ ’ represents the beginning of the string. The

advantage of searching through a prefix trie is that the repeats of a substring are

collapsed in one path of the prefix trie. So all the locations of a repeated substring

are found in one search [9]. Whereas with the hash-table approach, a search must

be performed for each repeat.

10

Figure 2.5: The Prefix Trie for the string X =“AGGAGT”. The path shown
in red is the path taken when searching for the string “AGG”

Building a prefix trie requires O(L2) space, where L is the length of the ref-

erence string. For a very large reference string, this would be very impractical to

build. A prefix tree (see Figure 2.6), instead of a prefix trie, could be used to

reduce the memory to theoretically LlogL + O(L) bits. However, an efficient im-

plementation of the prefix tree still requires 12-17 bytes per nucleotide. Therefore,

for a human genome of 3 billion nucleotides it would require 36GB of memory also

making it impractical. Another approach is an enhanced suffix array proposed by

Abouelhoda et al. [14]. The enhanced suffix array takes 6.25 bytes per nucleotide

and has the same time complexity as the suffix tree for exact matching [13].

11

Figure 2.6: The Prefix Tree for the string X = “AGGAGT”.

Ferragina and Manzini [15] proposed the FM-index, which further reduced

the amount of memory needed to build the data structure. The FM-index is based

on the Burrows-Wheeler Transform. The FM-index of a certain string is smaller

than the string itself when repeats exist in the string. However, for short-read

alignment the index is not compressed to maintain accuracy. This improvement

was made by realizing that a child of a certain node on a prefix trie can be found by

backtracking on the FM-index data structure. The memory required to build such

an index for a human genome is approximately 2 to 8 GB. The time complexity of

this backward search is identical to the time complexity of searching a prefix trie

and can be done in constant time [13]. Burrows-Wheeler Aligner is an algorithm

that uses FM-index and Burrows-Wheeler Transform for short-read alignment,

this is further discussed in detail in Chapter 3.

2.3 FPGA: Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware de-

vices designed so that the user can reprogram the device after it has been manufac-

tured, hence the term “field-programmable”. The FPGAs comprise of an array of

programmable logic elements and a routing interconnect that wires these elements

12

together in the same way that logic gates can be connected to perform different

functions. The reconfigurable nature of the FPGAs allows for the implementa-

tion of many different applications. The logic elements can be programmed to do

simple logic gates or complex functions.

Central Processing Units (CPUs) tend to have an inherently sequential na-

ture and as such they are unable to exploit the parallelism in particular algorithms.

Graphical Processing Units (GPUs) are used for the purpose of parallelizing algo-

rithms by dividing the algorithm into blocks of threads that are sent to the GPU.

A streaming multi-processor then executes each block of threads, and a simplified

core runs each thread in the block. However, adding more processors will add

more overhead and power consumption.

Contrary to the CPU and GPU, the hardware of an FPGA is not predefined

and can be reconfigured. The programmable logic blocks can be programmed to

run in parallel allowing the FPGA to perform parallel processes efficiently. Also,

the FPGAs ability to configure the hardware specifically for an application allows

for a very efficient design.

2.3.1 FPGA Components

Figure 2.7 shows the FPGA architecture and its main components that are:

• Configurable Logic Blocks (CLB): This contains the logic of the FPGA.

The block contains lookup tables (LUTs) which can be configured to perform

combinational logic functions. The LUT is basically a RAM that is used to

create the function. The CLB also contains a memory unit such as a flip-flop

that is used to route data to be able to perform sequential logic.

13

Figure 2.7: FPGA Architecture with CLB’s, I/O blocks and Interconnect

• Configurable I/O blocks: an I/O block is responsible for receiving and

sending signals. It does so by using an input buffer and an output buffer.

This block makes it possible for the FPGA to connect to other devices and

other resources.

• Programmable Interconnect: The programmable interconnect is what

connects everything together. It connects logic blocks, I/O blocks as well

as other resources. The interconnects itself can be programmed to fit the

required design.

The configurable logic blocks (CLBs) contain look-up tables (LUTs) as well

as flip-flops. The LUT is a very small form of RAM that is used to implement

logic functions. The memory written in the LUT for any combinatorial logic is a

truth table of the logic. Hence, logic functions are not actually implemented as

14

logic gates as one imagines. A truth table of a logic function is a table that defines

the output with a different combination of inputs.

Each FPGA can have many different components such as digital signal pro-

cessing blocks (DSP), memory blocks and communication ports. This allows the

FPGA to be used for many different applications.

2.3.2 Hardware Description Languages

Hardware description languages are languages used to model digital systems.

The hardware description languages are able to describe anything from simple

logic gates such as AND, NAND, XOR, etc. to complicated systems. C or C++

languages can not be used to define hardware as it does not support characteristics

of real hardware.

The two most commonly used hardware description languages are Verilog and

VHDL. Verilog is similar to C language and is popular for commercial purposes in

the United States, the designs using Verilog are contained in modules. Whereas

VHDL is similar to Ada, which is an unpopular high-level computer programming

language. Designs using VHDL are contained within entity and architecture pairs

and is usually harder to use than Verilog.

Some FPGA’s support the use of OpenCL as the description language. OpenCL

is a programming platform used for writing programs that can be executed on

heterogeneous parallel devices and is based on the C language [16]. The use of

OpenCL in FPGAs allows programmers to program in C and target FPGA func-

tions by using OpenCL constructs. However, programming using OpenCL for

describing hardware usually ends up in the synthesized hardware that is not as

efficient as when using Verilog or VHDL as OpenCL is a higher level language.

For the above reasons the chosen hardware description language for this thesis is

Verilog.

15

2.4 Previous Work

Many software-based algorithms have been developed as a solution to the

short-read alignment problem. Due to the rapid increase in the number of gener-

ated short-reads, many attempts have been made to accelerate such software by

using either the GPU or FPGA. The following section will outline some existing

solutions.

All recent DNA sequencing technologies are able to produce short-reads of

the order of Giga base-pairs. For researchers to be able to keep up with this rapidly

developing technology, fast and accurate algorithms are being developed.

Many algorithms have been developed based on hash-tables some of which

are:

• BLAST: is one of the first algorithms developed based on hash-tables.

BLAST works by hashing the short-reads, it keeps the position of all k-mer

subsequences of the query in a hash table and works by using these k-mer

subsequences as keys to search through the reference genome. It then uses

a seed-and-extend method to extend the k-mer subsequence match until it

finds a match of the full short-read. It then finally uses the Smith-Waterman

alignment tool [17].

• SOAP: works by hashing the reference genome rather than the short-reads.

This results in an algorithm that can be easily parallelized [5].

• MAQ: it stands for Mapping and Assembly with Quality. MAQ maps short-

reads against a reference genome by using quality scores [4].

• RMAP: it was originally designed to map DNA sequences generated by the

Illumina machine with short-read lengths ranging from 25 to 50 bases. This

alignment algorithm also uses quality scores and weight-matrix matching to

map the short-reads and improve accuracy [3].

16

• SHRiMP: it uses very larger memory. Originally it works by hashing the

short-reads, however, some newer versions work by hashing the genome in-

stead. Due to its need for very large memory, it is not widely used [18].

There are many more existing aligners that are also based on hash-tables

such as BFAST [6], CloudBurst [19], PERM [20] and GNUMAP [21]. The use of

suffix and prefix tries for aligning sequences has also led to the development of

many algorithms. Some of these existing aligners are listed below.

• Bowtie: it implements the FM-index to map short-reads of lengths upto 50

base-pairs and is one of the first aligners to adopt FM-index for short-read

alignment [8].

• SOAPv2: this is an algorithm that improves on SOAPv1 and is based on

Burrows-Wheeler Transform. It also uses a hash-table to improve the speed

by searching the BWT reference index using the hash-table [7].

• BWA: it stands for Burrows-Wheeler Aligner and is based on the Burrows-

Wheeler Transform (FM-index) using a backward search. It is able to mimic

the top-down traversal of a prefix trie without building the trie in memory,

as a result reducing the required memory to map short-reads [9].

• segemehl: it is a short-read aligner that is based on enhanced suffix arrays.

It is flexible with the read length, however, it uses much more memory than

other suffix and prefix based algorithms [22].

Prefix and suffix based algorithms tend to use less memory than hash-table

based algorithms. For this reason, we chose to implement the exact match of

Burrows-Wheeler Aligner algorithm on an FPGA to accelerate the process of short-

read mapping. For the purpose of this thesis our concentration is only on exact

matching of short-reads.

17

Many attempts have been made to accelerate existing software aligners by

using the GPU. Some of these aligners are listed below.

• CUSHAW: uses Compute Unified Device Architecture (CUDA) program-

ming language to develop a GPU implementation based on the Burrows-

Wheeler Transform. CUSHAW reports to be faster than both BWA and

Bowtie [23].

• BarraCUDA: is a GPU implementation of BWA using CUDA. The BAr-

raCUDA reports to be six times faster than a CPU implementation of BWA

[24].

• SOAPv3: is also a GPU implementation using CUDA of SOAP2. It is

reported to be 7.5 times faster than BWA and 20 times faster than Bowtie

[25].

• MUMmerGPU: is a GPU implementation, also using CUDA, for an al-

gorithm based on suffix tree. It reports to be 3.5 times faster than MUM-

merGPU running on a CPU [26].

The use of reconfigurable hardware such as Field Programmable Gate Arrays

has become very popular due to its inherent parallelism. It has been used to accel-

erate many different applications. Below is a list of short-read aligners accelerated

using FPGA’s.

• Shepard: is a hardware implementation of an exact match short-read aligner.

It uses the Convey HC-1 which is a high-performance computer cluster that

contains a motherboard and a coprocessor board. The coprocessor board

includes at least 32GB of coprocessor memory and has a set of 14 FPGAs.

It reports to align 350 million short-reads per second [27].

18

• Olson et al. implemented a hash-table based algorithm known as BFAST

on FPGA. It reports to be 250 times faster than BFAST on CPU but only

31 times faster than Bowtie which is a suffix tree based algorithm. It does

not make any comparisons to BWA [28].

• Kasap et al. designed and implemented an FPGA implementation of

BLAST. They report having a speedup of 52 compared to similar software

implementations [29].

• Sogabe et al. implemented a hash-table method on FPGA. They report

to be 2.5 times faster than Bowtie and 0.44 times than Olson et al. [28].

Their implementation involves hashing the short-reads by further dividing

them into smaller seeds [30].

Many efforts have been made to accelerate BWA. Chen et al. [31] developed

Cgap-align, which achieves a speedup of around 1.2 in comparison to BWA. They

do this by using a data structure that combines elements of both the suffix array

and the suffix tree. Zhang et al. [32] improved the performance of BWA by

reducing the last-level cache (LLC) misses by 30%. As far as our knowledge, there

has been no attempts to accelerate BWA on hardware.

19

Chapter 3

Algorithm

Next Generation Sequencing generates billions of short-reads which are then

mapped to a reference genome. There are many short-read alignment techniques,

one of which is Burrows-Wheeler Aligner. Burrows-Wheeler Aligner is based on a

backward search with FM-index and Burrows-Wheeler Transform. In this chapter,

we will focus on how the Burrows-Wheeler Aligner is used for exact match short-

read alignment.

3.1 Prefix Trie

The Prefix Trie is a data structure for storing all the prefixes of the string in

a way that allows for a fast lookup. Figure 2.5 shows the prefix trie for the string

“AGGAGT” where the symbol ‘ˆ’ marks the beginning of the string.

Each node in the prefix trie represents a string which is the edge symbol

concatenation from the node to the root. If we are to search for the exact match

of the substring AGG in the prefix trie, the path in red (Figure 2.5) is the path

that would be taken to find the substring. This is done in O(|W |) time where W is

the length of the substring. The red node represents the found string AGG. Each

20

node in the prefix trie is numbered with the suffix array interval of the string that

is represented by that node. The suffix array is an array of the indexes of all the

sorted suffixes of the string as can be seen in figure 3.1. The suffix array interval

is the interval at which the substring occurs in the suffix array. For example, the

node highlighted in red shows the suffix array interval {1,1} for the found string

AGG and S[1] = 0, this means that the substring AGG occurs at location 0 of the

original string. Another example will be if we are to search for the substring AG.

The node representing the substring AG from (Figure 2.5) has the suffix interval

{1,2} this means that the string AG occurs twice at locations S[1] = 0 and at

S[2] = 3 of the original string. Note how we did not need to search for all the

repeats of the substring as they are collapsed in one path of the trie, also since

the suffix array is sorted only one such interval will exist for each substring [9].

Figure 3.1: Suffix array for string X = AGGAGT

As mentioned earlier, it is impractical to build a prefix trie due to its memory

requirements. The FM-index and the Burrows-Wheeler Transform are able to

mimic the traversal of a prefix pie without having to build the trie in memory.

21

3.2 Burrows-Wheeler Transform and the FM-

index

Burrows-Wheeler Transform is used in many different applications such as

data compression, image processing and in string matching. The Burrows-Wheeler

Transform was first introduced in [33] and was initially used for the purpose of

data compression. The Burrows-Wheeler Transform of a string X is simply a

permutation of that string. What makes Burrows-Wheeler Transform unique is

the fact that the permuted string is reversible.

Let Σ = {′A′,′ G′,′C ′,′ T ′} be the alphabet over which the input string X

is created. A dollar sign ‘$’ is added to the end of the input String X and is

lexicographically the smallest. The BWT permuted string B is generated by per-

forming all the cyclic rotations on the original input string X. Figure 3.2 shows

two matrices, the first matrix M is simply the cyclic rotations of the string X =

“AGGAGT$”. The second matrix Q is the result of sorting the rows in matrix

M lexicographically. The Burrows-Wheeler Transform of the string X, string B, is

now simply the last column of Matrix Q. S[i] is the suffix array of string X, such

that S[i] is the position of the ith lexicographically smallest suffix in String X, and

so we can say that B[i] = X[S(i)−1]. The suffixes of string X are shown in red in

figure 3.2. In the second matrix, these suffixes are then sorted lexicographically.

The indices resulting from sorting these cyclic rotations gives us the suffix array

S[i]. In this way, the Burrows-Wheeler Transform is able to mimic the prefix trie

without having to save the trie in memory [9].

22

Figure 3.2: BWT for input string X = AGGAGT

The BWT string B is the output of the Burrows-Wheeler Transform algo-

rithm. The output is usually easier to compress than the input string because the

Burrows-Wheeler Transform tends to group similar characters together. Since the

BWT string B can be reversible, BWT is used in lossless string compression tools

such as bzip.

23

3.2.1 Backward Search

The Burrows-Wheeler Transform along with the suffix array can be used

for string matching. Ferragina and Manzini [15] developed an algorithm based on

Burrows-Wheeler Transform that is able to search for substrings in the compressed

string. For the purpose of higher accuracy for the short-read alignment problem,

the search is done without compressing the BWT string B.

Each occurrence of a substring W of String X will occur in an interval in

the suffix array since the suffixes are in lexicographical order [9]. The following

equations from [9] are then defined.

R(W) = min{k : W is the prefix of XS(k)}

R̄(W) = max{k : W is the prefix of XS(k)}

The interval [R(W), R̄(W)] is known as the suffix interval. If we know the

interval we then know the locations, meaning that string alignment is equivalent to

searching for the suffix array intervals of the substrings that match string X. If we

are looking for exact matches then only one such array can exist. We need to define

a count array C(a), which is the number of symbols in X that are lexicographically

smaller than the symbol a. Given that a is a symbol in Σ. Also, O(a, i) is the

occurrence array which is the number of occurrences of symbol a in B[0, i]. Then

if W is a substring of X the following equations which were proven by [15] can be

defined:

R(aW) = C(a) + O(a,R(W)− 1) + 1

R̄(aW) = C(a) + O(a, R̄(W))

This makes it possible to test whether W is a substring of X by iteratively

calculating R(W) and R̄(W) from the end of W, this is known as backward search.

24

The suffix array of an empty string would then be [0, |X| − 1] where |X| is the

size of the reference string X /citeBWA. For example, from figure 3.2 the suffix

interval of “AG” is [1, 2]. Hence, “AG” exists in locations S (R(AG)) = S(1) = 0

and S (R̄(AG)) = S(2) = 3 of the original reference string.

After we construct the BWT along with the suffix array we must construct

the count array C(.) and the occurrence array O(., .) for each alphabet Σ =

{‘A′, ‘G′, ‘C ′, ‘T ′}. Figure 3.3 shows an example for such arrays. The first ar-

ray stores the counts of symbols lexicographically smaller than each letter of the

alphabet Σ. The second array counts the number of occurrences of each letter up

to each position in B. After these arrays have been constructed, they are used to

search for matches of the substring in the original string in linear time. Using the

equations, we can iteratively find a match by prepending a single character from

the query to the current substring. If the lower bound is smaller than the upper

bound, this would mean that the substring exists in the original string. However,

if the lower bound is greater than the upper bound this indicates that the string

does not occur in the original string. If the query is found, the lower and upper

bound can be used to find the exact location in the original string.

Figure 3.3: The left table shows the O (.) arrays for each symbol and the
right table shows the C (.) arrays for each symbol

The Burrows-Wheeler Transform string B does not require much memory to

store as only 2 bits per nucleotide can be used. Hence, the BWT string B requires

2.|X| bits of memory where |X| is the length of the input, String X. For a human

genome, this would be around 750MB, which can be stored in a memory of a

standard desktop PC. The array C(.) is just an integer that stores the count and

25

so does not require much memory. However, the problem is with the occurrence

array O(., .). The memory requirement for the occurrence array is O(|X|). If a

full human genome is to be indexed, a 32-bit integer is required and for all four

of the occurrence arrays this could mean 32.4.|X| which would approximately be

48GB for the human genome. Burrows-Wheeler Aligner developed a way to help

reduce the amount of memory; this will be discussed in the next section.

3.3 Burrows-Wheeler Aligner

Li et al. [9] developed a fast algorithm that has been very widely used and

trusted for DNA sequencing short-read alignment. The algorithm also supports

inexact matching, however, we will only concentrate on exact matching.

Burrows-Wheeler Aligner developed a method of reducing the memory re-

quired for building the occurrence arrays. Instead of building the entire array,

they divide the array into buckets and only store one entry from each bucket and

calculate the rest on the go. Figure 3.4 shows how this method works for the string

X = AGGAGT$ and its BWT string B = T$GGAAG. Here the occurrence array

is divided into buckets and only the first entry is recorded. If, for example, we

want to find the value of O[‘G’,2], we know that O[‘G’,0] = 0 then we just need to

check if ’G’ occurs in B[1] and B[2] and increment O[‘G’,0] accordingly. Here ‘G’

does not occur in B[1] but does occur in B[2] and as such we increment O[‘G’,0]

to get O[‘G’,2] = 1. If we check back to figure 3.3 we can see that O[‘G’,2] is in

fact equal to 1.

26

Figure 3.4: Reducing the occurrence array by using a bucket size of 3 nu-
cleotides

The occurrence array is divided into buckets of N base-pair intervals and is

stored in memory. When trying to find a value from the occurrence array, the

first entry smaller than the one required is loaded. After that, occurrences of the

nucleotide base is found by directly looking into string B and incrementing the

value that has already been loaded.

Using this method the human genome, for example, would only require

around 375MB for all four occurrence arrays, which is much smaller and much

more reasonable than the 48GB that was seen in the earlier section. This is if the

occurrence array was divided into 128 base-pair intervals. So the memory require-

ment for the occurrence array is now O(|X|/N) where N is the base-pair interval.

Note that by reducing the memory that is needed for the occurrence array the

computational cost increases.

The Burrows-Wheeler aligner algorithm proposed in [9] has been edited to

account only for exact matching. The algorithm is shown in figure 3.5. The input

to this algorithm is the reference string X and substring W. The output is k and

l where k is the lower bound of the suffix interval and l is the upper bound of the

suffix interval.

27

Pre-Calculations

Calculate BWT string B for reference String X

Calculate Array C(.)

Calculate Array O(.,.)

ExactSearch(W, B, C(.), O(.,.))

k = 0

l = |X| - 1

for i = |W| - 1 to 0 do

k = C(W[i]) + O(W[i] , k-1) + 1

l = C(W[i]) + O(W[i] , l)

i = i - 1

if k > l

BREAK

if k > l

return "NOT FOUND"

else

return [k,l]

Figure 3.5: Algorithm for exact matching

Figure 3.6: This figure shows how the algorithm from figure 3.5 works when
searching for the substring AGG in the original reference string AGGAGT

28

For example, if we are to search the above algorithm for the String W = AGG

in the reference string X = AGGAGT the algorithm would follow as seen in

figure 3.6. Note that O(.,−1) is always zero. The output of the algorithm would

be k = 1 and l = 1 which is the suffix interval {1, 1} of the substring W = AGG.

29

Chapter 4

FPGA Implementation

In this chapter, we describe our hardware implementation of an exact match

short-read aligner. First we need to describe the data flow of the algorithm. The

flow chart in figure 4.1 shows the steps that need to be taken before we are able

to map the short-reads to a reference genome. We then go on to describe how

each part is implemented.

There are two main components to our implementation, the first component

is software which constitutes of the generation of the random short-reads and

the reference genome as well as the Burrows-Wheeler Transform string B of the

reference genome. Our second component is the hardware which calculates the

arrays and maps the short-reads.

30

Figure 4.1: Flow chart describing the data flow of the algorithm

It is important to note that the Burrows-Wheeler Transform as well as cre-

ating the arrays C(.) and O(.,.) is only done once. Hence, the BWT and the

arrays are only found once for a given reference genome, and usually there is only

one such reference genome for a particular species. For example, for the human

genome there is one most recent version of the reference genome that is most com-

monly used, and that is known as GRCh38 [34]. Also for our implementation we

disregard the ‘$’ sign and use 2-bits to represent a nucleotide base.

31

4.1 Software Component

4.1.1 Random String Generator

For our design, we randomly generate the short-reads as well as the reference

genome. In practice the DNA sequencing machines generate the short-reads and

reference genomes are available online. However, for the purpose of testing our

simulation we chose to generate the short-reads and the reference genome using

pseudo-random number generator. The pseud-code in figure 4.2 represents the

code used to generate the short-reads. In the same manner, we generate the

reference genome. The input to this algorithm is the Number ShortReads which

is the number of short-reads and ShortRead Length which is the length of each

short-read. We generate a random number using the function random() and by

taking the modulus of that number we insure the result is between 0 and 4 since

we only have four nucelotide bases. The result of the modulus is then an index

of the nucleotide array which includes all four bases. We then store the candidate

nucleotide in our short-read array.

ShortRead_Generator(Number_ShortReads, ShortRead_Length)

value = 0

char sequence[Number_ShortReads][ShortRead_Length]

nucleotide[] {’A’, ’G’, ’C’, ’T’}

while (value < Number_ShortReads)

{

for i = 0 to ShortRead_Length

{

sequence[value][i] += nucleotide[(random()%4)]

}

value = value +1

}

Figure 4.2: Short-read generator

32

4.1.2 Burrows-Wheeler Transform

To create the BWT string B of a reference string X, we must generate all

cyclic rotations of string X as described in Chapter 3, section 3.2. If the length

of String X is |X| than this means that we would need O(|X|2) memory to be

able to generate all the cyclic rotations. Since the reference string is usually very

large, this is not practical. In practice, the BWT is generated by first generating

the suffix array. Hon et al. [35] developed an algorithm that would only require

around 1GB of working space for the human genome.

If we look back at figure 3.2 we can see that the first column of matrix Q

is simply the original string sorted lexicographically. Remember that the ‘$’ sign

is lexicographically the smallest. Also, we can notice that each character of the

last column is the prefix of each character in the first column of the same row due

to the cyclic rotations. Since each column is just a permutation of the original

string, they can be presented as indexes of the original string. This means that

the last column, which is the BWT string B, indexes can be found by subtracting

one from the indexes of the first column. Figure 4.3 helps elaborate this further.

Figure 4.3: This figure shows how the Burrows-Wheeler Transform can be
found without generating all the cyclic rotations of the string

33

Now, the Burrows-Wheeler Transform can be seen as simply a sorting prob-

lem. If there are no repeated characters in the input string X, then the sorting

operation can be done in one iteration. However, the problem occurs when we

have many repeated characters in String X, which is usually the case. In order to

sort string X with the existence of repeated characters, the character is replaced

by its suffix, and it is sorted again. This is repeated up until no more repeats

exist. This is the method used in our implementation for finding the BWT string

B.

Since the Burrows-Wheeler Transform is calculated only once for the reference

genome, we chose to implement the BWT in software. The output of the BWT is

then passed to our simulation on the hardware side.

4.2 Hardware Design

The Burrows-Wheeler Transform of the reference genome, as well as the short-

reads, are loaded to the FPGA. The FPGA then, given the BWT, calculates the

occurrence array, as well as the count array C(.). The arrays are then fed to the

exact matcher unit of the FPGA. The overall architecture used to implement the

short-read mapping is shown in figure 4.4.

4.2.1 Occurrence Array Unit

We recall from section 3.2.1 that the occurrence array is found by cumula-

tively counting the occurrences of each of the four bases in the BWT string B (see

figure 3.3). In our design, we generate four separate occurrence arrays, one for

each nucleotide base ′A′,′ G′,′ C ′,′ T ′.

34

Figure 4.4: Overall architecture of our design

The Burrows-Wheeler Transform string B, which is computed on the host

CPU, is loaded onto the FPGA. The BWT string B is then shifted in character

by character. The arrays are initialized to zero upon reset. Depending on the

character, the corresponding occurrence array is incremented. A single counter

is used to index the arrays. Every time a character is shifted in, the counter

increments by one. As a result, with every clock cycle the counter would increment

one element of a certain array and leaving the other arrays the same. Figure 4.5

represents the architecture of such a unit.

35

Figure 4.5: Occurrence array unit

4.2.2 C Array Unit

To create the count array C, we implement four registers one for each nu-

cleotide base. Remember from section 3.2.1 that the count array for any nucleotide

is simply the number of nucleotide bases in string B lexicographically smaller than

the nucleotide itself. Register C(A) (count array for ‘A’) is always zero since there

is no character lexicographically smaller than ‘A’. Since ‘A’ is the only letter lexi-

cographically small than ‘C’, then register C(C) is basically the number of ‘A’s in

string B. Hence, array C(G) is the sum of the count of ‘A’s and ‘C’s in string B.

Finally, array C(T) is the sum of the count of ‘A’s, ‘C’s and ’G’s in string B.

36

Figure 4.6: C array unit

The counts can be found directly from the occurrence arrays. The last value

in the occurrence array for each nucleotide corresponds to the total count of that

nucleotide in String B. Figure 4.6 shows the architecture for the C Array Unit.

4.2.3 Exact Matcher Unit

The exact matcher unit takes in one character from the short-read at a time.

Also, the output from the occurrence array unit as well as the C array unit is fed

as input to the exact matcher unit. We can recall from section 3.2.1 that finding

k and l is an iterative process. After every iteration the new value of k and l is

used as input, i.e. is fed back to the system. Also, it is important to note that

the number of iterations required to find the exact match is exactly the length of

the short-read. For example, if the length of the short-read is 50, then it would

take 50 iterations to find the values of k and l. So if we have 100 short-reads, then

finding the exact match of all 100 short-reads would require 100∗50 iterations, this

means that the time complexity to find k and l for N short-reads each of length

|W | is O(N ∗ |W |). However since the number of short-reads is much greater than

the length of the short-read, and the length of the short-read is a constant, the

37

time complexity becomes O(N). One very important observation is that the time

complexity is independent of the length of the reference genome.

Figure 4.7 shows the architecture used in our design for the exact matcher

unit. Upon reset, the value of k is initialized to 0, and the value of l is initialized

to the length of the string. K and l both are used to index the occurrence arrays.

Depending on the value of the character, a particular occurrence array is added to

its respective count array C. This value is then fed back and used as an index to

the occurrence array. With every iteration, a counter increments its value. Once

the value of this counter reaches the length of the short-read, the values of k and

l are then sent as output as they would correspond to the suffix array interval of

the current short-read. After that, the value of k and l will reset, and the exact

matcher unit will read a new character of a new short-read.

Figure 4.7: Exact matcher unit

Since each short-read can be mapped independently of another short-read,

the exact matcher unit can be realized as many times as the FPGA can hold.

With every extra exact matcher unit, the time to match all the short-reads will be

38

cut in half. However, for the purpose of this thesis, only one such unit has been

realized.

39

Chapter 5

Experimental Setup and Results

5.1 Experimental Setup

Our design was synthesized for the Stratix V GX 5SGXEA7N2F45C2 FPGA

using Quartus II 14.0, and was simulated using ModelSim-Altera 10.3c. Modelsim

is a Hardware Description Language (HDL) simulation environment for simulat-

ing different HDL languages, such as Verilog and VHDL. Quartus II is a design

software that enables the design of various reconfigurable devices using HDL lan-

guages. Quartus II allows the user to use the analysis and synthesis tool for their

design. The software has many features such as timing analysis as well as de-

vice configuration that enables the user to directly program their device by using

Quartus.

The Stratic V GX 5SGXEA7N2F45C2 can contain up to 8GB of DDR3

memory; it also contains many other components such as various communication

ports, and general input/ output ports. The Stratix V was chosen due to the

high number of available resources, such as the number of ALMs that it contains.

ALM stands for Adaptive Logic Module, and it consists of registers, adders, and

the combinational logic that includes the LUT. The resource utilization of a device

40

is usually given in terms of the number of ALMs used and as a percentage of the

total device resources.

Our Register Transfer Logic code (RTL) was written in terms of the length of

the genome and the length of the short-read. A test bench file is used along with

ModelSim to simulate the code. The randomly generated short-reads are given in

the test bench file, and the length of the genome was fixed to 1024 bp.

5.2 Results

Table 5.1 shows the resource utilization of the device with a short-read length

of 32 bp, 64 bp, and 128 bp. Note that the only memory used in our design

is the memory required to hold the short-read and the reference genome. The

complexity of the hardware can be seen by the number of registers, as the registers

can represent many things such as buffer registers and multiplexers. Also note the

number of ALMs given in table 5.1 includes the number of registers.

Table 5.1: Resource Utilization

Length of short-reads (bp) 32 64 128

Registers 45,008 45,102 45,202
ALMs 68,703 (29%) 68,836 (29%) 68,947 (29%)

Memory bits 2,112 2,176 2,304

It can be seen that the hardware complexity does not change much as the

length of the short-read changes, as we expected. This is because our exact matcher

unit does not depend on the length of the short-read as it takes in one character

at a time regardless of the length.

To be able to test the effect of increasing the number of short-reads on the

time elapsed, we tested our code with 100 thousand, 500 thousand, 1 million and

5 million short-reads. Figure 5.1 shows the number of clock cycles as the number

41

of short-reads varies. It can be seen that the number of clock cycles is linear with

respect to the number of short-reads as expected. The maximum frequency that is

achieved in our design is 125 MHz. Using the maximum frequency, and the number

of clock cycles, the time elapsed can be calculated theoretically. Figure 5.2 shows

the time elapsed as the number of short-reads increases.

Figure 5.1: Performance in terms of the number of clock cycles as the length
of the short-read increases

42

Figure 5.2: Time in ms as the number of short-reads vary

We compare our results with an exact match Burrows-Wheeler Aligner that

runs on a core i7 with 8GB of memory. For a fair comparison, we used the same

data for both the hardware and the software. Figure 5.3 shows the result of this

comparison. It can be seen that our design runs on average 82X faster than the

software version.

43

Figure 5.3: Performance comparison between exact match of BWA and
FPGA with a short-read length of 128 bp

It is not easy to make a fair comparison with other hardware designs, as

many different components need to be considered. However, we discuss our design

in comparison with Shepard that is represented in [27] as it is an exact match

short-read aligner.

Shepard [27] uses a Convey HC-1, which is a computing cluster that contains

a standard motherboard, 32GB of memory and 14-FPGAs. They compare their

results to Bowtie [8], and SOAP2 [7], and report to achieve a speedup of the order

of hundreds of thousands. Their design is based on a hash-table that requires

23.3GB of memory for a Human Genome. However, such a design can not fit into

a single FPGA, as a single FPGA can contain up to a maximum of 8GB of RAM.

Whereas our design is compatible and can fit into almost any FPGA. It is also

important to note that the current cost of a Convey HC-1 is $67,100 as this thesis

is written, whereas a reasonable FPGA cost is considerably lower [27].

44

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we demonstrated a high performance architecture for an exact

match short-read aligner. We discussed the problem of aligning billions of short-

reads to a large reference genome and realized that with the rapid development of

DNA sequencing machines, faster short-read alignment tools are necessary.

Many software short-read alignment tools have been developed, but not many

have been accelerated using hardware. We discussed two main methods for short-

read alignment and came to the conclusion that suffix/prefix trie based methods

require less memory than hash-table based methods. Burrows-Wheeler Aligner is

a software alignment tool that has been very widely used and trusted for mapping

short-reads. We concentrated on the exact match of the short-reads and chose to

implement the exact match component of Burrows-Wheeler Aligner on an FPGA.

Our FPGA implementation proved to be remarkably faster than a CPU im-

plementation. We ran experiments for up to 5 million short-reads and achieved a

speedup of 82X compared to Burrows-Wheeler Aligner exact match. Our design

can also be synthesized on different FPGAs.

45

6.2 Future Work

Our future work will concentrate on further improving the speed and flexi-

bility of our design. One first approach would be to realize more than one exact

matcher unit (refer to figure 6.1). Also, we can perform the occurrence array

and c array calculations on the CPU and send the data to the FPGA memory,

since they are calculated only once for a given reference genome. By removing

the occurrence array unit and the C array unit, we could reduce the complexity

of the hardware allowing more exact matcher units to be realized and, as a result,

speeding the process. Another improvement to our design would be to allow for

inexact matches as well as exact matches.

The maximum clock frequency for our design was 125.33MHz that was achieved

on a Stratix V GX 5SGXEA7N2F45C2 FPGA, which can be further improved by

optimizing our code and design. Our ultimate goal is to create a real-time system

that can directly map the short-reads to a given genome.

Figure 6.1: Future work

46

Bibliography

[1] Inc. Illumina. An introduction to next-generation sequencing technol-

ogy. http://www.illumina.com/content/dam/illumina-marketing/

documents/products/illumina_sequencing_introduction.pdf. Ac-

cessed: 10-03-2015.

[2] Wetterstrand KA. Dna sequencing costs: Data from the nhgri genome se-

quencing program (gsp). http://www.genome.gov/sequencingcosts. Ac-

cessed: 10-03-2015.

[3] Andrew D Smith, Zhenyu Xuan, and Michael Q Zhang. Using quality scores

and longer reads improves accuracy of solexa read mapping. BMC bioinfor-

matics, 9(1):128, 2008.

[4] Heng Li, Jue Ruan, and Richard Durbin. Mapping short dna sequencing reads

and calling variants using. 2008.

[5] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. Soap: short

oligonucleotide alignment program. Bioinformatics, 24(5):713–714, 2008.

[6] Nils Homer, Barry Merriman, and Stanley F Nelson. Bfast: an alignment

tool for large scale genome resequencing. PloS one, 4(11):e7767, 2009.

[7] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten

Kristiansen, and Jun Wang. Soap2: an improved ultrafast tool for short read

alignment. Bioinformatics, 25(15):1966–1967, 2009.

47

http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.genome.gov/sequencingcosts

[8] Ben Langmead, Cole Trapnell, Mihai Pop, Steven L Salzberg, et al. Ultrafast

and memory-efficient alignment of short dna sequences to the human genome.

Genome biol, 10(3):R25, 2009.

[9] Heng Li and Richard Durbin. Fast and accurate short read alignment with

burrows–wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[10] Neil C Jones and Pavel Pevzner. An introduction to bioinformatics algorithms.

MIT press, 2004.

[11] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua

Lu, and Maggie Law. Comparison of next-generation sequencing systems.

BioMed Research International, 2012, 2012.

[12] ”Thermo Fisher Scientific Inc.”. Solid 4 system product descrip-

tion. https://products.appliedbiosystems.com/ab/en/US/adirect/ab?

cmd=catNavigate2&catID=607061. Accessed October 5, 2015.

[13] Heng Li and Nils Homer. A survey of sequence alignment algorithms for

next-generation sequencing. Briefings in bioinformatics, 11(5):473–483, 2010.

[14] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replac-

ing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms,

2(1):53–86, 2004.

[15] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with

applications. In Foundations of Computer Science, 2000. Proceedings. 41st

Annual Symposium on, pages 390–398. IEEE, 2000.

[16] Altera Corporation. Implementing fpga design with the opencl standard.

http://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.

pdf. Accessed: 09-06-2015.

[17] Stephen F Altschull, W Gish, Webb Miller, Eugene W Myers, and David J

Lipman. Basic local alignment search tool. J. Mol. Biol, 215:403–410, 1990.

48

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=607061
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=607061
http://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
http://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf

[18] Stephen M Rumble, Phil Lacroute, Adrian V Dalca, Marc Fiume, Arend

Sidow, and Michael Brudno. Shrimp: accurate mapping of short color-space

reads. 2009.

[19] Michael C Schatz. Cloudburst: highly sensitive read mapping with mapre-

duce. Bioinformatics, 25(11):1363–1369, 2009.

[20] Yangho Chen, Tade Souaiaia, and Ting Chen. Perm: efficient mapping of

short sequencing reads with periodic full sensitive spaced seeds. Bioinformat-

ics, 25(19):2514–2521, 2009.

[21] Nathan L Clement, Quinn Snell, Mark J Clement, Peter C Hollenhorst, Jahnvi

Purwar, Barbara J Graves, Bradley R Cairns, and W Evan Johnson. The

gnumap algorithm: unbiased probabilistic mapping of oligonucleotides from

next-generation sequencing. Bioinformatics, 26(1):38–45, 2010.

[22] Christian Otto, Peter F Stadler, and Steve Hoffmann. Fast and sensitive

mapping of bisulfite-treated sequencing data. Bioinformatics, 28(13):1698–

1704, 2012.

[23] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. Cushaw: a cuda

compatible short read aligner to large genomes based on the burrows–wheeler

transform. Bioinformatics, 28(14):1830–1837, 2012.

[24] Petr Klus, Simon Lam, Dag Lyberg, Ming S Cheung, Graham Pullan, Ian

McFarlane, Giles SH Yeo, and Brian YH Lam. Barracuda-a fast short read

sequence aligner using graphics processing units. BMC research notes, 5(1):27,

2012.

[25] Chi-Man Liu, Thomas Wong, Edward Wu, Ruibang Luo, Siu-Ming Yiu, Yin-

grui Li, Bingqiang Wang, Chang Yu, Xiaowen Chu, Kaiyong Zhao, et al.

Soap3: ultra-fast gpu-based parallel alignment tool for short reads. Bioinfor-

matics, 28(6):878–879, 2012.

49

[26] Michael C Schatz, Cole Trapnell, Arthur L Delcher, and Amitabh Varshney.

High-throughput sequence alignment using graphics processing units. BMC

bioinformatics, 8(1):474, 2007.

[27] Chad Nelson, Kevin Townsend, Bhavani Satyanarayana Rao, Phillip Jones,

and Joseph Zambreno. Shepard: A fast exact match short read aligner.

In Formal Methods and Models for Codesign (MEMOCODE), 2012 10th

IEEE/ACM International Conference on, pages 91–94. IEEE, 2012.

[28] Corey B Olson, Maria Kim, Cooper Clauson, Boris Kogon, Carl Ebeling, Scott

Hauck, and Walter L Ruzzo. Hardware acceleration of short read mapping.

In Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE

20th Annual International Symposium on, pages 161–168. IEEE, 2012.

[29] Server Kasap, Khaled Benkrid, and Ying Liu. High performance fpga-based

core for blast sequence alignment with the two-hit method. In BioInformatics

and BioEngineering, 2008. BIBE 2008. 8th IEEE International Conference

on, pages 1–7. IEEE, 2008.

[30] Yusuke Sogabe and Tetsuhiro Maruyama. An acceleration method of short

read mapping using fpga. In Field-Programmable Technology (FPT), 2013

International Conference on, pages 350–353. IEEE, 2013.

[31] Yaoliang Chen, Ji Hong, Wanyun Cui, Jacques Zaneveld, Wei Wang, Richard

Gibbs, Yanghua Xiao, and Rui Chen. Cgap-align: a high performance dna

short read alignment tool. PloS one, 8(4):04, 2013.

[32] Jing Zhang, Heshan Lin, Pavan Balaji, and Wu-chun Feng. Optimiz-

ing burrows-wheeler transform-based sequence alignment on multicore ar-

chitectures. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th

IEEE/ACM International Symposium on, pages 377–384. IEEE, 2013.

[33] Michael Burrows and David J Wheeler. A block-sorting lossless data com-

pression algorithm. 1994.

50

[34] Genome Reference Consortium. Human genome overview. http://www.

ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/. Accessed:

10-03-2015.

[35] Wing-Kai Hon, Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung, and Siu-

Ming Yiu. A space and time efficient algorithm for constructing compressed

suffix arrays. Algorithmica, 48(1):23–36, 2007.

[36] Fahad Saeed. Pyro-align: Sample-align based multiple alignment system for

pyrosequencing reads of large number. arXiv preprint arXiv:0901.2751, 2009.

[37] Fahad Saeed and Ashfaq Khokhar. Sample-align-d: A high performance mul-

tiple sequence alignment system using phylogenetic sampling and domain

decomposition. In Parallel and Distributed Processing, 2008. IPDPS 2008.

IEEE International Symposium on, pages 1–9. IEEE, 2008.

[38] Fahad Saeed and Ashfaq Khokhar. A domain decomposition strategy for

alignment of multiple biological sequences on multiprocessor platforms. Jour-

nal of Parallel and Distributed Computing, 69(7):666–677, 2009.

51

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

	A High Performance Architecture for an Exact Match Short-Read Aligner Using Burrows-Wheeler Aligner on FPGAs
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction and Objectives
	1.1 Introduction
	1.2 Objectives

	2 Background
	2.1 DNA
	2.1.1 DNA: Overview
	2.1.2 DNA Sequencing
	2.1.2.1 Next Generation Sequencing
	2.1.2.2 Costs

	2.2 Short-Read Alignment
	2.2.1 Algorithms
	2.2.1.1 Hash-Table based Algorithms
	2.2.1.2 Algorithms based on Suffix/Prefix tries

	2.3 FPGA: Field Programmable Gate Array
	2.3.1 FPGA Components
	2.3.2 Hardware Description Languages

	2.4 Previous Work

	3 Algorithm
	3.1 Prefix Trie
	3.2 Burrows-Wheeler Transform and the FM-index
	3.2.1 Backward Search

	3.3 Burrows-Wheeler Aligner

	4 FPGA Implementation
	4.1 Software Component
	4.1.1 Random String Generator
	4.1.2 Burrows-Wheeler Transform

	4.2 Hardware Design
	4.2.1 Occurrence Array Unit
	4.2.2 C Array Unit
	4.2.3 Exact Matcher Unit

	5 Experimental Setup and Results
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

