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Applicants submitting a new drug application (NDA) or new animal drug 

application (NADA) under the Federal Food, Drug, and Cosmetic Act (FDC Act) are 

required to document bioavailability (BA). A sponsor of an abbreviated new drug 

application (ANDA) or abbreviated hew animal drug application (AN AD A) must 

document first pharmaceutical equivalence and then bioequivalence (BE) to be 

deemed therapeutically equivalent to a reference listed drug (RLD). The Average 

(ABE), Population (PBE) and Individual (IBE) bioequivalence have been used to 

establish the equivalence in the pharmaco-kinetics of drugs. 

The current procedure of PBE uses Cornish Fisher's (CF) expansion on small 

samples. Since area under the curve (AUC) and maximum dose (Cmax) are 

inherently skewed, a least squared (LS) normality based analysis is suspect. A 

bootstrap procedure is proposed which uses scale estimators. Since this bootstrap 

procedure works best for large samples, we propose a small sample analysis which 

uses robust scale estimators to compare least squares CF with Gini mean difference 

and inter quartile range. 

Traditional ABE is univariate, two one-sided test which follows strict LS 

normality assumptions. We suggest small sample ABE utilizing AUC and Cmax in a 

multivariate setting with or without outliers using Componentwise rank method. 
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CHAPTER I 

INTRODUCTION 

Two pharmaceutical products are considered to be bioequivalent(BE) when their concen­

tration versus time profiles, for the same molar dose, are so similar that they are unlikely to 

produce clinically relevant differences in therapeutic and/or adverse effects (Skelly et al, 

1995). A formal definition of bioequivalence by the FDA (2003a) is 

"Bioequivalence is defined as the the absence of a significant difference in the 

rate and extent to which the active ingredient or active moiety in pharmaceuti­

cal equivalents or pharmaceutical alternatives becomes available at the site of 

drug action when administered at the same molar dose under similar conditions 

in an appropriately designed study." 

Applicants submitting a new drug application (NDA) or new animal drug appli­

cation (NADA) under the provisions of section 505(b) in the Federal Food, Drug, and 

Cosmetic Act (FDC Act) are required to document bioavailability (BA). If approved, an 

NDA drug product may subsequently become a reference listed drug (RLD). Under section 

505 (j) of the Act, a sponsor of an abbreviated new drug application (ANDA) or abbreviated 

new animal drug application (ANADA) must first document pharmaceutical equivalence 

and then bioequivalence (BE) to be deemed therapeutically equivalent to an RLD. BE is 

documented by comparing the performance of the new or reformulated (test) and listed 

(reference) products (Niazi, 2007). 

Pharmaceutical equivalents are drugs that have the same active ingredient in the 

same strength, dosage form, route of administration, have comparable labeling and meet 

compendia or other standards of identity, strength, quality, purity, and potency. 
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1.1 Metrics to characterize concentration-time profiles 
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Figure 1: Typical concentration-time profile after a single dose 

In figure 1 the dotted curve refers to an immediate release formulation and the solid curve 

to a prolonged release formulation. The metrics to characterize the concentration-time 

profiles are : 

1. Area under the curve, AUC, is universally accepted as characteristic of the extent of 

drug absorption or total drug exposure. AUC is calculated using the trapezoidal rule. 

2. Maximum drug absorbed, Cmax, is the peak plasma or the serum drug concentration 

which is an indirect metric for the rate of absorption. 

3. Time of maximum concentration, Tmax, is the time to reach Cmax and is a direct 

metric for the rate of absorption. 
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The two most frequently used metrics are AUC and Cmax. The rationale (FDA, 2001) for 

log transformation of the metrics are: 

1. Clinical Rationale: In a BE study, the ratio, rather than the difference between av­

erage parameter data from the test (T) and reference (R) formulations is of interest. 

With logarithmic transformation the FDA proposes a general linear model (glm) for 

inferences about the difference between the two means on the log scale. 

2. Pharmacokinetic Rationale: A multiplicative model is postulated for pharmacoki­

netic measures AUC and Cmax. AUC is calculated as ^ and Cmax as E^-e~
keTmax. 

F is the fraction absorbed, D is the administered dose, and CL is the clearance of a 

given subject for the apparent volume of distribution V with a constant elimination 

rate ke. Thus log transformations linearize AUC and Cmax. 

1.2 Applications of bioequivalence studies 

Hauschke et al. (2007) sight significant areas where bioequivalence studies are applied. 

These include 

1. Applications for products containing new active substances. 

2. Applications for products containing approved active substances. 

(a) Exemptions from bioequivalence studies in the case of oral immediate release 

forms (in vitro dissolution data as part of a bioequivalence waiver). 

(b) Post approval changes. 

(c) Dose proportionality of immediate release oral dosage forms. 

(d) Suprabioavailability (necessitates reformulation to a lower dosage strength, oth­

erwise the suprabioavailable product may be considered as a new medicinal 



product, the efficacy and safety of which have to be supported by clinical stud­

ies). 

3. Applications for modified release forms essentially similar to a marketed modified 

release form. 

(a) The test formulation exhibits the claimed prolonged release characteristics of 

the reference. 

(b) The active drug substance is not released unexpectedly from the test formulation 

(dose dumping). 

(c) Performance of the test and reference formulation is equivalent after single dose 

and at a steady state. 

(d) The effect of food on the in vivo performance is comparable for both formula­

tions when a single-dose study is conducted comparing equal doses of the test 

formulation with those of the reference formulation administered immediately 

after a predefined high fat meal. 

In the statistical approaches to bioequivalence, the FDA (2003a) recognized three types of 

bioequivalence studies. They are: 

• Average bioequivalence, ABE, used as a simple test of location equivalence. The 

mean differences are tested using Schuirmann's two one-sided procedure. 

• Population bioequivalence, PBE, to compute the mean differences and variances for 

the BE criterion suggested by Chinchilli and Esinhart over a population group. 

• Individual bioequivalence, IBE, to compare the mean differences and variances for 

the BE criterion on replicated crossover designs for an individual. 

4 



The order of testing these are ABE followed by either PBE or IBE. If ABE fails, then the 

remaining two are not tested. For the bioequivalence analysis, the interest lies in the ratio 

of the geometric means between the test(T) and the reference(R) drugs. This is stated in 

the FDA (2001) document that suggests the use of log-transformed data for the analysis. 

1.3 Average bioequivalence (ABE) 

The FDA (1992) suggests parametric (normal-theory) methods for the analysis of log trans­

formed BE measures. For ABE, the general approach constructs a 90% confidence interval 

for the quantity fiT — VR- If this confidence interval is contained in the interval (—9A, 9A), 

ABE is concluded. 

1.3.1 Current procedure : Schuirmann's two one-sided t-tests 

The ABE hypothesis tests are conducted with two one-sided t-tests. The hypothesis are: 

#oi : fJ-T — HR < In 0.8 or //02 '• HT — HR> In .1.25 

HA\ • HT - fJ-R > In 0.8 & EAi : HT - fJ-R < In 1.25 (1.1) 

A two period, two sequence, randomized double blind study is generally setup for testing 

ABE. We use Schuirmann's (1987) two one-sided t-tests and calculate the test statistics for 

each of the two nulls as Tx = W-^-MQ.so) > h_^ a n d ^ = ^ f f « ) < _tl_a^ 

If we reject either H01 or #02 then we reject H0. By rejecting the null, we conclude ABE. 

1.3.2 Issues with the current procedure 

1. The FDA in its guidance for industry (2001) states 

"Sponsors and/or applicants are not encouraged to test for normality of 
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error distribution after log-transformation, nor should they use normality 

of error distribution as a reason for carrying out the statistical analysis on 

the original scale." 

This suggests that there is considerable doubt regarding the distribution of the log 

transformed data. Schuirmann's (1987) t-test may fail if there were outliers or if the 

normality condition was not sufficiently satisfied. 

2. Ghosh et al. (2007) state that histograms of the AUC and Cmax measures suggest 

non-normality in their distributions as well as the strong presence of outliers. Since 

AUC is calculated by extrapolating the concentration curve to infinity in time, this 

may lead to an outlier in extended release drugs. So, in studies involving small 

samples, Schuirmann's (1987) t-test may fail. 

3. The adaptive procedure with Bonferroni confidence intervals used to address the mul­

tivariate setting of AUC and Cmax by Hui et al. (2001) has not been widely used. 

But the case of assessment of equivalence on multiple endpoints has been strongly 

suggested. 

4. Multiple endpoints are suggested (Berger & Hsu, 1996), with pharmacokinetic pa­

rameters (Sunkara et al., 2007) such as Tmax, £i/2, MRT, etc (Yates et ah, 2002) and 

univariate Schuirmanns two one-sided tests are conducted on them. 

Due to the above issues, we propose the use of the Componentwise rank method in analyz­

ing ABE and address outliers with a distribution free approach on a multivariate setup of 

AUC and Cmax. 



1.3.3 Proposed procedure : Componentwise rank method 

The two treatment, two period crossover trial is routinely used to establish average bioe­

quivalence of two drugs. We construct Schuirmann's (1987) two one-sided hypothesis 

(TOST) test in a multivariate setting as 

Hoi '• 

H. A\ • 

• 

A/i^CZC 

A/iCmax 

AflAUC 

A^Cmax 

<ln0.8U#02 : 

> In 0.8 P\ HA2: 

" 
&fJ>AUC 

A^Cmax 

A/iAt/C 

A/XCmax 

> In 1.25 

<lnl.2E 

Following a procedure outlined by Devan et al. (2008) we consider the difference between 

the Test and Reference drug responses for both AUC and Cmax there by eliminating the 

random factors. Following this approach, the hypothesis is bounded by (log(0.80),log(l .25)) 

and the rejection region is represented by a rectangle. We now calculate the robust esti­

mates of location as the Hodges Lehmann estimate and the variance by Componentwise 

rank method. 

The confidence region is an ellipse centered at the location estimates and the axes 

are determined by J^c — \^iJp('n~^-n)P^ u m t s a^onStne eigen vectors ei (Johnson 

& Wichern, 1992). If the ellipse is completely enclosed in the rejection region, we conclude 

PBE. The sensitivity analysis and the simulation results of the proposed procedure are 

discussed in Chapter 5. 

1.4 Population bioequivalence (PBE) 

As previously noted, current practice is to first test ABE. If ABE is concluded, PBE or 

IBE are tested. PBE is assessed to approve bioequivalence of a to-be-marketed formulation 

when a major formulation change has been made prior to approval of a new drug. It is 
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tested by administering the new drug to the patient who will be taking the drug formulation 

for the first time. Population bioequivalence will be considered only if average equivalence 

is approved. Chinchilli et al. (1996) have proposed a two sequence, four period cross-over 

design which the FDA has recommended for both PBE and IBE analysis. 

1.4.1 Current procedure ; LS Cornish Fisher's expansion (LSCF) 

The FDA (2001), Hwang et al. (1996), Westlake (1988) have suggested the PBE hypothesis 

as 

(/iT - fiR)2 + o\- op 
max{p%, aR) H0: ,_o _ON ^ OP 

Hi . —^—jr < Up (l.l) 

where a\ — a^T + aBT and aR = alyR + aBR are the total variances of the test and the 

reference drugs. 'W and 'B' refer to within and between subjects. The constants CTo=0.04 

and 9P=\.744826 are fixed regulatory standards (FDA, 2001). 

Setting 77 = (fiT — fiR)2 + a\ — aR — 6p * max(al, aR), the hypothesis is rewritten as 

Ho:r]>0 

Hi : 77 < 0 

where rf is calculated using rf = i^T — /j,R) + o\ — aR — 8pmax(aR,0.04). The up­

per confidence interval of the linear combination of means and variances^) is given by 

Cornish-Fisher's(CF) expansion. CF (Cornish & Fisher, 1938) is a procedure of combin­

ing sample quantiles for an upper limit approximate confidence interval. If 7795% > 0, then 

we fail to reject H0. When we reject H0, PBE is concluded. 

8 



1.4.2 Issues with the present LSCF procedure 

Ghosh et al. (2007) state that histograms of the AUC and Cmax measures suggest non 

normality of their distributions as well as the strong presence of outliers. The bootstrap 

procedure was initially suggested but was immediately dropped due to the complexity and 

the rigor involved in such analysis (Schall & Luus, 1993). Cornish-Fisher's expansion in 

Hyslop et al.(2000) was then proposed as the method of moments (MM) procedure. 

The FDA (2001) notes that 

"One consequence of Cornish-Fisher(MM) expansion is that the estimator of 

a2
D (the difference in within variances for IBE) is unbiased but could be nega­

tive." 

The forced non negativity has the effect of making the estimate positively biased and intro­

duces a small amount of conservatism to the confidence bound. In Lee et al. (2004), 

"A key condition assumed in all previously published works on modified large 

sample(MLS) is that the estimated variance components are independent. In 

some applications, however, variance component estimators are dependent. 

This occurs, in particular, when the study design is a crossover design, which 

is chosen by the FDA for bioequivalence studies." 

The FDA (2003a) and the EC-GCP (2001) proposed the use of the non-parametric proce­

dure of univariate Wilcoxon tests as a replacement to t-tests. Thus, alternative procedures 

to least squared Cornish Fisher's (LSCF) seem necessary to handle these issues. We, there­

fore propose two robust procedures that better handle outliers. Since we were not able to 

obtain consistent covariance structure with small samples, we separate the PBE analysis 

into large sample and small sample procedures. 

9 



1.4.3 Proposed robust bootstraps for large sample PBE 

We decided to investigate PBE using robust bootstraps. Large sample PBE analysis worked 

best with samples of size sixty and above. This procedure involved the estimation of the 

upper confidence limit, 7795%, using the median and five different variance estimates : Gini's 

mean difference (Gini), median absolute deviation (MAD), inter quartile range (IQR), me­

dian of absolute differences (5„) and the kth order statistic of the pairwise differences (Qn). 

Using the FDA (2001) proposed design, a two sequence, four period cross-over 

study was considered. Details of the bootstrap procedure are described in Chapter 3. For 

the variance, Gini, MAD, IQR, Sn and Qn were used and 77 was estimated for each of the 

five cases as fj = Si+a\—o\ — 1.744826 max (a2
R, 0.04 J where a and <5 were the scale and 

location analogue for LS. The 95th highest 77 for each procedure gave 7795%. The sensitivity 

analysis and the simulation results of the proposed procedure are discussed in Chapter 3. 

1.4.4 Proposed procedure of small sample PBE 

For samples of size twenty to thirty-six, we looked at PBE using Cornish Fisher's expan­

sion. Continuing with the procedure similar to LSCF, we replaced the location estimates 

with medians and variance estimates from the IQR and the Gini procedures. 

We estimated 77 by replacing the LS mean differences with median differences and 

the variances with the unbiased estimates of Gini and IQR. The upper 95% confidence 

interval of the Test and Reference location difference was estimated by Wilcoxon's rank-

sum confidence interval. The sensitivity analysis and the simulation results of the proposed 

procedure are discussed in Chapter 4. 

10 



CHAPTER II 

PRESENT PROCEDURE 

2.1 Average bioequivalence (ABE) 

The ABE hypothesis tests are conducted with two one-sided t-tests. The hypothesis is 

#01 : A*r - A*H < In 0.8 or H02 : HT - HR> In 1.25, 

HAI : HT - PR > In 0.8 & HA2 : \xT - \IR < In 1.25. (2.1) 

This hypothesis is constructed in this manner because we are not just testing if the test and 

reference drugs are sufficiently close, but if they are "therapeutically equivalent" as well. 

Westlake (1976) stated that 

"The test of the hypothesis H0 : /ijv = A*s is of scant interest since the practical 

problem is that of determining whether or not HN is sufficiently "therapeuti­

cally equivalent" to S. One approach, proposed by Westlake and Metzler is 

based on confidence intervals fis + C% < HN < fJ-s + Ci" 

This hypothesis is vastly different from the two sided hypothesis as the two sided hypothesis 

merely tests the significant difference between the test and reference drugs. When the 

two sided analysis show a statistically significant difference between the test and reference 

formulation, it may be indicative of an important difference or of a trivially small difference 

(Westlake, 1979). The ABE hypothesis tests the practical equivalence (Berger & Hsu, 

1996) of the two drugs. Further Westlake (1979) notes that the two sided hypothesis tests 

the wrong hypothesis. He stated that 

11 



"Since two formulations can hardly be expected to be identical, hypothesis 

testing of identity is simply directed at the wrong problem. The real question 

should really be: is the new formulation sufficiently similar to the standard 

in all important respects to suggest that it is therapeutically equivalent or is it 

sufficiently dissimilar to imply doubt as to therapeutic equivalence?" 

We now recognize that we are not trying to prove that the test (T) and reference (R) drugs 

are equal. By estimating the difference between T and R and calculating the confidence 

interval of this difference (Westlake, 1979)., clinical judgment is exercised on arriving at 

the decision concerning bioequivalence. This is the logic behind using two one-sided hy­

pothesis. 

2.1.1 Use of confidence limits of (0.8,1.25) and log transformation 

The modern concept of bioequivalence is based on a survey of physicians carried out by 

Westlake (1976) which concluded that a 20% difference (Westlake, 1979) in dose between 

two formulations would have no clinical significance for most drugs. Hence bioequivalence 

limits were set at 80% - 120%. But these limits are not symmetric since the pharamco-

kinetic (PK) parameters were tested after a log transformation. The FDA (2001) justifies 

the necessity to log transform AUC and Cmax with two reasons: 

1. Clinical Rationale: The FDA Generic Drugs Advisory Committee recommended in 

1991 that the primary comparison of interest in a BE study is the ratio, rather than 

the difference, between average parameter data from the T and R formulations. Us­

ing logarithmic transformation, the general linear statistical model employed in the 

analysis of BE data allows inferences about the difference between the two means 

on the log scale, which can then be re transformed into inferences about the ratio of 

the two averages on the original scale. Logarithmic transformation thus achieves a 

12 



general comparison based on the ratio rather than the differences. 

2. Pharmacokinetic Rationale: Westlake observed that a multiplicative model is pos­

tulated for pharmacokinetic measures in BA and BE studies (i.e., AUG and Cmax). 

We calculate AUC and Cmax as AUC = §£ and Cmax = £fie
_fceTmM where F 

is the fraction absorbed, D is the administered dose, and FD is the amount of drug 

absorbed and CL is the clearance of a given subject that is the product of the apparent 

volume(V) of distribution and the elimination rate(fce). 

Westlake (1976) proposed a procedure to resolve this issue of asymmetric confidence in­

terval (GI). He set 

C2 < VT-/J>R < Ci, • . 

k2SE - ( x p - JG) < -{HT - m) < hSE -{X^-1Q. 

Since the decision of equivalence between T and R will be made on the basis of the largest 

of the absolute values of C\ and C2, the max(| log(0.8)|, | log(1.20)|) is justified for the 

limits (Westlake, 1976). Conventionally, ki + k2 = 0 but by choosing k\ and k2 such that 

(h + k2)SE = 2(Jx - ~XR)- We see that 

k1SE-(X^-Xri = (X^-JG)-k2SE, 

k2SE-(X^-JG)<-^T-^R)<-[k2SE-(X^-X^)} 

to get symmetric CI about fir — fJ-R- The hypothesis based on untransformed pharmaco­

kinetic (PK) parameters AUC and Cmax is 

„ o i : _JI^<0 .8 or *„ : J£*_ > m 
[[Reference [[Reference 
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Hence the bioequivalence limits of 80% - 125% or ±0.2231436 on the natural log scale 

came to be in use. 

2.1.2 Type I error: Level a of the test 

Often a new test formulation has certain advantages over the reference formulation, such 

as fewer side effects or no pharmaco-kinetic interactions. For these cases, to prove overall 

superiority, it may be sufficient to show that for the primary endpoint, the test formulation 

is not relevantly inferior to the reference. Such studies are called non inferiority trials. This 

hypothesis can be expressed as 

H0 : AT - HR < 5 vs. Hi : AT - pR > 5 

and tested with significance level a. It has been shown in Lehmann & Romano (2005) that 

the two one-sided hypothesis test at level a can be decomposed into two non-inferiority 

hypothesis tests each of level a. This is shown in figure 2. This can be seen by noting that 

the two one-sided hypothesis (Ho and H\) can be split into two hypotheses of the form 

#oi : AT - m < In 0.8 or H02 : AT - VR > In 1.25, 

# n : HT- HR> In 0.8 k H12 : AT - HR < In 1.25. (2.2) 

The null hypothesis i?oi and its corresponding alternative, H\\ is shown as a one side non-

inferiority test in figure 2. Similarly we see that H02 is a non-inferiority hypothesis as seen 

in section 1, Schrirmann's (1987) two one-sided t-test can be written as H0 = Hoi U #02 

vs HA = HAI H HA2, where each are tested with a significance level a. Confidence sets 

14 
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Figure 2: Decomposition of the two one-sided problem 

for ratios (Von Luxburg & Franz, 2004) are 

# o i : fJ-T - VR < - 0 or # 0 2 '• /J-T- HR>8-

The rejection region for H0\ and HQ2 can be written as 

m YT-YR + e J m F T - Y R - 0 

-u = ^ > h-a,v and T2 = — < -£i-Q,„. SE SE 
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The probability of type I error is PH0[RejectHo). This probability is P(Reject HQ\HQ = 

True)=PHo(Reject H0) = PHo{Reject H01 H Reject HQ2). The type I errors are 

YT - YR + 0 
PHoi{Reject Hoi) = PHoi{T\ • c ^ ~ — > h-a,v) = a, 

PHo2(Reject H02) = PH02(
T2 • -^Tr"—< -t\-*,v) = &. 

Since both of the above two cases have monotonic power functions and the maximum are 

the boundary, the intersection of their rejection regions has asymptotic size bounded by a. 

In Lehmann et al. (2005) we see a proof of this generalized for any distribution. The FDA 

(2001) further stated 

"The general approach is to construct a 90% confidence interval for the quan­

tity fir — HR and to reach a conclusion of average BE if this confidence inter­

val is contained in the interval [—6A, &A\- Due to the nature of normal-theory 

confidence intervals, this is equivalent to carrying out two one-sided tests of 

hypothesis at the 5% level of significance (Schuirmannl987)." 

2.1.3 Power: 1-/3 of the test 

Crossover designs are preferred by the FDA over parallel designs for the analysis of ABE. 

As noted by Chow & Wang (2001), this preference is due to 

"Intra subject variability could be eliminated if we could repeat the experiment 

many times (in practice, this just means the average of a large number of times) 

on the same subject under the same experimental condition. The reason is that 

intra subject variability tends to cancel out each other on average in a large 

scale." 
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Additionally the FDA (2001) explained the necessity to test the hypothesis under the as­

sumption of the log-transformed data. It is usually desirable to sufficiently power the test 

with at least 80% power (i.e with type II error rate of (3 = 0.2). Now we look at the details 

of testing for PBE. 

2.2 Population bioequivalence (PBE) 

The FDA (FDA, 2001) noted the following as the preferred estimate for PBE or IBE: 

0 = E(YR-YT)-E(YR-YR) (2.3) 

where YR,YT are the Reference and Test Formulation results respectively and YR is the 

replicated result. Replicated results are the subject's response to the same drug under the 

same dosage but at a different time period. A scaling reference downplays the amount of 

deviations in the Test and Reference estimates. In Hauschke (2007), the reason to use the 

replicated design is stated as 

"It is not possible to estimate the within-subject and between subject variances, 

each under test and reference formulation separately. This requires a replicate 

design where, in contrast to the standard crossover study, each study subject 

receives at least the reference formulation in two periods to enable the esti­

mation of the corresponding within-subject variances. Of the various replicate 

designs that can be thought of, the FDA recommended in their 1997 and 1999 

draft guidances (FDA, 1997,1999b) a four-period, two-sequence design, where 

the study subjects are randomly allocated to two treatment sequences." 
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2.2.1 Hypothesis test of PBE 

The PBE hypothesis test is conducted with the following scaled moment-based aggregate 

criteria suggested by the FDA (2001) 

n . (l*r - HR? + <%-*% > (In 1.25)2 + 0.02 
max(<jQ,aR) ~ 0.04 

( / / r - ^ ) 2 + 4 - ^ „ (lnl.25)2 + 0.02 
max^a^ajj) 0.04 

where a\ is set by the FDA. The procedure is design specific and can be generalized. 

The FDA considered a completely randomized, two sequence, four period replicate design 

where each patient was administered to either a test or a reference drug formulation based 

on a randomization scheme. 

2.2.2 Model design 

The design is modeled as 

Yijki — Mfc + jiki + Sijk + Cijki (2.5) 

where i=l,...,s indicates the number of sequences, j=\,...,rii indicates the subjects within 

each sequence, &=R,T indicates the treatments, l=l,...,pik indicate replicates on treatment k 

for subjects within sequence i. 

The response is Y^x for replicate / on treatment k for subject j in sequence i and 

7ifc/ is the fixed effect of replicate / on treatment k in sequence i. The random effect i s -5^ 

for subject j in sequence i on treatment k and e^ki is the random error. It is assumed that 
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eijki are mutually independent and iid with 

CijTl 
N 

aWithinT 

' WithinR 

(2.6) 

such that the errors are independently distributed. Also, the random effect (5^ is 

N 
'BetweenT 

pO'BetweenRO'BetweenT 

P^BetweenRG BetweenT 

° BetweenR 

(2.7) 

The leads to overall response Yijki to be distributed as 

TV 
aBT + aWT PaBR&BT 

P^BRPBT OBR + aWR 

(2.8) 

In order to calculate the overall Test and Reference variance, we set 

2 2 2 

aT = aBT + aWT, 
2 _ 2 ii 2 

aR — aBR~T~aWR- (2.9) 

For the following example, a two sequence, four period balanced design will be used. Set 

the first sequence of the formulation randomization as TRTR and the second sequence as 

RTRT. 
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Table 1: Two sequence, four period balanced design 
Subject Sequence Periodl Period2 Period3 Period4 

1 1 Y\JT\ YljRl YljT2 Y\jR2 
2 1 . ..." . 

1 . 

m+1 2 Y2JRI YzjTi Y2JR2 Y2JT2 
2 . . . • • • • • . . ' 

2 . . . : .. 
i 2 . . 

2.2.3 Steps in population bioequivalence analysis 

The population bioequivalence estimator involves the calculation of 0 and comparing it to 

the maximum acceptable limit of Op. 0 is defined as 

max(aR, <TQ) 0 = ^ j P K ; ZUL "R (2.IO) 

where as seen previously by FDA convention, 0 < dp. The value of Op is set using the 

calculation 0P = MI^gtM? = 1.744826. Linearizing this equation, we get 

rj = (/ir - VR)2 + VT-VR- max(aR, al) * 0P < 0. (2.11) 

The FDA guidance directs that PBE is attained if the upper confidence interval of 7795% is 

less than 0. Thus the following are the steps for the analysis of PBE: 

1. Determine the differences in the averages of the replicates of Test and Reference. 

Define Iij as 

j _ {YijTi + Y1JT2) _ (Yljm + YljR2) 
lj~ 2 2 ' 

T (Y2jTl + Y2jT2) (^2jfll + Y2iR2) _. 
J2j = ^ 7, - • (2.12) 
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for each of the sequences i=\, 2 and each subject j in sequence i. 

Define UijT as the average of the replicates on Test and UIJR as the average of the 

replicates on Reference. Calculate them as 

UljT = 

U-2jT 

(YljTl + YljT2) 

2 
(Y2jTl + Y2JT2) (2.13) 

Here U\JT and U2JT are independent as the subjects differ in the two sequences. 

Define V^T as the difference of replicates on test and VijR as the difference of repli­

cates on reference drugs. Estimate V^k with 

VljT = 

V2jT = 

(YljTl - YljT2) 

V2 ' 
(Y2jTl - YijT2) 

V2 • 
(2.14) 

Here V\JT and V2JT are again independent as the subjects differ in the two sequences. 

2. Calculate the mean and the variances of Uj, Uijk and V^k respectively by sequence 

using equation (2.8). 

E{hi) = 
(HT + / ^T) {f-lR + fJ-R.) 

Iij and I2j are independent as they are estimates from two different independent 

samples. The variance of U^k and Vijk are 

Var{UljT) = Var 

Var(VljT) = Var 

(YljTl +YIJT2) 

2 

( y i j n — Y1JT2) 

V2 
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Without loss of generality, we set Si and £2. Thus, 

N (2.15) 

Thus, we see that Var(U\jT) = "T\ 1 and Var(Vijr) = a\ — Ei. Also, 

N 
Trp 2-12 

•>2 °T 

(2.16) 

3. Identify the estimates for the variance using the aggregate measures for the two se­

quences as 

2 _ 1 / 2 1 2 • \ 
aUT — 2\aUTseql + aUTseq2) 

aVT = 7i(aVT3eol + aVTaea2) 

From auT and a\T, we can see that 

2 1 '<4'+Ei <4 + £ 
C 7 y T = o ( + 

\ 1 /• 2 , ^ 1 + ^ 2 x 
2V 2 2 ' 2V J 2 

Jl _ 1 ^ 2 v , ^2 v -> _ 2 ^1 + S 2 
aVT ~ 7}\aT ~ ^1 + aT ~ ^V — °T 7) (2.17) 

We now have variance estimators using equation (2.17) and location difference using 

4. Obtain r\ and calculate the upper confidence interval for r\ using Cornish-Fisher's 
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expansion. We estimate rj as 

n= ( ^ ) + fe + ̂ j - ( ^ 
Refer to Chapter 3 for the calculations of Cornish Fisher's expansion. The upper 95th 

confidence interval is calculated by 

If H < 0 then Population bioequivalence is concluded. 

2.2.4 Cornish Fisher's expansion 

The principle behind the Cornish-Fisher's expansion is that close to exact confidence inter­

vals for a parameter are more accurate when higher-order approximation in the expansions 

for the quantiles are used. The previous section described the need to find the upper confi­

dence interval of r\ to conclude PBE. 

"For constructing asymptotically correct confidence intervals for a parameter 

on the basis of an asymptotically normal statistic, the first-order approxima­

tion to the quantiles of the statistic comes from using the central limit theorem. 

The higher-order expansions for the quantiles produce more accurate approxi­

mations than does just the normal quantile. (DasGupta, 2008)" 

The Cornish-Fisher expansions are higher-order expansions for quantiles and are essen­

tially obtained from recursively inverted Edgeworth expansions, starting with the normal 

quantile as the initial approximation. In (Cornish & Fisher, 1938), we first see that the 

density functions are based on the cumulants of a distribution. If we are interested in the 

percentiles of the sum of two random variables Z=X+Y, from (Cornish & Fisher, 1938), 
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one gets 

J2\h P[Z <iix + LiY + Hp{(Tx + <4)* + ( 4 - ^(A^f + /^3r)/6(4 + 4 ) + ...] = /? 

where /zx> A'Y. 0x> °y> A^x. Atev a r e the first, second and third central moments respec­

tively of X and Y and j3 is the desired exact percentile. The Cornish-Fisher expansion is 

based on the principle of power series 

oo; 

M(t) = / eitxf(x)dx 

—OO 

oo 

M® = E TT / ^ / ( ^ = E TT^ (2-18) 
—-n ' ^ n * r=0 „ r=0 

where the function is differentiable and continuous at all points. Further \jlr is the rth 

moment of the distribution of X about the origin. In our situation however, we have more 

than two random variables which leads to the approximation (Howe, 1974) 

.HEXi-E*'+ 

i=l i=l 

E ( ^ ~ ^f 
i = l 

^ P (2.19) 

where the Xt are distributed independently with means //» and (3 percentile of Xi@. Now 

Xi/3 can be derived from the Cornish-Fisher's expansion of the cumulants and estimating 

the constants such that (3 is approached as close as possible. Since we need to find the 

upper 95% probability of capturing 77, the FDA (2001) suggested the use of H = ]T) Pq + 
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CHAPTER III 

BOOTSTRAP POPULATION BIOEQUIVALENCE 

Analysis of population bioequivalence focuses on estimation of the mean difference and 

the total variance of the log transformed BA measures from the two drug formulations. 

Unbiased estimators using the method of moments (Chinchilli & Esinhart, 1996) estimate 

these parameters. 

Following the estimation of the mean difference and the variances, a 95% upper 

confidence bound for a linearized form of the population BE criterion is obtained. Pop­

ulation BE is established for a log-transformed BA measure if the upper 95% confidence 

bound for this linearized criterion is less than or equal to zero (FDA, 2001). 

3.1 Distributional assumptions of metrics in BE trials 

Before performing a statistical analysis in BE trials, AUC and Cmax are generally log 

transformed. The three most commonly cited reasons for log transforming AUC and Cmax 

are 

• AUC is non-negative 

• Distribution of AUC is highly skewed 

• PK models are multiplicative 

The drug concentration at each time point is a function of many random processes. They are 

absorption, distribution, metabolism and elimination that act proportionally to the amount 

of the drug present in the body. Thus the resulting distribution is log normal (Midha & 

Gavalas, 1993). 
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3.2 Design 

In a BE trial, the test (T) and the reference (R) drug formulations are administered to 

healthy volunteers and the drug concentrations are measured over time. Frequently cross­

over designs as shown in table 2 are employed, although parallel group designs are used as 

well. Cross-over designs are generally preferred because of their ability to compare the test 

Table 2; Two sequence, four period balanced design 
Subject Sequence Period! Period2 Period3 Period4 

1 Y1JTI YljRl YljT2 YljR2 
1 . • . ' • ' • ; . - . : ' • ; ' • . 

1 . . . . 
2 Y2JRI Y-ijTl YliRI YljT2 
2 . . . 
2 . . . . " ' . - . 
2 . . . . 

and reference formulations within a subject. We focus on BE trials using a (2x4) cross-over 

design i.e a two sequence, four period replicated balanced design as suggested by the FDA 

(2001). 

The first sequence has a test, reference, test and reference (TRTR) schedule while 

the second sequence has a reference, test, reference and test (RTRT) schedule. The response 

is Yijki for replicate / on treatment k and subject./ in sequence i. The fixed effect is 7̂ 2 and 

the random effect is 8^ with random error e ^ . The design is as follows 

Y^ki = Mfc + liki + Sijk + eijki (3.1) 

where /=l,...,s indicates the number of sequences, j=\,...,n,i indicates the subjects within 

each sequence, fc=R,T indicates the treatments and l=l,...,pik the replicates on treatment k. 

m+1 
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€ijki and 5ijk are mutually independent and distributed as shown below: 

N 
aWithinT 

\ 
0 GWithinR 

(3.2). 

'«r 
3ijK 

AT 
( 7 B T PCTBR&BT 

P&BRVBT 'BR ) \ 

(3.3) 

From the design, we get a bivariate response of the form 

1 Y A 

lijTl N 
(TBT + 0%T pOBROBT 

PVBR&BT VBR+aWR 

(3.4) 

The next section introduces the hypothesis to test PBE. 

3.2.1 Hypothesis 

The proposed null and alternative hypothesis based on the FDA regulations (2001) are 

Ha: 

# i : 

max(aQ,aji) 

(Mr ->fl)2 + <4 ~ QR 
max(al,oR) 

>0P 

<ef (3.5) 

where o\ = u%/T + a\T and aR = a^R + a\R are the total variances of the test and the 

reference drugs. The constants o\ and Op are fixed regulatory standards. 

As seen above, the FDA guidance currently adopts an aggregate approach, using 

an aggregated test statistic for evaluating both means and variance components simulta­

neously. In contrast, several disaggregate approaches have been suggested where tests for 
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each component are performed separately. For example, Liu arid Chow (1996) proposed a 

disaggregate approach for evaluating IBE where three components (intra subject variabil­

ity, subject-by-formulation interaction, and average) are separately tested multiple times 

with intersection-union tests. However, as the dimensions (p) of tests increases, the power 

of the (1 — 2a) confidence set (Leena Choi, 2008) based approach could decrease sharply 

for dimensions greater than one as shown in Hwang (1996). 

The aggregated test statistic is linearized as follows: 

HQ : (fj,T - Pi?)2 + o\ - o\ — 9p *max{ol, oR) > 0, 

Hi: (HT~ HR) +OT-OR-9P* max(ol, oR) < 0. (3.6) 

Here, rj = (fiT — VR)2 + o\ - oR — Op * max(oQ
1,oR) and the null hypothesis reduces to 

a one sided problem defined by a linear combination. The FDA fixed 0.02 as the maximum 

difference for the variance under the test and reference formulations. Usually 0 = log 1.25 

= -log 0.80 = 0.223. These values (FDA, 2001) originated from the notion that the ratio of 

the population means in the original scale (the mean of the test is 80 -125% of that of the 

reference) are considered to be sufficiently close for drugs having an average therapeutic 

window. For PBE, the FDA sets 0P = 1.744826 and ol = 0.04. The linearized hypothesis 

is of the form 

Ho:r]>0, 

H1:Ho:r1<0. 

If the null is rejected, population bioequivalence (the two drugs are similar across popu­

lation groups) is inferred. Otherwise, the two drugs are significantly different across the 

populations. The next section describes the present procedure of testing PBE hypothesis. 
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3.2.2 Least squares Cornish Fisher's procedure (LSCF) 

The present procedure tests PBE using Cornish Fisher's (CF) (1938) expansion. In LSCF, 

77 is calculated as 77 = {/J,T - /i#)2 + o\ — aR - 6P * max{al)aR). The procedures in 

estimating //* and of are described below. If the upper confidence interval 1795% is less than 

zero, population bioequivalence is concluded. 

Following are the steps in computing the least squares Cornish Fisher's (LSCF) 

expansion: 

1. From table 2, the response l̂ jfei is distributed as 

(Y \ 

\ YiJTl J 
~N H, 

\ ̂ T J 

2 _i_ 2 
aBR + aWR 

1 PCBR&BT 

P&BRVBT 

(TBT + <JWT J 

where each subject j has two observations for one of the two treatments. Each sub­

ject belongs to only one sequence. The data has 'N' subjects partitioned into two 

sequences with y subjects in each sequence. In this example, a balanced design is 

used. The variances a\ and o^ are the between and within variances. For the first 

sequence the patients have a TRTR schedule and the second sequence subjects have 

an RTRT schedule. 

2. Define I as the difference in test and reference drug replicate averages. Compute this 

difference Uj as 

Jy = 

hi = 

2 2 
(X23T1+Y2JT2) (Y2JR1+Y2JR2) 

for each of the sequence i=\, 2. 

29 



3. Calculate UijT as the average of the test drug replicates and UijR as the average of 

the reference drug replicates. This average is 

U-ljT 

U2jT -

(yjjTi + YijT2) 

. . . . 2 •• ' . • ' 

(Y2JT1 •+ ^2jT2) 

UIJT and U2JT are independent as they are estimates from two different independent 

samples 

4. Define V^r as the difference of the replicates of the test and V^R as the difference of 

the replicates of the reference drug. V^ is calculated as 

VlJT = 
(YjjTl - YIJT2) 

(YijRi - YijR2) 

V2 

5. Calculate the variance of the variables Uijk, V^k for each of the two sequences. Esti­

mate the variance of test drug o\ as a2
BT+a^r and reference drug aR as a2

BR+<j\yR. 

For the first sequence, the variance is estimated with 

Var(UljT) = 

Var(VljT) = 

Var(Yim) + Var(YljT2) + 2Cov(YljT1,YljT2) 
4 

Var(YljT1) + Var(YljT2) - 2Cov(YljT1,YljT2) 

Without loss of generality, set the covariance (Ei) for the first sequence and the two 

test drug periods. The resulting distribution of the test drug in the first sequence is 

N 
S i 

\ 

•<4 •) 

(3.7) 
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Similarly, the distribution of the test drug in the second sequence is 

Yn 2jTl 

Yn 2jT2 

N 

( 
Trp Yl2 

\ 

\^2 4 ) \ 
(3.8) 

It can be proved that a\ is a linear combination of the variances a^T and OyT. To 

prove aj, = afjT + -^L, consider the following 

rr2 - rr2 4-^L aT — aUT -f 2 

4 = i(°UT„ql +°UTseg2) + 5 ( j {VVT^+VVT,^}) 

4 = I ( ^ + %^) +1 (W,2 + %*) 

4 --J [ ( ^ ) + ( ^ ) ] +i [(**) + ( ^ ) 

By expanding the above equation, it is concluded that 

aUT + >VT = Of. 

Similarly, for the reference drug, fa 2 _|_ %LB.\ - n2 
2 y «• 

6. The expected values of the difference for the test and reference drugs from the two 

sequences across the four periods or two replicates using equation 3.7 are 

E(I2j) = E 

{YljT1 + YljT2) {YljR1 + Yljmy 
2 • 2 

(YjjTl + Y2JT2) _ {YjjRX + Y2JR2) 

2 2 

2/*r - 2/ifi 

2/iy' - 2/ifl 

Thus from the average of the two sequences, ( li'* — A*T — /fR-
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7. Estimate the aggregate statistic 77 using the linear combinations of means and vari­

ances as 

V=[I^-PR) +&T ~ ( 1 + &p) max(aR, 0.04). 

Calculate the upper confidence interval of 77 using the Cornish Fisher's expansion. 

To illustrate CF's expansion, consider H as the upper bound in the equation 

*.-£>.+(I»! 

where Pq represents the point estimates i.e mean, variances and Bq represents the 

upper bound of these point estimates (95%). 

8. Table 3 outlines the various point estimates and their respective upper bounds. 

Table 3: Point estimates and their distributions 
Fg=Point Estimate C=Confidence Bound Z?g=Upper a limit 

Pi=(fj>± - VR)2 

P2=°hk 

Ps=Hk 

Ui = Pl+tl-ajr-s ( E n i l s 7 

TT - ^ ~ H z 2 I 

TT - l^T" (^-2) 
^ a . J V —2 

4V 
B^fUi-Pi) 

B2=(u2-'^k)
2 

Thus, calculate the upper CI of rj using Cornish Fisher's expansion. The upper 95% 
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confidence value of rj is calculated as 

fj = {HT - HR)2 + a\ - (1 + Op) max [a2
R,a$) , 

rj = (/iT - UR? + (?UT + \avr ~ 0- + e)max \aUR + \°VR, °O) > 

= (PT - VR)2 + OUT + \°VT ~ (! + e)max [aUR +' l°"v-fl» ao) 

ta,N-2\J-\VT - VR\ + ta,iM-zy n i + n 2 _ 2 

2 

- (HT - mf + 

1 (N-2)alT _ 1 0 
2 v ~ 
•* •*•<* J V - 2 

2°VT + -{1+6i{N-2)^+(l + 0P)al 

(N-2)af,T 

*a,JV-2 

2 

- Ci I T 

*a,N-2 UR 

X a , N - 2 ^ V f i 

1/2 

Once 7795% is computed, conclude PBE if 7795% is less than zero. When H0 is rejected, 

PBE is concluded. The following section proposes the robust bootstrap procedure as an 

alternative to the LSCF procedure. 

3.2.3 Robust bootstrap procedure 

The robust analog of least squares Cornish Fisher (LSCF) involves calculation of the robust 

bootstrap estimates of 17̂ %. Separate the data from table 2 based on the two sequences 

and conduct bootstrap (Efron & Tibshirani, 1993) analysis. This is done to maintain the 

covariance structure. 

Use median as the robust location estimate. For the variance estimates, use MAD, 

Sn, Qn (Ola Hssjer & Croux, 1996), IQR and Gini. Calculate 77 and also the upper 95t/l 

percentile of rj which is the 95thrj of the bootstrapped data sorted in an ascending order. 

Steps in robust population bioequivalence using bootstraps are as follows: 

1. Start with the data as in table 2. Each subject j has two observations for one of the 

two treatments. The N subjects are partitioned into two sequences with y subjects 
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in each sequence Lea balanced design as seen in the table. The variances a% and 

aw are the between and the within variances. From this setup, for the first sequence, 

we have a TRTR schedule and for the second sequence, an RTRT schedule. The 

response is distributed as 

YijRl 

\ YijTl J 
G 

( 

\ 

9 9 
aBR + aWR 

PVBR&BT 

P&BRCBT 

'BT + <7i WT 

2. For each of the two sequences, generate a simple random sample with replacement 

of the response Yijkl. lfYijk = (yilfc, ...yiNk) then generate Yijk = (yijk, -yijk) 

and Yij'k = (y2j'fe, •••V'lj'k) for each of the two sequences. Bootstrap each sequence 

separately as it maintains the consistent covariance structure. 

This gives 2M datasets each of which have y subjects and only one sequence with 

four periods. Combine Y\jk and Y2fk to obtain M datasets and estimate M 77's. 

3. Define Iijk as the averages of the replicates of the test and reference drugs. Calculate 

Mjk &S 

hjT -

hjR = 

hjT = 

hjR = 

OV1 + IV2) 
2 

(YjjRi + YijR2) 

2 
(Y2jTl + ^2jT2) 

2 . 
{Y2jRi + Y2jR2) 

for each of the sequences /=1, 2. Using I^k, the location estimate for the test and the 

reference drugs can be estimated. 

4. Define C/y-r a s the average of the replicates for the test drug and UijR as the average 

34 



of the replicates for the reference drug. Compute Uijk as 

(YljT1 + YljT2) 
UljT 

U2jT = 

2. 
0^2 jTl + Y2JT2) 

Here U\JT and U2JT are independent as they are estimates from two different inde­

pendent samples. 

5. Define V^j- as the difference of replicates of the test and VijR as the difference of 

replicates of the reference drugs. Calculate Fjjfc with 

VljT = -—~sr~ 
V2JR = ^ 

6. Obtain the robust difference in location between the test and reference drugs as the 

median of difference of I\TJ, I\RJ, hrj and I2RJ for each of the M datasets. Estimate 

the location difference as 

Median/^. 4- Median/2rj. Median/liy + Median/2iy 
&-£R = — ; 2~ ; — • 

7. Without loss of generality, from LSCF, the variance is estimated as I afjT + ̂ - J = 

a\ and for the reference drug the variance is estimated by I a\!R + ^& ) = aR. If 

VWTT is the robust expression of a\ then 

(VarUT + ¥2x2) = V^r 

(VarUR + ¥^)=VaP~R 
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represents the robust estimates of spread. From the asymptotic theory, estimate 

spread using different spread estimators. 

8. These estimators of spread are MAD, Gini, IQR, Sn and Qn. A parallel can be drawn 

between the LSCF and the robust procedure based on asymptotic theory as in table 

4. Here £f represents the median of I* for the M bootstrap samples. MAD which is 

Table 4: 
Parameter 

iff*" 
2°Vfc 

LSCF and robust location, scale of each be 
Least Squares 

2aVk 

R method 

(1.482 • MADUk*)2 

\ (1.4826 • MADVk*)2 

)otstrap sample 
Gini method 

median absolute deviation is calculated as MADX = median^ \xi — mediarij(xj)\). 

/(A 
Gini's mean difference is calculated as Gini = ]T} \xt — Xj\ I • For a nor-

i<3 ' \ 2 J 

mal distribution, 1.4826 • MAD and ^G are unbiased estimators of the standard 

deviation. MAD has low efficiency for normal distributions, and it may not always 

be appropriate for symmetric distributions. 

The two statistics that Rousseeuw and Croux (1993) proposed as alternatives to MAD 

are Sn and Qn. Sn is calculated with 

Sn = 1.1926 • medj (med, (\xi — Xj\)) 

where the outer median (taken over i) is the median of the n medians of \xi — Xj\ , j 

= 1,2, ... , n. To reduce small-sample bias, csnSn is used to estimate a where csn is 

the correction factor (1992b). The second statistic is Qn (1992a) estimated as 
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Qn = 2.219{\xi-Xj\;i<j}{k) 

where 

and h = [n/2] + 1. In other words, Qn is 2.219 times the kth order statistic of the 

C% distances between the data points. The bias-corrected statistic cqnQn is used to 

estimate cr.where cqn is a correction factor (Rousseeuw & Croux, 1992c). 

The interquartile range (IQR) is the difference between the upper and lower quartiles. 

For a normal population, IQR/1.34898 (DasGupta & Haff, 2006) is an unbiased esti­

mator of the standard deviation. 

9. Calculate rj for the M datasets by using the above estimators. Now pool the M 

datasets and estimate the upper 95% confidence interval of 77 by selecting the 95t/l 

rj sorted in ascending order. With this step, rj and 77̂  are estimated using each of the 

spreads MAD, Gini, IQR, Sn and Qn. 

Now, compare the proposed robust procedures to the LSCF's procedure. In order to find the 

procedure most resistant to outliers, run sensitivity analysis on an example shown below. 

3.3 Analysis of an example 

Apply the present and proposed procedures on a dataset. This dataset was procured from 

the FDA website (2003b) which was created on August 18, 2003 and updated on June 20, 

2005. Introduction to the dataset used is as follows: 

"In reference to the Federal Register notice on "Preliminary Draft Guidance for 

Industry on In Vivo bioequivalence Studies Based on Population and Individual 

bioequivalence Approaches: Availability", vol. 62, No. 249, Dec. 30, 1997, 
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Table 5: Examr. 
SUBJECT 

1 
1 
1 
1 

104 
104 
104 
104 

>le to il 
PER 

1 
2 
3 
4 

1 
2 
3 
4 

ustrate the PBE 
SEQ 

RTTR 
RTTR 
RTTR 
RTTR 

TRRT 
TRRT 
TRRT 
TRRT 

TRT 
R 
T 
T 
R 

T 
R 
R 
T 

procedi 
AUC 
5.696 
5.445 
8.481 
6.774 

2.9 
4.05 

4.287 
2.85 

the Food and Drug Administration is announcing the availability of data that 

were used by the Agency in support of the proposal and the detailed description 

of statistical methods for individual and population approaches." 

The dataset used for the analysis is 'DRUG 3*'(including 3b - 3d used as an illustration) 

from the above source. It is a combination of the three datasets which are modified to fit 

the RTTR and TRRT schedule. This data is a two sequence, four period replicate design 

with 104 subjects who are randomized into one of the two sequences. The subjects in the 

first sequence start with a RTTR schedule (reference-test-test-reference) while sequence 

two have a TRRT schedule. There is a sufficient washout period between the test and 

reference drugs to avoid carryover effects. Table 5 illustrates this dataset. Re-order the data 

by transposing on the period. 

The response is Yijki for replicate / on treatment k for subject j in sequence i. The 

fixed effect is jiki and the random effect is Sijk with random error e^ki- The design used is 

Yijki = V-k + Jiki + 5ijk + tijki (3.9) 

38 



Table 6: Transformed two sequence, four period balanced design 
Subject Sequence Period 1 Period2 Period3 Period4 

]~~ T log(5.696) log(5.445) log(8.481) log(6.774) 
2 . . . . 

104 2 log(2.9) log(4.05) log(4.287) log(2.85) 

where i=l,2 indicates the number of sequences, j=l,...,104 indicates the subjects within 

each sequence, &=R,T indicates the treatments, 1=1,2 indicate replicates on treatment k for 

subjects within sequence i. Due to the balanced design, there are 52 subjects in the first 

sequence and 52 subjects in the second sequence. 

Steps in LSCF PBE are as follows: 

1. Calculate the difference between the test and reference drugs averages 

h . = (Yi^rx+yijra) _ (Vijm+ri/ia) a n ( j ^ = (V'+V) _ (*W>W for e a c h o f 

the sequences i=l,2. Their average is the location estimate for the difference in test 

and reference drugs. 

2. Calculate Uijk and Vijk as explained in the LSCF procedure. With these, the between 

and within variances are estimated for the aggregate test statistic. 

3. Calculate the test and reference drug variances as 

2 _ Var(U1T) + VarjUiT) lVar(V1T)+ Var(V2T) 
aT~ ~Y +2~ 2~ "' 

2 Var(U1R) + Var(U2R) , 1 Var(V1R) + Var(V2R) 
R 2 2 . 2 

and the difference in test and reference drug location with 5 = ljt2j. 
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4. Estimate the aggregate measure r\, as shown below 

fj = & + a\ - (1 + 1.744826) max (aR, 0.04) . 

5. Add outliers to 5% of the data i.e on six subjects. Rerun the above procedure calculate 

ff. Increment these outliers with ± 1,2,3,4,5,6 a. 

Thus the LSCF estimate of 77 with or without outliers is calculated. Now, to estimate robust 

77, use the five proposed procedures for the cases of with or without outliers. 

Steps in robust bootstrap PBE are as follows: 

1. Start with the data as in table 6. Using the log transformed response (Yijki), cal­

culate the difference between the Test and Reference drug averages with I\TJ = 

(YljTi+YljT2) j _ (Yljm+YljR2) r _ (Y2jT1+Y2jT2) , T ^ {Y2jRl+Y2jR2) f 

2 ' l l R i ~~ 2~~^ ' l2T3 ~ 2 a n ° 1<2R3 ~ ~ ~ 2 — 

each of the sequences i=\, 2. Calculate the difference in location of the test and refer-

, r 1 1 • •, . y j- Median/. _ .+Median / , T . 

ence drugs for the two sequences explained above as £T—£R = -^ ±LL— 
Median/j^.+Median/2 f l . 

2 ' 

2. Calculate Uijk and V^ as explained in the LSCF procedure. By calculating them, 

estimate the between and within spread used in estimating the aggregate test statistic. 

3. Calculate the test and reference drug spreads a\ = Va^T)+Var{u2T) + 

l Var(VlT)+Var(V2T) ^ ^ _ Var(U1R)+Var(U2R) | l Var(VlR)+Var(V2R) ^ 
2. 2, •*£ 2 2t 2, -

X _ hj+hj 
2 • 

Here 8 (the robust location) is the difference fr ~ £R and Var are the variances esti­

mated in each case by Gini, MAD, IQR, Sn and Qn as described below. The unbiased 

estimators of the variance in each of these cases are: 
, 2 

Gini o>=(G4) 
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MAD : a2 = (1.4826 • MAD)2 

iQR-2 = ( i i l8 ) 2 

Sn : a2 = (1.1926 •medi(medj(\xi-xj\)))
2 

Qn:a
2=(2.219{\xi-xj\;i<j}{k)) . 

4. Estimate r\ for the five procedures using the robust location and variance estimates as 

fi = P + rf, - (1 + 1.744826) max ( o | , 0.04) . 

5. Add outliers to 5% of the data i.e six subjects. Rerun the above procedure and calcu­

late rf. Increment the outliers with ± 1,2,3,4,5,6 a. 

Compare the results of sensitivity analysis of LSCF to the proposed five procedures. The 

plot of rf versus the incremental outliers from -6a to 6a is shown in figure 3. By increasing 

Figure 3: Large sample PBE sensitivity analysis 

SAMPLE SIZE = 104 
6 OUTLIERS 
PLOT OF ETA VERUS OUTLIERS -6sigroa TO Geigma 

outliers, the LS procedures i.e LSCF and Gini are most affected. The robust procedures 
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are very stable and Qn is the most stable robust procedure. Gini is marginally better than 

LSCF since median was used in location estimation. As the outliers are increased on either 

side to ±6a, 77 varied from -4 to -13 for LSCF while Qn varied from -1.2 to -1.5. 

Rousseeuw and Croux proposed the Qn estimate of scale as an alternative to MAD. 

It shares desirable robustness properties with MAD (50% breakdown point, bounded influ­

ence function). In addition, it has significantly better normal efficiency (82%) and it does 

not depend on symmetry. Qn is the most stable procedure to estimate 77 in the presence 

of outliers. A simulation study comparing the validity and power of the LSCF with the 

proposed bootstrap procedures is conducted. The next section discusses this comparison. 

3.4 PBE comparison of level and power 

In the simulation analysis, generate data as in table 2. By controlling the input parameters, 

77 is fixed. These parameters include the various between and within variances and the 

means of the test and the reference drugs. 

By setting the true value of 77 at the boundary i.e zero, calculate the significance level as the 

probability of falsely rejecting the null. By setting the true vale of 77 at the rejection region, 

calculate the power as a function of the probability of falsely accepting the null. Further on 

the basis of MSE, the better procedure is identified. 

3.4.1 Validity 

To test for validity, set the hypothesis at the boundary condition. The hypothesis of interest 

is 

HQ : 77 > 0 : (Non Population Bioequivalent), 

H\ : r\ < 0 : (Population Bioequivalent). 
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The definition of type I error is PHo (Reject the Null hypothesis)=o;. At the boundary, the 

value of 77 - 0 and the probability of the type I error is maximum. 

1. Set the true value of 77 = 0 as shown below 

77 = fa - nR)2 + a\ -o\ - max (a2
R, ol) QP = 0 

77 = (/xr - fj,Rf + a\ - a\ - max (a%, 0.04) 1.744826 = 0. 

One of the possible boundary condition could be setup by pr = P>R and a^ = aR + 

max (aR, 0.04) 1.744826. As an example let the mean differences be set to zero 

{HT — fJ-R = 0), the variances set to arR=03 and <7j.=0.8234478. Such a setup has true 

77 = 0. 

2. After specifying the input parameters, generate two hundred datasets having a bivari-

ate normal distribution of the form 

N 
BT + aWT P&BR0BT 

POBRGBT &BR + °WR J J 

For each of the datasets, calculate 77 and 77̂ % for the LSCF and the five proposed pro­

cedures. For each of the robust bootstrap procedure, conduct two thousand bootstraps 

on each of the two hundred datasets to obtain two hundred 77̂ %. 

3. Calculate the proportion of cases when the null is rejected. This proportion represents 

the empirical probability : Pn0 (Reject H0) = a. Compare this empirical a from 

LSCF, Gini, MAD, Qn, Sn and IQR. Calculate the mean squared errors (MSE) with 

the two hundred datasets for each of the procedure as: 

MSE 
\ 
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Thus, the empirical level and MSE of the LSCF and the five proposed procedures are 

computed. Next, compute the empirical power of the six procedures. 

3.4.2 Power 

To compute the empirical power, set the true value of 77 in the alternative condition. The 

hypothesis is 

Ho : 77 > 0 : (NonBioequivalent) 

H\\ 77 < 0 : (Bioequivalent). 

Definition of type II error is PHA(Fai\ to Reject the Null hypothesis) and power = 1 - P(Type 

II error). 

1. Set the true value of 77 less than zero as shown below 

77 =. (/xT - /j,R)2 + o\-aR- max (a2
R, a2) 0P = -0.80, 

77 = (fir - nR)2 + a\ - o\ - max (cr2
R, 0.04) 1.744826 = -0.80. 

For example one of the possible boundary condition setup could be jiT - HR = -0.2, 

the variances a\ = 0.34 and a\ = 0.43. Since r\True - -0.80, the null should be 

rejected. 

2. After specifying the input parameters, generate two hundred datasets that are dis­

tributed as bivariate normal of the form 

YijTl . 
1 N 

\ 
* ii •jRl 

9 9 

crBT + aWT PPBRCTBT 

pVBRGBT &BR + CTi 
WR 

For each of the datasets, calculate rj and 7795% for the LSCF and the five proposed pro­

cedures. For each of the robust bootstrap procedure, conduct two thousand bootstraps 
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on eaeh of the two hundred datasets to obtain two hundred 7795%. 

3. Calculate the proportion of cases the null is accepted. This proportion represents the 

empirical probability of PHA (Fail to reject H0) = P(Type II error). The empirical 

power is 1 - P(Type II error) for LSCF, Gini, MAD, Qn, Sn and IQR. Calculate MSE 

using the two hundred datasets for each procedure as 

MSE = 
\ 

V"^ {fji ~ VTrue)2 

i=l 
( P - . l ) 

The next section discusses the findings of the simulation study comparing validity and 

power of the present LSCF with the five proposed procedures. 

3.5 Examples comparing validity and power 

For simulation, the between and within variances were set based upon the FDA (2001) 

guidelines and from Chow et al (2002). The possible values of the variance a\ and a\ vary 

from a range of 0.15 to 0.5. 

Define small outliers as 3a outliers and large outliers as 6a outliers. These outliers 

are set based upon the criteria that at least 5% of the data may possess outliers. AUCoo and 

Cmax contain outliers due to prolonged excretion rate of the drug or the absorption rate 

depending upon the subject. Outliers are added to five subjects in the data. The outliers are 

in two main categories. Outliers in the test drug or outliers in the reference drug. 

In a simulation study of two thousand bootstraps on samples of size fifteen to twenty 

five, the bootstrap was found to be inconsistent. This may be attributed to the inconsistent 

covariance structure during bootstraps. However, consistent results were found for samples 

of size sixty or above. Hence, samples of size hundred, hundred and fifty and two hundred 

are used. 
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For each of the cases, validity and power is computed. From this, a graph is plotted 

that displays the differences. Results of the simulation procedure are summarized below. 

3.5.1 Type I error (a) and power (7) with small test outliers 

Graph A. 1 plots power and a which are calculated for small test outliers. The graphical 

summary is obtained from the type I error table B.4 and power from the table B.3. 

For the case of small variability (a2 = 0.15), the LSCF procedure performed better 

than the remaining procedures in both level and power. The next best procedure comparable 

to LSCF is Gini. Both LSCF and Gini are comparable in their MSE. 

With larger variability(cr2 = 0.5), it is noted that the LSCF procedure is not the best. 

IQR, Sn seems a lot more efficient than before with smaller MSE. However, Gini is better 

than LSCF in both power and level. LSCF and Gini worked best with smaller test drug 

variance and smaller outliers. 

3.5.2 Type I error (a) and power (7) with small reference outliers 

Graph A.2 plots power and a which are calculated for small reference outliers. The graph­

ical summary is obtained from the type I error table B.6 and power from table B.5. 

For the case of small variability (a2 = 0.15), LSCF procedure and Gini have higher 

significance level (15%). With such a level, power has little meaning and thus the LS 

procedures failed. Qn is better among the various robust procedures. 

With larger variability (a2 = 0.5), the LS procedures, LSCF and Gini have large 

significance level and all the robust procedures MAD, IQR, Sn and Qn performed better. 

So, with outliers in the reference drug, it is clear that the validity of the LS procedure is 

severely affected. 
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3.5.3 Type I error (a) and power (7) with large test outliers 

Graph A.3 plots power and a which are calculated for large Test outliers. The graphical 

summary is obtained from the type I error table B.8 and the power from table B.7. 

For the case of small variability (a2 = 0.15), the LS procedures compromised with 

the significance level of the test. IQR, Sn are more conservative tests and the robust proce­

dures are better overall and have higher power. 

With larger variability (a2 = 0.5), the LS procedures are worse for both validity 

and power. All the robust procedures work well and are more efficient with smaller MSE. 

Robust procedures work best with larger Test outliers. 

3.5.4 Type I error (a) and power (7) with large reference outliers 

Graph A.4 plots the power and a which are calculated for large reference outliers. The 

graphical summary is obtained from the type I error table B.10 and power from table B.9. 

LSCF and Gini, the two LS procedures are compromised due to outliers and this is 

seen by their level. In both small and large variances of the data, Qn is the most conservative 

with significance level and has high power. Overall, the robust procedures perform better 

when there are more than 3<J outliers. 

3.6 Small sample study 

As seen in these simulations, consistent results for samples of size sixty or above are ob­

tained. However such samples are available only on phase II of the drug development. So, 

it becomes necessary to address the cases of clinical trials where samples of size twenty are 

quite commonly used. In Leena et al. (2008), typical BE tests are conducted on subjects of 

size twelve to thirty. For small samples, bootstrap procedures may be of suspect because 

the covariance structure may breakdown and also the outliers may have a greater effect at 
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such small sample sizes. In the next chapter, the small sample analysis of PBE is addressed. 
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CHAPTER IV 

SMALL SAMPLE POPULATION BIOEQUIVALENCE 

PBE analyzed in phase I of a clinical trial have small sample sizes. The FDA (2001), Hyslop 

et al. (2000) and Patterson et al (2002) have used small sample sizes for PBE analysis in 

their papers. Small sample sizes refer to samples of size N=18, 22, etc. With small samples, 

the bootstrap procedure previously developed does not give consistent results. 

In this chapter, the theory developed by Chinchilli et al (1996), Cornish et al (1938), 

Stefan (2001) and Anirban et al (2008) is used to calculate the Cornish-Fisher confidence 

interval using closed forms of Gini and IQR. Gini and IQR have a readily available closed 

form distribution. Estimate the mean difference, variances and the population bioequiva-

lence criterion. Population BE is established for a particular log-transformed BA measure 

if the 95% upper confidence bound for the linearized criterion is less than or equal to zero 

(FDA, 2001). 

4.1 Distributional assumptions of metrics in BE trials 

Before performing a statistical analysis in BE trials, AUC and Cmax are generally log 

transformed. The three most commonly cited reasons for log transforming AUC and Cmax 

are 

• AUC is non-negative 

• Distribution of AUC is highly skewed 

• PK models are multiplicative 
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The drug concentration at each time point is a function of many random processes. They are 

absorption, distribution, metabolism and elimination that act proportionally to the amount 

of the drug present in the body. Thus the resulting distribution is log normal (Midha & 

Gavalas, 1993). 

4.2 Design 

The test (T) and the reference (R) formulations are administered to healthy volunteers and 

the drug concentrations are measured over time. A cross-over design is setup to compare 

the test and reference drug formulation's effect on a subject. For PBE, a 2x4 cross-over 

design i.e a two sequence, four period replicated balanced design (FDA, 2001) as explained 

above is considered. 

The data in table 2 for PBE of large samples is also used here. Apart from this 

sample size, the rest of the parameters are reused for the setup. For the first sequence, 

subjects have a TRTR schedule and for the second sequence a RTRT schedule. The design 

is as follows 

Yijki = Hk + Jiki + Sijk + tijki (4.1) 

where i=l,...,s indicates the number of sequences, j=l,...,rii indicates the subjects within 

each sequence, k=R,T indicates the treatments, l=l,...,pik indicate replicates on treatment k 

for subjects within sequence i. 

The response is Yijki for replicate / on treatment k for subject j in sequence i and 

7ijt; is the fixed effect while the random effect is 5ijk for subject7 with a random error ê fy • 

The random errors e^u are mutually independent and identically distributed as 

(4.2) 
/ \ 

€ijTl N 
aWithinT 

aWithinR 
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Also, the random subject interaction effect is distributed as shown below 

2 
aBT 

POBRPBT 

PCBR&BT 

'BR 

(4.3) 

The resulting response is distributed as 

N 
aBT + aWT PaBR&BT 

PVBR&BT 'BR + C-; WR 

(4.4) 

The next section introduces the hypothesis to test PBE. 

4.2.1 Hypothesis 

The proposed null and alternative hypothesis based on the FDA regulations (2001) are 

(HT ~ HR? + 4 - °R ^n 
-no . -7— oT d- VP 

max{(TQ,aR) 

JUT ~ P<R? + CTT ~ <7R ^ n 
" 1 • T~2 2~\ < "P 

max{<TQ,aR) 
(4.5) 

where a\ = a^T + aBT and aR = aWR + UBR a r e the total variances of the test and the 

reference drugs. The constants al and Op are fixed regulatory standards. 

As seen above, the FDA guidance currently adopts an aggregate approach, using 

an aggregated test statistic for evaluating both means and variance components simulta­

neously. In contrast, several disaggregate approaches have been suggested where tests for 

each component are performed separately. For example, Liu and Chow (1996) proposed a 

disaggregate approach for evaluating IBE where three components (intra subject variabil­

ity, subject-by-formulation interaction, and average) are separately tested multiple times 
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with intersection-union tests. However, as the dimensions (p) of tests increases, the power 

of the (1 — 2a) confidence set (Leena Choi, 2008) based approach could decrease sharply 

for dimensions greater than one as shown in Hwang (1996). 

The aggregated test statistic is linearized as follows: 

Ho :;(jiT - nR)2 + o\ - a\ - 0P * max(al, a2
R) > 0, 

# i : (nT - HR? -+(JT—0R-9P* max(al,a2
R) < 0. (4.6) 

Here, 77 = (fir — HR)2 + o\ — a\ — &P * max(al, aR) and the null hypothesis reduces to 

a one sided problem defined by a linear combination. The FDA fixed 0.02 as the maximum 

difference for the variance under the test and reference formulations. Usually 9 = log 1.25 

= -log 0.80 = 0.223. These values (FDA, 2001) originated from the notion that the ratio of 

the population means in the original scale (the mean of the test is 80 -125% of that of the 

reference) are considered to be sufficiently close for drugs having an average therapeutic 

window. For PBE, the FDA sets 6P = 1.744826 and a\ = 0.04. The linearized hypothesis 

is of the form 

Ho:ri>0, 

H^.Ho-.rjKO.. 

If the null is rejected, population bioequivalence (the two drugs are similar across popu­

lation groups) is inferred. Otherwise, the two drugs are significantly different across the 

populations. The next section describes the present procedure of testing PBE hypothesis. 

4.2.2 Least squares Cornish Fisher's procedure (LSCF) 

The present procedure tests PBE using Cornish Fisher's (CF) (1938) expansion. In LSCF, 

j] is calculated as r\ = (fiT — I^R)2 + &T ~ aR ~ @P * rnax(ol, aR). The procedures in 

estimating /Zj and of are described below. If the upper confidence interval 7795% is less than 
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zero, population bioequivalence is concluded. 

Following are the steps in computing the least squares Cornish Fisher's (LSCF) 

expansion: 

1. From table 2, the response Yijki is distributed as 

7 BR + aWR POBBPBT 

PCTBRCBT &BT + aWT I 

N 

where each subject j has two observations for one of the two treatments. Each sub­

ject belongs to only one sequence. The data has 'N' subjects partitioned into two 

sequences with y subjects in each sequence. In this example, a balanced design is 

used. The variances aB and a^ are the between and within variances. For the first 

sequence the patients have a TRTR schedule and the second sequence subjects have 

an RTRT schedule. 

2. Define I as the difference in test and reference drug replicate averages. Compute this 

difference iy as 

,- _• (YIJTI + YljT2) (YljR1 + YljR2) 

~ 2 2 ' " . - . ' . . 
T _ (Y^jTi + Y2JT2) (Y2JR1 + Y2jR2) 

• v ~ ~ 2 " " 2~ ' 

for each of the sequence /= 1, 2. 

3. Calculate JJ^T as the average of the test drug replicates and UijR as the average of 
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the reference drug replicates. This average is 

UljT = 

U2jT = 

(YljTl + YijT2) 
2 

(Y2jTl + YijT-l) 

UIJT and UijT are independent as they are estimates from two different independent 

samples. 

4. Define V^T as the difference of the replicates of the test and VijR as the difference of 

the replicates of the reference drug. V̂ fc is calculated as 

VljT = 

VIJR = 

'(YljTl - YijT2) 

(Yum - YljR2) 
V2 

5. Calculate the variance of the variables Uijk, Vijk for each of the two sequences. Esti­

mate the variance of test drug aT as c r ^ + c r ^ and reference drug aR as aBR-\- OwR. 

For the first sequence, the variance is estimated with 

• m ^ _ Var(YljT1) + Var(YljT2) + 2Cov(YljT1,YljT2) var{UljT) :—-—• , 

Vnr(v , Var(YljT1) + Var(YljT2)-2Cov(YljT1,YljT2) Var(VljT) = • . 

Without loss of generality, set the covariance (Ei) for the first sequence and the two 

test drug periods. The resulting distribution of the test drug in the first sequence is 

/ 
Y ljTl 

N 

y Y\JTI 

( 

\ 
£1 

(4.7) 
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Similarly, the distribution of the test drug in the second sequence is 

N 
CTrp S2 

V j 2 &T 

(4.8) 

It can be proved that u\ is a linear combination of the variances o\jT and a\T. To 

prove CTJ. = GIJT + -^L, consider the following 

n2 — n2 -A- ?X2-

4 = \ (°UTseql+°UTseq2) +.5 (5 {°VTseql + °VTseq2}) 

r2 _ I 'VT. 
aT ~ % \ aUTseql + 2 

seql 1 I ~2 
2 + * I ^ e , 2 + 

T 2 
7VTS, 

••32. 

a\ = 1 (Var(lV) + ! S ^ ) + 1 (Var(U2jT) + ̂ k l l ) 

4 = i [(^1) + (*i*)] + J [ ( ^ + (**&)]. 

By expanding the above equation, it is concluded that 

(TUT + 
2 

= Orp, 

Similarly, for the reference drug, \o\jR + ^& J = a\. 

6. The expected values of the difference for the test and reference drugs from the two 

sequences across the four periods or two replicates using equation 4.7 are 

E(Ilj) = E 

E{I2j) = E 

(YljT1 + YljT2) (YljR1 + YljR2y 
2 2 

" (Y2jTi + Y2jT2) (Y2jm + Y2jR2) 

2\xT - 2y.R 

2fiT ~ tyR 

Thus from the average of the two sequences, ( l j ^ (2j ' = \ir — \iR. 
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7. Estimate the aggregate statistic rj using the linear combinations of means and vari­

ances as 

rf = Y^T"—Ttfl) +ar ~ (1 + 0P) max (aR, 0.04). 

Calculate the upper confidence interval of rj using the Cornish Fisher's expansion. 

To illustrate CF's expansion, consider H as the upper bound in the equation 

*=£^+(£Vr 

where Pq represents the point estimates i.e mean, variances and Bq represents the 

upper bound of these point estimates (95%). 

8. Table 7 outlines the various point estimates and their respective upper bounds. 

Table 7: Point estimates and their distributions 
P9=Point Estimate C=Confidence Bound 

w 
5g=Upper a limit 

P\={^T — HRY 

P2=*2
Uk 

P*=Hk 

m P\ + tl-a,N-s E ni **/ 
W 

rrn - Z*~ (^~2) 

X-a,N—2 

/•/• - 1 ^ 2 " ~ ( y - 2 ) 
A-a,N — 2 

5i=(c/i-Pi) 

5 2 =(t / 2 -^) 2 

Thus, calculate the upper CI of rj using Cornish Fisher's expansion. The upper 95% 
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confidence value of 77" is calculated as 

17 = (fpr - HR)2 + a\ - (1 + 6p) max (0% a$) , 

V = (/*r - HR? + <?UT + \aVT ~ i1 + e) m a x \°UR + \°v& °t) » 

-a = (fJ-T - A*R)2 + CTUT + \°VT ~ U + 6) m a x (^fl + l^VR^l) 

W - VR\ + t*,N-2\Jnjl2_2 ) - (/iT - /**) + 
(N-2)afJT 

i\N-2)aiT i r r ~ 
2 Y2 „•„ 2°VT 
* *<*, iV-2 

+ 

(i.+*p)(*-2)W« 1 ri 1 a ^ 1^2 
a * h (1 + 0pj 5<rVfl 

*<*,AT-2 

—1g—XX + {l + 0p)<TUR 

H 2.^/2 

*a,JV-2 

n2 

Once 7795% is computed, conclude PBE if r/95% is less than zero. When Ho is rejected, 

PBE is concluded. The following section proposes the robust bootstrap procedure as an 

alternative to the LSCF procedure. 

4.2.3 Proposed small sample procedures 

The robust procedure is identical to the LSCF procedure in terms of data manipulation and 

the grouping to calculate hjk, UT, UR. A closed form distributions of Gini and IQR is 

suggested for CF expansion. Steps for small sample PBE analysis are as follows: 

1. Start with the data in table 2 where each subject j has two observations for one of 

the two treatments. The subjects belong to only one sequence. The data has N sub­

jects partitioned into two sequences with y subjects in each sequence i.e a balanced 

design. o\ and a^y are the between and within variances for sequence i and repli-

cate(period) I. From the setup, the first sequence has a TRTR schedule and the second 

sequence has a RTRT schedule. 

2. Define I as the averages of the replicates of test and reference drugs. Calculate Iijk 
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as 

Table 8: Two sequence, four period balanced design 
Subject Sequence Periodl Period2 Period3 Period4 

1 
2 

m 
m+1 
m+2 

Y l j T l Fi ljRl Y l jT2 Y ljR2 

2 
2 
2 
2 
2 

Y» 2jRl Y> 2jTl Yn 2jR2 Yo 2jT2 

hjT 

hjR 

(YljTi+YljT2) 
2 ' 

T „ _ (YliRl+YljR2) 
J-1 iff — o ) 

T (Y2jTl+Y2jT2) 
hjT — 2 : ' 
T _ (Y2JM+Y2JR2) 
l2jR — — 2 • 

for each of the sequences i=\, 2. This gives the average effects of the test and the 

reference drugs for the two sequences. 

3. Define UijT as the averages of the replicates of test and UijR as the averages of the 

replicates of the reference drugs. Calculate them as 

UljT = 

UijT = 

_ [YljTl + YijT2} 

{Y2jTi +Y2JT2) 

Here UIJT and UIJT are independent as they are estimates from two different inde­

pendent samples. 

4. Define VIJT as the difference of replicates of test drugs for the first sequence and V^T 
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as the difference of the replicates of test drugs for the second sequence. Calculate 

them as 

Vi JT = — 

VzjT — 

V2 ' 
(Y2jTl ~ Y2JT2) 

V2 • 

Here V\jT and V^T are independent as they are estimates from two different inde­

pendent samples. 

5. Obtain the robust location i.e the median of I\TJ, -fiKj. hrj and IiRy Using this, 

calculate the robust estimate of location difference as 

£r - 6i = 
Median/1Tj. + Median/2Tj. Median j 1 H , . + Median/2Rj. 

6. Use Gini and IQR as variance estimators. The standard errors of these variance 

estimators are readily available as shown below. 

• IQR: Based on the large sample assumption, the robust variance estimate of 

IQR is calculated. For estimating the scale parameter, a of a location scale 

density \f (£^i£) » an estimate based on the interquartile range IQR=Xrsn. 1 — 

^ f i a J is used. Use of such an estimate is quite common when normality is 

suspect (DasGupta, 2008). IQR is distributed as 

^(lQR-U3-ZA)^N\0,—^ "+-*!—— 2 
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In particular, if Xi,..., Xn are iid iV(//, cr2), then 

y/n (IQR- 1.35a) ^N (0,2.48a2). (4.9) 

Consequently, for normal data, y^f is a consistent estimator of a (DasGupta & 

Haff, 2006). 

• Gini Mean Difference : Gini's mean difference is often used asan alternative 

to the standard deviation as a measure of spread (Nair, 1936). 

"The Mean Difference introduced by Prof. Corrado Gini as a measure 

of variation is defined as: If x\, x2, ...xn are n observed values of a 

variate x, the mean difference is defined as 

The standard error of Gini's mean difference (g) was presented by U.S. Nair 

(1936) and further explained by Lomnicki (1952). If X's are normal N(fi, a2), 

the unbiased estimator of a is y/Trg/2. To obtain the above proof, use the 

approximation theorems (Serfling, 2001), proofs by Nair (1936) and David 

(1968). The sketch of the theory is 

9 = n(n-l) ls\Xi~ Xj\ ~ n (n- l ) 2 ^ \Xni ~ %nj\ 
ijtj l<i<j<n 
n—\ n 

9 — n(n-l) 2 ^ Z^ \xni—'Xnj) 

where xni and xnj are the order statistics. Now Gini written a linear combi­

nation of the order statistics. Nair generated normal convergence of Gini by 
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expanding the x's as follows: 

n—\ n 

9 ~ n (n- l ) £^ £-i {Xni Xnj)> 

. n 
= ^ t l ) E i(Xi ~ Xl) + (Xi- X2) + ... + (Xi - Xi-i)}, ^(n-l) 

_ 2 
n(n—1) 

i=l 

2YjiXi - (n + l)J2xi 
i=\ i=l 

^[2U-(n + l)V]. 

By estimating U, V, U2, UV and V2 and their expectations, estimate the mean 

and variance of g. Take Jacobian at every stage and add them up as 

E(9) = -g = ^hj[2U-in+l)V], 

92 = T^h^[^2-4(n + l)UV + (n+lfV2], 

i* = E(g2) = ^ ^ [ATP - 4(n + l)UV + (n + \fV^\ , 

o*g = Etf)-E(g?-

When X's are normally distributed, the Jacobian are estimated for the mean of 

g and the variance of g. They are 

0 = 2*-

2a 
•y/n(n-l) 

n+1 , 2y/3(n-2) _ 2(2n-3) 
3 ."*" TT 7T 

For a sample of size 10, the efficiency of this estimate is 98.1% and reaches 

99% for small increments of sample size (David, 1968). 

"Gini is also slightly less sensitive to the presence of outliers than 

either s or a. Although necessarily entailing a considerable loss in 

efficiency under normality, a symmetrically censored version of a* 
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has been put forward as 

^(g-?jL\->N(0,ag)" (4.10) 

From these derivations, a Cornish-Fisher's expansion using Gini and IQR is 

generated that tests for small sample PBE. 

7. Estimate the upper 95% confidence interval of fusing the following procedure 

• For the location, use Moses (Hollander & Wolfe, 2001) distribution free con­

fidence interval based on Wilcoxon's rank sum test. For the upper 95% confi­

dence interval of the difference in Test and Reference location, calculate 

Ca = "<2™+"+1) +l-Wa, 

A _ Jjmn+1-Ca 

where m and n represent the sample sizes. U is a value that is estimated from 

Hollander et al (2001). Au is the desired upper confidence interval of the loca­

tion differences. 

• In order to estimate the upper confidence limit of the variance estimates of Gini 

mean difference, use equation 4.10. 

• To estimate the upper confidence limit of the variance estimate of IQR, use 

equation 4.9. 
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8. The upper 95% confidence level of rj is estimated for Gini mean difference as 

+ 

+ 
+ 

+ 

- = ($r - &) 2 + QJT + Kvr ~ (1 + *) max {CUR + ±# f l> <r0
2) 

A^-ftr-fr)3 2 
UT 

- ( i + 0p) (c£ + zQ*S^) + (i + 0P)C '2 

1/2 

where £2 is the asymptotically unbiased variance estimate and 0 = v f if {22<r2} is 

the standard error obtained using equation 4.10 and the Delta method. This is shown 

by the following equations : 

•^U^)a-^j^^(0,afi(*)a) : . 

Similarly, for IQR calculate 7795% as 

rh-a = (fr - 6 0 2 + TUT + \TVT ~ (1 + #) m a X (r^H + |rV;«> °0) 
-1 2 __. ^___ 2 

2 

+ A 2 , - ^ - ^ ) 5 

+ 

+ 

+ 

[*(• TyT + Z<* * VVT) ~ \TvT 

(1 + 9P) (T*R + Za *. ffik) + (1 + 0P) r2
K] 

1/2 

where r2 is the asymptotically unbiased variance estimate and 
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(p =. J{Y^) v (2cr)2 is ^ e standard error obtained using the Delta method. This 

is proved by 

With the above two proposed procedures, compare small sample PBE using LSCF with 

small sample CF Gini and IQR. In the next section, sensitivity analysis is conducted on an 

example with these three procedures. 

4.3 Sensitivity analysis of an example 

Apply the LSCF, Gini and IQR procedures on a dataset. This dataset was procured from a 

FDA website which was created on August 18, 2003. Introduction to the dataset used is 

"In reference to the Federal Register notice on "Preliminary Draft Guidance for 

Industry on In Vivo bioequivalence Studies Based on Population and Individual 

bioequivalence Approaches: Availability", vol. 62, No. 249, Dec. 30, 1997, 

the Food and Drug Administration (FDA) is announcing the availability of 

data that were used by the Agency in support of the proposal and the detailed 

description of statistical methods for individual and population approaches." 

The dataset in table 9 is 'DRUG 17A' from the above source. It is a two sequence, four 

period replicate design with thirty six subjects who are randomized into one of the two 

sequences. The subjects in the first sequence start with a RTTR (Reference-Test-Test-

Reference) schedule while the second sequence have a TRRT schedule. There is a sufficient 

washout period between the test and reference drugs to avoid carryover effect. AUCoo is 

the parameter of interest. Reorder the data by transposing the data on periods. The design 
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Table 9: Example to illustrate the PBE procedure 
SUBJECT 

1 
1 
1 
1 

36 
36 
36 
36 

PER 
1 
2 
3 
4 

1 
2 
3 
4 

SEQ 
RTTR 
RTTR 
RTTR 
RTTR 

TRRT 
TRRT 
TRRT 
TRRT 

TRT 
2 
1 
1 
2 

1 
2 
2 
1 

AUC 
1020.65 
1321.23 
900.42 

1173.61 

2212.39 
1438.48 
1984.76 
2640.43 

AUCINF 
1020.65 
1321.23 
900.42 

1173.61 

2212.39 
1438.48 
1984.76 
2640.43 

CMAX 
109 
145 
106 
146 

226 
137 
237 
237 

used is similar to the design from the large sample PBE procedure. This design is 

yijkl = Vk + likl + Sijk + Zijkl (4.11) 

where i=l,2 indicates the number of sequences,_/=l,...,36 indicates the subjects within each 

sequence, fc=R,T indicates the treatments, /=1,2 indicates replicates on treatment it for sub­

jects within sequence i. Due to a balanced design, there are eighteen subjects in the first 

sequence and eighteen subjects in the second sequence. 

The response is Y^u for replicate / on treatment k for subject j in sequence i. The 

fixed effect is jiki of replicate / on treatment k in sequence i. The random effect is <5ijfc for 

subject,/ in sequence i on treatment k and eijW is a random error. 

• Steps in small sample LSCF are as follows: 

1. For the above dataset, calculate the difference between the test and reference 

drug averages / y = (^T1+KlJT2) - (*W+yu*») and I2j = <fo"+y*") _ 

2jM+ 2jR2> fQr e a c n 0£ m e tWQ s eqU e n c e s i=\t 2 Also calculate Uijk and 

Vijk withI/ l jT = Vw+Yu™>t u2jT = ^ ' ^ ' i m d VljT = (Fl jT1
v^ l j r2), 
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V2jT ~ V2 

2. Calculate 5, a\ and aR as explained in the previous section. Estimate 77 as 

f, = ft + CT| - (1 + 1.744826) max (Z%, 0.04). 

3. Apply outliers to 5% of the data. After adding outliers to three subjects, rerun 

the above procedure and calculate77. These outliers are ± 1,2,3,4,5,6 a outliers. 

• Steps in small sample robust procedure using Gini and IQR are as follows 

1. Calculate the test and reference drugs averages with IljT = Lkili±JJliL^ 

h j R = {Y^R1+^R2\ I2jT = ^TI+YVT2) a n d J2,R = (Y2jm+Y2jR2) for e a c h o f 

the sequences i=l, 2. The robust difference in location is 
Median/ 1 T .+Median/ 2 T . Median/ l f i .+Medianj2„. 

fr - £,R = 2̂ 2 • 

2. Calculate Uijk and Vijfc with UljT = {Y^nf^\ U7jT = ( ^ T 1 + ^ r z ) and 

VljT = (Yl*T1^T2) andV2jT = Vw^™\ 

3. Calculate the averages for the two sequences 

a2 _ Var(U1T)+Var(U2T) + 1 Var(V1T)+Var(V2T) ^ 

a2 _ ^ar( t / iH)+Var(C/ 2 f i) | 1 Var(V1R)+Var{V2R) ^ j __ hj+hj 
•W 2 2 2 2 

For Gini, a2 = ( c ^ ) and for IQR, a2 = ( o ^ g ) 2 . Estimate r\ for the 

data above as fj = ft + o\ - (1 + 1.744826) max (a%, 0.04). and fj^, by the 

following procedure. Upper 95% confidence level of rj is estimated for Gini 
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mean difference as 

m-a=XtT - &? + QJT + 5#r - (1 +8) ma* (.0* +. 5#a,:*0.) 

+ K-fo-tR)* + [CUT + ^a * <At/r)'•- Ci 2 

+ [ | (CyT + '^a * <I>VT) - K v r ] 

+ (1 + OP) ((UR + Za * <PUR) + (1 + 0p) 0 * ] 2 

+ [- a + e) (K^ + ̂  * Sw) + (i+*) |cS]2} 
1/2 

where £? is the asymptotically unbiased variance estimate and 

(p = yj^ {22cr2} the standard error obtained using equations 4.10 and delta 

method. Similarly, for IQR 

Vi-a = (£r - ZR)2 + rUT + \rlT -(1 + 6) max (T$R + ffiR, <rg) 

+ | [Afj - (fr - (R)2] + [ ( ^ + Za * ^ ;) - r£r 

+ [*e TyT + ZQ '*y»VT J 2TVTJ 

+ [- (1 + eP) (rUR + Za * 0u~kj + (1 + 0P) rUR 

+ (1 + *) (\r2
UR + Za * ± ^ * ) + (1 + 6) \rUR^ 

1/2 

where a=0.05, N=36, nl=n2=18, 0P=1.744826, 0=0.04, rf is the asymptoti­

cally unbiased variance estimate and (p = J {j^) v (20")2 the standard error 

obtained using delta method. 

4. Apply outliers to 5% of the data. After adding outliers to three subjects, rerun 

the above procedure and calculate ff. These outliers are ± 1,2,3,4,5,6 a. 

The section below describes the comparison of the small sample LSCF procedure with 

the two proposed procedures. With the analysis of this procedure, the results are surrima-
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Figure 4: Small sample PBE sensitivity analysis 
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rized in graph 4. As the outliers are increased in size, LSCF and Gini are most affected. 

Gini is marginally better than LSCF. With outliers ranging from -6a to +6a, rj from LSCF 

procedure varied from 1.2 to -1.2 while that of IQR varied from 1.2 to 0.3. 

Such a variation in the test statistic changes the conclusion of the hypothesis due 

to outliers. Clearly IQR is more resistant to outliers than the LS procedures. In the next 

section, validity and power of the LSCF procedure is compared to the proposed procedures. 

4.4 Small sample PBE comparison of level and power 

Simulation analysis generated data as in table 2. By controlling the input parameters, rj is 

fixed. These parameters include the various between and within variances and the means 

of the test and the reference drugs. 

By setting the true value of rj at the boundary i.e zero, calculate the significance level by the 

68 



probability of falsely rejecting the null. By setting the true vale of 77 at the rejection region, 

calculate the power as a function of the probability of falsely accepting the null. Further 

on the basis of MSE, determine the better procedure. The simulation analysis is run for the 

following cases: 

1. Mild test drug formulation outliers which have 3a outliers, 

2. Mild reference drug formulation outliers which have 3a outliers, 

3. Mild outliers which have 3a outliers for both test and reference drug formulations, 

4. Large outliers which have 6a outliers for both test and reference drug formulations. 

The values of small and large variances are obtained from publications as seen in previous 

chapters. 

4.4.1 Validity 

To test for validity, set the hypothesis at the boundary condition. The hypothesis of interest 

is 

Ho : 77 > 0 : (Non Population Bioequivalent), 

Hi : 77 < 0 : (Population Bioequivalent). 

The definition of type I error is PH0 (Reject the Null hypothesis)=a. At the boundary, the 

value of 77 = 0 and the probability of the type I error is maximum. 

1. Set the true value of 77 = 0 as shown below 

77 = (fiT - (j,R)2 + a\-a\- max (0%, al) 0P = 0 

rj = (//T - /j,Rf + a\ - a\ - max (a2
R, 0.04) 1.744826 = 0. 

One of the possible boundary condition could be setup by /J,T = /J>R and a\ = aR + 

max (aR, 0.04) 1.744826. As an example let the mean differences be set to zero 
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(HT — I^R = 0), the variances set to aR=0.3 and o-f.=0.8234478. Such a setup has true 

77 = 0 . 

2. After specifying the input parameters, generate two thousand datasets having a bi-

variate normal distribution of the form 

&WT P&BR&BT 

PaBRPBT aBR \ YijRl 

For each of the datasets, calculate rj and r/95% for the LSCF and the two proposed 

procedures. 

3. Calculate the proportion of cases when the null is rejected. This proportion represents 

the empirical probability P#0 (Reject H0) = a. Calculate the mean squared errors 

(MSE) from two thousand rj. 

With these steps, the empirical significance level is computed for LSCF and the two pro­

posed procedures. 

4.4.2 Power 

To compute the empirical power, set the true value of rj in the alternative condition. The 

hypothesis is 

H0 : rj >0 : (NonBioequivalent) 

Hi : r} < 0 : (Bioequivalent). 

Definition of type II error is PHA (Fail to Reject the Null hypothesis) and power = 1 - P(Type 

II error). 
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1. Set the true value of rj less than zero as shown below 

77 = (HT - VR)2 +-<4 - <J\ - max (a%, erg) 9P = -0.80, 

•ri=(fir- VR)2 + (TT-O2R-
 m a x (CTi °-04) 1.744826 = -0.80. 

For example one of the possible boundary condition setup could be fir - I*R = -0.2, 

a\ = 0.34 and aR = 0.43. Since ryrme = -0.80, the null should be rejected. 

2. After specifying the input parameters, generate two thousand datasets that are dis­

tributed as bivariate normal of the form 

(Y \ 
YijTl 

1 Yij.Rl J 

N 
, POBROBT <7BR + aWR 

For each of the datasets, calculate ff and 7795% for the LSCF and the two proposed 

procedures. 

3. Calculate the proportion of cases when the null is accepted. This proportion repre­

sents the empirical probability of PHA (Fail to reject H0) = P(Type II error). We now 

have empirical power as 1 - P(Type II error) for LSCF, Gini and IQR. Calculate MSE 

using the two thousand datasets. 

The next section discusses the findings of the simulation study comparing validity and 

power of the present LSCF with the two proposed procedures. 

4.5 Examples comparing validity and power 

The small sample case for simulation based upon the suggested variances of between and 

within factors from the FDA guidelines FDA (2001) and from Chow et al (2002) is elabo­

rated. The variances are broadly categorized into small and large variance and further with 
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small and large outliers. 

Further the outliers are limited to only one or two subjects out of the twenty sub­

jects. The outliers are then bifurcated into two main categories, outliers in the test drug or 

outliers in the reference drug. These outliers were set based upon the criteria that at least 

5% of the data contains outliers. AUCoo and Cmax are quite easily prone to outliers due 

to prolonged excretion rate of the drug or the absorption rate depending upon the subject. 

Calculate validity, power and MSE from the simulated datasets. With this, a comparative 

graph is plotted for the three procedures. 

4.5.1 Power and level a with small outliers 

Graph A.6 plots the power and level a which are calculated for one test drug outlier. A 

subject's test drug response was offset by OCT to 4cr outliers. The graphical summary is 

obtained from the type I error table B. 13 and power from the table B. 14. 

The results of LSCF and Gini are similar initially. But due to the robust location, 

Gini ended up being the better of the two procedures with outliers. IQR is not efficient 

with outliers and has high MSE. Since IQR is less conservative in level, LSCF and Gini are 

better procedures for data with modest outliers. 

4.5.2 Power and level a with large outliers 

Graph A.6 plots power and level a which are calculated for two test drug outliers. 

However, in this case, the outliers were both on the test and reference drug formulations. 

IQR is more stable than the LS procedures with large outliers. However, IQR is a 

less conservative procedure with high significance level. Both LSCF and Gini are severely 

affected with outliers. LSCF and Gini have close results and both procedures failed their 

validity due to outliers. Further research is needed to resolve this effect of outliers. 

72 



CHAPTER V 

AVERAGE BIOEQUIVALENCE 

The two treatment, two period (2 x 2) crossover trial is routinely used to test average bioe-

quivalence for two drugs. In this trial, subjects are randomly assigned to two groups, usu­

ally of equal size. Subjects in the first group receive treatment T ' followed by treatment 

'R' (TR schedule) and vice versa for the other group (RT schedule). A suitable washout 

period is imposed between treatments in order to eliminate potential carryover effects of 

the first treatment. After the administration of each treatment, blood samples are collected 

at fixed time points, and the concentration of the drug in the blood is quantified. The typi­

cal primary endpoint of interest is the area under the drug concentration versus time curve 

(AUG), which represents the bioavailability of the drug. The two treatments are declared 

bioequivalent if their true relative average bioavailability is estimated to be within prespec-

ified 'bioequivalence limits' with high confidence (Stefanescu & Mehrotra, 2008). 

The normality of log(AUC) and log(Cmax) are discussed in the previous chapters. 

A two one-sided hypothesis test is followed in the next section. 

5.1 Distributional assumptions of metrics in BE trials 

For the statistical analysis in BE trials, AUC and Cmax are generally log transformed. The 

three most commonly cited reasons for using the log transformed AUC are 

• AUC is non-negative 

• Distribution of AUC is highly skewed 

• PK models are multiplicative 
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Since the drug concentration at each time is a function of many random processes (absorp­

tion, distribution, metabolism and elimination) that reasonably would act proportionally 

to the amount of drug present in the body, this suggests that the resulting distribution is 

log-normal (Midha & Gavalas, 1993). 

5.2 Design 

Table 10 presents a dataset with two sequences and two periods. There is a sufficient 

washout period between the two periods to prevent any carry over effect. The design sug-

Table 10: Two sequence, two period balanced design 
Subject Sequence Periodl Period2 

• — i i Y^ ~Yw~ 
1 
1 . 

m+1 2 Y2jR Y2jT 

2 . . 
j 2 . . 

gested by the FDA (2001) and Devan et al. (2008) is of the form 

Vijk = Ki + Hk + Sj(i) + eijk- (5.1) 

The response y ^ is the log transformed AUC or log transformed Cmax for treatment k and 

subject j within sequence i. Sj^ is the random effect and eijk the random error. Thus for 
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the two sequences and two periods, the responses are 

2/iji = 7Ti + / J i + Sj(i) + eijfi, 

Vlj2 = 7Tl + V2 + Sj(l) + eij2, 

V2j2-^2+fJ'2 + Sj(2) + e2j2, 

V2jl = 7I"2 + /il + Sj(2) + e2jV 

Assume the random subject effect Sj^ to be independently and identically distributed as 

N(0 , 4>i) and the random error e ^ , also independently and identically distributed as N(0 , 

4>o). Sj(i) and etjk are mutually independent (Stefanescu & Mehrotra, 2008). 

Take the difference between the test and reference drug responses as suggested in 

Stefanescu & Mehrotra (2008). This difference is seen as 

Viji - yij2 = fJ-i- fJ-2 + eiji - eij2, 

J/2ji - 2/2j2 = A*i — A«2 + e2ji - e2j2-

The random subject effect is eliminated. The response matrix is thus a multivariate matrix 

with two columns that are the log transformed AUC and Cmax differences. In the next 

section, the hypothesis to test for ABE is presented. 

5.2.1 Hypothesis 

The FDA (2003a) directs testing the difference in location effects using Schruimann's two 

one-sided hypothesis. The limits 0.8 and 1.25 are fixed by the FDA (2003a). The multi-
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variate hypothesis is of the form 

Hm : 

H, A\ • 

A/Mt /C 

A/A? max 

&HAUC 

A/iCmax 

< In 0.8-U # 0 2 :' 

>ln0.8n/ /A2 : 

A/iAt/C 

A ^ d n a x 

AflAUC 

A/iCmax 

> In 1.25, 

< In 1.25. 

Set AfiAuc as the mean difference of the test and reference drugs for AUC and A/ic-max as 

the mean difference of the test and reference drugs for Cmax. 

5.2.2 LS procedure 

For the LS procedure, the location estimate of the difference [IT — fiR is obtained by the 

simple mean difference of the response for the two periods. This is calculated as shown 

^iJAUC = VijTAuc ~ ViJRAUCi 

^'iCmax = VijTcmzx ~ 2/ijflcmax' 

The sample averages of the differences ZiJAUC and ZijCmax are A^AUC and Aficmax- These 

averages are distributed as 

Z = 
'Cmax 

where AAUC = VT — HR for AUC and Acma.x = HT — HR for Cmax. The covariance is 

0"ll 0"12 

021 CT22 
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witho-^ = var{ZiJAUC) anda|2 = var(ZijCmax) mdai2 = a21 = covar(ZiJAUC,ZijCrnax). 

5.2.3 Componentwise rank method 

The Componentwise rank (CR) method (Hettmansperger & McKean, 1998) is used on 

the vector of Wilcoxon signed-rank statistics on each component. The procedure involves 

setting 

S4(6)= , 

and for 6 = 0, 

c ,n , , E^(M)sgn(:ra) Y ^ E ^ W ) - ^ 
S4 (0) = I + Op(l) = + oP(l) 

where Fj+ is the marginal distribution of \Xij\ for j=1,2 and Fj is the marginal distribution 

of Xij. Symmetry of the marginal distributions is used in the computation of the projec­

tions. We now identify A and B for the purpose of constructing the quadratic form of the 

test statistic, the asymptotic distribution of the vector of estimates and the non centrality 

parameter. 

Since the multivariate central limit theorem can be applied on the project, 

• The components of S(9) should be non-increasing functions of Qx and 92 

• Eo(S(0)) = 0 

D 
jsS(0)->Z~N2{0,A) 

SUP||6||<£ 7*S {^b) - 7*S'(°) + Bb 
p 

- > 0 

the first two conditions are satisfied. Since under the null-hypothesis 9 — 0, F (Xn) has 

a uniform distribution on (0,1) and introducing 6 and differentiating with respect to 9\ and 
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#2, the A and B matrices are 

n 
3 6 

\ 5 * 

and 

' B= (2f.fi{t)dt o 

y 0 2ffi(t)dt 

where 5 = 4 J J F\ (s) Fi (t) dF(s, t) — 1. Hence, similar to the vector of sign statistics, 

the vector of Wilcoxoh signed rank statistics also have a covariance that depends on the 

underlying bivariate distribution. A consistent estimate of S in A is given by 

? =^g,(n+^+ l )S S n W a S n (^ ) 

where Ru is the rank of \Xit\ in the tth component among |Xi t | , ..., \Xnt\. This estimate 

is the conditional covariance and can be used in estimating A in the construction of an 

asymptotically distribution free test. For estimating the asymptotic covariance matrix of 6 

center the data and then compute. From the programs in the website (McKean, 2009), the 

robust spread is estimated. 

The estimator that solves S±(6) is the vector of Hodges-Lehmann (HL) estimates for 

the two components i.e the vector of medians of Walsh averages for each component. Like 

the vector of medians, the vector of HL estimates is not equivalent under the orthogonal 

transformations and the test is not invariant under these transformations. This will show 

up in the efficiency with respect to the Li methods which are an equivariant estimate and 

an invariant test. From the robust analog, the location and covariance structure for the 

multivariate setting is estimated. 

The location estimate of the difference /i^ — \IR is obtained from the Hodges 
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Lehmann's estimate for the differences of the form 

•"iJAUC = VijTAUC ~ VijRAUCi 

^ijCmux yijTcmax ~ VijRc ma.x' 

The robust location estimate Z is distributed as 

Z = 
A AUC 

»Cmax 

\ 

/ 
n 

where A^c/c is the Hodges Lehmann's estimate of the vector of differences ZijAUC for the 

AUC and Acmax is the Hodges Lehmann's estimate of the vector of differences ZiiCmax for 

Cmax. These estimates have a covariance structure of 

X = -B-1AB-1 

n 

where A and B matrices are calculated from the procedures explained above in Componen­

twise rank method. The variance from the robust procedure is 

£ = ± 

n 

12[//?(t)*] 
6 

2ff?(t)dt.2ffZ(t)dt 

1 
2jft(t)dt.2jfi{t)dt u[ff*(t)dtY 

35TIT2 

35TIT2 

where r,- = 
Vl2 ff?(t)dt 
RitRjt S = nJ2 (n+i)(n+i)sgn (xn) s § n (xfl) w h e r e -&*is m e r a n k o f 1^*1 i n t h e ^ component 

i = l 

among \Xu\,..., \Xnt\ and f̂  is estimated as in Koul et al. (1987) 
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5.2.4 Ellipse generation 

To calculate the confidence region, estimate the location and covariance matrix E. The 

100(1 — a)% confidence region for the mean of a p-dimensional distribution is determined 

by fi such that 

n(x- /i)1 S'1 (x-fi)< P}n~^Fp^p (a) (5.2) 

[n-p) 
n n 

where x = - • $3 Xj, S = r^rp; J2 (xj ~'~x) (xj ~ %) and x\, x^, ..., xn are the sample 
" i=i 3=i 

observations (Johnson & Wichern, 1992) (here, p=2). 

To construct a confidence region as an ellipse, the center and the lengths of the 

major and minor axes are needed. The direction and lengths of the axes of 

n(x- /i)1 S-1 (x -,/x) < c2 = P (n_~ y Fp.n-p (a) 
[n p) 

are determined by 

/ 5 C = /^ /p(n-l)Fp,n_p(a) 
n y n(n —p) 

units along the eigen vectors e,. Beginning at the center x or Hodges Lehmann's (HL) 

estimate, the axes of the confidence region ellipse are 

/— / p ( n — 1) . • ' 
±VAn/—7 r-rp,n-p (a) e* 

y n [n - p) 

where Sej=Ajej and i=l,2,...,p. The ratios of the Xt are the relative elongation along pairs 

of axes. Construct an ellipse for the multivariate LS procedure and the Componentwise 

rank method and study the effect of outliers on this ellipse. In the next section, conduct 

sensitivity analysis on an example comparing the LS procedure with the proposed robust 

procedure. 
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5.3 Example of ABE 

The datasets used for the sensitivity analysis were procured from the FDA website which 

was created on August 18, 2003. An overview of these datasets is 

"In reference to the Federal Register notice on "Preliminary Draft Guidance for 

Industry on In Vivo bioequivalence Studies Based on Population and Individual 

bioequivalence Approaches: Availability", vol. 62, No. 249, Dec. 30, 1997, 

the Food and Drug Administration (FDA) is announcing the availability of 

data that were used by the Agency in support of the proposal and the detailed 

description of statistical methods for individual and population approaches. " 

Table 11: Example to illustrate the ABE procedure 
ID 

1 

24 
1 

24 

Seq 
2 

. 
to

 
to

 
. 

2 

Period 
2 

2 
1 

1 

TMT 
1 

1 
2 

2 

AUC 
0.605305 

0.20412 
0.60206 

0.225309 

Cmax 
1.525045 

1.08636 
1.534026 

1.113943 

The dataset in table 11 used in the example is 'DRUG 25A' from the above source. This 

example is a two sequence, two period replicate design with twenty four subjects who 

are randomized into one of the two sequences. The subjects in the first sequence start 

with TR schedule while the second sequence subjects have an RT schedule. There is a 

sufficient washout period between the test and reference drugs to avoid carryover effect. 

Log transformed AUC and Cmax are shown in the table. 
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Take the difference in test and reference drug responses as shown in Devan et al. 

(2008). These differences in the two periods of a sequence are 

VljT - VljR = V>T -fJ'R + eijT - eijR, 

2/2jT - 1/2JR = fJ-T'•'- HR + e2jT ~ Z2jR-

Estimate Hotelling T2 test statistic for the LS and the robust procedures. Add outliers to 

the data and rerun sensitivity analysis on it. These outliers are ±l,2,3,4,5,6cr 

5.3.1 Hotelling T2 with ABE LS procedure 

Start with the differences \J\JT — yijR and y2jT — V2JR- With these differences, calculate 

the sample means and the sample variances. The sample averages of the differences are 

distributed as 
\ 

Z = 
±AUC 

»Cmax 

N 
MC/C 

»Cmax 

Hotelling T2 test statistic for the LS procedure is calculated as 

T2 = n {&AUC ~ &AUC) ( A C m a x - A C m a x ) 
(AAC/C — AAJ/C) 

( A c max — A c max) 

where E is the sample variance covariance matrix. For this analysis, set AAUC and Acmax 

to zero. To this data add outliers varying from -6a to 6a and rerun the above procedure and 

collect Hotelling T2 estimates. 
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5.3.2 Hotelling T2 with ABE CR method 

Start with the differences yijT - yijR and J/2JT — V2JR- For these differences, calculate the 

Hodges Lehmann estimate as the location estimate. The robust variance covariance matrix 

is calculated using the Componentwise rank method explained above (Hettmansperger & 

McKean, 1998). The robust location estimates are distributed as 

where AAuc is the Hodges Lehmann estimate of the vector of differences ZiJAUC for AUC 

and Acmax is the Hodges Lehmann estimate of the vector of differences ZijCmax for Cmax. 

The robust spread is S = ^B~lAB~x and is computed as explained in the above section. 

Estimate the Hotelling T2 robust analog as 

r 2 = 7 7 
-1 analog 'v [AAUC — A.AUC) ( A c m a x ~ A c m a x ] 

(AAUC — AAUC J 

( A c m a x — A c m a x ) 

For this analysis, set AAUC and Acmax to zero. To this data, add outliers that are -6a to 6a 

, rerun the above procedure and compute the Hotelling T2 test statistic. The results of this 

procedure are summarized in graph 5. As the outliers increase in size, the LS procedure 

represented by the blue curve is severely affected. The robust procedure represented by 

the red curve is more stable and is more resistant to outliers. Such a varying T2 statistic 

could result in an incorrect conclusion of the hypothesis due to outliers. Clearly, Compo­

nentwise rank method performed better as it is less susceptible to outliers. In the following 

section a simulation analysis comparing validity and power of the LS procedure and the 

Componentwise rank method is presented. 
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Figure 5: Sensitivity analysis of ABE Hotelling T2 versus outliers 

Outliers 

5.4 Average bioequivalence comparison of level and power 

For the simulation study, compare the multivariate LS procedure with the multivariate 

Componentwise rank method by controlling the true means and variances. The confidence 

region is an ellipse that is constructed by these means and variances. With the ellipse 

constructed, count the number of cases where the ellipse falls inside the rejection region. 

84 



Figure 6: Plot of the null and alternative regions 

5.4.1 Validity 

The hypothesis of interest is shown below 

H, 01 

HA\ '• 

Af-lAUC 

A/iCmax 

&VAUC 

A/XCmax 

<ln0 .8U#, 02 

> In 0.8 n #42 : 

&t*AUC 

A/iCmax 

&PAVC 

A/XCmax 

> In 1.25, 

< In 1.25. 

Validity is tested at the boundary where the difference in means are either /J,T — /J,R — 

loge(0.8) or fiT — fj,R = loge(1.25). It is at these locations that the type I error rate is the 

highest. Set \iT = log(0.8) and fiR = 0 for both AUC and Cmax. The steps for calculating 

empirical level are as follows : 
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1. Generate two thousand multivariate data sets of sample size n as shown in table 10. 

Let the true mean differences be 0.8 for AUG and Cmax. Calculate the difference in 

response Y\JT — YIJR such that 

yijT-VljR = fJ>T~ VR + eljT - CljR, 

V2jT ~ VljR = fJ'T ~ fJ-R + e2jT - e2jR-

The resulting difference matrix has n rows and two columns. Each column represents 

the difference in the response for a subject. Errors are the only remaining random 

effects. 

Table 12: Response matrix 
Subject 

1 
2 

m+1 

J 

Sequence 

1 
1 
1 
1 

2 
2 
2 
2 

AUC difference 

(YijT - YljR)AUC 

(YljT - YijR)AUC 

• 

Cmax Difference 

(YijT - Y\jR)CMAX 

(YljT - YljR)CMAX 

• 

2. Estimate the LS and the robust (R) estimates of location (one for AUC and the other 

for Cmax) and the variance covariance matrix from the procedure described in the 

above section. Construct the confidence region as an ellipse. The ellipse constructed 

for the LS procedure uses the normality assumption and ellipse constructed for the 

robust procedure uses the Componentwise rank method (Hettmansperger & McKean, 

1998). 

3. Sketch the boundary of the rejection region that is a rectangular space bounded by 

the co-ordinates (loge(0.8), loge(0.S)), (.loge(l.25),loge(0.S)), (loge{\.25),loge{\.25)) 
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and (loge(0.8),loge(1.25)). To interpret this space, the region inside the rectangle 

represents the rejection region as shown in the figure 6. 

4. Probability of type I error is defined as probability of rejecting H0 when H0 is true. 

Empirical level is calculated by P(type I error) = a - P0 (—A < \iT- [iR < A). 

This level is estimated by the proportion of cases where the ellipse is contained 

completely inside the rectangle when in reality it exists at the boundary. Calcu­

late mean squared error (MSE) for the LS and Componentwise rank methods as 

5.4.2 Power 

For calculating the empirical power, set the true mean differences to zero. Power is cal­

culated as a function of the probability of type II error. Estimate the probability of type II 

error as PffA(fail to reject Ho). Following are the steps to compute empirical power 

1. Generate two thousand multivariate data sets of sample size n as shown in table TO. 

Let the true mean differences be zero for AUC and Cmax. Calculate the difference 

in response Y\JT — YijR s u c n that 

VijT - VIJR = HT - HR + eijT - eijR, 

V2jT -V2jR=pT- ^R + e2jT - e2jR. 

The resulting difference matrix has n rows and two columns where each column 

represents the difference in response for the subject. Errors are the only remaining 

random effects. 

2. Estimate the LS and the robust (R) estimates of location (one for AUC and the 

other for Cmax) and the variance covariance matrix from the procedure described 
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in the above section. Construct the confidence region as an ellipse. The ellipse con­

structed from the LS procedure uses the normality assumption and ellipse constructed 

from the robust procedure uses the Componentwise rank method (Hettmansperger & 

McKean, 1998). 

3. Sketch the boundary of the rejection region that is a rectangular space bounded by 

the co-ordinates (Zo&(0.8), loge(0.8)), (loge(1.25),loge(0.S)), (loge(l.25),loge(l.25)) 

and (loge(0.8),loge(l.25)). To interpret this space, the region inside the rectangle 

represents the rejection region as shown in the figure 6. 

4. Probability of type II error is defined as the probability of failing to reject HQ when 

HA is true. Empirical power is calculated as 1-P(type II error)=l-P/j^ Qir'— VR < 

—A or //r — //i? > A). The probability of type II error is calculated by the proportion 

of cases when any part of the ellipse falls outside the rectangle. Calculate MSE for 

the LS and Componentwise rank methods as MSE = \ ^2 ^-pzi~-

Results of this simulation procedure is discussed in the next section. 

5.5 Comparison of level and power of LS and robust ABE 

In each of these cases, with a sample size of twenty subjects, the simulations were run two 

thousand times. From these two thousand datasets, the level and power are estimated for 

the following cases. 

5.5.1 LS and HL estimators plot with one 1.5a outlier 

Figure A.7 plots the graph when one outlier is added into the data. The first two 

plots are cases with no outliers and the bottom two plots show outliers. The robust proce­

dure looks efficient with a mild outlier. The LS procedure performs fairly well and the two 
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procedures have comparable MSE. Both the procedures have similar significance level and 

power while the LS procedure has a mildly conservative level. 

5.5.2 LS and HL estimators plot with two 1.5cr outliers 

Figure A. 8 plots the graph when two outliers are added into the data. The robust 

procedure is resistant to the outliers. However, the LS procedure is significantly affected by 

the outliers and the shape of the ellipse generated is different from LS procedure without 

outliers. The significance level of the robust procedure is very close to 5% unlike the 

LS procedure. Since the validity of the test of LS procedure is severely affected, the LS 

procedure produces incorrect conclusions in this scenario. 

5.5.3 LS and HL estimators plot with two 3a outliers 

From the figure A.9, the robust procedure is moderately affected by the two 3a 

outliers. However the LS procedure is now invalid as the significance level of the test is 

severely affected by outliers. 

From the table B.15, it is seen that with no outliers, LS is the best procedure. But 

even with small outliers, the LS procedure is compromised and its validity is suspect. The 

robust procedure is more stable in the presence of outliers even with small sample sizes. 
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CHAPTER VI 

CONCLUSIONS AND SCOPE FOR FURTHER RESEARCH 

Bioequivalence analysis is used to compare the rate and extent of the drug absorbed by an 

NDA (test drug formulation) with an RLD (reference drug formulation). The FDA (2001) 

suggested AUC and Cmax as important pharmaco-kinetic parameters to be compared for 

equivalence analysis. Thus average, population and individual bioequivalence hypotheses 

procedures were proposed by FDA (2001). 

6.1 Comparison of LS ABE with robust ABE 

Average bioequivalence (ABE) was suggested to test the equivalence of the location of an 

NDA with an RLD using AUC and Cmax. A two one-sided hypothesis was directed (FDA, 

2001) for ABE analysis. The reasons for the log-transformation of the pharmaco-kinetic 

parameters are explained in the introduction chapter. In ABE hypothesis, emphasis was laid 

on testing whether the difference in location of the test and the reference drugs were bound 

within the acceptable therapeutic difference (±logl.25). Least squared procedures tested 

the univariate log-transformed pharmacokinetic parameters. However, the test statistics 

using LS procedures were not resistant to outliers. Further, drugs which had high variability 

were not accounted for, in the hypothesis. Since small samples are generally used in phase 

I clinical trials, univariate ABE may be incomplete. 

We suggested a multivariate two one-sided hypothesis using both AUC and Cmax 

for ABE analysis. In order to counter outliers, Componentwise rank method, a robust 

procedure was proposed. With the multivariate procedure, we constructed the confidence 

region shaped as an ellipse. The rectangular shaped rejection region (FDA, 2001) was also 
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examined. Sensitivity analyses were conducted on the two one-sided multivariate LS pro­

cedure and on the two one-sided multivariate Componentwise rank method. Hotelling T2 

test statistic was computed for both the LS and robust procedures for data with increasing 

outliers. Simulation analyses were performed to compare validity and power. 

As the outliers increased in size, the sensitivity analyses indicated that the LS pro­

cedure was severely affected. The T2 test statistic showed high variability in the presence 

of outliers that could lead to incorrect conclusions about the hypothesis. The Component­

wise rank method was more robust and resistant to outliers and gave consistent T2 statistic 

values. Our findings were summarized in table 13. 

Table 13: Bioequivalence findings 
Case 
ABE 

PBE Large 
Sample 

PBE Small 
Sample 

Variance 
Small 

Large 

Small 

Large 

Small 

Large 

Outliers 
<3a 

<3cr 
> 3a 
<3a 

>3<7 

<3CT 

>3<7 

<3<7 

>3<7 

<3a 
>3<7 

Best 
LS 
R 

LS 
R 

LS, Gird 

LS, Gini, Sn, Qn 

Qn 

LS, Gini 
IQR, Gini 

IQR 
IQR 

Worst 
R 

LS 
R 

LS 
MAD, IQR 

LS, Gini 

LS, Gini 
IQR 

LS 
LS 
LS 

The the simulation analyses of small sample multivariate ABE with no outliers 

showed that both the LS and robust procedures were comparable when testing at 5% sig­

nificance. The LS procedure had a marginally higher power than the robust procedure. The 

MSE, however, was equivalent for the two. 

The test of validity and power of the LS procedure when compared with the robust 
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procedure with mild outliers had a different result. In the presence of small outliers (1.5a 

outliers), the validity of the LS procedure was severely affected. The level of the LS pro­

cedure was close to 10%. Since the level of the LS procedure was not conservative, the 

power of the test is inconclusive. Contrarily, the significance level of the robust procedure 

was close to 5%. Additionally, the MSE of the LS procedure was much higher than the 

robust procedure. These show that the robust procedure was more efficient in testing the 

hypothesis. 

With 3cr outliers in the data, the LS procedure was severely affected. The LS pro­

cedure had a higher level while the robust procedure had a more conservative level. Also, 

the robust procedure had a much smaller MSE than the LS procedure. 

The above leads to the conclusion that the Componentwise rank method on small 

sample ABE analysis is comparable to the LS procedure when the data has no outliers. 

Outliers severely affect the validity, power and MSE of the LS procedure while the robust 

procedure is much more conservative and resistant to the influence of outliers. 

6.2 LSCF versus robust procedures for large sample PBE 

PBE is assessed to prove bioequivalence of a to-be-marketed formulation when a major for­

mulation change has been made prior to the approval of a new drug. It is tested on patients 

who would be taking the drug formulation for the first time. Population bioequivalence is 

considered only after average bioequivalence is approved. Chinchilli et al. (1996) proposed 

a two sequence, four period cross-over design which the FDA has recommended for PBE 

(and IBE) analysis. 

Analysis of population bioequivalence focused on the estimation of the mean dif­

ference and the total variance of the log transformed BA measures of the two drug formula­

tions. Unbiased estimators of these parameters were generated by the method of moments 
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(Chinchilli & Esinhart, 1996). Following the estimation of the mean difference and the 

variances, a 95% upper confidence bound for a linearized form of the population BE crite­

rion was obtained. Population BE was established for a log-transformed BA measure when 

the 95% upper confidence bound for this linearized criterion was less than or equal to zero 

(FDA, 2001). 

One of the issues discussed previously was the presence and impact of outliers. 

The independence criteria required for Cornish Fisher's expansion may be violated in the 

present procedure. To examine this, five bootstrap procedures that estimate the upper confi­

dence bound of the linearized criterion was suggested. The bootstrap procedures were more 

discriminating when the sample size was larger than sixty. Thus, alternative procedures to 

large sample PBE analysis were proposed. 

The robust procedure which used Qn to estimate the variance was least sensitive to 

outliers. As the outliers increased in size, the LS procedures (LSCF and Gini) were severely 

affected. The test statistic r\ showed high variability. The large sample PBE simulation 

results were summarized in table 13. 

The bootstrap simulations showed that, with small outliers in the test drug and small 

variability in the data, the LS procedures (LSCF and Gini) had the largest power, smallest 

MSE and a significance level close to 5%. However, small outliers in the test drug and large 

variability in the data showed different results. In this context, the robust procedures were 

comparable to the LS procedures in significance level and power. 

Alternately, with smaller outliers in the reference drug, the robust procedures per­

formed much better than the LS procedures. The LS procedures were most compromised 

when the estimated significance level was 15%. The robust procedures however, had a 

significance level close to 5%. MSE of the LS procedure was also higher than the robust 

procedure. 

With larger outliers in the reference drug, the LS procedures completely failed. The 
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significance level approached 20%. Such a large number renders meaningless power. The 

validity of the robust procedure with large outliers was approximately 5%. The robust 

procedures were also consistent with low MSE. 

To conclude, for samples of size larger than sixty, smaller outliers in the test drug 

formulation do not severely affect the hypothesis. However, reference drug outliers signifi­

cantly affect the overall result. Robust procedures handle outliers better and have consistent 

significance levels with comparable powers and lower MSE. Finally, the outlier occurrences 

in the test drug formulation gives differed results than outlier occurrences in the reference 

drug formulation. 

6.3 LSCF versus robust procedures for small sample PBE 

Phase I of a clinical trial typically used samples of size twenty or less. With such small 

sample sizes, the robust bootstrap PBE procedure did not give consistent results. It was 

proposed to use the CF expansion using closed forms of Gini and IQR to estimate the 

variance. For the robust location, we suggested the use of median. The sensitivity analysis 

clearly showed that the procedure using IQR for the variance estimate was more resistant 

to outliers. Since the median was used for the Gini procedure, Gini gave marginally better 

results than LSCF. 

The two LS procedures, LSCF and Gini, were similar. However, due to it's robust 

location, Gini proved to be a better procedure with conservative level when the data had 

outliers. Since IQR was less conservative in significance level, LSCF and Gini were better 

procedures when the data had modest outliers (< 3a). 

However, for data with larger outliers (> 3a), the LS procedures had a much larger 

significance level and a high MSE. Although IQR was stable, it was less conservative with 

low power. It was therefore concluded that all the three procedures failed when outliers 
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were larger than 3a. Further research is needed to resolve the effect of outliers on small 

sample PBE. 

6.4 Scope for further research 

Given the above conclusions, there is a need to conduct additional research to address 

several issues. For the large sample population BE situation, robust bootstrap procedure 

was used. Investigation into why the robust procedures gave inconsistent results for small 

sample PBE analysis is needed. 

All the results were based on normally distributed pharmaco-kinetic parameters. 

The implication of the present designs on non-normal unsymmetric data needs to be ex­

amined. The proposed bootstrap and the LS procedures should be tested against different 

distributions of the pharmacokinetic parameters. 

The scope of multivariate analysis for PBE should be expanded. EMEA (2001) 

has already suggested the use of Tmax using Wilcoxon scores to test differences in time 

to reach maximum concentration of drug in plasma. One can readily incorporate AUC, 

Cmax, Tmax into the proposed univariate model and with the definition of the underlying 

distribution (and covariance structure), test for PBE. 

For small sample PBE, Gini andlQR were used as estimates of dispersion. Clearly 

the outlier analysis shows that these are not exhaustive and do not perform well in the 

presence of outliers. Additional research using MAD, Qn, Sn and other robust estimators 

to compare the LS Cornish Fisher's procedure to the robust Cornish Fisher's procedures for 

small samples is needed. 

Finally, for average bioequivalence, further work is needed to compare the effect 

of ABE on PBE. Multivariate procedures tend to have better power than the univariate 

procedure and the scope of such a usage should be reviewed for more than a bivariate case. 
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APPENDIX A 

GRAPHS 

The large sample PBE analysis is the plot of power versus the sample size ranging from 

100 to 200 subjects. The bottom two graphs are the significance level (a) plotted against 

sample size to study the effect of outliers on the data. 

With small sample PBE analysis, plots of level and power against the fixed samples 

but varying outliers are presented. This plot depicts the effect of test drug outliers compared 

to reference drug outliers. There is also an MSE plotted against the same horizontal axis. 

For ABE analysis, four ellipses are plotted along with their rejection regions. The 

first two plots are the plots of the ellipse with LS and robust procedures. The bottom two 

plots of the ellipses depict the extent of change in the location, shape and size of the ellipse 

after adding outliers. 
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Figure A.7: LS and Hodges Lehmann estimators plot w/ one 1.5a outlier 
R rejection region with no outliers LS rejection region with no outliers 
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Figure A.8: LS and Hodges Lehmann estimators plot w/ two 1.5a outliers 
R rejection region with no outliers LB rejection region with no outliers 
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Figure A.9: LS and Hodges Lehmann estimators plot w/ two 3u outliers 
R rejection region with no outliers LS rejection region with no outliers 
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APPENDIX B 

TABLES 

2.1 PBE with no outliers 

The below table compares the large and small sample PBE with no outliers for 

LSCF with Gini, IQR, MAD, Qn and Sn procedures. 

Table B.l: Table of 1 arge sample PBE with no outliers 
Sample Size Method n 7?95 Conclusion 

100 Gini 
Interquartile 

LSCF 
MAD 

Qn 
Sn 

-0.37467 
-0.42121 
-0.30514 
-0.50416 
-0.34698 
-0.45055 

-0.15984 
-0.11836 
-0.1527 

-0.13868 
-0.08866 
-0.17377 

Reject H0 

Reject Ho 
Reject HQ 
Reject H0 

Reject H0 

Reject HQ 
150 Gini 

Interquartile 
LSCF 
MAD 

Qn 
Sn 

-0.18168 
-0.31484 
-0.11991 
-0.26597 
-0.23495 
-0.20858 

-0.03521 
-0.06096 
0.001625 
-0.00973 
-0.03431 
-0.02522 

Reject H0 

Reject H0 

Fail to Reject H0 

Reject H0 

Reject Ho 
Reject H0 

200 Gini 
Interquartile 

LSCF 
MAD 

Qn 
Sn 

-0.35981 
-0.40267 
-0.24655 
-0.4557 
-0.3844 

-0.42334 

-0.18991 
-0.17724 
-0.12594 
-0.20459 
-0.19065 
-0.20866 

Reject Ho 
Reject H0 

Reject Ho 
Reject H0 

Reject H0 

Reject H0 

2.2 Large sample PBE power and level with outliers 

• Case (a) small variance: To estimate power set aBT = aBR = 0.15 and <r^T = 

°WR ~ 015. 5=0.5 which sets the true t] to -0.27344. Small outliers are 3<r outliers 
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Table B.2: Tab e of small sample PBE with no outliers 
Sample V V95% Conclusion 

20 LSCF 
IQR 
Gini 

-0.08958 
-0.44122 
-0.19356 

0.35296 
-0.05353 
0.18934 

Fail to Reject Ho 
Reject Ho 

Fail to Reject H0 

16 LSCF 
IQR 
Gini 

-0.3751 
-0.38012 
-0.40715 

0.001043 
-0.02661 
-0.0308 

Reject H0 

Fail to Reject H0 

Fail to Reject HQ 

added to the test or reference drugs and large outliers are 6a outliers added to the test 

or reference drugs. 

• Case (b) large variance: To estimate power set aBT = a 2 _ 
BR ~ 0.25 and a 2 _ 

WT — 
aWR = P-25. 5=0.5 which sets the true r\ to -0.6224 Small outliers are 3a outliers 

added to the test or reference drugs and large outliers are 6<r outliers added to the test 

or reference drugs. 

• Case (c) small variance: To estimate a set a2
BT = a\R = 0.15 and a^T = a^R = 

0.15. 5=0.7234969 which sets the true r\ to 0. Small outliers are 3a outliers added 

to the test or reference drugs and large outliers are 6a outliers added to the test or 

reference drugs. 

• Case (d) large variance: To estimate a set aBT = aBR = 0.25 and a%jT — a"^R = 

0.25. <5=1.320984 which sets the true i) to 0. Small outliers are 3a outliers added 

to the test or reference drugs and large outliers are 6a outliers added to the test or 

reference drugs. 
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Table B.3: Power with small test drug outliers 
N 

a 100 
150 
200 

blOO 
150 
200 

N 

a 100 
150 
200 

blOO 
150 
200 

Gini 
0.54 
0.76 

0.895 
0.83 

0.995 
1 

Gini 
0.0171 
0.0118 
0.0077 
0.3331 
0.1862 
0.1262 

IQR 
0.27 

0.595 
0.665 
0.69 

0.995 
0.985 

IQR 
0.02540 
0.01935 
0.0140 
0.2889 
0.2184 
0.172 

Power 
MAD 

0.24 
0.51 

0.605 
0.71 

0.935 
0.985 
MSE 

MAD 
0.0261 
0.0185 
0.0143 
0.2952 
0.2013 
0.1783 

Qn 
0.33 
0.65 
0.81 

0.825 
0.99 

1 
of Power 

Qn 
0.0220 
0.0136 
0.0099 
0.3014 
0.1699 
0.1312 

Sri 
0.345 
0.67 

0.815 
0.79 
0.98 

0.995 

Sn 
0.0204 
0.0136 
0.0107 
0.2499 
0.1537 
0.1329 

LSCF 
0.71 

0.883 
0.962 
0.909 
0.995 

1 

LSCF 
0.0126 
0.0093 
0.0065 
0.3.447 
0.1963 
0.1324 

Table B.4: Level a with small test outliers 
N 

clOO 
150 
200 

dlOO 
150 
200 
N 

clOO 
150 
200 

dlOO 
150 
200 

Gini 
0.015 
0.025 
0.025 
0.01 

0.025 
0.015 

Gini 
0.0228 
0.0157 
0.0099 
0.5629 
0.315 

0.2024 

IQR 
0.01 

0.035 
0.025 
0.01 
0.04 
0.01 

IQR 
0.0301 
0.0230 
0.0164 
0.4575 
0.3192 
0.252 

Alpha 
MAD 

0.01 
0.02 

0.025 
0.01 

0.025 
0.02 

MSE 
MAD 

0.0315 
0.0223 
0.0167 
0.4828 
0.3127 
0.2586 

Qn 
0.01 
0.02 
0.02 
0.01 
0.03 

0.025 
of Alpha 

Qn 
0.0284 
0.0177 

0.01229 
0.5211 

0.29044 
0.2089 

Sn 
0.02 
0.02 
0.03 
0.01 

0.035 
0.015 

Sn 
0.0257 
0.0174 
0.0131 
0.4407 
0.2643 
0.2091 

LSCF 
0.018 
0.027 
0.017 
0.002 
0.001 
0.004 

LSCF 
0.0164 
0.0118 
0.0084 
0.6096 
0.3382 
0.2252 
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Table B.5: Power with small reference drug outliers 
N 

a 100 
150 
200 

blOO 
150 
200 

N 

a 100 
150 
200 

blOO 
150 
200 

Gini 
0.925 

0.92 
0.975 

1 
1 
1 

Gini 
0.0157 
0.0128 
0.0083 
0.8365 
0.4571 
0.2326 

IQR 
0.58 

0.755 
0.825 
0.985 

1 
1 

IQR 
0.0308 
0.0275 
0.0150 
0.5734 
0.4298 
0.2035 

Power 
MAD 
0.495 

0.68 
0.77 
0.98 

0.995 
1 

MSE 
MAD 

0.0263 
0.0214 
0.0144 
0.4536 
0.2988 
0.1871 

Qn 
0.685 
0.855 
0.925 

1 
1 
1 

of Power 
Qn 

0.0150 
0.0122 
0.0085 
0.3467 
0.2235 
0.1185 

Sn 
0.705 
0.825 

0.9 
1 
1 
1 

Sn 
0.0225 
0.0175 
0.0120 
0.4978 
0.3070 
0.1608 

LSCF 
0.98 
0.99 

1 
1 
1 
1 

LSCF 
0.0198 
0.0123 
0.0076 
1.4128 
0.6942 
0.3882 

Table B.6: Level a with reference drug outliers 
N 

clOO 
150 
200 

dlOO 
150 
200 

N 

clOO 
150 
200 

dlOO 
150 
200 

Gini 
0.08 

0.1 
0.08 

0.365 
0.31 
0.27 

Gini 
0.0206 
0.0168 
0.0109 
1.0836 
0.6314 
0.3377 

IQR 
0.045 

0.08 
0.065 

0.1 
0.15 
0.1 

IQR 
0.0362 
0.0323 
0.0181 
0.7816 
0.5879 
0.2901 

Alpha 
MAD 
0.035 
0.055 
0.045 

0.07 
0.09 
0.06 

MSE 
MAD 

0.0312 
0.0257 
0.0172 
0.6472 
0.4376 
0.2683 

Qn 
0.035 
0.075 

0.04 
0.135 

0.18 
0.11 

of Alpha 
Qn 

0.0196 
0.0160 
0.0109 
0.5397 
0.3591 
0.1993 

Sn 
0.05 
0.08 

0.055 
0.155 
0.175 
0.115 

Sn 
0.0274 
0.0218 
0.0148 
0.7158 
0.4555 
0.2493 

LSCF 
0.201 
0.183 
0.147 
0.853 
0.729 
0.604 

LSCF 
0.0244 
0.0152 
0.0095 
1.8724 
0.9219 
0.5272 
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Table B.7: Power with large test drug outliers 
N 

a 100 
150 
200 

blOO 
150 
200 

N 

a 100 
150 
200 

blOO 
150 
200 

Gini 
0.25 

0.555 
0.775 
0.05 
0.54 
0.905 

Gini 
0.0302 
0.0171 
0.0105 
1.4039 
0.585 
0.349 

IQR 
0.19 
0.49 
0.605 
0.66 
0.925 
0.98 

IQR 
0.0284 
0.0197 
0.0149 
0.3070 
0.221 
0.1780 

Power 
MAD 
0.17 
0.42 
0.555 
0.66 
0.915 
0.98 
MSE 
MAD 

0.0300 
0.0201 
0.0156 
0.3120 
0.2075 
0.1832 

Qn 
0.215 
0.535 
0.725 
0.74 
0.985 

1 
of Power 

Qn 
0.0302 
0.0168 
0.0118 
0.3652 
0.1923 
0.1471 

Sn 
0.225 
0.565 
0.74 
0.705 
0.965 

1 

Sn 
0.0251 
0.0154 
0.0119 
0.2864 
0.1652 
0.1426 

LSCF 
0.29 
0.623 
0.827 
0.009 
0.26 
0.7 

LSCF 
0.0309 
0.0177 
0.0119 
3.0376 
1.437 

0.8689 

Table B.8: Level a with large test drug outliers 
N 

clOO 
150 
200 

dlOO 
150 
200 
N 

clOO 
150 
200 

dlOO 
150 
200 

Gini 
0 

0.01 
0.005 

0 
0 
o 

Gini 
0.0385 
0.0218 
0.0133 
1.805 

0.7697 
0.4502 

IQR 
0 

0.025 
0.015 
0.01 
0.04 
0.025 

IQR 
0.0346 
0.0235 
0.0180 
0.4956 
0.3308 
0.2607 

Alpha 
MAD 

0 
0.02 
0.02 
0.01 
0.03 
0.025 
MSE 
MAD 

0.0368 
0.0246 
0.0186 
0.518 
0.3248 
0.2686 

Qn 
0 

0.01 
0.015 
0.01 
0.02 
0.025 

of Power 
Qn 

0.0384 
0.0215 
0.0148 
0.6118 
0.3249 
0.2686 

Sn 
0.01 
0.02 
0.02 
0.01 

0.035 
0.03 

Sn 
0.0319 
0.0196 
0.0147 
0.5033 
0.2861 
0.2249 

LSCF 
0.001 
0.003 
0.004 

0 
0 
0 

LSCF 
0.0404 
0.0228 
0.0152 
4.3558 
2.0568 
1.2338 
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Table B.9: Power with large reference drug outliers 
N 

a 100 
150 
200 

blOO 
150 
200 

N 

a 100 
150 
200 

blOO 
150 
200 

Gini 
0.99 
0.99 

1 
1 
1 
1 

Gini 
0.0639 
0.0360 
0.0207 
7.5060 
3.1595 
1.5612 

IQR 
0.71 
0.83 
0.88 
0.98 

1 
0.995 

IQR 
0.0554 
0.0370 
0.0187 
0.7479 
0.4642 
0.2139 

Power 
MAD 
0.615 
0.76 
0.835 
0.98 

1 
0.995 
MSE 
MAD 

0.0436 
0.0276 
0.0176 
0.5372 
0.3216 
0.1953 

Qn 
0.86 
0.93 
0.96 

1 
1 
1 

of Power 
Qn 

0.0321 
0.0209 
0.0123 
0.6150 
0.3260 
0.1629 

Sn 
0.84 
0.91 
0.94 

1 
1 
1 

Sn 
0.0455 
0.0284 
0.0169 
0.7340 
0.3957 
0.1924 

LSCF 

LSCF 
0.1074 
0.0530 
0.0299 
18.0897 
8.5661 
4.8756 

Table B.10: Level a with large reference drug outliers 
N 

clOO 
150 
200 

dlOO 
150 
200 
N 

clOO 
150 
200 

dlOO 
150 
200 

Gini 
0.32 
0.275 
0.25 
0.885 
0.77 

0.665 

Gini 
0.0734 
0.0419 
0.0250 
8.0807 
3.4794 
1.7568 

IQR 
0.12 
0.14 
0.085 
0.125 
0.175 
0.09 

IQR 
0.0633 
0.0431 
0.0223 
0.9725 
0.6296 
0.3093 

Alpha 
MAD 
0.07 
0.065 
0.055 
0.085 
0.11 
0.085 
MSE 
MAD 

0.0511 
0.0330 
0.0209 
0.755 

0.4651 
0.2867 

Qn 
0.13 
0.12 
0.1 
0.17 
0.195 
0.155 

of Alpha 
Qn 

0.03977 
0.0260 
0.0156 
0.8637 
0.4751 
0.2569 

Sn 
0.135 
0.12 

0.125 
0.16 
0.19 

0.135 

Sn 
0.0538 
0.0338 
0.0205 

1 
0.5546 
0.2916 

LSCF 
0.823 
0.68 

0.576 
1 
1 
1 

LSCF 
0.1238 
0.0612 
0.03492 
21.021 
8.7312 
5.0315 
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2.3 Small sample PBE power and level 

For the setting of a small sample PBE analysis with or without outliers^ the outliers 

vary from zero to six sigma. 

• No Out: implies that the data with no outliers were considered 

• 3sigma(test) : implies that one subject's Test reading was having an outlier of 3 

standard deviations 

• 3sigma(Ref) : implies that one subject's Reference reading was having an outlier of 3 

standard deviations. This was conducted to see if the location of the outliers affected 

the power or type I error of the test. 

• 6sigma(test) : implies that one subject's Test reading was having an outlier of 6 

standard deviations. 

• 6sigma(Ref): implies that one subject's Reference reading was having an outlier of 

6 standard deviations. 

• 2-3sigma(test): implies that two subject's Test reading were having outliers of 3 

standard deviations. 

• 2-3sigma(Ref): implies that two subject's Reference reading were having outliers of 

3 standard deviations. 
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TableB. 11 
N=20 Outliers 

None 
None 
None 

3sigma(test) 
3sigma(test) 
3sigma(test) 

3sigma(Ref) 
3sigma(Ref) 
3sigma(Ref) 

6sigma(test) 
6sigma(test) 
6sigma(test) 

6sigma(Ref) 
6sigma(Ref) 
6sigma(Ref) 

2-3sigma(test) 
2-3sigma(test) 
2-3sigma(test) 

2-3sigma(Ref) 
2-3sigma(Ref) 
2-3sigma(Ref) 

I: Small sample a with LSCF, Gini and IQR 
Procedure 77 rjupperUmit MSEETA OL 

LS 0.01324 0.377943 0.04378 0.0395 
IQR -0.00516 0.382656 0.088684 0.1015 
Gini -0.00019 0.384766 0.055147 0.0405 

LS -0.06623 0.326196 0.058345 0.088 
IQR -0.05446 0.363629 0.10223 0.116 
Gini -0.07937 0.347397 0.069362 0.076 

LS -0.06624 0.326326 0.053097 0.0795 
IQR -0.05712 0.360945 0.101018 0.122 
Gini -0.07923 0.347594 0.066361 0.072 

LS -0.37928 0.145053 0.234938 0.32 
IQR -0.06587 0.373889 0.112259 0.123 
Gini -0.29514 0.24437 0.168275 0.2025 

LS -0.37932 0.145421 0.218136 0.2955 
IQR -0.06858 0.371139 0.111897 0.125 
Gini -0.29495 0.244294 0.162423 0.173 

LS -0.6839 -0.01233 0.587483 0.529 
IQR -0.20877 0.331378 0.229527 0.2015 
Gini -0.62149 0.114694 0.500602 0.3785 

LS -0.68701 -0.01521 0.569765 0.5305 
IQR -0.21054 0.329309 0.233034 0.202 
Gini -0.62339 0.111546 0.488732 0.3585 
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Table B.12: Small sample power with LSCF, Gini and IQR 
N=20 Outliers 

None 
None 
None 

3sigma(test) 
3sigma(test) 
3sigma(test) 

3sigma(Ref) 
3sigma(Ref) 
3sigma(Ref) 

6sigma(test) 
6sigma(test) 
6sigma(test) 

6sigma(Ref) 
6sigma(Ref) 
6sigma(Ref) 

2-3sigma(test) 
2-3sigma(test) 
2-3sigma(test) 

2-3sigma(Ref) 
2-3sigma(Ref) 
2-3sigma(Ref) 

Procedure 
LS 

IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

V 
-0.33511 
-0.35466 
-0.34969 

-0.41458 
-0.40088 
-0.42579 

-0.4146 
-0.40354 
-0.42565 

-0.72763 
-0.41471 
-0.64399 

-0.72767 
-0.41743 
-0.6438 

-1.03225 
-0.55668 
-0.96939 

-1.03536 
-0.55844 
-0.9713 

Tlupperlim.it 

-0.09585 
-0.09831 
-0.09624 

-0.13581 
-0.11692 
-0.12749 

-0.1357 
-0.11954 
-0.12764 

-0.28359 
-0.11775 
-0.21253 

-0.28328 
-0.12046 
-0.21299 

-0.42186 
-0.15988 
-0.32948 

-0.42489 
-0.16204 
-0.33335 

MSEETA 

0.023853 
0.058604 
0.027208 

0.036932 
0.072375 
0.0413 

0.033862 
0.071861 
0.039228 

0.210995 
0.081725 
0.141764 

0.199033 
0.081942 
0.137127 

0.565053 
0.195778 
0.474843 

0.552421 
0.200687 
0.465102 

7 
0.7655 
0.691 
0.785 

0.8065 
0.711 
0.81 

0.8125 
0.712 
0.8275 

0.8845 
0.706 
0.866 

0.906 
0.7005 
0.897 

0.9275 
0.7125 
0.8915 

0.955 
0.6895 
0.9305 
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2.4 Small sample PBE power and level with incremental outliers 

In a small sample PBE analysis, the outliers range from zero to four sigma. One 

subject's data had outliers to see the effect of small outliers on the results. 

• No Out: implies that the data with no outliers were considered 

• 0.5 sd: implies that one subject's Test reading was having an outlier of 0.5 standard 

deviations 

• 1 sd: implies that one subject's Test reading was having an outlier of 1 standard 

deviations 

• 1.5 sd: implies that one subject's Test reading was having an outlier of 1.5 standard 

deviations 

• 2 sd: implies that one subject's Test reading was having an outlier of 2 standard 

deviations 

• 2.5 sd: implies that one subject's Test reading was having an outlier of 2.5 standard 

deviations 

• 3 sd: implies that one subject's Test reading was having an outlier of 3 standard 

deviations 

• 3.5 sd: implies that one subject's Test reading was having an outlier of 3.5 standard 

deviations 

• 4 sd: implies that one subject's Test reading was having an outlier of 4 standard 

deviations 
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Table B.13: a with LSCF, Gini and IQR with incremental outliers 
Alpha(N = 20) 

i 

Outliers 
None 

.5sigma 

lsigma 

1.5sigma 

2sigma 

2.5sigma 

3sigma 

3.5sigma 

4sigma 

Procedure 
LS 

IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

V 
0.01324 
-0.00516 
-0.00019 

0.011064 
-0.00796 
-0.00426 

0.004526 
-0.0169 
-0.0126 

-0.00637 
-0.0274 
-0.02491 

-0.02164 
-0.03806 
-0.04049 

-0.04126 
-0.04676 
-0.05846 

-0.06623 
-0.05446 
-0.07937 

-0.0936 
-0.05907 
-0.10148 

-0.12631 
-0.06248 
-0.12684 

'fupperlimit 

0.377943 
0.382656 
0.384766 

0.376451 
0.381309 
0,381959 

0.372062 
0.376838 
0.378102 

0.364821 
0.371864 
0.371981 

0.354801 
0.367389 
0.36439 

0.342095 
0.365028 
0.356391 

0.326196 
0.363629 
0.347397 

0.309087 
0.364411 
0.33774 

0.289037 
0.365499 
0.325979 

MSEETA 

0.04378 
0.088684 
0.055147 

0.0442 
0.088235 
0.055669 

0.045064 
0.089676 
0.056613 

0.046543 
0.091819 
0.058309 

0.048923 
0.095391 
0.060732 

0.052602 
0.098596 
0.064335 

0.058345 
0.10223 

0.069362 

0.066033 
0.104787 
0.075287 

0.077153 
0.106803 
0.083315 

a 
0.0395 
0.1015 
0.0405 

0.04 
0.1005 
0.041 

0.044 
0.1025 
0.044 

0.051 
0.105 
0.05 

0.057 
0.1075 
0.0545 

0.076 
0.1105 
0.0655 

0.088 
0.116 
0.076 

0.1075 
0.118 
0.086 

0.1355 
0.1225 
0.097 
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Table B.14: Power with LSCF, Gini and IQR with incremental outliers 
Power(N = 20) Outliers 

None 

.5sigma 

lsigma 

1.5sigma 

2sigma 

2.5sigma 

3sigma 

3.5sigma 

4sigma 

Procedure 
LS 

IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

LS 
IQR 
Gini 

V 
-0.33511 
-0.35466 
-0.34969 

-0.33729 
-0.35573 
-0.35203 

-0.34383 
-0.36338 
-0.35908 

-0.35473 
-0.37296 
-0.37046 

-0.36999 
-0.38308 
-0.38552 

-0.38961 
-0.39216 
-0.40386 

-0.41458 
-0.40088 
-0.42579 

-0.44195 
-0.40621 
-0.44862 

-0.47466 
-0.41005 
-0.47441 

f)wpperlimit 

-0.09585 
-0.09831 
-0.09624 

-0.097 
-0.09792 
-0.09728 

-0.10037 
-0.10163 
-0.10027 

-0.10593 
-0.1057 

-0.10506 

-0.11364 
-0.10977 
-0.11128 

-0.12346 
-0.11326 
-0.11872 

-0.13581 
-0.11692 
-0.12749 

-0.1492 
-0.11848 
-0.13658 

-0.16504 
-0.11926 
-0.14674 

MSEETA 

0.023853 
0.058604 
0.027208 

0.024063 
0.058461 
0.027623 

0.024703 
0.060228 
0.028565 

0.025943 
0.06247 
0.030155 

0.02807 
0.065714 
0.032594 

0,031482 
0.068845 
0.036177 

0.036932 
0.072375 
0.0413 

0.044334 
0.075311 
0.047578 

0.055144 
0.077348 
0.055832 

7 
0.7655 
0.691 
0.785 

0.767 
0.69 

0.7845 

0.7715 
0.7055 
0.784 

0.781 
0.707 
0.79 

0.787 
0.708 
0.8015 

0.7955 
0.708 
0.8035 

0.8065 
0.711 
0.81 

0.813 
0.713 
0.8185 

0.826 
0.7075 
0.825 
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2.5 ABE power and level with LS and HL estimators 

ABE procedure uses the LS and the Componentwise rank methods with a two one­

sided hypothesis. The outliers vary from none to 3a outliers. They are as shown: 

• None : implies that the data with no outliers were considered 

• 1.5 sigma: implies that one subject's reading was having an outlier of 1.5 standard 

deviations 

• 1.5 (2) sigma: implies that two subject's readings had outliers of 1.5 standard devia­

tions 

• 3 sigma: implies that one subject's reading had an outlier of 3 standard deviations 

Subjects with sample size 14, 16, 18, 20, 22 were considered for our simulation. This 

meant that each sequence had 7, 8, 9,10,11 subjects respectively. 
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