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Zero-inflated continuous distributions have positive probability mass at zero
in addition to a continuous distribution. Such type of data can be encountered, for
example, in medical, environmental and financial research. The main focus of this
research is to study the association of nonnegative random variables, both having
a positive probability mass at zero. New estimators of the classical measures of
association, Kendall’s tau and Spearman’s rho, appropriate for the zero-inflated
distributions, are proposed and their asymptotic distributions are derived. Perfor-
mance of the estimators is assessed by a Monte Carlo simulation study. New ideas

are illustrated by a real data example.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background

Statistical concerns related to analysis of zero-inflated data have been identified
as early as in 1955 especially in relation to the estimation of the location para-
meter (Aitchison 1955). The term “inflation” was used to emphasize that the
probability mass at zero exceeds the value coming from a parametric family of
distributions. Such data occurrence is common in medical research and also in the
fields of finance, insurance, manufacturing, economics and engineering, to name a
few. Statistical methodology for such type of data is still being investigated by

statisticians in response to the need in these areas.
Some examples of zero-inflated data are as follows:

Fzrample 1. Household expenditure in Aitchison (1955). If a certain com-
modity is targeted, some households might not be purchasing that commodity. For
example, if one is interested in studying the household expenditure on children’s

clothing, a zero value will be reported for households without any children.

Ezample 2. Marine surveys in Pennington (1983). Particular species of fish
and plankton usually occupies only a part of the total area. In the survey of marine

1



species, zero inflation is brought about by areas unoccupied or maybe unsuitable

for some species.

Ezample 3. Exposure measurements in Taylor, et. al. (2001). Depending
on work schedules, some workers may be required to spend certain time during the
data collection process in control rooms free of contamination. This will give zero

exposure measurements for these workers.

Ezxample 4. Antibody response to the measles vaccine in Moulton and
Halsey (1995). There are several known factors for the results of these assays to
be zero-inflated. One might be due to the passively acquired maternal antibody
by the infants that is interfering to respond to the measles vaccine. A Q-Q plot of

the partial data is presented in Figure 1.1.

1.0 1.5 2.0

Antibody Concentration (IU)

0.5

Figure 1.1: Q-Q plot of measles antibody concentration versus the expected dis-
tribution.



As indicated in the examples above, the non-ignorable zeroes can be at-
tributed to real zeroes, non-response or non-detects, i.e., falling below some limit
of detection. The presence of these zero observations has brought some problems
for researchers, statisticians or data analysts. Due to inapplicability of some of the
existing statistical methods, common, although not always appropriate, practice in
the analysis of zero-inflated data is exclusion or analysis of just the nonzero pairs
of observations in a bivariate case or using average ranks in the nonparametric

procedures.

Association of two or more variables is a very important research topic. The
Pearson’s correlation coefficient, while the most commonly used, detects only linear
association between two variables, it also needs the normality assumption for each
of the random variables. Since real data often violate normality and relationship
other than linear is often of interest, Kendall’s tau and Spearman’s rho are indices
that can be used. They are both estimated as rank correlations, so the relations
are between the rankings, rather than the actual values of the observations. There
have been several adjustments to these rank correlations in the literature that try
to take into consideration tied observations but none of them were designed for
zero-inflated data. Calculating estimates for these measures of rank correlation
using just the nonzero pairs of observations in a zero-inflated data usually leads to

inaccurate results.



1.2 Statement of the Problem

This research will focus on studying the well known measures of association, the
Kendall’s tau and Spearman’s rho. Multiple zeroes in the zero-inflated data can be
seen as a special case of tied observations. The treatment of these measures with
the presence of ties will be studied and compared with a proposed new approach

in estimating these measures.

1.3 Organization of the Dissertation

Background information introduced in the remainder of this chapter includes the
delta distribution and the classical indices of association not only in the continuous
case but also in discrete and categorical cases. A graphical tool will also be pre-
sented. Chapter 2 will give a review of the current literature. Chapters 3 and 4 will
give the proposed estimators for Kendall’s tau and Spearman’s rho, respectively.
The asymtotic distribution of the proposed estimators will also be defined. Chap-
ter 5 will present the simulation plan and the results. This dissertation will end
with the final comments in Chapter 6 which will also outline the future research

plan.

1.4 Basic Definitions

We will define the basic distribution, coined by Aitchison as the delta distribution,
which incorporates the probability mass at zero while the distribution of the posi-
tive values is lognormal. We will also look at the different indices of association for
later comparison. A graphical tool called a chi-plot will also be presented which

will be used for data evaluation alongside the scatter plot.
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1.4.1 Delta Distribution

For the univariate case, assume that a random variable X has continuous dis-
tribution for its positive values with density hx(z) and a positive mass at 0,

P(X=0)=p>0.

Then the distribution function can be written as
fz) = p™[(1 = p)hx(x)]' 7%, (1.1)

where dx = 0if x > 0 and dx = 1 if x = 0. Consequently,

0 ifs<0
Fx(s)=14 p if s =0
p+(1—p)fS hx(z)dz if s> 0.

If hx(x) is a density of a lognormal distribution, X has so-called delta

distribution (Aitchison 1955). The mean and variance for this distribution are
B(X) = (1 - p)a (1.2)
and
Var(X) = (1 - p)8 +p(1 - p)e?, (1.3)

where o and [ are the mean and variance, respectively, of the Ay (x) distribution.

1.4.2 Measures of Association

There are several measures available to study the association of discrete or contin-
uous data. The most common measure for a continuous pair of random variables
is the Pearson’s correlation coefficient, p. Other measures, such as Kendall’s tau,
7, and Spearman’s rho, pg are also used and will be the focus of this study.

)



Pearson’s Correlation Coefficient, p

Pearson’s correlation coeflicient is a measure of linear relationship between two

random variables.

Suppose X and Y are two jointly distributed random variables, the Pear-

son’s correlation coeflicient between X and Y is given by

_ Cov(X,Y)
P VOOV (L4

where Cov(X,Y) is the covariance between X and Y and V(X)) and V(YY) denote

the variances of X and Y, respectively.

From a sample of n paired observations, p is estimated by

- S XY, — (nX xY) (15)

JExz - X2 -l

where X and Y are the sample means of X;’s and Y;’s, respectively.

Some drawbacks of this measure are: (1) it is not invariant under strictly
increasing nonlinear transformations and it is highly affected by extreme outliers,
and (2) it is sensitive to the departure from normality. 7 tends to have large bias
and large variance when calculated from a bivariate nonnormal distribution with

skewed marginals, p # 0 especially for smaller sample sizes.



Kendall’s Tau, 7

Kendall’s tau was proposed by Maurice Kendall (1938) as a measure of association
of two jointly distributed continuous random variables. It is defined as a difference
between the probability of concordance and discordance of two random variables.
A pair of observations is said to be concordant if a larger value of X is more likely
associated with a larger value of Y. The pair is discordant if a larger value of X
is more likely associated with a smaller value of Y. The population Kendall’s 7 is

defined as

T = P[(X1 - Xp)(Y1 - Y5) > 0] — P[(X; — X,)(Y1 — Y2) < 0], (1.6)

J

P(concordance) P(discordance)

where (X3,Y,) is an independent replicate of (X;,Y]). As a difference of two
probabilities, —1 < 7 < 1 with a positive 7 indicating positive association between

the variables and higher absolute value indicates stronger association.

For (X,Y) following a bivariate normal distribution with correlation coef-
ficient p, Kruskall (1958) presented the relationship between Pearson’s correlation

coeflicient and Kendall’s tau.
oo o0 2 )
T = 4/ / H(z,y)dH(z,y) — 1= - arcsin(p). (1.7)

Graphical illustration shown in Figure 1.2 suggests that 7 is a nearly linear
function of p.

‘To get the estimate of tau, let (Xi,Y1),...,(Xn,Ys) be a random sample

from the joint distribution of (X,Y). The Kendall rank correlation statistic K is



1.0

0.5
|

-05
)

-1.0

-1.0 -0.5 0.0 0.5 1.0

Figure 1.2: Kendall’s tau as a function of Pearson’s correlation coefficient in the
bivariate normal model

calculated as

K= Q(X:, Y3), (X;,Y5)) (1.8)

where

1, if(d-b)(c—a)>0
Q((aab)’(ca d)) = { -1, if (d-— b)(c—— a) z 0.

As Kendall proposed, K can be used to obtain a distribution free test of

(1.9)

Hy: X and Y are independent vs. Hy : 7 # 0 where 7 is defined as in (1.6).

The estimate T is based on the statistic K and is defined as

K 2K
7 o= = . (1.10)




It can be shown using standard U-statistic theory (see e.g., Randles and
Wolfe, 1979) that
EF)=r (1.11)

and

Var(7) =

—[2(n - 2)6 + G (1.12)
()
where (; = Cov[(Q(X1, Y1), (Xy, ¥2)), (Q(X1,Y7),(X5,Y3))], ¢ > 0 and
G = Var[Q(X1, Y1), (X2, Y2)].

If there are ties among the observations Xy, ..., X,, and/or separately among

the observations Y7, ...Y,,, function (1.9) is replaced by

I, if(d=0b){c—a)>0
Q" ((a,b),(c,d))=< 0, i (d=b)(c—a)=0 (1.13)
-1, i (d=b)(c—a) <0,

and K i1s now defined as

n—1
-5

12

Q*((Xi, Y4), (X5, Y5)). (1.14)

The estimate, 7, of the Kendall population coefficient 7 in (1.10) is then

redefined as

7= 2K (1.15)

VG -T) (T - T,)

where Ty = n(n — 1), T, = > si(ss — 1) and T, = 3 tm(tm — 1). Here, [ is

the number of tied observations in X and s; is the size of the [** tied group in X
observations and, equivalently, m is the number of tied observations in Y and ¢,

is the corresponding size of this group. Consequently, the denominator of (1.15) is

9



a geometric average of the number of pairs untied on X and the number of pairs
untied on Y. It can easily be seen that (1.15) reduces to (1.10) if there are no tied

observations.
Spearman’s Rho, pg

Another popular measure of association is the Spearman’s rho. Let (X7, Y1), (X3, Ys)
and (X3,Y3) be independent random vectors with the same distribution as (X, Y").
Then

ps = 3P[(X1 — X,)(Y1 — Y3) > 0] — 3P[(X; — X,) (V1 — Y3) < 0. (1.16)

The coefficient pg is proportional to the difference between the probabilities
of concordance and discordance of the random vectors (X7, Y¥7) and (X3, Y3), where
X5 and Y3 are independent variables with the same marginal distributions as X

and Y7, respectively.

For the bivariate normal models with correlation coefficient p, Kruskall

(1958) similarly has shown that
ps = 12 F(z)G(y)dH (z,y) — 3 = — arcsin (5) : (1.17)
N 7

The rank-based estimator of this correlation parameter was introduced by

Spearman in 1904 as

63 i1 D
n(n?—1)’

rs =

(1.18)

where D; is the difference between the ranks of X; and Y; in their separate rankings.

10



1.0

0.5

~-1.0

Figure 1.3: Spearman’s rho as a function of Pearson’s correlation coefficient in the
bivariate normal model

With the presence of ties among the n X observations and/or separately

among the n Y observations, the estimate in (1.18) can be redefined as

b _Wo-6%L, D - LT+ T,) "
VW -T)Wo-T,)

where Wy = n(n? — 1), T, = > si(s? — 1) and T, = 3 tm(t2, — 1). Similarly
to Kendall’s 7, [ is the number of tied observations in X and s; is the size of
the I*" tied group in X observations and, equivalently, m is the number of tied

observations in Y and t,, is the corresponding size of this group.

11



Discrete Case

In a discrete case, ties can be viewed as a combination of three different scenarios
(see, e.g., Liebetrau, 1983). Given (X1,Y7) and (Xs,Ys), they can be tied only on
X, ie, (X1 = X,,Y) # Y;) with probability ¥, or tied only on Y, ie., (X; #
X,,Y] = Y;) with probability 7} , or tied on both X and Y, ie., (X; = X5,Y] = Y3)
with probability 7;*¥". The range of 7 depends on the probability of ties, therefore,
(1.6) will not be suitable for discrete data. In this case, multinomial sampling is

more appropriate. If p;; is defined as P(X = z;,Y = y;), then the Kendall’s tau,

denoted by 7, for discete case, can be defined as

Tc — 7D

Kl - Zf:ﬂli) (1 e P’ij)} 172

Ty = (120)

under the multinomial sampling model and 7¢ is the probability of two randomly
selected members of the population that are concordant and 7p is the probability
that they are discordant. Also, 1— Zle p?, = 1—mX —m" is the probability that
XY

the observations are not tied in Y and equivalently, 1 — ijl pij =1—7mf —m;

is the probability that the observations are not tied in X.

Given that X and Y discrete variables are jointly sampled then (1.20) can

be estimated by the formula

o~

b (121)

2 x (C — D)
[(nz —>.n%) (n2 _ j”ij)]l/z

where n;;s are the observed frequency. Also, C' is the number of concordant pairs

and D is the number of discordant pairs.

12



Similarly, the Spearman’s rho can be estimated by the formula

_ X, X, mRECG) s

1_12 [(n3 - nf’+) (ng - Ej nig)} v

where
R(i) = an+ + ”;* - % (1.23)
k<i
and
C(j):%:mﬁ%—% (1.24)

Measures of Association for Categorical Variables

For two categorical variables, a contingency table is a tool in understanding their
joint distribution. An example is shown in Table 1.1. Here, the two variables are
tabulated, one as a row variable and the other as a column variable. The categories
(e.g., present or absent) are shown for each variable and the frequency counts for
each possible combination of categories are presented. The marginal totals are also

shown for each of the variables.

First Variable

Second Variable | Present | Absent | Totals
Present n11 19 N1+
Absent o1 99 iy

Totals N1 N2 n

Table 1.1: Example of 2x2 contingency table for two categorical variables

Given a contingency table, several measures of association have been pro-

posed like the ¢ coefficient for 2x2 tables; Pearson’s C' (contingency coefficient) for

13



symmetric contingency tables larger than a 2x2; and Cramer’s V' for asymmetrical

tables.

Given a contingency table for variables measured in ordinal categories such
as low/medium/high, with a large number of tied ranks, the gamma coefficient, G

is used as the appropriate measure of association, defined as

C-D
=5 = , 1.25
9=7=F77p (1.25)
The population version of gamma is
I—[c - Hd
= —. 1.26
(b (1.26)

1.4.3 Chi-plot

In addition to scatter plot of raw data and ranks, association between random
variables will be graphically illustrated using chi-plots. These were originally pro-
| posed by Fisher and Switzer (1985), and later expanded in Fisher and Switzer
(2001), where they showed how a single chi-plot can highlight different forms of

dependence.

To generate this plot, given a random sample of n pairs of random samples

from a bivariate distribution, one should determine the following quantities.

1
H, = 1#(j7éz':Xj§Xi,Yj§1€), (1.27)
n—
1 o
F, = ##1:X; < X5),
n—1
1 s
G = c#(j #1:Y; < Y), and
n—

14



It can be seen that these quantities depend entirely on the ranks of the
distributions. Fisher and Switzer proposed that the chi-plot be a scatter plot of
the pairs (\;, xi), where JA; is the distance between the observation (z;,y;) and the
center of the dataset and yx; is a function of the signed square root of the traditional

chi-square test statistic for independence in a two-way table. These are defined as

H, ~ FG,
Xi = ! G T (128)
{Fi(l - F)Gi(1 ~Gy)}?

N o= 4Simax{(Fi—0.5)%,(Gi—0.5)%}, (1.29)

where x; € [-1,1].

In order to help with the interpretation of the chi-plot, Fisher and Switzer
recommended that a pair of horizontal lines be displayed showing +c,/+/n, where
¢, is selected such that approximately (100 x p)% of pairs (A, x;) lie between these
lines. They reported ¢, values 1.54, 1.78, and 2.18 that correspond to p = 0.90,

0.95 and 0.99, respectively, obtained through simulations.

Figures 1.4 and 1.5 are shown to illustrate the expected behavior of the chi-
plots with two independent random variables and with the presence of increasing
monotone association. Data were randomly generated from a bivariate standard
normal distribution with n = 100 and correlation p = 0.0, 0.20, 0.50, 0.95. The left
portion of each figure shows the scatter plot for each case while the corresponding
graph on its right is the chi-plot. The horizontal lines represents the 95% control
limit, which suggests that 95% of the y; values should fall within these lines if
there is no association between the variables. The points depart from this band
as the association becomes more prominent. In Figure 1.4(b), majority of the

points are within the 95% band which indicates the lack of association between

15



the variables as depicted in its corresponding scatter plot in Figure 1.4(a). As the
correlation coefficient is increased, the points depart from the band which leads to
a picture similar to the one shown in Figure 1.5(h). In this figure, there is evidence

of monotone dependence between the two variables.
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Figure 1.4: Sample chi-plot. Left column shows the scatter plots and the right
column their corresponding chi-plots, for simulated samples of size 100 from the
bivariate normal distribution with correlation coefficients, 0.0 and 0.20, respec-
tively.
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Figure 1.5: Additional sample chi-plot. Left column shows the scatter plots and
the right column their corresponding chi-plots, for simulated samples of size 100
from the bivariate normal distribution with correlation coefficients, 0.50 and 0.95,
respectively.
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Chapter 2

LITERATURE REVIEW

Several studies have been published regarding the location parameters for single,
paired or independent samples having a mass at zero, the earliest was Aitchison
(1955). Examples have been provided to illustrate the problem at hand, one of
which is the analysis of household expenditure on a certain commodity. Some
households may not use or buy the product which results to a zero observation.
The presence of these cases skews the distribution which can then be approximated
by a lognormal curve. Aitchison proposed efficient estimates of the mean and
variance. He further applied his results using several distributions and then used

real data as examples.

The concepts presented by Aitchison were used by Pennington (1983) in
finding efficient estimators of abundance for fish and plankton surveys. He pointed
out that inflation at zero can also be observed in marine survey, which is brought
about by having areas that are not occupied or unsuitable for some species. He
applied Aitchison’s estimators on ichthyoplankton survey and concluded the ef-
ficiency of the mean estimator based on the delta-distribution due to the large
variability of the log of the nonzero values. He was also able to extend Aitchison’s

work and presented an estimate of the variance for the estimator of the mean.
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Owen and DeRouen (1980) also studied the mean estimation with zero-
inflated data. In addition to just having zero observations, they also looked into
having a left-censoring and a combination of both and used the mean square error
approach. They reported that the maximum variance unbiased estimator of the
zero inflated mean has lower MSE than the MLE with just the nonzero censored

data.

Several other papers were published that dealt with zero-inflated data. One
of the main motivations for this research was the study by Moulton and Halsey
(1995). They presented a measles vaccine data from an immunogenicity study on
sera collected from children 12 months of age. The zero values in this data arise
from values falling below a limit of detection. A mixture model approach using

lognormal distribution for the nonzero values was used.

An interesting point to further illustrate when zero-inflated data can occur
was made by Taylor, et. al. (2001). In their paper, they presented the study
of exposure measurement falling below a fixed limit of detection. In this type of
data, at least 20% of the data are expected to fall below the set limit of detection,
which give rise to the zero-inflation problem. However, they pointed out that it
is false to assume that all zero values are due to the fact that the observed value
is below a limit of detection. Some of those are real zeroes which were observed
from personnel assigned to work in a controlled environment for a certain period

of time.

Bascoul-Mollevi, et. al. (2005) presented several two-part statistics that
can be used to analyze paired data from a mixed distribution. These statistics
are a sum of a test of proportions (for the count of zero values) and a parametric

or non-parametric statistic comparing the means from two paired samples. The
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test of proportions is based on a x? distribution with 1 degree of freedom (d.f.)
and the test for the nonzero value is based on a statistic that also tends to a x?
distribution with 1 d.f. The resulting statistics tend to a x? distribution with 2 d.f.
These tests were proposed by Lachenbruch (2001) who considered two independent
groups. Both papers compared the two-part statistics with the usual tests used
in testing difference in proportions and tests in difference in means. Lachenbruch
concluded that the two-part statistic performed better if the larger proportion of
zero values corresponded to the population with the larger mean. Bascoul-Mollevi,
et. al. concluded that all tests were efficient for the case when small number of
zero values corresponded to the population with the larger mean. On all other
cases, the two-part statistic performed better, thus, showing consistency between

the independent and matched-pair scenario.

Lachenbruch (2002) revisited and summarized the studies he had presented
regarding the analysis of data with excess zeroes. The two-part models that he
presented considered the nonzero part having continuous distribution rather than
Poison or negative binomial. From his paper in 2001, he only considered the t-
test and the Wilcoxon test, and the two-part tests using these tests. He further
studied the size and power of all the tests he presented and later concluded that

the two-part models are useful alternatives to the usual t-test and Wilcoxon test.

Zhou and Tu (1999) also compared means of independent populations hav-
ing zero observations. They looked into the analysis of medical cost data having
significant zero values from different patient groups. The problem was recognized
when in the first intervention group with 142 patients, 108 of them were not hospi-
talized, and therefore, no charges were incurred from them. From the second group

with 113 patients, 85 were not hospitalized. And from the control group with 119
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patients, 98 were not hospitalized. Due to the inappropriateness of standard tests
like the analysis of variance, they proposed to use the Wald test and the likelihood
ratio test in which they found that both have reasonable power to detect true dif-
ference in the means. They argued that both tests performed satisfactory based
on their simulation results. The power of both tests are equally comparable and
the type I error rate of the Wald test is relatively close to that of the likelihood
ratio test, especially when the sample sizes are large. Overall, they concluded that
due to the ease of implementation and computationally being more efficient, the

Wald test was preferred over the likelihood ratio test.

Daoud (2007) extended the two-part tests to comparison of means in k&

independent populations with zero inflated distributions.

Kendall’s tau was proposed to measure the strength of dependence be-
tween two continuously distributed variables and was first introduced by Kendall
in 1938, applied in solving psychology related problems, while Spearman intro-
duced his measure of rank correlation in 1904. Kendall, et. al. (1939) determined
the theoretical sampling distribution of Spearman’s rank correlation coefficient.
Then Kendall (1942) proposed a coefficient of partial correlation. The motivation
was that one can naturally inquire that a significant rank cofrelation between two
ranked observations maybe due to the correlation of both qualities with some more
fundamental quality. In 1945, Kendall studied the effects of tied ranks on the co-
efficients of rank correlations. If observations between the i** and k** observations
are ties, the midrank method, (i + k)/2, is used to calculate the rank of these
observations. He presented the adjustments for the calculation of the Kendall’s
and Spearman’s rank correlation coefficients and further discussed them in more

detail in his book together with Gibbons (1948). Hollander and Wolfe (1999) also
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discussed the concepts of the rank correlation coefficients. They noted though as a
comment that the modified formula taking into consideration the presence of ties
works best if the size of the tied observation in either variables or both do not
represent a big percentage of the data. Noether (1967) proposed a consistent esti-
mator of the variance of 7 based on the test statistic proposed by Kendall. Flinger
and Rust (1983) also proposed a consistent variance estimator that corrects the
problem of obtaining negative values by Noether. They further indicated that even
with discontinuous distribution, the function F(z,y), n'/2(F — 7)/5;, where 7 is
the proposed estimator of 7 with corresponding standard deviation 7, still main-
tains a limiting standard normal distribution. Samara and Randall (1988) further
studied the subject and also proposed their consistent estimator for the variance of
Kendall’s tau. A corresponding modified Kendall’s test statistic was also defined.
Cliff and Charlin (1991) mentioned that only when there are no tied observations

is it possible to attain the limits of Kendall’s 7 which is [-1, 1]. In their paper,

they also generalized the formula for estimating the variance of the sample tau.

An extreme case of tied observations can sometimes lead to having a di-
chotomy in both rankings of two variables, i.e., the values can just be classified as
either present or not present. This gives rise to the 2x2 contingency table (see,
e.g., Kendall and Gibbons, 1948). The Kendall’s rank correlation coeflicient in this
case is calculated using the observed frequencies and the marginal distributions.
Contingency tables were further extended to 2xc, rx2, and rxc tables and they
were used to study the relationship between the categorical variables of interest as

presented by Agresti (1990, 1996) and Stokes et. al. (1995).

In modeling multivariate distributions, one has to take into account the

effects of the marginal distributions as well as of the dependence between them.
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In order to achieve this, Sklar (1959) first introduced the concept of a copula. A
copula is a function which couples a joint distribution function with its univariate,
uniformly distributed margins [U(0, 1)]. It also aids in understanding the concept of
monotone dependence between continuous variables. Literature in different areas
of research, especially in the field of finance and banking have been published
using this concept. Nelsen (1999) published a comprehensive introduction and
background on copulas. In the simplest way, Sklar’s theorem can be summarized
such that, if H is a bivariate cdf with marginals F' and G, there exists a bivariate
copula C wherein for all (z,y) € R, H(z,y) can be written as C{F(z),G(y)}. If
F and G are continuous, then C' is unique, otherwise, if they are discrete, there
is no unique way to express the joint distribution as a function of the marginal
distributions unless on Range(F')x Range(G). Given the copula C, the Kendall’s
tau can be defined as 7 = 4 [ [} C(u,v)dC(u,v) — 1. And also, the Spearman’s
rho can be defined as p = 12 fol fol wvdC(u,v) — 3.

Herath and Kumar (1991) applied the use of copulas in the field of engi-
neering economy, specifically in the area of project risk and regression analysis for
forecasting. They attempted to look for an alternative for the Pearson’s product

moment correlation due to its limitations.

Wang (2007) studied the relationship between semen and plasma viral loads,
both zero-inflated variables, using the Clayton copula model and proposed a mod-
ified estimate for 7 for bivariate truncated data. A goodness of fit test was first
introduced to check if the Clayton copula model assumptions were met. The
nonzero part of the data was expected to retain the Clayton copula distribution
after truncation. The modified 7 uses only the nonzero pairs of observations. From

the example given, 85 pairs of plasma and semen viral loads were collected but
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only 19 pairs were used for the modified tau. The scatter plot of the data is shown
in Figure 2.1. The graph illustrates that the pairs of observations are grouped
into four different sections namely, Section I with probability pge; Section II with
probability pig; Section III with probability pg; and Section IV with probability

1 — (poo + p1o + Po1)-
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Figure 2.1: Scatter plot of plasma and semen viral loads from Wang (2007).

In terms of tied observations, this sample data shows a big part of data tied

at zero (0) with Poo, Po1, P1o > 0.

Most of the coefficients of dependence or association have been defined for
continuous random variables. If applied to discrete data, some properties of these
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dependence measures are lost. NeSlehova (2007) generalized the rank correlation
measures for non-continuous random variables. Since copulas are defined to be
unique in the continuous case, a technique was proposed that will allow the ap-
plication of the copulas to the non-continuous random variables. An important
finding was indicated on the role of the standard extension copula that was first
introduced by Schweizer and Sklar (1974). This standard extension copula, com-
pared with the role of the unique copula with the continuous variables, allowed for

the generalization of the rank correlation measures.

With discrete data, the limits [-1,1] are also not attainable. Denuit and
Lambert (2005) studied the constraints of the dependence measures in bivariate
discrete data. They presented a continuous extension of a discrete variable and
focused on the Kendall’'s tau. They indicated that a discrete variable can be
associated with a continuous random variable X* defined as X* = X + (U — 1),
where U is a continuous random variable on (0,1) and is independent of X. They
showed that the extension preserves the concordance order, that is, (X1,Y]) <.
(X2, Y2) = (X7,Y) <. (X3,Y5). In general, (X1,Y]) <. (X2,Y2) denotes that
(X2, Y>) is more concordant than (X, Y1) if P(X; < s,Y; <t) < P(Xy < s,Ys <)
for all s,t € R? given that (X1,Y]) and (X,,Y;) are independent and identically
distributed. In preserving the concordance order, the continuous extension also
preserves the Kendall’s tau, that is, 7(X,Y) = 7(X*,Y™). They also presented the

boundaries of the Kendall’s tau using continuous extension of discrete data.

Mesfioui and Tajar (2005) established monotonicity of 7 and p with re-
spect to concordance ordering described above. They also studied the dependence
measures for discrete data and also proposed the use of continuous extension. The

continuousation is done such that X* = X +U where U was chosen to be uniformly
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distributed on [0,1]. They also established that p is larger than 7 for positively de-
pendent discrete random variables and derived the maximum limits of the estimate

for 7 for discrete data.
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Chapter 3

PROPOSED ESTIMATOR OF
KENDALL’S TAU

Kendall’s tau, 7, a widely used and accepted measure of association, is defined as

7= P[(X1 = Xp)(Y1 = ¥2) > 0] - P[(X; — X5)(¥1 — Y2) < 0], (3.1)

where (X,Y]), (X3,Y2) are independent replicates of jointly distributed variables
X and Y.

3.1 Adjustment of Kendall’s Tau with Ties

The formula (3.1) was proposed under the assumption that both X and Y have
continuous distribution. However, as it was defined in (1.13), if two pairs of ob-
servations are tied in either X, or Y, or both, a score of zero will be given to be
accounted for in the calculation of K in (1.14). Similarly, the denominator has to

be adjusted and the estimator is defined in (1.15).

If there are no paired observations, there is a total of n(n — 1)/2 pairs,
which is also the sum of number of concordant and discordant pairs. In a simple
case, if a single value in X is tied s times, there will be s(s —1)/2 pairs with those
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observations only. Then, if there are [ of these values, each tied in varying s times,

then there is a total of

T,=Y si(si—1)/2 (3.2)

l

ties in X.

Similarly for ties in Y, we can define

Ty = bwltm — 1)/2. (3.3)

Therefore, these will lead to the redefined formula in (1.15). This estimator
will always be greater than that without the adjustment on the denominator, i.e.,

still use n(n — 1)/2 even with ties.

Zero-inflated type data is a special case of tied observations, under the
assumption that there is a very small or nearly zero chance for the continuous part
to have ties. In this case, there will only be one tied value observed ng; in X only,
nio in Y only, and nge in both X and Y. Incorporating these in (3.2) and (3.3),

will lead to

where ngg = number of zero pairs of observations; ng; = number of cases when

z =0 and y > 0; and n,;p = number of cases when z > 0 and y = 0.

The denominator of (3.4) is a geometric mean of the untied pairs of X

observations and untied pairs of ¥ observations.
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3.2 Proposed Estimator of Kendall’s Tau, 7*

Since the estimator (3.4) is not a MLE of Kendall’s tau defined in (3.1), and it
was pointed out in Hollander and Wolfe (1999) that the adjustment for ties is
only satisfactory as long as the number of pairs of observations that are tied in X
and/or in Y does not represent a sizable proportion of the total number of pairs,
we propose a new estimator 7%, being an estimator of (3.1) for the case of pairs

being tied at 0 on at least one variable.

Proposition 1 Let (X1,Y1) and (X5,Y2) be independent and identically distrib-
uted random vectors, each with joint distribution function H. Then the population

Kendall’s T given by (8.1) is

" = p%ﬂ'n + 2(poop11 — PoiPio), (3.5)

where 111 15 the population Kendall’s 7 defined in (3.1) for the pairs of positive
observations, (X > 0,Y > 0), and popo = P(X =0,Y =0);p10 = P(X > 0,Y =
0);por = P(X =0,Y > 0); and p1; = P(X >0,Y > 0).

Proof. Let (X;,Y]) and (X5, Y,) be independent and identically distributed. In

the same manner as (1.6), we will define

7" = P(concordance) — P(discordance) (3.6)

s

P(C) P(D)

Using the total probability formula, we can first derive P(C).
P(C) = Y P(C|Xq,Yu, Xia, Vo) P(Xar, Yir, Xz, Yoo)
Vi
- P(C’Xl - O,Yl = O,XQ = O,YQ == 0)
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Similarly,

XP(X;=0,Y,=0,X,=0,Y, = 0)
FP(C|X,=0,Y;>0,X,=0,Y, =0)
XxP(X;=0,Y;=0,X,>0,Y, =0)
+P(C)X;=0,Y, =0,X, =0,Y; > 0)
XP(X; =0,Y;=0,X,=0,Y, > 0)
+P(C|X, =0,Y1 =0,X, > 0,Y; > 0)
xP(X;1=0,Y1=0,X,>0Y, >0)
+:

+P(CIX;>0,Y;1>0,X,=0,Y, =0)
xP(X;>0,Y; >=0,X,=0,Y, =0)
+P(C|X; >0, >0,X, =0,Y, = 0)
xP(X;>0Y1 >0,X,>0,Y =0)
+P(CIX; >0,Y1>0,X,=0,Y, > 0)
xP(X;>0,Y, >0,X,=0,Y;, >0)
+P(C|X,>0,Y;>0,X, >0,Y, >0)
XP(X;>0,Y; >0,X, > 0,Y; > 0)

pSO(O) + poop10(0) + Poopo1 (0) + poopr1

+ -+ 4+ p11poo + P11P10(0) + P11001(0) + P?lﬁl

PooP11 + P11Poo + P%ﬂ'u

PflTu + 2poop11-

P(D) = p1opo1 + Po1P10-
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Substituting, (3.7) and (3.8) in (3.6), we will get (3.5), which completes the

proof. n

It can easily be seen that 7* = 77; when there are no tied observations in

both variables, i.e., pgo = p1o = por = 0 and py; = 1.

From Proposition 1, an unbiased estimator of 7* is defined as
T = P T + 2(Poobu1 — Poipio)s (3.9)

where p;; = n;;/n for i = 0,1, j = 0,1 and 7] is given by (3.4) calculated from

the nonzero pairs of observations.

A simulation study will be used to investigate the properties of the proposed

estimate.

3.3 Asymptotic Distribution of 7

The asymptotic distribution of the estimator 7* will be determined partly using
the delta method (see, e.g., Agresti, 2002). Given that p is the vector of cell prob-

abilities in a multinomial distribution and p is the vector of sample proportions.

Theorem 1 Let g(p) denote a differentiable function of {p;;}, with sample value

g(p) for a multinomial sample. Let

0
Gij = g(p)’ where 1,7 =10,1 (3.10)

Op; i

Then,

Valg(®) — g(p)] B N(0,0%), (3.11)
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where the asymptotic variance is defined as
2
o = Zpij¢7.2j - (Zpij¢ij> : (3.12)

Using Theorem 1, the following proposition states the asymptotic distribu-

tion of the proposed estimator, 7*.

Proposition 2 Suppose (ngo, no1,m10,711) have a multinomial distribution with
cell probabilities p = (poo, Po1, P10, P11) - Let n = ngo + nor + nio + n11, and let
D = (Poo, Poi, P10, P11)" denote the sample proportions, where p;; = ni;/n. Then

V(T — %) KA N(0, 0’%;) where

U%: = 27" (poo + p11) — P11 711 (2P — Bpoo — 4p1iTu) + 4porpro — 472 (3.13)

Proof. The proof of E(7"\*) is straightforward and since 717 is an MLE of 7, and

7* is a function of this MLE, then 7+ is an MLE of 7*.

To derive the asymptotic variance, first define 7* as a function of p. We
have g(p) = p? 711 + 2(poop11 — Po1p10)- The elements of ¢;; of @, given by (3.10)

are: ¢gp = ag(P)/apoo = 2p11, 11 = 2p11Ti1 + 2Doo, Po1 = —2p10, and @19 = —2po;1.

And consequently,

sz'jﬁb?j = poo(2p11)? + p1(2p11711 + 2poo)® + Por(—2p10)? + pro(—2p01)?
_ 2 3 2 2 2 2 2
= 4poop1y + 4P i1 + 8PT1PooTi1 + 4p1ipge + 4po1pio + 4p10poy

Zpij ?j = 27"(poo + pu1) — P%1711(2P11 — 6poo — 4p117i1) + 4porpro,  (3.14)

where (poo + p11) = 1 — (po1 + p1o) and (po1 + p1o) = 1 — (poo + p11), from 1 =

Poo + Po1 + P1o T P11-
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Next,

2
(Z pij@j) = [poo(2p11) + p11(2p11711 + 2P00) + Po1(—2p10) + Plo(—2P01)]2

= [4poop11 + 2]3%17'11 - 4]301]310]2
2
(Z pij¢ij) = 47 (3.15)

Substituting (3.14) and (3.15) in (3.10) will give the desired result in (3.13). =

As a consequence of Proposition 2, an estimate of the standard error of g(P)

is given by,

A~ — P, P oy e e e e, ~2
G — \/27'*(1300 + P11) - p1127'11(2p11 — 6P — 4]3117'11) + 4po1p1o — 47*

~ 7 (3.16)
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Chapter 4

PROPOSED ESTIMATOR OF
SPEARMAN’S RHO

Another commonly used measure of association is the Spearman’s rho. Given
(X1,Y1), (X2,Y2) and (X3, Y3) are independent replicates of (X, Y), the population

Spearman’s p is defined as
ps = 3(P[(X, — X3)(Y1 = Y3) > 0] — P[(X; — X5)(Y1 = Y3) <0)). (4.1)

where X5 and Y3 are independent variables with the same marginal distributions

as Xi and Y}, respectively.

4.1 Adjustment of Spearman’s Rho with Ties

If there are tied ranks in X, or Y, or both, the estimator in (1.18) has to be
adjusted. If there are [ distinct tied observations in X, each having varying size s

then we can define

T, =) sisi—1) (4.2)

!
ties in X.
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Similarly in Y, we can define

Ty= > tm(t2, —1). (4.3)

Therefore, these will lead to the adjusted formula in (1.19), which we are
stating here again.

Wo — 62?:1 Di2 o % {Tm + Ty}
\/(WO - T:c)(WO - Ty) '

re (4.4)

In the presence of zero values in either or both variables, the sample size is
Noo + noy in X and ngy + nye in Y. Hence, (4.2) will reduce to (ngo + no1)[(700 +

no1)? — 1] and similarly, (4.3) will reduce to (ngo + n10)[(noo + n10)? — 1J.

4.2 Proposed Estimator of Spearman’s Rho, pj§

Since the estimator (4.4) is not a MLE of Spearman’s rho defined in (4.1), we
propose a new estimator, pg, being an estimator of (4.1) for the case of pairs being

tied at 0 on at least one variable.

Proposition 3 Let (X1,Y1) and (Xs,Y3) be identically distributed random vectors,
and X, and Y3 are independent. Then the population Spearman’s p given by (4.4)

has a form

ps* = pup+ipi+psin + 3(PooP11 — ProPor) (4.5)

where pg1, 18 the population Spearman’s p defined in (4.1) for the non-zero pairs

of observations.
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Proof. Given a zero-inflated data in a bivariate setting, the scope of the analysis
will be divided into four different quadrants as shown in Figure 2.1. Again, these
areas will each contain the pairs (0,0), (z > 0,0),(0,y > 0) and (z > 0,y > 0).
Using the total probability theorem, the adjusted formula for Spearman’s p can

then be derived as

ps" = ZP(,OS‘XM;}/ilaXﬁ;}/'LS)P(XiL}/iI;XiQ;Y;‘S)
Vi

= 3(PooP14P+1 — P10P0+P+1 ~ Po1P1+P+0 + Pr1Po+P+o) + P1iP+1P14+0S11

= 3[poo(p10 + p11)(Por + P11) — Pro(Poo + Po1)(Por + P11)
—po1(p1o + p11)(Poo + P1o) + P11(Poo + Po1)(Poo + P1o)]
+P11P+1P1+PS11

= 3[poop1oPo1 + Poop10P11 + PooP11Por + PooP11P11 — ProPooPol ~ P1oPooP11
—P1o0Po1Po1 — P1oPo1P11 — Por1P1oPoo — Po1ProP1o — Po1P11Poo — Po1P11P1o
+P11Po0Poo + P11PooP1o + Pr1Po1Poo + P11Po1Pio] + PriP1Pi+Psi

= 3[pooporP11 + PooP11P11 — Por1Po1Pio — P1oPo1P11 — PooP1oPo1 ~ Po1P10P1o
+PooPropi1 + PooPooPit] + Prip+1PiePs

= 3[poop11(por + Pro + Poo + p11) — PorPro(Por + P10 + Poo + P11)] + Prpr1P14Ps11

ps* = pups1pi+psn + 3(PooP11 — ProPor) m (4.6)

Equation (4.6) can be easily reduced to (4.1) when there are no tied obser-

vations in both variables.
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4.3 Asymptotic Distribution of p?‘g

Proposition 4 Suppose (ngo, no1, 10, n11) have a multinomial distribution with
cell probabilities p = (Poo, Po1, P10, P11)’- Let n = ngg + no1 + nig + n11, and let
P = (Poo, Pot1, P10, P11)’ denote the sample proportions, where p;; = n;j/n. Then

Vs — p5) = N(0,0%) where
S

U%g = p5[3(poo + p11) + 2p11p511(P+1 + P1+)]
+9p01p10 + P11P1+P+1Ps11 (P1+P<1p511 + 3(Poo — P11) + 203, ps11)
+p3P%11 (P01l 4 + Propiy + puply +15)

— {305 — 3(poop11 — Porp10)}’ - (4.7)

Proof. The proof of E(;f;) is straightforward and since pg; is an MLE of pg,

and ;f; is a function of this MLE, then ;f; is an MLE of p%.

To derive the asymptotic variance of the proposed estimator ﬁg of Spear-

man’s rho, first define p§ as a function of p, we have
9(p) = puip+1P1+ps11 + 3(Poop11 — Po1P1o)- (4.8)

The elements of ¢;; of ®, given by (3.10) are: ¢o0 = 9g(p)/Ipoo = 3p11,

$11 = Pr4P+1ps11 + Pripsii(pie + p+1) + 3Poos o1 = pr+pripsin — 3pio, and o =

P+1P11Ps11 — 3po1- And consequently,

> psdh = poo(3pn)?
+p11 {p1+pr1ps11 + 3Poo + Pr1psii [P+ + P+1]}2
+po1[P11p1+ps11 — 3p10)° + Pro[pr1puips — 3por)?
= 9pgops; + pr1(P1+Pr1ps1 + 3poo)”
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Z Pij ¢?j

+2p11 (p14P+10511 + 3P00) (P11p511 [P14+ + P11])
+p3y P51 [p1e + P’

+po1[p11PT 4 Pe11 — 6P11P14ps11P10 + 9Pl

+p10[103r1p%1,0§11 ~ 6p41p11ps11P01 + 9P31)

9pooP11 (Poo + P11) + IPo1Pr0(Por + P10)
+p11P14+P+1ps11(2P14Puipsit + 2p1P11p511)
+p11P14P+1p511 (P14 P+1P511 + 6Poo + 2% ps1)
+6p11P311(p00P11P+1 + p00?11p1+ — Po1P1oP+1 — p01p10p1+)
+p1o%n (Porply + propy + puply + o)

9(poo + P11)(PooP11 — PorP1o) + IPo1P1o
+p1up1+P+10511[2P110511 (P41 + P14)]

+3(poo + P11)P11P1+P+1P511

+2p11psi1(p+1 + pi+)[3(Poop11 — Porpio)]

+p1p1+P+1s11 (Prap+1psu + 3(poo — pr1) + 2pi1psi1)
+p§1ﬁ%11(?01pi+ + plOpil + puph + p%)

3(poo + p11)[P117014+P11p511 + 3(PooP11 — PorPio)]

2p11ps11 (P41 + P14) [Prip14p 41511 + 3(PooP11 — PorPio))
+9p01P10 + Pr11P1+P+1Ps11(PreP+1Ps11 + 3(Poo — P11) + 2pT1ps11)
+p110511 (Porply + proply +pupiy + i)

p5(3(poo + p11) + 2p11ps11 (P41 + P14 )]

+9po1P10 + P11P1+P+1Ps511(PrePe1ps11 + 3(Poo — p11) + 2931 psur)

+p21p%11 (Porps + Propiy + Pupi, + Pi) (4.9)
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where (poo + p11) = 1 — (po1 + p1o), (Po1 + P10) = 1 — (Poo + P11), P+1 = Po1 + P11

and p14 = pio + p11-

Next,
Zpij¢ij = 3poop11 + P11 [P1+P+1ps11 + Pripsi(Pre + Pr1) + 3poo)
+po1(p1+p11,0511 - 3P10) + plo(P+1p11,0511 - 3p01)
= puiP1+P1pst + 6(Poop11 — Po1Pio)
+p11ps11(P1+P11 + P11P+1 + PrPo1 + P+1P10)
= 3pi4p+1Pu1psi1 + 9(p00P11 - p01p10) - 3(p00p11 - POlplo)
2
<Z pij¢ij) = {3p% — 3(poop11 — porp10) }* (4.10)
Substituting (4.9) and (4.10) in (3.10) will give the desired result in (4.7). [
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Chapter 5

SIMULATION STUDY AND
RESULTS

5.1 Simulation and Results: Kendall’s Tau
5.1.1 Simulation Plan

A Monte Carlo simulation procedure was employed to study the proposed estimator
for Kendall’s 7 defined in Proposition 1. Samples of n = 30, 50, 100 pairs of
data were simulated from a bivariate lognormal distribution with ux = 0 and
gy = 0. Using the relationship between Kendall’s 7 and Pearson’s p defined as
T = %arcsin(p), 7 = 0.1 to 0.9 by 0.1 was used to calculate p = sin (%) for
generating the data. The proportion of zeroes used were poo = po; = 0.1 and

p1o = (0.1,0.2,0.3).

For each case, a multinomial distribution was used to randomly determine
the ngy pairs of observations that will be (0,0) with probabiiity Poo; To1 Pairs
of (0,y) with probability po;; and nie pair of (z,0) with probability pip, where
p11 = 1 — (poo + po1r + pio). From the nonzero pairs of observations, Kendall’s
coefficient of correlation, 717, was calculated. In addition, the following estimates

were determined from the simulated data, pog = ngo/n; Pro = N10/7; Po1 = Nor/N;
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and p11 = ny1/n = 1— (Poo + P1o + Po1)- Then the proposed estimator of Kendall’s
7 defined in Proposition 1 was calculated as 7% = 11 °711 + 2Poopii — 2Po1po. The
estimate of (3.4) was also calculated for comparison. For each case, the process

was repeated 1000 times.

The same plan was utilized to study the asymptotic variance of the estima-
tor proposed in Proposition 1. Sample sizes up to 200 were considered. Although
not all combinations of the cell probabilities listed above were used, some addi-
tional combinations not considered before were presented. Only a low, mid, and a

high level of the population 7 were considered and 2000 replicates were performed.

5.1.2 Results

Table 5.1 shows the percentile intervals for each of the cases mentioned above. For
all cases, the intervals based on 7% contain the value of 7*. The intervals also are
narrower as the sample size is increased. On the other hand, the intervals based

on T also contain the value for 7* but the intervals are consistently wider.

In order to check normality of the estimates, a Shapiro-Wilk test was em-
ployed and the value of test statistic and the corresponding p-value from the 1000
estimates of 7* are displayed in Table 5.2. There is no evident pattern for non-
normality which occurred by chance. To further look into the normality of the
estimate by lowering the number of samples, a random sample of 100 out of the
1000 estimates was used and the results are tabulated in Table 5.3. Again, the

non-normality of the estimate is not apparently present.

The mean, 5, and corresponding standard deviation, S(7/'\*), from the 1000
estimates for each case are displayed in Tables 5.4, 5.5, and 5.6 for sample sizes

30, 50 and 100, respectively. These measures were used to look at the bias of the
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proposed estimator 7* in Proposition 1. As shown on the tables, when compared
to 7*, the bias tends to be very small as the sample size increases for 7* than for
7. The corresponding adjusted variance also drops with the increase in the sample
size. Also presented is the MSE of the estimator and these values will be compared
later with the results of the asymptotic variance. The MSE for the 7 estimates are

consistently larger than that for 7*.

The variance of the estimator proposed in (3.13) for each of the known
population values are calculated and these values approach 0 as the sample size is
increased from 50 to 200, regardless of the size of the pairs with zeros on either
variable or on both. The sample variance of the 2000 calculated estimates was
determined for each case. These are presented in Tables 5.7 and 5.9 under the
column S%I. The sample variance tends to be larger than the asymptotic variance
for smaller proportions of zero but stabilizes as the sample size is increased and
there are more zeroes in the data. The estimate of the asymptotic variance was
also calculated from each of the cases and the mean of these 2000 estimates are
presented in Tables 5.8 and 5.10. These values are consistent with the population

values regardless of the size of zeroes in the data.
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Shapiro-Wilk Test Statistic (p-value)

Poo  Po1 P10 11 ™ n=30 n=>50 n=100

0.1 01 01 0.1 0.169 | 0.9977(0.1783) 0.9988(0.7761) 0.9988(0.7664)
0.2 0.218 | 0.9983(0.4266) 0.9979(0.2595) 0.9986(0.6436)

0.3 0267 | 0.9985(0.5730) 0.9986(0.6352) 0.9988(0.7577)
0.4 0.316 | 0.9979(0.2461) 0.9979(0.2326) 0.9985(0.5763)

05 0.365 | 0.9983(0.4237) 0.9989(0.8462) 0.9978(0.2177)

0.6 0.414 | 0.9987(0.6707) 0.9988(0.7774)  0.9994(0.9920)
07 0.463 | 0.9976(0.1411) 0.9982(0.3899) 0.9976(0.1466)
0.8 0.512 | 0.9952(0.0033) 0.9976(0.1639) 0.9970(0.0618)
0.9 0561 | 0.9946(0.0013) 0.9978(0.2127) 0.9970(0.0538)
02 0.1 0.116 | 0.9967(0.0347) 0.9975(0.1278) 0.9985(0.5501)
0.2 0.152 | 0.9984(0.4656) 0.0983(0.4414) 0.9987(0.7083)

0.3 0.188 | 0.9989(0.8221) 0.9970(0.0602) 0.9978(0.2003)
0.4 0224 | 0.9971(0.0643) 0.9972(0.0840) 0.9991(0.9360)

0.5 0.260 | 0.9979(0.2317) 0.9988(0.7848) 0.9972(0.0856)

0.6 0.206 | 0.9986(0.6466) 0.9982(0.3963) 0.9982(0.3683)
0.7 0.332 | 0.9989(0.7974) 0.9982(0.4017) 0.9986(0.6372)
0.8 0.368 | 0.9990(0.8827) 0.9981(0.3094) 0.9992(0.9657)
0.9 0.404 | 0.9976(0.1459) 0.9986(0.6125) 0.9982(0.3542)
0.3 0.1 0.065 | 0.9971(0.0664) 0.9984(0.5052) 0.9979(0.2254)
0.2 0.090 | 0.9961(0.0123) 0.9987(0.6915) 0.9978(0.2140)
0.3 0.115 | 0.9957(0.0065) 0.9983(0.4459) 0.9980(0.2954)

04 0.140 | 0.9978(0.2010) 0.9990(0.8950) 0.9991(0.9148)

0.5 0.165 | 0.9979(0.2579) 0.9981(0.3157) 0.9982(0.3616)

0.6 0.190 | 0.9985(0.5638) 0.9982(0.3616) 0.9990(0.8574)
0.7 0.215 | 0.9989(0.8094) 0.9982(0.3991) 0.9979(0.2588)

0.8 0.240 | 0.9984(0.4980) 0.9990(0.8888) 0.9990(0.8852)
0.9 0.265 | 0.9989(0.8046) 0.9988(0.7484) 0.9989(0.8194)

Table 5.2: Normality test from the 1000 7* estimates
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Shapiro-Wilk Test Statistic (p-value)

Poo  Por  Plo  Ti1 T n=30 n=>50 n=100

01 01 0.1 0.1 0.169 | 0.9951(0.9772) 0.9939(0.9374)  0.9901(0.6695)
0.2 0.218 | 0.9917(0.7969) 0.9909(0.7380)  0.9894(0.6141)
0.3 0.267 | 0.9935(0.9164)  0.9904(0.6977) 0.9855(0.3454)
0.4 0.316 | 0.9903(0.6905) 0.9907(0.7175)  0.9918(0.8035)
0.5 0.365 | 0.9960(0.9934) 0.9927(0.8696)  0.9851(0.3231)
0.6 0.414 | 0.9799(0.1316) 0.9886(0.5556)  0.9851(0.3239)
0.7 0.463 | 0.9890(0.5818)  0.9882(0.5202) 0.9732(0.0390)

0.8 0.512 | 0.9870(0.4389) 0.9925(0.8534)  0.9805(0.1453)

0.9 0.561 | 0.9882(0.5208) 0.9913(0.7707)  0.9883(0.5299)
0.2 0.1 0.116 | 0.9903(0.6909) 0.9843(0.2845)  0.9904(0.6946)
0.2 0.152 | 0.9890(0.5867) 0.9862(0.3842)  0.9912(0.7642)
0.3 0.188 | 0.9887(0.5577) 0.9817(0.1800)  0.9912(0.7625)
0.4 0.224 | 0.9784(0.1003) 0.9930(0.8901)  0.9783(0.0973)

0.5 0.260 | 0.9959(0.9915) 0.9911(0.7560)  0.9859(0.3690)

0.6 0.296 | 0.9819(0.1873) 0.9893(0.6054)  0.9830(0.2256)
0.7 0.332 | 0.9963(0.9956) 0.9890(0.5835)  0.9768(0.0748)

0.8 0.368 | 0.9921(0.8300) 0.9783(0.0978)  0.9845(0.2898)
0.9 0.404 | 0.9883(0.5289) 0.9952(0.9802)  0.9882(0.5239)
0.3 0.1 0.065 | 0.9821(0.1914) 0.9817(0.1798)  0.9886(0.5539)
0.2 0.090 | 0.9907(0.7199) 0.9920(0.8222)  0.9868(0.4269)
0.3 0.115 | 0.9892(0.5984) 0.9805(0.1460)  0.9825(0.2067)
0.4 0.140 | 0.9832(0.2324) 0.9915(0.7830)  0.9921(0.8310)
0.5 0.165 | 0.9929(0.8842) 0.9737(0.0429) 0.9880(0.5054)
0.6 0.190 | 0.9824(0.2050) 0.9798(0.1281)  0.9902(0.6831)
0.7 0.215 | 0.9892(0.6037) 0.9864(0.3970)  0.9914(0.7766)
0.8 0.240 | 0.9918(0.8102) 0.9777(0.0876)  0.9928(0.8755)
0.9 0.265 | 0.9829(0.2211) 0.9934(0.9090)  0.9855(0.3423)

Table 5.3: Normality test from the 100 randomly selected 7* estimates
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Poo  Poi  Pio T ™  Var(7*) | n 711 T* 5727 Shapiro-Wilk Test
Statistic (p-value)
01 01 01 0.2 0218 0.00350 | 50 0.196 0.2154 0.00652 0.9731 ( 0.0386 )
0.00175 | 100 0.200 0.2163 0.00320 0.9775 (1 0.0847 )
0.00117 | 150 0.198 0.2171 0.00214 0.9265 ( 0.0000 )
0.00087 | 200 0.201 0.2174 0.00157 0.9892 ( 0.6032 )
01 01 01 05 0365 0.00476 | 50 0.503 0.3642 0.00678 0.9864 ( 0.3998 )
0.00238 | 100 0.499 0.3629 0.00315 0.9909 ( 0.7373 )
0.00159 | 150 0.498 0.3641 0.00214 0.9895 ( 0.6215 )
0.00119 | 200 0.500 0.3667 0.00155 0.9891 ( 0.5932 )
0.1 0.1 0.1 0.8 0512 0.00750 | 50 0.799 0.5140 0.00804 0.9927 ( 0.8701 )
0.00375 | 100 0.801 0.5123 0.00399 0.9877 ( 0.4884 )
0.00250 | 150 0.800 0.5131 0.00251 0.9666 ( 0.0122 )
0.00188 { 200 0.799 0.5133 0.00183 0.9867 ( 0.4148 )
01 0.1 02 02 0.152 0.00383 | 50 0.200 0.1530 0.00604 0.9790 ( 0.1110 )
0.00192 | 100 0.201 0.1532 0.00279 0.9874 ( 0.4658 )
0.00128 | 150 0.200 0.1521 0.00183 0.9822 (1 0.1958 )
0.00096 | 200 0.201 0.1530 0.00140 0.9898 ( 0.6501 )
0.1 0.1 0.2 05 0260 0.00563 | 50 0.497 0.2610 0.00651 0.9873 ( 0.4575 )
0.00282 | 100 0.501 0.2596 0.00331 0.9690 ( 0.0185 )
0.00188 | 150 0.499 0.2590 0.00216 0.9852 ( 0.3281 )
0.00141 | 200 0.501 0.2607 0.00170 0.9919 ( 0.8159 )
0.1 01 03 02 0090 0.00391 | 50 0.197 0.0862 0.00505 0.9888 ( 0.5678 )
0.00196 | 100 0.200 0.0911 0.00257 0.9899 ( 0.6552 )
0.00130 | 150 0.201 0.0909 0.00166 0.9633 ( 0.0070 )
0.00098 | 200 0.199 0.0897 0.00123 0.9913 ( 0.7667 )
0.1 0.1 03 05 0.165 0.00568 | 50 0.501 0.1677 0.00633 0.9885 ( 0.5471 )
0.00284 | 100 0.497 0.1646 0.00318 0.9853 ( 0.3343 )
0.00189 | 150 0.500 0.1674 0.00207 0.9927 ( 0.8693 )
0.00142 | 200 0.500 0.1656 0.00156 0.9742 ( 0.0466 )
0.1 0.1 03 08 0.240 0.00835 | 50 0.797 0.2423 0.00851 0.9613 ( 0.0050 )
0.00418 [ 100 0.800 0.2408 0.00401 0.9851 ( 0.3245 )
0.00278 | 150 0.801 0.2397 0.00280 0.9800 ( 0.1341 )
0.00209 | 200 0.800 0.2393 0.00196 0.9786 ( 0.1036 )

Table 5.7: Sample variance from the 2000 7* estimates. The estimates are calcu-
lated from 2000 simulations and the Shapiro-Wilk statistic was calculated using a
random sample of 100 estimates
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Pos  Po1  Pio 711 T* Var(7*) | n 711 T* Var(r*) Shapiro-Wilk Test
Statistic (p-value)
0.1 01 0.1 02 0218 0.00350 | 50 0.198 0.2135 0.00333 0.9935 (0.9169)
0.00175 | 100 0.201 0.2163 0.00171 0.9675 (0.0143)
0.00117 | 150 0.201 0.2178 0.00115 0.9711 {0.0269)
0.00088 | 200 0.199 0.2161 0.00086 0.9929 (0.8792)
01 01 0.1 0.5 0.365 0.00476 | 50 0.499 0.3674 0.00448 0.9826 (0.2121)
0.00238 | 100 0.500 0.3641 0.00232 0.9920 (0.8191)
0.00159 | 150 0.499 0.3643 0.00155 0.9794 (0.1192)
0.00119 | 200 0.499 0.3630 0.00117 0.9915 (0.7843)
0.1 0.1 0.1 0.8 0512 0.00750 | 50 0.802 0.5148 0.00709 0.9645 (0.0085)
0.00375 { 100 0.800 0.5108 0.00365 0.9830 (0.2272)
0.00250 | 150 0.799 0.5110 0.00245 0.9527 (0.0013)
0.00188 | 200 0.800 0.5129 0.00185 0.9825 (0.2061)
0.1 01 0.2 0.2 0152 0.00383 | 50 0.200 0.1521 0.00365 0.9953 (0.9811)
0.00192 | 100 0.200 0.1522 0.00188 0.9951 (0.9782)
0.00128 | 150 0.202 0.1527 0.00126 0.9918 (0.8098)
0.00096 | 200 0.202 0.1532 0.00095 0.9591 (0.0035)
01 01 0.2 05 0260 0.00563 | 50 0.500 0.2609 0.00534 0.9861 (0.3830)
0.00282 | 100 0.500 0.2618 0.00274 0.9779 (0.0903)
0.00188 | 150 0.499 0.2599 0.00184 0.9938 (0.9313)
0.00141 | 200 0.502 0.2606 0.00139 0.9775 (0.0841)
0.1 01 0.2 08 0.368 0.00867 | 50 0.801 0.3753 0.00821 0.9661 (0.0112)
0.00434 | 100 0.800 0.3693 0.00422 0.9916 (0.7880)
0.00289 | 150 0.800 0.3682 0.00284 0.9668 (0.0127)
0.00217 | 200 0.800 0.3682 0.00214 0.9813 (0.1684)
0.1 0.1 03 02 0.090 0.00391 [ 50 0.197 0.0886 0.00376 0.9862 (0.3888)
0.00196 | 100 0.196 0.0899 0.00190 0.9847 (0.3023)
0.00130 | 150 0.202 0.0912 0.00129 0.9873 (0.4572)
0.00098 | 200 0.200 0.0892 0.00097 0.9670 (0.0131)
0.1 0.1 03 05 0.165 0.00568 | 50 0.501 0.1665 0.00542 0.9841 (0.2720)
0.00284 | 100 0.499 0.1651 0.00276 0.9794 (0.1193)
0.00189 | 150 0.500 0.1673 0.00186 0.9841 (0.2750)
0.00142 | 200 0.499 0.1655 0.00140 0.9833 (0.2380)
0.1 01 03 08 0.240 0.00835 [ 50 0.799 0.2456 0.00796 0.9673 (0.0137)
0.00418 | 100 0.800 0.2442 0.00409 0.9797 (0.1255)
0.00278 | 150 0.800 0.2418 0.00274 0.9908 (0.7281)
0.00209 | 200 0.800 0.2417 0.00206 0.9946 (0.9634)

Table 5.8: Asymptotic variance of 7*. The estimates are calculated from 2000
simulations and the Shapiro-Wilk statistic was calculated using a random sample

of 100 estimates
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Poo  Po1  Pio  Ti1 T* Var(7*) | n m T* Sg; Shapiro-Wilk Test
Statistic (p-value)
02 01 01 0.2 0.292 0.00401 | 50 0.200 0.291 0.00603 0.9403 (0.0002)
0.00201 | 100 0.202 0.290 0.00294 0.9830 (0.2271)
0.00134 | 150 0.199 0.292 0.00205 0.9683 (0.0164)
0.00100 { 200 0.199 0.291 0.00149 0.9770 (0.0772)
02 01 01 0.5 0.400 0.00512 | 50 0.501 0.396 0.00630 0.9851 (0.3251)
0.00256 | 100 0.500 0.399 0.00305 0.9835 (0.2460)
0.00171 | 150 0.502 0.400 0.00204 0.9842 (0.2781)
0.00128 | 200 0.499 0.398 0.00154 0.9897 (0.6427)
02 0.1 01 08 0508 0.00747 | 50 0.798 0.505 0.00733 0.9670 (0.0132)
0.00374 | 100 0.799 0.508 0.00393 0.9682 (0.0160)
0.00249 | 150 0.799 0.509 0.00258 0.9876 (0.4776)
0.00187 | 200 0.799 0.508 0.00178 0.9832 (0.2340)
03 01 01 02 0330 0.0038 | 50 0.197 0.325 0.00486 0.9889 (0.5789)
0.00192 | 100 0.202 0.328 0.00242 0.9887 (0.5577)
0.00128 | 150 0.199 0.328 0.00152 0.9870 (0.4399)
0.00096 | 200 0.203 0.329 0.00118 0.9711 (0.0268)
03 01 0.1 0.5 0405 0.00514 | 50 0.501 0.402 0.00561 0.9811 (0.1631)
0.00257 | 100 0.500 0.403 0.00297 0.9852 (0.3307)
0.00171 | 150 0.499 0.406 0.00183 0.9749 (0.0526)
0.00128 | 200 0.501 0.405 0.00145 0.9892 (0.5990)
03 01 0.1 08 0480 0.00733 { 50 0.800 0.479 0.00733 0.9805 (0.1446)
0.00366 | 100 0.800 0.479 0.00366 0.9758 (0.0619)
0.00244 | 150 0.799 0.482 0.00247 0.9755 (0.0589)
0.00183 | 200 0.801 0.481 0.00178 0.9872 (0.4525)
04 01 01 02 0332 0.00383 | 50 0.202 0.327 0.00450 0.9874 (0.4647)
0.00192 | 100 0.195 0.329 0.00216 0.9887 (0.5628)
0.00128 | 150 0.202 0.330 0.00150 0.9900 (0.6645)
0.00096 | 200 0.199 0.329 0.00109 0.9913 (0.7702)
04 01 0.1 05 038 0.00525 | 50 0.502 0.377 0.00597 0.9840 (0.2684)
0.00262 | 100 0.499 0.379 0.00274 0.9879 (0.4990)
0.00175 | 150 0.500 0.377 0.00194 0.9647 (0.0088)
0.00131 | 200 0.499 0.379 0.00148 0.9888 (0.5653)
04 01 01 08 0428 0.00721 | 50 0.800 0.426 0.00698 0.9850 (0.3186)
0.00361 | 100 0.799 0.427 0.00363 0.9921 (0.8283)
0.00240 | 150 0.799 0.427 0.00234 0.9829 (0.2202)
0.00180 | 200 0.800 0.427 0.00176 0.9918 (0.8049)

Table 5.9: Additional results for the sample variance from the 2000 7* estimates.
The estimates are calculated from 2000 simulations and the Shapiro-Wilk statistic

was calculated using a random sample of 100 estimates
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Poo  Pol  Plo  Ti1 T Var(7*) n 1 T Var(r*) Shapiro-Wilk Test
' Statistic (p-value)
02 01 01 02 0292 0.00401 | 50 0.200 0.2901 0.00387 0.9608 (0.0046)
0.00201 | 100 0.202 0.2900 0.00197 0.9902 (0.6818)
0.00134 | 1560 0.198 0.2910 0.00132 0.9890 (0.5866)
0.00100 | 200 0.199 0.2912 0.00099 0.9633 (0.0070)
02 0.1 01 05 0400 000512 50 0.499 0.3989 0.00486 0.9872 (0.4503)
0.00256 | 100 0.501 0.3975 0.00251 0.9861 (0.3779)
0.00171 | 150 0.500 0.4003 0.00167 0.9932 (0.9010)
0.00128 | 200 0.501 0.3997 0.00127 0.9756 (0.0597)
02 0.1 0.1 08 0.508 000747 | 50 0.799 0.5084 0.00706 0.9878 (0.4965)
0.00374 | 100 0.800 0.5055 0.00365 0.9758 (0.0627)
0.00249 | 150 0.801 0.5088 0.00244 0.9765 (0.0702)
0.00187 | 200 0.799 0.5073 0.00184 0.9923 (0.8426)
03 0.1 01 02 0330 0.0038 | 50 0.199 0.3246 0.00379 0.9915 (0.7850)
0.00192 | 100 0.201 0.3283 0.00190 0.9802 (0.1368)
0.00128 | 150 0.199 0.3288 0.00127 0.9894 (0.6136)
0.00096 | 200 0.199 0.3282 0.00096 0.9890 (0.5881)
03 0.1 0.1 05 0405 0.00514 | 50 0495 0.3994 0.00493 0.9806 (0.1479)
0.00257 | 100 0.498 0.4025 0.00251 0.9679 (0.0154)
0.00171 | 150 0.500 0.4048 0.00169 0.9851 (0.3251)
0.00128 | 200 0.500 0.4042 0.00127 0.9866 (0.4099)
03 01 01 08 0480 0.00733 | 50 0.799 0.4780 0.00700 0.9690 (0.0186)
0.00366 | 100 0.802 0.4818 0.00358 0.9767 (0.0737)
0.00244 | 150 0.799 0.4788 0.00240 0.9714 (0.0282)
0.00183 | 200 0.800 0.4793 0.00181 0.9664 (0.0118)
04 01 01 02 0332 000383 | 50 0.198 0.3256 0.00379 0.9861 (0.3802)
0.00192 | 100 0.203 0.3317 0.00190 0.9910 (0.7479)
0.00128 | 150 0.202 0.3296 0.00128 0.9800 (0.1332)
0.00096 | 200 0.205 0.3328 0.00096 0.9950 (0.9763)
04 01 0.1 05 038 0.00525 | 50 0.504 0.3760 0.00510 0.9814 (0.1703)
0.00262 | 100 0.501 0.3802 0.00257 0.9887 (0.5617)
0.00175 | 150 0.502 0.3789 0.00173 0.9796 (0.1239)
0.00131 | 200 0.499 0.3794 0.00130 0.9764 (0.0699)
04 01 01 08 0428 0.00721 | 50 0.799 0.4267 0.00693 0.9879 (0.5015)
0.00361 | 100 0.800 0.4247 0.00355 0.9633 (0.0069)
0.00240 | 150 0.800 0.4274 0.00237 0.9897 (0.6370)
0.00180 | 200 0.800 0.4277 0.00178 0.9791 (0.1137)

Table 5.10: Additional results for the asymptotic variance of 7*. The estimates
are calculated from 2000 simulations. The Shapiro-Wilk statistic was calculated
using a random sample of 100 estimates
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5.2 Graphical Illustration

As introduced in the previous chapters, chi-plots will be used as a tool, alongside
the scatter plot, to further study the behavior of the data with the presence of zero
observation. These plots will be presented here first for better understanding and
to give a clearer picture of its behavior when the zero observations are introduced.
Only the case (X = 0,Y = 0) will be presented for simplicity. Also, this case
already gives a good picture of the behavior of the data. Figure 5.1 shows the
scatter plots on the top and their corresponding chi-plots on the bottom from data
simulated from bivariate lognormal distribution with correlation 0.0 and pgg 0%,
30%, 60% and 80%, respectively. The chi-plots also show the 95% control lines.
The chi-plot in (b) shows the baseline plot where pgo is 0%. Here, the calculated
x;s are still falling within the band 95% of the time. Comparing this with the
chi-plots in (d), (f), and (h), it is apparent how the points depart from the control
band when pgo was increased. This just illustrates how the classical estimate for 7

can be misleading whenever a proportion of data clusters into a single value.

Figures 5.2, 5.3 and 5.4 show other levels of correlation.
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Figure 5.1: Behavior of the chi-plot on varying proportions of zero, popy = 0%,
30%, 60%, 80%; p = 0.0. The top row shows the scatter plots and the bottom row
their corresponding chi-plots, for simulated samples of size 100 from the bivariate

lognormal distribution.
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Figure 5.2: Behavior of the chi-plot on varying proportions of zero, pgy = 0%, 30%,
60%, 80%; p = 0.20. The top row shows the scatter plots and the bottom row
their corresponding chi-plots, for simulated samples of size 100 from the bivariate
lognormal distribution.

o6



(a) (c) (e) (9)

N
[ - [ ~ o © [+
© - o0
(=3
- ©
o
© - ° © - )
<
> > © >
¥ 1)
00
<+ - 69 &
Y
] o 0000C
N o 9 -
o
o
(o) (=) o
0 2 4 6
X X X X
(b) (d) (f) (h)
o o o
0 _| 0 4
[} o 7]
_M |
= = g - o = g —
) 0 0 )
o o = o - S
T T T T
Q < Q o
'TIITII "_Irlll LT T ‘Tllll
-1.0 0.0 1.0 -10 0.0 1.0 -10 00 1.0 -10 00 1.0
A A A A

Figure 5.3: Behavior of the chi-plot on varying proportions of zero, poy = 0%, 30%,
60%, 80%; p = 0.50. The top row shows the scatter plots and the bottom row
their corresponding chi-plots, for simulated samples of size 100 from the bivariate
lognormal distribution.
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Figure 5.4: Behavior of the chi-plot on varying proportions of zero, pog = 0%, 30%,
60%, 80%; p = 0.80. The top row shows the scatter plots and the bottom row
their corresponding chi-plots, for simulated samples of size 100 from the bivariate

lognormal distribution.
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5.3 Simulation and Results: Spearman’s Rho

5.3.1 Simulation Plan

A similar Monte Carlo simulation procedure used in the previous section was em-
ployed to study the proposed estimator for Spearman’s p defined in Proposition 3.
Samples of n = 30, 50, 100 pairs of data were simulated from a bivariate lognormal
distribution with px = 0 and py = 0. Using the relationship between Spearman’s
p and Pearson’s p defined as pg = %arcsin (‘29), ps = 0.1 to 0.9 by 0.1 was used
to get p = 2sin (%). The proportion of zeroes used were pgg = po; = 0.1 and
po = (0.1,0.2,0.3).

For each case, a multinomial distribution was used to randomly determine
the ngy pairs of observations that will be (0,0) with probability pgo; no; pairs
of (0,y) with probability po1; and nyo pair of (z,0) with probability pio, where
p11 = 1 — (poo + po1 + P1o). From the nonzero pairs of observations, calculate the
Spearman’s coefficient of correlation, psi;. In addition, the following estimates
were determined from the simulated data, poo = mgo/n; P10 = n10/7; Po1 = No1/M;
and P13 = ny1/n = 1 — (Poo + Dro + Po1). Then the estimate of the proposed
Spearman’s p defined in Proposition 3 was calculated as //)E = PupiPis P +
3(PooP11 — po1P1o)- The estimate of (4.1) was also calculated for comparison. For

each case, the process was repeated for 1000 times.

The same plan was utilized to study the asymptotic variance of the estima-
tor proposed in Proposition 3. Sample sizes up to 200 were considered. Although
not all combinations of the cell probabilities listed above were used, some addi-
tional combinations not considered before were presented. Only a low, mid, and a

high level of the population pg were considered and 2000 replicates were performed.
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5.3.2 Results

From the 1000 estimates of pg* for each case, the 95% percentile intervals were
determined and reported in Table 5.11. For all cases, the intervals based on ;)g

contains the population value and it gets narrower as the sample size increases.

A normality test on the pg was performed for each case and Table 5.12 shows
values of the Shapiro-Wilk test statistic and corresponding p-values. There is. no
evidence of the lack of normality of the estimator and to show a more consistent
result, a sample of 100 estimates was selected and normality test was performed

on those estimates. The results are reported in Table 5.13.

Tables 5.14, 5.15, and 5.16 shows the mean and standard deviation of the
1000 estimates for p5. The bias of the estimate was also shown and the corre-
sponding estimate of the variance. When compared to the population pg, ,575 tend

to be less bias and have smaller MSE than pg.

The value of the variance calculated using the known population values
approaches 0 as the sample size gets larger. As presented in Tables 5.17 and 5.19
using 2000 replications in calculating the proposed estimator, the variance from
these estimates were determined and found to be consistent with the population
value (Var[p%] vs. Sgg) especially for cases with larger proportion of zeroes in the
data and higher association between the variables. This is also supplemented by a
normality test with the Shapiro-Wilk test statistic and p-value also reported. The
asymptotic variance was also calculated from each case and the mean of the 2000
estimates are presented in Tables 5.18 and 5.20. These values are consistent with

its corresponding population value.
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Shapiro-Wilk Test Statistic (p-value)

Poo Po1 Pio PS ps* n=30 n=50 n=100

0.1 0.1 0.1 0.1 02248 | 0.9984(0.4930) 0.9990(0.8831) 0.9986(0.6427)
0.2 0.2696 | 0.9967(0.0375)  0.9992(0.9460)  0.9983(0.4432)
0.3 0.3144 | 0.0966(0.0288) 0.9977(0.1757)  0.9980(0.3010)
0.4 0.3592 | 0.9937(0.0003) 0.9979(0.2440) 0.9988(0.7508)

0.5 0.4040 0.9985(0.5633) 0.9980(0.2680)  0.9963(0.0189)
0.6 0.4488 | 0.0971(0.0657)  0.0970(0.0546)  0.9983(0.4557)
0.7 0.4936 0.9979(0.2603) 0.9976(0.1611) 0.9983(0.4361)
0.8 0.5384 | 0.9972(0.0849) 0.9979(0.2444) 0.9984(0.4707)
0.9 0.5832 0.9963(0.0167) 0.9970(0.0536) 0.9984(0.4872)
0.2 0.1 0.1536 | 0.9988(0.7722) 0.9967(0.0335)  0.9976(0.1618)
0.2 0.1872 | 0.0980(0.3004)  0.0979(0.2412)  0.9991(0.9352)
0.3 0.2208 | 0.9984(0.5171)  0.9986(0.6037)  0.0989(0.8205)
0.4 0.2544 | 0.9974(0.1096)  0.0083(0.4242)  0.9983(0.4373)
0.5 0.2880 | 0.9969(0.0454) 0.9980(0.2714)  0.9983(0.4110)
0.6 0.3216 | 0.9987(0.7201) 0.9986(0.6261) 0.9981(0.3363)
0.7 0.3552 | 0.0064(0.0207) 0.0989(0.8060)  0.0986(0.6459)
0.8 0.3888 | 0.0959(0.0089) 0.0975(0.1388)  0.9977(0.1840)
09 04224 | 0.0081(0.3227)  0.9976(0.1578) _ 0.9970(0.0574)
0.3 0.1 0.0840 | 0.9992(0.9591) 0.9975(0.1198) 0.9984(0.5051)
0.2 0.1080 | 0.9986(0.6073) 0.9987(0.6925) 0.9987(0.7054)

0.3 0.1320 | 0.9991(0.9014)  0.9984(0.4619)  0.9984(0.4760)
0.4 0.1560 | 0.9973(0.1006) 0.9976(0.1598)  0.9969(0.0473)
0.5 0.1800 | 0.9984(0.4895) 0.9976(0.1551) 0.9987(0.6573)
0.6 02040 | 0.0973(0.0886)  0.0985(0.5816)  0.9984(0.5125)
0.7 0.2280 | 0.9983(0.4442) 0.9991(0.9313) 0.9991(0.9095)

0.8 0.2520 | 0.0990(0.8650)  0.9986(0.5944)  0.9984(0.4933)
0.9 0.2760 | 0.0088(0.7261) 0.9975(0.1346)  0.9979(0.2522)

Table 5.12: Normality test from the 1000 Z)g estimates
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Shapiro-Wilk Test Statistic (p-value)

Poo Por Pie ps  ps” n=30 n=50 n=100

01 01 01 01 0.2248 | 0.9844(0.2864) 0.9925(0.8571)  0.9929(0.8820)
0.2 0.2696 | 0.9875(0.4699) 0.9914(0.7770)  0.9875(0.4696)
0.3 0.3144 | 0.9898(0.6454) 0.9897(0.6428) 0.9861(0.3784)
0.4 0.3592 | 0.9761(0.0656) 0.9894(0.6195)  0.9895(0.6268)
0.5 0.4040 | 0.9870(0.4391) 0.9930(0.8852) 0.9786(0.1034)
0.6 0.4488 | 0.9839(0.2649) 0.9863(0.3916)  0.9924(0.8522)
0.7 0.4936 | 0.9914(0.7764) 0.9933(0.9037)  0.9870(0.4365)
0.8 0.5384 | 0.9877(0.4842) 0.9894(0.6190)  0.9900(0.6670)
0.9 0.5832 | 0.9797(0.1254) 0.9954(0.9846)  0.9900(0.6664)
0.2 0.1 0.1536 | 0.9930(0.8881) 0.9806(0.1469)  0.9880(0.5059)
0.2 0.1872 | 0.9860(0.3740) 0.9936(0.9233) 0.9674(0.0141)
0.3 0.2208 | 0.9885(0.5482) 0.9910(0.7434)  0.9900(0.6652)
0.4 0.2544 | 0.9920(0.8223) 0.9943(0.9516)  0.9948(0.9705)
0.5 0.2880 | 0.9892(0.5984) 0.9939(0.9374)  0.9875(0.4747)
0.6 0.3216 | 0.9919(0.8156) 0.9907(0.7216)  0.9819(0.1860)
0.7 0.3552 | 0.9789(0.1087)  0.9854(0.3395) 0.9921(0.8302)
0.8 0.3888 | 0.9669(0.0130) 0.9929(0.8849)  0.9912(0.7604)
0.9 0.4224 | 0.9889(0.5794) 0.9890(0.5848)  0.9937(0.9276)
0.3 0.1 0.0840 | 0.9905(0.7030) 0.9846(0.2995)  0.9783(0.0982)
0.2 0.1080 | 0.9741(0.0460) 0.9896(0.6357) 0.9919(0.8127)
0.3 0.1320 | 0.9844(0.2850) 0.9947(0.9674)  0.9844(0.2889)
0.4 0.1560 | 0.9912(0.7573) 0.9939(0.9364)  0.9927(0.8696)
0.5 0.1800 | 0.9919(0.8135) 0.9921(0.8272)  0.9908(0.7288)
0.6 0.2040 | 0.9838(0.2588) 0.9940(0.9410)  0.9870(0.4385)
0.7 0.2280 | 0.9850(0.3201) 0.9915(0.7851)  0.9770(0.0778)
0.8 0.2520 | 0.9896(0.6295) 0.9847(0.3003)  0.9923(0.8426)
0.9 0.2760 | 0.9742(0.0471) 0.9856(0.3508) 0.9961(0.9943)

Table 5.13: Normality test from the 100 randomly selected Eg estimates
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Poo Ppo1 Pio psui py Var(pk) | n psi o5 S%; Shapiro-Wilk Test
i Statistic (p-value)
01 01 01 0.2 0.270 0.00696 | 50 0.199 0.2685 0.01247 0.9771 (0.0787)
0.00348 | 100 0.195 0.2648 0.00616 0.9703 (0.0235)
0.00232 | 150 0.198 0.2668 0.00405 0.9862 (0.3891)
0.00174 | 200 0.199 0.2689 0.00306 0.9883 (0.5333)
0.1 01 01 05 0404 0.00676 | 50 0.487 0.4005 0.01064 0.9782 (0.0964)
0.00338 | 100 0.494 0.4005 0.00570 0.9929 (0.8814)
0.00225 | 150 0.498 0.4043 0.00356 0.9910 (0.7446)
0.00169 | 200 0.496 0.4017 0.00271 0.9896 (0.6356)
01 01 01 0.8 0538 0.00789 | 50 0.783 0.5309 0.00961 0.9762 (0.0675)
0.00395 | 100 0.791 0.5364 0.00487 0.9908 (0.7298)
0.00263 | 150 0.794 0.5380 0.00327 0.9924 (0.8518)
0.00197 | 200 0.793 0.5351 0.00253 0.9827 (0.2144)
01 01 02 02 0.187 0.00746 | 50 0.193 0.1805 0.01138 0.9602 (0.0042)
0.00373 | 100 0.197 0.1848 0.00535 0.9687 (0.0176)
0.00249 | 150 0.197 0.1852 0.00374 0.9832 (0.2342)
0.00186 | 200 0.199 0.1857 0.00265 0.9909 (0.7349)
01 01 02 05 0.288 000829 | 50 0484 0.2859 0.01018 0.9901 (0.6687)
0.00415 | 100 0.494 0.2824 0.00530 0.9905 (0.7066)
0.00276 | 150 0.492 0.2853 0.00358 0.9885 (0.5449)
0.00207 | 200 0.496 0.2848 0.00268 0.9836 (0.2512)
01 01 02 08 0389 0.01018 { 50 0.781 0.3873 0.01093 0.9888 (0.5694)
0.00509 | 100 0.793 0.3862 0.00542 0.9898 (0.6520)
0.00339 | 150 0.793 0.3865 0.00366 0.9912 (0.7579)
0.00255 | 200 0.796 0.3888 0.00286 0.9889 (0.5731)
01 01 03 02 0108 0.00766 | 50 0.188 0.1068 0.01011 0.9806 (0.1483)
0.00383 | 100 0.193 0.1055 0.00501 0.9852 (0.3297)
0.00255 | 150 0.197 0.1090 0.00339 0.9820 (0.1895)
0.00191 | 200 0.197 0.1066 0.00252 0.9820 (0.1895)
0.1 01 03 05 0.180 0.0088 | 50 0.483 0.1775 0.01003 0.9940 (0.9411)
0.00443 | 100 0.490 0.1781 0.00512 0.9943 (0.9510)
0.00295 | 150 0.494 0.1780 0.00358 0.9886 (0.5534)
0.00221 | 200 0.493 0.1792 0.00269 0.9827 (0.2160)
01 01 03 0.8 0.252 0010811 50 0.777 0.2471 0.01134 0.9817 (0.1791)
0.00540 | 100 0.789 0.2496 0.00565 0.9659 (0.0109)
0.00360 | 150 0.795 0.2527 0.00366 0.9828 (0.2193)
0.00270 | 200 0.795 0.2509 0.00279 0.9759 (0.0634)

Table 5.17: Sample variance from the 2000 ;f; estimates. The estimates are calcu-
lated from 2000 simulations and the Shapiro-Wilk statistic was calculated using a
random sample of 100 estimates
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poo  Ppo1 Po psu Pe Var(ps) | n psn Py Var(p%) Shapiro-Wilk Test
Statistic (p-value)
01 01 01 02 0270 0.00696 | 50 0.203 0.2680 0.00662 0.9858 (0.3619)
0.00348 | 100 0.196 0.2663 0.00339 0.9676 (0.0145)
0.00232 | 150 0.196 0.2678 0.00229 0.9683 (0.0165)
0.00174 | 200 0.199 0.2693 0.00172 0.9766 (0.0722)
01 0.1 01 05 0404 000676 | 50 0.485 0.3973 0.00633 0.9921 (0.8311)
0.00338 | 100 0.493 0.4011 0.00329 0.9819 (0.1865)
0.00225 | 150 0.498 0.4032 0.00222 0.9839 (0.2647)
0.00169 | 200 0.498 0.4022 0.00167 0.9920 (0.8182)
01 01 01 08 0538 0.00789 | 50 0.781 0.5278 0.00739 0.9883 (0.5326)
0.00395 | 100 0.790 0.5351 0.00381 0.9853 (0.3343)
0.00263 | 150 0.795 0.5377 0.00256 0.9848 (0.3050)
0.00197 | 200 0.796 0.5378 0.00194 0.9828 (0.2169)
0.1 01 02 02 0187 0.00746 | 50 0.188 0.1822 0.00712 0.9666 (0.0121)
0.00373 | 100 0.198 0.1855 0.00362 0.9842 (0.2755)
0.00249 | 150 0.197 0.1875 0.00246 0.9844 (0.2884)
0.00186 | 200 0.198 0.1860 0.00185 0.9826 (0.2098)
01 0.1 02 05 0288 0.00829 | 50 0.489 0.2806 0.00787 0.9871 (0.4460)
0.00415 | 100 0.494 0.2875 0.00403 0.9696 (0.0205)
0.00276 | 150 0.495 0.2862 0.00271 0.9677 (0.0147)
0.00207 | 200 0.497 0.2859 0.00205 0.9921 (0.8268)
01 0.1 0.2 08 0389 0.01018 | 50 0779 0.3827 0.00953 0.9817 (0.1800)
0.00509 | 100 0.791 0.3873 0.00492 0.9902 (0.6838)
0.00339 | 150 0.796 0.3860 0.00333 0.9928 (0.8772)
0.00255 | 200 0.795 0.3875 0.00250 0.9928 (0.8729)
01 01 03 0.2 0.108 0.00766 | 50 0.194 0.1065 0.00731 0.9807 (0.1514)
0.00383 | 100 0.196 0.1083 0.00375 0.9710 (0.0262)
0.00255 | 150 0.201 0.1089 0.00252 0.9923 (0.8411)
0.00191 | 200 0.196 0.1078 0.00189 0.9922 (0.8333)
0.1 01 03 05 0.180 0.00886 | 50 0.482 0.1768 0.00836 0.9796 (0.1234)
0.00443 | 100 0.492 0.1769 0.00430 0.9863 (0.3923)
0.00295 | 150 0.495 0.1797 0.00290 0.9805 (0.1448)
0.00221 | 200 0.495 0.1814 0.00218 0.9889 (0.5744)
0.1 01 03 08 0252 0.01081 | 50 0.776 0.2479 0.01013 0.9883 (0.5323)
0.00540 | 100 0.783 0.2501 (.00524 0.9919 (0.8103)
0.00360 | 150 0.791 0.2508 0.00352 0.9822 (0.1951)
0.00270 | 200 0.793 0.2491 0.00266 0.9937 (0.9278)

Table 5.18: Asymptotic variance of p§. The estimates are calculated from 2000
simulations and the Shapiro-Wilk statistic was calculated using a random sample
of 100 estimates
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Poo Po1 Po psu ps Var(ps) | n psn Ps Sg: Shapiro-Wilk Test
’ Statistic (p-value)
02 01 01 02 038 000813 | 50 0.193 0.3795 0.01104 0.9448 (0.0004)
0.00407 | 100 0.201 0.3834 0.00560 0.9943 (0.9521)
0.00271 | 150 0.200 0.3882 0.00360 0.9902 (0.6805)
0.00203 | 200 0.197 0.3859 0.00285 0.9924 (0.8526)
02 01 01 05 0477 0.00781 | 50 0.487 0.4725 0.01044 0.9680 (0.0155)
0.00391 | 100 0.493 0.4730 0.00488 0.9875 (0.4731)
0.00260 | 150 0.490 0.4723 0.00340 0.9905 (0.7062)
0.00195 | 200 0.494 0.4724 0.00240 0.9883 (0.5341)
02 01 01 08 0.565 0.00854 | 50 0.778 0.5580 0.00941 0.9917 (0.7962)
0.00427 | 100 0.790 0.5625 0.00471 0.9832 (0.2358)
0.00285 | 150 0.792 0.5632 0.00318 0.9949 (0.9727)
0.00213 | 200 0.796 0.5644 0.00232 0.9805 (0.1449)
03 01 01 0.2 045 0.00767 | 50 0.187 0.4463 0.00914 0.9873 (0.4598)
0.00383 | 100 0.196 0.4539 0.00437 0.9708 (0.0255)
0.00256 | 150 0.192 0.4526 0.00298 0.9640 (0.0079)
0.00192 | 200 0.201 0.4540 0.00225 0.9910 (0.7467)
03 0.1 01 05 0510 0.00792 | 50 0.480 0.5022 0.00838 0.9857 (0.3574)
0.00396 | 100 0.489 0.5077 0.00412 0.9934 (0.9127)
0.00264 | 150 0.492 0.5060 0.00294 0.9938 (0.9305)
0.00198 | 200 0.495 0.5062 0.00216 0.9910 (0.7488)
03 01 01 08 0.564 0.00880 | 50 0.780 0.5578 0.00876 0.9788 (0.1069)
0.00440 | 100 0.789 0.5605 0.00472 0.9848 (0.3086)
0.00293 | 150 0.793 0.5635 0.00300 0.9819 (0.1870)
0.00220 | 200 0.794 0.5620 0.00238 0.9894 (0.6200)
04 01 01 02 0470 0.00750 | 50 0.196 0.4622 0.00798 0.9851 (0.3220)
0.00375 | 100 0.195 0.4641 0.00412 0.9893 (0.6073)
0.00250 | 150 0.203 0.4680 0.00260 0.9855 (0.3466)
0.00188 | 200 0.195 0.4668 0.00194 0.9918 (0.8056)
04 01 01 05 0500 000821 | 50 0.478 0.4911 0.00825 0.9843 (0.2833)
0.00410 | 100 0.486 0.4967 0.00414 0.9827 (0.2153)
0.00274 | 150 0.490 0.4958 0.00291 0.9718 (0.0306)
0.00205 | 200 0.497 0.4974 0.00218 0.9824 (0.2023)
04 01 01 08 0530 0.00920 | 50 0.7771 0.5208 0.00940 0.9686 (0.0174)
0.00460 | 100 0.786 0.5267 0.00489 0.9783 (0.0986)
0.00307 { 150 0.790 0.5257 0.00305 0.9808 (0.1546)
0.00230 | 200 0.790 0.5273 0.00239 0.9942 (0.9470)

Table 5.19: Additional results for the sample variance from the 2000 ;f; estimates.
The estimates are calculated from 2000 simulations and the Shapiro-Wilk statistic
was calculated using a random sample of 100 estimates
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—

Poo  Pol Plo PSit 05 Var(pg) | n /s11 p% Var(ps) Shapiro-Wilk Test
Statistic (p-value)

02 01 01 02 0389 0.00813 | 50 0.198 0.3824 0.00785 0.9688 (0.0181)

0.00407 | 100 0.198  0.3869 0.00399 0.9442 {0.0003)

0.00271 | 150 0.195  0.3846 0.00268 0.9505 (0.0009)

0.00203 | 200 0.199  0.3865 0.00202 0.9906 (0.7166)

02 01 01 05 0477 0.00781 | 50 0.486  0.4689 0.00746 0.9637 (0.0075)
0.00391 | 100 0.493  0.4723 0.00382 0.9933 (0.9066)
0.00260 | 150 0.493  0.4725 0.00257 0.9791 (0.1141)

0.00195 | 200 0.495  0.4743 0.00193 0.9873 (0.4585)

02 01 01 08 0.565 00084 | 50 0.781 0.5602 0.00800 0.9871 (0.4424)

0.00427 | 100 0.790  0.5595 0.00415 0.9778 (0.0892)

0.00285 | 150 0.793  0.5629 0.00279 0.9848 (0.3076)

0.00213 | 200 0.796  0.5633 0.00210 0.9889 (0.5774)

03 01 01 02 0456 0.00767 | 50 0.191 0.4445 0.00756 0.9683 (0.0165)

0.00383 | 100 0.194  0.4531 0.00378 0.9866 (0.4100)

0.00256 | 150 0.195  0.4532 0.00254 0.9843 (0.2804)

0.00192 ) 200 0.197  0.4548 0.00190 0.9796 (0.1227)

03 01 01 05 0510 000792 | 50 0.481 0.5028 0.00758 0.9925 (0.8584)
0.00396 | 100 0.494  0.5060 0.00389 0.9820 (0.1896)
0.00264 | 150 0.489  0.5074 0.00260 0.9892 (0.6034)
0.00198 | 200 0.494  0.5093 0.00195 0.9907 (0.7219)

03 01 01 08 0564 0.00880 | 50 0.776  0.5584 0.00829 0.9937 (0.9244)

0.00440 | 100 0.789  0.5611 0.00428 0.9769 (0.0758)

0.00293 | 150 0.792  0.5606 0.00288 0.9883 (0.5291)

0.00220 | 200 0.795  0.5635 0.00217 0.9820 (0.1884)

04 0.1 0.1 02 0470 0.00750 | 50 0.187  0.4623 0.00734 0.9840 (0.2689

0.00375 | 100 0.202  0.4663 0.00372 0.9826 (0.2117

0.00250 | 150 0.193  0.4672 0.00248 0.9589 (0.0034

0.00188 | 200 0.198  0.4681 0.00187 0.9913 (0.7696

04 01 01 05 0500 0.00821 | 50 0.478 0.4940 0.00790 0.9707 (0.0248

Ruid (e Nauiod (NAIDZ (N4 (Nt

0.00410 | 100 0.494  0.4953 0.00404 0.9742 (0.0465

0.00274 | 150 0.489  0.4959 0.00271 0.9899 (0.6558)

0.00205 | 200 0.496  0.4965 0.00204 0.9910 (0.7410)

04 0.1 0.1 08 0.530 0.00920 | 50 0.774 0.5218 0.00880 0.9797 (0.1253)

0.00307 | 150 0.789  0.5278 0.00301 0.9859 (0.3699)

(

(
0.00460 | 100 0.786  0.5278 0.00448 0.9818 (0.1843)

(

(

0.00230 | 200 0.792 0.528923 0.00227 0.9885 (0.5440)

Table 5.20: Additional results for the asymptotic variance of pg. The estimates
are calculated from 2000 simulations and the Shapiro-Wilk statistic was calculated
using a random sample of 100 estimates
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5.4 An Example

To apply the estimators proposed in Sections 3 and 4 for Kendall’s tau and Spear-
man’s rho, respectively, the dataset from Wang (2007) will be used. The data
was from a cohort study of HIV-infected men conducted at the Hospital Univer-
sitrio Clementino Farga Filho on Rio de Janeiro, Brazil. One of the objectives of
the study was to assess the association between plasma and semen viral loads. A

summary of the data is shown in Table 5.22.

All Positive Values | Positive Paired Values
Plasma Semen Plamsa Semen
Viral Viral Viral Viral
Loads Loads Loads Loads
Mean 4.13 4.04 4.14 4.45
SD 0.811 0.772 0.841 0.762
N 21 38 19 19

Table 5.21: Summary of HIV data

Reported data were from 85 men wherein 75% (n=64) of the semen sam-
ples and 55% (n=47) of the blood samples have undetectable viral loads (falling
below the limit of detection, 2.60). For the purposes of our current study, these
will be treated as zero values. The proportion of data for each of the multinomial
probabilities are pgy = 0.52941, po; = 0.22353, pyo = 0.02353, and p;; = 0.22353.
With these values, Kendall’s tau and Spearman’s rho will be estimated using the
proposed estimators with their corresponding asymptotic variances. However, we
will first examine the data graphically with the aid of the scatter plot and the
corresponding chi-plot in Figure 5.5. The scatter plot from the 85 pairs of ob-
servations shows the ”‘L”’ shaped curve on the left corner where the zero values
are presented. The continuous pairs, however, are on the upper-right corner of

the plot exhibiting some kind of positive linear relationship between plasma viral
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load and semen viral load. In the corresponding chi-plot, all points are about
and outside the 95% band which is indicative of a definite dependence between
plasma and semen viral loads. The underlying question now is how to quantify

that dependence.
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Figure 5.5: Scatter plot and corresponding chi-plot of plasma and semen viral
loads from Wang (2007)

Table 5.22 shows the calculated estimates of the population values for
Kendall’s tau and Spearman’s rho. For Kendall’s tau, the value of 7* is lower

than 7;; after considering the proportion of zero in either plasma viral load or
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semen viral load and in both. The variance of this estimate is 0.002456. In the
same manner, the value of ;g is also lower than pg11, where only the positive

pairs of observations are considered. The corresponding variance of this estimate

1s 0.004632.

Kendall’s tau | Spearman’s Rho
711 = 03844 | per1 = 0.4619
7% = 0.2454 pL = 0.3506

SZ, = 0.002456 _5[2? = 0.004632

Table 5.22: Calculated value of the estimators and the corresponding variances of
the HIV data
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Chapter 6

FINAL COMMENTS AND
FUTURE RESEARCH

The estimation of dependence measures is an important problem in many fields of
research. Although there have been several adjustments proposed because of viola-
tion of continuity assumption, none of them really focused on having a probability
mass at zero. In this research, we introduced the problem of having zero-inflated
data. With the presence of a probability mass at zero in a bivariate model, we
proposed an adjusted Kendall’s tau and Spearman’s rho estimators. These were
compared to their counterparts and it was shown that the intervals are narrower
for the proposed estimators and are less bias than their counterparts. Their cor-
responding asymptotic variances were also determined and were found to be con-
sistent with the population value. A real data from Wang (2007) was used to

illustrate and apply the proposed estimators.

As been discussed in the previous chapters of this research, the widely
used and accepted classical dependence measures might not be appropriate for
cases when the underlying distribution of the data being analyzed is zero-inflated.

Considering only the nonzero pairs of observations usually leads to misleading
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results.

A next step for the researcher is to define a procedure for a confidence inter-
val estimation. It will also be of interest to further look at the asymptotic variance
by considering the Var(m1). Also, an « level test of association using the proposed
estimators and their asymptotic variances. The power of the test will also be deter-
mined. This research can be further extended to left truncated data. Also, other
measures of association such as the Gini’s index can be studied with zero-inflated
data. It is also of interest for the researcher to look into the small sample applica-
tion and further apply the concepts proposed in this research and other methods
for handling zero-inflated data in the pre-clinical field. There are several areas in
this field where zero-inflated data can be observed either by recording real zeroes
or values falling below a limit of detection. Some of these areas are immunotox-
icology and developmental and reproductive toxicology. Pharmacokinetic data is
also a good example where zero-inflation can occur. Drug concentration in the
blood or metabolites is usually not detectable, thus reported as falling below the

limit of quantification (BLOQ).
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