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Zero-inflated continuous distributions have positive probability mass at zero 

in addition to a continuous distribution. Such type of data can be encountered, for 

example, in medical, environmental and financial research. The main focus of this 

research is to study the association of nonnegative random variables, both having 

a positive probability mass at zero. New estimators of the classical measures of 

association, Kendall's tau and Spearman's rho, appropriate for the zero-inflated 

distributions, are proposed and their asymptotic distributions are derived. Perfor

mance of the estimators is assessed by a Monte Carlo simulation study. New ideas 

are illustrated by a real data example. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation and Background 

Statistical concerns related to analysis of zero-inflated data have been identified 

as early as in 1955 especially in relation to the estimation of the location para

meter (Aitchison 1955). The term "inflation" was used to emphasize that the 

probability mass at zero exceeds the value coming from a parametric family of 

distributions. Such data occurrence is common in medical research and also in the 

fields of finance, insurance, manufacturing, economics and engineering, to name a 

few. Statistical methodology for such type of data is still being investigated by 

statisticians in response to the need in these areas. 

Some examples of zero-inflated data are as follows: 

Example 1. Household expenditure in Aitchison (1955). If a certain com

modity is targeted, some households might not be purchasing that commodity. For 

example, if one is interested in studying the household expenditure on children's 

clothing, a zero value will be reported for households without any children. 

Example 2. Marine surveys in Pennington (1983). Particular species of fish 

and plankton usually occupies only a part of the total area. In the survey of marine 
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species, zero inflation is brought about by areas unoccupied or maybe unsuitable 

for some species. 

Example 3. Exposure measurements in Taylor, et. al. (2001). Depending 

on work schedules, some workers may be required to spend certain time during the 

data collection process in control rooms free of contamination. This will give zero 

exposure measurements for these workers. 

Example 4- Antibody response to the measles vaccine in Moulton and 

Halsey (1995). There are several known factors for the results of these assays to 

be zero-inflated. One might be due to the passively acquired maternal antibody 

by the infants that is interfering to respond to the measles vaccine. A Q-Q plot of 

the partial data is presented in Figure 1.1. 
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Figure 1.1: Q-Q plot of measles antibody concentration versus the expected dis
tribution. 
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As indicated in the examples above, the non-ignorable zeroes can be at

tributed to real zeroes, non-response or non-detects, i.e., falling below some limit 

of detection. The presence of these zero observations has brought some problems 

for researchers, statisticians or data analysts. Due to inapplicability of some of the 

existing statistical methods, common, although not always appropriate, practice in 

the analysis of zero-inflated data is exclusion or analysis of just the nonzero pairs 

of observations in a bivariate case or using average ranks in the nonparametric 

procedures. 

Association of two or more variables is a very important research topic. The 

Pearson's correlation coefficient, while the most commonly used, detects only linear 

association between two variables, it also needs the normality assumption for each 

of the random variables. Since real data often violate normality and relationship 

other than linear is often of interest, Kendall's tau and Spearman's rho are indices 

that can be used. They are both estimated as rank correlations, so the relations 

are between the rankings, rather than the actual values of the observations. There 

have been several adjustments to these rank correlations in the literature that try 

to take into consideration tied observations but none of them were designed for 

zero-inflated data. Calculating estimates for these measures of rank correlation 

using just the nonzero pairs of observations in a zero-inflated data usually leads to 

inaccurate results. 
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1.2 Statement of the Problem 

This research will focus on studying the well known measures of association, the 

Kendall's tau and Spearman's rho. Multiple zeroes in the zero-inflated data can be 

seen as a special case of tied observations. The treatment of these measures with 

the presence of ties will be studied and compared with a proposed new approach 

in estimating these measures. 

1.3 Organization of the Dissertation 

Background information introduced in the remainder of this chapter includes the 

delta distribution and the classical indices of association not only in the continuous 

case but also in discrete and categorical cases. A graphical tool will also be pre

sented. Chapter 2 will give a review of the current literature. Chapters 3 and 4 will 

give the proposed estimators for Kendall's tau and Spearman's rho, respectively. 

The asymtotic distribution of the proposed estimators will also be defined. Chap

ter 5 will present the simulation plan and the results. This dissertation will end 

with the final comments in Chapter 6 which will also outline the future research 

plan. 

1.4 Basic Definitions 

We will define the basic distribution, coined by Aitchison as the delta distribution, 

which incorporates the probability mass at zero while the distribution of the posi

tive values is lognormal. We will also look at the different indices of association for 

later comparison. A graphical tool called a chi-plot will also be presented which 

will be used for data evaluation alongside the scatter plot. 
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1.4.1 Delta Distribution 

For the univariate case, assume that a random variable X has continuous dis

tribution for its positive values with density hx(x) and a positive mass at 0, 

P(X = 0)=p>0. 

Then the distribution function can be written as 

f(x)=pdx[(l-p)hx(x)]1-dx, (1.1) 

where dx = 0 if x > 0 and dx = 1 if x = 0. Consequently, 

( 0 if s < 0 
Fx(s) = I V g if s = 0 

[ p + (1 — p) J0
S hx{x)dx if s > 0. 

If hx(x) is a density of a lognormal distribution, X has so-called delta 

distribution (Aitchison 1955). The mean and variance for this distribution are 

E{X) = (l-p)a (1.2) 

and 

Var(X) = (l-p)f3 + p{l-p)a2, (1.3) 

where a and j3 are the mean and variance, respectively, of the hx(x) distribution. 

1.4.2 Measures of Association 

There are several measures available to study the association of discrete or contin

uous data. The most common measure for a continuous pair of random variables 

is the Pearson's correlation coefficient, p. Other measures, such as Kendall's tau, 

r, and Spearman's rho, ps are also used and will be the focus of this study. 
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Pearson's Correlation Coefficient, p 

Pearson's correlation coefficient is a measure of linear relationship between two 

random variables. 

Suppose X and Y are two jointly distributed random variables, the Pear

son's correlation coefficient between X and Y is given by 

, = C ° v ( X ' r ) , (1.4) 
y/V{X)V{Y) 

where Cov(X, Y) is the covariance between X and Y and V(X) and V(Y) denote 

the variances of X and Y, respectively. 

From a sample of n paired observations, p is estimated by 

HX^-jnXxY) ( 1 5 ) 

\j:Xi-nX2)(Y,V-nYS 

where X and Y are the sample means of Xj's and Yj's, respectively. 

Some drawbacks of this measure are: (1) it is not invariant under strictly 

increasing nonlinear transformations and it is highly affected by extreme outliers, 

and (2) it is sensitive to the departure from normality, r tends to have large bias 

and large variance when calculated from a bivariate nonnormal distribution with 

skewed marginals, p ^ 0 especially for smaller sample sizes. 
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Kendall's Tau, r 

Kendall's tau was proposed by Maurice Kendall (1938) as a measure of association 

of two jointly distributed continuous random variables. It is defined as a difference 

between the probability of concordance and discordance of two random variables. 

A pair of observations is said to be concordant if a larger value of X is more likely 

associated with a larger value of Y. The pair is discordant if a larger value of X 

is more likely associated with a smaller value of Y. The population Kendall's r is 

defined as 

r = P[(XX - X2)(Yl - Y2) > 0] - P[{XX - X2)(Y1 - Y2) < 0], (1.6) 

P (concordance) F'(discordance) 

where (X2,Y2) is an independent replicate of (Xi,Y\). As a difference of two 

probabilities, — 1 < r < 1 with a positive r indicating positive association between 

the variables and higher absolute value indicates stronger association. 

For (X, Y) following a bivariate normal distribution with correlation coef

ficient p, Kruskall (1958) presented the relationship between Pearson's correlation 

coefficient and Kendall's tau. 

/ H(x,y)dH(x,y) - 1 = -arcsin(p). (1.7) 
-oo J —oo " 

Graphical illustration shown in Figure 1.2 suggests that r is a nearly linear 

function of p. 

To get the estimate of tau, let [X\) Yi),..., (Xn,Yn) be a random sample 

from the joint distribution of (X,Y). The Kendall rank correlation statistic K is 
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Figure 1.2: Kendall's tau as a function of Pearson's correlation coefficient in the 
bivariate normal model 

calculated as 
n—1 n 

(l.S 

here wnere 

Q((a,b),(c,d)) 
1, if (d-b)(c-a) > 0 

(1.9) 
-1 , if {d-b)(c-a) < 0 . 

As Kendall proposed, K can be used to obtain a distribution free test of 

H0 : X and Y are independent vs. Hi : r ^ 0 where r is defined as in (1.6). 

The estimate r is based on the statistic K and is defined as 

K 2K 
T — 

n(n — 1) 
(1.10) 



It can be shown using standard U-statistic theory (see e.g., Randies and 

Wolfe, 1979) that 

E{T) = T (1.11) 

and 

Var(f) = -j^[2{n - 2)Ci + C2], (1.12) 
n 
2 

where Ci = Cov[(Q(XllY1),(X2,Y2)),(Q(X1,Yl),(X3,Y3))}, (i > 0 and 

C2 = Vax[Q(X1 ,y1),(X2 ,y2)]. 

If there are ties among the observations Xi, ...,Xn and/or separately among 

the observations Yi, ...Yn, function (1.9) is replaced by 

f 1, if (d-b)(c-a) > 0 
Q*{(a,b),{c,d))= I 0, if (d - 6)(c - a) = 0 (1.13) 

{ -1 , if (d-b)(c-a) < 0 , 

and K is now defined as 

n—1 n 

^ - E E Q*((x t,iap^))- (i-i4) 

The estimate, r , of the Kendall population coefficient r in (1.10) is then 

redefined as 

f = 7
 2 K (1.15) 

VCTo-TxXro-r,,) 

where T0 = n(n - 1), Tx = ^ s 2 ( s / - 1) and Ty = ^ m i m ( t m - !)• Here, / is 

the number of tied observations in X and ŝ  is the size of the Ith tied group in X 

observations and, equivalently, m is the number of tied observations in Y and tm 

is the corresponding size of this group. Consequently, the denominator of (1.15) is 
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a geometric average of the number of pairs untied on X and the number of pairs 

untied on Y. It can easily be seen that (1.15) reduces to (1.10) if there are no tied 

observations. 

S p e a r m a n ' s R h o , ps 

Another popular measure of association is the Spearman's rho. Let (Xi,Yi), (X2, Y2) 

and (X3, Y3) be independent random vectors with the same distribution as (X, Y). 

Then 

ps = 3P[(XX - X2)(Y1 - y3) > 0] - 3P[(Xi - X2){Y1 - Yz) < 0]. (1.16) 

The coefficient ps is proportional to the difference between the probabilities 

of concordance and discordance of the random vectors (Xi,Y\) and (X2, Y3), where 

X2 and Yz are independent variables with the same marginal distributions as X\ 

and Yi, respectively. 

For the bivariate normal models with correlation coefficient p, Kruskall 

(1958) similarly has shown that 

ps = 12 J™ J™ F(x)G(y)dH(x,y)-3 = ^rcsin^y (1.17) 

The rank-based estimator of this correlation parameter was introduced by 

Spearman in 1904 as 

rg=l-6pr^, (1.18) 
n[nl — 1) 

where Di is the difference between the ranks of Xi and Y^ in their separate rankings. 

10 



Figure 1.3: Spearman's rho as a function of Pearson's correlation coefficient in the 
bivariate normal model 

With the presence of ties among the n X observations and/or separately 

among the n Y observations, the estimate in (1.18) can be redefined as 

^o-6Er=iA2-im+ry} 
rs = (1.19) 

y/(Wo-Tx)(W0-Ty) 

where W0 = n(n2 - 1), Tx = J2isi(sl ~ !) a n d Tv = YJm
tm{t2

m ~ !)• Similarly 

to Kendall's r , I is the number of tied observations in X and si is the size of 

the Ith tied group in X observations and, equivalently, m is the number of tied 

observations in Y and tm is the corresponding size of this group. 

11 



Discrete Case 

In a discrete case, ties can be viewed as a combination of three different scenarios 

(see, e.g., Liebetrau, 1983). Given (Xi,Yi) and (X2,Y2), they can be tied only on 

X, i.e., (Xi = X2,Y1 ^ Y2) with probability ixf, or tied only on Y, i.e., (X\ ^ 

X2} YY = Y2) with probability 7rt
y, or tied on both X and Y, i.e., (Xi = X2, Yx — I2) 

with probability irfY. The range of r depends on the probability of ties, therefore, 

(1.6) will not be suitable for discrete data. In this case, multinomial sampling is 

more appropriate. If ptj is defined as P(X = xitY = yj), then the Kendall's tau, 

denoted by T5 for discete case, can be defined as 

Tb = — —" —T7?> ( L 2 ° ) 

{^ZLPI)(I-I:UPI> 
l V 2 ' 

under the multinomial sampling model and TTQ is the probability of two randomly 

selected members of the population that are concordant and up is the probability 

that they are discordant. Also, 1 — £ i = 1 Pi+ = 1 — vf ~ ^ Y ^s ^ n e probability that 

the observations are not tied in Y and equivalently, 1 — £ . - = 1 V
2+j = 1 ~~ ^J ~~ ^fY 

is the probability that the observations are not tied in X. 

Given that X and Y discrete variables are jointly sampled then (1.20) can 

be estimated by the formula 

2x(C-D) 

n = 
( « 2 - E i « i + ) ( r c 2 - £ j n + j ) 

1/2 : (1.21) 

where n^s are the observed frequency. Also, C is the number of concordant pairs 

and D is the number of discordant pairs. 
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Similarly, the Spearman's rho can be estimated by the formula 

Ps 
j_ 
12 

( n 3 - ^ n f + ) (n3-J2jnlj 
1/2' :i.22) 

where 

R(i) = ^ nfc+ + 
k<i 

n1±_N_ 
2 2 ' 

(1.23) 

and 

„ , ., sr^ n+j N 
2 2 

;i.24) 

Measures of Association for Categorical Variables 

For two categorical variables, a contingency table is a tool in understanding their 

joint distribution. An example is shown in Table 1.1. Here, the two variables are 

tabulated, one as a row variable and the other as a column variable. The categories 

(e.g., present or absent) are shown for each variable and the frequency counts for 

each possible combination of categories are presented. The marginal totals are also 

shown for each of the variables. 

Second Variable 
Present 
Absent 
Totals 

First Variable 
Present 

n u 
ri2i 

rc+i 

Absent 

n12 

" 2 2 

n+2 

Totals 
n1+ 

n2+ 
n 

Table 1.1: Example of 2x2 contingency table for two categorical variables 

Given a contingency table, several measures of association have been pro

posed like the <fi coefficient for 2x2 tables; Pearson's C (contingency coefficient) for 
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symmetric contingency tables larger than a 2x2; and Cramer's V for asymmetrical 

tables. 

Given a contingency table for variables measured in ordinal categories such 

as low/medium/high, with a large number of tied ranks, the gamma coefficient, G 

is used as the appropriate measure of association, defined as 

» = ? = §?£• (L25) 

The population version of gamma is 

rv-n, 

1.4.3 Chi-plot 

In addition to scatter plot of raw data and ranks, association between random 

variables will be graphically illustrated using chi-plots. These were originally pro

posed by Fisher and Switzer (1985), and later expanded in Fisher and Switzer 

(2001), where they showed how a single chi-plot can highlight different forms of 

dependence. 

To generate this plot, given a random sample of n pairs of random samples 

from a bivariate distribution, one should determine the following quantities. 

1 
Hi = — # ( j ^ : ^ < 4 y 3 < y , ) , (1.27) 

Fi = -t—JttJ^i-.XjKXi), 
n — 1 

Gt = -L-#(j^i -.YjKYi), and 
n — 1 

St = Sign { ( # - 0 . 5 ) ( G i - 0 . 5 ) } . 

14 



It can be seen that these quantities depend entirely on the ranks of the 

distributions. Fisher and Switzer proposed that the chi-plot be a scatter plot of 

the pairs (AJ,XJ), where Aj is the distance between the observation (x^y*) and the 

center of the dataset and Xi is a function of the signed square root of the traditional 

chi-square test statistic for independence in a two-way table. These are defined as 

Hi — FiKji 
X* = — r, (1-28) 

{Fi(l - Fi)Gi(l - G%)Y 

A,. 45, max {(F, - 0.5)* , (d - 0.5)*} , (1.29) 

where Xi £ [~1>1]-

In order to help with the interpretation of the chi-plot, Fisher and Switzer 

recommended that a pair of horizontal lines be displayed showing ±c p / \ / n , where 

cp is selected such that approximately (100 x p)% of pairs (Aj, Xi) n e between these 

lines. They reported cp values 1.54, 1.78, and 2.18 that correspond to p = 0.90, 

0.95 and 0.99, respectively, obtained through simulations. 

Figures 1.4 and 1.5 are shown to illustrate the expected behavior of the chi-

plots with two independent random variables and with the presence of increasing 

monotone association. Data were randomly generated from a bivariate standard 

normal distribution with n = 100 and correlation p = 0.0, 0.20, 0.50, 0.95. The left 

portion of each figure shows the scatter plot for each case while the corresponding 

graph on its right is the chi-plot. The horizontal lines represents the 95% control 

limit, which suggests that 95% of the x% values should fall within these lines if 

there is no association between the variables. The points depart from this band 

as the association becomes more prominent. In Figure 1.4(b), majority of the 

points are within the 95% band which indicates the lack of association between 
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the variables as depicted in its corresponding scatter plot in Figure 1.4(a). As the 

correlation coefficient is increased, the points depart from the band which leads to 

a picture similar to the one shown in Figure 1.5(h). In this figure, there is evidence 

of monotone dependence between the two variables. 
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Figure 1.4: Sample chi-plot. Left column shows the scatter plots and the right 
column their corresponding chi-plots, for simulated samples of size 100 from the 
bivariate normal distribution with correlation coefficients, 0.0 and 0.20, respec
tively. 
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Figure 1.5: Additional sample chi-plot. Left column shows the scatter plots and 
the right column their corresponding chi-plots, for simulated samples of size 100 
from the bivariate normal distribution with correlation coefficients, 0.50 and 0.95, 
respectively. 
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Chapter 2 

LITERATURE REVIEW 

Several studies have been published regarding the location parameters for single, 

paired or independent samples having a mass at zero, the earliest was Aitchison 

(1955). Examples have been provided to illustrate the problem at hand, one of 

which is the analysis of household expenditure on a certain commodity. Some 

households may not use or buy the product which results to a zero observation. 

The presence of these cases skews the distribution which can then be approximated 

by a lognormal curve. Aitchison proposed efficient estimates of the mean and 

variance. He further applied his results using several distributions and then used 

real data as examples. 

The concepts presented by Aitchison were used by Pennington (1983) in 

finding efficient estimators of abundance for fish and plankton surveys. He pointed 

out that inflation at zero can also be observed in marine survey, which is brought 

about by having areas that are not occupied or unsuitable for some species. He 

applied Aitchison's estimators on ichthyoplankton survey and concluded the ef

ficiency of the mean estimator based on the delta-distribution due to the large 

variability of the log of the nonzero values. He was also able to extend Aitchison's 

work and presented an estimate of the variance for the estimator of the mean. 
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Owen and DeRouen (1980) also studied the mean estimation with zero-

inflated data. In addition to just having zero observations, they also looked into 

having a left-censoring and a combination of both and used the mean square error 

approach. They reported that the maximum variance unbiased estimator of the 

zero inflated mean has lower MSE than the MLE with just the nonzero censored 

data. 

Several other papers were published that dealt with zero-inflated data. One 

of the main motivations for this research was the study by Moulton and Halsey 

(1995). They presented a measles vaccine data from an immunogenicity study on 

sera collected from children 12 months of age. The zero values in this data arise 

from values falling below a limit of detection. A mixture model approach using 

lognormal distribution for the nonzero values was used. 

An interesting point to further illustrate when zero-inflated data can occur 

was made by Taylor, et. at. (2001). In their paper, they presented the study 

of exposure measurement falling below a fixed limit of detection. In this type of 

data, at least 20% of the data are expected to fall below the set limit of detection, 

which give rise to the zero-inflation problem. However, they pointed out that it 

is false to assume that all zero values are due to the fact that the observed value 

is below a limit of detection. Some of those are real zeroes which were observed 

from personnel assigned to work in a controlled environment for a certain period 

of time. 

Bascoul-Mollevi, et. al. (2005) presented several two-part statistics that 

can be used to analyze paired data from a mixed distribution. These statistics 

are a sum of a test of proportions (for the count of zero values) and a parametric 

or non-parametric statistic comparing the means from two paired samples. The 
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test of proportions is based on a x2 distribution with 1 degree of freedom (d.f.) 

and the test for the nonzero value is based on a statistic that also tends to a x2 

distribution with 1 d.f. The resulting statistics tend to a x2 distribution with 2 d.f. 

These tests were proposed by Lachenbruch (2001) who considered two independent 

groups. Both papers compared the two-part statistics with the usual tests used 

in testing difference in proportions and tests in difference in means. Lachenbruch 

concluded that the two-part statistic performed better if the larger proportion of 

zero values corresponded to the population with the larger mean. Bascoul-Mollevi, 

et. al. concluded that all tests were efficient for the case when small number of 

zero values corresponded to the population with the larger mean. On all other 

cases, the two-part statistic performed better, thus, showing consistency between 

the independent and matched-pair scenario. 

Lachenbruch (2002) revisited and summarized the studies he had presented 

regarding the analysis of data with excess zeroes. The two-part models that he 

presented considered the nonzero part having continuous distribution rather than 

Poison or negative binomial. From his paper in 2001, he only considered the t-

test and the Wilcoxon test, and the two-part tests using these tests. He further 

studied the size and power of all the tests he presented and later concluded that 

the two-part models are useful alternatives to the usual t-test and Wilcoxon test. 

Zhou and Tu (1999) also compared means of independent populations hav

ing zero observations. They looked into the analysis of medical cost data having 

significant zero values from different patient groups. The problem was recognized 

when in the first intervention group with 142 patients, 108 of them were not hospi

talized, and therefore, no charges were incurred from them. From the second group 

with 113 patients, 85 were not hospitalized. And from the control group with 119 
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patients, 98 were not hospitalized. Due to the inappropriateness of standard tests 

like the analysis of variance, they proposed to use the Wald test and the likelihood 

ratio test in which they found that both have reasonable power to detect true dif

ference in the means. They argued that both tests performed satisfactory based 

on their simulation results. The power of both tests are equally comparable and 

the type I error rate of the Wald test is relatively close to that of the likelihood 

ratio test, especially when the sample sizes are large. Overall, they concluded that 

due to the ease of implementation and computationally being more efficient, the 

Wald test was preferred over the likelihood ratio test. 

Daoud (2007) extended the two-part tests to comparison of means in k 

independent populations with zero inflated distributions. 

Kendall's tau was proposed to measure the strength of dependence be

tween two continuously distributed variables and was first introduced by Kendall 

in 1938, applied in solving psychology related problems, while Spearman intro

duced his measure of rank correlation in 1904. Kendall, et. al. (1939) determined 

the theoretical sampling distribution of Spearman's rank correlation coefficient. 

Then Kendall (1942) proposed a coefficient of partial correlation. The motivation 

was that one can naturally inquire that a significant rank correlation between two 

ranked observations maybe due to the correlation of both qualities with some more 

fundamental quality. In 1945, Kendall studied the effects of tied ranks on the co

efficients of rank correlations. If observations between the ith and kth observations 

are ties, the midrank method, (i + k)/2, is used to calculate the rank of these 

observations. He presented the adjustments for the calculation of the Kendall's 

and Spearman's rank correlation coefficients and further discussed them in more 

detail in his book together with Gibbons (1948). Hollander and Wolfe (1999) also 
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discussed the concepts of the rank correlation coefficients. They noted though as a 

comment that the modified formula taking into consideration the presence of ties 

works best if the size of the tied observation in either variables or both do not 

represent a big percentage of the data. Noether (1967) proposed a consistent esti

mator of the variance of r based on the test statistic proposed by Kendall. Flinger 

and Rust (1983) also proposed a consistent variance estimator that corrects the 

problem of obtaining negative values by Noether. They further indicated that even 

with discontinuous distribution, the function F(x,y), nl'2{r — T)/$J, where r is 

the proposed estimator of r with corresponding standard deviation dj, still main

tains a limiting standard normal distribution. Samara and Randall (1988) further 

studied the subject and also proposed their consistent estimator for the variance of 

Kendall's tau. A corresponding modified Kendall's test statistic was also defined. 

Cliff and Charlin (1991) mentioned that only when there are no tied observations 

is it possible to attain the limits of Kendall's r which is [-1, 1]. In their paper, 

they also generalized the formula for estimating the variance of the sample tau. 

An extreme case of tied observations can sometimes lead to having a di

chotomy in both rankings of two variables, i.e., the values can just be classified as 

either present or not present. This gives rise to the 2x2 contingency table (see, 

e.g., Kendall and Gibbons, 1948). The Kendall's rank correlation coefficient in this 

case is calculated using the observed frequencies and the marginal distributions. 

Contingency tables were further extended to 2xc, rx2 , and rxc tables and they 

were used to study the relationship between the categorical variables of interest as 

presented by Agresti (1990, 1996) and Stokes et. al. (1995). 

In modeling multivariate distributions, one has to take into account the 

effects of the marginal distributions as well as of the dependence between them. 
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In order to achieve this, Sklar (1959) first introduced the concept of a copula. A 

copula is a function which couples a joint distribution function with its univariate, 

uniformly distributed margins [77(0,1)]. It also aids in understanding the concept of 

monotone dependence between continuous variables. Literature in different areas 

of research, especially in the field of finance and banking have been published 

using this concept. Nelsen (1999) published a comprehensive introduction and 

background on copulas. In the simplest way, Sklar's theorem can be summarized 

such that, if H is a bivariate cdf with marginals F and G, there exists a bivariate 

copula C wherein for all (x,y) G M, H(x,y) can be written as C{F(x),G(y)}. If 

F and G are continuous, then C is unique, otherwise, if they are discrete, there 

is no unique way to express the joint distribution as a function of the marginal 

distributions unless on Range(F)x Range(G). Given the copula C, the Kendall's 

tau can be defined as r = 4 J0 JQ C(u,v)dC(u,v) — 1. And also, the Spearman's 

rho can be defined as p = 12 J JQ uvdC(u, v) — 3. 

Herath and Kumar (1991) applied the use of copulas in the field of engi

neering economy, specifically in the area of project risk and regression analysis for 

forecasting. They attempted to look for an alternative for the Pearson's product 

moment correlation due to its limitations. 

Wang (2007) studied the relationship between semen and plasma viral loads, 

both zero-inflated variables, using the Clayton copula model and proposed a mod

ified estimate for r for bivariate truncated data. A goodness of fit test was first 

introduced to check if the Clayton copula model assumptions were met. The 

nonzero part of the data was expected to retain the Clayton copula distribution 

after truncation. The modified r uses only the nonzero pairs of observations. From 

the example given, 85 pairs of plasma and semen viral loads were collected but 
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only 19 pairs were used for the modified tau. The scatter plot of the data is shown 

in Figure 2.1. The graph illustrates that the pairs of observations are grouped 

into four different sections namely, Section I with probability p00; Section II with 

probability pw; Section III with probability poii and Section IV with probability 
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Figure 2.1: Scatter plot of plasma and semen viral loads from Wang (2007). 

In terms of tied observations, this sample data shows a big part of data tied 

at zero (0) with Poo,Poi,pw > 0. 

Most of the coefficients of dependence or association have been defined for 

continuous random variables. If applied to discrete data, some properties of these 
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dependence measures are lost. Neslehova (2007) generalized the rank correlation 

measures for non-continuous random variables. Since copulas are defined to be 

unique in the continuous technique was proposed that will allow the ap

plication of the copulas to the non-continuous random variables. An important 

finding was indicated on the role of the standard extension copula that was first 

introduced by Schweizer and Sklar (1974). This standard extension copula, com

pared with the role of the unique copula with the continuous variables, allowed for 

the generalization of the rank correlation measures. 

With discrete data, the limits [-1,1] are also not attainable. Denuit and 

Lambert (2005) studied the constraints of the dependence measures in bivariate 

discrete data. They presented a continuous extension of a discrete variable and 

focused on the Kendall's tau. They indicated that a discrete variable can be 

associated with a continuous random variable X* defined as X* = X + (U — 1), 

where U is a continuous random variable on (0,1) and is independent of X. They 

showed that the extension preserves the concordance order, that is, (Xi,Yi) -<c 

(X2,Y2) =$• {X*,Y*) <c {X*,Y2*). In general, {X^Y^ <c (X2,Y2) denotes that 

{X2,Y2) is more concordant than (Xu YL) if P(XX < s, Fx < t) < P{X2 < s,Y2 < t) 

for all s , t e l 2 given that (X^Yi) and (X2,Y2) are independent and identically 

distributed. In preserving the concordance order, the continuous extension also 

preserves the Kendall's tau, that is, T(X, Y) = T(X*,Y*). They also presented the 

boundaries of the Kendall's tau using continuous extension of discrete data. 

Mesfioui and Tajar (2005) established monotonicity of r and p with re

spect to concordance ordering described above. They also studied the dependence 

measures for discrete data and also proposed the use of continuous extension. The 

continuousation is done such that X* = X + U where U was chosen to be uniformly 
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distributed on [0,1]. They also established that p is larger than r for positively de

pendent discrete random variables and derived the maximum limits of the estimate 

for r for discrete data. 
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Chapter 3 

PROPOSED ESTIMATOR OF 
KENDALL'S TAU 

Kendall's tau, r, a widely used and accepted measure of association, is defined as 

r = P[(Xi - x2)(yx - y2) > o] - P[(x1 - X2)(Y1 - Y2) < o], (3.1) 

where (X\, Yi), (X2, Y2) are independent replicates of jointly distributed variables 

X and F. 

3.1 Adjustment of Kendall 's Tau with Ties 

The formula (3.1) was proposed under the assumption that both X and Y have 

continuous distribution. However, as it was defined in (1.13), if two pairs of ob

servations are tied in either X, or Y, or both, a score of zero will be given to be 

accounted for in the calculation of K in (1.14). Similarly, the denominator has to 

be adjusted and the estimator is defined in (1.15). 

If there are no paired observations, there is a total of n(n — l ) /2 pairs, 

which is also the sum of number of concordant and discordant pairs. In a simple 

case, if a single value in X is tied s times, there will be s(s — l ) /2 pairs with those 
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observations only. Then, if there are I of these values, each tied in varying s times, 

then there is a total of 

Tx = J > ( S ; - l ) / 2 (3.2) 
i 

ties in X. 

Similarly for ties in Y, we can define 

Ty = J2tm{tm-l)/2. (3.3) 
m 

Therefore, these will lead to the redefined formula in (1.15). This estimator 

will always be greater than that without the adjustment on the denominator, i.e., 

still use n(n — l ) /2 even with ties. 

Zero-inflated type data is a special case of tied observations, under the 

assumption that there is a very small or nearly zero chance for the continuous part 

to have ties. In this case, there will only be one tied value observed noi in X only, 

riio in Y only, and n00 in both X and Y. Incorporating these in (3.2) and (3.3), 

will lead to 

f = K (3.4) 
f n \ ( n00 + n0i \ / / n \ f n00 + n10 \ 

i{2)-{ 2 J V ( 2 J - ( 2 ) 

where noo = number of zero pairs of observations; noi = number of cases when 

x = 0 and y > 0; and nw = number of cases when x > 0 and y = 0. 

The denominator of (3.4) is a geometric mean of the untied pairs of X 

observations and untied pairs of Y observations. 
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3.2 Proposed Estimator of Kendall's Tau, r* 

Since the estimator (3.4) is not a MLE of Kendall's tau defined in (3.1), and it 

was pointed out in Hollander and Wolfe (1999) that the adjustment for ties is 

only satisfactory as long as the number of pairs of observations that are tied in X 

and/or in Y does not represent a sizable proportion of the total number of pairs, 

we propose a new estimator r*, being an estimator of (3.1) for the case of pairs 

being tied at 0 on at least one variable. 

Proposition 1 Let (Xi,Yi) and (A^Yb) be independent and identically distrib

uted random vectors, each with joint distribution function H. Then the population 

Kendall's r given by (3.1) is 

r* = PnTn + 2(pooPn - PoiPw), (3.5) 

where rn is the population Kendall's r defined in (3.1) for the pairs of positive 

observations, {X > 0,Y > 0), and p00 = P{X = 0,Y = 0);pio = P{X > 0,Y = 

0)-p01 = P(X = 0, Y" > 0); andpu = P(X > 0, Y > 0). 

Proof. Let (X\,Yi) and (X2,Y2) be independent and identically distributed. In 

the same manner as (1.6), we will define 

r* = F(concordance) — P( discordance) (3.6) 

P(C) P(D) 

Using the total probability formula, we can first derive P(C). 

p(c) = ^ ( c i x ^ y ^ x ^ r ^ p ^ , ^ , ^ , ^ ) 

- P(C\X1=Q,Y1=0,X2 = 0,Y2 = 0) 
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xP(X x = 0, YY = 0, X2 = 0,Y2 = 0) 

+p{c\x1 = o,yi > o,x2 = o,y2 = o) 

xF(X1=0,F1=0,Z2>0,y2 = 0) 

+P(C|Xj = 0,Yx = 0,X2 = 0,Y2> 0) 

xP(x1 = o)y1 = o,z2 = o,y2>o) 

+p(C|Xi = o,Yi = o,x2 > o,y2 > o) 

xP(x1 = o,yi = o,x2 >o,r2>o) 

+: 

+P(C\X1 >0,Y1> 0,X2 = 0,Y2 = 0) 

XP(XJ >o,rx >=o,x2 = o,y2 = o) 

+P(C|Xi > 0, Yx > 0, X2 = 0, Y2 = 0) 

xP(Xj > o,Fi > o,x2 > o,y2 = o) 

+F(C |X 1 > o,yi > o,x2 = o,r2 > o) 

x p p ^ x ) ^ >o,x2 = o,r2>o) 

+P(C|XJ > o,yi > o}x2 >O,Y2> o) 

xP(Xi > o, YX > o,x2 > o,y2 > o) 

p(C) = Poo(°) + PooPio(O) + PooPoi(O) + PooPn 

+ \- PnPoo + PnPio(O) + puPoi (0) + p2
uTn 

= PooPn + PnPoo + P2
nrn 

P{C) = p2
uT11 + 2p00pn. (3.7) 

Similarly, 

P(D) = pwPoi + PoiPw- (3.8) 
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Substituting, (3.7) and (3.8) in (3.6), we will get (3.5), which completes the 

proof. • 

It can easily be seen that r* = T\\ when there are no tied observations in 

both variables, i.e., p00 = pw = p0i = 0 and pu = 1. 

From Proposition 1, an unbiased estimator of r* is defined as 

T* =fn2Tn + 2{pooPn -PoiPw), (3.9) 

where p^ = riij/n for i = 0,1, j = 0,1 and T\{ is given by (3.4) calculated from 

the nonzero pairs of observations. 

A simulation study will be used to investigate the properties of the proposed 

estimate. 

3.3 Asymptotic Distribution of r* 

The asymptotic distribution of the estimator r* will be determined partly using 

the delta method (see, e.g., Agresti, 2002). Given that p is the vector of cell prob

abilities in a multinomial distribution and p is the vector of sample proportions. 

T h e o r e m 1 Let g(p) denote a differentiable function of {pij}, with sample value 

g{j>) for a multinomial sample. Let 

4>ij = — , where i,j — 0,1 (3.10) 
dPij 

Then, 

Mg(p)-g(p)]^N{{),o2): (3.ii) 
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where the asymptotic variance is defined as 

(j2 = S^V^%- (J2Pij<l>ij) • (3-12) 

Using Theorem 1, the following proposition states the asymptotic distribu

tion of the proposed estimator, r*. 

Proposition 2 Suppose (noo,^oi,^iOj^ii) have a multinomial distribution with 

cell probabilities p = (poo,Poi,Pw,Pu)'- Let n = n00 + noi + nw + nn, and let 

P = (poo,Poi,Pw,Pn)' denote the sample proportions, where p^j = n^jn. Then 

^fn{r* - r*) -> iV(0, o\) where 

0% = 2r*(poo + P n ) - PnTn(2pn - 6p0o - 4 p n r n ) + 4p0iPio - 4r*2. (3.13) 

Proof. The proof of E{r*) is straightforward and since T\[ is an MLE of r, and 

T* is a function of this MLE, then r* is an MLE of r*. 

To derive the asymptotic variance, first define r* as a function of p. We 

have g(p) = p^Tn + 2(p0oPii ~ PoiPw)- The elements of 0,j of $, given by (3.10) 

are: 4>00 = dg(p)/dp00 = 2 p n , ^>u = 2pUTn + 2p0o, </>oi = -2pio, and ^ i 0 = -2p0 i-

And consequently, 

Y^Pvtfj = Poo(2pu)
2 + Pn{2pnTn + 2p0o)2 +Poi(-2p 1 0 ) 2 + p 1 0 ( -2p 0 i ) 2 

= 4p00Pn + 4 ^ ! ^ + Sp^pooni + 4pnPoo + 4PoiPi0 + 4p10p2
ll 

X^PO'^ij = 2 r * ( p o o + P n ) - p 2 i T n ( 2 p n - 6 p o o - 4 p 1 1 r 1 1 ) + 4p0iPio, (3.14) 

where (p00 + pn) = 1 - (p0i + Pw) and (p01 + pio) = 1 - (poo + Pn), from 1 = 

Poo+Poi + P i o + P u . 
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Next, 

y^Pij&j) = [Poo(2pn) + p i i ( 2 p n r n + 2p0o) + Poi(-2pio) + Pio(-^Poi)}2 

= [4pooPn + 2pnTn - 4poiPio]2 

5>^V = 4r*2. (3.15) 

Substituting (3.14) and (3.15) in (3.10) will give the desired result in (3.13). • 

As a consequence of Proposition 2, an estimate of the standard error of g(p) 

is given by, 

2 r * ( p 0 0 + ^ ) - p n T I I ( 2 ^ - 6 p o o - 4 p i i 7 ^ ) + 4poiPio-4T* 
5 - = 7ft • (3-16) 
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Chapter 4 

PROPOSED ESTIMATOR OF 
SPEARMAN'S RHO 

Another commonly used measure of association is the Spearman's rho. Given 

{Xi,Yi), (X2, Y2) and (X3, Y3) are independent replicates of (X, Y), the population 

Spearman's p is defined as 

ps = 3(P[(X1 - X2){Y1 - Y3) > 0] - P[(Xa - X2){Yl -Y3)<0]). (4.1) 

where X2 and Y3 are independent variables with the same marginal distributions 

as X\ and Ylt respectively. 

4.1 Adjustment of Spearman's Rho with Ties 

If there are tied ranks in X, or Y, or both, the estimator in (1.18) has to be 

adjusted. If there are / distinct tied observations in X, each having varying size s 

then we can define 

Tx = $ > ( a ? - 1 ) (4.2) 

1 

ties in X. 
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Similarly in Y, we can define 

Ty = J2Ut2
m-l)- (4-3) 

Therefore, these will lead to the adjusted formula in (1.19), which we are 

stating here again. 

V(Wo-Tx)(W0-Ty) 

In the presence of zero values in either or both variables, the sample size is 

"oo + noi m X and n00 + nw in Y. Hence, (4.2) will reduce to (n00 + rioi)[(n00 + 

"oi)2 — 1] and similarly. (4.3) will reduce to (n00 + nio)[(noo + "io)2 — 1]-

4.2 Proposed Estimator of Spearman's Rho, p*s 

Since the estimator (4.4) is not a MLE of Spearman's rho defined in (4.1), we 

propose a new estimator, p*s, being an estimator of (4.1) for the case of pairs being 

tied at 0 on at least one variable. 

Proposition 3 Let (Xi, Yi) and (X2,YS) be identically distributed random vectors, 

and X2 and Y3 are independent. Then the population Spearman's p given by (4-4) 

has a form 

Ps* = PnP+iPi+Psn + 3(PooPn ~ P10P01) (4.5) 

where psn is the population Spearman's p defined in (4-1) for the non-zero pairs 

of observations. 
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Proof . Given a zero-inflated da t a in a bivariate setting, the scope of the analysis 

will be divided into four different quadrants as shown in Figure 2.1. Again, these 

areas will each contain the pairs (0,0) , (x > 0 ,0) , (0,3/ > 0) and (x > 0,y > 0). 

Using the total probabili ty theorem, the adjusted formula for Spearman's p can 

then be derived as 

i,Yn, Xi2,1,3) 
Vi 

= 3(pooPi+P+i - P10P0+P+1 ~ P01P1+P+0 + PUPO+P+Q) + PnP+iPi+Psn 

= 3[poo(Pio + Pn)(poi + P11) -p io (Poo+Poi ) (po i + Pn) 

-PmiPw + Pn)(poo +Pw) + Pn(poo +Poi)(poo +P10)] 

+P11P+1P1+AS11 

= 3[p00PioPoi + PooPwPn + P00P11P01 + P00P11P11 - P10P00P01 ~ P10P00P11 

-P10P01P01 - P10P01P11 - P01P10P00 - P01P10P10 - P01P11P00 ~ P01P11P10 

+P11P00P00 + PuPooPio + P11P01P00 + P11P01P10] + PnP+iPi+Psn 

= 3[pooPoiPn + P00P11P11 - P01P01P10 - P10P01P11 - P00P10P01 - P01P10P10 

+P00P10P11 + P00P00P11] + PuP+iPi+Ps 

= 3[p0oPn(Poi + Pw + Poo + P11) - PoiPio(Poi + P10 + Poo + P11)] + PnP+iP i+Psn 

Ps* = PuP+iPi+Psu + 3(p0oPii -P10P01) • (4.6) 

Equat ion (4.6) can be easily reduced to (4.1) when there are no tied obser

vations in both variables. 

37 



4.3 Asympto t i c Dis t r ibu t ion of p*s 

Proposition 4 Suppose (n00,noi,nw,nn) have a multinomial distribution with 

cell probabilities p = (pooiPoi)Pio>.Pii)/- Let n — n00 + n0i + nw + nn, and let 

P = {Poo,Poi,Pw>PiiY denote the sample proportions, where ptj = n^jn. Then 

V™(P*s ~ P*s) -^ ^ (0 , (7^) where 
Ps 

°h = Pst3(Poo + pn) + 2pupsu{p+i + Pi+)\ 
Ps 

+9poiPw + PnPi+P+iPsn(pi+P+\Psn + 3(p0o - Pu) + 2p2
npsn) 

+Pii/°lii(PoiP?+ + PioP+i + Pup\+ + Pu) 

- {3p*s - 3(pooPn - PoiPio)}2 • (4.7) 

Proof. The proof of E(p*s) is straightforward and since psu is an MLE of ps, 

and p*s is a function of this MLE, then p*s is an MLE of p*s. 

To derive the asymptotic variance of the proposed estimator p*s of Spear

man's rho, first define p*s as a function of p, we have 

g(p) = PnP+iPi+Psn + HpooPn - PoiPw)- (4.8) 

The elements of faj of <&, given by (3.10) are: </>0o = dg(p)/dp00 = 3pn, 

</>n = pi+p+ipsu +Pi\Psu{pi+ +P+i) + 3poo, 0oi = Pi+PnPsn - 3pw, and (pw = 

P+iPnPsn -3poi- And consequently, 

Ylp^2ii = P°o(3pn)2 

+ p n {pi+p+i/?sii + 3poo +PuPsn\pi+ +P+i]} 

+Poi[PiiPi+Psn - 3pio]2 + Pio\p+iPuPsn ~ 3poi]2 

= 9pooPn + Pu (Pi+P+iPsn + 3p0o)2 
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+2pn(p1+p+1psu + 3poo)(pnP5ii[Pi+ +P+i]) 

+PuP2sn[Pi+ + P+if 

+Poi[pnPi+/4n ~ GpnPi+PsnPio + 9p?0] 

+Pio\p+iPuP2sn - 6p+iPiiPsiiPoi + 9poil 

= 9p00Pii(poo +Pn) + 9p0iPio(Poi + Pio) 

+PnPi+P+iPsn(2pi+PiiPsii + 2p+iPnPsii) 

+ P I I P I + P + I P S I I ( P I + P + I P S I I + 6poo + 2p?1psii) 

+6pnpsii(PooPnP+i + P00P11P1+ -PoiPioP+i -P01P10P1+) 

+PiiPsn(PoiP?+ + P10P+1 + PnP?+ + Pn) 

= 9(p00 + Pn)(pooPii - P01P10) + 9p0iPio 

+P11P1+P+1PS11 [2pnpsn (p+i + Pi+)] 

+3(p00 + Pii)pnPi+P+iPsn 

+2pnPsn(p+i +Pi+)[3(pooPn -P01P10)] 

+PiiPi+P+iPsn(pi+P+iPsn + 3(p00 - P11) + 2p2
npSn) 

+PnP2sn(PoiPl+ +P10P+1 +PnP?+ + P n ) 

= 3(p00 +Pii)[pnPi+P+ipsii + 3(p00pii -P01P10)] 

2pnPsn(p+i + Pi+)[PnPi+P+iPsn + 3(p00pii - P01P10)] 

+9poiPio + PiiPi+P+iPsii(Pi+P+iPsn + 3(poo - pn) + 2pi1p511) 

+PnPln(PoiP?+ + P10P+1 + PnP?+ + Pn) 

X ^ ^ " = Ps[3(Poo + P11) + 2pup5ii(p+i + Pi+)] 

+9poiPio + PnPi+P+iPsii(Pi+P+iPsii + 3(p00 - Pn) + 2p^p<jii) 

+PnP2su(PoiPi+ + P10P+1 + PnP?+ + Pn) (4.9) 
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where (p00 + p n ) = 1 - (p01 + pw), (p0i + Pw) = 1 - (poo + p n ) , p+1 = p0i + Pn 

andpi+ = Pio + Pu-

Next, 

ôo ^Pij&j = 3p0oPii + Pn \pi+P+iPsu + PuPsn(pi+ + P+i) + 3po 

+Poi(Pi+PnPsn - 3pio) + Pwip+iPnPsu - 3poi) 

= p+iPi+PnPsn + Q(pooPn - PoiPio) 

+PnPsn(pi+Pn + PnP+i + Pi+Poi + P+iPw) 

= 3p1+p+1pnpsn + 9(pooPn - PoiPio) ~ 3(p0oPn - PoiPio) 

{ZlPijfajJ = {3ps - 3(pooPn -PoiPio)}2 (4.10) 

Substituting (4.9) and (4.10) in (3.10) will give the desired result in (4.7). • 
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Chapter 5 

SIMULATION STUDY AND 
RESULTS 

5.1 Simulation and Results: Kendall 's Tau 

5.1.1 Simulation Plan 

A Monte Carlo simulation procedure was employed to study the proposed estimator 

for Kendall's r defined in Proposition 1. Samples of n = 30, 50, 100 pairs of 

data were simulated from a bivariate lognormal distribution with px = 0 and 

[iy — 0. Using the relationship between Kendall's r and Pearson's p defined as 

r = -arcsin(p), r = 0.1 to 0.9 by 0.1 was used to calculate p = sin ( ^ for 

generating the data. The proportion of zeroes used were poo = Poi = 0.1 and 

Pw = (0.1,0.2,0.3). 

For each case, a multinomial distribution was used to randomly determine 

the UQO pairs of observations that will be (0,0) with probability p00; nm pairs 

of (0,y) with probability poi! a n d nio pair of (x,0) with probability pio, where 

pn = 1 — (poo + Poi + Pio)- From the nonzero pairs of observations, Kendall's 

coefficient of correlation, fjj, was calculated. In addition, the following estimates 

were determined from the simulated data, poo = n00/n; pio = ^io/w; pm = n 0 i /n ; 
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and pu = riu In = 1 — (Poo +P10 + Poi)- Then the proposed estimator of Kendall's 

r defined in Proposition 1 was calculated as r* = p7i T\[ + 2poop7i — ^-PmPw- The 

estimate of (3.4) was also calculated for comparison. For each case, the process 

was repeated 1000 times. 

The same plan was utilized to study the asymptotic variance of the estima

tor proposed in Proposition 1. Sample sizes up to 200 were considered. Although 

not all combinations of the cell probabilities listed above were used, some addi

tional combinations not considered before were presented. Only a low, mid, and a 

high level of the population r were considered and 2000 replicates were performed. 

5.1.2 Results 

Table 5.1 shows the percentile intervals for each of the cases mentioned above. For 

all cases, the intervals based on r* contain the value of T*. The intervals also are 

narrower as the sample size is increased. On the other hand, the intervals based 

on T also contain the value for r* but the intervals are consistently wider. 

In order to check normality of the estimates, a Shapiro-Wilk test was em

ployed and the value of test statistic and the corresponding p-value from the 1000 

estimates of r* are displayed in Table 5.2. There is no evident pattern for non-

normality which occurred by chance. To further look into the normality of the 

estimate by lowering the number of samples, a random sample of 100 out of the 

1000 estimates was used and the results are tabulated in Table 5.3. Again, the 

non-normality of the estimate is not apparently present. 

The mean, r*, and corresponding standard deviation, S(T*), from the 1000 

estimates for each case are displayed in Tables 5.4, 5.5, and 5.6 for sample sizes 

30, 50 and 100, respectively. These measures were used to look at the bias of the 
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proposed estimator r* in Proposition 1. As shown on the tables, when compared 

to T* , the bias tends to be very small as the sample size increases for r* than for 

r . The corresponding adjusted variance also drops with the increase in the sample 

size. Also presented is the MSE of the estimator and these values will be compared 

later with the results of the asymptotic variance. The MSE for the r estimates are 

consistently larger than that for r*. 

The variance of the estimator proposed in (3.13) for each of the known 

population values are calculated and these values approach 0 as the sample size is 

increased from 50 to 200, regardless of the size of the pairs with zeros on either 

variable or on both. The sample variance of the 2000 calculated estimates was 

determined for each case. These are presented in Tables 5.7 and 5.9 under the 

column 55j. The sample variance tends to be larger than the asymptotic variance 

for smaller proportions of zero but stabilizes as the sample size is increased and 

there are more zeroes in the data. The estimate of the asymptotic variance was 

also calculated from each of the cases and the mean of these 2000 estimates are 

presented in Tables 5.8 and 5.10. These values are consistent with the population 

values regardless of the size of zeroes in the data. 
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Poo Poi 
0.1 0.1 

PlO T U 

0.1 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.2 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.3 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

T * 

0.169 
0.218 
0.267 
0.316 
0.365 
0.414 
0.463 
0.512 
0.561 
0.116 
0.152 
0.188 
0.224 
0.260 
0.296 
0.332 
0.368 
0.404 
0.065 
0.090 
0.115 
0.140 
0.165 
0.190 
0.215 
0.240 
0.265 

Shapiro-Wilk Test Stat ist ic (p-value) 
n = 3 0 

0.9977(0.1783) 
0.9983(0.4266) 
0.9985(0.5730) 
0.9979(0.2461) 
0.9983(0.4237) 
0.9987(0.6707) 
0.9976(0.1411) 
0.9952(0.0033) 
0.9946(0.0013) 
0.9967(0.0347) 
0.9984(0.4656) 
0.9989(0.8221) 
0.9971(0.0643) 
0.9979(0.2317) 
0.9986(0.6466) 
0.9989(0.7974) 
0.9990(0.8827) 
0.9976(0.1459) 
0.9971(0.0664) 
0.9961(0.0123) 
0.9957(0.0065) 
0.9978(0.2010) 
0.9979(0.2579) 
0.9985(0.5638) 
0.9989(0.8094) 
0.9984(0.4980) 
0.9989(0.8046) 

n = 5 0 
0.9988(0.7761 
0.9979(0.2595 
0.9986(0.6352 
0.9979(0.2326) 
0.9989(0.8462) 
0.9988(0.7774) 
0.9982(0.3899) 
0.9976(0.1639) 
0.9978(0.2127N 

0.9975(0.1278) 
0.9983(0.4414) 
0.9970(0.0602) 
0.9972(0.0840) 
0.9988(0.7848) 
0.9982(0.3963) 
0.9982(0.4017) 
0.9981(0.3094) 
0.9986(0.6125) 
0.9984(0.5052) 
0.9987(0.6915) 
0.9983(0.4459) 
0.9990(0.8950) 
0.9981(0.3157) 
0.9982(0.3616) 
0.9982(0.3991) 
0.9990(0.8888) 
0.9988(0.7484) 

n = 1 0 0 
0.9988(0.7664) 
0.9986(0.6436) 
0.9988(0.7577) 
0.9985(0.5763) 
0.9978(0.2177) 
0.9994(0.9920) 
0.9976(0.1466) 
0.9970(0.0618) 
0.9970(0.0538) 
0.9985(0.5501) 
0.9987(0.7083) 
0.9978(0.2003) 
0.9991(0.9360) 
0.9972(0.0856) 
0.9982(0.3683) 
0.9986(0.6372) 
0.9992(0.9657) 
0.9982(0.3542) 
0.9979(0.2254) 
0.9978(0.2140) 
0.9980(0.2954) 
0.9991(0.9148) 
0.9982(0.3616) 
0.9990(0.8574) 
0.9979(0.2588) 
0.9990(0.8852) 
0.9989(0.8194) 

Table 5.2: Normality test from the 1000 r* estimates 
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POO P01 PlO T i l T* 

0.1 0.1 0.1 0.1 0.169 
0.2 0.218 
0.3 0.267 
0.4 0.316 
0.5 0.365 
0.6 0.414 
0.7 0.463 
0.8 0.512 
0.9 0.561 

0.2 0.1 0.116 
0.2 0.152 
0.3 0.188 
0.4 0.224 
0.5 0.260 
0.6 0.296 
0.7 0.332 
0.8 0.368 
0.9 0.404 

0.3 0.1 0.065 
0.2 0.090 
0.3 0.115 
0.4 0.140 
0.5 0.165 
0.6 0.190 
0.7 0.215 
0.8 0.240 
0.9 0.265 

Shapiro-Wilk Test Statistic (p-value) 
n=30 n=50 n=100 

0.9951(0.9772) 0.9939(0.9374) 0.9901(0.6695) 
0.9917(0.7969) 0.9909(0.7380) 0.9894(0.6141) 
0.9935(0.9164) 0.9904(0.6977) 0.9855(0.3454) 
0.9903(0.6905) 0.9907(0.7175) 0.9918(0.8035) 
0.9960(0.9934) 0.9927(0.8696) 0.9851(0.3231) 
0.9799(0.1316) 0.9886(0.5556) 0.9851(0.3239) 
0.9890(0.5818) 0.9882(0.5202) 0.9732(0.0390) 
0.9870(0.4389) 0.9925(0.8534) 0.9805(0.1453) 
0.9882(0.5208) 0.9913(0.7707) 0.9883(0.5299) 
0.9903(0.6909) 0.9843(0.2845) 0.9904(0.6946) 
0.9890(0.5867) 0.9862(0.3842) 0.9912(0.7642) 
0.9887(0.5577) 0.9817(0.1800) 0.9912(0.7625) 
0.9784(0.1003) 0.9930(0.8901) 0.9783(0.0973) 
0.9959(0.9915) 0.9911(0.7560) 0.9859(0.3690) 
0.9819(0.1873) 0.9893(0.6054) 0.9830(0.2256) 
0.9963(0.9956) 0.9890(0.5835) 0.9768(0.0748) 
0.9921(0.8300) 0.9783(0.0978) 0.9845(0.2898) 
0.9883(0.5289) 0.9952(0.9802) 0.9882(0.5239) 
0.9821(0.1914) 0.9817(0.1798) 0.9886(0.5539) 
0.9907(0.7199) 0.9920(0.8222) 0.9868(0.4269) 
0.9892(0.5984) 0.9805(0.1460) 0.9825(0.2067) 
0.9832(0.2324) 0.9915(0.7830) 0.9921(0.8310) 
0.9929(0.8842) 0.9737(0.0429) 0.9880(0.5054) 
0.9824(0.2050) 0.9798(0.1281) 0.9902(0.6831) 
0.9892(0.6037) 0.9864(0.3970) 0.9914(0.7766) 
0.9918(0.8102) 0.9777(0.0876) 0.9928(0.8755) 
0.9829(0.2211) 0.9934(0.9090) 0.9855(0.3423) 

Table 5.3: Normality test from the 100 randomly selected r* estimates 
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Poo 

0.1 

Poi 

0.1 

Pio 

0.1 

Til T Var(<r*) 

0.2 0.218 0.00350 
0.00175 
0.00117 

0.00087 

0.1 0.1 0.1 0.5 0.365 0.00476 
0.00238 

0.00159 
0.00119 

0.1 0.1 0.1 0.8 0.512 0.00750 
0.00375 

0.00250 

0.00188 
0.1 0.1 0.2 0.2 0.152 0.00383 

0.00192 

0.00128 

0.00096 

0.1 0.1 0.2 0.5 0.260 0.00563 
0.00282 

0.00188 
0.00141 

0.1 0.1 0.3 0.2 0.090 0.00391 

0.00196 

0.00130 
0.00098 

0.1 0.1 0.3 0.5 0.165 0.00568 
0.00284 

0.00189 
0.00142 

0.1 0.1 0.3 0.8 0.240 0.00835 
0.00418 

0.00278 
0.00209 

n 

50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 

Tn 

0.196 

0.200 
0.198 

0.201 
0.503 

0.499 
0.498 

0.500 
0.799 
0.801 

0.800 
0.799 
0.200 
0.201 

0.200 
0.201 

0.497 
0.501 

0.499 
0.501 

0.197 
0.200 
0.201 

0.199 
0.501 
0.497 
0.500 

0.500 
0.797 

0.800 
0.801 
0.800 

T* 

0.2154 

0.2163 
0.2171 
0.2174 
0.3642 

0.3629 

0.3641 
0.3667 
0.5140 

0.5123 
0.5131 

0.5133 
0.1530 
0.1532 

0.1521 

0.1530 
0.2610 

0.2596 
0.2590 
0.2607 
0.0862 

0.0911 
0.0909 
0.0897 
0.1677 
0.1646 
0.1674 

0.1656 

0.2423 
0.2408 
0.2397 
0.2393 

SI. 
T* 

0.00652 

0.00320 
0.00214 

0.00157 

0.00678 
0.00315 
0.00214 

0.00155 
0.00804 

0.00399 

0.00251 
0.00183 
0.00604 
0.00279 

0.00183 
0.00140 

0.00651 
0.00331 

0.00216 
0.00170 

0.00505 
0.00257 
0.00166 

0.00123 
0.00633 
0.00318 
0.00207 

0.00156 
0.00851 
0.00401 

0.00280 
0.00196 

Shapiro-Wilk Test 

Statistic (p-value) 

0.9731 
0.9775 
0.9265 

0.9892 
0.9864 

0.9909 

0.9895 
0.9891 
0.9927 
0.9877 

0.9666 
0.9867 

0.9790 
0.9874 

0.9822 

0.9898 
0.9873 
0.9690 
0.9852 

0.9919 
0.9888 
0.9899 

0.9633 
0.9913 
0.9885 ( 
0.9853 ( 

0.9927 
0.9742 
0.9613 

0.9851 
0.9800 ( 
0.9786 ( 

0.0386 ) 

0.0847 ) 
0.0000 ) 

, 0.6032 ) 

0.3998 ) 

0.7373 ) 
0.6215 ) 
0.5932 ) 

0.8701 ) 
0.4884 ) 
0.0122 ) 

0.4148 ) 
0.1110 ) 
0.4658 ) 

0.1958 ) 
0.6501 ) 

0.4575 ) 
0.0185 ) 

0.3281 ) 
0.8159 ) 

0.5678 ) 
0.6552 ) 
0.0070 ) 
0.7667 ) 

0.5471 ) 
0.3343 ) 
0.8693 ) 

0.0466 ) 
0.0050 ) 
0.3245 ) 

0.1341 ) 
0.1036 ) 

Table 5.7: Sample variance from the 2000 r* estimates. The estimates are calcu
lated from 2000 simulations and the Shapiro-Wilk statistic was calculated using a 
random sample of 100 estimates 
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Poo 

0.1 

Poi 

0.1 

Pio 

0.1 

m 

0.2 

T* 

0.218 

Var(r*) 

0.00350 

0.00175 
0.00117 

0.00088 

0.1 0.1 0.1 0.5 0.365 0.00476 

0.00238 
0.00159 

0.00119 

0.1 0.1 0.1 0.8 0.512 0.00750 
0.00375 

0.00250 
0.00188 

0.1 0.1 0.2 0.2 0.152 0.00383 
0.00192 

0.00128 
0.00096 

0.1 0.1 0.2 0.5 0.260 0.00563 
0.00282 

0.00188 
0.00141 

0.1 0.1 0.2 0.8 0.368 0.00867 
0.00434 

0.00289 
0.00217 

0.1 0.1 0.3 0.2 0.090 0.00391 
0.00196 
0.00130 
0.00098 

0.1 0.1 0.3 0.5 0.165 0.00568 
0.00284 
0.00189 
0.00142 

0.1 0.1 0.3 0.8 0.240 0.00835 
0.00418 

0.00278 
0.00209 

n 

50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 

Til 

0.198 

0.201 
0.201 

0.199 
0.499 

0.500 
0.499 

0.499 
0.802 

0.800 

0.799 
0.800 

0.200 
0.200 
0.202 
0.202 

0.500 
0.500 

0.499 
0.502 

0.801 
0.800 

0.800 
0.800 
0.197 
0.196 
0.202 

0.200 

0.501 
0.499 
0.500 
0.499 
0.799 

0.800 
0.800 

0.800 

T* 

0.2135 
0.2163 
0.2178 

0.2161 
0.3674 

0.3641 

0.3643 
0.3630 
0.5148 

0.5108 
0.5110 

0.5129 
0.1521 
0.1522 
0.1527 
0.1532 

0.2609 

0.2618 
0.2599 
0.2606 
0.3753 

0.3693 
0.3682 
0.3682 

0.0886 
0.0899 
0.0912 
0.0892 

0.1665 
0.1651 

0.1673 
0.1655 
0.2456 
0.2442 

0.2418 
0.2417 

Var(Y*) 

0.00333 
0.00171 

0.00115 
0.00086 

0.00448 
0.00232 

0.00155 

0.00117 
0.00709 
0.00365 

0.00245 
0.00185 
0.00365 
0.00188 

0.00126 
0.00095 
0.00534 

0.00274 
0.00184 

0.00139 
0.00821 

0.00422 
0.00284 

0.00214 
0.00376 
0.00190 

0.00129 
0.00097 
0.00542 

0.00276 
0.00186 
0.00140 
0.00796 

0.00409 
0.00274 

0.00206 

Shapiro-Wilk Test 
Statistic (p-value) 

0.9935 
0.9675 
0.9711 

0.9929 
0.9826 

0.9920 
0.9794 

0.9915 
0.9645 

0.9830 
0.9527 
0.9825 

0.9953 
0.9951 
0.9918 

0.9591 
0.9861 
0.9779 

0.9938 
0.9775 
0.9661 

0.9916 
0.9668 
0.9813 
0.9862 
0.9847 

0.9873 ( 
0.9670 ( 
0.9841 ( 
0.9794 

0.9841 
0.9833 ( 

0.9673 ( 
0.9797 ( 
0.9908 ( 

0.9946 ( 

0.9169) 

k0.0143) 
;0.0269) 
0.8792) 

0.2121) 

0.8191) 
0.1192) 

0.7843) 
0.0085) 
0.2272) 
0.0013) 

0.2061) 
0.9811) 
'0.9782) 

0.8098) 
0.0035) 

0.3830) 
0.0903) 
0.9313) 
0.0841) 
0.0112) 

0.7880) 
0.0127) 
0.1684) 

0.3888) 
0.3023) 
0.4572) 

0.0131) 
0.2720) 
0.1193) 

0.2750) 
0.2380) 
0.0137) 
0.1255) 

0.7281) 
0.9634) 

Table 5.8: Asymptotic variance of r*. The estimates are calculated from 2000 
simulations and the Shapiro-Wilk statistic was calculated using a random sample 
of 100 estimates 
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Poo Poi Pio ni T* Var(r*) 

0.2 0.1 0.1 0.2 0.292 0.00401 

0.00201 
0.00134 

0.00100 

0.2 0.1 0.1 0.5 0.400 0.00512 
0.00256 
0.00171 

0.00128 
0.2 0.1 0.1 0.8 0.508 0.00747 

0.00374 

0.00249 
0.00187 

0.3 0.1 0.1 0.2 0.330 0.00385 
0.00192 

0.00128 
0.00096 

0.3 0.1 0.1 0.5 0.405 0.00514 
0.00257 

0.00171 

0.00128 
0.3 0.1 0.1 0.8 0.480 0.00733 

0.00366 
0.00244 

0.00183 
0.4 0.1 0.1 0.2 0.332 0.00383 

0.00192 

0.00128 
0.00096 

0.4 0.1 0.1 0.5 0.380 0.00525 
0.00262 

0.00175 
0.00131 

0.4 0.1 0.1 0.8 0.428 0.00721 
0.00361 
0.00240 

0.00180 

n T^[ T* S2j Shapiro-Wilk Test 

Statistic (p-value) 

50 0.200 0.291 0.00603 0.9403 (0.0002) 
100 0.202 0.290 0.00294 0.9830 (0.2271) 

150 0.199 0.292 0.00205 0.9683 (0.0164) 

200 0.199 0.291 0.00149 0.9770 (0.0772) 
50 0.501 0.396 0.00630 0.9851 (0.3251) 
100 0.500 0.399 0.00305 0.9835 (0.2460) 
150 0.502 0.400 0.00204 0.9842 (0.2781) 

200 0.499 0.398 0.00154 0.9897 (0.6427) 
50 0.798 0.505 0.00733 0.9670 (0.0132) 

100 0.799 0.508 0.00393 0.9682 (0.0160) 
150 0.799 0.509 0.00258 0.9876 (0.4776) 

200 0.799 0.508 0.00178 0.9832 (0.2340) 
50 0.197 0.325 0.00486 0.9889 (0.5789) 
100 0.202 0.328 0.00242 0.9887 (0.5577) 

150 0.199 0.328 0.00152 0.9870 (0.4399) 
200 0.203 0.329 0.00118 0.9711 (0.0268) 
50 0.501 0.402 0.00561 0.9811 (0.1631) 
100 0.500 0.403 0.00297 0.9852 (0.3307) 

150 0.499 0.406 0.00183 0.9749 (0.0526) 
200 0.501 0.405 0.00145 0.9892 (0.5990) 

50 0.800 0.479 0.00733 0.9805 (0.1446) 
100 0.800 0.479 0.00366 0.9758 (0.0619) 

150 0.799 0.482 0.00247 0.9755 (0.0589) 
200 0.801 0.481 0.00178 0.9872 (0.4525) 
50 0.202 0.327 0.00450 0.9874 (0.4647) 

100 0.195 0.329 0.00216 0.9887 (0.5628) 
150 0.202 0.330 0.00150 0.9900 (0.6645) 
200 0.199 0.329 0.00109 0.9913 (0.7702) 

50 0.502 0.377 0.00597 0.9840 (0.2684) 
100 0.499 0.379 0.00274 0.9879 (0.4990) 

150 0.500 0.377 0.00194 0.9647 (0.0088) 
200 0.499 0.379 0.00148 0.9888 (0.5653) 

50 0.800 0.426 0.00698 0.9850 (0.3186) 
100 0.799 0.427 0.00363 0.9921 (0.8283) 
150 0.799 0.427 0.00234 0.9829 (0.2202) 
200 0.800 0.427 0.00176 0.9918 (0.8049) 

Table 5.9: Additional results for the sample variance from the 2000 r* estimates. 
The estimates are calculated from 2000 simulations and the Shapiro-Wilk statistic 
was calculated using a random sample of 100 estimates 
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Poo Poi Pio ni T* Var(r*) 

0.2 0.1 0.1 0.2 0.292 0.00401 
0.00201 

0.00134 

0.00100 
0.2 0.1 0.1 0.5 0.400 0.00512 

0.00256 
0.00171 

0.00128 
0.2 0.1 0.1 0.8 0.508 0.00747 

0.00374 

0.00249 
0.00187 

0.3 0.1 0.1 0.2 0.330 0.00385 
0.00192 

0.00128 
0.00096 

0.3 0.1 0.1 0.5 0.405 0.00514 
0.00257 
0.00171 

0.00128 
0.3 0.1 0.1 0.8 0.480 0.00733 

0.00366 
0.00244 
0.00183 

0.4 0.1 0.1 0.2 0.332 0.00383 
0.00192 

0.00128 
0.00096 

0.4 0.1 0.1 0.5 0.380 0.00525 
0.00262 

0.00175 
0.00131 

0.4 0.1 0.1 0.8 0.428 0.00721 
0.00361 

0.00240 
0.00180 

n Tn T* Var(r*) Shapiro-Wilk Test 
Statistic (p-value) 

50 0.200 0.2901 0.00387 0.9608 (0.0046) 
100 0.202 0.2900 0.00197 0.9902 (0.6818) 

150 0.198 0.2910 0.00132 0.9890 (0.5866) 

200 0.199 0.2912 0.00099 0.9633 (0.0070) 
50 0.499 0.3989 0.00486 0.9872 (0.4503) 

100 0.501 0.3975 0.00251 0.9861 (0.3779) 
150 0.500 0.4003 0.00167 0.9932 (0.9010) 

200 0.501 0.3997 0.00127 0.9756 (0.0597) 

50 0.799 0.5084 0.00706 0.9878 (0.4965) 
100 0.800 0.5055 0.00365 0.9758 (0.0627) 
150 0.801 0.5088 0.00244 0.9765 (0.0702) 

200 0.799 0.5073 0.00184 0.9923 (0.8426) 
50 0.199 0.3246 0.00379 0.9915 (0.7850) 
100 0.201 0.3283 0.00190 0.9802 (0.1368) 

150 0.199 0.3288 0.00127 0.9894 (0.6136) 
200 0.199 0.3282 0.00096 0.9890 (0.5881) 
50 0.495 0.3994 0.00493 0.9806 (0.1479) 
100 0.498 0.4025 0.00251 0.9679 (0.0154) 

150 0.500 0.4048 0.00169 0.9851 (0.3251) 
200 0.500 0.4042 0.00127 0.9866 (0.4099) 
50 0.799 0.4780 0.00700 0.9690 (0.0186) 
100 0.802 0.4818 0.00358 0.9767 (0.0737) 

150 0.799 0.4788 0.00240 0.9714 (0.0282) 
200 0.800 0.4793 0.00181 0.9664 (0.0118) 
50 0.198 0.3256 0.00379 0.9861 (0.3802) 

100 0.203 0.3317 0.00190 0.9910 (0.7479) 
150 0.202 0.3296 0.00128 0.9800 (0.1332) 

200 0.205 0.3328 0.00096 0.9950 (0.9763) 
50 0.504 0.3760 0.00510 0.9814 (0.1703) 
100 0.501 0.3802 0.00257 0.9887 (0.5617) 
150 0.502 0.3789 0.00173 0.9796 (0.1239) 

200 0.499 0.3794 0.00130 0.9764 (0.0699) 
50 0.799 0.4267 0.00693 0.9879 (0.5015) 

100 0.800 0.4247 0.00355 0.9633 (0.0069) 
150 0.800 0.4274 0.00237 0.9897 (0.6370) 
200 0.800 0.4277 0.00178 0.9791 (0.1137) 

Table 5.10: Additional results for the asymptotic variance of r*. The estimates 
are calculated from 2000 simulations. The Shapiro-Wilk statistic was calculated 
using a random sample of 100 estimates 
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5.2 Graphical Illustration 

As introduced in the previous chapters, chi-plots will be used as a tool, alongside 

the scatter plot, to further study the behavior of the data with the presence of zero 

observation. These plots will be presented here first for better understanding and 

to give a clearer picture of its behavior when the zero observations are introduced. 

Only the case (X = 0,Y = 0) will be presented for simplicity. Also, this case 

already gives a good picture of the behavior of the data. Figure 5.1 shows the 

scatter plots on the top and their corresponding chi-plots on the bottom from data 

simulated from bivariate lognormal distribution with correlation 0.0 and poo 0%, 

30%, 60% and 80%, respectively. The chi-plots also show the 95% control lines. 

The chi-plot in (b) shows the baseline plot where p00 is 0%. Here, the calculated 

XJS are still falling within the band 95% of the time. Comparing this with the 

chi-plots in (d), (f), and (h), it is apparent how the points depart from the control 

band when poo was increased. This just illustrates how the classical estimate for r 

can be misleading whenever a proportion of data clusters into a single value. 

Figures 5.2, 5.3 and 5.4 show other levels of correlation. 
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Figure 5.1: Behavior of the chi-plot on varying proportions of zero, poo = 0%, 
30%, 60%, 80%; p — 0.0. The top row shows the scatter plots and the bottom row 
their corresponding chi-plots, for simulated samples of size 100 from the bivariate 
lognormal distribution. 
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Figure 5.2: Behavior of the chi-plot on varying proportions of zero, p00 = 0%, 30%, 
60%, 80%; p = 0.20. The top row shows the scatter plots and the bottom row 
their corresponding chi-plots, for simulated samples of size 100 from the bivariate 
lognormal distribution. 
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Figure 5.3: Behavior of the chi-plot on varying proportions of zero, poo = 0%, 30%, 
60%, 80%; p = 0.50. The top row shows the scatter plots and the bottom row 
their corresponding chi-plots, for simulated samples of size 100 from the bivariate 
lognormal distribution. 
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their corresponding chi-plots, for simulated samples of size 100 from the bivariate 
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5.3 Simulation and Results: Spearman's Rho 

5.3.1 Simulation Plan 

A similar Monte Carlo simulation procedure used in the previous section was em

ployed to study the proposed estimator for Spearman's p defined in Proposition 3. 

Samples of n = 30, 50, 100 pairs of data were simulated from a bivariate lognormal 

distribution with fix = 0 and [Xy — 0- Using the relationship between Spearman's 

p and Pearson's p defined as ps = - arcsin (J ) , p$ = 0.1 to 0.9 by 0.1 was used 

to get p = 2 sin (^f2-)- The proportion of zeroes used were poo = Poi = 0.1 and 

Pw = (0.1,0.2,0.3). 

For each multinomial distribution was used to randomly determine 

the noo pairs of observations that will be (0,0) with probability poo; noi pairs 

of (0,y) with probability p0i! a n d «io pair °f (^,0) with probability pio, where 

Pn = 1 — (poo + Poi + Pio)- From the nonzero pairs of observations, calculate the 

Spearman's coefficient of correlation, psn. In addition, the following estimates 

were determined from the simulated data, poo = noo/n; pw = nw/n; poi = noi/n; 

and pTi = riu/n = 1 — (poo + Pio + Poi)- Then the estimate of the proposed 

Spearman's p defined in Proposition 3 was calculated as p*s = pTiP+iPi+Psn + 

3(poopTi — PoiPio)- The estimate of (4.1) was also calculated for comparison. For 

each case, the process was repeated for 1000 times. 

The same plan was utilized to study the asymptotic variance of the estima

tor proposed in Proposition 3. Sample sizes up to 200 were considered. Although 

not all combinations of the cell probabilities listed above were used, some addi

tional combinations not considered before were presented. Only a low, mid, and a 

high level of the population ps were considered and 2000 replicates were performed. 
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5.3.2 Results 

From the 1000 estimates of ps* for each case, the 95% percentile intervals were 

determined and reported in Table 5.11. For all cases, the intervals based on p*s 

contains the population value and it gets narrower as the sample size increases. 

A normality test on the p*s was performed for each case and Table 5.12 shows 

values of the Shapiro-Wilk test statistic and corresponding p-values. There is. no 

evidence of the lack of normality of the estimator and to show a more consistent 

result, a sample of 100 estimates was selected and normality test was performed 

on those estimates. The results are reported in Table 5.13. 

Tables 5.14, 5.15, and 5.16 shows the mean and standard deviation of the 

1000 estimates for p*s. The bias of the estimate was also shown and the corre

sponding estimate of the variance. When compared to the population p$, p*s tend 

to be less bias and have smaller MSE than p~s. 

The value of the variance calculated using the known population values 

approaches 0 as the sample size gets larger. As presented in Tables 5.17 and 5.19 

using 2000 replications in calculating the proposed estimator, the variance from 

these estimates were determined and found to be consistent with the population 

value (VarfpJ] vs. S2*) especially for cases with larger proportion of zeroes in the 

data and higher association between the variables. This is also, supplemented by a 

normality test with the Shapiro-Wilk test statistic and p-value also reported. The 

asymptotic variance was also calculated from each case and the mean of the 2000 

estimates are presented in Tables 5.18 and 5.20. These values are consistent with 

its corresponding population value. 
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Poo Poi Pio Ps Ps* 
0.1 0.1 0.1 0.1 0.2248 

0.2 0.2696 
0.3 0.3144 
0.4 0.3592 
0.5 0.4040 
0.6 0.4488 
0.7 0.4936 
0.8 0.5384 
0.9 0.5832 

0.2 0.1 0.1536 
0.2 0.1872 
0.3 0.2208 
0.4 0.2544 
0.5 0.2880 
0.6 0.3216 
0.7 0.3552 
0.8 0.3888 
0.9 0.4224 

0.3 0.1 0.0840 
0.2 0.1080 
0.3 0.1320 
0.4 0.1560 
0.5 0.1800 
0.6 0.2040 
0.7 0.2280 
0.8 0.2520 
0.9 0.2760 

S h a p i r o - W i l k Tes t S t a t i s t i c (p-value) 
n = 3 0 n = 5 0 n = 1 0 0 

0.9984(0.4930) 0.9990(0.8831) 0.9986(0.6427) 
0.9967(0.0375) 0.9992(0.9460) 0.9983(0.4432) 
0.9966(0.0288) 0.9977(0.1757) 0.9980(0.3010) 
0.9937(0.0003) 0.9979(0.2440) 0.9988(0.7508) 
0.9985(0.5633) 0.9980(0.2680) 0.9963(0.0189) 
0.9971(0.0657) 0.9970(0.0546) 0.9983(0.4557) 
0.9979(0.2603) 0.9976(0.1611) 0.9983(0.4361) 
0.9972(0.0849) 0.9979(0.2444) 0.9984(0.4707) 
0.9963(0.0167) 0.9970(0.0536) 0.9984(0.4872) 
0.9988(0.7722) 0.9967(0.0335) 0.9976(0.1618) 
0.9980(0.3004) 0.9979(0.2412) 0.9991(0.9352) 
0.9984(0.5171) 0.9986(0.6037) 0.9989(0.8205) 
0.9974(0.1096) 0.9983(0.4242) 0.9983(0.4373) 

0.9969(0.0454) 0.9980(0.2714) 0.9983(0.4110) 
0.9987(0.7201) 0.9986(0.6261) 0.9981(0.3363) 

0.9964(0.0207) 0.9989(0.8060) 0.9986(0.6459) 
0.9959(0.0089) 0.9975(0.1388) 0.9977(0.1840) 
0.9981(0.3227) 0.9976(0.1578) 0.9970(0.0574) 
0.9992(0.9591) 0.9975(0.1198) 0.9984(0.5051) 
0.9986(0.6073) 0.9987(0.6925) 0.9987(0.7054) 
0.9991(0.9014) 0.9984(0.4619) 0.9984(0.4760) 
0.9973(0.1006) 0.9976(0.1598) 0.9969(0.0473) 
0.9984(0.4895) 0.9976(0.1551) 0.9987(0.6573) 
0.9973(0.0886) 0.9985(0.5816) 0.9984(0.5125) 
0.9983(0.4442) 0.9991(0.9313) 0.9991(0.9095) 
0.9990(0.8650) 0.9986(0.5944) 0.9984(0.4933) 
0.9988(0.7261) 0.9975(0.1346) 0.9979(0.2522) 

Table 5.12: Normality test from the 1000 p*s estimates 
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Poo Poi Pio Ps Ps* 
0.1 0.1 0.1 0.1 0.2248 

0.2 0.2696 
0.3 0.3144 
0.4 0.3592 
0.5 0.4040 
0.6 0.4488 
0.7 0.4936 
0.8 0.5384 
0.9 0.5832 

0.2 0.1 0.1536 
0.2 0.1872 
0.3 0.2208 
0.4 0.2544 
0.5 0.2880 
0.6 0.3216 
0.7 0.3552 
0.8 0.3888 
0.9 0.4224 

0.3 0.1 0.0840 
0.2 0.1080 
0.3 0.1320 
0.4 0.1560 
0.5 0.1800 
0.6 0.2040 
0.7 0.2280 
0.8 0.2520 
0.9 0.2760 

Shapiro-Wilk Test Statistic (p-value) 
n=30 n=50 n=100 

0.9844(0.2864) 0.9925(0.8571) 0.9929(0.8820) 
0.9875(0.4699) 0.9914(0.7770) 0.9875(0.4696) 
0.9898(0.6454) 0.9897(0.6428) 0.9861(0.3784) 
0.9761(0.0656) 0.9894(0.6195) 0.9895(0.6268) 
0.9870(0.4391) 0.9930(0.8852) 0.9786(0.1034) 
0.9839(0.2649) 0.9863(0.3916) 0.9924(0.8522) 
0.9914(0.7764) 0.9933(0.9037) 0.9870(0.4365) 
0.9877(0.4842) 0.9894(0.6190) 0.9900(0.6670) 
0.9797(0.1254) 0.9954(0.9846) 0.9900(0.6664) 
0.9930(0.8881) 0.9806(0.1469) 0.9880(0.5059) 
0.9860(0.3740) 0.9936(0.9233) 0.9674(0.0141) 
0.9885(0.5482) 0.9910(0.7434) 0.9900(0.6652) 
0.9920(0.8223) 0.9943(0.9516) 0.9948(0.9705) 
0.9892(0.5984) 0.9939(0.9374) 0.9875(0.4747) 
0.9919(0.8156) 0.9907(0.7216) 0.9819(0.1860) 
0.9789(0.1087). 0.9854(0.3395) 0.9921(0.8302) 

0.9669(0.0130) 0.9929(0.8849) 0.9912(0.7604) 
0.9889(0.5794) 0.9890(0.5848) 0.9937(0.9276) 
0.9905(0.7030) 0.9846(0.2995) 0.9783(0.0982) 
0.9741(0.0460) 0.9896(0.6357) 0.9919(0.8127) 
0.9844(0.2850) 0.9947(0.9674) 0.9844(0.2889) 
0.9912(0.7573) 0.9939(0.9364) 0.9927(0.8696) 
0.9919(0.8135) 0.9921(0.8272) 0.9908(0.7288) 
0.9838(0.2588) 0.9940(0.9410) 0.9870(0.4385) 
0.9850(0.3201) 0.9915(0.7851) 0.9770(0.0778) 
0.9896(0.6295) 0.9847(0.3003) 0.9923(0.8426) 
0.9742(0.0471) 0.9856(0.3508) 0.9961(0.9943) 

Table 5.13: Normality test from the 100 randomly selected p*s estimates 
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Poo Poi Pio Psn P*s Var(p^) 

0.1 0.1 0.1 0.2 0.270 0.00696 

0.00348 
0.00232 
0.00174 

0.1 0.1 0.1 0.5 0.404 0.00676 
0.00338 
0.00225 

0.00169 
0.1 0.1 0.1 0.8 0.538 0.00789 

0.00395 
0.00263 
0.00197 

0.1 0.1 0.2 0.2 0.187 0.00746 
0.00373 
0.00249 

0.00186 
0.1 0.1 0.2 0.5 0.288 0.00829 

0.00415 
0.00276 
0.00207 

0.1 0.1 0.2 0.8 0.389 0.01018 

0.00509 
0.00339 
0.00255 

0.1 0.1 0.3 0.2 0.108 0.00766 
0.00383 

0.00255 
0.00191 

0.1 0.1 0.3 0.5 0.180 0.00886 
0.00443 
0.00295 
0.00221 

0.1 0.1 0.3 0.8 0.252 0.01081 
0.00540 
0.00360 
0.00270 

n psii p*s S% Shapiro-Wilk Test 
P.s 

Statistic (p-value) 
50 0.199 0.2685 0.01247 0.9771 (0.0787) 

100 0.195 0.2648 0.00616 0.9703 (0.0235) 

150 0.198 0.2668 0.00405 0.9862 (0.3891) 
200 0.199 0.2689 0.00306 0.9883 (0.5333) 
50 0.487 0.4005 0.01064 0.9782 (0.0964) 

100 0.494 0.4005 0.00570 0.9929 (0.8814) 
150 0.498 0.4043 0.00356 0.9910 (0.7446) 
200 0.496 0.4017 0.00271 0.9896 (0.6356) 

50 0.783 0.5309 0.00961 0.9762 (0.0675) 
100 0.791 0.5364 0.00487 0.9908 (0.7298) 

150 0.794 0.5380 0.00327 0.9924 (0.8518) 
200 0.793 0.5351 0.00253 0.9827 (0.2144) 
50 0.193 0.1805 0.01138 0.9602 (0.0042) 
100 0.197 0.1848 0.00535 0.9687 (0.0176) 
150 0.197 0.1852 0.00374 0.9832 (0.2342) 

200 0.199 0.1857 0.00265 0.9909 (0.7349) 
50 0.484 0.2859 0.01018 0.9901 (0.6687) 
100 0.494 0.2824 0.00530 0.9905 (0.7066) 

150 0.492 0.2853 0.00358 0.9885 (0.5449) 
200 0.496 0.2848 0.00268 0.9836 (0.2512) 
50 0.781 0.3873 0.01093 0.9888 (0.5694) 

100 0.793 0.3862 0.00542 0.9898 (0.6520) 
150 0.793 0.3865 0.00366 0.9912 (0.7579) 
200 0.796 0.3888 0.00286 0.9889 (0.5731) 
50 0.188 0.1068 0.01011 0.9806 (0.1483) 

100 0.193 0.1055 0.00501 0.9852 (0.3297) 
150 0.197 0.1090 0.00339 0.9820 (0.1895) 
200 0.197 0.1066 0.00252 0.9820 (0.1895) 
50 0.483 0.1775 0.01003 0.9940 (0.9411) 
100 0.490 0.1781 0.00512 0.9943 (0.9510) 
150 0.494 0.1780 0.00358 0.9886 (0.5534) 

200 0.493 0.1792 0.00269 0.9827 (0.2160) 
50 0.777 0.2471 0.01134 0.9817 (0.1791) 

100 0,789 0.2496 0.00565 0.9659 (0.0109) 
150 0.795 0.2527 0.00366 0.9828 (0.2193) 
200 0.795 0.2509 0.00279 0.9759 (0.0634) 

Table 5.17: Sample variance from the 2000 p*s estimates. The estimates are calcu
lated from 2000 simulations and the Shapiro-Wilk statistic was calculated using a 
random sample of 100 estimates 
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Poo 

0.1 

Poi 

0.1 

Pio 

0.1 

Asn 

0.2 

Pi 

0.270 

Var(p^) 

0.00696 

0.00348 
0.00232 
0.00174 

0.1 0.1 0.1 0.5 0.404 0.00676 

0.00338 
0.00225 
0.00169 

0.1 0.1 0.1 0.8 0.538 0.00789 

0.00395 
0.00263 
0.00197 

0.1 0.1 0.2 0.2 0.187 0.00746 
0.00373 
0.00249 

0.00186 

0.1 0.1 0.2 0.5 0.288 0.00829 

0.00415 

0.00276 
0.00207 

0.1 0.1 0.2 0.8 0.389 0.01018 
0.00509 

0.00339 
0.00255 

0.1 0.1 0.3 0.2 0.108 0.00766 
0.00383 

0.00255 
0.00191 

0.1 0.1 0.3 0.5 0.180 0.00886 
0.00443 

0.00295 
0.00221 

0.1 0.1 0.3 0.8 0.252 0.01081 
0.00540 

0.00360 
0.00270 

n 

50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 
50 
100 
150 
200 

psii 

0.203 
0.196 

0.196 
0.199 

0.485 
0.493 
0.498 

0.498 
0.781 
0.790 

0.795 
0.796 

0.188 
0.198 

0.197 
0.198 
0.489 
0.494 

0.495 
0.497 
0.779 

0.791 
0.796 
0.795 
0.194 
0.196 

0.201 
0.196 
0.482 
0.492 

0.495 
0.495 
0.776 

0.788 
0.791 
0.793 

Ps 

0.2680 

0.2663 
0.2678 

0.2693 
0.3973 

0.4011 
0.4032 

0.4022 
0.5278 

0.5351 
0.5377 

0.5378 
0.1822 
0.1855 
0.1875 

0.1860 
0.2806 
0.2875 
0.2862 

0.2859 
0.3827 
0.3873 

0.3860 
0.3875 
0.1065 
0.1083 

0.1089 
0.1078 

0.1768 
0.1769 
0.1797 
0.1814 

0.2479 
0.2501 

0.2508 
0.2491 

Var(p^) 

0.00662 

0.00339 
0.00229 

0.00172 

0.00633 
0.00329 
0.00222 

0.00167 
0.00739 
0.00381 

0.00256 
0.00194 
0.00712 
0.00362 

0.00246 
0.00185 
0.00787 

0.00403 
0.00271 
0.00205 
0.00953 
0.00492 

0.00333 

0.00250 
0.00731 
0.00375 
0.00252 
0.00189 
0.00836 

0.00430 
0.00290 
0.00218 
0.01013 
0.00524 

0.00352 

0.00266 

Shapiro-Wilk Test 
Statistic (p-value) 

0.9858 

0.9676 
0.9683 

0.9766 
0.9921 

0.9819 
0.9839 

0.9920 
0.9883 

0.9853 
0.9848 

0.9828 
0.9666 
0.9842 
0.9844 

0.9826 
0.9871 

0.9696 
0.9677 
0.9921 

0.9817 
0.9902 

0.9928 
0.9928 
0.9807 
0.9710 
0.9923 
0.9922 

0.9796 
0.9863 ( 
0.9805 
0.9889 

0.9883 
0.9919 
0.9822 

0.9937 

;0.3619) 

;0.0145) 
;0.0165) 
;0.0722) 
0.8311) 

0.1865) 
0.2647) 

0.8182) 
'0.5326) 
;0.3343) 

;0.3050) 
;0.2169) 
0.0121) 

0.2755) 
0.2884) 

0.2098) 
0.4460) 

0.0205) 
0.0147) 
0.8268) 

0.1800) 
0.6838) 
0.8772) 

0.8729) 
0.1514) 
0.0262) 
0.8411) 

0.8333) 
0.1234) 

0.3923) 
0.1448) 
0.5744) 
0.5323) 

0.8103) 
0.1951) 

0.9278) 

Table 5.18: Asymptotic variance of p*s. The estimates are calculated from 2000 
simulations and the Shapiro-Wilk statistic was calculated using a random sample 
of 100 estimates 
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Poo Poi Pio Psn P*s VarOJ) 

0.2 0.1 0.1 0.2 0.389 0.00813 
0.00407 
0.00271 

0.00203 
0.2 0.1 0.1 0.5 0.477 0.00781 

0.00391 

0.00260 
0.00195 

0.2 0.1 0.1 0.8 0.565 0.00854 

0.00427 
0.00285 

0.00213 
0.3 0.1 0.1 0.2 0.456 0.00767 

0.00383 

0.00256 
0.00192 

0.3 0.1 0.1 0.5 0.510 0.00792 
0.00396 
0.00264 

0.00198 

0.3 0.1 0.1 0.8 0.564 0.00880 
0.00440 

0.00293 
0.00220 

0.4 0.1 0.1 0.2 0.470 0.00750 
0.00375 

0.00250 
0.00188 

0.4 0.1 0.1 0.5 0.500 0.00821 

0.00410 
0.00274 

0.00205 
0.4 0.1 0.1 0.8 0.530 0.00920 

0.00460 
0.00307 
0.00230 

n psTi pi S% Shapiro-Wilk Test 
Ps 

Statistic (p-value) 
50 0.193 0.3795 0.01104 0.9448 (0.0004) 

100 0.201 0.3834 0.00560 0.9943 (0.9521) 
150 0.200 0.3882 0.00360 0.9902 (0.6805) 

200 0.197 0.3859 0.00285 0.9924 (0.8526) 
50 0.487 0.4725 0.01044 0.9680 (0.0155) 
100 0.493 0.4730 0.00488 0.9875 (0.4731) 
150 0.490 0.4723 0.00340 0.9905 (0.7062) 

200 0.494 0.4724 0.00240 0.9883 (0.5341) 
50 0.778 0.5580 0.00941 0.9917 (0.7962) 

100 0.790 0.5625 0.00471 0.9832 (0.2358) 
150 0.792 0.5632 0.00318 0.9949 (0.9727) 
200 0.796 0.5644 0.00232 0.9805 (0.1449) 

50 0.187 0.4463 0.00914 0.9873 (0.4598) 
100 0.196 0.4539 0.00437 0.9708 (0.0255) 

150 0.192 0.4526 0.00298 0.9640 (0.0079) 
200 0.201 0.4540 0.00225 0.9910 (0.7467) 
50 0.480 0.5022 0.00838 0.9857 (0.3574) 
100 0.489 0.5077 0.00412 0.9934 (0.9127) 
150 0.492 0.5060 0.00294 0.9938 (0.9305) 

200 0.495 0.5062 0.00216 0.9910 (0.7488) 
50 0.780 0.5578 0.00876 0.9788 (0.1069) 

100 0.789 0.5605 0.00472 0.9848 (0.3086) 
150 0.793 0.5635 0.00300 0.9819 (0.1870) 
200 0.794 0.5620 0.00238 0.9894 (0.6200) 
50 0.196 0.4622 0.00798 0.9851 (0.3220) 
100 0.195 0.4641 0.00412 0.9893 (0.6073) 

150 0.203 0.4680 0.00260 0.9855 (0.3466) 
200 0.195 0.4668 0.00194 0.9918 (0.8056) 
50 0.478 0.4911 0.00825 0.9843 (0.2833) 

100 0.486 0.4967 0.00414 0.9827 (0.2153) 
150 0.490 0.4958 0.00291 0.9718 (0.0306) 

200 0.497 0.4974 0.00218 0.9824 (0.2023) 
50 0.771 0.5208 0.00940 0.9686 (0.0174) 
100 0.786 0.5267 0.00489 0.9783 (0.0986) 
150 0.790 0.5257 0.00305 0.9808 (0.1546) 

200 0.790 0.5273 0.00239 0.9942 (0.9470) 

Table 5.19: Additional results for the sample variance from the 2000 p*s estimates. 
The estimates are calculated from 2000 simulations and the Shapiro-Wilk statistic 
was calculated using a random sample of 100 estimates 
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Poo Poi Pio Psu P*s Var(pJ) 

0.2 0.1 0.1 0.2 0.389 0.00813 

0.00407 
0.00271 

0.00203 
0.2 0.1 0.1 0.5 0.477 0.00781 

0.00391 
0.00260 

0.00195 
0.2 0.1 0.1 0.8 0.565 0.00854 

0.00427 

0.00285 
0.00213 

0.3 0.1 0.1 0.2 0.456 0.00767 

0.00383 
0.00256 
0.00192 

0.3 0.1 0.1 0.5 0.510 0.00792 

0.00396 
0.00264 

0.00198 
0.3 0.1 0.1 0.8 0.564 0.00880 

0.00440 

0.00293 
0.00220 

0.4 0.1 0.1 0.2 0.470 0.00750 
0.00375 

0.00250 
0.00188 

0.4 0.1 0.1 0.5 0.500 0.00821 
0.00410 
0.00274 

0.00205 
0.4 0.1 0.1 0.8 0.530 0.00920 

0.00460 
0.00307 
0.00230 

n AsTi P*s Var(/9g) Shapiro-Wilk Test 
Statistic (p-value) 

50 0.198 0.3824 0.00785 0.9688 (0.0181) 

100 0.198 0.3869 0.00399 0.9442 (0.0003) 

150 0.195 0.3846 0.00268 0.9505 (0.0009) 
200 0.199 0.3865 0.00202 0.9906 (0.7166) 

50 0.486 0.4689 0.00746 0.9637 (0.0075) 
100 0.493 0.4723 0.00382 0.9933 (0.9066) 
150 0.493 0.4725 0.00257 0.9791 (0.1141) 
200 0.495 0.4743 0.00193 0.9873 (0.4585) 

50 0.781 0.5602 0.00800 0.9871 (0.4424) 
100 0.790 0.5595 0.00415 0.9778 (0.0892) 

150 0.793 0.5629 0.00279 0.9848 (0.3076) 
200 0.796 0.5633 0.00210 0.9889 (0.5774) 
50 0.191 0.4445 0.00756 0.9683 (0.0165) 

100 0.194 0.4531 0.00378 0.9866 (0.4100) 
150 0.195 0.4532 0.00254 0.9843 (0.2804) 
200 0.197 0.4548 0.00190 0.9796 (0.1227) 
50 0.481 0.5028 0.00758 0.9925 (0.8584) 
100 0.494 0.5060 0.00389 0.9820 (0.1896) 
150 0.489 0.5074 0.00260 0.9892 (0.6034) 

200 0.494 0.5093 0.00195 0.9907 (0.7219) 
50 0.776 0.5584 0.00829 0.9937 (0.9244) 

100 0.789 0.5611 0.00428 0.9769 (0.0758) 
150 0.792 0.5606 0.00288 0.9883 (0.5291) 
200 0.795 0.5635 0.00217 0.9820 (0.1884) 

50 0.187 0.4623 0.00734 0.9840 (0.2689) 
100 0.202 0.4663 0.00372 0.9826 (0.2117) 

150 0.193 0.4672 0.00248 0.9589 (0.0034) 
200 0.198 0.4681 0.00187 0.9913 (0.7696) 
50 0.478 0.4940 0.00790 0.9707 (0.0248) 
100 0.494 0.4953 0.00404 0.9742 (0.0465) 

150 0.489 0.4959 0.00271 0.9899 (0.6558) 
200 0.496 0.4965 0.00204 0.9910 (0.7410) 
50 0.774 0.5218 0.00880 0.9797 (0.1253) 

100 0.786 0.5278 0.00448 0.9818 (0.1843) 
150 0.789 0.5278 0.00301 0.9859 (0.3699) 
200 0.792 0.528923 0.00227 0.9885 (0.5440) 

Table 5.20: Additional results for the asymptotic variance of p*s. The estimates 
are calculated from 2000 simulations and the Shapiro-Wilk statistic was calculated 
using a random sample of 100 estimates 
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5.4 An Example 

To apply the estimators proposed in Sections 3 and 4 for Kendall's tau and Spear

man's rho, respectively, the dataset from Wang (2007) will be used. The data 

was from a cohort study of HIV-infected men conducted at the Hospital Univer-

sitrio Clementino Farga Filho on Rio de Janeiro, Brazil. One of the objectives of 

the study was to assess the association between plasma and semen viral loads. A 

summary of the data is shown in Table 5.22. 

Mean 
SD 
N 

All Positive Values 
Plasma Semen 
Viral Viral 
Loads Loads 
4.13 4.04 

0.811 0.772 
21 38 

Positive Paired Values 
Plamsa Semen 
Viral Viral 
Loads Loads 
4.14 4.45 
0.841 0.762 

19 19 

Table 5.21: Summary of HIV data 

Reported data were from 85 men wherein 75% (n=64) of the semen sam

ples and 55% (n=47) of the blood samples have undetectable viral loads (falling 

below the limit of detection, 2.60). For the purposes of our current study, these 

will be treated as zero values. The proportion of data for each of the multinomial 

probabilities are p00 = 0.52941, p0i = 0.22353, pw = 0.02353, and pn = 0.22353. 

With these values, Kendall's tau and Spearman's rho will be estimated using the 

proposed estimators with their corresponding asymptotic variances. However, we 

will first examine the data graphically with the aid of the scatter plot and the 

corresponding chi-plot in Figure 5.5. The scatter plot from the 85 pairs of ob

servations shows the '"L" ' shaped curve on the left corner where the zero values 

are presented. The continuous pairs, however, are on the upper-right corner of 

the plot exhibiting some kind of positive linear relationship between plasma viral 
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load and semen viral load. In the corresponding chi-plot, all points are about 

and outside the 95% band which is indicative of a definite dependence between 

plasma and semen viral loads. The underlying question now is how to quantify 

that dependence. 

• o 
CO 

_o 
"cc 
> 
c 
CD 

E 
CD 
W 

plasma viral load 

Lf) 

d 

q 
T 

Figure 5.5: Scatter plot and corresponding chi-plot of plasma and semen viral 
loads from Wang (2007) 

Table 5.22 shows the calculated estimates of the population values for 

Kendall's tau and Spearman's rho. For Kendall's tau, the value of r* is lower 

than fii after considering the proportion of zero in either plasma viral load or 
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semen viral load and in both. The variance of this estimate is 0.002456. In the 

same manner, the value of p*s is also lower than psu, where only the positive 

pairs of observations are considered. The corresponding variance of this estimate 

is 0.004632. 

Kendall's tau 
n[ = 0.3844 

T*" = 0.2454 
S'L = 0.002456 

T 

Spearman's Rho 
AsTi = 0.4619 

p*s = 0.3506 
S'L. = 0.004632 

Table 5.22: Calculated value of the estimators and the corresponding variances of 
the HIV data 
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Chapter 6 

FINAL COMMENTS AND 
FUTURE RESEARCH 

The estimation of dependence measures is an important problem in many fields of 

research. Although there have been several adjustments proposed because of viola

tion of continuity assumption, none of them really focused on having a probability 

mass at zero. In this research, we introduced the problem of having zero-inflated 

data. With the presence of a probability mass at zero in a bivariate model, we 

proposed an adjusted Kendall's tau and Spearman's rho estimators. These were 

compared to their counterparts and it was shown that the intervals are narrower 

for the proposed estimators and are less bias than their counterparts. Their cor

responding asymptotic variances were also determined and were found to be con

sistent with the population value. A real data from Wang (2007) was used to 

illustrate and apply the proposed estimators. 

As been discussed in the previous chapters of this research, the widely 

used and accepted classical dependence measures might not be appropriate for 

cases when the underlying distribution of the data being analyzed is zero-inflated. 

Considering only the nonzero pairs of observations usually leads to misleading 
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results. 

A next step for the researcher is to define a procedure for a confidence inter

val estimation. It will also be of interest to further look at the asymptotic variance 

by considering the Var(rn). Also, an a level test of association using the proposed 

estimators and their asymptotic variances. The power of the test will also be deter

mined. This research can be further extended to left truncated data. Also, other 

measures of association such as the Gini's index can be studied with zero-inflated 

data. It is also of interest for the researcher to look into the small sample applica

tion and further apply the concepts proposed in this research and other methods 

for handling zero-inflated data in the pre-clinical field. There are several areas in 

this field where zero-inflated data can be observed either by recording real zeroes 

or values falling below a limit of detection. Some of these areas are immunotox-

icology and developmental and reproductive toxicology. Pharmacokinetic data is 

also a good example where zero-inflation can occur. Drug concentration in the 

blood or metabolites is usually not detectable, thus reported as falling below the 

limit of quantification (BLOQ). 
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