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It has been shown that under a location-scale model y = p+ Bz + o¢ where
y is right censored, the Log-Rank test is asymptotically efficient for the Extreme
minimum value error distribution while Peto and Peto’s Wilcoxon test is asymp-
totically efficient for the Logistic error distribution. We propose a two-sample
adaptive test, which first selects between Extreme minimum value and Logistic
error distribution as to which is a better fit to the data, then performs the asymp-
totically efficient test (Log-Rank or Peto and Peto’s Wilcoxon test) for the selected
distribution. The performance of the adaptive test is compared with the Log-Rank

and Peto and Peto’s Wilcoxon tests through simulation.
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Chapter 1

Introduction

1.1 Background and Motivation

Survival Analysis is a statistical tool for'analyzing time to “event” data. An
“event” may be the death of a laboratory mouse in a carcinogenicity study, the

remission of a cancer patient or the failure of a machine.

One of the fundamental interests in survival analysis is to determine if the
risk of the “event” happening in one group is the same as that in the other group.
The literature offers numerous inferential procedures for the comparison of survival
data from two groups with right censoring. Two of the most popular tests are the
nonparametric Log-Rank and Wilcoxon tests. Suppose t; < t3 < ... < tp be
the distinct failure times in the pooled samples. The two tests are based on the

statistic

where d;; = number of failures in sample 1 at time ¢;
Y;1 = number of individuals at risk in sample 1 at time ¢,

1



d; = number of failures in the combined samples at time ¢;

Y; = number of individuals at risk in the combined samples at time t;.

The Log-Rank test (Peto and Peto, 1972; Cox, 1972; Mantel, 1966), which is
a generalization of the Savage (1956) test for right-censored observations, gives
equal weights to hazard differences, W (t) = 1 for all {. Gehan’s Wilcoxon test
(1965) on the other hand, which is a generalization of the Mann-Whitney Wilcoxon
test, assigns more weight to early hazard differences than to late hazard differ-
ences, W(t;) = Y;. Peto and Peto (1972) suggested an alternative generaliza-

tion of the Wilcoxon test which uses the estimated survival function,

N d; v . :
S(t) = H (1 plvan 1), as the weight to hazard differences. The advantage of

t; <t
Peto and Peto’s Wilcoxon test over Gehan’s Wilcoxon test was shown by Prentice
and Marek (1979) through a case study wherein the latter statistic gave misleading

results due to its dependence on censoring rates.

True to any statistical procedure, none of these tests is optimal for all
data distributions. Prentice (1978) showed that under a location-scale model,
y = u+ Bz + oe, Log-Rank test is asymptotically fully efficient for the Ex-
treme minimum value error distribution f(e) = exp(e — ), while Peto and Peto’s

Wilcoxon test is asymptotically fully efficient for the Logistic error distribution

fle) = REXE

increase data transformations, Prentice’s results also mean that Log-Rank test is

Since the efficiency of rank tests is invariant under monotone

fully efficient when the failure time follows a Weibull distribution and Peto and
Peto’s Wilcoxon test is fully efficient when the failure time follows a Log-logistic

distribution.



In 1975, Hogg proposed a two-sample adaptive distribution-free test which
uses the data first to select the most appropriate model from a class of models
and then makes an inference based on the chosen model. This paper uses Hogg’s
approach by proposing a preliminary test to determine which test is more ap-
propriate for the data. Prentice (1975) proposed a discrimination procedure that
embeds both Extreme minimum value and Logistic distributions in a larger para-
metric family of distributions. A test statistic based on parameter estimates of this
distribution will serve as a pretest for Log-Rank versus Peto-Peto’s Wilcoxon test.
Prentice claimed asymptotic normality of the test statistic but did not provide
formal proof of this result. In this paper, we will prove the asymptotic normality
of Prentice’s test statistic. We will also conduct a simulation study to validate
Type I error rate and compare relative efficiency of the adaptive procedure against

either Log-Rank or Wilcoxon test.

1.2 Accelerated Failure Time

Let T denote the failure time and Z a vector of fixed-time explanatory covari-
ates. The relationship between the distribution of 7" and Z is described by the

accelerated failure time model as follows:

S(t)Z) = Sole”'?], for all t (1.1)

or equivalently,

h(t|Z) = @D ho[e? D], for all t (1.2)



where ( is a vector of regression coefficients
Sg is the baseline survival function

hg is the baseline hazard rate.

Note the difference between (1.2) and the hazard function under the popular Cox

proportional hazards model which is

h(t|Z) = ho(t)e?'?.

The accelerated failure time model can also be represented as a linear re-
lationship between the logarithm of failure time and the vector of covariates as

shown below:

y=InT=p+ 07+ ce (1.3)

where ¢ is the error distribution.

For the two-sample problem, Z is a binary covariate which serves as an

indicator of the two samples

7 _ { 0, if placebo

1, if treatment

The linear log-time models for the two samples according to (1.3) can then be

expressed as



Placebo group:

InT = pu+8x(0)+oc
(1.4)
= WU+ oe

Treatment group:

InT = p+Fx(1)+o0e
(1.5)
= u+ [0+ oec
Based on these log-linear models, treatment will increase or decrease the logarithm
of the failure time by 8 or equivalently, the failure time by e?. If = 0.19, then
e%19 = 1.20. One can tell a patient that he is expected to live 20% times longer
if he took the treatment. The factor e®%), which tells us how much a covariate

affects the expected failure time, is called an “acceleration factor”.

Since the effect of the covariate is modelled directly on the failure time,
the results can be easily explained to a patient. This ease of interpretability is
one of the appeals of the accelerated failure time model over the Cox proportional

hazards model which models the covariate effect on hazard ratios (Reid, 1994).

1.3 Statement of the Problem

The accelerated failure time model encompasses a wide range of survival time dis-
tributions, depending on the error distribution. In this paper, we will focus on two
of the most popular survival distributions as discussed by Klein and Moeschberger

(2003).



1. If € is the Extreme minimum value distribution, then T follows the Weibull

distribution.

The survival function of T' ~ Weibull (shape = «, scale = \) is

S(t) = exp(— M%) (1.6)

which implies that the survival function of y =InT is

S(y) = exp(—Ae™). (1.7)

Now, if the parameters are redefined as

A=e(=H7) apnd ¢ = 1/a, (1.8)

the survival function of ¥ can be rewritten as

Sly) = CCEp(—e(_,u/U)e(y/O'))

(1.9)
= eap(—el¥ — /o)y, .
Hence from (1.9), y = InT can be expressed as
y=1InT = p+ ge (1.10)

where € is the Extreme minimum value distribution with the survival func-

tion,



S(e) = exp(—ef). (1.11)

2. If e is the Logistic distribution, then T follows the Log-logistic distribution.

The survival function of T' ~ Log-logistic (shape = «, scale = A) is

1
S(t) = ——. 1.12
®) 14+ A& (L12)
It follows then that the survival function of y = InT is given by
S() = (113
V=T N '
In redefining the parameters as
A=e("#/9) and o = 1/a, (1.14)
the survival function of y becomes
1
S =
) 14 e(=1/0)(y/0)
(1.15)
B 1
14 ely—n)o
Therefore, from (1.15), y = InT can be described as
y=InT = u+oe (1.16)



where ¢ is the standard Logistic distribution with the survival function,

S(e) = o (1.17)

The Weibull distribution exhibits a monotonic hazard function, i.e. the haz-
ard rate is monotone increasing (o < 1), decreasing (o > 1) or constant (¢ = 1).
In contrast, the hazard rate of the Log-logistic distribution may be non-monotonic.
When o < 1, it increases at early times and then decreases at later times. It is
monotone decreasing when o > 1. This paper will tackle the problem of testing
for the appropriateness of the Weibull and Log-logistic distributions on the failure
time data. Once we have obtained a formal test that will tell us which of these
two distributions is a better fit to the data, then we will know the answer to the
main problem of this research: Is Log-Rank or Peto-Peto’s Wilcoxon test more

appropriate for the data?

1.4 Research Objectives
This research aims to fulfill the following goals:

1. Formally derive and prove the asymptotic properties of the test statistic

originally proposed by Prentice (1975),

2. Prepare a procedure for using the discrimination test in the two-sample sur-

vival data framework,

3. Investigate optimal choices of a critical value for the discrimination test

statistic, and



4. Compare the finite sample performance of the proposed adaptive test with
the non-adaptive tests (Log-Rank and Peto-Peto’s Wilcoxon tests) through

simulation.

1.5 OQOutline

This paper consists of five chapters including background and motivation, and
statement of the problem in Chapter 1. In Chapter 2, we will discuss the gen-
eralized family of distributions used by Prentice (1975) to discriminate between
Logistic and Extreme minimum value distribvutions. In Chapter 3, we will provide
a formal proof of asymptotic normality of the discrimination test statistic. We will
also prepare a scheme for extending it to discriminate between error distributions
in the two-sample accelerated failure time model. In Chapter 4, we will examine
the finite sample properties of the adaptive tests. Type I error and power will be
compared with the Log-Rank and Peto-Peto’s Wilcoxon tests. Conclusion of this

research effort and proposed further work will be covered in Chapter 5.



Chapter 2

Weibull Versus Log-Logistic
Distribution

Discriminating between Weibull and Log-logistic distribution under the acceler-
ated failure time model, is equivalent to discriminating between their error distri-
butions: Extreme minimum value and Logistic distributions. In this chapter, we
will present Prentice’s discrimination procedure that embeds both Extreme mini-

mum value and Logistic distributions in a larger parametric family of distributions.

2.1 Parametric Family of Distributions

Consider the location-scale model, y = p + ¢, such that

where m; > 0, mo > 0 and B is the beta function.

10



Hence, the density of y is

a parametric family which reduces to common statistical models for specific values

of (my, my). Some of these reduced models are exhibited in Table 2.1,

Table 2.1: Distributions of y for Some Values of m; and m,

(my,ma) Distribution of y
(1,1) Logistic

(1,c0) | Extreme minimum value

(00,1) | Extreme maximum value

(00, 00) Degenerate normal

Notice from Table 2.1 that the Logistic and Extreme minimum value distributions
both have m; = 1 but have different my values: my = 1 for Logistic and my = oo
for Extreme minimum value. Therefore, a discrimination test between these two
models is based on the maximum likelihood estimate of my being closer to 1 or oo,

given that m; = 1.

2.2 Maximum Likelihood Estimator of ms

Let v1,¥2,...,yn be a sample of n #d variables with density (2.2). Hence, the
likelihood function at (u, o, m1, ms) is

11



L(y;p,0.my,mg) = fy:)

(Es

ma

~(vi—p
_ ——_—1—<m1>nm16m1 ;< o )

[c B(mq, mg)]™ M

(2.3)
(l/i - M) ~(ma +mo)
n o
x 14 e = 7
i=1 Mz
Given m; = 1, (2.3) reduces to
- Yi— U
L( ) 1 1\" 21: ( c >
i, o, mg) = ——————— | — | ei=
y’/‘l’) 2 [O’B(l, mz)]" m2
(2.4)
<’yi - M) ~(L+ms)
X 1+ —
=
The maximum likelihood estimator (MLE) of § = (11, 0, ms) is
§ = argmax L(y; u, 0, ms) (2.5)
0

or more conveniently,

12



0 = argmax In L(y; p, 0, my) (2.6)
0

since the maxima is not affected by monotone transformations.

To obtain these maximum likelihood estimators, let us take first the log-

likelihood function

e(y;lu’vo-y me) = —Tblnm2 + Z (yz - /1,)
i=1

a

—(14+my) znjln 1+_Le<yi ;M> (2.7)

m
i=1 2

—nlno —nln B(1, my).

From (2.6), the MLE 8 = (i, 6, 7h2) maximizes (2.7) and hence, is the solution to

the following set of equations

ol n o (1+my) o 1 efi>
o _ n _ 2.8
op o + o ; 14+ Lesi \my 0, (28)

P
ot i=1 (]. + mg) = €; (A mn
g L— Z 1 my) o 0, (2:9)
g i=1 1 4 —e®i 2
ma

13



—nfp(ms) — P(1+ms)] =0 (2.10)

where ¢, = <yi — u).
(o)

To obtain (2.10), note that dB(a,b)/0b = B(a,b){¢(b) — 1(a + b)], where

InT'(k ® (et —kt
Y(k) = %——) = / (6— S ) Ot is the digamma function (Abramowitz
0

t l—et
and Stegun, 1964).

The MLE 22 can be obtained simultaneously with 4 and & using numerical
methods. For our simulation, we will use R’s optim function which outputs the
three maximum likelihood estimates based on the inputted log-likelihood function

and the estimating equations (2.8), (2.9) and (2.10).

To verify if ms can indeed discriminate between the Extreme minimum value
and Logistic distributions, we simulated 50 observations from each distribution and
produced the corresponding 7, values. The simulation was replicated 5000 times

for each of the following cases:

Case A. u =0, o <1 (probability density function (pdf) of both distribu-

tions is narrow and tall)

Case B. u =0, 0 > 1 (probability density function (pdf) of both distribu-

tions is broad and shallow).

14



One can observe from Figures 2.1 and 2.2 that the /1, values from the
logistic distribution are clustered around 0. On the other hand, the my values
from the extreme minimum value distribution are very large. There are also some
large o values from the logistic distribution, but based on the percentiles in Table
2.2, only 20% of the values are greater than 2. In contrast, only 20% of the 77

estimates from the extreme minimum value distribution are less than 10.
This clear distinction between the two distributions with respect to m,

provides evidence that ms can discriminate between the two distributions.

Figure 2.1: Scatterplots of /g for Both Extreme Minimum Value (m, = oo) and
Logistic (mg = 1) Using p =0 and 0 = 0.5

Extreme Minimum Value

Logistic
o [=
o ch DD %;@Dﬂ DDDC] o
O gptd % B p® oom
o o Ol @]‘Dc’mpgl o
= um&% o Bg o
i I I i
) 20000 40000 60000
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Figure 2.2: Scatterplots of ms for Both Extreme Minimum Value (my = oo) and
Logistic (my = 1) Using p =0 and ¢ = 2

Extreme Minimum Value
I -
o
o o
o
g D
o
Lagistic
B ho & ]
ol [glooBD ! 83D D@E? o o
b %U r:ﬁ%E M og Og 9o O
o o o
00q gh% Togt®  om o a
T T T T T
0 50000 100000 150000 200000
A
my
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Table 2.2: Percentiles of ms at p =0

oc=05 o=2
Percentile | Extreme Logistic Extreme Logistié
minimum minimum
value value
(ma=00) | (ma=1)| (ma=00) | (m2=1)
5*’?' 2.2716 0.4310 2.1767 0.4418
10t ' 3.1288 0.5283 3.2156 0.5402
20" 5.8244 0.6590 6.0527 0.6724
30tk 13.7306 0.7733 13.5070 0.7921
40tk 3768.6133 0.8871 3523.0438 0.9048
50th 18159.3947 | 1.0165 40544.4337 1.0444
60th 25137.5983 | 1.1816 61759.8040 1.2092
70t 30609.9432 | 1.4183 75824.0997 1.4498
80th 36062.4104 | 1.7928 89861.8513 1.8903
90tk 42404.6878 | 3.0453 | 106864.0991 | 3.1853
95th 47324.8637 | 6.1804 | 120990.5581 | 6.1366

2.3 Some Known Results (Prentice, 1975)

In the next chapter, we will present three discrimination tests that are based on
Ms. But before we do that, let us first discuss some of Prentice’s results which we

will use in that chapter.

Let € of the location-scale model y = p + o¢ be distributed with density func-
tion (2.1).

17



R1. As my — o0,

R2. The information matrix S corresponding to («a, o, m1, ms), where

a=p+olog (%), has the following elements:

Su = mime(mi+me+1)"T07,
Stz = [muma{(mi) — ¥(m2)} + (m2 — ma)]
x(my +me+ 1)o7
Si3 = ma(mi+ma) tol,
Sy = —my(my+mg) o7,
Spp = (mama[y (ma) + ' (m2) + {9 (m1) — ¥(ms)}?]
+ 2(ma — mi){yp(m1) — P(m2)} - 2)
X (my+mo+ 1)o7 24072
S = [ma{tp(m1) — Y(ma)} — 1] (m1 +ma) 0™,
Sy = [=ma{yp(mi) — Y(ma)} — 1] (m1+ ma) o7,
Sz = ¢ (m) =¥ (M +ma),
S = —¢/(m1+m),
Sua = P/(mz) — ¢ (m1+my)
where ' (k) = aj%i—l;(k)

18



The information matrix for 8 is then C'SC’, where

i 1 0 0 07
log<T—2> 1 0 0
m
C = -
— 0 1 0
m
2 0 0 L
L Mo

R3. To establish the discrimination test between Extreme minimum value and

Logistic distribution, the density function (2.2) was first reparameterized by

1 1
defining 7y = — and ry = —.
my mo
oL . : : '
a. — and —— are finite and not identically zero at the boundary r; =0
87‘1 87‘2

or v = 0, provided r; and ry are not simultaneously zero. That is, esti-
mation of 74 is regular at r5 = 0, provided 7; # 0. Similarly, estimation

of r; is regular at r; = 0 provided 7o # 0.

For fixed m; # oo (i.e. 1 # 0),

lim _B_g_ = lim (—mf{—a{:)




b. Atr; =1andre =0, the information that y contains about (i, o, r1, r2)

is

S L
1—7 zrg+(1—7)2 1 2 —
I(p, 0,71, 72) = o o? o o
B

c. Logistic versus Extreme minimum value discrimination
Let £(r9) represent the log likelihood at (r; = 1, r2) maximized over

(4, o). Then at ro = 1, the Logistic,

7A12 NN{I,

13.30
~v (1 B2
n

At the boundary ro = 0, the Extreme minimum value,

e ~ N O,

6
"(“ﬁ)
NN(O, 2_-52)

n

20



1
with probability 1 that 79 < 0 amassed at 7o = 0.

Based on these asymptotic results, a one-sided 0.05 level test for the Extreme min-
imum value distribution versus a Logistic alternative rejects the hypothesis if
2.55

T > 1644/ — .
n

Prentice did not provide formal proof of the asymptotic results in (R3c). It
seems he omitted the nuisance parameters p and ¢, then obtained from the reduced
log likelihood function £(r3) the discrimination test statistic 7o and its asymptotic
distribution. In this paper, the complete likelihood function L{p, 0,72), along
r1 = 1, is used instead to obtain the test statistic 75. It will be shown in the next
chapter that the resulting asymptotic distribution of 7, is the same as (R3c) even

if the nuisance parameters are not eliminated from the likelihood function.

21



Chapter 3

Adaptive Survival Test

The discrimination test between Logistic and Extreme minimum value is based on
: 1
7o at r; = 1, where 11 = — and ry = —. In this chapter, we shall examine
m) M2
the estimator of 7o and its asymptotic distribution under the Logistic model (i.e.
ry =ry = 1) and the Extreme minimum value model (i.e. r; =1, r, = 0). Using
the asymptotic results, we will then present a few discrimination tests between
the two models. Lastly, we shall extend these tests to the two-sample accelerated

failure time model setting and propose an adaptive survival test for equality of

failure times.

3.1 Estimation of o = 1/my

We provide in this section the theoretical derivation of the MLE 7, and its asymp-
totic distribution. As opposed to Prentice’s approach, we will not eliminate the
nuisance parameters 4+ and ¢ from the likelihood function prior to ry estimation.
Rather, we will use the complete likelihood function L(u,o,72), along r; = 1 to

obtain 7.
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Theorem 1 : (Hogg and Craig, 1995) Let n = h(8) define a one-to-one transfor-
mation. Then the value of , say 7, that mazimizes the likelihood function L(9),
or equivalently L(0 = h™Y(n)) is ) = h(), where § is the mazimum likelihood esti-
mator of 8. This result is called the invariance property of a mazimum likelihood

estimator.

Recall from Section 2.2 that if my; = 1, i.e. my =1, 1, ¢ and my are the

solutions to equations (2.8), (2.9) and (2.10). Thus, due to the invariance property
1

of MLE (Theorem 1), 7 = —. Consider the next theorem for the asymptotic

ma
distribution of 7.

Theorem 2 : (Lehmann and Casella, 1998) Let X;, ..., X,, be #id, each with a den-
sity f(x|8) which satisfies the regularity conditions. Then, with probability tending
to 1 asn — oo, there exist solutions O, = O,(xy, ..., z,) of the likelihood equations

such that éjn is asymptotically efficient in the sense that

Vi (05— 8;) 5 N{O,[I(0)]3;'}

Using theorem (Theorem 2), we shall obtain the information matrices
I(p,0,ra = 1) and I{p, 0,72 = 0) at 71 = 1 to establish the asymptotic distribu-

tion of 75 under the Logistic and Extreme minimum value hypotheses, respectively.

3.1.1 Logistic Model (r; =r; = 1)

Theorem 3 : (Sorensen and Gianola, 2002) Let the distribution of the random

vector y be indexed by a parameter 6 having more than one element. Consider
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the one-to-one transformation n = f(0) such that the inverse function 8 = f~*(n)
exists, and suppose that the likelihood is differentiable with respect to n at least

twice. Then, the expected information matriz for n is

I(n) = A I[f 7} ()] A

om  Om o om
a0’ Onz  Ong o N
where A = — = . . . . ,
on
L O, Onmp Oy

p = number of elements in 6.

In our case, the original parameterization was in terms of § = [u, o, m;, my)
with /(f) = CSC" as described in (R2) of Section 2.3. The new parameterization

consists of the vector
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e ]
1)
g
g
= =L
1 mi
| 72 ] 1
L o |

so that the old parameter vector in terms of the new parameters is

!

6 = [f*n)] = [ o, 1/r1, 1/rs] and the old information matrix in terms of

the new parameters is I[f~!(n)] = C*S*C*', where

1 o 0 O

log <—~>
C* — T2

—ory 0 1 0

—
o
(e}

ara 0 0 1

and S* has the following elements

1 /1 1 1

T

ARG O CE)]



*
S13

*
514

*
522

*
523

*
S

*
533

*
534

*
Sia

I
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Thus, based on theorem (Theorem 3), the information matrix under the new pa-

rameterization is

I{p,0,m1,m) = A(C*S*C*)A’

(3.1)
— (AC™)s*(AC"Y
where matrix AC* is given by
i 1 0 0 0 Tr 1 0 0 0 T
0 1 0 0 r
, log (—1> 1 0 0
x 1 T2
AC 0 0 -= 0
" —or; 0 1 0
1
0 0 0 -= or) 0 0 1
L Tz . - =

1
Z 0 -5 0
T L]
192 1
- 0 O -
L T2 Ty |
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From equation (3.1), I{u, 0,71, 72) denoted by T is equal to

T = I(y’7077‘15r2) =

1 log (ﬁ) g
T2 71

0 1 0
" 0 0 !
ri

0 0 0

L

[ Tll T12 T13
T21 T22 T23
T31 T32 T33

| T Tyo T3

28

LA
T1 T
_% 0 0
L T2

T24

Tsq

*
Sll

*
521

*
S5

*
541

*
512

*
522

*
532

*
542

*
513

*
523

*
533

*
543

*
14

*
24

*
534

*
544



where the elements are defined as

Th =57

T12 —Sfllog( > +S

1 T
Tos = [Sfl 10g< ) +5§1} ] {st log (é) + 53}
o T
Toy =—— [Sﬁ log <_1> +S51] - [Sﬁ log( ) +S§4}
To T T2

clo 1 1
Tss = —1—85 - =S55| — Sty — =53
33 " [7'1 11 7’% 31} T% L”l 13 7'% 33]
a . . 1l |o .
T34 = 7‘2 {7‘1511 T%SSI:l - ;,_% {7‘1 14 534}
o 1 o 1
T - ———S* S* = ___S* ——S*
44 T [ Ty 11 % 41} T% { T 14 7‘% 44]

Note that T3; =T, ¢ =1,...,4and j =1,...,4.
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If r1 is known and equal to 1, by definition of the expected information matrix,

I(N‘) g,7, TZ) =

cov (

ot ot
o’ 0

.

o o
oV 31 Bo cov
(22
cov % By cov

cov <

ot ot

o’ oy

ot ot

da’ Ory

o ot
87'1’ 87‘1

)
)

all covariance terms pertaining to 7, i.e. the third row and column are ignored.

Hence, the information matrix (3.2) reduces to

[(,LL, ag, T?)

ri=1

i Tll T12

T21 T22

T41 T42

Further at ry = 1, the elements in (3.3) simplify to

Tu =Si=3,
T12 = Sf? =0

* * 1
Ty =-0Sh -5 = T35

30
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1 ) +1

1
302 o2 302

Ty =53 =(24'(1) - 2)
Toy =—055 =55, =5

T44 :U2KS’I1+O'ASYZI+O'SI4+L 24
=l (C D) vy v
T30\ Ty,

2 ,
:"§+'¢ (1)—?/1(2)

so that matrix (3.3) becomes,

) |-
il 0 il
30° 6o
243 1
Iwor=1] = | 0 ”_g;z_ = | (3.4)
1 1 1
L 60 20 3

Note that T5 and Ty, were simplified using the following properties of the trigamma

function ¢’ (k) = gk—w(k) (Abramowitz and Stegun, 1964):

a. ¥'(1) = (—=1)%2 11 ¢(2), where ¢() is the Riemann zeta function

3
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b. Recurrence Formula

W(k+1) = (k) +(—1) 11 k2

) 1
=¥ k) -
At k=1,
’ ' ’ 772
VD =W @) =v0)-1=" -1
Now, since the inverse of (3.4) is
[ 4m?—-15 1 —(m?+3) T
10802 1202 5403
10804 1 1 1
I_l =1 = _
wora=D| | = 576| T Ta? 60 |
—(7*+3) 1 ?+3
L 5403 603 2704

theorem (Theorem 2) implies that under the Logistic hypothesis, r, = 1,

. d 10804 (7% +3
\/7_7,(7"2—1) — N{O,ﬂ2_6<2704>}.

That is,

. 4 (7243 |
ry N{l,g (wz—e‘)}‘ (3.5)
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3.1.2 Extreme Minimum Value Model (r, = 1,73 = 0)

From (R3b) of Section 2.3, the information about {u,0,7,73) at 1y = land r, = 0

1s

[(,Uz./O',T'] :17T2:0) =

to

[(u'a 0,Ty = 0)

r1=1

1 1—v
o2 o2
2

o2 o2
1

0 il
o

1 2— 7

o o

Q|+~

1 1—+x 1
o2 o2 o
2
m 2
o2 o2 o
1 2 -~
L o o

Q|+

. (3.6)

o
This result can also be verified using the error density in (R1) and the limit of —

in (R3a) of Section 2.3, as shown in the Appendix.
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Taking the inverse of matrix (3.7), we have

- 2 21
) 1 —y—
3 <Yy 7%
2 2 o3
. e ~ 1
[_1 y Uy = O = — e —_——
(k72 ) =1 T2 ) o? o o3
6
] w2 2
"% 1§
L o3 o3 ot J

Hence, it follows from theorem (Theorem 2) that under the Extreme minimum

value hypothesis, ry = 0,

o| 3

Vv (f,—0) 5 N o,
Consequently,

1
ry 5 NY{O, — % (- (3.8)
(- 3)

2
Notice that the asymptotic results (3.5) and (3.8) are identical to Prentice’s

results (R3c) of Section 2.3 even if the nuisance parameters were not removed from

the likelihood function.
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3.2 Discrimination Between Logistic and Extreme
Minimum Value Distributions

We propose in this section three discrimination tests between Logistic and Ex-
treme minimum value distributions. The first test uses the Logistic distribution
as default unless there is significant evidence otherwise. The second test uses the
Extreme minimum value distribution as default unless there is significant evidence
otherwise. Adding to these tests, we propose a third test which simply uses the
midpoint of the null and alternative hypotheses values as the cut-off point in the

rejection rule.

Let y; = u+o¢;, ¢ = 1,2,...n be a random sample of size n with an unknown
distribution form. To determine if the Extreme minimum value or the Logistic dis-

tribution is a better fit to the data, one of the following « level tests may be used:

1. Hypotheses

Hy: Logistic versus H;: Extreme minimum value
or equivalently,

Hy:ry=1versus H; 113 < 1
Rejectiop Rule

The asymptotic result (3.5) implies rejection of Hj if
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A

9 — 1
13.30

2. Hypotheses

Hy: Extreme minimum value versus H;: Logistic

or equivalently,

Hgy:ry =0 versus Hy : 13 > 0

Rejection Rule

The asymptotic result (3.8) implies rejection of Hy if

> Zo.

3. Hypotheses

Hy: Extreme minimum value versus Hy: Logistic

or equivalently,

Hg:ro=0versus Hy ;3 =1

Rejection Rule
Reject Hy if 75 > 0.5.

Keep in mind that these tests merely determine the model which better fits .
the data, and does not prove that the chosen model is the correct distribution form.
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3.3 Two-Sample Accelerated Failure Time Test

First, we prepare a procedure for applying the discrimination test within the frame-

work of a two-sample accelerated failure time model.

Let Tl = (Tl]_, T12, "‘Tln1) and T2 = (Tgl, TQQ, '~~T2n2) be random Samples of
failure times whose log values are denoted by the following respective location-scale

models:

log T} = p+ oe (3.9)

logT, = p + B + o, (3.10)

where the distribution form of ¢ is unknown.
Based from models (3.9) and (3.10), the relationship between logT; and

log T is characterized by the location-change model

logTy, = 0+ logTh (3.11)

while the relationship between Ty and 75 is characterized by the scale-change model

=T (3.12)

In testing 8 = 0, it is known that the Log-Rank test is asymptotically fully
efficient for the Extreme minimum value error distribution while the Peto-Peto’s

Wilcoxon test is asymptotically fully efficient for the Logistic error distribution.
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Now we can use the discrimination test in Section 3.2 on the combined log failure
times to compare the fit of the Extreme minimum value and Logistic discributions
on the data. However, we first need to standardize the two samples to the same
location and scale so the discrimination test can select the more appropriate shape.
Standardizatioh can be attained by either recentering the log failure times to the
same location or by rescaling the failure times to the same spread. We will use the

latter approach in this paper.

From model (3.12), the scale-change parameter or acceleration factor, is

T.
ef = —E, which can be intuitively estimated by the ratio of the two standard

T
D(T:
deviations, i.e. ? DETT; Hence, multiplying T by this ratio,
T* _ IS’D(T2)
LT SD(T) Y

results to a rescaled T} which exhibits the same variability as T5.

We now define an adaptive test procedure for Hy : 8 = 0 as follows:

1. Let T3 and C; be the failure times and censored times of the first sample,

respectively.

2. Let T3 and C» be the failure times and censored times of the second sample,

respectively.

3. Rescale the failure times from the two samples so they have the same vari-

ability:

SD(Ty)
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4. Combine rescaled failure times T, =(77 and T3).
5. Log-transform T, and compute m, using R’s optim function.

6. Take 79 = 51; and perform one of the three discrimination tests described in
Section 3.2. If the Extreme minimum value distribution is selected, use Log-
Rank test. Otherwise, if the Logistic distribution is chosen, use Peto-Peto’s

Wilcoxon test.

The adaptive procedure produces three tests which differ by their discrimi-

nation scheme for choosing between the Log-Rank and Peto-Peto’s Wilcoxon tests:

1. Test DL (Default Log-Rank): Use Log-Rank unless

T2

2.55

n

> g

2. Test DW (Default Wilcoxon): Use Wilcoxon unless

To —1
13.30
n

< Zg.

3. Test EQ (Equal Discrimination):

If 79 > 0.5 use Wilcoxon. Else, use Log-Rank.
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Chapter 4
Simulation

We examine the finite sample performance of the three adaptive survival tests for
the two-sample accelerated failure time problem. The tests differ by their pre-
liminary procedure for choosing between the Log-Rank and Peto-Peto’s Wilcoxon

tests:

1. Test DL (Default Log-Rank): Use Log-Rank unless

3>

2
> Zg. 4.1
.95 4.1)

n

[\]

2. Test DW (Default Wilcoxon): Use Wilcoxon unless

To—1

< Dy (4.2)
13.30
n
3. Test EQ (Equal Discrimination):
If 75 > 0.5 use Wilcoxon. Else, use Log-Rank. (4.3)

In this chapter, we will assess the empirical validity of these tests. We will
also compare performance among the adaptive tests, and between the adaptive

and non-adaptive tests based on their size and power.

40



4.1 Simulation Models

We describe in detail the failure time and censoring models considered in the sim-

ulation study.

Failure times, T} and T3, were generated from the following distributions:

1. Weibull
f(t) = axt* exp(—Az*), a,A\>0
S (t) = e
or equivalently,
J(6) = 2 el (oD ey [Lalomo) (9] 550
g

S (1) = exp [—el=#/2) {1/)]

1
Note that « = — and \ = e(‘“/a).
ag

2. Log-logistic
aite!

=, a,A>0
(14 xte)?

S~
~~
-
N
|

BEESYE
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or equivalently,

L ento) y0/0-1)

t)y =2 , >0
SO [+ eCwio) g2’ 7

1

S(t) =7 T e(-nlo) (1)

1
Again, o = — and A = e(~14/7).
a

3. Log-normal

£() = tml/%e‘[%(m“#)z}

, o>0

S(t)=1—q>[1£(t)_—ﬁ}

g

For each of these failure time distributions, the shape parameter o is set to
(a) greater than 1, (b) equal to 1, and (c) less than 1 to represent different degrees
of skewness and tail weight of the survival function. The scale parameter for S;
is ¢ = 0 in all cases. In the size study, the scale parameter for Sy is also p = 0
while in the power study, the scale parameter for Sy is ¢t > 0. The various shapes
of the probability density and survival functions in the power study are presented

in Figures 4.1 and 4.2, respectively.
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Figure 4.1: Shapes of the Probability Density Function in the Power Simulation
Study
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Figure 4.2: Shapes of the Survival Function in the Power Simulation Study
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The performance of the tests was examined on both uncensored and right-
censored failure times. Under the censored setting, the censoring distribution of the
two groups were equal and uniform U(0,c¢). Various values of ¢, which correspond

to the percentage of censored observations, were considered in the simulation.
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4.2 Size Study

The adaptive and non-adaptive tests were performed on 10,000 samples under
each survival and censoring configuration. Results at the 5% significance level for

sample sizes 20 and 50 are presented in Tables 4.1 and 4.2, respectively.

Test DL (Default Log-Rank), Test DW (Default Wilcoxon) and Test EQ
(Equal Discrimination) are based on the discrimination scheme in equations (4.1},
(4.2) and (4.3), respectively. All simulations were done in R, using the optim
function to compute the 7, test statistic and the survdiff function to obtain the

Log-Rank and Peto-Peto’s Wilcoxon test statistics.
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In general, all tests exhibited acceptable observed significance levels, with
the Wilcoxon test being the most conservative in almost all cases. Also, the ob-
served significance levels of the adaptive tests do not deviate substantially from

the observed significance levels of the non-adaptive tests.

At n = 20, Test DW (Default Wilcoxon) demonstrated the most superior
performance among the three adaptive tests under the Log-logistic and Log-normal
survival distributions, with its observed significance levels being closest to the nom-

inal level. At n = 50, the performance of the three adaptive tests were comparable.

4.3 Power Study

The power of the tests at a 5% significance level were obtained from 10,000 samples
for each survival and censoring setting. Results for sample sizes 20 and 50 are

displayed on Tables 4.3 thru 4.8.
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As expected, the power of the tests increases as the degree of skewness
of the survival distribution decreases, i.e. ¢ |. Further, the power of the tests

increases as the percentage of censored observations decreases.

In comparing the performance of the Log-Rank and Wilcoxon tests, the sim-
ulation results confirm that the Log-Rank test is more powerful than the Wilcoxon
test under the Weibull survival distribution while the Wilcoxon test beats the
Log-Rank test under the Log-logistic survival distribution. Under the Log-normal
distribution, the Wilcoxon test also performs better than the Log-Rank test. This
is probably because the hazard function of the Log-normal distribution is very

similar to the Log-logistic distribution (Klein and Moeschberger 2003).

All the adaptive tests perform as well as the efficient Log-Rank test under
the Weibull distribution. Under the Log-logistic and Log-normal distributions, the
adaptive tests outperform Log-Rank test in most cases. Among the three adap-
tive tests, DL (Default Log-Rank) and EQ (Equal Discrimination) are preferable to
DW (Default Wilcoxon) given their superior power in most cases. The competitive
performance displayed by the adaptive tests under the Log-normal distribution in-
dicates that they are also sensitive to survival differences even when the underlying

survival distribution is other than the Weibull and Log-logistic distributions.
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Chapter 5

Conclusion

In this paper, we have formally derived and proven the asymptotic normality of
the discrimination test statistic originally proposed by Prentice (1975). We have
prepared a scheme for extending the discrimination test in the two-sample survival
data framework and introduced an adaptive procedure based on the Log-Rank
and Peto-Peto’s Wilcoxon tests. We have investigated optimal choices of a critical
value for the discrimination test statistic to maintain the size and maximize the
power of the adaptive procedure. And lastly, we have compared the finite sample
performance of the adaptive test with the non-adaptive testé (Log-Rank and Peto-

Peto’s Wilcoxon tests) through simulation.

The simulation results have shown that the adaptive two-sample test is
more robust to the underlying survival distribution, relative to the Log-Rank and
Wilcoxon tests. The adaptive test may not have exhibited the highest power across
the various survival and censoring distributions, but it performed better than the
less efficient test between the two non-adaptive procedures in most cases of the
simulation tests. It has even competed well with the most efficient Log-Rank test
under the Weibull survival distribution. Moreover, it has demonstrated validity by

maintaining the Type I error rate. These results confirm the fact that it would be
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useful to do a pretest prior to performing the Log-Rank and Wilcoxon tests like

what we have proposed in this paper.

The adaptive test can be extended to the K-sample problem by modifying
the procedure’s step which standardizes the failure times from the two samples.
Such K-sample adaptive test can then be further developed into a stratified test

to account for covariates.

This paper only investigated the performance of the adaptive test on three
well-known survival distributions: Weibull, Log-logistic and Log-normal. Their
performance on other survival distributions may also be evaluated in subsequent
research. One may also explore further Prentice’s model and come up with a more
generalized preliminary test, which discriminates one distribution from the rest of

the distributions embedded in the model.
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APPENDIX

Derivation of Information Matrix I(u,0,r; =0) Along r; =1

(See Section 3.1.2)

Consider the location-scale model, y = u + ¢, such that

1) = B(—l_ (_m_) ™ em (1 . m)(m +my)

ml7m2) ma ma

where m; > 0, mqy > 0 and B is the beta function.

1 1
Let 1 = — and 75 = —. Then by definition of the information matrix,
ma Mo

I{p,0,r5 = 0) at 7y = 1 is expressed as

[ ot oty (9t ot ot ot
U\ Bp B o 90 ) %Y\ on or,

Iy, 0,79 =0) = cov(ag E)E) cov(ag 6£>

ri=1 do’ do do’ Bry
oo (2L 08
L v 87‘2,87‘2

where 9¢/0u, 8¢/3c and 0¢/0r, are partial derivatives of the log-likelihood func-

tion at r; = 1, with respect to u, o and rg, respectively, evaluated at ro = 0.

As we will show later, the partial derivative 0¢/0ry at (r; = 1, ro = 0)
can be directly obtained from Prentice’s result (R3a) of Section 2.3. On the other

hand, 0¢/0u and 94/do can be derived from the log-likelihood function evaluated
62



at (r1 =1, r =0).
1. Log-likelihood Function at (r; = 1,1, = 0)

1
From Prentice’s result (R1) of Section 2.3, as my — 00 or 7 = — — 0,
ma

€
my gemy — €“my)

m
€ =
1
Further, at m; = lorr; = — =1,
m1
f(€) — ee—e‘

so that the density of y at (m; =1, my = 00) or (r; =1, ro = 0) is given by

and the log-likelihood function is

=)
Ly p,o) = y—;—” —e\ 7 /J —Ino.
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2. First-Order Partial Derivatives
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From Prentice’s result (R3a),

c. lim % = lim {— my? ot
=0 Ory  ma—eo 2 om,
y— ¢4 y—p
1, 12\ , ( ) 1
= Eml & — mi- € o + Eml
1
Atm1=1 OI‘T]'—_—“-_—l,
1
9 Yy— K Y — i
lim —Qé = 1 e a - e< o )
r2—0 87‘2 ri=1 - 2
3. Expected Values of Partial Derivatives
(%)
' y—p
oe 71 (y_”) N ’
a.E[—} =/— e\ O -1 —e
ou o o

i (
= —/(w—l)e"“’dw, where w =€

o

0

1 o0 B 00—
= — wewdw—/e“’dw

o

0 0
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dy



Let u=w and dv=e " dw

—w

du=dw and v=—e

Thus, through integration by parts,

o2 - z{_wew] o feran- |
ou o o
0

0

1 _wr
= ——we

g 0
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e ™ dw}

(y—u> e
y u_(y u)e s )1l te
g g g




1] 7 7 i
= —= /(lnw)e_w dw—/(lnw)we'w dw—l—/e_w dw|
o
0 0

0

(=)
where w =e\ 0

274 Term: ——/(lnw)we““’ dw

0

Let u=w(lnw) and dv=e"" dw

du=(lnw+1)dw and v=—e"

Through integration by parts,

- 7 (nwywe™ dw = - {—wunw)e—w} T 7 e (nw + 1) du

0

0

= w(lnw)e_“’} —/(lnw)e_“’ dw —/e_w dw
0 0
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Hence,

—% {‘f(ln w)e™™ dw + w(ln w)e_w]

0 (Z’J‘H) [y“lt __ (u)]
, o

001 oo

/5 w?e™™ dw —/

0 0
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0

|

(Inw)e™ dw

(=)
we ¥ dw , wherew=e\ 0O



Let u = w? and dv=e % dw

du=2wdw and v=-—eV

Hence, through integration by parts,

ot 1 o 7 T

E R B —wle™¥ —|—/2 we ™™ dw —/
31"2 2 0

0 0

Q

1 oo o0
= = /wZe‘wdw—Q/we_wdw—i—
o
0 0
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we " dw

/e_w dw
0



o0
1%t term: /w2 e ™ dw

0

2

Let ©w=w and dv=e™" dw

du=2wdw and v=-e¥

Through integration by parts,

Accordingly,
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7 y— U
1 (=)
= ;/[lnw—(lnw)w+1]2 e Vdw, wherew=e\ O
0

[(Inw)(1 —w)+ 1)° e dw

Il
le —
0\8

= i |:/ lnw 2 W
o2
‘ 0
—|—2/ (Inw)(1 —w)e™ dw + /e‘w dw:|
0 0

= 1{/lnw 1—2w+w) wdw+2/ Inw)e ™ dw
o?
0 0

—2/ w(lnw)e™ dw + /e_w dw}
0 0
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Q[ =

/lnw e ¥ dw — 2/ (lnw) 2we ™ dw
) 0

o

+/ w?(lnw)?e™ dw + 2/ (lnw)e™ dw
0

0

o

—2/w(lnw)e_w dw + /e_wdw
0 0

To evaluate the above integral, the following equations will be used:

7 2
(1) /(ln w)’e™™ dw = % +7?, where v = Euler’s constant
0

/ Inw)e™ dw = —vy
0

Let us now simplify some of the terms in the integral.

2
15t Term: (lnw)ze_“’ dw = %_ +~2

374 Term: /wz(ln w)?e™ dw
0
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Let u=w?(lnw)? and dv =e™" dw

du = 2w(lnw)? + 2w(lnw)] dw and v = —e ¥

Through integration by parts,

o0

0

/wQ(lnw)Qe_"” dw = —wQ(Inw)Qe‘“’] +/2w(lnw)26”" dw
0 0

—0—/ 2w(lnw)e™ dw
0

4™ Term: 2/ (nw)e™ dw = -2y

0

Thus,

e\ ? 1 | w? 9 r 2w 2 2wl
(5;>} = E{FJFV —2/(lnw) we ™ dw — w*(Inw)’e .
0

+/2w(lnw)26_“’ dw + /Qw(lnw)e—“’ dw — 2y
0 0
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[o'e]
1
1%t Term: Z—L/w‘le”“’ dw
0

4

Let v=w and dv =e¢ ¥ dw

du=4wddw and v=—e"

Through integration by parts,

17 1 17
Z/w‘le‘w dw = = —w4e_w} + /4w36_’“ dw
0 o %
374 Term: w?e™Y dw

o\

Through repeated integration by parts,

oo X
o0
/ wle ™ dw = —wze“w] + 2/ we ¥ dw
‘ 0
0 0
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Therefore,

8 (

o
ou

i

%
oo

)

_p—w 1 4 2 >
e 4w + w4+ 2w+ 2

Z_ﬁ |:e(y;M> _1} {v;u_<y—;u)e(

[
/—}—z—(w—l) Inw— (lnw)w+1] e dw,
0

(=)
where w =e\ O
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(oo

1 oo
= —= /Qw(lnw)e“w dw — /wz(lnw)e_w dw
0 0
+/we‘“’ dw — /(lnw)e'“’ dw — /e‘“’ dw
0 0 0

2n Term: —/wz(ln w)e™™ dw
0

Let u=w?(nw) and dv=e"" dw

du=2uw(lnw)+w| dw and v=-—e"

Using integration by parts,

7



Therefore,

[(2) (3)] - -5 [t aorsiar]

0

we[(3) ()] - [ Fy‘;“) } {;J?(‘”;“)] i e<ya“>}

=)

= l/(w—l)<§wz—w)e"“’dw,wherew:e g
o
0
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o]

3
3 sze*“’ dw + /we_w dw
0

—w°e " dw —

I
Q-
0\8
0\8

71
1%¢ Term: /Ew?’e_“’ dw
0

Using integration by parts,

71 1 ©° T3
/—w?’e_w dw = —=wle ™| + [ Zw?e™ dw
2 2 . 2
0 0
73
= /§w2e_“’ dw
0
3¢ Term: / we ¥ dw
0
Again, through integration by parts,
oo 0o x
/we_“’ dw = —we‘“’} + /e‘“’ dw
0 0 0
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Therefore,

=|(a) G

o¢
87'2

)

1T 1

—/ lnw—(lnw)w+1]< w —w)e Ydw ,
o 2

0

(=)
where w = e\ 0

o)

T3
{/Elnw w?e ™V dw — /lnw ¥ dw
0

0

—/i(lnw)wg’e_w dw + /EwZe‘w dw — /we‘“’ dw}
0 0 0

30



274 Term: —/(ln w)we™™ dw
0

Let u = (lnw)w and dv=e"" dw

du = (Inw + 1) dw and v=—e¥

Through integration by parts,

‘—/(lnw)we'“’ dw = — —(lnw)we““’] + /(lnw)e‘“’ dw + /e“’ dw
0 o 0 0
= y—1

oo

1
3¢ Term: —/i(lnw)wge““’ dw

o

and dv=¢e% dw

du= |zw?+ -(Inw)w?| dw and v=—e"
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Through integration by parts,

oo oo

—/l(lnw)w‘ge—w dw = - ——l(ln w)w"”e‘“’} +/
2 2 .
0

w?e™ dw

N | —

0

oo

+f

0

(Inw)w?e™ dw

[NA RV

oo

1
= —/§w26_“’ dw — /g(lnw)w2e_w dw
0

0

5th Term: — [ we™ dw

0\8

Again, using integration by parts,

—/we‘“’ dw = — —we““‘} +/e‘“’ dw
0
0
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Therefore,

o(2)(2)] - {/30) o1 |
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4. Information Matrix

Since % , B % , B % are all equal to zero as shown in the previous
o do Ors

section, the information matrix I(u,o,re = 0) at 7y = 1 is reduced to

(5] =1 () =[(2) (2,
()] #[()(3)

I{p, 0,2 =0) = E

ri=1

1 1—7v 1
o2 o? o
2
-
o2 o
2
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