mfngéAﬂ N Western Michigan University

UNIVERSITY ScholarWorks at WMU

Dissertations Graduate College

6-2009

Statistical Procedures for Bioequivalence Analysis

Srinand Ponnathapura Nandakumar
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

b Part of the Statistics and Probability Commons

Recommended Citation

Nandakumar, Srinand Ponnathapura, "Statistical Procedures for Bioequivalence Analysis" (2009).
Dissertations. 691.
https://scholarworks.wmich.edu/dissertations/691

This Dissertation-Open Access is brought to you for free
and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Dissertations by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

WESTERN
MICHIGAN

UNIVERSITY



http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.wmich.edu%2Fdissertations%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/691?utm_source=scholarworks.wmich.edu%2Fdissertations%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

| STATISTICAL PROCEDURES FOR BIOEQUIVALENCE ANALYSIS

by

Srinand Ponnathapura Nandakumar

A Dissertation
Submitted to the
Faculty of The Graduate College
"in partial fulfillment of the
requirements for the
Degree of Doctor of Philosophy
--Department of Statistics
Advisor : Joseph W. McKean, Ph.D.

Western Michigan University
Kalamazoo, Michigan
June 2009



STATISTICAL PROCEDURES» FOR BIOEQUIVALENCE ANALYSIS

Srinand Ponnathapura Nandaknmar, Ph.D.

W’esvtern Michigan University, 2009

Applicants submitting a new drtig application (NDA) or new animal drug
application (NADA) under the Federéll Feod, Drug, and Cosmetic Act (FDC Act) are |
required to‘document ‘bio.availability (BA). A sponser of an abbreviated new drug
application (ANDA) or abbreviated new 'animai drug application (ANADA) must
document first pliarrnaceutical equivalence and then bioequivalence (BE) to be
deemed therapeutically equivaient to a reference listed drug (RLD). The Average
' (ABE), Population (PBE) and Individual (IBE) bioequivalence have been used to
establish‘the equivalence in the pharmaco-kinetics of drugs. B

The current procedure of PBE uses Cornish Fisher’s (CF) expansion on small
samples. Since area under'the curve (AUC) and maximum ‘dose (Cmax) are
inherently skewed; a least sqliéred (LS) normality based analysis is suspect. A
- bootstrap procedlire.is proposed‘vwihi‘ch uses scale estimators. Since this beotstrap
| procedure Works*best for large samples, we propose a small sample analysis which
~uses robust scale estimators to compare least squares CF with Gini mean difference
and inter quartile range. |

Traditional ABE is univariate, two one.—sided test Whieh follows. strict LS
normality assumptions. We suggest small sample ABE utilizing AUC and Cmax in a

multivariate setting with or without outliers using Componentwise rank method.



UMI Number: 3364682

Copyright 2009 by
Ponnathapura Nandakumar, Srinand

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted.  Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction. ’

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI

UMI Microform 3364682
Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346



_ Copyright by
Srinand Ponnathapura Nandakumar
2009



ACKNOWLEDGMENTS

I thank my family who has bhad a remarkable influence on my Ph.D. The
financiéll and moral support by my parents and the constant urging by my sister have
helpéd' me complete my work in a pla’nhedr timeline. I Would also like to thank my
uncle‘ and aunt who eﬁticed menwitrh‘ the idea of a Ph.D. I owe a lot to my fiancée, for |
she bore the brunt of my frustration and yet, encouraged me to éomplete. |

I would like to express my deep and sincere gratitude to my supervisor,

Dr. Joe McKean. HlS patience‘ and guidance helped shape my research. I also thank
him for sparing lvlisb personal time on my reseafch. I am also deeply grateful to my
supervisor, Dr. Gary Neidert for instigating this thesis. I was able to understand much
about the industry's requirement from‘ his guidance. I also thank my supervisor,

Dr. Joshua Noranjo. His ideas set the direction of my reséarch.

I owe my most sincere gratitude to the peop‘le at Innovative Analytics Inc. It
was heartening to see their constant interest in my progfess. During this work I have
collaborated with many colleagues for whom I ﬁave great regard, and I wish to extend

‘my warmest thanks to all those who have helped me with my work.

Srinand Ponnathapura Nandakumar

i



TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt sssssnsesessesnes ii

LIST OF TABLES ..ottt ettt et ssn s sas s ssssas s vens v

LIST OF FIGURES........ooctrtererieeerinentitetssriieresiesnessesse st sassassa s sasne vi
CHAPTER |

I. INTRODUCTION......cccoctririiiiriiciniiinicrisiesiesiese st sssssessons 1

1.1 Metrics to characterize concentration-time profiles...............c....... 2

1.2 Applications of bioequivalence studies.............ceevevrvervinvcnnennne. 3

1.3 Average bioequivalence (ABE)......c.ccccvvvviviniiinvincnncnncneennnn. 5

1.4 Population bioequivalence (ABE).........cccccovvveniiviinvnncnncnninnennen. 7

II. PRESENT PROCEDURE ..........ccoceovniiiiiiiriniiicniiiiiiintnisnassessneenes 11

2.1 Average bioequivalence (ABE)........cccoooeiiiiininieiene 11

2.2 Population bioequivalence (ABE).........cccceeerneievcrvrensicnenncrcnnnen. 17

. BOOTSTRAP POPULATION BIOEQUIVALENCE..........cccceocvverrervernne 25

3.1 Distributional assumptions of metrics in BE trials........................ 25

3.2 DESIZN.uviniirierireririrentientir ettt st sas e e resae e 26

3.3 Analysis Of 8N €XAMPIE .........ccveveererereererersessiseeesseesessssaserssssenes 37

3.4 PBE comparison of level and pOWET .........cccvvvereererneernrecnrencnennn 42

3.5 Examples comparing validity and POWET ...........ccccueevuerevereerrueneenne 45

3.6 Small sample study........cccooureeriiiriiiiiniiinci e 47

IV. SMALL SAMPLE POPULATION BIOEQUIVALENCE..............ccce...... 49

4.1 Distributional assumptions of metrics in BE trials...................... 49

iii



~ Table of Contents—continued

CHAPTER

4.2 DESIBN vt ST 50

‘ 4.3 >Ser’1si»tivity, analysis of an éxample ...................... - ..... P 64 |
~ 4.4 Small sample PBE comparison of level and pdwer.;.' ..... et | 68
' 4.5'Examples comparing validity and pdwéf ..... et e e 11
V. AVERAGE BIOEQUTVALENCE ........ eveeesemienaseesetsnseeor st eseseraseraobrass 73
5.1 Distribﬁtional assumptions of metrics in BE trials.............ccoo........ 73
S 2 DESIGN .o 74
5.3 Example O ABE .t 81
5.4 Average bioequivalence compari‘sc‘m of level and power......; ....... 84
5.5 Comparison of level and power of LS and robust ABE................ 88
VL CONCLUSIONS AND SCOPE FOR FURTHER RESEARCH............ 90
6.1 Comparison of LS ABE with robust ABE OO * |
| 6.2 LSCEF versus robust procedures for large sample PBE 92
6.3 LSCF versus robust procédurcs for smali sample PBE................. 94»

4 >6.4 Scope for further research........f...................; ................. e 95 |

APPENDICES | -

RN C1TN . 96
B. TABLES. ...ttt ettt 106
BIBLIOGRAPHY ................................................................................................... 120

iv



10.
11,
12.

13.

LIST OF TABLES

TWO séquence, four preriod’balariced design .......... R eeie——— R 20
TWo seQuence,-fou‘r period balanced design ..................... veeseens | 26
Point estimates and their distributions............ ' ....... , ........ 32
LSCF and robﬁst lodation, sbcaletof each bodtstrap sainple ............. ............ | 36
Example to illustrate thé PBE procedure...... S rereeanens ......... 38
TranSformed two sequence, four period balanced desi 2 DO s 39
Péint estimates and their diStIDULIONS ..o 56
Two sequence, four period balanced design ...........coceevrvcervrrecennnnn. ............. 58
Example to illustrate the PBE proced;lre ....................................................... 65
Two sequence, two period balanced des1gn ..... 74
Example to illustrate the ABE procedure ............cccvvernnnenes — 81
Responée mvatrix.......'....-..._. ................................................. SR S 86
Bioequivalence findings..................cconevunee ....... - 91



. LIST OF FIGURES

Typi_éal coh‘centr‘aiion-tiﬁé profile aft¢r a siﬁgle dose ....... | 2

Decomposiﬁié)n of the ‘t'wovorie-sided problem.v.....,.’.v ....... ....... 15
.. Large smple PBE sensitivity analysié.............; ...... ............ eenerinennres 41 -
. Small sé.mple PBE sensitiyity analysis ........ | 68
. Sensitivity “analysis of ABE Hotellihg T2 Versus OUtHErS ...........evvvvrrrveennns 84

Plot of the null and altemafi-ve régions .................................... v ............ B - 85‘

vi



CHAPTER I
INTRODUCTION

Two pharmaceutical products are considered to be bioequivalent(BE) when their concen-
tration versus time profiles, for the same molar dose, are so similar that they are unlikely to
produce clinically relevant differences in therapeutic and/or adverse effects (Skelly et al.,

1995). A formal definition of bioequivalence by the FDA (2003a) is

”Bidequivalence is defined as the the absence of a significant difference in the
_rate and extent to which the active ingredient or active r_noiéty in pharmaceuti-
cal equivalénts ror pﬁarmaceutical alternatives becomes available at the site of
drug action when administered at the same molar dose under similar conditions

in an appropriately designed study.”

Applicants submitting a new drug application (NDA) or new animal drug appli-
catioh (NADA) under the provisions of section 505(b) in the Federal Food, Drug, and .
Cosmetic Act (FDC Act) are required to document bioavailability (BA). If approved, an
NDA drug product may subsequently become a reference listed drug (RLD). Under section
505(j) of the Act, a sponsor of an abbreviated new drugv application (ANDA) or abbré\;iated '
" new animal drug application_(ANADA) must first document pharmaceuti'cal equivalence‘
and‘thevn bioequivalence (BE) to be deemed therapeutically equivalent to an RLD BE is
dbcumented by comparing the performance of the new or reformulafed (test) and listed
(reference) products (Niazi, 2007).

Pharmaceutical equivalents are drugs that have the same active ingredient in the
same S&ength, dosage form, route of administration, have comparable labeling and meét

- cdmpéndia or other standards of identity, strength, quality, purity, and potency.



1.1 Metrics to characterize concentration-time profiles
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Figure 1: Typical concentration-time profile after a single dose

In figure 1 the dotted curve refers to an immediate release formulation and the solid curve
to a prolonged release formulation. The metrics to characterize the concentration-time
profiles are :

1. Area under the curve, AUC, is universally accepted as characteristic of the extent of

drug absorption or total drug exposure. AUC is calculated using the trapezoidal rule.

2. Maximum drug absorbed, Cmax, is the peak plasma or the serum drug concentration

which is an indirect metric for the rate of absorption.

3. Time of maximum concentration, Tmax, is the time to reach Cmax and is a direct

metric for the rate of absorption.



The two most frequently used metrics are AUC and Cmax. The rationale (FDA, 2001) for

lbg transformation of the metrics are:

1 Ciinical Rationale: In a BE study, the ratio, rather than the difference between av-
erage parameter data from the test (T) and reference (VR) formulations is of interest.
With logarithmic transformation the FDA proposes a general linear model (glm) for

 inferences about the difference between the two means on the log scale.

2. Pharmacokinetic Rationale: A multiplicative model is postulated for pharmacoki-

netic measures AUC and Cmax. AUC is calculated as £2 and Cmax as £2e=FeTme=,

F'is the fraction absorbed, D is the administered dose, and CL is the clearance of a
given subject for the apparent volume of distribution V with a constanf elimination

rate k.. Thus log transformations linearize AUC and Cmax.

1.2 ApplicatiOns of bioequivalencé studies

Hauschke et al. (2007) sight significant areas where bioequivalence studies are applied.

These include
1. Applications for products containing new active substances.
2. Applications for products containing approved active substances.

(a) Exemptioﬁs from bioequivaience Studies in the case. of oral immediate release |
forms (in Qitro dissolution data as part of a bioequivalence waiver). |
(b) Post approval vc’hanges.
~ (c) Dose propbrtionality of immediate release oral dosage forms.

(d) Suprabioavailability (necessitates reformulation to a lower dosage strength, oth-

erwise the suprabioavailable product may be considered as a new medicinal

3



product, the efficacy and safety of which have to ‘bes‘upported by clinical stud-

ies).

3. Applications for modified release forms essentially similar to a marketed modified

release form.

(a) The test formulation exhibits the claimed prolohged release vcharzicteristics of

~ the reference.

.- (b) The active drug substance is not released unexpectedly from the test formulation

‘(dose dumping). . - -

(c) Performance of the test and reference formulation is equivalent after single dose

and at a steady state.

(d) The effect of food on the in vivo performance is comparable for both formula- -
tions when a single-dose study is conducted comparing equal doses of the test
formulation with those of the reference formulation administered immediately

aftera predefined high fat meal.

- In the statistical approaches to bioequivalence, the FDA (2003a) recognized three types of

bioequivalence studies. They are:

e Average bioequivalence, ABE, used as a simple test of location equivalence. The

‘mean differences are tested using Schuirmann’s two one-sided procedure.

e Population bioequivalence, PBE, to compute the mean differences and variances for

the BE criterion suggested by Chinchilli and Esinhart over a population group.

e Individual bioequivalence, IBE, to compare the mean differences and variances for

the BE criterion on replicated Crossover designs for an individual.



- The order of testing these are ABE followed by either PBE or IBE. If ABE fails, then the
remaining two are not tested. For the bioequivalence analysis, the interest lies in the ratio
of the geometric means between the test(T) and the reference(R) drugs. This is stated in

the FDA (2001) document that suggests the use of log-transformed data for the analysis.

1.3 Avérage bioequivalence (ABE)

The FDA (1992) suggests parametric (normal-theory) methods for the analyéis of log trans-
formed BE measures. For ABE, the general approach constructs a 90% confidence interval
- for the quantity ur — pg. If this confidence interval is contained in the interval (—64,64), -

" ABE is concluded.

1.3.1 Current procedure : Schuirmann’s two one-sided t-tests

The ABE hypothesis tests are conducted with two one-sided t-tests. The hypothesis are:

Hoi :pr —pr<In0.8 or He:pr—pr>1n125

Hu:pr—pr>1n08 & Hap: pr — pr <Inl.25 (1.1

A two period, two sequence, randomized double blind study is generally setup for testing |

ABE. We use Schuirmann’s (1987) two one-sided t-tests and calculate the test statistics for

» Y7 —Yr—1og(0.80 Yr—Yp—log(1.25)

each of the twonulls as 7} = l—\/%() >ti_apand Ty = T\/_R_M;)+( 2) < —ti—au-
] np+np—2 np+ng—2

If we reject either Hy; or Hy, then we reject Hy. By rejecting the null, we conclude ABE.

1.3.2 Issues with the current procedure
1. The FDA in its guidance for industry (2001) states
”Sponsors and/or applicants are not encouraged to test for normality of

5



error distribution after log-transformation, nor should they use normality -
of error distribution as a reasonifo‘r carrying out the statistical analysis on -

the original scale.”

- This suggests that there is considerable doubt regarding the distribution of the log
transformed data. Schuirfnann’s (1987) t-test may fail if there were outliers or if the -

normality condition was not sufficiently satisfied.

2. Ghosh et al. (2007) state that histograms of the AUC and Cmax measures suggest
non-normality in their distributions as well as the strong presence of Quﬂiers. Since -
AUC is calculated by extrapolating the concentration curve td infinity in time, this
may lead to an outlier in extended release drugs. So, in stu&iés invblving small

“samples, Schuirmann’s (1987) t-test may fail.

3. The adaptive pfocedure with Bonferroni confidence intervals used to address the mul-
tivariate setting of AUC and Cmax by Hui et al. (2001) has not been widely used.
But the case of assessment of equivalence on multiple endpoints has been strongly.

suggested.

4. Multiple endpoints are suggested (Berger & Hsu, 1996), with pharmacokinetic pa-
rameters (Sunkara et al., 2007) such as Tmax, ¢y/2, MRT, etc (Yates et al., 2002) and

univariate Schuirmanns two one-sided tests are conducted on them.

~ Due to the above issues, we propose the use of the Componentwise rank method in analyz-
ing ABE and address outliers with a distribution free approach on a multivariate setup of

AUC énd Cmax.



1.3.3 Proposed procedure : Componenfwise rank method

The two treatment, two period crossover trial is foutinely used to establish average bioe-
quivalence of two drugs. We construct Schuirmann’s (1987) two one-sided hypothesis

' (TOST) test in a multivariate setting as

A | A
CHo | T < m08UHL: | T | > 12s
A,,U‘Cma.x o A/Jmea.x
| A A,
Hu:| %% | smosnHg: | 7% | <125
A/»’meax . A,”Cmax

Féllowing a prbcedure outlined by Devan et él. (2008) we c‘,ofnsider the difference betwéén
* the Test and? Reference drug responses for both AUC and Cmax there by eliminatihg the
- random factors. Follmlvingv this approach, the hypothesis is bounded by (log(0.80),log('1 25))
and the rejection region is represented by a rectangle. We now calculate the robust esti-
mates of location as the Hodges Lehmann estimate and the vaﬁénce by Componentwise
rank method. |

~ The confidence region is an ellipse centered at the location estimates and the axes
are determined by - %fc = \//\_l ”("—_711)(5—%?—(3) units along the eigen vectors e; (Johnson
& Wichern, 1992). If the ellipse is cbmpletely enclosed in the rejection region, we conclude
PBE. The sensitivity analysis and the simulation results of the proposed procedure are

 discussed in Chapter 5.

1.4 Population bioequivalence (PBE)

As previously noted, curre‘nt practice is to first test ABE. If ABE is concluded, PBE or
IBE are tested. PBE is assessed to approve bioequivalence of a to-be-marketed formulation

when a major formulation change has been made prior to approval of a new drug. It is



tested by administering the new drug. to the patient who will be taking the drug formulation :
for the first t1me Population bioequivalence will be considered only if average equ1va1ence
s approved Chinchilli et al. (1996) have proposed a two sequence, four perlod Cross-over

des1gn which the FDA has recommended for both PBE and IBE analys1s

1.4.1 Current procedure LS Cormsh Frsher s expansron (LSCF)
The FDA (2001) Hwang et a1 (1996), Westlake (1988) have suggested the PBE hypothes1s

as

HO- (:u‘T_:u'R) +UT—UR >0P :
Y

. L | ,
W= pn) for -k g, | (1.2)
| maz(og, o) | |

where 02 = 0% + 0%y and 0% = 02 + 0%, are the total variances of the test and the

reference drugs. "W’ and B’ refer to within and between subjects. The constants ¢2=0. 04

and 8 p=1.744826 are fixed regulatory standards (FDA, 2001). |

Setting n = (ur — pr)’ + 0% — 0% — 0p * maz(03, 0’%), the hypothesis is rewritten as

Ho:?’]ZO
"Hlin'<0

where 7 is calculated using n= <,uT/—-\,uR)2 + ;% - ;ER - 0pma$(c/rER, 0.04‘). The up-
per conﬁdence 1nterva1 of the linear combmatron of means and variances(n) is given by
Cornish- Flsher s(CF) expansion. CF (Cornish & Fisher, 1938) isa procedure of combin-
ing sample quantiles for an upper 11n11t approximate confidence interval. If 7555 > 0, then

we fail to reject Hy. When we reject Hy, PBE is concluded.



142 Issues with the present LSCF procedure

’ "Ghos‘h et al.. (2007) state that histogranis of the AUC and Cmax measures suggest non
nOrrhality of their distributions as well as the strong presence of outliers. The bootstrap
procedﬁre was initially suggested but was immediately diopped due to the coinpléxity and -
~ the rigor involved iﬁ such anaIysis (Schall & Luus, '1993). Cornish-Fisher’s expansion in-
Hyslop et al.(2000) was then proposed as the méthod of moments '(MM) procedufé.

The FDA (2001) notes that

”One consequence of Cornish-Fisher(MM) expansion is that the estimator of
;% (the difference in within variances for IBE) is unbiased but could be nega-

tive.”

The forced non negdtivity has the effect of making the estimate positively biased and intro-

" duces a small amount of conservatism to the confidence bound. In Lee et al._ (‘2004)‘,

A key condition assumed in all previously published works on modified large
samplc(MLS) is that the estimated -van'ance components are independént. In
~ some applications, however, variance cofnponent estimators are dependent.
‘This occurs, in particular, when the study design is a cros}sove'r design, which

is chosen by the FDA for bioequivalence studies.”

The FDA (2003a) and the EC-GCP (2001) proposed the use of the non-parametric proce-
dure of univariate Wiicoxori tests as a replacement to t-tests. Thus, alternative procedures
 to least squared Cornish Fisher’s (LSCF) seem necessary to handle these issues. Wé, th‘ere-ﬂ
- - fore propbse two robust procedures that better handle outliers. Since we were not able to
obtain consistent covariance structure with small samples, we separate the PBE analysis

into large sample and small Sample proéedures.



1.43 Proposed robust bootstraps for large sample PBE ‘

We decided to investigate PBE using robust bootstraps. Large sample PBE analysis worked -
‘best with samples of size sixty and above. “This procedure involved theestimaticn of the }
.upper conﬁdence limit, Fgse;, using the median and five dlfferent vanance est1mates G1n1 s
- mean dlfference (Gini), median absolute deviation (MAD), 1nter quartile range (IQR) me—
dian of absolute differences (S,;) and the k** order statistic of the pairwise differences (Qn).

Using the FDA (2001) proposed design, a two seqlience, four period,cross-cver
study was considered. Details of the bootstrap procedure are described in Chapter 3. For
the variance, Gini, MAD; IQR, Sn and @ were used and n was estimated for each of the
five cases as /) = 07 +0’A% —;12;— 1.744826 max (;f;, 0.04) where 5 and § were the scale and:
location analogue for LS. The 95" highest 7 for each procedure gave 7jgse,. The sensitivity

analysis and the simulation results of the proposed procedure are discussed in Chapter 3.

1.4.4 Propesed procedure of small sample PBE

For samples of size twenty to thirty-six, we looked at PBE using Cornish Fisher’s expan-
- sion. Contrnuing with the procedure similar to LSCF, we replaced the location estlmates
with medians and variance estimates from the IQR and the Gini procedures.

We estimated 7 by replacing the LS mean differences with median differences_ and
the variances with the unbiased estimates of Gini and IQR. The upper 95% confidence
interval of the Test and Reference location difference was vestimated by Wilcoxon’s rank-
sum confidence interval. The sensitivity analysis and the sirnulation results of the proposed

procedure are discussed in Chapter 4.

10



CHAPTER II
PRESENT PROCEDURE
2.1 Average bioequivalence (ABE)

The ABE hypbthesis tests are conducted with two one-sided t-tests. The hypothesis is

Ho : pr—pr<In08 ~or Hep:pp—pr>nl25

Hu:pr—pr>WI08 & Hup:pr—pr<lnl2s @D

This hypothesis is constructed in this manner because we are not just testing if the test and
reference drugs are sufficiently close, but if they are “therapeutically equivalent” as well. -

Westlake (1976) stated that

The test of the hypothesis Hg : uny = ps is of scant interest since the practical
problem is that of determining whether or not uy is sufficiently therapeuti-
~ cally equivalent” to S. One approach, proposed by Westlake and Metzler is

based on confidence intervals us + Co<pun<pus+Ci>

This hypothesis is vastly different fr‘or‘n‘the two sided hypothesis as the two sided hyﬁothesis
‘merely tests the significant difference between the test and reference drugs When the
two sided analysis show a statistically significant diffe‘reﬁce between the test and reference
formulation, it may be indicative of an important difference or of a trivially small difference
(Westlake, 1979). The ABE hypothesis tests the practical equivalence (Berger & Hsu,
1996) of the two drugs. Further Wéstlake (1979) notes that the two sided hypothesis tests

the wrong hypothesis. He stated that

11



’Since two forfnulatioris can hardly Be expected to be identical, hypothesis

 testing of identity is simply directed at the wrong problem. The real question

~ should really be: is thevnew formulation Sufﬁciently similar td the stayndard.
in all importaht respects to suggest that it is therapeutically equivalent or is it |

- sufficiently dissimilar to imply doubt as to therapeutic equivalence?”

We now recognizé that we are not irying to“prove that the test (T) and reference (R) drugs
. are equal. By estimating the difference between T and R and calculating the confidence
interQal of this difference (Westlake, ,1979)., élinical judgment is exercised on arriving at
the decision concerﬁing bioequivalence. This is the logic behind using two one-sided hy-

- pothesis.

2.1.1  Use of confidence limits of (0.8,1.25) and log transformation

~ The modern coﬁcepi of bioequivalence is based on a survey of physicians carried out by
Westlake (1976) which concluded that a 20% difference (Westlake, 1979) in dose between
two formulations would have no clinical significance for mosf drugs. Hence bioequivalence
limits were sét at 80% - 120%. But these limits are ﬁot symmetric since the pharamco-
- kinetic (PK) parameters were tested after a log transformation. The FDA (2001) justiﬁes

the necessity to log transform AUC and Cmax with two reasons:

1. Clinjcal Rationale: The FDA Generic Drugs AdvisoryVCo‘mmi'ttee recommended in
1991 that the prirhary compaﬁson of int‘eresyi in a BE study is the ratio, rather than
the différence, between average parameter data from the T and R formﬁlatioiis. Us-
ing logarithmic transformation, the general linear statistircal model employed in the
analysis of BE data allows inferenées about the difference between the two means

| on the log scaie, which can then be re transformed into inferences about the ratio of

the two averages on the voriAginal scale. Logarithmic transformation thus achieves a

12



| general comparison based on the ratio rather thari the differences.

2. ‘Pharmacokinetic‘ Rationale: Westlake observed that a multipjlicative’ model is pos; '

tulated for pharmacoki'netic'measures in BA and BE studies (ie., AUC and Cmax). - "

‘We calculate AUC and Cmax as AUC' = %13 and Cmaz = £Pe~*Tmes where F
is the fraction absorbed, D is the administered dose, and FD is the amount of drug
‘absorbed and CL is the clearzince of a given subject that is the product of the appareht

volume(V) of distribution and the elimination rate(k.).

‘Westlake _(1976)_" prbpo_sed a procedure to resolve this issue of asymmetric confidence in- -

‘terval (CI). He set

- G <pr—-prsCh, ,
 koSE — (X7 —Xg) < —(ur — pr) < biSE — (X7 — Xp).

Sincé the decision of équivalence‘between T and R will be made on the bésis of the largest i

' of the absolute values of C) and C;, the maz([log(0.8)], | log(1.20)() is justiﬁéd for the. -

‘Alimits (Westlake, 1976). Conventionally, k; + ko = 0 but by choosing ki and k; sﬁch thvat'
(ky + k2)SE = 2(Xr — X_R). We see that » |

kiSE — (Xr — Xp) = (X1 — Xp) ~ kaSE,
 kSE — (X7 — Xg) < —(ur — ) < ~[kSE — (X7 - X))

to get symmetric CI about pr — pp. The hypothesis based on untransformed pharmaco-

- kinetic (PK) parameters AUC and Cmax is -

[[Test

i [1Test
° [1Reference —

e S AT .8 :
Y T] Reference <08 or Hy

1.25.
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Hence the bioequivalence limits of 80% - 125% or +£0.2231436 on the natural log scale

came to be in use..

~ 2.1.2 Type I error: Level o of the test

Often a new tesf formulation has cértain advantages over the reference formulation, such
as fewer side effects or no pharmaco-kinetic intefa‘ctions‘.y For these cases, to prove overall
superiority, it may be sufficient to show that for the primary ‘endpoint;"the test formulation
is not relevantly inferior to the reference. Such studies are called non inferiority trials. This

hypothesis can be expressed as
Hoy:pur—pr<d vs. Hy:pr—ugr>4é

and tested with significance level a. It has been shown in Lehmann & Romano (2005) that
the two one-sided hypothesis test at level « can be.decomposed into two non-inferiority
hypothesis tests each of level o.. This is shown in figure 2. This can be seen by nbting that

the two one-sided hypothesis (Hy and H,) can be split into two hypotheses of the form

Ho,:pr—pr<In08 or Ho:pr—pr>1nl.25,

Hy:pr—pr>mn08 & Hyp:pr—pur<Inl.25. 2.2)

The null hypothesis Ho; and its corresponding alternative, H1; is shown as a one side non-
inferiority test in figure 2. Similarly we see that H,2 is a non-inferiority hypothesis as seen
in section 1, Schﬁrmann’s (1987) two one-sided t-test can be written as Hy = Hy; U Hpo

vs H4y = H 41 N Hyo, where each are tested with a significance level . Confidence sets

14
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I 77
’511 (}J bL > T =HR
Hi
, —zzzzzzzzzzzZ
0
207

Hyz
Figure 2: Decomposition of the two one-sided problem

for ratios (Von Luxburg & Franz, 2004) are

Hop:pr—pr<—0 or Hy:pr—pr>0.

The rejection region for Hy; and Hyy can be written as

T1=YT—YR+0

Yr—Yg—0
SE >tl—a,u and T2= T R

15
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The probability of type I error is Py, (Rej ectHo).v This probability is P(Re‘jrect Ho|Hy =
True):PHo(R'eject Hy) = Py,(Reject Ho; N Reject Hyy). The type I errors are '

, L . Yo —Yr+0 L
Pao(Reject Hop) = Pyoy(Ty : ~— 2= > tiay) = @,

: : Yr—Yp—0 |

PHDQ(Reject H02);: PHOZ(TZ': —% < _tl—a,u) = Q. »

Since both of the above two cases have monotonic power functions and the maximum are
~the boundary, the intersection of their rejeétion regions has asymptotic size bounded by «.
" In Lehmann et al. (2005) we see a proof of this generalized for any distributibn. The FDA

(2001) further stated

”The genéral approach is to construct a 90% confidence intérvai for the quan-
tity pr — pg and to feﬁch a conclusion of average BE if this confidence inter-
val is contained in the interval [—64, 0 A]. Due to the nature of nofmal-theory
confidence intervals, this is equivalent to carrying out two one-sided fests of

hypothesis at the 5% level of significance (Schﬁirmainn1987).”

"~ 2.1.3 Power: 1-3 of the test

Crossover designs are preferred by the FDA over paréllci designs for the analysis of ABE.

As noted by Chow & Wang (2001), this preference is due to

- ”Intra subject variability could be eliminated if we could repeat the expériment
niany times (in practice, this just means the average of a large number of times) ,
on the séme subjé‘ct under the same expéﬁﬁlental cbndition. The reason is that
intra subject variability tends to cancel out each other on average in a large

scale.”
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Additionally the FDA (2001) explained the necessity to test the hypothesis under the as-
sumption of the log-transformed data. It is usually desirable to sufficiently power the test
with at least 80% power (i.e with type II error rate of § = 0.2). Now we look at the details

| of testing for PBE

22 Population bioequivalence (PBE)

" The FDA (FDA, 2001) noted the following as the preferred estimate for PBE or IBE:
0=E(Ya-Yr)-E(XYp-Ya) (@3

~ where Yk, Yr are the Reference and Test Formulation resuits respeciively and Y’R‘ is the
replicated result. Replicated results are the subjeet’s response to the same drug under the
same dosage but at a different time pei‘iod. A scaling reference downplays the amount of
deviations in the Test and Reference estimates. In Hauschke '(2007), the reason to use the

replicated design is stated as

*Itis not possible to estimate the within-subject and between subject variances,
eaeh under test and reference formulation separately. This requires a replicate
design where, in eontrast to the standard crossover study, each study subject
receives at least the.’refer'ence' formulation in two periods to enable the esti-
| mat'ion of the corresponding within-subject variances. Of the various replicate
designs that can be thought of, the FDA recommended in their 1997 and 1999
draft guidances (FDA,1997,.1999b) a four-period, two-sequence design, where

the study subjects are randomly allocated to two treatment sequences.”

17



- 2.2.1 Hypothesis test of PBE

- The PBE hypothesis test is conducted with the follo\'wing scaled moment-based aggregate

criteria suggested by the FDA (2001)

o r = pr)? + 02 — 0% _ (In1.25)2 +0.02
0-

maz(o2,0%) - 1 0.04 B
o r = pr)’ + 02 —0%  (In1.25)% + 0.02 24
YT maz(oZ, 0%) - 0.04 '

where o2 is set by the FDA. The procedure is design specific and can be generalized.

- The FDA considered a completely randomized, two sequence, four period replicate design
where each patient was administered to either a test or a reference drug formulation based

on a randomization scheme.

s

2.2.2 Model design

The design is modeled as
Yiin = pie + Yirr + ik + €5k ' , (2.5)

" where i=1,...,s indicates the number of sequences, j=1,...,n; indicates the subjects within
" each sequen'ce, k=R,T indicates the treatments, I=1,...,p;x indicate replicates on treatment k
for subjects within sequence i. |

The response is Y;;i; for replicate / on treatment k for subject j in sequence i and
ikl is the ﬂxed effect of replicate / on treatment k in sequence i. The'random'effectis ik

for subject j in sequence i on treatment k and ¢;;x; is the random error. It is assumed that

18



€:;x are mutually independent and iid with

€571 0 Tivsehi 0
.zJ : ~ N , ‘WztvhmT (26)
. 2
€ijRI 0 0 OWithinR '
“such that the errors are independently distributed. Also, the random effect 6, is
2
6ijT FN N | 0 , O BetweenT pUBetwgenRUBetweenT | ] (27)
6in . 0 pa'BetweenRo'BetwgenT ' : U2B_etweenR
The leads to overall response Y;;x; to be distributed as
Y'Tl | ur U%?T"'U%VT POBROBT )
Y ~NI|lI| "' , 2.8)
Yiir KR POBROBT * OBR + Oty :
In order to calculate the overall Test and Reference variance, we set
2 2 2 .
o7 = 0gr + Owr,
0% = 0%p + Oiyp. Q9

For the following example, a two sequence, four period balanced design will be used. Set
the first sequence of the formulation randomization as TRTR and the second sequence as

RTRT.
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Table 1: Two sequence, four period balanced design
Subject Sequence Periodl Period2 Period3. Period4

1 1 - Yyri Yim Yy Yir2
2 1 o ' |
L
m+1 2 Yaim1 Yo Yojre . Yajm
2 . .
. 2
j 2

2;2.3 Stepsin population bioequivalence analysis'

"The ‘population bioequivalence estimator involVes the calculation of © and compan'hg it to
the maximum acceptable limit of 8p. © is defined as o
: )2 g2 a2 :
6= (b1 — pr)* + o1 — 0} . (2.10)

maz(of, 03)

where as seen previously by FDA convention, © < 6p. The value of Op is set using the.

_ In(1.25)240.02

calculation 8p = 007 = 1.744826. Linearizing this equation, we get .

n = (pr — pr)? + 0% — 0% — max(o%,02) *6p < 0. (2.11)
The FDA guidance directs that PBE is attained if the uppér confidence interval of ﬁgs% is

less than 0. Thus the fbllowing are the steps for the analysis of PBE:

1. Determine the differences in the averages of the replicates of Test and Reference.

Define I;; as

_ Mym+Yym)  (Yym+Yiee) |

Ilj

2 ' 2 ’
Y, Ys; Ys; Y,
Iy = ( 2JT1-;- 212) 2JR1;— 2JR2). e

20



for each of the sequences i=1, 2 and each subject j in sequence i.
Define Uj;r as the average of the replicates on Test and Ui;r as the average of the

replicates on Reference. Calculate them as

(Yiym + Yire)

Uyt = - > )
Yajr1 + Ya
Unyr = L2 . 2y12), 2.13)

" Here Uy;r and Uy, are independent as the subjects differ in the two sequences.
" Define Vi;7 as the difference of replicates on test and V; as the difference of repli-

cates on reference drugs. Estimate Vij;;, with

Vi = (Yijr1 — Yij70)
J , \/5 ’ v
Yoiry — Youre '
Viyr = L2 ﬁY”"). e

Here V1 and Vs, are again independent as the subjects differ in the two sequences.

, 2. Calculate the mean and the variances of L;, Usj and Vijy, respectively by sequence

using equation (2.8).

(1) < Grter) (et um)

2 2

I; and I; are independent as they are estimates from two different independént :

samples. The variance of Uj;; and V;j;, are

Yir +Ya;
Var(Uyr) = Var [( LT1 5 IJTz)]

— Mym - Ylez)]
Var(Vi;7) = Var
7 ( lJT) [ , \/5
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- Without loss of generality, we set 2; and 2. Thus,

Yy N ur | o2 %,

(o

: ‘ 2
Yijro U X op

Thus, we see that Var(Uy,r) = 5-%;'—21 and Var(Vy;r) = 0% — ;. Also,

Ya,71 N T U% ,22,
YoiTo ur T, o%

(2.15)

2.16)

3. Identify the estimates for the variance using the aggregate measures for the two se- -

quences as

1
2 _ 1.9 2
oyr = §(UUT,W1 + 0UT,2)
1
2 _ 1. 9 2
oyr = §(U Ve T OVTaera)

From o2 and o2, we can see that
uT VT ,

1 0’2’+ El 0’2 +22 1 21 +122
012”"':5 T2 +T2 )=§(U%+ 5 )

: 4+
U%/T=§(U%—21+U%—Ez)=0%— 12 .

2.17)

We now have variance estimators using equation (2.17) and location difference using

—

_ (@45
(ur — pr) = CFRL

4. Obtain 1 and calculate the upper confidence interval for n using Cornish-Fisher’s
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expansion. We estimate 7] as

1= (B52) + B+ ) - (B B ) - e () o <0

Refer to Chapter 3 for the calculations of Cornish Fisher’s expansion. The upper 95th

confidence interval is calculated by
H=y o+ ($8)"
If H < 0 then P‘opulation bio’equivalence is concluded.

2.2.4 - Comnish Fisher’s expansion

The pﬁnciple behind the Cornish-Fisher’s expansion is that close to exact confidence inter-
- vals for a parameter are more accurate when higher-order approximation in the expansions
for the quantiles are used. The previous section described the need to find the upper confi-

dence interval of n to conclude PBE.

~ ”For constructing asymptotically correct conﬁ‘dence intérvals for a parametér |
~on the basis of an asymptotically normal statistic, the first-order approxima—

~ tion to the ‘quantiles of the statistic coines from using the central limit theorem.
The higher-order expansions for the quémtiles produce more accurate approxi-

mations than does just the normal quar_ltile. (DasGupta, 2008)”

The Cornish-Fisher expansions aré higher-order expansions for quantiles and aré essen-
tially obtained from recursively inverted‘ Edgeworth expansions, starting with the ﬁormal :
”quantile as the initial approximatidn. In (Comish & Fisher, 1938), we first see that the
density functions are based on the cumulants ofa distribution. If we are interested iﬁ the

percentiles of the sum of two random variables Z=X+Y, from (Comish & Fisher, 1938),
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one gets
‘P[Z‘ < px +py + Rﬁ(rﬁ{ + 0?{)% + (R% — 1)(H3x + pay)/6(c% + fo) +.]=8"

- where px, py, 0%, 0%, pax, sy are the first, second and third central moments respec-

~ tively bf X and Y and (3 is the desired exact percentile. The Cornish-Fisher expansion is

based on the principle of power series

[o ol

~00

M(%) "= / eit f(:z:)da:
=3 o=y @18)

- where the function is differentiable and continuous at all points. Further . is the rt*

moment of the distribution of x about the origin. In our situation however, we have more

~ than two random variables which leads to the approximation (Howe, 1974)

1
2

P :
> (Xis - ui)2] > .19
=1 - i .

; P P
P ZI:X,"SZI:M+

1=

- where the X; are distributed independently with means y; and § percentile of X;3. Now
X can be derived from the Cofnish-Fisher’s expansion of the cumulants and estimating

the constants such that 3 is approached as close as possible. Since we need to find the

upper 95% probability of cépturing 1, the FDA (2001) suggested the use of H = P+
L
(22 By)*.
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. CHAPTER III
BOOTSTRAP POPULATION BIOEQUIVALENCE

‘Analysis of pbpdlationv bioequivalence' focuses on estimation of the rheéh différence and
the tQtal Vv{ari‘ance of the log»uansforfﬂed BA measures from the two drug formulations.
Unbiaséd estimators’using thé method of moments (Chinchilli & Esinharf, 1996) estimate
' these pafarileters; | s

’ Following the estimation of the mean difference and.the variances, a _95%'upper |
conﬁdencé bound for a linearized form of the population BE criterion is obtained. Pop-
ulation BE is established for a log-transformed BA measure if the upper 95% confidence

bound for this linearizéd criterion is léss than or equal to zero (FDA, 2001).

3.1 Distributional assumptions of metrics in BE trials

Before performing a statistical analysis in BE trials, AUC and Cmax are generally log
transformed. The three most commonly cited reasons for log transforming AUC and Cmax

~are |

. AUC is non-negative

o Distribution of AUC is highly skewed
e PK models are multiplicative

The drug concentration at each time point is a function of many random processes. They are
absorption, distribution, metabolism and elimination that act proportionally to the amount
of the drug present in the body. Thus the iresulting distribution is log normal (Midha &
’Gavalas, 1993). | v 7 | 7 '
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3.2' Design

In a BE trial; the test (T) and the reference (R) drug formulations are administered to
healthy volunteers and the drug concentrations are measured over time. Frequently cross-

- over designs as shown in table 2 are employed, although parallel group designs are used as

o well. Cfoss-over designs are generally preferred because of their abilit:y,to'COmpa.re the test

~ Table 2: Two sei]uence, four period balanced design
Subject Sequence Periodl Period2 Period3 Period4

1 1 Yy Yym  Yyre o Yy o
m+1 2 Yoim Yo, Yaoire Ya,T2

. 2 . . .

. 2

j 2

and reference formulations within a subject. We focus on BE ﬁ*ials using a (2x4) cross-over
design i.e a two sequence, four period replicated balanced design as suggeéted by the FDA
(2001).

The first sequence has a test, reference, test and reference (TRTR) schedule while
the second sequence has a reference, test, reference and test (RTRT) schedule. Thé response
is. Y}k for replicate [ on treatment k and subject j in sequence i. The fixed effect is ;i énd

‘the random effect is §;;; with random error €ijkl- The design is as folli)ws
Yij = pr + Yikr + Oiji + €ijr | @1

where i=1,...,s indicates the number of sequences, j=1,...,n; indicates the subjects within

each sequence, k=R,T indicates the treatments and I=1,...,p; the replicates on treatment k. .
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€k and d;;; are mutually independent and distributed as shown below:

GiTL | 0 TithinT 0 B . 32)
€ijRL 0 0 OWithinr ' | '
51" ( 0 '0'2 POBROBT ‘ . |
T l~n , BT 1. 63
dijp /. \ 0 POBROBT  Opp

_From the design, we get a bivariate response of the form

Yirm } Ur 0%t + ok POBROBT -
j ~ N , BT T OWwr 3.4)

2 2
Yijn UR POBROBT OBRt Owg

The next section introduces the hypothesis to test PBE.

3.2.1 Hypothesis,

The proposed null and alternative hypothesis based on the FDA regulations (2001) are

_ 2 2 _ 2
H (Ut — pr)’ ;*‘U2T o > g,
mam(UO’UR)
4 o2 g2 ,
Hy VI PR A1 Z0R o 3.5)
maz(og,08) - : o

where 02 = o%,r + 0y and 0% = ol + o}, are the total variances of the test and the
-reference drugs. The constants ‘ag and fp are fixed regulatory standards.

As seen above, the FDA. guidance currently adopts an aggregate approach, using
an aggregated test statistic for evaluating both means and variance components simulta-

neously. In contrast, several disaggregate approaches have been suggested where tests for
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each component are performed separately. For exarnple, Liu and Chow (1996) proposed a
disaggregate approach for evaluating IBE where three cor_nponents (intra subject w/ariabil- _
ity, Subjc(:t-‘by-formulation interaction, and average) are separately tested m:ult_iple\ times -
with intersection-union tests. However as the dimensions (p) of tests increases the power
| of the (1 — 2a) conﬁdcncc set (Leena Choi, 2008) based approach could decrease sharply
for d1mcns1ons greater than one as shown in Hwang (1996).

The aggregated test statistic is linearized as follows:

Hy : (ur — yR)2 + a% - af;— 0p *‘mawf(ag,aﬁ) >0,

H : (ur — pr)? + 02 — 0% A—‘0p * maa:(ag,a%) <0. (36

Here, = (ur — pug)® + 02 — 0% — 0p * maz(o2, 0%) and the null hypothesis reduces to
" a one sided problem defined by a linear combination. The FDA ﬁxed70.02 as the maximum
difference for the variance under the test and reference formulations. Usually,@ =log 125 ‘v
= -log 0.80 = 0.223. These values (FDA, 2001) originated from the notion that the ratio of
the population rncans in the original scale (the mean of the test is 80 - 125% of that of the
reference) are considered to be sufficiently close for drugs having an average therapeutic
window. For PBE, the FDA sets 6p = 1.744826 and 02 =0.04. The lincarizcd hypothesis

is of the form
HO . 7) 2 0)

H,:Hy: n< 0.
If the null is rejected, population bioequivalence (the two drugs are rsimilar across popu-
lation groups) is inferred. Otherwise, the two drugs are significantly different across the :

populations. The next section describes the present procedure of testing PBE hypothesis.
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3.2.2 Least squares Cornish Fisher’s procedure (LSCF)

The present procedure tests PBE using Cornish Fisher’s (CF) (1938) expansion. In LSCF,
| ‘77‘ is calcﬁlafed asn = (ur — pr)’ + 0% — 0% — Op * max(dg,;&,z%). The procedures in
estimating p; and o? are described below. If the upper confidence interirai Tgs% 1s less than
zero, population bioequivalence is concluded. |

Follewing are the steps in c0mputing‘the least squares Cornish Fisher’s (LSCF)

‘expansion: |

- 1. From table 2, the response Y ;i is distributed as

Yiin N ) 0grtOyr POBROBT
~J
)

Y Ur POBROBT  Ofr + Ofyr
where each subject j has two observations for one of the two treatments. Each sub-
ject belong‘s'to only one sequence. The data has *N’ subjects partitioned into two
eeqﬁences with % subjects in each sequence. In this example, a balanced design is
used. The variances af; and a%v are the between and within variances. For the first
sequence the patients have a TRTR schedule and the second sequence subjects have

an RTRT schedule.

2. Define I as the difference in test and reference drug replicate averages. Compute this

difference I;; as

N (}’ijTl +Yir2)  (Yiri + Yijre)
hy="—""- 2 ’
(Yosr1 + Yojr2)  (Yojri + Yajme)
' 2

. I = 2

for each of the sequence i=1, 2.
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. Calculate Ui;r as the average of the test drug replicates and U;;g as the average of

the reference drug replicates. This average is

(‘Ylel + Yi712)
2

Unors — (Yojr1 -+ Yajra)
2%T = 5 :

Uijr =

Uijr-and Uy are independent as they are estimates from two different independent

samples

. Define Vijr as the difference of the replicates of the test and V;g as the difference of

the replicates of the reference drug; Vijk is calculated as

VUT _ (Y11 — Yled),
V2

(Yi;m1 — Yijme)

v A

. Calculate the variance of the variables Ui, V;;i for each of the two sequences. Esti-
mate the variance of test drug o%. as 03+ 0y and reference drug 0% as o+ 0y .

For the first sequence, the variance is estimated with

Var(Yyri) + Var(Yijr2) + 2Cou(Yyr, Yljm)

. 'VdT(Ule) = : 1 ,
Var(Vyr) = Var(Yle‘l) + V‘”'(YIJ'T;) — 2Cov(Yyr1, Yij72) )

Without loss of generality, set the covariance (1) for the first sequence and the two

test drug periods. The reéulﬁng distribution of the test drug in the first sequence is

_ 2 %
Yiim pur oy X

~N 1, 1. en
Yire | Mt 3 o4 ‘
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~ Similarly, the distribution of the test drug in the second sequence is

Yoir1 BT 0% Xy | |
? ~NT\| , ; "(3.8)
Y2jT2 : Hr Yo U% C
It can be proved that o2 is a linear combination of the variances 0% and o%7. To

prove o2 = o  + %ﬂ, consider the following

0% =0y + XX

ot =3 (UUTM,I +00Tn) ¥ 3 (% {Uvneql + VTseqz})

ot = 4 (o + ) 44 (o + T2

o2 =1 (Vaf(U_le) 4 Yerl »T)) +1 (V ar(Uyyr) + var(;ezT))
o= [(F2)+ (F2)] 1 [(%52) + (52)

By expanding the above equation, it is concluded that

2 |, 9T 2
: O'UT+ T = 0.

Similarly, for the reference drug, (02", R+ ‘—7—%‘1) =0%.

6. The expected values of the difference for the test and reference drugs from the two.

sequences across the four periods or two replicates using equation 3.7 are

E(L,)=E YVyr + Yiyre) ~ Vijr +Yire) | _ 201 — 200
‘ 15 2 ] 9 : 9 ’
(Yojr1 + Yajra)  (Yajmi + Yajr2) 2ur — 2pR

E(l) | E [ 2 2 2

E(Ilj);'E(IZj) = ur — pig.

Thus from the average of the two sequences,
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7. Estimate the aggregate statistié-n using the linear combinations of means and vari-
ances as , - , -

= (,uT —,;,Lm) + 02 — (1 +0p)maz(c%,0.04).

Calculate the upper confidence interval of 7 using the Cornish Fisher’s expvans'ion.

~ To illustrate CF’s éxpansion, consider H as the upper bound in the equation

1= (8)

- where P, represents the point estimates i.e mean, variances and B, represents the - -

| upper .bou'nd of these point estimates (95%). -

- 8. Table 3 outlines the various point estimates and their respective upper bounds.

Table 3: Point estimates and their distributions

P,=Point Estimate C=Confidence Bound | - Bg=Upper a limit
. 1\ 2
—_— — 3 2\ —_—\2
Pi=(pr —pr)? | U = (P1 +t1-a,N—s (E n{ls§) ) Bl=<‘U1 - Pl)
i=1 A

2 : _ T2 (N-2 _ —=\?
Py=oyy, U2 = otz 2 B2—<U2 - JUk»)

—— R ) e— T . y — 2
Pt U = 4ot 2 Bie(Us— oh)

Thus, calculate the upper CI of 7 using Cornish Fisher’s expansion. The upper 95%
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~ confidence value of 7 is calculated as

A = (ur — ur)’ + 0% — (1 + 6p) max (U?z,ﬂg

e —— — —— )

ﬁ=(MT—MR) +UUT+ UVT (1+9)max(UUR+ UVR’U(%)

il = (ur - MR)‘ + UIQJT + "0‘2/T — (14 0) max (U?JRY-F 56‘2)3,03

\ 2 72 SO
82 2 (N-2)o? 5
[(IMT — WR| + ta,N-21/ m) — (ur — pr) J + [_T“—ZXQ’N_Z - UIQJT:I :

5 — 12 2

xa,N—2 Xa N-2
1/2

_ )

‘+_ _

xaN 2

2
+ ,: (1+9P)(N 2)20VF- + (]_ + Hp) UVR]

Once 7, Nosx 1S computed conclude PBE if 7 Tos, 18 less than zero. When H is rejected
PBE is concluded The follow1ng section proposes the robust bootstrap procedure as an

altematlve to the LSCF procedure.

3.2.3 Robust bootstrap procedure

The robust analog of least squares Comish Fisher (LSCF) involves calculation of the robust
bootstrap estimates of @. Separate the data from table 2 based on the two sequences
and conduct bootstrap (Efron & Tibshirani, 1993) analysis. This is done to maintain the .
covariance structure.

Use median as the robust location estimate. For the variance estimates, use MAD,
Sny’ Qn (Ola Hssjer & Croux, 1996), IQR and Gini. Calculate 7 and also the.upper‘95th
percentlle of 7 which is the 9557 of the bootstrapped data sorted in an ascend1ng order.

Steps in robust population bioequivalence using bootstraps are as follows:

| 1. Start with the data as in table 2. Each subject j has two observations for one of the

- two treatments. The N subjects are partitioned into two sequences with % subjects
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in each sequence i.e a balanced design as seen in the table, The variances 0% and
0%, are the between and the within variances. From this setup, for the first sequence,
‘we have a TRTR schedule and for the second sequence, an RTRT schedule. The
response is distributed as

Yin ol 1R 0br+Olyr POBROBT

. - 2 2
Y Iz POBROBT  Opr + Owr

2. For each of the two sequences, generate a simple random sample with replacement
of the response Yijx. If Yijk = (Y, ...yink) then generate Yijx = (yijk,---Yijk)
and Yajik = (Yajtk, ---Yoj) for each of the two sequences. Bootstrap each sequence

separately as it maintains the consistent covariance structure.

This gives 2M datasets each of which have % subjects and only one sequence with

four periods. Combine Y and Y3,/ to obtain M datasets and estimate M 7’s.

3. Define I;;; as the averages of the replicates of the test and reference drugs. Calculate

Iijk as

(Y + Yir)

Ile - 2 )
Iip = (Yijr1 + YijRo)
1jR — )
2
Ipir = (Yojr1 + Yojra)
Ji . Y.
.2
e (Yajr1 + Yajro)
2;R 2 :

for each of the sequences i=1, 2. Using I, the location estimate for the test and the

reference drugs can be estimated.

4. Define Uj;r as the average of the replicates for the test drug and Uj;r as the average
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of the replicates for thqreférenée drug. Compute U, as

- (Y111 + Yij72)

Ule 2 )
Unor = (Yojr1 + Yajr2)
2jT - 2 .

Here Uy;r and’U2jT are independent as they are estimates from two different inde-

pendent samples.

. Define V;r as the difference of repiiéates of the test and Vj;gr as the difference of

replicates of the reference drugs. Calculate Vijk with

(Yiym — Yijr2)
V2
Vasn = (Yojr1 — Yojme) )

V2

Vijr =

. Obtain the robust difference in location between the test and reference drugs as the
median of difference of I17;, I1rj, Ior; and Iop; for each of the M datasets. Estimate

the location difference as

fr—Ep = Mediany,;; + Mediany,;,;,  Mediany, 5, + Medianp,,;
T » R '— ) 2 2 .

—

. Without loss of generality, from LSCE, the variance is estimated as (a?]T + 5'—%1) =

——

0% and for the reference drug the variance is estimated by (a}’] R+ %‘-’f) = o%. If

D — . . /2\
Varr is the robust expression of ¢4 then

(VarUT + V_a;zz) = V/CLT\T

(Varyr + V“—;"ﬂ) = Varr
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represents’ the robust estimates of spread; From the asymptotic theory, estimate
spread using different spread estimators. |

. These éstimators of spread are MAD, Gini, IQR; S, and Q,,. A parallel can be drawh‘
. between the LSCF and the robust procedure based on asymptotié theory as in table

4. Here f}‘ represents the median of I} for the M bootstrap samples. MAD which is

Table 4: LSCF and robust location, scale of each bootstrap sample

Parameter | Least Squares R method Gini method
(ergea)® (E_z+f—>-2 (& +ég~>2 (& +52~>2
2 2 | D) . 3
a2, o2 (1482 MADyw? | (G ﬁ>2
’ Uk Uk . Dyy, Uk 2
1o 5 3 \ 2
% | dob. | 1014826 MADy) | 4 (Grix §)

median absolute deviation is calculated as MAD, = median;(|z; — median,(z;)|).

i<j

. . n
Gini’s mean difference is calculated as Gini = Y |z; — z;| / - |. For a nor-
. ' . v 9

mal distribution, 1.4826 - M AD and @G are unbiased estimators of the standard
deviation. MAD has low efficiency for normal distributions, and it may not always

be appropriate for symmetric distributions.

The two statistics that Rousseeuw and Croux (1993) proposed as alternatives to MAD

are Sy, and Q,. S, is calculated with

where the outer median (taken over i) is the median of the n medians of |z; — z;| ,j -
=1, 2, ..., n. To reduce small-sample bias, c,,Sy is used to estimate o where c,, is

the correction factor (1992b). The second statistic is Qn (19§2a) estimated as
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Qn = 2.219{|z: — 230 < 5}y

where
2
andh= (2] + 1. In other words, Qn is 2219 times the kth order statistic of the
C?% distances between the data pornts The b1as corrected statistic anQn is used to
estrmate o, where Cmisa correctlon factor (Rousseeuw & Croux 1992c)
The 1nterquart11e range (IQR) is the d1fference between the upper and lower quartrles
For a normal populatron IQR/ 1.34898 (DasGupta & Haff 2006) is an unbiased esti-

mator of the standard dev1at1on

9. Calculate 7 for the M datasets by using the above estimators.  Now peol the M
datasets and estimate the upper 95% confidence interval of 7 by selecting the 95"
7 sorted in ascending order. With this step, 77 and 795 are estimated using each of the

spreads MAD, Gini, IQR, S,, and Q,;.

- Now, compare the proposed robust procedures to the LSCF’s procedure. 1In order to find the

procedure most resistant to outliers, run sensitivity analysis on an example shown belew.'

3.3 V’Analy‘sis of an example

Apply the present and proposed procedures on a dataset. This dataset was procured from
the FDA website (2003b)'which was created on August 18, 2003 and updated on June 20,"

2005. Introduction to the dataset used is as follows:

”In reference to the Federal Register notice on ’Preliminary Draft Guidance for
Indnstry on In Vivo bieequivalence Studies Based onPopulation and Individual

| bioequivalence Approaches: Availability”, vel. 62, No. 7249, Dec. 30, 1997;
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Table 5: Example to illustrate the PBE procedure

SUBJECT | PER | SEQ [ TRT | AUC
1 1|[RTTR| R [5.69

1 2 | RTTR T | 5.445

1 3 | RTTR T | 8.481

1| 4|RTTR|. R|6.774

104 | 1| TRRT T| 29
104 2| TRRT| R| 4.05
104 3| TRRT | R |4.287

104 4| TRRT| T| 285

the Food and Drug Administration is announcing the availability of data that
were used by the Agency in support of the proposal and the detailed description

of statistical methods for individual and population approaches.”

The dataset used for the analysis is "DRUG 3*’(including 3b - 3d used as‘an 'illustration) '

- from the above source. It is a combination Vof the three datasets which are modified to fit

the RTTR and TRRT schedule. This data is a two sequence, four period réplicate design

with 104 subjects who are randomiiéd into one of the two vsequence‘s.‘ The subjects in the

-~ first sequence start with a RTTR schedule (reference-test-test-reference) while sequence

. two have a TRRT schedule. There is a sufficient washout period between the test and

' referénce drugs to avoid carryover effects. Table 5vi11‘ustrates this dataset. Re-order the data

by transpoéing on the periéd. V |
‘The response is Y;;; for replicate / on treatment k for subject j in sequenée i Thé

fixed effect is i, and the random effect is §;;; with random error €;;;. The desig'n used is

Yijir = e + Yirt + Oiji + €350 (3.9
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_ Table 6: Transformed two sequence, four period balanced design
Subject Sequence Periodl  Period2 Period3 - Period4

1 1 log(5.696) 1log(5.445) log(8.481) 1log(6.774)
2 . . .o .
104 2 log(2.9) log(4.05) 1log(4.287) log(2.85)

Where i=i,2 indicatés the number of sequences, j=1,..‘.,104 indicates the subjects within
7 each éequenée, k=R, T indicates the treatmenté, I=1,2 indicate replicates on treatment k for
subjects within sequer‘lce‘i. Due to the balanced design, there are 52 subjects in the first
' seQuence and 52 subjects in the second seduence. |

Steps in LSCF PBE are as follows:

1. Calculate the difference betwéen the test and reference drugs averages

Yim+Yi Yi;r14Y4, Ya;114Ys; Ya;m+Yair2) ¢
Ilj _ 1JT1-2F 1y12) _ 1JR1-2F 1jR2) and IZj _ 2JT1-2F 212) _ 2JR1-2F 2iR2) for each Of‘

the sequences i=1, 2. Their average is the location estimate fqr the difference in test

and reference drugs.

2. Calculate Uijx and Vi;i, as explained in the LSCF procedure. With these, the between

and within variances are estimated for the aggregate test statistic.

3. Calculate the test and reference drug variances as

o2 — Var(Uir) + Var(Usr) + 1Var(Vir) + Var(Var)
T 2. 2 2 K
ot = VorUin) + Var(Usg) , 1Var(vig) + Var(Vag)

2 2 2

and the difference in test and reference drug location with § = #
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. 4, Estimate the aggregate measure 7, as shown below
=82 4 0 — (1 + 1.744826) max (EE 0.04) .

5. Add outliers to 5% of thé datai.e on six 'subjecté. Rerun the above procedure calculate

7. Increment these outliers with 4- 1,2,3,4,5,6 0. _

_Thus the LSCF estimate of 7 with or without outliers is calculated. Now, to estimate robust
7, use the five proposed procedures for the cases of with or without outliers.

Steps in robust bootstrap PBE are as follows:

1; Start with the data as m table 6. Using the ldg.transformed responSe (Yijx1), cal-

. culate the difference between the Test and Reference drug averages with Iir; =

(Y1iT1+Y1572) _ Mjri+YijRs) ' (Y2i714Y25r2) .. (Yojr1+YaiR2) o .
—1_2-—1—, Ile = - 5 , IQT]' = 5 2 and Isz = Jv o) for

each of the sequences i=1, 2. Calculate the difference in location of the test and refer-

Median 117;]. +Median Iy -

ence drugs for the two sequences explained above as é7—€p = 5

Median IiR; +Mediany, R
5 .

2. Calculate Uy;x and Vjjy as explained in the LSCF procedure. By calculating them,

estimate the between and within spread used in estimating the aggregate test statistic.

3. Calculate the test and reference drug spreads o2 = V‘"(U”);V‘"(U”) +

Var(V; Var(V: : V Var(V; Vv )

%. ar( 1T)'g ar(Vor) and 012{= VaT(Um)-g ar(Uzr) +% ar( 1R)-g af(Vzn) and
_ D+l '

§ = tutly

Here § (the robust location) is the difference £ — € and Var are the variances esti-
- mated in each case by Gini, MAD, IQR, S, and Q),, és described below. The unbiased

estimators of the variance in each of these cases are:
2
Gini: o* = (G¥)
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MAD : o? = (1.4826 - MAD)?
2
IQR : 0® = (135%s5) |
 Spi 02 =(1.1926 - med; (med; (|z; — z;])))?
) 2

Qn:iot= (2'219{|$i, — 1z 72 <.j}(k)>‘ .

4. Estimate 7 for the five procedures using the robust location and variance estimates as

7 =8 + o2 — (1 + 1.744826) max (5%,:0.‘04) .

s Add outliers to 5% of the data i.e six subjects. Rerun the above procedure and calcu-

late 7. Increment the outliers with % 1,2,3,4,5,6 0.
Compare the results of sensitivity analysis of LSCF to the proposed five procedures. The
plot of ﬁvefsus the incremental outliers frbm -60 to 60 is shown in figure 3. By increasing
Figure 3: Large sample PBE sensitivity analysis

SAMPLE - SIZE = 104
6 OUTLIERS
PLOT OF ETA VERUS OUTLIERS -6sigma TO 6sigma

ETA

6 5 7] 3 2 1 [ 1 2 3 4 5 3
. OUTLIER
MEASURE ei In Ls T HA gn " $n

outliers, the LS procedurés i.e LSCF and Gini are most affected. The robust procedures
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are very stable and @Q,, is the most stable robust procedure. Gini is marginally berter than
LSCF‘ since median was used in location estimation. As the outliers are increased on eitiier
s1de to +60, 7 varied from -4 to -13 for LSCF while @, varied from 1.2to- 1 5. |
Rousseeuw and Croux proposed the Qn estimate of scale as an alternative to MAD.
It shares desirable robustness properties with MAD (50% breakdown point, bounded inﬂu—
ence function). In addition, it has significantly better normal efficiency (32%) ano it does
not 'depend on symmetry. Qn.is the most stable procedure to estimate 7 in the presence
of outliers. A simulation study comparing the validity and power of the LSCF with the

proposed bootstrap procedures is conducted. The next section discusses this comparison.

34 PBE comparison of level and power

In the s1mu1atron analysis, generate data as in table 2 By controlling the input parameters,
7 is ﬁxed ’I‘hese parameters include the various between and within variances and the
means of the test and the reference drugs.

By setting the true value of 77 at the boundary i.e zero, calculate the significance level as the
probability of falsely rejecting the null. By setting the true vale ofﬁ at the rejection region,
calculate the power as a function of the probability of falsely accepting the null. Further on

the basis of MSE, the better procedure is identified.

3.4.1 Validity

~To test for validity, set the hypothesis at the boundary condition. The hypothesis of interest |
is |
Hy : n > 0:(Non Population Bioequivalent),

H; : n < 0: (Population Bioequivalent).
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- The definition of type I error is Pp,(Reject the Null hypothesis)ﬁa. At the boundary, the

value of 7 = 0 and the probability ef the type I error is maximum.

1. Set the true value of n =0 as shown below

= (ur — pr)* + 0} — 0} — max (0%, 03) 0p =0

= (ur — pr)® + 0% — 0% — max (0%, 0.04) 1.744826 = 0.

* One of the possible boundary condition could be setup by ,uf =urand 02 =0} +
max (0)22',‘0.04) 1.744826. As an example let the mean differences be set to zero
(ur — ur = 0), the variances set to 03=0.3 and a%=0.82:‘34478. Such a setup has true

n=0..
2. After specifying the input parameters, generate two hundred datasets having a bivari-
ate normal distribution of the form -

2 2 :
Yiim N Hr Opr + Owr POBROBT

Yiir KR POBROBT OBR+ Ofyg
For each of the datasets, calculate 77 and 77953 for the LSCF and the five proposed pro-

cedures. For each of the robust bootstrap procedure, conduct two thousand bootstraps

‘on each of the two hundred datasets to obtain two hundred 7gsz.

3. Calculate the proportion of cases when the null is rejected. This proportion represents
~ the empirical probablllty Py, (Reject Hy) = a. Compare this empirical a from
LSCF G1n1 MAD, Qn, S, and IQR. Calculate the mean squared errors (MSE) with

the two hundred datasets for each of the procedure as:

i=P

| (771 nTrue
MSE = 2 P-1)
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.. Thus, the empirical level and MSE of the LSCF and the five proposed: procedures are

computed Next, compute the emp1r1ca1 power of the six procedures

3.4.2 Power

T To compute the emp1r1cal power, set the true value of 7 in the alternative condltlon ‘The
; vhypothesrs 1s _. ‘
,HO > 0': (NonBioequivalent)
Hi:n<0: (Bioeq‘uivalent). |
Deﬁnrtron of type II error is PH , (Fail to Reject the Null hypothesrs) and power =1- P(Type

II error)

1. Set the.true value of 7 less than zero as shown below

n = (ur — pr)’ + 0% — 0% — max (0}, 03) 6p = —0.80,
n = (ur — pr)’ + 0% — 0% — max (0%, 0.04) 1.744826 = —0.80.

- For example one of the possible boundary condition setup could be pr - pr =-0.2,
the variances a% = 0.34 and ‘7121 = 0.43. Since Nrrue = -0.80, th'e null should be

rejected.

2. After specifying the input parameters, generate two hundred datasets that are dis-

trihuted as bivariate normal of the form

~v

2 2
Yium N Ut Opr + Ot POBROBT

. . 2
Yin 1R POIBROBT 0B+ oYR

For each of the datasets, calculate 7 and 7jg5%; for the LSCF and the five proposed pro-

cedures. For each of the robust bootstrap procedure, conduct two thousand bootstraps



- on each of the two hundred datasets to obtain two hundred gz

3. Calculate the proportion of cases the null is accepted. This proportion represents the
empirical probability of Pp, (Fail to reject Hy) = P(Type II error). The empirical
power is 1 - P(Type II error) for LSCF, Gini, MAD, @, S,; and IQR_.‘Calculate MSE

using the two hundred datasets for each procedure as

The next section discusses the findings of the simulation study‘comparihg validity and

power of the present LSCF ‘with the five proposed procedures.

35 Examples comparing validity and power

For simulation, the between and within variances were set based upon the FDA (2001)
guidelines and from Chow et al (2002). The possible values of the variance o2 and o% vary
from a range of 0.15 to 0.5.

Define small outliers as 3o outliers and large outliers as 60 outliers. These outliers
are set based upon the criteria that at least 5% of the data may possess outliers. AUC,, and
Cmax contain outliers due to prolonged excretion rate of the drug or the absorption rate
depending upon the subject. Outliers are added to five subjects in the data. The outiiers are
in two main categories. Olvltliersvin the test drug or outliers in the reference drug.

In a simulation study of two thousand bootstraps on samples of size fifteen to tWenty
- five, the bootstrap was found to be inconsistent. This may be attributed to the inconsistent ‘

~ covariance structure during bootstraps. However, codsistent results were found for samples
of size sixty or ébove. Hence, samples of size hundred, hundred and fifty and two hundred

are used.
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For each of the cases, validity and power is computed. From this, a graph is plotted

that displays the differenees. Results of the simulation procedure are summarized below.

3.5.1 Type I error (o) and power (v) with small test outliers |

Graph Al plots power-and a which are caleulated for small tesr outliers. The graphieal
summary is obtained from the type I error fable B.4 and power from the table B.3. B
' For the case of small vuriability (&2 = 0.15), the LSCF procedure performed better
than the remainin 8 procedures in both level and power The next best procedure comparable
~ to LSCF is Gini. Both LSCF and Gini are comparable in their MSE
With larger varlabrhty(a =(0.5), it is noted that the LSCF procedure is not the best.
IQR, S, seems a lot more efficient than before with smaller MSE. However, Gini is better
than LSCF in both poWer and level. LSCF and Gini worked best with smaller test drug

variance and smaller outliers.

352 Type I error (o) and power (fy) with small reference outliers

Graph A.2 plots power and o which are calculated for small reference outliers. The graph-
ical summary is obtained from the type I error table B.6 and power from table B.5. |
For the case.of small variability (62 = 0.15), LSCF procedure and Gini have higher
significance level (15%). With such a level, poWer‘has little meaning and thus the LS
procedures failed. (), is better arnong the various robust procedures.
With larger variability (o2 = 0.5), the LS procedures, LSCF and Gini have large |
signiﬁcélnce level and all the robust procedures MAD, IQR, S, and Q,, performed better.
| So, with outliers 'in"rhe reference drug, it is clear that the validity of the LS procedure is

severely affected.
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353 Type‘ I error () and power () with large test outliers

’Gbraph A.3 plots -power and o which are calculated for l‘arge Test outliers. The graphical
summary is obtained from the type I error table B.8 and the power from table B.7.

For the case of small variability (¢ = 0.15), the LS procedures compromised with
the signiﬁcanée level of the test. IQR, S, are more conservative tests and the robust proce-
dures are better overall and have higher powér.. '

With larger variability ’(02 = (.5), the LS procedures are worse far both validity
and power. All the robust prcicedures work well and are niore efficient with smaller MSE.- ,' |

Robust procedures work best with larger Test outliers.

3.5.4 Type I error () and power (vy) with large reference oiltlicrs

Graph A.4’ plots the power and a which are calculated for large reference outliers. The

' igraphical summary is obtained from the type I errortable B.10 and power from table B.9.
LSCF and Gini, the two LS procedures are compromised due to outliers and this is

seen by theirv level. In both small aiid large variances of the data, @),, isthe mcist conservative
with signiﬁcance lével and has high power. VOAverall, the robust proéedures perform better

~ when there are more than 3¢ outliers.

3.6 Small sample study

As seen in these simulations, consistent results for samples of size sixty or above are ob-
tained. However such samples are available only on phase II of the drug development. So,
it becomes necessary to address the cases of clinical trials where samples of size twenty are
| quite commonly used. In Leena et al. (2008), typical BE tests are conducted on subjects of
size twelve to thirty. For small samples, bbotstrap procedures may be of suspect because

the covariance structure may breakdown and also the outliers may have a greater effect at
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such small séunple sizes. In the next chapter, the small sample analysis of PBE is addressed.
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CHAPTERIV |
' SMALL SAMPLE POPULATION BIOEQUIVALENCE

- PBE analyzed in phase I of é cliﬁical trial have small éample sizes. The FDA (2001), Hyslop
et al. (2000) and Patterson etizal (2002) héve used small sémplé sizes for PBE analysis ih
their papérs. Small sample sizes fefer to samples of siie N=1 8, 22, etc. With small samples,

“the bootsfrap procéduré previously developed does not give consistent results.

, In this chapter, the theory developed by Chinchilli et al (1996), CofniSh etal (1938), -
Stefan (2001') and Anirban et al (2008) is used to calculate the Cornish-Fisher confidence '
interval using closed forms ofr Gini and IQR. Gini and IQR have a readily available closed
form distribution. Estimate the mean difference, variances and the population bioequiva-
lence criterion. Population’BE is established for a particular log—Uansfdrmed BA measure
if the 95% upper confidence bound for the linearized criterion is less- than or equal to zero

(FDA, 2001).

4.1 Distributional assumptions of metrics in BE trials

Before performing a statistical analysis in BE trials, AUC and Cmax are generally log
transformed. The three most commonly cited reasons for log transforming AUC and Cmax

are
-o AUC is non-negative
¢ Distribution of AUC is highly skewed

¢ PK models are multiplicative
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The drug concentraﬁon at each time point is a function of many random processes; They are
‘absorption, distribution, metabolism and elimination that act proportionally to the amount
- of the drug present in the body. Thus the resulting distribution is log normal (Midha &

Gavalas, 1993).

4.2 Design

‘The test (T) end the reference (R) formulations are administered to healthy volunteers‘ and
the drug concentrations vare measured‘ovef time. A cross-over desigri is setup to compare‘
the test and reference drug formulation’s effe_ct ona subject. For PBE, a 2x4 cross-over
design i.e a two sequence, four period replicated balanced design (FDA, 2001) as explaiﬁed
above is considered. | ‘

The data in table 2 for PBE of large samples is also used here. Apart from this-
sample size, the rest of the parameters are reused for the setup. For the first sequence,
* subjects have a TRTR schedule and for. the second sequence a RTRT schedule. The desigri
‘is as foliowé 7 | -

- Yo = pr + Vi + Oigk + €ijrt : . “.1)

where i=1,...,s indicates the number of sequences, j=1,...,n; indicates the subjects within
each sequence, k=R, T indicates the treatments, /=1,...,p;; indicate replicates on treatment k.
for subjecfs within sequence i.

The response is Yy for replicate ! on treatment k for subject j in sequence i and
ikt is the fixed effect while the random effect is d;; for subject j with a random error €;;z;. .
The random errors ¢;;; are mutually independent and identically distributed as

iy ‘ 2 .
€i5TI 0 OWithinT 0

~ N , o 4.2)

g : 2
- €ijRI 0 : 0 OWining
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Also, the random subject interaction effect is distributed as shown below

OiiT 0 o2 POBROBT :
TN AN BT BRSO 4.3)
bR 0 POBROBT O'%R o
The resulting response 1s distributed as
Yi; : . ok + o} 0 BRO BT - .
iTE ) N BT ’ BT TOwr POBR - 4.4)

' 2 2
Yiin MR . POBROBT OBp*+ Oiyr

The next section introduces the hypothesis to test PBE. -

4.2.1 Hypothesis

The proposed'null and alternative hypothesis based on the FDA regulations (2001) are

_ 2 2 _ 2
Ho : (/JT‘ /JR) :Ug Ik > 0p
maz(o3,0%) _
_ 2 2 2 ,
Hy WD HR) FOTZ0R g, | 4.5)

‘where 0% = 02,1 + 0%y and 0% = 0%, + 0%y, are the total variances of the test and the
reference drugé. The constants ¢ and §p are fixed regulatory s_tandérds.

As seen above, the FDA guidance currently adopts an aggregaté approach, using
an aggregated test statistic for evahlaﬁng both means and variance components simulta-
neously. In contrast, several disaggregate approaches have been suggested where tests for

- each component are performed separately. For example, Liu énd Chow (1996) proposeda
disaggregate approach for evaluating IBE where three components (infra subject variabil-

ity, subject—byéformulation interaction, and average) are separately,tested multiple times .

- 51



with intersection-union tests. However, as the dimensions (p) of tests increases, the power
of the (1 — 2a) confidence set (Leena Choi, 2008) based approac‘h could decrease sharply’
for dimensions greatér than one as shown in Hwang (1996).

The aggregated test statistic is linearized as follows:

— b

Hy : (ur — pr)® + 0% — 0% — Op * mam(qg, 0%) >0

Hy : (ur — ,uR)? + 0% — 0% — 0p ¥ maz(aj, 0%) <0 - 4.6)

Here, n = (ur — pr)’ + 0% — 0} — 0p * max(of, 0%) and the null hypothesis réduces to
a one sided problem defined by a linear combination. The FDA fixed 0.02 as the maximum
difference for the variance under the test and reference formulations. Usually 6 =log 1.25
= ;log 0.80 = 0.223. Thesé values (FDA, 2001) 'origin}ated from the notiqri that the ratio of
the populatidn means in the oﬁginal scale (the mean of the test is 80 - 125% of that of the

"'refe‘rence) are considered to be sufficiently close for drugs having an average therapeutic
wihdow. For PBE, the‘ FDA sets 6p = 1.744826 and o = 0.04. The linearized hypothesis

is of the form A
) HOV: n 2 Oa

Hy:Hy:n<0..
If the null is rejected, population bioequivalence (the two drugs are similar across popu- ,
‘lation groups) is inferred. Otherwise, the two drugs are significantly different across the

populations. The next section describes the present procedure of testing PBE hypothesis.

422 Least squarés Cornish Fisher’s procedure (LSCF)

The present proceduré tests PBE using Cornish Fisher’s (CF) (1938) expansion. In LSCF, .
n is calculated as 7 = (ur — pr)’ + 0% — 0% — 0p % maz(0,0%). The procedures in

eStimating p; and o2 are described below. If the upper confidence interval 7g59, is less than
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zero, population bioequivalence is concluded.
~ Following are the steps in computing the least squares Cornish Fisher’s (LSCF)

" expansion:

1. From table 2, the response Y;;x; is distributed as

, . [, , N
Yiim N KR Ogpr+Owr POBROBT
~ .
) )

: : 2 2
YT | Mt POBROBT Ot + Oyt

. where each subject j has two obseryations for one of the two treatments. Each sub-
ject belongs to only one sequence. The data has N’ subjects partitioned into two
sequences with % subjects.in each sequence. In this example, a balanced design is
used. The variances o3 and o2, are the between and within variances. For the first
sequence the patients have a-T RTR schedule and the second sequence subjects have

an RTRT schedule.

2. Define I as the difference in test and reference drug replicate averages. Compute this

difference I;; as

(Ylﬂﬁ +Yir2)  (Yijr1 + Yijre) |
2 2 ’
(Yoyr1 + Yasre)  (Yajri + Yajre)
2 N 2

Ilj =A

. IZj=

for each of the sequence i=1, 2.

3, Calculate Ui;r as the average of the test drug replicates ahd Ui;r as the average of
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the reference drug replicates. This average is

U = (Yayr1 + Yajr2)
uT 2 ’
Unors = (Yo + Yajr2)
25T 2 .

Uzjrand Uyt are indepe‘nvdent‘ as they are estimates from two different i‘ndépendentx

samples.’

. Define Vj;7 as the difference of the replicates of the test and V;;r as the difference of

the replicates of the reference drug. Vi is calculated as

Vip = (Y111 — Yaijre)
J \/Q- H

Viig = (Yijr1 — Yijra)
J ‘ \/5

. Calculate the variance of the variables U, V;;« for each of the two sequences. Esti-
mate the variance of test drug o2 as 0%+ 037 and reference drug 0% as o3+ g

For the first sequence, the variance is estimated with

VaT(Ylel) + Var(Yijr2) + 2Cov(Yij11, Yij72)

Var(Uyr) = ;
Var(Visr) = Var(}?jTl) + VaT(.}/le;) ~ 2C0v(Yyyr1, Yijra)

Without loss of generality, set the covariance (3;) for the first sequence and the two

test drug periods. The resulting distribution of the test drug in the first sequence is

Yyre ) | AT or % . ‘(4.7)

' 2
Yijr2 - T % or

54



: Sirhilarly, the distribution of the test drug in the second sequence is

Yar | N1 AT . _a% = . 48)

| 2
Yoire | |\ pr Xy o7

It can be proved that 2 is a hnear combmatlon of the variances aUT and aVT To

prove ch =o}r + —U- con81der the followmg

0% = o + 25T ‘

oF =3 ( OBy + UUTseqz +3 (% {C’ngseql + U%/Twﬂ})
cr:,zw“= 1 ( oy, + _& (U%/Tseqz + _sss_) |
or=3 (Va (Ugr) + 2 ) +3 (V‘”"(UzaT) + -W—TY-’——))
et (32 (5] 1 () (22

By expanding the above equation, it is concluded that -

U%/T 2
UUT + _2—‘ = O'T.

Similarly, for the reference drug, (af, Rt 52‘253) = o}.

6. The expected values of the difference for the test and reference drugs from the two

sequences across the four periods or two replicates using equation 4.7 are

o | Yy + Yyyre)  (Yayen + Y11R2) _ 2pr —2pp
(Iy) =E =

2 2 2 3
(I ) = E (Y2jT1 + Y2jT2) _ (Y2le + ngRg) _ 2ur — 2up
K 2 . 2 2 :
Thus from the average of the two sequences, _E(Ili);'E(Izj) = ur — .
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. 7. Estimate the aggregate statistic 77 using the linear combinations of means and vari-

ances as -

A=z —Ar) +0%— (1+0p)maa(c},0.04).

- Calculate the upper confidence interval of 7 using the Cornish Fisher’s 'ex‘pansion_.

- To illustrate CF’s eXpansiqn, consider H as the upper bound in-the equation

H:Zﬁq+ (ZBq)

1 '
2

where P, represents the point estimates i.e mean, variances and B, represents the

upper bound of these point estimates (95%).
8. Table 7 outlines the various point estimates and their respective upper boundé.

Table 7; Point estimates and their distributions

" | FP;=Point Estimate =Confidence Bound B,=Upper a’lirnit ‘
1\ 2 ‘ S
’ —_ —— 8 2 —
P=(ur — pp)* | U= (P |+ tiaN—s (E n; 18?) ) Bi=(Ui - R)
i=1 .
Fr=ain U = it By=(t2 - o)
2 T (N ' —I\2

Thus, calculate the upper CI of 7 using Cornish Fisher’s expansion. The upper 95%
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‘confidence value of 7 is calculated as

7= (ur — pr) + 0% — (1+ 6p) max (7%, 03),
7= (ur — pr)? + obp + %a?,T — (1 + 6) max (a?m + %0‘2,1{',03) ,

Tioa = (ur — pr)" +0fr + 3087 — (1+ 6) max (UI2JR + %U%/Rydg)

" . 2 . — . 2
— 52 v ’ 2
(|HT — BR| + ta,N-21/ m) — (pur — pr)

— 12
(N—-2)a?, 5
-+ [_HZ - U2UT:|

Xa,N—Z

. Xa,N—Z

2
xa,N—Z

— : 2 e : 2
(NG _ 0
%(N 2)_‘,:I 152 T] [ (L+0p)(N-2)op (1+ 6p) QI2JR:|

Once 7gs% is computed, conclude PBE if Tos% is less than zero. When Hj is rejected,
PBE is concluded. The fbllowing section proposes the robust bootstrap procedure as an

alternative to the LSCF procedure.

4.2.3 Proposed small sample procedures

The robust procedure is identical to the LSCF procedure in terms of data manipulation and
the groupihg to calculate I;;z, Ur, Ur. A closed form distributions of Gini and IQR is

-suggested for CF expansion. Steps for small sample PBE analysis are as follows: -.

1. Start with the data in table 2 where each subject j has two observations for one of
the two treatments. The subjects belong to only one sequence. The data has N sub-
jects partitioned into two sequences with % subjects in each sequence i.e a balanced
design. 0% and o, are the between and ‘w‘ithin variances for sequence i and repli-
cate(period) {. From the setup, the ﬁrSt'séquence has a TRTR schedule and the ‘sec‘ond

sequence has a RTRT schedule.

2. Déﬁné I as the averages of the replicates of test and reference drugs. Calculate Lk
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: Table 8: Two sequence, four period balanced design ,
Subject Sequence Periodl Period2 Period3 Period4.
1 1 Yiymt © Yim Yo Yijre
2 . . . .

. “m+1

Yoim Yo Yojre Yo
m+2 '

[SS 2 2 I N6 I NG i N e N e ]

as »
T = (Myri+Yiire) -
;T = 2 )
 (Yijri+Yi;R2)
_ Mim+Yijre
Il]R = 2 . b)
_ (Yoymi+Yaira)
br = =572,
_ (Y25m1+Yaira)
Djr = -z

for each of the sequences i=1, 2. This gives the average effects of the test and the

reference drugs for the two sequences.

3. D¢ﬁne Ui;r as the averages of the replicates of test and U;;r as the averages of the

replicates of the reference drugs. Calculate them as

_ (Yijr1 + Yi10)

Uyr 5 ;
Unir = (Ya;11 + Yajra)
2;T — 2 .

Here Usj7 and Uy;r are independent as they are estimates from two different inde-

pendent samples.

4. Define Vy;r as the difference of replicates of test drugs for the first sequence and ngT
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as the difference of the replicates of test drugs for the second sequence. Calqtilate

them as

Vigr = (Y — Ylez),
Vogr = (Yojr1 — Yijz).
V2

Here Vi1 and V,;r are independent as they »arve estimates from two different inde-

pendent samples.

. Obtain the robust location i.e the median of I 7;, I1rj, Ior; and Lp;. Using this,

calculate the robust estimate of location difference as

Mediany,,, + Mediany,,, Mediany, . + Mediang, ,,
2 2 ‘

{r—&{r=

6. Use Gini and IQR as variance estimators. The standard errors of these variance

estimators are readily available as shown below.

e IQR: Based on the large sample assumption, the robust variance estimate of
IQR is calculated. For estimating the scale parameter, o of a location scale
density 1 f (%5%) , an estimate based on the interquartile range IQR=X [22] —

X [t is used. Use of such an estimate is quite common when normality is

4" ) .

suspect (DasGupta, 2008). IQR is distributed as ,

e (=) =¥ oo e T )
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In particular, if X, ..., X,, are iid N(u,0?), then
VA (IQR — 1.350) — N (0,2.4807) .. (4.9)

Consequently, for normal data, 51%% is a consistent estimator of o (DasGupta &
- Haff, 2006).
Gini Mean Difference : Gini’s mean difference is often used as an alternative

to the standard deviation as é measure of spread (Nair, 1936).

“The Mean Difference introduced by Prof. Corrado Gini as a measure o
of variation is defined as: If T1,T2,...T, are n observed values of a

variate x, the mean difference is defined as

2
gv— _n(n— 1 é;lar:Z - zjl.

The standard error of Gini’s mean difference (g) was presented by U.S. Nair
(1936) and further explained by Lomnicki (1952). If X’s are normal N{u,0?),
the unbiased estimator of ¢ is /mg/2. }To obtain the above proof, use thf;
approximation theorems (Serﬁing, 2001), proofs by Nair (1936) and David
(1968). The sketch of the theory is |
g=ﬁi§|$i—%’| =y 2 T~ T

“1<i<ign
n

' n—1
g=;zh 2 2 (Tni — Tnj)

i=1 j=i+1

where z,; and z,; are the order statistics. Now Gini written a linear combi-

- nation of the order statistics. Nair generated normal convergence of Gini by
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expanding the x’s as follows:

n

n(n-— nZ;l Z (Tns —."ﬂvn'j),
L i — o)),
z -+ D) Sl

|   = 2U — (n+ 1)V].

n(n—-l)

n(n—

f
nM:

By estimating U, V, U 2 UV and V? and their expectations, estimate the mean

and variance of g. Take Jacobian at every stage and add them up as

B

Q
S’

¢ = ;7(714?175 [4U2 —4(n+ 1)UV + (n +1)2v?],

o2 = E(¢%) - E(g) .

When X’s are normally distributed, the Jacobian are estimated for the mean of

g and the variance of g. They are

9=

% [_;_._+ 2f(n -2) 2(2n—3)]%

Tg = v/ n(n~1) m

S

For a sample of size 10, the efficiency of this estimate is 98.1% and reaches |

99% for small increments of sample size (David, 1968).

"Gini is also slightly less sensitive to the presence of outliers than
either s or o. Although necessarily entailihg a considerable loss in -

efficiency under normality, a symmetrically censored version of ¢*
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has been put forward as

| \/ﬁ( —%)—'»N(o,ag)” . (4.1-0)"

. From these derivations, a Cornish-Fisher’s expansion using Gini and IQR is

)

generated that tests for small sample PBE.
7. Estimate the upper 95% confidence interval of 7 using the following pfocedurc

-e For the location, use Moses (Hollander & Wolfe, 2001) distribution free con-
ﬁdcnéc interval based on Wiléoan’s rank sum test. For the upper 95% confi-

dence interval of the difference in Test and Reference location, calculate

C, = n(2m-2|-n+1! +1—w,,

AU — Umn+1—Ca
where m and n represent the samplc sizes. U is a value that is estimated from

Hollander et al (2001). Ay is the desired upper confidence interval of the loca-

tion differences.

e In order to estimate the upper confidence limit of the variance estimates of Gini

mean difference, use equation 4.10.

e To estimate the upper confidence limit of the variance estimate of IQR, use

equation 4.9.
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- 8. The upper 95% confidence level of 7 is estimated for Gini mean differcnce'as

o = (€ — &) + Qg + $0r — (14 0) max (@ + 1, a3)
— 12 o - 19
| +'{ [N —ler= sR)z]v + [(Gr+ Za bur) - G|
1 Bk ’ |
+ (8 (Gt Zandur) - 2]
— ’ —2
[ (1+6p) (Clle + o * <iSUR) +(1+6p) Clle]
e o ) 1/2
+ [~ @+ 0) (3B + Zax Jour) + (146) 3 } |
-where Ef is the asymptotically unbiased variance estimate and 8 =1/ ﬁgn-"% {220%} is
-the standard error obtained using equation 4.10 and the Delta method. This is shown

by the following equations :

Vi (Fa—0) > N(0,023),
AN(O, g4<%)2),

—o%) 5 N (0,022 (2&)2) :

S %
—~ o~
t"|=\
= &

Similarly, for IQR calculate 7959 as

M-o = (&1 — fR)2 + 712’17* -+ %T‘%T ~(1+6) max <lelR + %TaR’ ‘Tg)
L ——— 2 o A 2 )
+ { [A%} - (€T b §R)2:| + [(lejT -+ Za * @") it TIZJT]
- ) .
+ |4 (r + Zar &vr) - e
2
(1+ 6p) <7‘UR + Zg * ‘PUR) +(1+ BP)TUR] :

+[-
»+[ (1+6) <7‘UR+Z *@g) (1+0)57'UR]2}‘/

where 77 is the asymptotically unbiased variance estimate and
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@ = \/ (238 = (20)* is the standard error obtalned using the Delta method. This

25
is proved by | B
Vi (15 = 0) = N [0, 507
V(g - ) = o e ()]
((113’;) ) - N [0, 123458202 (20)%] |

With the above two proposed procedures, co‘rnpare small sample PBE using ‘LSCFrwith
small sample CF Gini and IQR. In the next section, sensitivity analysrs is conducted on an

example wrth these three procedures

4.3 Sensitivity analysis of an example

“Apply the LSCF, Gini and IQR procedures on a dataset. This dataset was procured from a -

FDA website which was created on August 18, 2003. Introduction to the dataset used is

”In reference to the Federal Register notice on "Preliminary Draft Guidance for
Industry on In Vivo bioequivalence Studies Based on Population and Individual
bioequivalence Approaches: Availability”, vol. 62, No. 249, Dec. 30, 1997,
the Food and Drug Adrninistration (FDA) is announcing the'availability of
data that were used by the Agency in support of the proposal and the detailed

description of statistical methods for individual and population approaches.”

The dataset in table 9 is "DRUG 17A’ from the above source. It is a two sequence, four
period replicate design with thirty six subjects who are randomized i:ntoone of the two
sequences. Tne subjects in the first sequence start with a RTTR (Reference-Test-Test-
Reference) schedule while the second sequence have a TRRT schedule. There is a sufﬁcient
washout period between the test and reference drugs fo avoid carryover effect. AUC 1s

the parameter of interest. Reorder the data by transposing the data on periods. The design
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Table 9: Example to illustrate the PBE procedure

SUBJECT | PER | SEQ | TRT 'AUC | AUCINF | CMAX
1 1 [ RTTR 2 [ '1020.65 | 1020.65 |

1 2 | RTTR 1]1321.23 | 1321.23 145

1} 3 |RTTR 1| 900.42 900.42 106

1 4 | RTTR 2| 1173.61 | 1173.61 146

36 1 |TRRT | 1221239 221239 | 226

36 2 | TRRT 2|1438.48 | 1438.48 137

36| 3|TRRT| 2|1984.76 | 1984.76 237

36 4 | TRRT- 1|2640.43 | 264043 237

used is similar to the design from the large sample PBE procedure. This design is

whérc i=1,2 indicates the number of sequences, j=1,...,36 indicates the subjects within each
sequence, k=R, T indicates the treatments, /=1,2 indicates replicates on treatment k for sub-

jects within sequence i. Due to a balanced design, there are eighteen subjects in the first -

sequence and eighteen subjects in the second sequence.

The response is Y;x; for replicate [ on treatment & for subject j in sequehce i. The

fixed effect is 7y, of replicate / on treatment k in sequence i. The random effect is ik for

Yiiki = M + Vi + i + €ijrl

subject j in sequence i on treatment k and ¢;;,; is a random error.

e Steps in small sample LSCF are as follows:

1. For the above dataset, calculate the difference between the test and rc;ference
drug averages I;; =

(ﬁﬁ“?,ﬂ for each of the two sequences i=1, 2. Also calculate U;; and

C writh ' Yyri+Yasra) 77 (Y2;114Yajm2)
‘/1‘,]']5 Wlth Ule = xais el 12 2 N Uij = & 4ynd) 0} '7 and ‘/IJT =

(YyT1+Yiir2)
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Vourm = (Y2iT1—Yay72)
25T V2 .

2. Calculate 8, 2 and 5% as explained in the previous section. Estimate 7 as

f= 32+0T (1 + 1.744826) max (aR,OO4)

3. Apply outliers to 5% of the data. After adding outliers to three subjects, rerun

the above procedure and calculate 7. These outliers are + 1,2,3,4,5,6 a'outliérs.

o Steps in small sample robust procedure using Gini and IQR are as follows '

1. Calculate the test and reference drugs averages with I; T = (Y“T—‘;Y“ﬂl,

Y) Y, Y; Y Y Y,
I = (_17Rl+zﬂ_2 Iyyp = QuitYars) gng [, p = QamtYam) for egch of

the sequences i=1, 2. The robust difference in location is

" Median nr +Median Ior; Mediany, Rj +Mediany, Ri
£T - £R = 2 - 2 .

2. Calculate Uy, and Vij, with Uyr = M, Uyt = M and

Vir = (YIJTI\;_YIJTZ) (Y2]T1—Y2]T2)
J

and Vo7 = 7

3. Calculate the averages for the two sequences

Var(Uyr)+Var(Usp Var(V; Var (Vs
o = ar( 1T); ar(Usr) +% ar(‘u"); ar(Va1) and

Var(U. Var(U. Var(V; Var(V Ii; i
o= ar( 1R)-; ar(Uzp) +% ar( m)-; ar(Vor) and § = 13-5-12]-

For Gini, 0% = (ng) and for IQR, ¢? = (I{Ségs)z. Estimate 7 for the
data above as 7} = 62 + 0% — (1 + 1.744826) max (aR, 0.04). and 75 by the

following procedure. Upper 95% confidence level of 7 is estimated for Gini
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mean difference as

tea = €~ &) + G + 37 — 1+ O max (T + 3
{ ~r-e] (@) &
(Gt zendn) -]
+[-(
[~

(1+6p) (CUR + Zo * ¢UR) (1 + 0p) CUR]2

| 1/2
+ 1+6 (%§5R+Za*§¢UR) : (1+9) CUR] }

- where C? is the as’ymptotically' unbiased variance estimate and
¢ = %%‘ZL {2202} the standard error obtained using equations 4.10 and delta .

method. Similarly, for IQR

Mo = (ér — €r)” + 7hr + 570r — (1 + 6) max (7'12JR +370R: ‘73)
ot - @ e+ (o + 2o o) - 7
e e~ 2
[% (T‘Z/T + Za * JV\T> - 17"2/7’] ' _
———— 2

+ |- VR I
| +[ (1+96) (TUR+Z *2"0UR)+(1+6)%75R] }

where a=0.05, N-36 ni=n2=18, 6p=1.744826, 6=0.04, 72 is the asymptoti-

cally unbiased variance estimate and ¢ = \/ 12;582 ) £ (20)? the standard error

obtamed usmg delta method.

4, Apply outliers to 5% of the data After adding outliers to three subjects rerun

. the above procedure and calculate 17 These outliers are £ 1,2 3 4,56 a.

The section below describes the comparison of the small sample LSCF procedure with

the two proposed procedures. With the ztnalysis of this procedure, the results are summa-
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| Figure 4: Small sample PBE sensitivity analysis

SAMPLE SIZE = 36
3 OUTLIERS
PLOT 'OF ETA VERUS- OUTLIERS -6sigma TO &ésigma

ETA
24

PROC Ls

rized in graph 4. As the outliers are increased in size, LSCF and Gini are most affected.

Gini is marginally better than LSCF. With outliers ranging from -6o to +60, 77 from LSCF v

procedure varied from 1.2 to -1.2 while that of IQR varied from 1.2 to 0.3.

Such a variation in the test statistic changes the conclusion of the hypothesis due

to outliers. Clearly IQR is more resistant to outliers than the LS procedures. In the next

sect‘ion,y validity and power of the LSCF procedure is compared to the proposed procedures.

4.4 Small sample PBE comparison of level and power

Simulation analysis generated data as in table 2. By controlling the input parameters, 7 is

- fixed. These parameters include the various between and within variances and the means

of the test and the reference di'ugs.

By setting the true value of 7 at the boundary i.e zero, calculate the significance level by the
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probability of falsely rejeCting the null. By setting the true vale of 7 at the rejection region,
calculate the power as a function of the probability of falsely accepting the null.- Further
on the basis of MSE, det_erminé the better procedure. The simulation analysis is run for the
. following cases:
1. Mild test drtig‘formulatiron‘outliers which have 3¢ outliers,

2. Mild reference drug formulation outliers which have 3¢ ou‘tliers,

- 3. Mild outliers which have 3¢ outliers for both test and reference drug formulations,

4. Lafgé outliers which have 60 outliers for both test and reference drug formulations.

The values of small and large variances are obtained from publications as seen in previous

chapterS. |

4.4.1 Validity

To test for validity, set the hypothesis at the boundary condition. The hypothesis of interest
is‘ , |
Hy : 7 2 0 : (Non Population Bioequivalent),
H, : 1 < 0: (Population Bioequivalent).
» Thé definition of type I error is Pp,(Reject the Null hypothesis)=a. At the bouﬁdar.y, the

value of 7 = 0 and the probability of the type I error is maximum.

1. Set the true value of 1 = 0 as shown below -

n= (,uT —“',UR)2 + 072~ - 0]22 — max (0122,03) 0p =0

n= (ur — pr)’ + 0% — 0% — max (0%, 0.04) 1.744826 = 0.

One of the possible bbundary condition could be setup by pr = pig and o2, = ok +

max (0%,0.04) 1.744826. As an exam‘pie let the mean differences be set to zero
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. (ur — pr = 0), the variances set to 03=0.3 and 63=0.8234478. Such a setup has true
=0, |

\

2.” After specifying the input parameters, gen‘érate two thousand datasets having a bi-

variate normal distribution of the form

~y .
. ?

) 2 . 2 .
Y N ur opr + 0w  POBROBT .

g 2
Y . MR | \ POBROBT Opp+tOypg

For each of the datasets, calculate 77 and 7jgsy for the LSCF and the two pfoi)osed

procedures.

3. Calculate the proportion of cases when the null is rejected. This proportion fepresents '
‘the empirical probability Py, (Reject Hp) = a. Calculate the mean squared errors

| (MSE) from two thousand 7).

With these steps, the empirical significance level is computed for LSCF and the two pro-

posed procedures.

4.4.2 Pdwer

To compute the empirical power, set the true value of 7 in the alternative condition. The

hypothesié is | )
Hy : > 0: (NonBioequivalent)

H; : n < 0: (Bioequivalent).
Definition of type II error is Py, (Fail to Reject the Null hypothesis) and power = 1 - P(Type

II error).
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1. Set the true value of n less than zero as shown below

7= (ur - “‘Rv)2 + 02 — 0% — max (0ky05) 0p = —0.80, -

0= (ur — pr)’ + 0% — 0} — max (o3, 0.04) 1.744826 = —0.80.

For examplé one of the possible boundary condition setup could be ur - ug = -0.2,

072« =0.34 and a}z = 0.43. Since N1y = -0.80, the null should be:rejected.
2. After specifying the input parameters, generate two thousand datasets that are dis-
tributed as bivariate normal of the form |

, , 2 2
Yin Ur ot + Ot POBROBT
~ N ", |

2 2
Yiir KR POBROBT OBRr+ TR

For each of the datasets, calculate 7 and 7js% for the LSCF and the two proposed

procedures.

3. Calculate the proportion of cases when the null is accepted. This proportion repre--
sents the empirical probability of Py, (Fail to reject Hy) = P(Type II error). We now
have empirical power-as 1 - P(Type II error) for LSCF, Gini and IQR. Calculate MSE

using the two thousand datasets.

The next 'section discusses the findings of the simulation study comparing validity and

power of the present LSCF with the two proposed procedufcs.

4.5 Examples comparing validity and power

The small sample case for simulation bas‘ed-‘uponv the suggested variances of between and
within factors from the FDA guidelines FDA (2001) and from Chow et al (2002) is elabo-

~ rated. The variances are broadly categorized into small and large variance and further with
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small ahd large outliers.

Further the outliers are limited to only one or two subjects out of the twenty sub- |
jects. The outliers are then bifurcated into tWQ main categories, outliers in the test drug or
6ut1iers in the reference drug. These outliers were set based upon the criteria that at least
| 5% of the data contains outliers. AU Co and Cmax are quite easily prone to outliers due -
to prolonged excretion rate of the drug or the absorption rate dependihg upon the subject. -
Calculate validity, power and MSE from the simulated datasets. With this, a comparative

graph is plotted for the three procedures. |

- 4.5.1 Power and level o with small outliers

Graph A.6 plots the power and level « which:are calculated for one test drug outlier. A
~ subject’s tesf drug response was offset by 0o to 4o outliers. The graphical summary is
obiaiﬁed from the type I error table B.13 and power from the table B.14.

}T-h>e results of LSCF and Gini are similar initially. But due to the robust location,
Gini endéd up being the better of the two procedures with outliers. IQR is not efficient
with outliers ahd has >high MSE. Since IQR is less conservative in level, LSCF and Gini are

+ better procedures for data with modest outliers.

452 Pdwcr and level a with large outliers

Graph A.6 plots power and level d which are calculated for two test drug outliers.
However, in this casé, the outliers were ‘both on the test and reference drug formulations.

IQR is more stable than the LS procedurés with large outliers. However, IQR is a
less conservative pfocedure with high signiﬁcahce level. Both LSCF and Gini are severely
‘affected with outliers. LSCF and Gini havé close results and both procedures failed their -

validity due to outliers. Further research is needed to resolve this effect of outliers.
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' CHAPTER V
AVERAGE BIOEQUIVALENCE

The two treatment, two period (2 x 2) érdssoﬂler triél is rdutine]y used to test averagé bioe-
quivallence‘ for two drugs. In this trial, subjects are ‘randor‘nly assigned to two groups, usu- |
ally of eq_uai size. Subjects in the first group receive‘treatr’nenf T folloWed by treatment
'R’ (TR schedule)‘and vice versa for the other groﬁp (RT schedule). A suitable washout
peﬁod ié imposed between treatments in order ’to eliminate potential carryover effects of
- the first treatment. After the administration of each treatment, blood samples are collected
‘at ﬁxéd time points, and fhe concentration of the drug in the blood is quantified. The typi-
cal primary endpoint of interest is the area under the drug concentration versus time curvé
(AUC), which represents the bioavailability of the drug. The two treatments are declared
bioequivalent if their true relative average bioavailability is estimated to be within prespec; '
ified ’bioequivalence limits’ with high conﬁdence (Stefanescu 7& Mehrotra, 2008). :
The normality of 1og(AUC) and log(Cmax) are discussed in the previous chapters.

A two one-sided hypothesis test is followed in the next section.

5.1 Distributional assumptions of metrics in BE trials

For the statistical analysis in BE trials, AUC and Cmax are generally log transformed. The

three most commonly cited reasons for using the log transformed AUC are
e AUC is non-negative
° Distribuﬁon of AUC is highly skewed
- PK models are multiplicative
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- Since the drug concentration at each time is a function of many rvandomi processes (absorp-
tion, distribution, metabolism and elimination) that reasonably would act proportionally
to the amount of drug present in the body, this suggests that the resulting distribution is -

log-normal (Midha & Gavalas, 1993).

52 Design

Table 10 presénts a dataset with two sequences and two periods. There is a sufficient

~ washout period between the two periods to prevent any carry over effect. The desi‘gn sug-

Table 10: Two sequence, two period balanced design
Subject Sequence Periodl Period2

T 1 Yor  Yir
| ’ . .
1 .
m+1 2 Yor Yo
. 2 .
j 2 .

- gested by the FDA (2001) and Devan et al. (2008) is of the form
y,-jk = M + pk + Sj(i) T+ €ijk- é.D

The»respdnse Yijk is the log transformed AUC or log transformed Cmax for treatment k and

subject j within sequence i. s;(;) is the random effect and ei;x the random error. Thus for
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the two sequences and two periods, the responses are

Y1 = T+ + Sj(l)_+ €151,

Yij2 = T+ p2 + Sj(l)v+ €152,

\ Y252 = T2 + p2 + Sj(2) + €2,
 Yoyj1 = Mo+ 1+ Sj(2) T €251.

Assume the random subject effect 5j(i) to be indépendently and identically distributed ‘as‘ '
N@, ¢1) and the randOm erTor €;ji, also independently and identically distributed as -N(O )
¢0), 5;¢) and e;;; are mutually indepehdent (Stefanescu & Mehrotra, 2008). o

Take the difference between the test and reference drug responées as suggesfed in

Stefanescu & Mehrotra (2008). This difference is seen as
Y151 — Y152 = p1 — P2 + €151 — €152,
Y251 — Y252 = 1 — U2 + €251 — é2j2-

The random subject effect is eliminated. The response matrix is thus a multivariate matrix
with two columns that are the log transformed AUC and Cmax differences. In the next

section, the hypothesis to test for ABE is presented.

5.2.1 | Hypothesis

The FDA (2003a) directs testing the difference in location effects using Schruimann’s two

| one-sided hypothesis. The limits 0.8 and 1.25 are fixed by the FDA (2003a). The multi-
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variate hypothesis is of the form |

Apave | 1 a |
Hou:| % | <m08UHp: | 7 | >n125,
A,qua.x ‘ ) A;qu,max '
Hu:| 7 | >m08nHe: | % | <mi2s

A;Umeax S vA;Umea.x

- Set A,u AUC as the mean drfference of the test and reference drugs for AUC and A,ucmaz as

“the mean dlfference of the test and reference drugs for Cmax

5.2.2 LS procedure
For the LS procedure, the location estimate of the difference pT — pp is obtained by the
simple mean difference of the response for the two periods. This is calculated as shown
Zijave = YijTave — yinAuc’
ZijC max = yijTC max yinC max *
The sample averages of the drfferences Zijawc and Z;;,  are Apyc and A)qumaz:j These

- averages are distributed as

Avc N Aavc 1 5

LN
I
b4

AC max AC max
where A Avce = pr — pg for AUC and ACmaz = pr — pg for Cmax. The covariance is

0 o
Ull Ul2
Y=

’ 2
021 09
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. P 2 _ : —_ — .. 7
with of; = var(Zij,c) and 03, = var(Zijo,,,,) and 012 = 021 = covar(Zijaycs Zijomas)-

1523 Componentwise rank method

The Compqnentwis‘e‘ran‘k‘ (CR) method (Hettmansperger & McKean, 1998‘)‘ié. used on

the vector of Wilcoxon signed-rank statistics on ‘each‘componentv. The procedure involves .

setting
'5;4 ) = Zﬂlﬁi—jﬁusgn(xil‘—el,) |
| »Zﬂlf:i—‘_lo?usgn (g — 602)
and for 6 = 0, |
s | EF Geabsm) | 0 (2T E -3
ZF{“(|xi2|)sgn(x?2) : | 2ZF; (-’Bi‘z)‘% |

where F;* is the marginal distribution of | X15| for j=1,2 and F}; is the marginal distribution -
of X1;. Symmetry of thedmarginal distributions is used in the computation of the projec-
tions. We now identify A and B for the purpose of constructing the quadratic form of the

‘test statistic, the asymptotic distribution of the veétor of estimates and the non centrality
:parameter. |

Since the multivariate central limit theorem can be appli‘ed on the project,

e The components of S (9) should be non-increasing functions of 6, and 6,
e Eo(S(0))=0

1 b |
. ﬁS(O)— >Z ~ Ny(0,A)

| .
1
ﬁs(ﬁb) ~ L.5(0)+ Bb| - >0

~ ® SuPp<p
the first two conditions are satisfied. Since under the null-hypothesis § = 0, F'(X;;) has

‘2 uniform distribution on (0,1)'and intrbducing 6 and differentiating with respéct to 6, and
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#,, the A and B matrices are

Ly
. 1
o 3

and ‘ ‘
_[2rnma o
0 2ffF)at

B

where § = 4 [ [ Fy (s) F» (t) dF(s,t) — 1. Hence, similar to the vector of sign statistics,
the vector of Wilcoxon signed rank statistics also have a covariance that depends on the

underlying bivariate distribution. A consistent estimate of § in A is given by

e~ 1 - R,’tR]'t
= — E Xi X.
) 2 ( 1)( l)sgn( t)SgIl( ]t)

where Ry, is the rank of |Xj| in the ¢ component among | X1/, ..., | Xn|- This estimate
{is the conditional covariance and can ‘be used in estimating A in the construction of an
asymptotically distribuﬁon free test. For estimating the asymptotic covariance matrix of )
center the data and then compute. From the programs in the website (McKean, 2009), the
robust spread is estimated. ' |

- The estimator that solves S4(6) is the vector of Hodges-Lehmann (HL) estimates for
‘ the two componehts i.e the vector of medians of Walsh averages for each componént. Like
the vector of r‘.nedians,‘ the vector of HL estimates is not equivalent under the onhogonal
transformations and the test is not invariant under these transformations. This will show ‘
up in the efficiency with respect to the L, methods which are an equivariant estimate and
an invariant test. From the robust analog, the locatiovn and covariance structure for the |
multivariate setﬁng is estimated.

The location estimate of the difference ur — pg is obtained from the Hodges
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Lehmann’s estimate for the differences of the form

ZijAuc = YijTave ~ YijRave

Z

z'jC' max = yijTC max . yinCmax .
The robust location estimate Z is distributed as .

EAUC . N AAUC 12
. ,;

Ny
|
2

AC max AC max

‘where A avc- is the Hodges Lehmann’s estimate of the vector of differences Z;; ,,,, for the

for

Cmax

AUC and A Cmaz is the Hodges Lehmann’s esﬁmate of the vector of differences Z;;

Cmax. These estimates have a covariance structure of

S= LB AR
n

where A and B matnces are calculated from the procedures explamed above in Componen-

twise rank method The variance from the robust procedure is

. 1 S s
s_1| DBlRed EITEORJEOE
n 6 . 1
2 FI(®de2 [ 7Z(t)dt 12 f2(t)dt]"
s_1 2 36miTe
- 3(57‘1’7’2 7'22
where T; \/—ffz(t)dt |
§=1 Z = f;;f;j_l)sgn (Xit) sgn (X;) where R;, is the rank of [ X:| in the #** component

~among |X1t| eens |Xnt| and 7; is estimated as in Koul et al. (1987)
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5.2.4 Ellipse generation -
"To calculate the confidence region, estimate the location and cova’rianée matrix X. The
100(1 — )% confidence region for the mean of a p-dimensional distribution is determined

v‘ 'by 1-such that

‘ _ ‘ 1 a—1 /— | ‘ p(n - 1) . ‘ »
n@-plS @ -p) < —F, . o (a (5.2)
=57 @) < BT o) o6
where Z = 1 LS = (n—l) Z (z; — ) (z; — T)" and z1, 25, rs Ty aTE the sample

4

J_
observations (Johnson & chhem 1992) (here p=2).
To construct a confidence region as an elhpse, the center and the lengths of the

major and minor axes are needed. The direction and lengths of the axes of V

pln-1), N
(n_p) FP"‘P()

NS \/mn -y ,,;_,,<a)

units along the eigen vectors e;. Beginning at the center T or Hodges Lehmann s (HL) '

n(@—-p)' S (E-p) <=

are determined by

estimate, the axes of the confidence region ellipse are

- [p(n—1) e
i\/x\v/n(n_p)prn—P( ) 1

where Se;=\;e; and i=1,2,...,p. The ratios of the /\i are the relafive elongation along pairs
of axes. Construct an ellipse for the multivariate LS procedure and tﬁe Corriponentwise
rank method and study the effect of outliers on this ellipse. In the next section, conduct
sensitivity analysis on an example comparing tl;e LS procedure with the proposed robust

procedure.
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53 Example\of ABE

The datasets used for the sensitivity analysis were procured from the FDA website which

was créated on August 18, 2003. An overview of these datasets is

"In reference to the Federal Register notice on ’-:’Prel‘imivnabrvara‘ft Guidance for
Industry on In Vivo lbioequival'cn'c:e‘Studies Based on Pohp.‘ul‘ati,on and Individual
bieruivalenCe Approaches: Availability”, vol.. 62, No. 249, Dec. 30‘, 19‘97,‘,
- the Food and Drug Administration (FDA) is announcing the availability of
datav th;at were used by the-Ageiicy in support of the proposal and the detailed

description of statistical methods for individual and population approaches. ”

Table 11: Example to illustrate the ABE procedure
ID | Seq | Period | TMT AUC Cmax

1 2 2 -1 10.605305 | 1.525045
24 2. 11 020412 | 1.08636
1 2 1 2| 0.60206 | 1.534026
24 -2 1 2°10.225309 | 1.113943

The dataset in table 11 used in the example is "'DRUG 25A’ from the above s;ource. This
| example iS a two sequence, two period replicate design with twenty four subjects who
arey randomized into one of the two sequences. The subjects in the ﬁrst sequer;ce start
with TR schedule while the second sequence sﬁbjects have an" RT schedule. Thére isa
sufficient washout period between the test and reference drugs to avoid carryover effect.

'L_og transformed AUC and Cmax are shown in the table.
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Take the difference in test and reference drug responses as shown in Devan et al.

(2008). These differences in the two periods of a sequence are

Y17 — YR = BT — 1R + €T — eR,

YoiT — Y2jR = IT — MR + €257 — €2;R-

Estimate Hotelling T? test statistic for the LS and the robust procedures. Add outliers to

the data and‘rer'un‘sensit‘ivity analysis on it. These outliers are :l:1,2,3,4,5,6a o

5.3.1 Hotelling T2 with ABE LS procedure

~ Start with the differences yi;7 — Y1;r and ya 7 — Y2;r. With these differences, calculate
* the sample means and the sample variances. The sample averages of the differences are

distributed as

Aave N Aave | 1 5

LNy
Il
2
)

AC’ max : AC’ max

Hotelling T2 test statistic for the LS procedure is calculated as

,

(Aave — Aavc)

T2 : n (AAUC - AAUC) (AC’max - AC’bma.x) 2_1 —
: (AC’max - AC’max)

where X is the sample variance covariance matrix. For this analysis, set A quc and Acpmaz
" to zero. To this data add outliers varying from -60 to 6 and rerun the above procedure and

collect Hotelling 72 estimates.
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5.3.2 Hotelling T? with ABE CR method

| Stan with the différenceé Y7 — Y1ir and Yo;7 — Yo;r. For thes¢ diffefences, calculate the
. Hodges Lehmann estimate as the location estimate. The robust variance covariance matrix
ibscarlculated using the Componentwise rank method ekplained above (Hetfmansperger &
o MCKe;aln; 1998). The robust location estimates are distributed as |

Awe | N Agvc 12
'n

LN
Il
2

AC max AC max

“where A Auc is the Hodgés Lehmann estimate of the vector of differences Z;,,,. for AUC
~ and A Cmag is the Hodges Lehmann estimate of the vector of differences Z, iicmae TOT Cmax..
The robust spread is & = 1B~1AB~! and is computed as explained in the above section.

" Estimate the Hotelling T robust analog as

<£AUC - AAUC)

T2tog =T {(&wc - AAUC) <£Cmax - ACmax) ] £ (30max _ Acmax) |-

For this analysis, set A 4yc and Ao, to zero. To this data, add outliers that are -60 to 60
, rerun the above procedure and compute the Hotelling T2 test statistic. The results of this

procédure r»are summaﬁzed in graph 5. As the outliers incréase in size, the LS procedure
represented by the blue curve is severely affected. The robust procédure repfesénted by
the red curve is more stable and is more resistant to outliers. Such a varying 77 statistic
could result in an incorrect conclusion of the hypothesis due to outliers. Clearly, Compo-
nentwise rank method performed better as it is less susceptible to outliers. In the following
sectioﬁ a simulation analysis comparing validity-and power of the LS procet'lureiahd the

Componentwise rank method is presented.
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Figure 5: Sensitivity analysis of ABE Hotelling T versus outliers

5.4 Average bioequivalence comparison of level and power

For the simulation study, compare the multivariate LS procedure with the multivariate
Componentwise rank method by controlling the true means and variances. The confidence
region is an ellipse that is constructed by these means and variances. With the ellipse

constructed, count the number of cases where the ellipse falls inside the rejection region.
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Figure 6: Plot of the null and alternative regions

0.2

~ 34 AUC
’ Ho
—‘;z 4;1 r.:o ol1 ulz
5.4.1 Validity
The hypothesis of interest is shown below
A A
Hu: | "7 | <1n08UHm: | “7C | > 125,
Ap,c max A,UIC max
A A
Ha:| 7 | 1080 Hap: | 7% | <125,
AﬂC max Aﬂ«C max

Validity is tested at the boundary where the difference in means are either up — ugp =
l0g.(0.8) or pr — pr = log.(1.25). It is at these locations that the type I error rate is the
highest. Set ur =10g(0.8) and pr = 0 for both AUC and Cmax. The steps for calculating

empirical level are as follows :
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1. Generate two thousand multivariate data sets of samplé size n as shown in_tab‘le‘ 10.1
Let the true mean differences be 0.8 for AUC and Cmax. Calculatc‘the difference in

response Y;;7 — Yi;r such that
Y1;7 — Y1;R. = U7 — R + €157 — €15R,
Y2,7 — Y25R = UT — MR + €257 — €25R.

The resultiﬁg difference matrix has n rows and two columns. Each column represents ‘
. the difference in the response for a subject. Errors are the only remaining random

effects.

Table 12: Response matrix

Subject Sequence AUC difference Cmax Difference |
1 1 (Y1 = YiR) sve  (Yiir — YijR)opmrax
2. 1 L .
1
1
m+1 2 (Yyr = Yyr) sve  (Yur — YijR)opmax
2 ’ . .
. 2
j 2

2. Estimate the LS and the robust (R) estimates of location (one for AUC and the other
for Cmax) and the variance covariance matrix from the procedure descﬁbed in the
above section. Construct the confidence region as an ellipse. The ellipse constructed
for the LS procedure uses the normality assumption and ellipse constructed for the
robﬁst procedure uses the Componentwise rank method (Hettmansperger & McKean,

.1998).

3. Sketch the boundary of the rejection region that is a rectahgular spa‘cev bounded by

the co-ordinates (10ge(0.8), 10g+(0.8)), (1oge(1.25),1094(0.8)), (loge(1.25),l0ge(1.25))
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and (l0g.(0.8),l0g.(1.25)). To interpret this space, the region inside the rectangle

" represents the rejection‘region as shown in the figure 6.

4. Probabllrty of type I error is deﬁned as probabrlrty of re]ectlng Ho when Hy is true.
AEmp1r1cal level is calculated by P(type Ierror) = a = Py (A < pur. — pugp < Q).
~ This level is estimated by the proportion of‘ cases where the ellipse is contained

completely inside the rectangle when in reality it exists at the boundary Calcu—

late mean squared error (MSE) for the LS and Componentw1se rank methods as

'MSEz‘/ ﬁé’f‘_AﬁL

=1
5.4.2 Power

For calculating the empirical power, set the true mean differences to zero Power is cal-
culated asa functlon of the probablllty of type II error. Estimate the probablllty of type II

error as Py, (fail to reject Ho) Followmg are the steps to compute empmcal power

1. Generate two thousand multivariate data sets of sample size n as shown in table 10.
Let the true mean differences be zero for AUC and Cmax. Calculate the difference

_in response Y1;7 — Y1;r such that
Y17 — Y1;R = KT — HR + €1, — €15R,
Y2, — Y2jR = UT — HR + €2, — €2jR.

The resulting difference matrix has n rows and two columns where each column
represents the difference in response for the subject. Errors are the only remaining

random effects.

2. Estimate the LS and the robust (R) estimates of location (one for VAUC and the

_other for Cmax) and the variance covariance matrix from the procedure described
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in the above section. Construct the confidence region as an ellipse. The ellipse con-
structed from the LS procedure uses the nbfmality assumption and ellipse constructed
from the robust procedure uses the Componehtwise rank method (Hettmansperger & |

McKean, 1998).

v. Sketch the boundary of the rejectioh region that is a rectangular space bounded‘by
the co-ordinates (l0g.(0.8), log;(0.8)), (l0ge(1.25),109.(0.8)), (loge(1.25),l0g.(1.25))
and (lqge(O.v8),loge(1.25)). To interpret this space, the region inside the rectangle

~ represents the rejection region as shown in the figure 6.

. Probability of type II error is defined as the probability of failing to reject Hy when
H, is true. Empirical power is calculated as 1-P(type II error)=1-Py, (ur — pr <
—Aor pr — pp > A). The probability of type II error is calculated by the proportion
of cases When any part of the ellipse falls outside the»rectangle. Calculate MSE for

. P (7= A2
the LS and Componentwise rank methods as MSE = 4/ > %.
i=1

- Results of this simulation procedure is discussed in the next section.

5.5 Comparison of level and power of LS and robust ABE

‘In each of these cases, with a sample size of twenty subjects, the simulations were run two

thousand times. From these two thousand datasets, the level and power are estimated for

~ the following cases.

LS and HL estimators plot with one 1.50 outlier

Figure A.7 plots the graph when one outlier is added into the data. The first two

plots are cases with no outliers and the bottom two plots show outliers. The robust proce-

‘dure looks efficient with a mild outlier. Thé LS procedure performs fairly well and the two
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procedures have comparable MSE. Both the procedures have similar significance level and

power while the LS procedure has a mildly conservative level.

552 LS and HLbestimato‘rs plot with two 1.50 outliers

Figuré A.8 plots the graph when two outliers are added into the data. Therob‘ust ‘
procedure is resistant to the outl_igfs. However, the LS procedure‘is sighiﬁcaritly affected by
thé outliers and the shape of the ellipse generated is different from LS proceduré without -
outliers. The signiﬁvcance level of tﬁe robust procedure is very clbse to 5% unlike the
LS procedure. Since the validity of the test of LS procedure is séverely affected, the LS

procedure produces incorrect conclusions in this scenario.

5,53 LSandHL estimators plot with two 3o outliers

From the figure A.9, the robust procedure is moderately affected by‘the two 30
outliers. However the LS procedure is noW invalid as the signiﬁéance level of the test is
severely affected by outliers. |

,From the table B.15, it is seen that wifh no outliers, LS is the best prdcedure. But
even with small outliers, thé LS procedure is compfomised and its validity is ‘susl‘)e‘ct. | The

robust procedure is more stable in the presence of outliers even with small sample sizes. -
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CHAPTER VI
CONCLUSIONS AND SCOPE FOR FURTHER RESEARCH

Bioequivalence analysis is used to compare the rate and extent of the drug absorbed by an
‘ NDA (test drug formulation) with an RLD (reference drug formul-ation). The FDA '(200‘1‘)‘
sug'gested AUC and Cmax as important pharmaco-kinetic parameters to be compared for
eqt_xivalence analysis. Thus average, population and individual bioequivalence hypothesesb

procedures were proposed by FDA (2001).

6.1 Comparison of LS ABE with robust ABE

Average bioequivelence (ABE) was suggested to test the equivalence of the location of an
‘NDA wirh an RLD using AUC and Cmax. A two one-sided hypothesis was directed (FDA,
12001) fer ABE analysis. The reasons for the log-transformation of the pharmaco-kinetic
parameters are explained in the introduction chapter. In ABE hypothesis, emphasis was laid
on resti‘ng whether the difference in location of the test and the reference drugs were bound
 within the acceptable therapeutic difference (+logl.25). Least squared procedures tested
the univariate log-transformed pharmacokinetic parameters. However, the test sta‘tisﬁcs
- -using LS procedures were not resistant to outliers. Further, drugs which had high variability
were not accounted for, in the hypothesis. Since small samples are generally used in phase :
I clinical trials, univariate ABE may be incomplete.
| We suggested a multrvanate two one-sided hypothes1s using both AUC and Cmax
for ABE analysis. In order to counter outliers, Componentwrse rank method, a robust
- procedure was proposed. With the multivariate procedure, we constructed the confidence

region shaped as an ellipse. The rectangular shaped rejection region (FDA, 2001) was also
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‘examined. Sensitivityi -analyses were conducted on ‘the. two oné-sided multivariate LS pro-
cedure and on the two one-sided multivariate Componentwise rank mefhod.‘ Hotelling ’T2 |
test statistic was computc;d for bé)th the LS and robust procedures’ for data With incréasing
outliers. Simulation anaiyses were performed to compare validity and power. |
| As the outliérs increased in size, thc sensitivity analyses indicated that the LS pro-
cedure was severely affected. The T test statistic showed high variability in the preseﬁce
_ of outliers that could lead to incorrect conclusions about the hypothesis. The Component- |
wise rank'method was more fobust and resistant to outliers and gavé consistent T? statistic -

values. Our findings were summarized in table 13.

Table 13: Bioequivalence findings

[ Case | Variance | Outliers | - Best Worst |
ABE Small || <3¢ : LS R
o > 30 R LS
1. Large <3¢ | LS R
' - > 30 R LS
PBE Large Small <30 : LS, Gini | MAD, IQR
Sample o > 30 Sy @Qn LS, Gini
- Large " <3¢ | LS, Gini, S, @,
> 30 ‘ Qn LS, Gini
PBE Small Small <30 LS, Gini IQR
Sample >30|  IQR,Gini LS
Large <3¢ IQR -~ LS
‘ > 30 IQR : LS

Thvei the simulation analySes of ‘small sample multivariate ABE with no outliers
o Showed that both the LS and robust procédufes were comparable when stes'ting at 5% sig-
nificance. The LS procedure had a marginally higher power than thé robust prQCedufef The
MSE, however, was equivalent‘for the two.

The test of validity and prowier of the LS procedure when c‘ombaréd with the robust
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procedure with mild outliers had a different result. In the presence of small outliers (1.50
| outliérs), t'hé validity of the LS procedure was sei/erely affected. ‘The level of the-LS pro-
cedure wa‘s' close to 10%. Since the level of the LS procedure waé-not‘ conservative, the.
power of the teét_ is inconclusive. Contrarily, the signiﬁcance level of the robust procedure
was close to 5%. Additionally, the MSE of the LS procedure was much higher than fhe
'robust procédure. These show that the robust procedure was more efficient in testing the
hypothesis. - .v | ,

.~ With 3¢ outliers in the ciata, the LS procedure was severely affected. The LS pro- -
cedure had a higher level while the robvustv procedure had a more conservative level. Also,
 the robust procedure had a much smaller MSE than the LS procedure. -

| The above leads to the conclusion that the Componentwise rank method on small
sample AB.E analysis is compérable to the LS procedure when the data has no outliers.
Outliers severely afféct the validify, power and MSE of the LS procedure while the robust

procedure is much more conservative and resistant to the influence of outliers.

6.2 LSCEF versus robust procedures for large sample PBE

PBE is assessed to prove bioequivalence of a to-be-marketed formulation when a major for-
mulation change has been made prior to the approval of a new drug. It is tested on patients
who would be taking the drug formulation for the first time. Population bioequivalence is

considered only after average bioequivalence is approved. Chinchilli etal. (1996) proposéd

 atwo sequence, four period cross-over design which the FDA has recommended for PBE

(and IBE) analysis.
* Analysis of population bioequivalence focused on the estimation of the mean dif-
f ~ ference and the total variance of the log transformed BA measures of the two drug formula-

tions. Unbiased estimators of these parameters were generated by the method of moments
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| (Chinchilli & Esinhart, 1996)L Following the estimation ‘of the mean difference and the
- variances, a 95% upper confidence bound for a linearized form of the population.‘BE crite-
rion was obtained. Population BE was established for a log-transformed BA measure when
the 95% upper confidence bound for this linearized criterion was less than or equal to zero
(FDA, 2001). | | o | |
One of the issues discussed previously was the' presence and impact of Qlitliers.
The independence criteria required for Cornish Fisher’s expansion may be violated in the "
present procedure. To examine this, five bootstrap procedures that estimate the upper confi-
dence bound of the linearized criterion was suggested. The bootstrap procedures were more |
: discriminating when the sample size was larger than sixty. Thus, alternative procedures to .
| large sample PBE analysis were proposed. N

The robust procedure which used Qnto estimate the variance was 1east sensitive to
outliers. As ’the outliers increased in size, the LS procedures (LSCF and Gini) were severely
affected. The test statistic 77 showed high-Qaﬁability. The large sample PBE simulation
results were summarized in table 13. |

The bootstrap simulations showed that, with small outliers in the test drng and small
variability in the data; the LS procedures (LSCF and Gini) had the 1argest power, smallest
MSE and a significance level close to 5%. However, small outliers in the tést drug and large
variability in the data showed different results. In this context, the robust procedures Were
comparable to the LS procedures in significance level and power.

Altemately, with smaller outliers in the reference drug, the robust procednres per-
formed much better than the LS procedures. The LS procednres were most cornpromised
when the estimated signiﬁcance level was 15%. The robust procedures however, had a
.’ significance level close to 5%. MSE of the LS procedure. was also higher than the robust
procedure. | | |

With larger outliers in the reference drug, the LS procedures completely failed. The
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s1gmﬁcance level approached 20%. Such a large number renders meaningless power. The
validity of the robust procedure with large outliers was - approxrmately 5%. The robust :
procedures were also consistent with low MSE. |
- To conclude for samples of size larger than sixty, smaller outllers in the test drug
formulation do not severely affect the hypothesrs However, reference drug outliers sigmﬁ- |
cantly affect the overall result Robust procedures handle outliers better and have consistent
/ significance levels with comparable powers and. lower MSE. Finally, the outher occurrences

in the test drug formulation gives differed results than outlier occurrences in the reference

drug formulation.

6.3 LSCEF versus robust procedures for small sample PBE

Phase I of a clinical trial typically used samples of size twenty or less. With such small
sample sizes, the robust bootstrap PBE procedure did not give consistent results.‘ It was
proposed to use the CF expansion using closed ,forms of Gini and IQR to estimate‘the
variance. For the robust location, we suggested the use of median. The sensitivity analysis
clearly showed that the procedure using IQR for the variance estimate was more resistant
- to outliers. Since the median was used for the Gini procedure, Gini gave marginally better
‘results than LSCF.
The two LS procedures, LSCF and Gini, were similar. However, due to it’s robust
location, Gini proved to be a better procedure with conservative level when the data had
outliers. Since IQR was less conservative in significance level, LSCF and Gini were better
‘ procedures when the data had modest outliers (< 30). | |
However, for data with larger outliers (> 30), the LS procedures had a much larger-
‘ signiﬁcance level and a high MSE. Although IQR was stable, it was less conservative with

low power. It was therefore concluded that all the three procedures failed when outliers
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were larger than 3¢0. Further research is needed to resolve the effect of outliers on small

‘ sample PBE.

6.4 Scope for further research

Given the above conclusions, there is a need to conduct additional research to address
several issues. For the large sample population BE situation, robust bootsfrap procedure
was used. Investigation into why the robust procedures gave inconsistent fesuité for small
sample PBE analysis is needed. | |

| All the results were based on normally. distributed pharmaco-kinetic parameters.
The implication of the present designs on non-normal unsymmetric data needs tovbe ex-
~ amined. The propos_edvbootstrap and the LS procedures should be tested agaihst different
distributions of the pharmacokinetic parameters.

- The scope of multivari'flte analysis for PBE should be eXpa_nded. EMEA (2001)
has already suggested the use of T;,,, using Wilcoxon scores té test ,differehccs in time
to reach maxirrium concentration of drug in plasma.' One can readily incorporate AUC,
Cmax, Tmax into the proposed univariate model and with ,the‘deﬁnition of the linderlying
distribution (and covariance structure), test for PBE.V -

For small sample PBE; Gini and IQR were used as estimates of dispersion. Clearly
the outlier analysis shows tﬁat these are not exhaustive and do not perform well in the
présence of outliers. Additi(‘)nal.research using MAD, @,., S, and other robust estimators -
| j to compafe the LS Cornish Fishér’s procedure to the robust Cornish Fisher’s procedures for
small samples is néeded. |

- Finally, for average bierﬁivalence, further work is needed to cdmpare the effect
of ABE on PBE. Multivariate procedures tend to have better power than the univariate

- procedure and the scope of such a usage should be reviewed for more than a bivariate case.
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 APPENDIX A
‘GRAPHS

‘v 'Th¢]1argie sample PBE‘analysisis tiic plot of power versus the samp_levsizey i‘anging frqm» .
100 to 200.3subjects.’ The bottom two graphs are the signiﬁcance level () plotted against'
| sample size to study the effect of outliers on the data. : |
With small sample PBE analysis, plots of level and power against the fixed sarnpies
, 'but;varying' outliers are bp'résented. This plot depicts the effect of test drug outliers compared
to réferencé/drug'outlicrs. There is also an MSE ploited against the same horizontal axis.
For ABE analysis, four ellipses are plbtted along with their rejection regions. The
- first two plots are the plots of the ellipse with LS and robust procedures. The boﬁom two
plots of the éllipscs depict the extent of change in the location, shape and size of the,’ ellipse '

after adding outliers.
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Figure A.7: LS and Hodges Lehmann estimators plot w/ one 1.50 outlier

R rejoction reglon with no oulliere

Ls rqmm:m region with no oulllers
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R rejection roglon with no outiiers

Figure A.8: LS and Hodges Lehmann estimators plot w/ two 1.50 outliers

L8 rejection reglon with no cutliers
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Figure A.9: LS and Hodges Lehmann estimators plot w/ two 3o outliers
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APPENDIX B
- TABLES

2.1 PBE with no outliers

The below table compares the large and small sample PBE with no outliers for '

LSCF with Gini, IQR, MAD, Qn and Sn procedures. .

_ Table B.1: Table of large sample PBE with no outliers.

Sample Size | Method n 795 Conclusion
100 Gini | -0.37467 | -0.15984 Reject Hy
| Interquartile | -0.42121 | -0.11836 Reject Hy
LSCF | -0.30514 | -0.1527 Reject Hy
MAD | -0.50416 | -0.13868 ~ Reject Hy
Qn | -0.34698 | -0.08866 Reject Hy
Sn | -0.45055 | -0.17377 Reject Hy
150 - Gini | -0.18168 | -0.03521 Reject Hy
Interquartile | -0.31484 | -0.06096 Reject Hy
LSCF | -0.11991 0.001625 | Fail to Reject Hy
MAD | -0.26597 | -0.00973 | Reject Hy

Qn | -0.23495 | -0.03431 " Reject Hy |
Sn | -0.20858 | -0.02522 Reject Hy
200 ‘Gini | -0.35981 | -0.18991 |- Reject Hy
Interquartile | -0.40267 | -0.17724 Reject Hy
LSCF | -0.24655 | -0.12594 Reject Hyp
MAD | -0.4557 | -0.20459 Reject Hyp
Qn | -0.3844 | -0.19065 Reject Hy
Sn | -0.42334 | -0.20866 Reject Hy

2.2 Large sample PBE power and level with outliers

e Case (a) small variance: To estimate power set 63, = 0% = 0.15 and 02, = |

ofyr = 0.15. 6=0.5 which sets the true n to -0.27344. Small outliers are 3¢ outliers -
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Table B.2: Table of small sample PBE with no outliers

Sample. = | No5% Conclusion | -
20 LSCF | -0.08958 | 0.35296 | Fail to Reject Hy |.
. IQR | -0.44122 | -0.05353 Reject Hy
Gini | -0.19356 | 0.18934 | Fail to Reject Hy
16 LSCF | -0.3751 | 0.001043 Reject Hy
-IQR | -0.38012 | -0.02661 | Fail to Reject Hy
Gini | -0.40715 [ -0.0308 | Fail to Reject Hy

added to the test or reference drugs and large outliers are 6c outliers added to the test-

- orreference drugs.

Case (b) large variance: To estimate power set 0% = G'%R = 0.25 and 0%yp =
ol r = 0.25. §=0.5 which sets the true 7 to -0.6224 Sméllloutliers are 3o outliers
added to the test or refércnce drugs and large outliers are 60 outliers added to the_tést

or reference drugs.

' Case (c) small variance: To estimate « set 0%, = 0%, = 0.15 and 0%yp = oy =
10.15. 6=0.7234969 which sets the true 7 to 0. Small outliers are 3¢ outliers added
to the test or reference drugs and large ouﬂiers are 60 outliers added to the test or

reference drugs.

Case (d) large variance: To estimate o set o4y = obp=025and o =olp=
0.25. §=1.320984 which sets the true 7 to 0. Small outliers are 3¢ outliers added
to the test or reference drugs and large outliers are 60 outliers added to the test or

‘reference drugs.
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Table B.3: Power with small test drug outliers

N Power
‘ ‘ Gini IQR MAD Qn - Sn LSCF
a 100 0.54 0.27 0.24 - 033 0345 0.71
150 0.76 0.595 0.51 0.65 067  0.883
©200 | 0.895 0.665 0.605 0.81 .0.815 0.962
b100| 0.83 0.69 0.71 0.825 0.79 - 0.909
150 | 0.995 0.995 0.935 . 0.99 098 0.995
200 1 0985 0985 -1 0.995 1
N| - MSE of Power
~Gini ~ IQR. MAD Qn Sn  LSCF
a 100 | 0.0171 0.02540 0.0261 0.0220 0.0204 0.0126
150 | 0.0118 0.01935 0.0185 0.0136 0.0136 0.0093
- 200 | 0.0077 0.0140 0.0143 0.0099 0.0107 0.0065
1 b100 | 0.3331 0.2889  0.2952 0.3014 0.2499 0.3447
150 | 0.1862  0.2184 0.2013 0.1699 0.1537 0.1963
200 | 0.1262 0.172 0.1783 0.1312 0.1329 0.1324
: -_Table B.4: Level o with small test outliers
N Alpha
: Gini IQR MAD Qn Sn LSCF
c100 | 0.015 0.01 0.01 0.01 002 0.018
150 0.025 0.035 0.02 0.02 0.02 0.027
200 | 0.025 .0.025 0.025 0.02 0.03 = 0.017
d 100 0.01 0.01 0.01 0.01 0.01 0.002
150 | 0.025 0.04 0.025 0.03 0.035 0.001
200 0.015 0.01 0.02 0.025 0.015 0.004
N MSE of Alpha
GiniT IQR MAD © Qn Sn LSCF
c 100 | 0.0228 0.0301 0.0315 0.0284 0.0257 0.0164
150 | 0.0157 0.0230 0.0223 0.0177 0.0174 0.0118
200 |0.0099 0.0164 0.0167  0.01229 0.0131 0.0084
d100 | 0.5629 0.4575 0.4828 0.5211 0.4407 0.6096 .
150 |- 0.315 0.3192 03127 0.29044 0.2643 0.3382
200 | 0.2024 0.252. 0.2586 0.2089 0.2091 0.2252
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Table B.5: Power with small reference drug outliers

N .Power ‘
| Gini IQR° MAD "Qn - Sn LSCF
al00 | 0.925 0.58  0.495 0.685 0.705 0.98 |
150 092 0755 0.68 0.855  0.825 0.99
1 200| 0975 0.825 0.77 0925 .- 09 1
| b100 1 0985 0.98 1 -1 -1
150 -1 -1 0995 1 1 1
- 200 1 1 1 1 1 1
N MSE of Power
: Gini IQR MAD Qn Sn LSCF
a 100 | 0.0157 0.0308 -0.0263 0.0150 0.0225 0.0198
150 | 0.0128 0.0275 0.0214 0.0122 0.0175 0.0123
200 | 0.0083 - 0.0150 0.0144 0.0085 0.0120 0.0076
b 100 | 0.8365 0.5734 0.4536 03467 0.4978 1.4128
150 | 0.4571 0.4298 0.2988 0.2235 0.3070 0.6942
200 | 0.2326 0.2035 0.1871 ~ 0.1185 0.1608 0.3882
Table B.6: Level o with reference drug outliers
N “ “Alpha »
. Gini IQR MAD Qn Sn. LSCF
¢ 100 0.08 0.045 0.035 0.035 0.05 0.201
150 0.1 0.08 0.055 0.075 008 0.183
200 0.08 0.065 0.045 0.04 0.055 0.147
1d100 | 0.365 0.1 007 0.135 0.155 0.853
150 0.31 0.15 0.09 018 0175 0.729
200 0.27 0.1 0.06 0.11 0.115 0.604
N ' MSE of Alpha ‘
Gini IQR MAD  Qn Sn LSCF
c 100 [ 0.0206 0.0362 0.0312 0.0196 0.0274 0.0244 |
150 | 0.0168 0.0323 0.0257 0.0160 0.0218 0.0152
200 |{0.0109 0.0181 0.0172 0.0109 0.0148 0.0095
d100 | 1.0836 0.7816 0.6472 0.5397 - 0.7158 1.8724
150 | 0.6314 0.5879 .0.4376 - 03591 0.4555 0.9219
200 | 0.3377  0.2901 - 0.2683 0.1993 0.2493 0.5272
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" Table B.7: Power with large test drug outliers

200

0.2607

110

0.2249

Power ,
Gini IQR MAD Qn Sn  LSCF
1alo0| 025  0.19 0.17 0.215 0225 0.29
150 0555 - 049 042 0.535 0.565 . 0.623
200 | 0.775 0.605 0.555 0.725 0.74  0.827
b100 | 0.05 - 0.66 0.66 0.74 - 0.705 0.009
150 054 0925 0915  0.985 0.965 . 0.26
| 200| 0905 0.98 0.98 1 1 0.7
N MSE  of Power
Gini IQR MAD Qn Sn LSCF
a 100 | 0.0302 0.0284 0.0300 0.0302 0.0251 -0.0309
150 | 0.0171 0.0197 0.0201 = 0.0168 0.0154 0.0177
200 | 0.0105 0.0149 0.0156 0.0118 0.0119 0.0119
b 100 | 1.4039 0.3070 0.3120 0.3652 0.2864 3.0376
150 | 0.585 0.221 0.2075 0.1923 0.1652 1437
200 | 0349 0.1780 0.1832 0.1471 0.1426 0.8689
Table B.8: Level o with large test drug outliers
N Alpha
Gini IQR MAD Qn -Sn  LSCF
cl00| O 0 0 0 0.01: 0.001
150 0.01 0.025 0.02 0.01 0.02 0.003
200 | 0.005 0.015 0.02 0.015 0.02 0.004
d1oo| 0 0.01 0.01 0.01 0.01 0 -
| 150 0 0.04 0.03 0.02 0035 0
200 0. 0.025 0.025 0.025 003 0
N o MSE  of Power :
Gini IQR MAD Qn. Sn  LSCF
c100 | 0.0385 0.0346 0.0368 0.0384 0.0319 0.0404
150 | 0.0218 0.0235 0.0246 0.0215 0.0196 0.0228
200 |0.0133 0.0180 0.0186- 0.0148 0.0147 0.0152
d100 | 1.805 0.4956 0.518 0.6118 0.5033 4.3558
150 | 0.7697 0.3308 0.3248  0.3249  0.2861 2.0568
0.4502 02686  0.2686 1.2338




~ Table B.9: Power with large réferenc_e drug outliers

N Power
Gini IQR MAD Qn Sn LSCF
al00| 099 071 0615 0.86 0.84 1
150| 099 083 076 - 093 0.91 1
200 1 0.88  0.835 096 . 094 1
b 100 1 098 098 1 1 1
150 1 1 1 1 1 1
200 1 0995 0995 1 1 1
N MSE of Power .
: Gini IQR MAD Qn Sn LSCF
a100 | 0.0639 0.0554 0.0436 0.0321 0.0455 0.1074
150 | 0.0360 0.0370 0.0276  0.0209 0.0284 0.0530
200 | 0.0207 0.0187 0.0176 0.0123 0.0169 0.0299
b 100 | 7.5060 0.7479 0.5372 0.6150 0.7340 18.0897
150 |'3.1595 0.4642 03216 03260 0.3957 8.5661
200 | 1.5612 02139 0.1953 0.1629 0.1924 4.8756

Table B.10: Level «a

with large reference drug outliers

- N : Alpha :

- Gini IQR MAD Qn Sn  LSCF
c100 | 0.32 0.12 0.07 0.13 -~ 0.135 0.823
150 | 0275 0.14  0.065 0.12 . 0.12  0.68
200 | 025 0.085 0.055 0.1 =~ 0125 0.576
d100 | 0.885 0.125 0.085 0.17 0.16 1
150 | 0.77 0175 0.11 0.195 0.19 1
200 | 0.665 0.09 0.085 0.155 0.135 1

N : MSE = of Alpha ’

Gini IQR  MAD Qn Sn  LSCF
c 100 | 0.0734 0.0633 0.0511 0.03977 0.0538 0.1238
150 | 0.0419 0.0431 0.0330 0.0260 0.0338 0.0612
200 | 0.0250 0.0223 0.0209 0.0156 0.0205 0.03492
d 100 | 8.0807 0.9725 0.755 0.8637 @ 1 21.021
150 | 3.4794 0.6296 0.4651 0.4751 0.5546 8.7312
200 | 1.7568 0.3093 0.2867 02569 0.2916. 5.0315
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2.3 Small sample PBE power and level

For the setting of a small sample PBE analysis with or without outliers, the outliers

- vary from zero to six sigma.

No Out : implies that the data with no outliers were considered

3sigma(test) : implies that one subject’s Test reading was having an outlier of 3

standard deviations

3sigma(Ref) : implies that one subject’s Reference reading was having an outlier of 3
standard deviations. This was conducted to see if the location of the outliers affected

the power or type I error of the test.

6sigma(test) : implies that one subject’s Test reading was having an outlier of 6

standard deviations.

6sigma(Ref) : implies that one subject’s Reference reading was having an outlier of

6 standard deviations.

2-3sigma(test): implies that two subject’s Test reading were having outliers of 3

standard deviations.

2-3sigmé(Ref) : implies that two subject’s Referencevreading were having outliers of

3 standard deviations.
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Table B.11: Small sample o with LSCF, Gini and IQR

N=20"  Outliers Procedure N Nuppertimit . MSEgra T o |

» None LS 001324 0377943 004378 00395 |
" None CIQR  -0.00516 0382656 ~ 0.088684 ~ 0.1015
None Gini  -0.00019 0.384766 0.055147 0.0405
3sigmactest) | LS -0.06623 0326196 0058345 0.088
3sigma(test) IQR -0.05446 . 0.363629  0.10223  0.116
3sigma(test) | Gini - -0.07937 0347397 0.069362 0.076
3sigma(Ref) | LS  -0.06624 0326326 0.053097 0.0795
3sigma(Ref) | IQR  -0.05712 0360945 0.101018 0.122
- 3sigma(Ref) | Gini  -0.07923 0347594 0.066361 0.072
Gsigma(test) LS  -0.37928 0.145053 0.234938 032
6sigma(test) | IQR  -0.06587 0373889 0.112259 0.123
Gsigma(test) | Gini  -0.29514 024437 0.168275 0.2025
6sigma(Ref) LS  -037932 0.145421 0218136 0.2955
6sigmaRef) | IQR  -0.06858 0371139 0.111897 0.125
6sigma(Ref) | Gini  -029495 0244294 0.162423 0.173
2-3sigma(test) | LS -0.6830 001233 0587483 0529
2-3sigmatest) | IQR  -0.20877 0331378 0.229527 0.2015
2-3sigma(test) | Gini  -0.62149 0.114694 0.500602 0.3785
23sigma(Ref) | LS  -0.68701 -0.01521 0.569765 0.5305
2-3sigma(Ref) | IQR  -0.21054 0329309 0.233034 0.202
Gini  -0.62339 0.111546 0.3585

2-3sigma(Ref)
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Table B.12: Small sample power with LSCF, Gini and IQR

N=20" Outliers | Procedure n Nuppertimit  MSEgTa v
: None LS -0.33511 -0.09585 0.023853 0.7655
None . IQR -0.35466 -0.09831 0.058604  0.691
None ~ Gini -0.34969 -0.09624 0.027208 0.785
3svigma(test) - LS | -041458 -0.1 3581 0.036932  0.8065
3sigma(test) IQR -0.40088 -0.11692 0.072375 = 0.711
3sigma(test) Gini -0.42579 -0.12749  0.0413 0.81
3sigma(Ref) LS -0.4146  -0.1357 0.033862 0.8125 |
3sigma(Ref) IQR -0.40354 -0.11954 0.071861 0.712
3sigma(Ref) Gini  -0.42565 -0.12764 0.039228 0.8275
6sigma(test) LS -0.72763 -0.28359 0.210995 0.8845
6sigma(test) IQR -0.41471 -0.11775 0.081725 0.706
6sigma(test) Gini -0.64399 -0.21253 0.141764 0.866
6sigma(Ref) - LS -0.72767 = -0.28328 0.199033  0.906
6sigma(Ref) IQR -0.41743 = -0.12046  0.081942 0.7005
6sigma(Ref) Gini -0.6438 -0.21299 0.137127 0.897
2-3sigma(test) LS -1.03225 -0.42186 0.565053 0.9275
2-3sigma(test) IQR -0.55668 -0.15988 0.195778 0.7125
2-3sigma(test) Gini -0.96939 -0.32948 0.474843 0.8915
2-3sigma(Ref) LS -1.03536 -0.42489 0.552421 0.955
~ 2-3sigma(Ref) IQR -0.55844 -0.16204 0.200687 0.6895
2-3sigma(Ref) Gini -0.9713 -0.33335 0.465102 0.9305
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2.4 ° Small sample PBE power and level with incremental outliers

In a small sample PBE analysis, the outliefs»range from zero to four sigma. One _

subject’s data had outliers to see thc'efféct of small outliers on the results.

e No Out : implies that the data with no outliers were considered

0.5 sd: implies that one subject’s Test reading was having an outlier of 05 standard

deviations

1 sd: implies that one subject’s Test reading was having an outlier of 1 standard

deviations

1.5 sd: implies that one shbject’s Test reading was having an outlier of 1.5 standard

deviations

2 sd: implies that one subject’s Test reading was having an outlier of 2 standard

deviations

2.5 sd: implies that one subject’s Test réading was having an outlier of 2.5 standard

deviations

3 sd: implies that. one subject’s Test reading was having an outlier of 3 standard

deviations

3.5 sd: implies that one subject’s Test reading was having an outlier of 3.5 standard

deviations

e 4 sd: implies that one subject’s Test reading was haviﬁg.an outlier of 4 standard

deviations
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Table B.13: o w1th LSCEF, Gini and IQR W1th incremental outliers

Alphd = 20) Outliers | Procedure n Nuppertimit MSEgTA o
{24

None LS - 0.01324  0.377943  0.04378 . 0.0395
IQR -0.00516 0.382656 (0.088684 .-0.1015
Gini -0.00019 0.384766 0.055147 0.0405

Ssigma LS 0.011064 0.376451  0.0442 .0.04
. "IQR -0.00796 0.381309 0.088235 0.1005
- Gini -0.00426 - 0.381959 0.055669 0.041

1Isigma LS 0.004526 0.372062 0.045064 0.044
IQR -0.0169 0.376838 0.089676 0.1025

- Gini -0.0126  0.378102 0.056613  0.044

1.5sigma LS -0.00637 0.364821 0.046543 0.051
IQR -0.0274 0.371864 0.091819 0.105

Gini -0.02491 0371981 0.058309 0.05

- 2sigma LS -0.02164 0.354801 0.048923 0.057
IQR -0.03806 0.367389 0.095391 0.1075
Gini -0.04049 0.36439 0.060732 0.0545

2.5sigma LS -0.04126 0.342095 0.052602 0.076
IQR -0.04676 0.365028 0.098596 0.1105
Gini -0.05846 0.356391 0.064335 0.0655 |

3sigina LS -0.06623  0.326196 0.058345  0.088
o IQR -0.05446- 0.363629 0.10223 0.116
Gini -0.07937  0.347397 0.069362 0.076
3.5sigma LS -0.0936 -0.309087 0.066033 0.1075
‘IQR -0.05907 0.364411 0.104787 . .0.118

Gini -0.10148 0.33774 0.075287 0.086
4sigma LS -0.12631 0.289037 0.077153 0.1355
' IQR -0.06248 0.365499 0.106803 0.1225

Gini -0.12684 0.325979 0.083315 0.097
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Table B.14: Power with LSCF, Gini and IQR with incremental outliers

Power(N = 20) Outliers | Procedure N Tuppertimit MSEpTa 7

a None LS -0.33511 -0.09585 0.023853 - 0.7655
IQR -~ -0.35466 - -0.09831 . 0.058604 0.691°
- Gini -0.34969 -0.09624 0.027208 0.785

Ssigma | LS -0.33729  -0.097 = 0.024063  0.767
' IQR-  -0.35573 -0.09792 0.058461 - 0.69
Gini -0.35203 -0.09728 0.027623 0.7845

Isigma LS -0.34383 -0.10037 0.024703 07715 |

- IQR- -0.36338 -0.10163  0.060228 - 0.7055
Gini -0.35908 -0.10027 0.028565 0.784

1.5sigma| LS  -035473 -0.10593 0025943 0.781
QR -037296 -0.1057  0.06247  0.707
Gini  -037046 -0.10506 0.030155  0.79

2sigma LS -0.36999 -0.11364 = 0.02807  0.787
o IQR -0.38308 -0.10977 0.065714 0.708
Gini -0.38552 -0.11128 0.032594 0.8015

25sigma| LS -0.38961  -0.12346 = 0.031482 0.7955
' | IQR  -039216 -0.11326 0.068845 0.708
Gini  -0.40386 -0.11872 0.036177 0.8035

3sigm‘a LS -0.41458 -0.13581 0.036932- 0.8065
1 IQR -0.40088 -0.11692 0.072375 0.711
Gini -042579 -0.12749 0.0413  0.81

35sigma | LS -044195 -0.1492 0.044334 0813 |
IQR . -040621 -0.11848 0.075311 0.713
Gini  -044862 -0.13658 0.047578 0.8185

4sigma LS -0.47466 -0.16504 0.055144 0.826
IQR -0.41005 -0.11926 0.077348. 0.7075

Gini -0.47441 -0.14674 0.055832  0.825
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2.5 ABE power and level with LS and HL estimators

ABE proceduré uses the LS and the Componentwise rank methods with a two one-

sided hypothesis. The oﬁtliers,vary from none to 3¢ outliers. They are as shown:

None : implies that the data with no outliers were considered

1.5 sigma: implies that one subject’s reading was having an outlier of 1.5 standard

deviations

1.5 (2) sigma: implies that two subject’s readings had outliers of 1.5 standard devia-

tions
e 3 sigma: implies that one subject’s reading had an outlier of 3 standard deviations

Subjects with sample size 14, 16, 18, 20, 22 were considered for our simulation. This

meant that each séquence had 7, 8, 9, 10, 11 subjects respectively.
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