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Software design models are increasingly being used as part of the software 

development process as analysis and design artifacts and to automatically generate code 

that developers can further modify or extend, greatly expediting the software 

development process. This, however, has introduced the challenge of maintaining 

consistency between the design models and their implementation as they evolve during 

the development process. Traditional software testing and verification techniques have 

been well studied in the past, and they are an integral part of many software development 

projects, however, they are not well suited for consistency checking between a design 

model and its implementation. In this dissertation, we present a testing-based validation 

technique that improves over traditional testing and verification techniques for 

consistency checking that combines coverage criteria and dynamic symbolic execution 

with path condition analysis. Our experiments have shown the effectiveness and 

efficiency of our approach when applied to industry strength software systems. 
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CHAPTER I

INTRODUCTION

In the past three decades, we have become increasingly dependent on computer

applications. From simple embedded applications in domestic appliances to medical

hardware and information systems, computer applications have penetrated into every

aspect of life, making possible most of the activities that are an integral part of

modern societies. This wide adoption of computer applications has made software

correctness one of the primary goals in the software development process.

Unfortunately, ensuring software correctness has become increasingly challenging

as the size and complexity of software applications increases. As an example, the

first release of the Linux operating system kernel in 1991 consisted of about 10,000

source lines of code (SLOC), and twelve years later, the kernel version 2.6.0 included

over 5 million SLOC [1]. Also, the introduction of hardware improvements has made

software development harder. For example, the use of multi-core systems has intro-

duced non-deterministic behavior that makes it harder to implement correct reliable

software.

As our reliance on software applications increases, the impact of software errors, or

software problems that affect a computer application, has serious consequences in our

daily life. A study conducted by the National Institute of Standards and Technology

in 2002 estimates that software errors cost about $59 billion every year. This includes
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resources used by the user to mitigate the undesired effects and the cost for developers

to fix the problems [2]. Other errors could have more devastating effects, such as life

losses caused by failures in medical equipment [3] or transportation systems.

Numerous techniques have been used to improve the quality and reduce the like-

lihood or number of errors in computer applications, as well as speed up the develop-

ment process. These techniques are normally seen as part of the software engineering

discipline, an engineering discipline which applies systematic approaches to various

phases during the software development process such as design, implementation, test-

ing and maintenance phases [4].

With the increasing size and complexity of a problem domain, it becomes harder

to understand, design, and maintain a software system. This creates a gap between

the problem domain, which has become more complex as available hardware improves,

and the solution domain. One way of tackling the complexity problem is by using

a stepwise refinement approach, where at each step a new level of abstraction is

introduced, going from the more general, e.g., a high level design, to the more detailed,

e.g., a program implementation. It is in this area where Model Driven Architecture

(MDA) [6] plays an important role by trying to link the artifacts produced at different

levels of abstraction. One way MDA tries to achieve this goal is with the use of

forward engineering tools, where an artifact, such as a class diagram, can be used

to automatically generate a more detailed artifact, e.g., a Java program, greatly

expediting the development process.

However, most forward engineering tools only generate skeletal programs and it

is the developer’s responsibility to manually implement the features not supported

by the forward engineering tool. This can lead to inconsistencies introduced by the

developers when extending the generated skeletal program that may cause undesired

behavior on a system. As a result, it is a challenging issue to determine if the devel-

oper’s implementation satisfies the constraints specified in the model. Specifically, at
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the core of the Model Driven Architecture, the Unified Modeling Language (UML) [7],

a general purpose modeling language, is used to describe a system’s structure, be-

havior, and architecture. And the Object Constraint Language (OCL) [8] has been

proposed as a complementary specification language that can be used to define con-

straints over the elements in a design model.

Existing approaches have studied the problem of consistency checking between dif-

ferent types of models but non of them have considered consistency checking between

a design model and its implementation [34, 35, 36, 37]. Also, reverse engineering

techniques have been applied to check specific UML class diagram properties, such as

association properties, however, their approaches are limited at recovering properties

that can be statically inferred, they don’t recover features that require a program

execution, such as the UML composition property. Also related to consistency check-

ing, some existing approaches consider the generation of test cases from behavioral

models [22, 23, 24, 25, 26, 27, 28, 29] such as activity or sequence diagrams, but do

not consider class diagrams or method constraints.

To tackle the issue of consistency checking between a design model and its im-

plementation, we introduce a bounded exhaustive testing technique with a pruning

approach that analyses the fields accessed during the execution of the method under

test. This technique is based on the small scope hypothesis and it can efficiently gen-

erate a small number of test cases. However, it cannot guaranty the correctness of the

program. To overcome this limitation, we also introduce an approach to consistency

checking between a model, i.e., class diagram, and its Java implementation, in terms

of the OCL constraints specified in the model as method post conditions. In this

approach, we automatically generate a Java Boolean post method from a method

post condition and determine whether the method always returns true right after the

execution of the method under test. We follow a testing-based validation technique

that combines coverage criteria and dynamic symbolic execution.
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Unlike traditional testing, our approach considers the relationship of the path

conditions of the method under test and its post method when generating test cases,

and thus that allows us to guarantee the correctness of the method under test in

terms of its OCL post condition. On the other hand, traditional program testing

techniques only rely on different coverage criteria, e.g., branch coverage, to generate

test cases and assume that the execution of a faulty statement can expose a software

fault, which is not always the case. Also, traditional testing techniques modify the

values of the fields that appear in branch conditions in order to explore different

execution paths in the program. This can be problematic for consistency checking

in the context of Model Driven Architecture, since the automatically generated code

often includes auxiliary fields with values that correspond to specific features in the

model. Modifying auxiliary fields to cover a different execution path could result

in a false positive due to the underlying program structure no longer matching the

original model. Moreover, traditional testing techniques cannot handle cases with

black box methods, i.e., methods that cannot be symbolically executed. To handle this

scenarios, we introduce an approximate symbolic execution technique, an extension

over traditional program testing.

The main contributions of this dissertation are the following:

• We introduce a bounded exhaustive testing technique to check the consistency

between UML association properties in a class diagram and their implementa-

tion.

• We introduce a model based testing approach that determines whether OCL

constraints in a UML class diagram are violated in a Java implementation.

• We introduce a new pruning technique, that analyses the path conditions of the

method under test and its post condition method.

• We introduce an approximate symbolic execution technique, an improvement
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over traditional testing, that can handle the execution of black box methods.

• We present an approach to automatically generate a set of high-quality test

cases to efficiently explore different execution paths of the implementation.

• We applied our approach to two EMF UML2 industry-strength projects.

1.1 Organization

The remainder of this dissertation is organized as follows. Chapter II introduces

background topics related to consistency checking and related work, such as model

driven architecture, and dynamic symbolic execution. Chapter III presents our ap-

proach to consistency checking with bounded exhaustive testing. Chapter IV in-

troduces our approach to consistency checking with path condition analysis, which

improves over bounded exhaustive testing. Chapter V discusses the evaluation of

both approaches and shows experimental results. Chapter VI concludes.
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CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Unified Modeling Language

The Unified Modeling Language is a general purpose modeling language which can

be used to describe a system from different aspects, such as structural, behavioral,

and architecture. The Unified Modeling Language is composed by different types of

diagrams, such as class diagrams, used to model the static structure of a system, and

use case diagrams, to model its dynamic behavior. Together, the full set of UML

diagrams can be used to fully specify, construct, and document the artifacts of a

system [7]. Some other activities that can benefit from UML are system visualization

and analysis, model execution for simulation, and testing. Among the different types

of diagrams in UML, class diagrams, used to specify the static structure of a system,

are the most widely adopted.

2.1.1 Class Diagrams

Class Diagrams (CD) in UML specify the static structure of a system. A class dia-

gram shows the elements of a system, their relationships, and their internal structure.

Many of the elements described in a class diagram can be mapped to a counterpart

concept found in the Object-Oriented programming languages, such as classes, inher-

itance relationships, data types, class attributes, packages, interfaces, etc. But some
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elements may describe a high level of abstraction that have no direct counterpart in

object oriented programming languages, such as association’s in UML.

In a class diagram, a Class is represented by a rectangle with three compartments.

The name of the class is shown in the top compartment, a list of attributes is placed

on the middle compartment, and a list of operations is placed in the bottom com-

partment. Figure 2.1 shows an example of a class named LoyaltyAccount with these

three sections. In the middle section we have a list of two attributes, points, and

number, and the last section shows one operation, earn(). The middle and bottom

compartments are optional. Some designs with a high level of abstraction may only

require the name of the classes in the system.

LoyaltyAccount

- points: Integer
- number: Integer

+ earn(i:Integer)

Figure 2.1: UML class with two attributes and one operation.

In the middle compartment of the class, each attribute is shown in a separate line.

An attribute definition includes an optional access modifier, “+” or “-” for public or

private respectively, followed by the name of the attribute and its type, separated by

a colon. An attribute declaration can optionally define a default value by appending

“= value” at the end of the attribute definition. Also, attributes can be marked as

derived, meaning that their value is calculated at runtime using information from

other attributes in the model. Similarly, the third compartment lists on each line

an operation. The operation definition includes an access modifier, the name of the

operation, the list of parameters between parenthesis with the format “name : type”,

and the operations return type. The list of parameters is optional, as well as the

return type. In the case of class names and operation names, the identifier can be

italicized to signify that the class or operation is abstract.

Another major element in a class diagram is the inheritance relationship that
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models the same inheritance concept found in object oriented programming. The

inheritance relationship is modeled with a solid line and a closed arrow head next to

the parent class. Figure 2.2 shows an example of the inheritance relationship. This

example shows a parent class Vehicle, and two sub-classes, SportsCar, and SUV. As

it can be observed in Figure 2.2, UML class diagrams support multiple inheritance,

a concept not supported by some programming languages, such as Java.

Vehicle

SportsCar SUV

Figure 2.2: Inheritance relationship.

The next modeling element in a class diagram is the association. An association

represents a kind of relationship between two elements in the diagram, e.g., classes.

An association can be further defined with some properties, such as navigability, and

multiplicity. Navigability on an association relationship is used to specify the accessi-

bility of class instances. Navigability is represented by an arrow on the navigable end,

if both ends are navigable, the arrows are normally omitted. Navigability is defined by

the UML specification as follows: “Navigability means instances participating in links

at runtime (instances of an association) can be accessed efficiently from instances

participating in links at the other ends of the association. The precise mechanism

by which such access is achieved is implementation specific. If an end is not navi-

gable, access from the other ends may or may not be possible, and if it is, it might

not be efficient. Note that tools operating on UML models are not prevented from

navigating associations from non-navigable ends.” [7]. Thus, an association can be
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either bi-directional or uni-directional. In a uni-directional association, only instances

that participate in one of the ends of the association can be efficiently accessed from

instances participating in links at the other end. As an example, Figure 2.3 shows a

class diagram composed by two classes, Company, and Client. The classes are related

by a bi-directional association, this means instances of both classes can efficiently

access instances of the class in the opposite end. Figure 2.4 shows an example of a

uni-directional association, modeled with a solid line and an arrow head in one of its

ends. In this example, the arrow head next to class Client indicates that instances of

class Company can efficiently access instances of class Client, while instances of class

Client can’t efficiently access instances of class Company.

An association can also be annotated with a role name and multiplicity. The

role name indicates how the relationship will be known to an instance of the class.

For example, for class Company, the relationship with class Client will be known as

clients. The multiplicity element indicates how many instances of class Client can

be related to an instance of class Company and how man instances of class Company

can be related to an instance of class Client. The multiplicity can be defined by an

exact value or a range composed by a lower bound and an upper bound. An upper

bound can also be defined with an asterisk “*” that indicates an unbounded upper

multiplicity. In Figure 2.3, the multiplicity “0..2” next to Client indicates that an

instance of Company can be related to “0” or at most “2” instances of Client. The

“*” next to Company indicates that an instance of Client can be related to “0” or

more instances of Company.

Company Client

+companies 0..2

* +clients

Figure 2.3: Class diagram with bi-directional association.
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Company Client

0..2

+clients

Figure 2.4: Class diagram with uni-directional association.

2.2 Object Constraint Language

As previously mentioned, a class diagram can only be used to specify the static

structure of a system. As a result, the Object Constraint Language (OCL) [8] has

been proposed to support UML and can be used to express pre or post-conditions

and class invariants. The Object Constraint Language is used in the UML metamodel

specification to define a set of well-formedness rules and constraints, and its introduc-

tion arose from the need to describe additional constraints about the objects in the

model [8]. Usually, without a formal language, these constraints would be defined in

natural language. OCL is a formal specification language that is guaranteed to have

no side effects; the evaluation of an OCL expression only returns a value, and it is a

typed language, where each expression has a type.

To illustrate the need of OCL as a specification language, we’ll use the example

presented by Warmer et al. [12]. Consider the class diagram in Figure 2.5, in this

diagram, the association between class Flight and Person indicates that a flight can

have zero or more passengers, indicated by the multiplicity of “0..*”. This indicates

that an unlimited number of passengers can be part of the flight, but in reality the

number of passengers should be limited by the number of seats in the airplane. To

express this constraint, we use the OCL in Listing II.1. OCL can also be used to

query the system, specify pre or post-conditions of operations, and specify invariants

on classes.

context F l i gh t
inv : s e l f . passengers−>s i z e ( ) <= s e l f . p lane . numberOfSeats

Listing II.1: Flight OCL constraint.
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Flight

+flights 1

0..* +plane

Person

Airplane

0..*+passengers

+flightnr: String +numberOfSeats: Integer

+name: String

0..*+flights

+availableSeats(): Integer

Figure 2.5: Flights class diagram without OCL.

One of the characteristics of an OCL expression is that it must be defined in the

context of a class. In the example just introduced, the context is class Flight and the

inv keyword indicates that the constraint is a class invariant, i.e., it must be satisfied

by any instance of class Flight throughout its lifetime. The Object Constraint Lan-

guage provides a wide variety of predefined functions and logic expressions designed

to work in different data types, such as collection functions, iterators, and casting

operations among others [8], which makes it a very powerful language for constraints

specification. In the following subsections we introduce some of the most used types

of expressions available in the OCL language.

2.2.1 Initial Values

Initial values can be used to define default values for attributes or association ends

in the diagram [12]. In an initial value definition, the context is the name of the class

followed by the name of the attribute being initialized. Next, the value is given as

an expression after the keyword init. Note that the expression type must match the

type of the attribute being initialized. In a similar way, OCL can be used to define

the value of a derived attribute or association end by replacing the keyword init with

derived.

context Person : : i s A l i v e
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i n i t : t rue

context Car : : howOld
der ived : currentYear − purchaseYear

2.2.2 Query Operations

Query operations are used to define operations that return a value and do not

modify the system [12]. To define a query, the context is defined by the class name,

operation name, parameters, and return type, and the expression is defined with the

keyword body. A query operation without parameters can be seen as a derived at-

tribute where only the context declaration varies. The following example shows the

definition of a query operation. In this example, the return type is defined as a Set

with elements of type Service. In the body expression, the collection deliveredSer-

vices is converted to a set with the operation ->asSet() before being returned by the

operation.

context LoyaltyProgram : : g e t S e r v i c e s ( ) : Set ( S e rv i c e )
body : par tne r s . d e l i v e r e d S e r v i c e s−>asSet ( )

2.2.3 Attributes and Operations Definition

OCL can also be used to define attributes and operations, beyond the ones al-

ready defined in the model. Attributes and operations defined with OCL are derived

attributes and query operations respectively. The context is the class where the at-

tribute or operation is being defined. The definition is done with the keyword def

followed by the name of the attribute or operation and its definition. In the fol-

lowing example, an operation is defined using the operation select. This operation

selects elements that satisfy a Boolean expression. As illustrated in this example,

shift = s indicates that we want to select all the employees where shift is equal to the

parameter s.
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context Factory
de f : numberOfEmployees : I n t eg e r = employees−>s i z e ( )

context Factory
de f : numberOfEmployeesByShift ( s : S t r ing ) : I n t eg e r =

employees . s e l e c t ( s h i f t = s )−>s i z e ( )

2.2.4 Invariants

An invariant is a rule attached to a class that must be satisfied by all of its

instances during their lifetime [12]. As explained in an earlier example, an invariant

includes the context followed by the keyword inv and a Boolean expression. The

following example shows an invariant for class Person. In this example, keyword self

is used to refer to the contextual instance, i.e., any instance of Person. Note that the

use of self is optional, as seen in previous examples.

context Person
inv : s e l f . age < 150

2.2.5 Preconditions and Postcondition

As mentioned earlier, another use of OCL is the specification of pre or post-

conditions. An OCL post-condition for a method specifies a set of constraints that

must be maintained after the execution of the method. This means, the result re-

turned by the method and the resulting program state must satisfy the constraints

defined by the OCL expression. An OCL post-condition definition includes a context

declaration, which is composed by the name of the class and the name of the method,

followed by the constraint. As an example, Listing II.2 shows a post-condition for

method updateIncome() in class Person, with the constraint self.income = newIn-

come, indicating that the value of field income in class Person must be equal to the

value of the parameter newIncome after the execution of the method.

context Person : : updateIncome ( newIncome : In t eg e r ) : Boolean
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post : s e l f . income = newIncome

Listing II.2: OCL post-condition expression.

2.3 Model Driven Architecture

Model Driven Architecture (MDA) describes a software development approach

where models are use as the primary source for software development. Some of the

advantages or objectives when using MDA include portability, quality, maintenance,

and improved testing and simulation. The following subsections introduce MDA’s

terminology, followed by an overview of the MDA approach.

2.3.1 Terminology

The terms introduced by MDA are in the context of an existing or planned sys-

tem [6], a system can be a program, a single computer system, or a combination of

different types of systems. A model of a system is a “description or specification of

that system and its environment for some certain purpose. A model is often presented

as a combination of drawings and text. The text may be in a modeling language or in

a natural language.” [6]. In the context of MDA, the specification is considered to be

formal, meaning that the specification is “based on a language that has a well-defined

semantic meaning associated with each of its constructs, to distinguish it from a simple

diagram showing boxes and lines.” [13]. Thus, Model Driven Architecture describes

an approach where models are used as the main source for software development,

which includes documenting, analyzing, designing, constructing, and maintaining a

system [6]. An application refers to the functionality being developed. And the ar-

chitecture of a system is a specification of the parts and connectors of the system and

the rules for the interactions of the parts using the connectors. Each of these parts,

connectors and rules of a system are represented as a set of interconnected models,
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in the context of MDA [13].

A viewpoint on a system “is a technique for abstraction using a selected set of

architectural concepts and structuring rules, in order to focus on particular concerns

within that system” [13]. In the context of modeling, abstraction is a technique

in which details are removed in order to simplify the model. The type or level of

abstraction will determine the details that are of interest in a particular model. A

view of a system is a specific representation of a chosen viewpoint, a viewpoint can be

represented by one or more views. A platform is a set of technologies and functionality

which an application can use without concern for how the functionality provided by

the platform is implemented [6], and platform independent is a characteristic of a

model indicating that the model is independent of the features of any given platform.

MDA explicitly defines three types of viewpoints with their corresponding models

or views. The computational independent viewpoint “focuses on the environment

of the system, and the requirements for the system; the details of the structure and

processing of the system are hidden or as yet undetermined” [6]. And its corresponding

model is the computation independent model (CIM). The CIM model serves as a

domain model, and it mainly defines the requirements without concerns about specific

details of the models or artifacts used to realize them. Next, the platform independent

viewpoint focuses on the operation of a system, while hiding the detail necessary for a

specific platform [6]. The platform independent model viewpoint must define the area

of the system that does not change in different platforms. The platform independent

model (PIM) serves as its view. Typically, a PIM is designed against a generic or

neutral virtual machine, independent of any particular platform. The last viewpoint is

a platform specific viewpoint, in which details about a specific platform are included,

ant its corresponding view is the platform specific model (PSM).

A key aspect of MDA is the use of model transformations. A model transformation

is the process of converting one model into another, such as a PIM to a PSM. How
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the transformation is done depends on a set of mapping or transformation rules [13].

Finally, an implementation “is a specification, which provides all the information

needed to construct a system and to put it into operation” [6].

2.3.2 MDA Process

The MDA process starts with the specification of the system requirements with

a computational independent model (CIM). The CIM defines the domain model and

business rules and hides most of the details about how the data is processed or how

the system is implemented. The CIM provides the vocabulary that will be shared and

used by the rest of the models [6]. Next, a platform independent model is constructed

(PIM) via UML, and it can finally be transformed into one or more specific platforms.

Note that the MDA process is not restricted to vertical transformations across the

different layers of abstraction (CIM, PIM, PSM), horizontal transformations may

also occur. As an example, within PSM, a JUnit test model can be generated from

a Java class model [13]. Also, a PSM model can take the role of PIM and be used

for further transformations. In general, the key concepts of MDA are models and

transformations, such as the transformation of a UML diagram to Java code. The

MDA pattern can be visualized in Figure 2.6, taken from [13].

Transformation

RulesSource Model Target Model+ =

Figure 2.6: MDA pattern.

Central to the model transformation phase is the concept of transformation map-

pings. MDA transformation mappings specify how an element in a particular model

maps to an element in a different model. A mapping can also define marks. A mark

is a particular attribute that labels elements and further defines how the transforma-

tion is carried out. Mapping can also include templates, to specify particular kinds of

transformations [6]. After a model has been marked, the final step is the transforma-
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tion where the input is a marked PIM and the output is a PSM. Finally, a PSM can

be translated to code. In some instances, a direct transformation from a PIM to code

can be supported. The transformation process is shown in Figure 2.7 taken from [6].

There are multiple approaches that can be used for model transformation. One such

approach is the one previously mentioned and shown in Figure 2.7 that makes use

of markings. Other approaches include metamodel and model transformations with

transformations specifications, pattern transformations, and model merging.

PSM

PlatformMapping

Marks

PIM

Marked 
PIM Transformation

Figure 2.7: Model marking.

A variety of technologies have been adopted to support the MDA approach, this

include the Unified Modeling Language (UML), the standard modeling language for

specification and visualization, the Meta-Object facility, a model repository that can

be used to specify model manipulation standards, and Profiles, used as UML extension

mechanisms.

2.3.3 UML to Java

To illustrate the MDA process, we will use a model transformation example from

a UML class diagram (PSM) to a Java program (Code). This type of transformation

is commonly known as forward engineering, an important part of the Model Driven

Architecture that greatly expedites the development process by automatically gen-

erating a skeletal program the developers can extend. As previously explained, the

translation process takes a source model and a set of transformation rules to produce
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a target model. Figure 2.8 shows the diagram for our specific example. As transfor-

mation rules we will use the ones defined by the forward engineering tool Rational

Software Architect [14]. The rules are shown in Table 2.1. As source model, we will

use the class diagram shown in Figure 2.9.

Transformation

RulesClass Diagram Java Program+ =

Figure 2.8: Class diagram (PSM) to Java program (Code).

Table 2.1: RSA transformation rules.

Class Diagram Element Java Element

Class Java Class

Property Class Field (with setter and getter methods)

Operation Class Method

Association Class Field (with setter and getter methods)

Type Java Equivalent Type

Bank

+bank *

0..* +clients

Account

Client

*+accounts

+name: String +name:String
+clientNumber: Integer

+accountNumber: Integer
+balance: Real

+withdraw(Real a): Real

*

+accounts

1

Figure 2.9: Source class diagram (PIM).

Following the transformation rules, the three classes in the diagram will be mapped

to three Java classes of the same name. Also, properties are mapped to class fields

with their respective get and set methods. Figure 2.10 shows the generated Java code

for classes and attributes. Since associations in a class diagram do not have a direct

counterpart in most programming languages, they are usually mapped to fields in the
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public class Bank { 
   
 private String name; 
 
 public String getName() { 
  return name; 
 } 
 public void setName(String name) { 
  this.name = name; 
 } 
 
 ... 
 
}

public class Client { 
  
 private String name; 
  
 public String getName() { 
  return name; 
 } 
 public void setName(String name) { 
  this.name = name; 
 } 
  
 private Integer clientNumber; 
  
 public Integer getClientNumber() { 
  return clientNumber; 
 } 
 public void setClientNumber(Integer clientNumber) { 
  this.clientNumber = clientNumber; 
 } 
  
 ... 
 
}

public class Account { 
 
 private Integer accountNumber; 
 
 public Integer getAccountNumber() { 
  return accountNumber; 
 } 
 public void setAccountNumber(Integer accountNumber) { 
  this.accountNumber = accountNumber; 
 } 
 
 private Double balance; 
  
 public Double getBalance() { 
  return balance; 
 } 
 public void setBalance(Double balance) { 
  this.balance = balance; 
 } 
 
 ...  
 
}

Figure 2.10: Code generated for classes and properties.

classes that are linked by the association. Looking at the association between Bank

and Client, the transformation creates a field named clients in class Bank and a field

named banks in class Client. For uni-directional associations, such as the one between

class Client and Account, only one field for the navigable end is generated. In this

specific example, the transformation does not generate code to enforce the multiplicity

constraints of an association; it is the developers responsibility to implement them.

Figure 2.11 shows the generated Java code for associations. Finally, operations are

mapped to empty method declarations on their respective classes, leaving their final

implementation to developers. Figure 2.12 shows the generated Java code for the

operations in the diagram.

2.4 Symbolic and Dynamic Symbolic Execution

Symbolic execution is a testing technique where instead of executing a program

it is symbolically executed for a set of classes of inputs [15]. In the other hand,
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public class Bank { 
 
 ...  
 
 private List<Client> clients; 
  
 public List<Client> getClients() { 
  return clients; 
 } 
 public void setClients(List<Client> clients) { 
  this.clients = clients; 
 } 
  
 private List<Account> accounts; 
  
 public List<Account> getAccounts() { 
  return accounts; 
 } 
 public void setAccounts(List<Account> accounts) { 
  this.accounts = accounts; 
 } 
 
}

public class Client { 
 
 ...  
 
 private List<Bank> banks; 
  
 public List<Bank> getBanks() { 
  return banks; 
 } 
 public void setBanks(List<Bank> banks) { 
  this.banks = banks; 
 } 
  
 private List<Account> accounts; 
  
 public List<Account> getAccounts() { 
  return accounts; 
 } 
 public void setAccounts(List<Account> accounts) { 
  this.accounts = accounts; 
 } 
 
}

public class Account { 
 
 ... 
 
}

Figure 2.11: Code generated for associations.

public class Bank { 
 
 ...  
 
}

public class Client { 
 
 ...  
 
}

class Account { 
 
 ... 
  
 public Double withdraw(Double a){ 
  // TODO 
  return null; 
 } 
}

Figure 2.12: Code generated for operations.
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dynamic symbolic execution is a combination of concrete and symbolic execution.

The following subsections introduce terminology related to dynamic and symbolic

execution and an overview of each approach.

2.4.1 Symbolic Execution

During symbolic execution, the execution semantics is changed for symbolic ex-

ecution by introducing symbolic names that are used to represent the program [15]

inputs. This is, each input value is replaced by a symbolic variable, e.g., α1, and

program inputs are eventually assigned to program variables. With the introduc-

tion of symbols, the arithmetic expressions used in assignment and IF expressions

are extended to support them. As a result, the right hand side of an assignment is

expressed as a polynomial expression over the symbols introduced, i.e., {α1, α2, ...}.

The state of a program execution includes the variables with their values as a sym-

bolic expression, a statement counter, and the path condition (pc) [15]. The path

condition is a Boolean expression over the symbolic inputs, e.g., α1 +α2 > 0. A path

condition is “the accumulator of properties which the inputs must satisfy in order for

an execution to follow the particular associated path. Each symbolic execution begins

with pc initialized to true. As assumptions about the inputs are made, in order to

choose between alternative paths through the program as presented by IF statements,

those assumptions are added (conjoined) to pc” [15].

Unlike a concrete execution, the result of a symbolic execution is equivalent to a

set of test cases, where each symbolic value represents a class of concrete values. In

symbolic execution, “the class of inputs characterized by each symbolic execution is

determined by the dependence of the program’s control flow on its inputs” [15]. During

symbolic execution, all possible execution paths are explored, except on the presence

of unbounded loops, where the number of iterations is bounded. Table 2.2 shows an

example of symbolic execution of method divide() in Figure 2.13. At each statement,
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the table shows the current symbolic value for each of the variables involved in the

method’s execution. Input parameters are immediately assigned a symbolic value,

e.g., a1, b1 respectively, while for other variables their value is unknown until an

assignment occurs. The table shows two possible execution paths as cases, each

case shows a path condition that describes a particular symbolic execution. In this

example, one where the evaluation of the if statement is true, and one where the

evaluation is false. For example, the path condition b1 > 0 represents all the test case

values where parameter b has a value greater than 0.

0   public static divide(int a, int b){ 
1       int result = 0; 
2       if(b>0){ 
3           result = a/b; 
4       }else{ 
5           result = a; 
6       } 
7   }

Figure 2.13: Example method for symbolic execution.

Table 2.2: Symbolic execution example.

Statement a b result PC

1 a1 b1 ? true

2 - - 0 -

case ¬ (b

3 - - - ¬ (b

6 - - a1 -

8 - - - -

case (b

3 - - a1 / b (b1

4 - - - -

8 - - - -

> 0)

> 0)

> 0) ∧ true

> 0) ∧ true

1

1

One of the key aspects of a symbolic execution technique is the ability to determine

the decidability of the generated path conditions, i.e., whether a particular execution

path is feasible or not. In some instances, when working with complex path conditions,

this may introduce a decidability problem, when current SAT solvers are not able to

successfully evaluate the satisfiability of an expression. Another problem of symbolic
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execution arises with the introduction of loops that could lead to infinite unfolding.

Dynamic symbolic execution tries to alleviate these issues while taking advantage of

the symbolic execution.

2.4.2 Dynamic Symbolic Execution

Dynamic symbolic execution is a combination of a concrete execution and symbolic

execution. Dynamic symbolic execution starts by executing a program with a specific

input while also performing symbolic execution. The constraints or path conditions

generated are then used by a constraint solver to decide the next execution, usually

forcing the program to follow a different execution path by flipping a sub-expression

in the path condition and generating the appropriate input. One of the advantages

over symbolic execution is that in the presence of complex symbolic expressions where

a constraint solver is unable to produce a result, the concrete values and observed ex-

ecution can be used to simplify the expression, keeping the constraints decidable [16].

Table 2.3 shows an example of dynamic symbolic execution, with concrete values 5,

3, for a and b respectively. Unlike symbolic execution, there is only one case that

corresponds to the actual concrete execution.

Table 2.3: Dynamic symbolic execution example.

Statement a b result PC

1 a1 b1 ? true

2 - - 0 -

3 - - a1 / b b1 > 0 

4 - - - -

8 - - - -

∧ true1
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2.5 Software Verification

Consistency checking between a UML class diagram and its Java implementation

can be done either with formal verification or testing-based validation techniques.

Software verification can be defined as “the process of determining whether the prod-

ucts of a given phase of the software development process fulfill the requirements es-

tablished during the previous phase” [9]. In a more general sense, verification tries to

find out if a program satisfies one or more properties, such as pre or post-conditions or

assertions [17]. One approach for software verification is model checking, an approach

that employs state-space exploration to exhaustively and automatically check whether

a software system satisfies a given specification. This is usually done by exploring

all possible program states within a bound using static analysis, while checking that

each state satisfies a predefined set of properties [18].

While effective at determining if a software system satisfies a given specification,

due to the increasing complexity of software systems, formal verification often does not

scale effectively to real world applications due to state-space explosion, i.e., exhaus-

tively generating all possible states in large systems becomes impractical. One way

to alleviate the state-space explosion problem is to perform model based verification

with bounded space exploration, such as bounding the depth of the search [19, 20]. A

bounded approach scales more effectively to real world application, since it effectively

limits the state-space that needs to be explored. However, bounded model based ver-

ification is not as effective since not all the program states are checked, i.e., bounded

model based verification can only show the presence of bugs but not their absence.

2.6 Program Testing

Unlike software verification, program testing is a form of dynamic analysis in which

the program is executed to check if the resulting state satisfies a set of requirements.
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Central to program testing is the use of test cases. A test case is composed by four

elements. The first element is the test case values, or some input that allows the

program to execute successfully. The second element is a set of expected results,

also called oracles, which are compared to the resulting state after the execution to

determine if it was successful. The third element is a set of prefix values, any values

necessary to initialize the system in to a state where it can receive the test values.

And fourth, postfix values, needed to complete the execution and evaluation of the

software under test [9].

Program testing offers some advantages over verification. One of them is the abil-

ity to instrument a program, allowing for a more flexible test case generation process

aimed at achieving different types of coverage criteria. Program instrumentation is

a code modification activity in which extra code is added to the original program to

monitor its execution or modify its behavior as needed. In the context of software

testing, instrumentation is typically used to monitor the program execution to deter-

mine the execution path (which statements are executed) of a particular test case.

Execution paths can be used by a testing procedure to determine how to generate

further test cases using coverage criteria. In the scope of program testing, coverage

criteria is used to define program execution coverage goals, such as branch cover-

age, where different control statement branches must be covered by the execution of

multiple test cases [9].

Another advantage of program testing is that requirements can be more easily

designed. In some instances requirements can be automatically generated from the

program or program’s model, e.g., class diagram, simplifying the testing activities

considerably. However, unlike model based verification techniques, program testing

can only show the presence of bugs, but not their absence, since in most scenarios,

program testing can only cover a subset of all possible test cases. This is, when testing

non-trivial programs it is unfeasible to exhaustively generate all possible test cases.
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A trade-off when the complexity of some programs turn model based verification an

unfeasible approach.

In the context of consistency checking, traditional program testing has also some

limitations. One of the limitations is that traditional testing techniques assume that

the execution of a faulty statement can expose a software fault, and rely on different

coverage criteria to cover as much statements as possible. Unfortunately, some errors

cannot be exposed based on this assumption. If there is not an asserting statement,

the error may not be exposed, even after executing the faulty statement. Consider

the code in Figure 2.14, introduced by Ammann et al. [9].

0   public static int numZero (int[] x) { 
1       // Effects: if x = null throw NullPointerException 
2       //    else return the number of occurrences of 0 on x 
3       int count = 0; 
4       for(int i=1; i < x.length; i++){ 
5           if(x[i]==0){ 
6               count++; 
7           } 
8       } 
9       return count; 
10   }

Figure 2.14: Sample code for traditional testing.

The method calculates the number of zeros in array x. In this example, the

programmer forgot to check the first element of the array in the for loop. The

statement at line four, “for(int i=1; ...)”, should be, “for(int i=0; ...)”. If the method

is executed with the input “[2, 7, 0]”, no error is exposed when the faulty statement

is executed. A coverage criteria approach is not sufficient to uncover the error.

Another limitation of traditional program testing is that most techniques rely on

flipping conditional branches during the execution of the program to reach different

statements and achieve the desired coverage criteria. However, in MDE, some forward

engineering tools translate a class diagram to a program that has auxiliary fields that

if flipped can cause undesired behavior. For instance, in the Eclipse Modeling Frame-

work (EMF) [21], the attribute eContainerFeatureID is introduced as an auxiliary

field. This attribute is an integer used to identify a container and specify whether

it is a navigable feature or not by assigning a positive (navigable) or negative value.
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If the value of eContainerFeatureID is altered to cover a different execution path, a

false positive may be reported.

2.7 Model Based Testing

Most model-based testing techniques consider the generation of test cases from

behavioral models [22, 23, 24, 25, 26, 27, 28, 29] such as activity or sequence diagrams.

As an example, Khandai et al. proposed a technique for generating test cases for con-

current systems using sequence diagrams [22]. In their approach, a UML sequence

diagram, showing all possible interactions or sequence of message exchanges between

objects, is used to automatically generate a set of test cases that represent the in-

teractions defined in the model. In a similar way, the work by Cartaxo et al. uses

UML sequence diagrams with labeled transition systems for test case generation [29].

An approach by Anbunathan et al. [30] makes use of some of the static information

contained in the system’s class diagrams, such as class names, and associations, but

it ultimately relies in the use of state diagrams for the test case generation.

In general, existing model-based testing techniques can be classified into two cat-

egories. In state-based approaches the system behavior is described by state ma-

chines. Abdurazik et al. proposed an approach to generate test cases based on UML

collaboration diagrams to perform dynamic and static testing [31]. And the second

category uses scenario-based descriptions of interactions between different system

entities. Roychoudhury et al. proposed a new notation, called symbolic message se-

quence charts, that generates test cases for process classes [32]. A verification tool

for Java [33] considers OCL and JML as assertion languages to specify pre or post-

conditions on a Java program, and it applies a verification approach to determine if

the implementation is consistent with the specification. As far as we know, no prior

work has been proposed to support consistency based testing of programs against

UML class diagrams.
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Another area of interest is consistency checking between different types of models

or specification attributes [34, 35, 36, 37], but they do not support consistency between

a model and its final implementation. As an example, the work by Sabetzadeh et

al. introduces a technique in which two sets of models are merged and then checked

against a set of requirements to determine their consistency [35]. In other instances,

these approaches utilize a set of transformations or model merging techniques to

match elements between different types of models [35, 37]. As an example, the work by

Liu et al. [38] introduces an MDA test case generation approach that employs model

to model transformations. Their approach relies in transformation rules between

structural features, and does not consider behavioral specification such as OCL post-

condition.

Reverse engineering techniques have also been applied to check some specific UML

properties, such as class diagram association properties. Work by Gueheneuc et

al. [39] and Milanova et al. [40] recovers UML composition from a program based on

the non-accessibility property. However, this property is not required by the UML

specification. Their approach focuses in four properties: exclusivity, invocation site,

lifetime, and multiplicity. In terms of the lifetime property, their approach applies

the object ownership model which doesn’t fully comply with the UML composition.

The ownership model enforces the non-accessibility property, i.e., a part object is

not allowed to be used outside of its owner object. According to the non-accessibility

property, the implementation in Figure 2.15 (b) is not a composition, since instances

of class B (owned class) can be accessed from the outside. However, the UML spec-

ification allows a third-party object to access an owned object directly. Therefore,

the definition of composition based on the exclusivity property is not consistent with

the UML specification. In Figure 2.16 we can see a fragment of the UML metamodel

where the metaclass Association has an association to the owned metaclass Property.

This means that an instance of metaclass Association can access instances of owned
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public class Composition1{
   public ...main(String[] args)
   { 
      A a1 = new A();
      a1.operation(); 
   }
}
public class A {
   private B b;
   public A() {
      b = new B();
   }
   public void operation() {
      this.b.operation();
   }
}
public class B {
  public operation() {...}
}

public class Composition2{
   public ... main(String[] args)
   {
      A a = new A();
      B b = new B();
      a.attach(b);
      a.operation();
   }
}
public class A {
   private B b;
   public attach(B b) {
      this.b = b;
   }
   public void operation(){
      this.b.operation();
   }
}
public class B{
   public operation(){...}
}

(a) (b)

Figure 2.15: Two composition implementations.

metaclass Property via memberEnd. As a result, the application of a composition

property that follows the ownership model would require considerable adaptations to

existing modeling tools.

Class

+class *

0..1 +ownedAttribute

Association

+memberEnd 0..1

2..* +association

Property

Figure 2.16: UML meta-model fragment.

Barbier et al. [41] introduced a formal specification of the whole-part relationship

which includes the composite property. The specification uses the Object Constraint

Language (OCL) and it is based in the addition of new metaclasses to the UML

specification. Unfortunately, the introduction of new metaclasses renders existing

modeling tools incompatible with their approach. As a result, the use of their speci-

fication, although effective in precisely defining the whole-part relationship, becomes

too restrictive given that the required adaptations on existing tools are in most cases

not feasible. The work presented by Milicev [42] in the other hand introduces a for-

mal specification of the UML association properties using the Z notation specification
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language, but their specification doesn’t include the composite property.
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CHAPTER III

BOUNDED EXHAUSTIVE TESTING

In object oriented programming, the basic building blocks are objects that col-

laborate with each other to achieve a high level behavior [11]. This collaboration is

achieved through interactions, such as method invocations, that establish relation-

ships between objects. These relationships allow them to contribute to the overall

behavior of the system; an object in isolation would be of no value. In this sce-

nario, the desired behavior of a system can only be achieved if the objects interact as

expected.

In UML, an association is used to identify the semantic relationship between two

classes, i.e., it defines the types of interactions that are possible between objects that

are instances of those two classes. An incorrect implementation of UML associations

would result in objects interacting in unexpected ways, and as mentioned previously,

in object oriented programming, the correct functioning of a program is highly depen-

dent on objects interacting as expected. Because of this, maintaining the consistency

between an implementation and its design model is an important challenge. To illus-

trate our approach we will use the UML composition as an example.

UML composition, as a subtype of a whole/part relationship, can be defined in

terms of two properties; lifetime and shareability. The lifetime property indicates

that an element is composed by one or more parts, and such element is responsible of
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the lifetime of its parts, i.e., if the element is deleted, all of its parts are deleted. For

the shareability property, a part element cannot be part of more than one element

at a time. In a class diagram, UML composition is represented as a solid/filled black

diamond. Figure 3.1 shows an example of a UML composition relationship between

class Company, known as owner class, and class Division, known as owned class.

The relationship indicates that a company is composed by zero or more divisions. If

a particular company is deleted, the divisions that compose such company are also

deleted (lifetime property). Also, a particular division cannot be part of more than

one company at a time (shareability property).

Company

+cmpy *

1 +div

Division

Figure 3.1: UML composition example.

A program that implements the UML composition but fails to satisfy the lifetime

property can cause serious consequences at runtime, such as trying to access an object

that no longer exists or memory leak problems when memory from unused objects

cannot be correctly reclaimed by garbage collectors. Also, divergences between a

design model and its implementation can lead to a failure to satisfy or effectively

trace requirements during the development process.

The example in Figure 3.2 shows a scenario with an incorrect composition im-

plementation. In this example, the destroy() method fails due to the condition in

the for statement in line 12 “i > d.getClients.size() - 1”, where the reference to the

instance of class Division that is being destroyed is not removed from the last Client

in the collection. Because of this, the code in the main() method causes a NullPoint-

erException when trying to invoke the method getName() on the instance of class

Company that was previously destroyed.
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1    public class Company {
2       private List div;
3       private String name;
4       public void setDiv(Division d) { ... }
5       public Division getDiv() { ... }
6       public String getName() { ... }
7       public void setName() { ... }
8       public void destroy() {
9       Iterator divisionIt = div.iterator();
10     while(divisionIt.hasNext()) {
11          Division d = (Division) divisionIt.next();
12          for(int i=0; i < d.getClients().size() - 1; i++) {
13               Client c = d.getClients.get(i);
14               c.setDivisions(null);
15          }
16          d.setCmpy(null);
17       }
18       setDiv(null);
19    }
20 }

21  public class Division {
22     private Company cmpy;
23     private List clients;
24     public void setCmpy(Company c) { ... }
25     public Client getCmpy() { ... }
26     public void setClients(Client c) { ... }
27     public Client getClients() { ... }
28  }

29  public class Client {
30     private List divisions;
31     public void setDivisions(Division d) { ... }
32     public List getDivisions() { ... }
33  }

34  public class Test {
35     public static void main(String args[]) {
36        Company c = new Company();
37        Division d = new Division();
38        c.setDiv(d);
39        Client cl = new Client();
40        cl.setDivisions(d);
            . . . 
41        c.destroy();
            . . .
42        for(int i=0; i<cl.getDivisions().size; i++) {
43           Division d1 = cl.getDivisions().get(i);
44           System.out.println(d1.getCmpy().getName());
45           // NullPointerException
46        } 
47     }
48  }

Figure 3.2: Exception caused by an incorrect composition implementation.
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3.1 Overview

To detect inconsistencies between a design model and its implementation our

approach provides a method to test whether the implementation enforces a set of

OCL constraints derived from the design model in terms of the UML association

properties. Our approach overview is shown in Figure 3.3 and it is explained in the

following sections.

Class Diagram

Program

OCL Generation

Program
Instrumentation

Program Testing

Instrumented 
Program

OCL Constraints

OCL Templates

Results

Figure 3.3: Approach Overview.

3.1.1 Input

Our approach takes as input a class diagram and a Java program that must be an

implementation of the class diagram. As an example, the class diagram in Figure 3.1

and the implementation in Figure 3.2 serve as input. The implementation can be a

combination of code automatically generated by forward engineering tools and code

manually added by developers to implement any features not supported by the tool,

such as composition associations.

3.1.2 General Steps

As a first step, using information from the class diagram, we generate a set of

OCL constraints for each of the UML association properties, the OCL constraints

are generated using a set of templates that are introduced in Appendix A. Next, the
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program is instrumented to gather some information, such as fields being accessed

during execution. This information will be used during the testing process, explained

in Section 3.1.4. The instrumentation is guided by the generated OCL constraints.

The instrumented program, class diagram, and the generated OCL constraints are

then used during the program testing phase. During the program testing phase, we

generate a set of instances, used as test cases, to which we apply the previously

generated OCL constraints to try to detect possible violations of any of the UML

association properties. The process is explained in detail in Section 3.1.4 using the

composition property as an example.

3.1.3 Formalization of UML Associations

The Unified Modeling Language (UML) [7], a popular modeling language used in

software development projects, provides a set of diagrams that can be used to model

the static and dynamic aspects of a system. Among these diagrams, class diagrams

are used to define the static structure of the system. Some of the concepts introduced

in a class diagram, like inheritance, can be easily mapped to most object oriented

programming languages. Unfortunately, other concepts, such as associations, have

no direct counterpart in the syntax and semantics for programming languages. As

a result, while there exist many forward engineering tools which help generate code

from a class diagram they often leave some implementation to the users, or in some

cases they implement them in a way that does not fully follow the semantics defined

by UML.

Division Client

+divisions *

1..2 +clients

Figure 3.4: A UML Class Diagram.

A UML class diagram includes a set of classes and the relationships among them.

35



Figure 3.4 shows a class diagram with two classes: Division, and Client. The rela-

tionship between classes is denoted by associations, i.e., a line connecting two classes,

and each association is marked with a set of properties at each end (member end)

that further defines the type of relationship. Thus, an association in a UML class di-

agram is used to specify a semantic relationship between classes, i.e., the relationship

meaning and possible restrictions. An association must have at least two ends, each

end connected to a class [7]. For example, the association between class Division and

Client in Figure 3.4 shows that a division can be related to any number of clients,

indicated by the “*” next to class Client, and also shows that a client can be related

to 1 or 2 divisions, indicated by “1..2” next to class Division.

An instance of a class diagram can be represented by a UML object diagram.

An example of an instance of the class diagram in Figure 3.4 is show in Figure 3.5

(b). The figure also includes the class diagram to show the instantiation relationship.

The object diagram shows an instance of class Division named motors related to an

instance of class Client name ford. In an object diagram, an instance of an association

is called link and is represented by a single line. A link in an object diagram, unlike

an association, does not include any properties.

Division Client

+divisions *

1..2 +clients

motors:Division ford:Client

instance of  relationship

(a)

(b)

Figure 3.5: Instantiation of a class diagram.

For an object diagram to be considered valid, it must follow the restrictions in-

dicated in the class diagram it instantiates. The object diagram in Figure 3.5 (b)
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is valid since it does not violate any of the restrictions in the class diagram, e.g.,

the maximum number of relationships between the instances of classes Division and

Client. The example in Figure 3.6 however, shows an invalid object diagram since

the instance of class Client has a link to more than two instances of class Division.

sales:Division

motors:Division ford:Client

marketing:Division

Figure 3.6: Invalid instance of the class diagram in Figure 3.4.

In a similar way, the UML specification provides a set of diagrams that describe

the structure and semantics of a valid class diagram, i.e., a class diagram must be

a valid instance a UML specification diagrams. Figure 3.7 shows a fragment of the

UML specification (a) and an instance (b). A class in a UML specification diagram is

called a metaclass. In this example, class Division is an instance of metaclass Class

and the property isActive is an instance of the metaclass Property. The diagram

in Figure 3.7 (a) indicates that an instance of metaclass Class can own 0 or more

instances of metaclass Property.

The diagrams previously introduced are part of the metadata architecture. The

metadata architecture includes four layers, three of which we already used in our

previous examples; the information layer (M0) represented by an object diagram, the

model layer (M1) represented by a class diagram, and the metamodel layer (M2), also

represented as a class diagram that describes the structure and semantics of a valid
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Class

+class *

0..1 +ownedAttribute

Property

Division

instance of  relationship

isActive:Boolean

(a)

(b)

Figure 3.7: UML specification fragment (a) and instance (b).

class diagram at M1 layer. The last layer is the meta-metamodel layer (M3). The in-

formation layer includes the data being described, the model layer includes metadata

that describes the information layer, the metamodel layer defines the structure and

semantics of the metadata and the meta-metamodel layer includes the description

and semantics of meta-metadata. The same way an object diagram (M0) represents

an instance of a class diagram (M1), a class diagram represents an instance of the

metamodel layer (M2). And a diagram at M2 layer represents an instance of the

meta-metamodel layer (M3).

The UML language is defined at the metamodel layer, or M2 layer. The speci-

fication includes a set of diagrams at the M2 level that describe the structure and

semantics of the M1 layer. The fragment of the UML specification shown in Figure

3.8(M2), includes the metaclasses needed to create an association between two classes

at the M1 level. The diagram includes three metaclasses: Class, Property, and As-

sociation. The diagram shows that an association must have at least two member

ends, denoted by the “2..*” next to metaclass Property, where each member end is a

property, and it also shows the relationship between a class and a property, i.e., the

property is a class attribute. Figure 3.8(M1) shows an instance of the class diagram

at M2 level, where classes Division and Client are instances of metaclass Class. The

attributes divisions and clients are instances of metaclass Property, which are refer-
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enced by their respective class via ownedAttribue. The association (the line linking

classes Division and Client), is an instance of metaclass Association and it has a

reference to the attributes b and c via memberEnd.

Division Client

+divisions *

1..2 +clients

motors:Division ford:Client

instance of  relationship

Class

+class *

0..1 +ownedAttribute

Association

+memberEnd 0..1

2..* +association

Property

Class

M0

M1

M2

M3

Figure 3.8: Four layer metadata architecture

For an M1 instance, or class diagram, to be valid, it must follow the restrictions

of the class diagram at the M2 layer. An example of an invalid instance is shown in

Figure 3.9, where the instance of metaclass Association has a reference to one member

end b, an instance of metaclass Property. This is a violation since the multiplicity

for the memberEnd is “2..*”, meaning that an association must have a reference to

at least two instances of metaclass Property. The relationship between the different

layers in the context of the Unified Modeling Language is shown in Figure 3.8.

The UML specification also includes a set of constraints that are applied to the

diagrams at M2 level. Some constraints are defined using the Object Constraint
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Division

+b

0..*

Figure 3.9: Invalid class diagram.

Language (OCL). Having a constraint defined at M2 level means that an instance of

the model in the next layer, i.e. M1 level, must satisfy the restriction. As an example,

the following OCL constraint is given for the class diagram in Figure 3.8(M2):

context As soc i a t i on
inv : s e l f . memberEnd−>e x i s t s ( aggregat ion <> Aggregat ion : : none )

i m p l i e s s e l f . memberEnd−>s i z e ( ) = 2

The constraint states that if a member end exists in the association whose aggre-

gation type is different than none, e.g., aggregation type is composite; the association

must have exactly two member ends. The operation size() returns the number of

elements in the collection memberEnd. For example, the class diagram in Figure

3.10(a) shows a valid instance of an association with three member ends, i.e., i, c,

and it. While the class diagram in Figure 3.10(b) shows an invalid instance, since

one of the member ends is marked as Aggregation::Composite (black diamond), and

self.memberEnd->size()=3.

Invoice

0..*

+i

Client

1

+c

Items

1..*      +it

Invoice

0..*

+i

Client

1

+c

Items

1..*      +it

(a) Valid class diagram (b) Invalid class diagram

Figure 3.10: Invalid class diagram.

Constraints defined with OCL or other formal languages can be used to auto-
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matically validate M1 level instances (M0). Unfortunately, not all constraints are

formally defined in the UML specification; some are only described using natural

language. For example, the following constraint is found in the specification: “When

an association specializes a second association, every end of the specific association

corresponds to an end of the general association, and the specific end reaches the same

type or a subtype of the more general end.” [7] p.40. As a result, validating that an

implementation fully adheres to the model specification becomes a challenging task,

since it is hard to automatically process and understand natural language.

3.1.4 Our Approach

To detect inconsistencies between a design model and its implementation our

approach provides a method to test whether the implementation enforces a set of

OCL constraints derived from the design model in terms of the UML association

properties. Our approach uses as input a class diagram and a Java implementation

and it can be divided in two main modules: OCL generation, and program testing.

The class diagram is used by the OCL generation module to generate a set of OCL

constraints at M1 level for each of the association properties. The OCL constraints

generation is done according to the templates presented in Appendix A. Next the

program is instrumented and together with the class diagram and the generated OCL

constraints is given as input to the program testing module. The program testing

module generates a set of instances (test cases) to which it applies the OCL constraints

to try to detect possible violations. To illustrate our approach, in the following section

we will concentrate on the UML composition property.

3.1.4.1 Detecting UML Composition Violations

To illustrate our approach to detect violations of the UML composition property,

we will consider the program shown in Figure 3.11 that implements the class diagram
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in Figure 3.12. In this class diagram we have a composition association, where the

owner class is class Company and the part class is class Division. We also have two

associations, one between class Division and class Client, and one between class Client

and class Division. In relation to the composition association, we call class Client a

third-party class since it has a relationship to the part class. We call instances of an

owner class, owner objects, and instances of a part class, part objects. In this example,

we omitted the implementation of class University. Also, the code has a reference to

class Display; an auxiliary class that displays information about a company and its

relationships.

1    public class Company {
2       private List div;
3       private String name;
4       private Display disp;
5       public void setDisp(Display d) { ... } 
6       public Display getDisp() { ... } 
7       public void setDiv(Division d) { ... }
8       public Division getDiv() { ... }
9       public String getName() { ... }
10     public void setName() { ... }

11     public void destroy() {
12     Iterator divisionIt = div.iterator();
13     while(divisionIt.hasNext()) {
14          Division d = (Division) divisionIt.next();
15          for(int i=0; i < d.getClients().size(); i++) {
16               Client c = d.getClients.get(i);
17               c.setDivisions(null);
18          }
19          d.setCmpy(null);
20       }
21       setDiv(null);
22       disp.removeObject(this);
23       disp = null;
24    }
25 }

26  public class Division {
27     private Company cmpy;
28     private List clients;
29     public void setCmpy(Company c) { ... }
30     public Client getCmpy() { ... }
31     public void setClients(Client c) { ... }
32     public Client getClients() { ... }
33  }

34  public class Client {
35     private List divisions;
36     private University univ;
37     public void setDivisions(Division d) { ... }
38     public List getDivisions() { ... }
39     public void setUniversity(University u) { ... }
40     public University getUniversity() { ... };
41  }

42  public class Display {
43     private List<Company> cmpy; 
44     public Display() { ... }
45     public void addCmpy(Company c) { ... }
46     public void removeCmpy(Company c) { ... }
47     public List<Company> getCmpys() { ... }
48     public void display(){ ... }
49  }

Figure 3.11: A Java implementation of the class diagram in Figure 3.12.

The execution of a specific sequence of instructions using the code in Figure 3.11

can be used to generate a program state that is an instance (M0) of the class diagram

in Figure 3.12 (M1). As an example, the execution of the instructions in Figure 3.13

result in a program state where an instance of class Company has a reference to an

instance of class Division. The resulting program state can be represented as an

object diagram as it is shown in Figure 3.14.
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+cmpy *

1 +div

Division Client

+divisions *

* +clients

*     +clients

+univs

1..*

+disp

+cmpy

Display Company

*

*

University

Figure 3.12: Class diagram for a Company example.

1   public class Application { 
2       public static void main(String[] args){ 
3           Company c = new Company(); 
4           Division d = new Division(); 
5           c.setDivision(d); 
6           Display disp = new Display(); 
7           disp.addObject(c); 
8       } 
9   }

Figure 3.13: Code execution from Figure 3.11.

disp:Display c:Company d:Division

Figure 3.14: Object diagram after the execution of the program in Figure 3.13
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On the first stage of our approach we need to generate a set of OCL constraints

at M1 level for the composition property using as input the class diagram in Figure

3.12. These constraints will be used by the program testing module. The constraints

are defined as a post-condition of the method that implements the lifetime property

in the owner class. For this example, we generate the following constraint:

context Company : des t roy ( )
post : s e l f . div−>f o r A l l ( x | C l i en t . a l l I n s t a n c e s ( y |

y . d i v i s i o n s−>exc ludes ( x ) )

In the code in Figure 3.11, the method we are interested on is destroy(). As we

mentioned in previous sections, the lifetime property requires that if a composite

is removed its parts should also be removed, i.e. when an owner object does not

exist; then neither does its part objects. An owner object and its part objects are

said to “not exist” when all external links to the objects are removed, making them

unreachable by any other object. Figure 3.15 shows an example of the destruction of

an owner object and its part object.

:Company :Division :Client :University:Display

:Company :Division :Client :University:Display

(a) Before executing destroy method.

(b) After executing destroy method.

Figure 3.15: The destruction of an owner and part objects.

To check the correctness of the method destroy(), we need to execute it on all

possible test inputs up to a bounded size. Each test input is an instance (object

diagram) of the class diagram in Figure 3.12 and can be generated by executing a set

of instructions similar to the ones in Figure 3.13. In Figure 3.16 we have three object

diagrams where cmpy1 is an instance of class Company, div1 is an instance of class

Division, cli1 is an instance of class Client, and univ1 and univ2 are instances of class

University. Also, the diagrams above and below the arrows denote the pre-states and

44



post-states before and after executing the method destroy().

cmp1

div1

cli1

univ1 univ2

cmp1

div1

cli1

univ1 univ2

cmp1

div1

cli1

univ1

cmp1

div1

cli1

univ1

cmp1

div1

cli1

univ1 univ2

cli1

cmp1

div1

cli1

univ1 univ2

cli1

= =

o1 o2 o3

Pre-state

Post-state

Figure 3.16: Object diagrams before and after calling destroy().

After the execution of the method destroy(), we validate the lifetime property by

applying the previously generated OCL constraint to the resulting object diagram.

The constraint is satisfied if all the links to the owned objects are removed. In this

example, in the post-state of the object diagram o1 in Figure 3.16, the link between

div1 and cli1 was removed. Therefore, the lifetime property is satisfied.

During the execution of the method destroy(), we monitor its execution to detect

the fields read and use this information to prune the test input space. Figure 3.16

shows a set of three object diagrams before the execution of method destroy() (pre-

state) and after the execution of method destroy() (post-state); the highlighted links

correspond to the fields we detect being read during its execution. After validating

the lifetime property, we can prune similar object diagrams where the fields read have

the same values. The logic behind this decision is based on the fact that fields that

are not being read by the method destroy() do not affect its execution. Therefore, as
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long as the fields read have the same values, the result for the lifetime property will

be the same. In this example, the object diagrams o1 and o2 are considered similar,

unlike the object diagram o3 where the value of one of the fields read is different.

Based on the implementation of the method destroy() in Figure 3.11, we can

detect that only the links between instances of class Company and class Division are

relevant to the lifetime property. Therefore, it is sufficient to check every possible

object diagram with different number of links between instances of class Company

and class Division. This approach greatly reduces the size of the test input space.

Without pruning similar object diagrams, the number of object diagrams checked is

exponential in the bounds of the number of objects instantiated for each of the classes

in Figure 3.12.

3.1.4.2 Program Testing Implementation

As mentioned in the previous section, to effectively determine the absence of UML

association properties violations in a program, we use the bounded exhaustive testing

technique. Following this technique, we generate all possible test inputs whose size

is within a certain bound, and for this, it must be provided with a domain value for

each of the variables.

A domain value indicates the maximum number of objects instantiated for each

of the classes in the test case. A single combination of these objects represents a test

input or object diagram, and all possible combinations consist of a large number of

test inputs that we call test input space. Among all possible test inputs, some are not

valid. To generate only valid test inputs, we consider the multiplicity and navigability

information from the class diagram (when testing properties other than multiplicity

and navigability).

When testing composition, our tool calls the method implementing the lifetime

property on one of the valid test inputs. After its execution, we check the lifetime
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1 f o r each compos it ion property in the c l a s s diagram
2 od = use a s o l v e r to generate a v a l i d t e s t input
3 whi l e ( od does e x i s t )
4 c a l l method under t e s t on od ( i . e . , de s t roy )
5 apply OCL c o n s t r a i n t on post−s t a t e
6 use the s o l v e r to prune s i m i l a r t e s t inputs
7 od = use s o l v e r to generate the next v a l i d t e s t input

Listing III.1: Algorithm to check UML composition property.

property using the generated OCL constraints and prune away similar test inputs

from the test input space. We repeat the process until there are no more valid test

inputs.

3.1.4.3 Test Input Space Representation

To generate the test input space we use a finitization to specify the maximum

number of objects for each for the classes in the test case. For the composition

property, the finitization includes values for the owner, owned, and third-party classes.

For example, for the finitization (2,2,1) for the class diagram in Figure 3.12, the test

input space includes all object diagrams with up to two instances of classes Company,

up to two instances of class Division, and one instance of class Client. Using this

finitization, our tool generates the domain values for each of the fields needed to

create an object diagram. Table 3.1 shows the fields and domain values for finitization

(2,2,1).

Table 3.1: Test input space (2,2,1) for the class diagram in Figure 3.12.

Field Domain

cmpy1.div, cmpy2.div power set of {div1, div2}

div1.cmpy, div2.cmpy {cmpy1, cmpy2} ∪ ∅

div1.clients, div2.clients {cli1} ∪ ∅

cli1.divisions power set of {div1, div2}

To generate a test input, our tool uses the SAT solver SAT4J [44]. SAT4J uses
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a vector structure where each element is a Boolean value. Therefore, we need to

translate the finitization information to a vector form. For finitization (2,2,1) shown

in Table 3.1, our tool generates a twelve bit vector. The first two bits, (N0 and N1)

represent whether objects div1 and div2 are referenced by cmpy1. If N0 is true, it

means that div1 is referenced by cmpy1, i.e., object cmpy1 has a link to object div1,

and a false value means that there is no reference. The bits N2 and N3 represent

whether objects div1 and div2 are referenced by cmpy2. Bits N4 and N5 represent

whether objects cmpy1 and cmpy2 are referenced by div1. The bits N6 and N7 denote

whether objects cmpy1 and cmpy2 are referenced by div2. Bits N8 and N9 represents

whether object cli1 is referenced by div1 and div2 respectively. And finally, bits N10

and N11 specify whether objects div1 and div2 are referenced by cli1. Also, since the

multiplicity is greater than 0, our tool includes an instance of class University, univ1,

adding bits N12 that specifies whether object cli1 has a reference to univ1, and N13

to specify whether univ1 has a reference to cli1.

cmp1

div1

div2

cli1 univ1

Figure 3.17: An object diagram.

The following is the vector for the object diagram in Figure 3.17. This vector is

then converted to an object diagram that is used as a test input.

T T F F T F T F T T T T T T

3.1.4.4 Pruning Invalid Test Inputs

To generate a valid test input, SAT4J needs a set of formulas that specify valid

assignments to the vector structure. These formulas reflect the different domain values

in our test case, as well as the constraints obtained from the class diagram. Also,
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we dynamically apply new formulas to the solver after the execution of the method

under test to prune away similar test inputs.

We consider two constraints from a class diagram: multiplicity and navigability.

The multiplicity constraint specifies a lower and upper bound on the number of in-

stances of a class on an association end. In the class diagram in Figure 3.12, the

multiplicity for the class Company’s end indicates that an instance of class Division

can have a reference to one and only one instance of class Company. If an instance of

class Division has a reference to more than one instance of class Company, the object

diagram is considered invalid. The second constraint, navigability, specifies whether

an object has a reference to another object. The navigability is related to the type of

association between two classes in a class diagram. If the association is bidirectional,

instances of the classes related to that association must reference each other. If it is

unidirectional, only one object will reference the second object. In the class diagram

in Figure 3.12, the association between classes Division and Client is bidirectional.

This means that an instance of class Division must reference an instance of class

Client and that same instance of class Client must reference the same instance of

class Division.

To prune invalid test inputs with respect to the multiplicity constraint, we apply

a set of formulas. For example, considering the multiplicity constraint for the class

Company’s end in Figure 3.12, the following is an invalid vector:

- - - - T T - - - - - - - -

In this vector, the assignment to bits N4 and N5 is true. This means that object

div1 has references to objects cmpy1 and cmpy2, which violates the multiplicity

constraint. We use the formula ¬(N4 ∧ N5) to eliminate all the vectors where the

multiplicity constraint is not satisfied by the object div1. With this single formula, we

eliminate 212 invalid object diagrams. A similar formula is used to eliminate invalid

vectors where the multiplicity constraint is not satisfied by the object div2.
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Also, to eliminate invalid vectors with respect to the navigability constraint, we

use a similar approach. For example, considering the bidirectional association between

classes Division and Client in Figure 3.12, the following is an invalid vector:

- - - - - - - - T - T - - -

In this vector, the assignment to bits N8 and N10 is true. This assignment means

that object div2 has a reference to object cli1 while object cli1 has a reference to

object div1. The bidirectional constraint is not satisfied. We can use the formula

N8 ⇐⇒ N11 to enforce the navigability for the association between classes Client

and Division.

3.1.4.5 Monitoring the Method under Test

After pruning invalid test inputs, we further prune the test input space by using

runtime information. Specifically, we use two techniques: the detection of do not care

fields and the pruning of isomorphic test inputs (object diagrams).

3.1.4.6 Do Not Care Fields

During the execution of the method under test, we monitor the fields derived from

the class diagram that are being read in order to identify do not care fields. A field is

considered a “do not care” field if it is not read during the method’s execution. The

fields are called do not care fields because they are not relevant to the execution of

the method, i.e. no matter what values the do not care fields have, the result of the

lifetime property after the execution of the method is the same.

To illustrate how we use the do not care fields to prune the test input space, let’s

consider the following example. After calling the method destroy() in Figure 3.11 on

the object diagram in Figure 3.17, we detect that only three fields are read: field div

in class Company, field clients in class Division, and field divisions in class Client.
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In our vector representation, these fields correspond to the bits N0, N1, N4, N6, N8,

N9, N10, N11, N12, and N13. Among those bits, N12 and N13 are identified as do

not care fields. The following vector shows the bits corresponding to the do not care

fields marked with a dash.

T T F F T F T F T T T T - -

After identifying the do not care fields, we prune the test input space by applying

a new formula to SAT4J. This formula eliminates the set of vectors that only differ

on the values for the do not care fields. For the previous example, the formula

¬(N0 ∧N1 ∧N2 ∧N3 ∧N4 ∧N5 ∧N6 ∧N7 ∧N8 ∧N9 ∧N10 ∧N11) is added to

the solver.

3.1.4.7 Pruning Isomorphic Object Diagrams

After eliminating similar states by identifying do not care fields, we further reduce

the test input space by pruning isomorphic object diagrams (test inputs). Two object

diagrams are said to be isomorphic when they are equivalent in terms of the number

of objects and number of links in the diagram. In other words, the number of objects

of each class is the same, as well as the number of links between them. As an example,

the object diagrams in Figure 3.18 are equivalent, differing only by the name of the

object of type Division, div1 and div2.

Executing the method under test and checking the lifetime property in two iso-

morphic test inputs generates the same result. For example, considering the method

destroy() in Figure 3.11, its execution is only affected by the number of objects in the

fields corresponding to the associations in the class diagram, namely div, clients, and

divisions. As long as the number of objects is the same, the execution of the method

will be the same.

To prune the isomorphic test inputs, we generate the formula ¬(x.div = y ∧

y.clients = cli1) where x ∈ {cmpy1, cmpy2} and y ∈ {div1, div2}. This formula
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cmp1 div1 cli1

T F F F T F F F T F T F

(a) First object diagram and its vector

cmp1 div2 cli1

F T F F F F T F F T F T

(b) Second object diagram and its vector

univ1

T T

univ1

T T

Figure 3.18: Two isomorphic object diagrams.

prunes away three isomorphic object diagrams. Pruning isomorphic inputs states can

greatly reduce the size of the test input space without reducing the fault detection

accuracy of our approach.

3.1.5 Small Scope Hypothesis

The small scope hypothesis is a key aspect to confirm the effectiveness of our

approach, and as such, it must be verified. To do this, we used the mutation testing

technique. In order to perform the mutation testing we generated a set of mutants.

A mutant can be generated by applying a mutation operator to the program under

test. In our case, we concentrated in mutations to the destroy() method and accessor

methods. The operations we used to generate the mutants are:

• Java operator replacement, e.g., replacing “==” by “!=”.

• Change of variable/method calls, e.g., calling a different method.

• Change of variables value by adding additional assignments.

In mutation testing, it is important to generate valid mutants, i.e., to generate

mutants that can be compiled. Therefore, when generating mutants by changing
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variable/method calls, the variables used for the mutation were a subset of the original

variable.

We found that in most cases, a finitization as small as (1,1,1) that represents

up to one owner object, up to one part object, and up to one third party object,

was enough to expose the faults introduced by the mutations. The reason for this is

that the UML2 implementations heavily use collection types where the behavior of

a program with a collection of one element is no different from the behavior when

the collection contains many elements. There were two exceptions, however, when

a higher number of objects was needed. The first case occurred when checking the

composition relationship between the classes Connector and ConnectorEnd in the

UML metamodel implementation. In this composition relationship, the multiplicity

on the ConnectorEnd enforces the creation of two objects of ConnectorEnd with

a link to Connector. In this case, the finitization needed to expose this fault was

(1,2,2). The second case occurred when we mutated the method getOwnedEnd() in

class Association. When an Association object has two Property objects, the fault

is not exposed, but in an Association object with three Property objects the fault is

exposed. The reason is that an Association object owns the Property objects only

when it has three or more. If it only has two, the objects are not owned by the

Association object. For this case, the finitization (1,3,3) was needed.

3.2 Bounded Exhaustive Testing Limitations

3.2.1 Effectiveness

One of the drawbacks of exhaustive test case generation is that it does not guaranty

a full exploration of the possible execution paths in the method under test, which

may result in missing test cases that could expose a problem in the implementation.

As previously explained, the small scope hypothesis can give us a high degree of
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confidence that a problem will be uncovered, but it cannot be guarantee the method

is correct in terms of a particular OCL constraint. This uncertainty may not be

acceptable in some scenarios. When working with bounded exhaustive testing, there

is always a risk of not selecting a bound large enough. As an example, Figure 3.19

shows a scenario where a particular behavior can only be exposed by an input large

enough, making the bound selection an important factor to correctly check all possible

behaviors in the method.
0   public int intPowerOfTwo(int a, int b){ 
1       if(a>30){ 
2           throw new RuntimeException("Result out of range."); 
3       } 
4       int result = 2; 
5       for(int i=1; i<a; i++){ 
6           result *= 2; 
7       } 
8       return result; 
9   }

Figure 3.19: Bounded exhaustive testing limitations.

3.2.2 Efficiency

In terms of efficiency, compared to an approach that leverages information about

previous executions when generating test cases, e.g., test case generation based on

branch coverage, bounded exhaustive test case generation is more inefficient. The

analysis of do not care fields in our approach can greatly improve on simple exhaus-

tive test case generation, but it still does not completely rule out the generation of

extraneous test cases that produce the result. Consider again the method in Figure

3.19. Using bounded exhaustive test case generation with do not care fields, with

a large enough bound, e.g., a,b ≤ 35 we can correctly explore all possible execution

paths in the method while reducing the number of test cases generated by detecting

b as a do not care field. However, it would still generate a number of extraneous test

cases, namely, all test cases where a ≤ 30 will result in the exact same execution,

resulting in a loss of efficiency. Without leveraging previous execution information,

such as path condition for branch coverage, it is hard to detect such scenarios to
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improve the efficiency.

In the following chapter we introduce an improvement that uses a testing vali-

dation technique combining coverage criteria and dynamic symbolic execution. Our

approach reduces the number of test cases making it more efficient and it guaranties

the correctness of a method in terms of a specific OCL constraint.
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CHAPTER IV

PATH CONDITION ANALYSIS

4.1 Overview

To illustrate our consistency checking approach with path condition analysis, we

will use as an example the class diagram shown in Figure 4.1 (a), an excerpt from

the Royal and Loyal system [12]. The example consists of the classes ServiceLevel,

Membership, and LoyaltyAccount, with a few attributes and associations each. The

class diagram also includes an OCL post-condition attached to the method earn() in

class LoyaltyAccount. We will refer to earn() as the method under test. Based on

this example, the objective of our approach is to determine if the OCL specification

for the method earn() is satisfied by the method’s Java implementation. Also, Figure

4.1 (b) shows a partial skeletal Java Program that was automatically generated by

the forward engineering tool Rational Software Architect (RSA) [14].

The automatic code generation by a forward engineering tool can be illustrated

by a translation schema that includes a set of rules that map elements in the model

to elements in the target language. In this example, the model is the class diagram

shown in Figure 4.1 (a) and the target language is Java. For instance, based on

RSA’s translation schema, shown in Table 2.1, a property in the UML class diagram

is mapped to a private class field with a setter and getter method in the Java program.

An association in the UML class diagram is treated as a property and it is also
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translated to a field in the corresponding class. Most translation schemas follow a

similar approach when translating UML associations, since most target languages do

not directly support the extra semantics associated with them, such as multiplicity.

+membership

0..1

1 +account

LoyaltyAccount

+currentLevel

Membership

ServiceLevel

1

*

+membership

- name: String

- points: Integer
- number: Integer

- earn() context LoyaltyAccount::earn(i:Integer)

post: let level:String = membership.currentLevel.name in

          points > 200 implies level = "Platinum" and

          points > 100 and points <= 200 implies level = "Gold" and

          points >= 0 and points <= 100 implies level = "Silver" and

          points < 0 implies level = "Inactive" 

(a) A UML Class Diagram

(b) A program generated by RSA for CD in (a)

package loyalty; 
 
/** 
 * <!-- begin-UML-doc --> <!-- end-UML-doc --> 
 *  
 * @author Hector 
 * @generated "UML to Java" 
 *  
 */ 
 
public class LoyaltyAccount { 
 private Membership membership; 
 public Membership getMembership() { 
  return membership; 
 } 
 public void setMembership(Membership membership) { 
  this.membership = membership; 
 } 
 private Integer points; 
 public Integer getPoints() { 
  return points; 
 } 
 public void setPoints(Integer points) { 
  this.points = points; 
 } 
 private Integer number; 
 public Integer getNumber() { 
  return number; 
 } 
 public void setNumber(Integer number) { 
  this.number = number; 
 } 
 public void earn(Integer i) { 
   
 } 
}

Figure 4.1: Forward engineering feature supported by RSA.

The class diagram, Java skeletal program, shown in Figure 4.1, and the developer’s

implementation for the method earn(), shown in Figure 4.2, serve as the input to our

approach. To determine if the OCL specification for the method earn() is satisfied

by the method’s Java implementation, as a first step we automatically generate a

Java Boolean post-method from the OCL post-condition. The OCL post-condition

and the resulting Java Boolean method are shown in Figure 4.3 (a) and Figure 4.3

(b) respectively. Based on the relationship between the OCL post-condition and
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0   public void earn(Integer i){ 
1       points += i; 
2       if(points > 100){ 
3           membership.getCurrentLevel().setName("Gold"); 
4       }else{ 
5           if(points >= 0){ 
6               membership.getCurrentLevel().setName("Silver"); 
7           }else{ 
8               membership.getCurrentLevel().setName("Inactive"); 
9           } 
10      } 
11  }

Figure 4.2: Developer’s earn() implementation.
0    context LoyaltyAccount::earch(i:Integer) 
1  post: let level:String = membership.currentLevel.name in 
2          points > 200 implies level = "Platinum" and 
3          points > 100 and points <= 200 implies level = "Gold" and 
4          points >= 0 and points <= 100 implies level = "Silver" and 
5          points < 0 implies level = "Inactive" 
   

(a)       
  
0    public boolean post_earn(int i){ 
1       String level = this.getMembership().getCurrentLevel().getName(); 
2       boolean r0 = false; 
3       if ((!(this.getPoints() > 200) || level == "Platinum") 
4           && (!(this.getPoints() > 100 && this.getPoints() <= 200) 
5               || level == "Gold") 
6           && (!(this.getPoints() >= 0 && this.getPoints() <= 100) 
7               || level == "Silver") 
8           && (!(this.getPoints() < 0) || level == "Inactive")) { 
9               r0 = true; 
10      } 
11      return r0; } 
 

(b)

Figure 4.3: OCL post-condition to Java translation.

the generated Java Boolean method, the problem of finding if the method earn()

satisfies its OCL post-condition can be reduced to testing if the equivalent Boolean

post method always returns true after the execution of the method under test.

After the translation, we generate an initial minimal test case value for the method

earn() using the translation schema to match elements between the class diagram and

its implementation. Each test case value must correspond to a valid object diagram,

i.e., the object diagram must be a valid instance of the class diagram shown in Figure

4.1 (a). To generate a minimal test case, i.e., a test case with the smallest number of

objects needed to execute the method under test, we start by instantiating the class

where the method resides, in this example LoyaltyAccount. Next, we parse the class

diagram to find required associations in terms of multiplicity and navigability. As an

example, looking at the relationship between LoyaltyAccount with Membership, the

multiplicity of 1 tells us that we need exactly one instance of Membership. The code

in Figure 4.4 (b) show the statements needed to generate the initial minimal test
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value. These statements are specific to the translation schema introduced earlier.
0   public void test_case(){ 
1       LoyaltyAccount lc = new LoyaltyAccount(); 
2       Membership ms = new Membership(); 
3       ServiceLevel sc = new ServiceLevel(); 
4       lc.setMembership(ms); 
5       ms.setLoyaltyAccount(lc); 
6       ms.setServiceLevel(sc); 
7       sc.setMembership(ms); 
8       int i = 0; 
9       lc.earn(i); 
10  }

ms:Membership lc:LoyaltyAccount

sc:ServiceLevel

points = 0
number = 0

name = ""

(a) Object diagram generated by code in (b) (b) Code to generate object diagram in (a)

Figure 4.4: Initial test case value.

The next step consists on executing the method under test, earn(), at the same

time we perform symbolic execution to collect the path condition pc. Next, we execute

the Java Boolean post method, postearn(), while also performing symbolic execution

to collect the path condition pcpost. For the purposes of consistency checking, dur-

ing symbolic execution, we only track all object references, class fields, and method

parameters derived from the class diagram. The relationship of the resulting path

conditions is then analyzed to guide the test case value generation. Figure 4.5 and

4.7 shows the execution trace and resulting path conditions after the execution of the

initial test case and Java Boolean post method. Note that the path condition of the

method under test and the post method are both defined in terms of the initial test

input values.

If the method postearn() returns false, a software fault has been found and it

can be reported. Otherwise, we determine with the use of a SAT solver whether

pc =⇒ pcpost is a tautology. If the implication relationship is a tautology, then all

test case values satisfying pc also satisfy pcpost and follow the same execution path

in earn() and postearn() as in the previous execution. In this scenario, the set of test

cases satisfying pc is a subset of test cases satisfying pcpost as shown is Figure 4.6.

Based on the previous observation, we need to explore a different execution path

on earn(). To do so, we use a SAT solver to find a new test case value satisfying
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2 @ earn()

True

4 @ post_earn()

3 @ earn()

6 @ earn()

7 @ earn()

2-3 @ post_earn()

N

Y

Y

Figure 4.5: Trace I execution, earn(0).

Set of test cases

satisfying pc

post
Explore different 

execution path on earn()

post is a tuatology

Figure 4.6: pc and pcpost relationship after first execution.

Path Condition
pc : points0 + i0 ≤ 100 ∧ points0 + i0 ≥ 0

Post Method Post Condition
pcpost : points0 + i0 ≤ 200 ∧ poits0 + i0 ≤ 100 ∧ points0 + i0 < 0 ∧ name0 = ‘Silver′

Figure 4.7: pc and pcpost path conditions after first execution.
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(points0 + i0 ≤ 100)∧¬(points0 + i0 ≥ 0), to enforce a different execution path. Our

approach uses a last-input-first-output stack to store the path conditions collected

during execution and follows a back-tracking approach to explore different execution

paths by flipping branches. In this example, the SAT solver returns an assignment

of 0 for points0, and -1 for i0. With this information, we generate a new object

diagram as a test case with the values returned by the SAT solver, and execute the

method under test, i.e., earn(-1), and post method. Figure 4.8 shows the resulting

path conditions.

Path Condition
pc : points0 + i0 ≤ 100 ∧ points0 + i0 < 0

Post Method Post Condition
pcpost : points0 + i0 ≤ 200∧ poits0 + i0 ≤ 100∧ points0 + i0 < 0∧name0 = ‘Inactive′

Figure 4.8: pc and pcpost path conditions after second execution.

Once again postearn() returns true and pc =⇒ pcpost is found to be a tautology

by the SAT solver. Using a backtracking approach, the SAT solver is used to find

an assignment that satisfies ¬(points0 + i0 ≤ 100). The resulting assignment is

points0 = 0, and i0 = 150. Using these assignments, a third test case value is

generated, and the methods are once again executed. Figure 4.9 shows the resulting

path conditions.

Path Condition
pc : points0 + i0 > 100

Post Method Post Condition
pcpost : points0 + i0 ≤ 200 ∧ poits0 + i0 > 100 name0 = ‘Gold′

Figure 4.9: pc and pcpost path conditions after third execution.

Again, postearn() returns true, but the SAT solver determines that pc =⇒ pcpost is

not a tautology. This means that some test values that satisfy pc, following the same

61



execution path on earn(), does not follow the same execution path on postearn(). In

this scenario, the set of test cases satisfying pc is not a subset of test cases satisfying

pcpost as shown is Figure 4.10. Since a different execution path on postearn() could

return false, we attempt to find a test case value which alters the execution path

on postearn() with the formula pc ∧ ¬pcpost, using a backtracking approach on pcpost.

In this example, the backtracking technique on pcpost will generate three test cases.

In the first test case, the sub-expression (name0 = “Gold′′) is negated. As a result,

the following formula is sent to the SAT solver: points0 + i0 > 100 ∧ points0 + i0 ≤

200∧ points0 + i0 > 100∧¬(name0 = “Gold′′). In this case, the value of points0 + i0

will remain > 100 and <= 200, which will result in the same execution as the one on

the third execution. Regardless of the initial value of name0, its value is overridden

by method earn(). As a result, we once again find that pc =⇒ pcpost is not a

tautology and continue with the backtracking of pcpost. In the second case, the sub-

expression points0 + i0 <= 200 is negated, resulting in the following assignment:

points0 = 0, i0 = 220. Note that when sending a formula, it is up to the SAT solver

how the values are assigned. In this example, an equivalent assignment could be:

points0 = 220, i0 = 0.

Set of test cases

satisfying pc

post New test case

post is not a tuatology

Figure 4.10: pc and pcpost relationship after third execution.

This time, after the execution of the method under test, we find that postearn()

returns false, which means the method earn() does not satisfy the OCL post-condition

defined in the class diagram. This means a fault has been found.
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4.2 Algorithm

Our approach uses as input a UML class diagram, with at least one method

(method under test) with an OCL post-condition, and a Java implementation of

the diagram. From the diagram, the OCL constraint is parsed and automatically

translated to a Boolean Java method (post method). Next, the method under test

and post method are instrumented to support dynamic symbolic execution. If the

class diagram contains multiple methods with OCL post-conditions, each method

is tested individually using the same procedure. Following the instrumentation, a

minimal initial test case value is generated. Finally, a minimal test case that includes

the smallest number of objects needed to execute the method under test is generated.

The previous initialization steps are shown in lines 3-10 in Listing IV.1.

Having the initial test case value, the method under test and post methods are

executed while concurrently performing symbolic execution to collect each method’s

path condition (lines 11-14 in Listing IV.1). After the execution of the methods, if

the post method returns false, the error is reported, otherwise, the path conditions

are evaluated and a different test case value is generated to follow a different execu-

tion path from the previously observed (lines 15-30 in Listing IV.1). The process is

repeated until an error is found or branch coverage has been achieved on the method

under test. More details about the initialization, methods execution, and results

evaluation are given in the following sub-sections.

4.2.1 Initialization

The initial step consists on parsing the class diagram to extract available OCL

post-conditions. To parse the diagram, we use the MDT EMF framework [6], and

we support the EMF Ecore model format. Other model formats can be translated

to the Ecore model format using a modeling tool such as Eclipse. After parsing

the diagram, the OCL post-conditions are translated to an equivalent Java Boolean
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1 input : c l a s s diagram CD with OCL, and Java program P
2
3 methods = s e l e c t a l l methods with attached OCL post−c o n d i t i o n s
4 f o r each m in methods
5 m_post = generate_post_method (m, CD)
6 add m_post to c l a s s o f m
7 instrument program P to c o l l e c t the path c o n d i t i o n during execut ion
8 f o r each m in methods
9 i n i t _ v a l u e s = n u l l

10 te s t_va lues = g e n e r a t e _ t e s t v a l u e s (m, cd , i n i t _ v a l u e s )
11 whi l e the re e x i s t s a new tes t_va lues
12 pc = [ ] ; heap = [ ] ; pc_post =[ ]
13 exec_symbolic (m, test_values , heap , pc )
14 i s _ v a l i d = exec_symbolic (m_post , test_values , heap , pc_post )
15 i f i s _ v a l i d i s f a l s e
16 r e p o r t e r r o r and return
17 e l s e
18 r e s u l t = use SAT s o l v e r to check i f pc⇒ pcpost i s tauto logy
19 i f r e s u l t i s t rue
20 do
21 i n i t _ v a l u e s = sat_f ind_next_init ¬(pc)
22 i f i n i t _ v a l u e s != n u l l
23 te s t_va lues = generate_test_values (m, cd , i n i t _ v a l u e s )
24 whi l e t e s t_va lues ==n u l l && i n i t _ v a l u e s != n u l l
25 e l s e
26 do
27 i n i t _ v a l u e s = sat_f ind_next_init (pc ∧ ¬pcpost)
28 i f i n i t _ v a l u e s != n u l l
29 te s t_va lues = generate_test_values (m, cd , i n i t _ v a l u e s )
30 whi l e t e s t_va lues == n u l l && i n i t _ v a l u e s != n u l l

Listing IV.1: Main algorithm.

method. The translation is based on the OMG OCL 2.31 specification [8] and uses the

OCL translation schema introduces my Warmer et al. [12]. The translation process

begins by parsing the OCL post-condition using the MDT OCL project [45]. The

parsing generates an abstract syntax tree (AST) of the expression. During the parsing

process, we construct an equivalent abstract syntax tree that trims some information

from the previous AST for easy access and translation. In the generated tree, each

node implements a translate method that is recursively called from the root node to

generate the corresponding Java code.

To illustrate the translation process, we will use the OCL expression shown in

Figure 4.1 (a) as an example. The generated AST is shown in Figure 4.12 where the

root element corresponds to the whole IF expression and its child nodes represent

the enclosing sub-expressions. For instance, the root node in Figure 4.12 shows an

IF expression that is composed of three different sub-expressions, namely, a condition
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expression, a then expression, and an else expression, which are the child nodes of

the IF Exp root node. After the tree is generated, using the Visitor pattern we visit

the nodes and recursively call the translate method on each. The translate method

generates a Java code fragment for each node. In non-leaf nodes, the method further

traverses the child node(s) and generates its corresponding code fragment using the

result of its child nodes, and leaf nodes only generate a code fragment that is used

by the corresponding parent. Finally, a root node collects all the generated code

fragments and produces the final complete Java code for the post method. The code

in Figure 4.11 (b) shows the result of the translation and Figure 4.13 shows the

translation templates used in this example.

context Node:orderChildren():Boolean

post: if self.lefth <> null and 

            self.right <> null then

            self.left.key <= self.right.key

            else true endif

0       boolean r2 = false; 
1       if(this.left != null && this.right != null){ 
2           boolean r0 = false; 
3           if(this.left.key <= this.right.key){ 
4               r0 = true; 
5           } 
6           r2 = r0; 
7       }else{ 
8           boolean r1 = false; 
9           if(true){ 
10              r1 = true; 
11          } 
12          r2 = r1; 
13      } 
14      return r2;

(a) OCL Constraint

(b) Generated Java Code

Figure 4.11: OCL to Java translation example.

4.2.2 Test Case Generation

Using the class diagram in Figure 4.14 as an example, where earn() is the method

under test, the minimum test case generation starts by instantiating the class where

the method under test resides. In this example, the class LoyaltyAccount is instanti-

ated. Note that the class is only instantiated if the method under test is an instance

method, otherwise the method under test would not require an instance to be ex-

ecuted, as it is the case with static methods Java. After the instantiation of class

LoyaltyAccount, we need to recursively check for required associations in terms of mul-

tiplicity and navigability. An association is said to be required if the multiplicity’s
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Property Exp Literal Exp Operation

Exp Exp Operation

If Exp

Exp Exp

Var Exp Var Exp null <>

self left

condition then else

source argument operation

Exp

condition then else

source property

Figure 4.12: Partial generated AST from OCL in 4.11 (a)

IF Expression Template (if exp then exp else exp endif)



	 Boolean [result] = false;

	 if([conditionExp.translate()]){

    	 	 [thenExp.translate()]

	 }else{

    	 	 [elseExp.translate()] 

	 }

	 [result] = [then/else result];



OCL General Expression (self <> null)

	 

	 Boolean [result] = false;

	 if([exp.translate()]){

    	 	 [result] = true;

	 }else{

    	 	 [result] = false;

	 }



Property Class Expression (self.left)

	 

	 [source].get[property];

Figure 4.13: OCL Translation Templates.
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lower bound is greater than 0. In this example, the association between LoyaltyAc-

count and Membership is required, since the lower bound is equal to 1. As a result,

we need to instantiate class Membership and set the appropriate field on LoyaltyAc-

count to establish the link to Membership’s instance. Also, since the association is

bi-directional, we need to set the appropriate field on class Membership to establish

the link to LoyaltyAccount’s. This process is repeated recursively for each new in-

stance added to the minimum test case value. In this example, the process is repeated

on Membership’s instance, where we find a required association to class ServiceLevel.

In this example, the association between LoyaltyAccount and Transaction is not found

to be required since the multiplicity’s lower bound is 0, making the instantiation of

Transaction class optional. For other non-association fields or parameters, we use

the primitive types default values and null for reference types. The algorithm for the

minimal test case generation is shown in Listing IV.2.

+membership

0..1

1 +account

LoyaltyAccount

+currentLevel

Membership

ServiceLevel

1

0..1

+membership

- name: String

- points: Integer
- number: Integer

- earn()

Transaction

0..*

1 +transactions

+membership

Figure 4.14: Required references for minimum test case value.

4.2.3 Methods Execution and Evaluation

After the execution of the method under test, we initialize the SAT solver based

on the observed path conditions. The initialization includes variables, and variable

domains, and the sub-expressions in the path conditions. To guarantee that the

SAT solver only produces valid assignments in terms of multiplicity, we construct
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1 a lgor i thm : generate_test_values
2 input : Class diagram CD with OCL, method m, and i n i t _ v a l u e s
3
4 s e l f _ c l a s s = c l a s s conta in ing method m
5 s e l f _ o b j e c t = i n s t a n t i a t e s e l f _ c l a s s
6 s e t _ r e q u i r e d _ r e f e r e n c e s ( s e l f _ c l a s s , s e l f _ o b j e c t , CD)
7 i f i n i t _ v a l u e s == n u l l
8 s e t parameters and f i e l d s to d e f a u l t va lue s
9 e l s e

10 use i n i t _ v a l u e s to i n i t i a l i z e parameters and f i e l d s

Listing IV.2: Test case generation algorithm.

1 a lgor i thm : s e t _ r e q u i r e d _ r e f e r e n c e s
2 input : Class diagram CD, c l a s s , and o b j e c t obj
3
4 f o r each a s s o c i a t i o n as soc in c l a s s
5 i f a s soc m u l t i p l i c i t y > 0
6 a_class = assoc r e f e r e n c e type
7 a_object = i n s t a n c e a_class
8 s e t a s soc f i e l d on obj to a_object
9 i f a s soc i s bi−d i r e c t i o n a l

10 s e t oppos i t e f i e l d on a_object to obj
11 s e t _ r e q u i r e d _ r e f e r e n c e s ( a_class , a_object , CD)

Listing IV.3: Set required references algorithm.

the variable domains used by the SAT solver in such a way that no value from the

domain can violate the multiplicity constraints. A domain, in the context of a SAT

solver, denotes the set of values allowed for a particular variable when trying to find

an assignment for a given formula. To construct the domains, we first parse the path

condition to select all the variables that correspond to an association end in the class

diagram. Next, for each variable, we get its lower bound multiplicity, l, and upper

bound multiplicity, h. Based on l and h, the variable domain is defined such that for

each value in the domain, value ≥ l and value ≤ h. If the upper bound is unlimited,

we generate up to c values, where c is a constant. To illustrate this approach, consider

the class diagram in 4.15 and the path condition “cmpy.dept != null”, where cmpy

is an instance of class Company and dept refers to the association end dept in the

association between Company and Department. Based on the multiplicity of “0..2”,

we generate a domain with the values “[0, 1, 2]”, where 0 represents the null value,

and 1 and 2 indicate that the variable can be assigned with one or at most two
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instances of type Department. For variables that do not correspond to an association

end, we generate a predefined number of values depending on the variable type.

+store

    1

1    +cmpy

Company

+client

Department

Client

1

0..4

+dept

Figure 4.15: Company Class Diagram.

In some instances, multiple variables corresponding to an association end may

share the same domain but have different multiplicity values. As a result, the values

in the domain may not be enough to enforce the multiplicity constraints for all the

association ends. In this case, we add one or more sub-expressions to the formula

given to the SAT solver in order to enforce all the constraints. As an example, consider

two variables corresponding to the association end dept in the association between

Company and Department and a variable corresponding to the association end store

in the association between Client and Department, with the multiplicities 0..2 and

0..4 respectively. The domain for both variables includes the values “[0, 1, 2, 3, 4]”.

In this example, the domain values only enforce the multiplicity constraint for the

variable store. To enforce the multiplicity constraint for the variable dept, we add

the sub-expression “cpmy.dept <= 2” to the formula sent to the SAT solver.

After the initial construction of a domain, we also dynamically update the do-

main values, if necessary, after the execution of the method under test and post

method, based on the concrete observed values during the execution and the result-

ing path condition. The update aims at preventing trivially unsatisfiable formulas

when flipping branch conditions, due to a domain not having enough values. As an

example, consider the execution of the method earn(0) and the resulting path con-

69



dition ¬($0.points + $3 > 100) ∧ $0.points + $3 ≥ 0, with the initial domain values

for variable $3 including [-1, 0, 1]. If the branch ¬($0.points+ $3 > 100) is flipped to

cover a different execution path, i.e., ($0.points+ $3 > 100), and the formula is sent

to the SAT solver, the formula will be trivially unsatisfiable since there is no domain

value for $3 that can make the condition ($0.points + $3 > 100) evaluate to true.

To prevent this, we analyze the path condition and dynamically update the domain

based on the variable’s relationship with other variables and concrete values in the

path condition. In this example, we update the domain for variable $3 to include [-1,

0, 1, 100, 101]. A similar approach is used with non-primitive types, for example, for

an association end e1 with a multiplicity 0..*, we initially generate a domain with a

predetermined number of values, e.g., domain(e1) = [null, obj1, obj2]. To update the

number of objects in a non-primitive type domain, CCUJ requires the size property

to be part of the path condition. For example, if the following path condition is

observed, $0.e1.size() < 4, we update the domain to include four or more objects.

As a result, if the branch is flipped, an assignment is possible.

After the execution of the methods while performing symbolic execution, we obtain

the path condition for the method under test, pc, and the path condition for the post

method, pcpost, and a Boolean result, returned by the post method. If the result

is false, we can determine that the test case has violated the OCL post-condition

and we can report an error. If the result is true, we need to analyze the generated

path conditions to decide how to generate the next test case value. Using a SAT

solver, we determine whether pc =⇒ pcpost is a tautology. On the first possibility,

if pc =⇒ pcpost is a tautology, it means that all test case values satisfying pc also

satisfy pcpost. In this scenario, all the test case values that follow the same execution

path on the method under test will also follow the same execution path on the post

method. Since the result of the post method was true, we are interested on exploring

a different execution path on the method under test to see if we can obtain a different
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result on the post method. To do this, we use the SAT solver to find a new assignment

by negating a sub condition of pc using a backtracking technique to eventually achieve

branch coverage. On the second possibility, if pc =⇒ pcpost is not a tautology, it

means that there is a test case value satisfying pc that does not satisfy pcpost. In other

words, there is a test case value that would follow the same execution path on the

method under test but would follow a different execution path on the post method.

In this case, we are interested in finding such a test case, since a different execution

path on post method could possibly return a different post-condition result. To do

so, we use the SAT solver to find an assignment for the formula pc∧¬pcpost. In both

cases, whether pc =⇒ pcpost is a tautology or not, after finding the assignment, the

process is repeated until there are no more branches to explore on the method under

test or an error is detected.

4.2.4 Multiplicity and Navigability as OCL Pre-Conditions

As introduced earlier, each test case value must correspond to a valid object

diagram, i.e., the object diagram must be a valid instance of the class diagram in

terms of the multiplicity and navigability constraints, and it must be a minimal test

case, i.e., it should consist on the minimum number of objects needed to execute

the method under test, starting with an instance of the class where the method is

defined. A minimal valid test case can be specified with set of OCL expressions as pre-

conditions for the method under test, both in terms of multiplicity and navigability.

As an example, themultiplicity constraint as a pre-condition, based on the diagram

in Figure 4.1 (a) can be defined as shown in Listing IV.4. The constraint guarantees

the method will be executed in a valid object diagram in terms of the multiplicity.

In this example, the constraints specifies the test case will include an instance of

Membership, and an instance of ServiceLevel, and that both instances will be set using

the respective fields, membership and serviceLevel. In a similar way, the navigability
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1 context LoyaltyAccount : : earn ( i n t i )
2 pre : s e l f . membership != n u l l and
3 s e l f . membership . s e r v i c e L e v e l != n u l l

Listing IV.4: Multiplicity as pre-condition.

1 context LoyaltyAccount : : earn ( i n t i )
2 pre : s e l f . membership . account == s e l f and
3 s e l f . membership . s e r v i c e L e v e l . membership == s e l f . membership

Listing IV.5: Navigability as pre-condition.

constraint ensures the links between instances is set according to the ones defined in

the diagram. The navigability constraint is shown in Listing IV.5. If no OCL pre-

conditions are defined for the method, our approach implicitly uses the multiplicity

and navigability constraints as the method’s pre-conditions.

4.2.5 Black Box Methods

When executing the method under test and post method, there may be calls

to external methods where dynamic symbolic execution is not possible, i.e., we are

unable to collect the path condition of their execution. Typically, this is related to

cases where instrumentation is not possible due to licensing restrictions, or because

the binary files are not directly accessible. We call these type of methods, black box

methods. In our current implementation, we treat the Java Collection API and the

EMF API as black box methods. We do not instrument these APIs since they are not

part of the design class diagram and doing so would complicate the dynamic symbolic

execution since many auxiliary fields introduced by the EMF forward engineering

feature would have to be tracked during the execution. In order for our approach

to work with these type of methods, we use a set of rules, based on the method’s

specification, to update the path condition and symbolic memory when a call to an

EMF method or Java collection method is detected. In the following subsections we

explain the type of scenarios where it is safe to ignore the black box path conditions.
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Also, we explain how we use approximate symbolic execution to update the symbolic

memory according to the semantics of the black box methods. In particular, we

support approximate symbolic execution for the Java collection methods, i.e., the List

implementation ArrayList, and for the EMF methods eContents(), and eContainer().

4.2.5.1 Ignoring Path Conditions of Black Box Methods

In general, the scenario where the path condition of a black box method, bbpc, can

be safely ignored, is when the set of test cases satisfying the path condition of the

method under test, wbpc, is a subset of the path condition of the black box method,

i.e., wbpc =⇒ bbpc is a tautology, as shown in Figure 4.16. In this scenario, it is safe

to ignore bbpc and only consider wbpc =⇒ pcpost, since all the test inputs satisfying

wbpc will result on the same black box method behavior. On the other hand, if the

set of test cases satisfying wbpc is not a subset of bbpc, i.e., wbpc =⇒ bbpc is not

a tautology, as shown in Figure 4.17, the path condition of the black box method

cannot be safely ignored, since a test input satisfying wbpc could result on a different

black box behavior. In relationship with pcpost, there are four possible cases, two for

each of the previous scenarios. The cases are shown in the following list:

1. wbpc =⇒ bbpc is a tautology and wbpc =⇒ pcpost is a tautology

2. wbpc =⇒ bbpc is a tautology and wbpc =⇒ pcpost is NOT a tautology

3. wbpc =⇒ bbpc is NOT a tautology and wbpc =⇒ pcpost is a tautology

4. wbpc =⇒ bbpc is NOT a tautology and wbpc =⇒ pcpost is NOT a tautology

On the first case, when wbpc =⇒ bbpc is a tautology, and wbpc =⇒ pcpost is

a tautology, our approach backtracks on wbpc. The code in Figure 4.18 shows an

example of this scenario. With earn_1() as the test method, save_1() as the black

box method, and post_earn_1() as the post condition method. For the second case,

73



where wbpc =⇒ bbpc and wbpc =⇒ pcpost is not a tautology, our approach backtracks

on pcpost to try to find a test case that could result on the post condition returning

false. This example is also shown in Figure 4.18 with post_earn_2() as the post

condition method. On the third and fourth cases, wbpc =⇒ bbpc is NOT a tautology,

and ignoring bbpc would result in some test cases being missed. For example, with the

code in Figure 4.19, and the test input i = 101, the implication between wbpc $x > 100

and pcpost is a tautology. However, by pruning all the test cases where $x > 100 we

would miss some test cases where the behavior of the black box method would affect

the post condition result, as it is the case with i = 200 where x is updated to 100,

causing the post condition method to return false.

Set of test cases

satisfying bb

Set of test cases

satisfying wb                

pc

pc

Figure 4.16: Relationship of a safe to ignore black box path condition and pc.

Set of test cases

satisfying bb

Set of test cases

satisfying wb                

pc

pc

Figure 4.17: Relationship of a NOT safe to ignore black box path condition and pc.
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public int x = 0;	
	
public String membership = "Silver";	
	
// W implies B	
public void earn_1(int i) {	
	 x = x + i;	
	 if (x > 100) {	
	 	 membership = "Gold";	
	 } else {	
	 	 if (x > 50) {	
	 	 	 membership = "Silver";	
	 	 } else {	
	 	 	 membership = "Inactive";	
	 	 }	
	 }	
	 save_1(x);	
}	
	
public void save_1(int x) {	
	 if (x > 100) {	
	 	 this.x = x + 10;	
	 } else {	
	 	 if (x > 50) {	
	 	 	 this.x = x + 1;	
	 	 }	
	 }	
}	

// W+B implies POST	
public boolean post_earn_1() {	
	 if (x > 100) {	
	 	 return (membership == "Gold");	
	 } else {	
	 	 if (x > 50) {	
	 	 	 return (membership == "Silver");	
	 	 } else {	
	 	 	 return (membership == "Inactive");	
	 	 }	
	 }	
}	
	
// W+B does NOT implies POST	
public boolean post_earn_2() {	
	 if (x > 200) {	
	 	 return (membership == "Platinum");	
	 } else {	
	 	 if (x > 100) {	
	 	 	 return (membership == "Gold");	
	 	 } else {	
	 	 	 if (x > 50) {	
	 	 	 	 return (membership == "Silver");	
	 	 	 } else {	
	 	 	 	 return (membership == "Inactive");	
	 	 	 }	
	 	 }	
	 }	
}

Figure 4.18: Safe to ignore black box path condition example.

	 public int x = 0;	
	
	 public String membership = "Silver";	
	
	 // W does NOT implies B	
	 public void earn_2(int i) {	
	 	 x = x + i;	
	 	 if (x > 100) {	
	 	 	 membership = "Gold";	
	 	 } else {	
	 	 	 if (x > 50) {	
	 	 	 	 membership = "Silver";	
	 	 	 } else {	
	 	 	 	 membership = "Inactive";	
	 	 	 }	
	 	 }	
	 	 save_2(x);	
	 }	
	
	 public void save_2(int x) {	
	 	 if (x > 190) {	
	 	 	 this.x = x - 100;	
	 	 } else {	
	 	 	 if (x > 90) {	
	 	 	 	 this.x = x + 10;	
	 	 	 } else {	
	 	 	 	 if (x > 40) {	
	 	 	 	 	 this.x = x + 1;	
	 	 	 	 }	
	 	 	 }	
	 	 }	
	 }	

	 // W+B implies POST	
	 public boolean post_earn_3() {	
	 	 if (x > 100) {	
	 	 	 return (membership == "Gold");	
	 	 } else {	
	 	 	 if (x > 50) {	
	 	 	 	 return (membership == "Silver");	
	 	 	 } else {	
	 	 	 	 return (membership == "Inactive");	
	 	 	 }	
	 	 }	
	 }	
	
	 // W+B does NOT implies POST	
	 public boolean post_earn_4() {	
	 	 if (x > 180) {	
	 	 	 return (membership == "Platinum") || (membership == "Gold");	
	 	 } else {	
	 	 	 if (x > 100) {	
	 	 	 	 return (membership == "Gold");	
	 	 	 } else {	
	 	 	 	 if (x > 50) {	
	 	 	 	 	 return (membership == "Silver");	
	 	 	 	 } else {	
	 	 	 	 	 return (membership == "Inactive");	
	 	 	 	 }	
	 	 	 }	
	 	 }	
	 }

Figure 4.19: Not safe to ignore black box path condition example.
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4.2.5.2 Approximate Symbolic Execution of Java Collection Methods

add(Object obj), addAll(Collection c)

When the method add() is executed, the symbolic memory representing the size

property of the collection is updated to be 1 larger than its original value. As an

example, consider the list l for the method under test shown in Figure 4.20. The

symbolic value of the list and its size property can be represented as l0, and l0.size

respectively. For the statement l.add(p) in Line 2, the symbolic value of the size

property is updated to be l0.size + 1. After the symbolic memory is updated, the

path condition for the statement if (l.size() > 2) in Line 4, with the initial list being

empty, is represented as l0.size + 1 <= 2. Based on this path condition, our algorithm

recognizes that in order to flip the branch we need to add at least 2 elements to the

collection. Similar to the add() method, when addAll() is executed, the symbolic

memory of the size property for the collection is updated, this time to be size of the

original collection plus the number of objects on the collection used as a parameter.

For example, the execution of l10.addAll(l20) will update the the symbolic memory

of the size property of l10 to be l10.size + l20.size.

0	 public boolean addExample(Person p) {	
1	 	 if (p != null) {	
2	 	 	 l.add(p); 	
3	 	 }	
4	 	 if (l.size() > 2) {	
5	 	 	 return true;	
6	 	 } else {	
7	 	 	 return false;	
8	 	 }	
9	 }

Figure 4.20: Collection black box methods add() and size() example.

size(), isEmpty()

When the method size() appears in a path condition, our algorithm recognizes that

the observed concrete value corresponds to the number of elements in the collection.

For example, for the statement if (l.size() > 2) in Figure 4.20, the resulting symbolic
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path condition is l0.size <= 2, assuming the input list is empty at the moment of

execution. Based on this path condition, our algorithm recognizes that we need to

add at least two elements to the collection in order to flip the branch. When working

with the size() method, we never flip a branch in such a way that the size would be

given a negative value, since this is not a valid program state. As an example, the

branch l0.size == 0 is only flipped as l0.size > 0. In a similar way, the operation

isEmpty() is treated as an special case of the method size(). If the path condition

contains l0.isEmpty() == true, it is replaced with l0.size == 0. Otherwise, if the path

condition is l0.isEmpty() == false, it is replace with l0.size > 0. After the update,

the algorithm proceeds as with the normal size() operation.

clear()

When the operation clear() is called, the symbolic memory for the size property

is set to 0 using its original symbolic value. For example, using Figure 4.21 as an

example, the statement l.clear() in Line 2 updates the symbolic memory for the size

property as l0.size - l0.size. Subsequent calls that would affect the size property, such

as add() in Line 4, will further update the symbolic value accordingly. As an example,

after the execution of the statement l.add(obj), the resulting symbolic memory would

be l0.size - l0.size + 1, and a statement such as if (l.size() > 0) would result in the

path condition l0.size - l0.size + 1 > 0.

0	 public boolean clearExample(Person p) {	
1	 	 if (p != null) {	
2	 	 	 l.clear(); 	
3	 	 }	
4	 	 l.add(p);	
5	 	 if (l.size() > 0) {	
6	 	 	 return true;	
7	 	 } else {	
8	 	 	 return false;	
9	 	 }	
10	 }

Figure 4.21: Collection black box method clear() example.
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contains(Object obj), containsAll(Collection c)

Using the example in Figure 4.22, with list l, and object p, the execution of the

statement l.contains(p) is mapped to the symbolic path condition p0 in l0, if the result

of the concrete execution is true, or p0 not in l0 if false. Our algorithm recognizes

this pattern and either adds the object p to the collection or removes it in order to

flip the branch. In this example, the resulting path condition is p0 != null and p0

not in l0. Similar to the method contains(), the method containsAll() is mapped as

list l20 in l10, with the difference that the first argument in the expression refers to

a second list of objects. For these type of branches, our algorithm recognizes that in

order to flip the branch, all the objects in l2 must be added to the target list l1, or

not, depending on how the branch is being flipped.

1	 public boolean containsExample(Person p) {	
2	 	 if (p != null && l.contains(p)) {	
3	 	 	 return true;	
4	 	 } else {	
5	 	 	 return false;	
6	 	 }	
7	 }

Figure 4.22: Collection black box method contains() example.

indexOf(Object obj), lastIndexOf(Object obj)

With the list l and object p as input, the statement if (l.indexOf(p) == 3) is

mapped as the symbolic path condition p0 in l0 == 3 if the concrete execution is

true, or p0 in l0 != 3 if the result of the concrete execution is false. Our approach

recognizes this as the object p being contained on the list at the specific position

3, if the concrete execution result is true, not being on the list at that position if

the concrete execution result is false. To flip this branch, our algorithm adds the

object exactly at position 3 by adding two other objects followed by the object p.

In a similar way to indexOf(), the method lastIndexOf() is mapped as the symbolic

path condition last p0 in l0 == 3, with the addition of the keyword last, to indicate
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that on the event of the list having the same object more than once, the index of

the last occurrence must be equal to 3. For these type of method, to flip a branch,

the argument object is placed at the specified position and we make sure that no

occurrences of the same object are found afterwards.

equals(Object obj)

The method equals on a collection type returns true if the parameter object is

also a list, both lists are of the same size, and all the objects in the target list are

equal to the elements in the parameter list and they are at the same position, e.g.,

first element on l1 is equal to the first element on l2, second element l1 is equal to

the second element on l2, etc. The execution of the statement if (l1.equals(l2) in the

method under test, with l1, and l2 as input, is mapped to the symbolic path condition

list l10 == list l20. For these type of branches, flipping the branch requires having

exactly the same set objects on both lists and at the same positions, if the required

outcome is true.

remove(Object obj), remove(int index),

The method remove(Object obj), as the opposite of method add(), decreases the

value of the size property of the list, but only if the parameter object was initially

contained in the list. To determine if the size property must be updated, during

dynamic symbolic execution, we look at the concrete value returned by the operation.

Only if the execution of the method returns true, the memory is updated. If the result

is true, the size property is mapped to the symbolic value l0.size - 1. In the case of the

method remove(int index), the symbolic value of the size property is always updated.

The reason is that if the index is out of range, the program would trow an exception,

otherwise and element is always removed.
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4.2.5.3 Approximate Symbolic Execution of EMF Methods

eContents()

The EMF method eContents() returns an unmodifiable list containing all owned

elements of an object, determined by its containment features [21]. The features

are set during the forward engineering process and are defined as part of the static

field OWNED_ELEMENT_ESUBSET. To generate the list of owned elements, the

method uses the feature id’s in the static field. Each feature id corresponds to each

of the fields in the class containing the owned elements. For each feature id, the

method calls the corresponding get() method to retrieve the objects. The execution

of the method, which includes accessing feature id’s, and the logic determining which

get() method to call, is part of the black box method, but the execution of the get()

methods is not. As an example, consider the method in Figure 4.23, where c is an

instance of UML Class. Following our approach, on the second execution c is not null

and the statement in line 8 with the black box method is executed. The resulting

path condition in this example is (c0 != null and c0.eContents().size() == 3 and

c0.ownedAttributes == null and c0.ownedComments and c0.owned...). As mentioned

earlier, the execution of the black box method determines which get() method is

executed but the execution of the get() method itself is white and it becomes part of

the path condition, allowing us to see the fields access. In this example, eContents()

executes all the get() methods of fields that correspond to owned elements of Class.

Based on the path condition, we know we need to add 3 objects in one of the fields

that are used to construct the list returned by eContents(). To determine what

fields in the path condition are part of the execution of eContents(), we look at

the static field OWNED_ELEMENT_ESUBSET using Java reflection and use the

feature id’s to determine the name of the fields that conform the owned set returned

by eContents(). After identifying the fields, we instantiate the required number of
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objects and add them to the corresponding list. The reason we need to look at the

static field OWNED_ELEMENT_ESUBSET to identify the fields is that we do not

have other way of knowing which of the fields that appear in the path condition are

part of the call to eContents() since we loose track of the execution while in the black

box method.
1	 public void blackBoxExample(Class c) {	
2	
3	 	 if (c == null) {	
4	
5	 	 	 return;	
6	 	 }	
7	 	 	
8	 	 if (c.eContents().size() > 3) {	
9	 	 	 // ...	
10	 	 }	
11	 	 	
12	 }

Figure 4.23: Example with black box EMF method eContents().

eContainer()

The EMF method eContainer() returns a reference to its containing object. An

object, a, is said to be contained by an object, b, if a is part of b’s contents,

as determined by its containment features. In other words, b is a’s container if

b.eContents().contains(a) is true. The implementation of eContainer() returns the

value of an auxiliary field containing the reference. This field is set when the con-

tained object is added to the a particular container. In our approach, eContainer() is

considered a black box method. To support it, when the method is executed, we need

to determine the feature id of the field in the container object in order to be able

to set it. For example, for the branch obj.eContainer() == null, we need to identify

the owner type and the field that can be used to set the containment relationship.

To support this operation, we use information from the class diagram to identify the

owner types where the owned element is of the same type of the object executing the

eContainer() operation. The class diagram also gives us information about the name

of the field that needs to be set to establish the containment relationship. Using this
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information, our approach can flip the branch obj.eContainer() == null by making

obj a contained object of the owner type via the identified field.
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CHAPTER V

EVALUATIONS

5.1 Bounded Exhaustive Testing

Our experiments include the checking of three UML composition implementa-

tions: The first one is a University example, the second one is the UML metamodel

implementation v2.2.1, and the third one is the UML metamodel implementation

v1.1.1. Both UML metamodel implementations are from the IBM’s Eclipse Project

and are based on the Eclipse Modeling Framework (EMF). The implementation of

the University example was provided by us.

Also, we manually applied the OCL constraints defined in Section 3.1.3 to code

automatically generated by several forward engineering tools. We found that most

tools fail or, in some cases, completely ignore the implementation of basic association

properties such as navigability. Only two tools, Fujaba [46] and EMF [6], correctly

implement bidirectional navigability, but, similar to the rest of the tools, they leave

out the implementation for the subsetting, union, redefinition, and multiplicity prop-

erties.

To conduct our experiments, we used the Java bytecode manipulation and analysis

framework ASM [47]. We instrumented the programs to monitor the fields derived

from a class diagram. To this purpose, we use as an input a class diagram to gather

information about the association properties to instrument the relevant fields. In the
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following sections we discuss our results.

5.1.1 Effectiveness

We used our approach to check two UML metamodel implementations: UML2

v1.1.1, and UML2 v2.2.1. We detected violations of the lifetime property in UML2

v1.1.1, while the shareability property was correctly implemented. UML2 v2.2.1 did

not present any problems in both the lifetime and shareability property.

The fault in UML2 v1.1.1 was caused by the destroy() method that expects the

composition relationship information to be stored in a resource object. To implement

composition, the destroy() method iterates over every object contained in a resource

looking for links to the owner object or its parts, and any link found during the check

is removed. The problem with this approach is that a resource object in EMF does

not provide such information. A resource object in EMF is intended to provide a

mechanism to persist and reference other persisted object by serializing classes in a

class diagram. When the set of objects involved in a composition relationship are

not part of a resource, the destroy() method does not correctly enforces the lifetime

property.

The fault in UML2 v1.1.1 was originally confirmed in the Eclipse UML2 forum,

and was later corrected in versions such as UML2 v2.2.1. In later versions, EMF

attaches an adapter to each EObject that tracks several changes, such as adding or

removing references to the object. The destroy() method in UML v2.2.1 uses the

adapters to locate and remove all links to the owner or part objects. Following this

approach, UML v2.2.1 correctly enforces the lifetime property.

Based on our results with the two UML composition implementations, we conclude

with a high degree of confidence that UML composition was correctly implemented

in v2.2.1. Also we conclude that our approach can effectively detect faults, as shown

with the detection of the fault in UML2 v1.1.1.
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Table 5.1 shows the results of testing the implementation of seven forward en-

gineering tools for the navigability, multiplicity, subsetting, union, and redefinition

properties, as well as the shareability and lifetime properties for composition. Only

unidirectional navigability is fully supported, bidirectional navigability is supported

by two tools. Composition properties are only supported by (EMF).

Table 5.1: Forward engineering tools test.

Tool Unidirectional 
Navigability

Bidirectional 
Navigability Link Subsetting Union Redefinition Shareability Lifetime

Fujaba OK OK Fail Fail Fail Fail Fail Fail

EMF OK OK Fail Fail Fail Fail OK OK

Argo UML OK Fail Fail Fail Fail Fail Fail Fail

Visual 
Paradigm OK Fail Fail Fail Fail Fail Fail Fail

Omondo OK Fail Fail Fail Fail Fail Fail Fail

Astah* - - - - - - - -

Altova* - - - - - - - -

* Unable to test, the tools do not provide getter/setter implementations

5.1.2 Efficiency

To show our tools efficiency in the generation of the test input space, we compare

it with Korat, a tool for test inputs generation for Java programs [48]. Korat requires

an invariant method, called repOK() to generate all the test inputs. In our case, for

the test of composition the invariant method should be based on the two constraints,

namely the multiplicity and navigability constraints. As an example, in Figure 3.12,

repOK() for class Company checks the multiplicity and navigability of class Division’s

end. For class Division, repOK() checks the multiplicity and navigability of the ends

for classes Company and Client. For class Client, repOK() checks the ends form

classes Division and University. And finally, repOK() for class University checks the

multiplicity and navigability of class Client’s end.

Since Korat uses the all-field-read tracking technique, when repOK() for class
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Company is executed and the end for class Division is read, the execution of the

method repOK() in class Division is triggered. In a similar way, the method repOK()

is executed for classes Client and University. Following this technique, Korat generates

test cases in terms of all the classes that can be reached from the owner class via an

association end.

We initially include objects of type University, but the field that references the

objects of type University is quickly identified as a do not care field, as explained in

Section 0, reducing the size of the test case and consequentially the size of the input

space.

Since Korat does not support the use of collection types in the generation of test

inputs, we wrote a simulator to support the UML implementation. There are more

than two hundred test cases; we show five of them in Table 5.2. We ran the test cases

in an Intel(R) Pentium(R) M 1.60GHz processor with 750Mb of RAM. The first test

case is our own implementation of the University example. The last four test cases

are from the UML2 v2.2.1 metamodel implementation. From our results that we can

reduce between 96% and 99% of Korat’s test input space, where larger finitization

shows greater reductions. We can also see that Korat can easily run timeout even

with a small number of objects because Korat considers several non-relevant classes.

Even without considering non-relevant classes, if the number of relationships re-

lated to the composition relationship is large, the test space can still be considerably

large. One of the reasons the test input space we generate remains small in most cases

is thanks to the principle of high decoupling in most software engineering projects.

This principle requires a moderate number of relationships between two classes. Pre-

vious experiments based on eight industry standard software systems showed that

most classes have between 1 and 10 relationships with the average number of rela-

tionships being 2.86 [49].
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5.2 Mutation Testing

Mutation testing is a technique used to evaluate the quality of a test suite [9].

In mutation testing, small modifications that imitate programmers errors are intro-

duced in a program, and the resulting program is called a mutant. After generating

a mutant, we evaluate the program using our test cases with the objective of detect-

ing a difference in the behavior between the original program and the mutant just

generated. When a difference in behavior is detected, it is said the mutant has been

killed [9]. A high rate of killed mutants indicates a strong set of test cases. There are

different types of mutation operations that can be applied to a program to generate

a mutant. Table 5.3 shows the type of mutation operations that we applied when

evaluating our test cases. The table also shows an example of the mutation produced

by the operator.

1	 public static Property getOpposite(Property property) {	
2	
3	 	 if (property.isNavigable()) {	
4	 	 	 Association association = property.getAssociation();	
5	
6	 	 	 if (association != null) {	
7	 	 	 	 EList<Property> memberEnds = association.getMemberEnds();	
8	
9	 	 	 	 if (memberEnds.size() == 2) {	
10	 	 	 	 	 int index = memberEnds.indexOf(property);	
11	
12	 	 	 	 	 if (index != -1) {	
13	 	 	 	 	 	 Property otherEnd = ((InternalEList<Property>) memberEnds)	
	 	 	 	 	 	 	 .basicGet(Math.abs(index - 1));	
14	
15	 	 	 	 	 	 if (!association.getOwnedEnds().contains(otherEnd)	
	 	 	 	 	 	 	 || association.getNavigableOwnedEnds().contains(	
	 	 	 	 	 	 	 	 otherEnd)) {	
16	
17	 	 	 	 	 	 	 return otherEnd;	
18	 	 	 	 	 	 }	
19	 	 	 	 	 }	
20	 	 	 	 }	
21	 	 	 }	
22	 	 }	
23	
24	 	 return null;	
25	 }

Figure 5.1: Property getOpposite() method.

We applied mutation testing to 21 methods, 2 of them from the UML specification,

getName(), getOpposite(), and 19 automatically generated methods from the OCL

constraints introduced by Booch et al. [8]. We generated a total of 383 mutants.

To evaluate each mutant, the first step is to execute a set of test cases against the
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original program, and then on each of of the generated mutants. The procedure to

generate the set of test cases follows the approach described in Chapter IV. For each

method, we take as input the program’s class diagram, with the method under test,

and its OCL post condition, from which a post-method is generated to serve as test

oracle. A key difference in mutation testing is that even if no error is detected by the

method’s post condition, if the output differs from the output of the original program

the mutant is still considered to be killed.

Among the 383 mutants generated, 360 were killed, for a 93.8% killing rate. In

our experiments, non killed mutants are equivalent to the original code. For example,

index != -1 is equivalent to index > -1, since, in the context of the method getOppo-

site, index cannot take a value less than -1. Specifically, the non killed mutants are,

from Table 5.4, mutant 4, 6, 7, and 8. For mutant 4, the behavior of the program

remains the same as long as memberEnds is equal or greater than 2. In the case of

6, 7, and 8, the variable index, as explained earlier, cannot take a value less than -1.

In all cases, the behavior of the program remains unaffected. It is important to note

that when applying a mutation operator, if the generated mutant is not valid, i.e., it

cannot compile, the mutant is discarded. The code for the method getOpposite() is

shown in Figure 5.1.

We also applied the small scope hypothesis based method to test the 383 mutants,

with 5 as the number of possible values for each of the variables. The small scope

hypothesis based method killed 242, for a 73.8% killing rate. One of the reasons

for the lower killing rate is the reduced branch coverage achieved by the small scope

hypothesis based method. While our approach can achieve 100% coverage, the small

scope hypothesis method achieves only 70% coverage. Table 5.6 shows a summary of

the results with the list of the tested methods, number of mutants, number of killed

mutants, and branch coverage achieved by each method.
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5.3 Path Condition Analysis

We evaluated our approach with two kinds of experiments: effectiveness and ef-

ficiency. Effectiveness can be evaluated by whether our approach is able to find real

faults in some industry strength software systems. To evaluate the efficiency, we

compared our approach to related techniques that can be applied to do consistency

checking. The project we chose to do the experiments is Eclipse’s UML2 project [50],

an EMF based UML implementation. One of the reasons for choosing the project is

that it is large, with more than 300 meta- classes with large number of OCL con-

straints. These constraints include post conditions and well-formed rules. Also, being

an open source project, it has a good bug report system which allowed us to confirm

our findings.

5.3.1 Effectiveness

When we studied the UML specification [7], we found that many existing ap-

proaches that claimed to recover UML composition by reverse engineering from a

Java program do not strictly follow the semantics of UML composition [7]. The UML

specification requires that “If a composite is deleted, all of its parts are normally

deleted with it. Note that a part can (where allowed) be removed from a composite

before the composite is deleted, and thus not be deleted as part of the composite...”

p. 41. However, many existing approaches require that all part objects cannot be

accessed by any object except for its owner object. In fact, this is not the case. For

instance, the class diagram excerpted from the UML specification in Figure 5.2 shows

that an object of class Property, which is owned by an object of class Class, can be

accessed by an object of class Association. Therefore, when an owner object does not

exist, all of its owned objects should not exist. Namely, all the links to the owned

objects from other live objects should be removed. Assume method destroy() intends

to implement the deletion of an owner object, Figure 5.3 (a) shows the property as a
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post-condition after method destroy() is called on an owner object.

Class

+class *

0..1 +ownedAttribute

Association

+memberEnd 0..1

2..* +association

Property

Figure 5.2: Partial UML metamodel.

context Class::destroy(): Boolean

post: self.ownedAttribute@pre->forAll(p |

         p.association@pre.memberEnd->excludes(p)) 

context Property::isAttribute(p: Property): Boolean

post: result = Classifier.allInstances->exists(c |

         c.attribute->includes(p)) 

(a) Post-condition for destroy method (b) Post-condition for isAttribute method

Figure 5.3: UML metamodel post conditions.

After the above observation, we applied our approach on one of the UML2 projects,

i.e. the UML2 v1.1.1 implementation. We detected the implementation error of all

fields derived from UML composition and was confirmed with one of UML2 project

members. The root cause of the implementation error is that the destroy() method

iteratively checks each object contained in the resource, which is supposed to con-

tain all the instantiated objects, and remove their links to the owned objects being

destroyed. But the resource object, as part of EMF metamodel, did not automati-

cally store all instantiated owned objects in the resource object appropriately. For

this OCL constraint, we found a total of 999 error instances. We also applied our

approach to a later version UML2 v2.2.1 and the previous fault has been fixed.

We also used our approach to check a set of 55 well-formedness rules on the UML2

project v4.0.2. We detected a software fault, related to the OCL post condition

for the method isAttribute() defined in the UML specification (p.125 [7]). Figure

5.4 shows the OCL post condition and the automatically generated Java Boolean

method used as post method. The generated method includes the auxiliary methods

OclOperations.allInstances() that implements the OCL allInstances operation, and

OclOperations.includes() that implements the OCL operation includes. As an initial

minimal test case, CCUJ instantiates class Property and null is used as the default
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value for the parameter p. After the initial minimal test case generation, CCUJ

executes the method under test, isAttribute() and its post method, post_isAttribute().

The rest of the process follows as explained in Chapter IV. The reason of the fault

was because the implementation only checks the non-navigable inverse references to

property p, this is, the references in which an object (obj1 ) can access p, but p

cannot directly access the object obj1. Since the reference attribute in class Classifier

is a navigable inverse reference, it was ignored, and the method failed to return true

when c.attribute->includes(p) is true. The problem was confirmed and fixed by the

developers.

    public static Boolean post_isAttribute(PropertyImpl p) { 
  Iterator<?> it0 = ((Collection<?>) OclOperations 
                                             .allInstances("Classifier")) 
                                             .iterator(); 
  Boolean r1 = false; 
  if (((Collection<?>) OclOperations 
             .allInstances("Classifier")) 
            .size() > 0) { 
   while (it0.hasNext()) { 
    Classifier c = (Classifier) it0.next(); 
    Boolean r0 = false; 
    if (OclOperations.includes( 
                            (Collection<Property>) c.getAttributes(), p)) { 
     r0 = true; 
    } 
    r1 = r0; 
    if (r0) { 
     break; 
    } 
   } 
  } else { 
   r1 = true; 
  } 
  Boolean r2 = false; 
  if (r1 == self.isAttribute(p)) { 
   r2 = true; 
  } 
  return r2; 
 }

context Property::isAttribute(p: Property): Boolean

post: result = Classifier.allInstances->exists(c |

         c.attribute->includes(p)) 

(a) Post-condition for isAttribute method

(b) Generated Java Boolean method

Figure 5.4: OCL post condition and generated Java Boolean method.

5.3.2 Efficiency

To determine the efficiency, we compared our approach with a glass box testing

approach [11], and Korat [48], a black box testing approach, which are two prominent

approaches, in terms of the number of generated test cases. One reason for this

selection is that these two approaches consider different methods to generate test

case values. The number of test cases determines the number of times that the
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method under test must be executed. Since our approach achieves branch coverage,

the smaller the number of necessary test cases, the greater the efficiency. Both of

Korat and the glass box testing approach use finitization to limit the number of values

that can be assigned to a field. While the small scope hypothesis is the assumption

of both approaches, they cannot be as effective as our approach since we explore

different test cases to cover the branch coverage criteria. In the case of the glass box

testing approach, the search space is pruned by ignoring fields not accessed during

the execution of the method under test.

To compare our approach with Korat on the generation of the test input state

space, we consider the Multiplicity and Navigability in a class diagram and convert

these constraints into an invariant method repOK() that Korat uses to generate all

test cases. For example, in Figure 5.2, repOK() in Class checks the multiplicity and

navigability on Property’s end. Method repOK() in Property checks the multiplicity

and navigability on both Class and Association’s end.

The results of the comparison for four methods from the UML2 project are shown

in Table 5.7. The second column in the table shows the number of classes involved on

each of the tests, which represents a fragment of the UML metamodel. Considering

all the metamodel classes would greatly increase the number of test cases generated

by the black bock approach, since it would recursively call repOK() in all the classes

involved. On the third column we have different finitization values, a 3 indicates that

both the black box and glass box testing approaches would consider up to 3 different

values for a given field during the test case generation. As opposed to our approach

that considers all possible values. The fourth column shows the number of test cases

generated by the glass box testing approach. For the method maySpecializeType(),

since the method under test has only one parameter that can take up to 3-5 different

values, depending on the finitization, and no extra fields are touched during the

execution, the number of generated test cases is equal to the finitization number.
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For the second method, extra fields are touched during the execution of the method

under test, increasing the number of generated test cases. The fifth column shows the

number of test cases generated by the black box testing approach. The number of test

cases is determined by number of parameters, number of classes, and the associations

between them, where each of the fields can take up to 3-5 values depending on the

finitization. This results in a large number of test cases since the black box testing

approach tries all possible combinations for all the fields involved. Finally, the last

column shows the number of test cases generated by our approach.
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Table 5.2: Comparison with Korat.

Finitization Number of 
Fields Read

Number of 
Test Inputs

Time to  
Generate 
Test Inputs

Total Time 
to Test 
Inputs (ms)

Number of 
Fields Read 
by Korat

Number of 
Test Inputs 
by Korat 

Time to 
Generate 
Test Inputs 
by Korat 
(ms)

Total Time 
to Test "
Inputs by 
Korat (ms)

1 (1,1,2,2) 4 3 2133.25 ms 2275.07 ms 8 25 2048.96 ms 2407.49 ms

(1,1,2,3) 4 3 2129.19 2275.48 9 81 2151.7 3308.38

(1,1,3,2) 5 4 2172.04 2315.42 10 125 2429.84 4344.84

(1,1,4,2) 6 5 2186.85 2328.28 12 625 2361.85 11668.1

(1,1,4,3) 6 5 2196.66 2339.11 13 6561 2642.19 95677.17

2 (1,1,1,1,1,2) 7 8 2134.12 2855.57 10 125 2256.15 4159.92

(1,1,1,1,2,2) 8 12 2214.36 2935.72 12 625 2343.75 12262.5

(1,1,1,1,2,3) 8 12 2230.18 2951.33 13 6561 3062.41 108825.73

(1,1,1,2,2,3) 10 18 2353.65 3077.47 15 59049 time out time out

(1,1,1,2,2,4) 10 18 2397.33 3119.18 16 1419857 time out time out

3 (1,1,1,1,1,1,2) 7 8 2156.17 2707.14 12 729 2335.9 13803.07

(1,1,1,1,2,1,2) 8 12 2296.73 2943.62 14 6561 2963.54 107152.22

(1,1,1,1,2,2,2) 8 12 2284.25 2951.57 16 83521 time out time out

(1,1,1,2,2,2,2) 10 18 2313.58 3136.75 18 1419857 time out time out

(1,1,1,2,2,3,2) 10 18 2383.76 3122.19 20 39135393 time out time out

4 (1,1,1,1,1,1,1,1) 7 8 2246.18 2683.42 13 729 2551.63 14018.8

(1,1,1,1,1,1,1,2) 8 8 2312.01 2893.8 15 4913 2673.09 81870.65

(1,1,1,1,2,1,1,2) 8 12 2293.27 2912.47 17 83521 time out time out

(1,1,1,1,2,1,2,2) 10 12 2243.13 3284.42 18 1185921 time out time out

(1,1,1,2,2,1,2,2) 10 18 2351.37 3189.14 20 39135393 time out time out

5 (1,1,1,1,1,1,1,1,1) 7 8 2237.71 2897.47 15 4913 2783.85 90753.16

(1,1,1,1,1,1,1,1,2) 7 8 2215.31 2838.09 16 35937 time out time out

(1,1,1,1,2,1,1,1,2) 8 12 2240.2 3015.76 18 1185921 time out time out

(1,1,1,1,2,1,1,2,2) 8 12 2236.18 3093.24 20 17850625 time out time out

(1,1,1,2,2,1,1,2,2) 10 18 2312.49 3121.1 22 1160290625 time out time out

Table 5.3: Test case generation comparison.

Mutation Operator Original Code Mutation Example

Absolute Value Insertion x = 3 * a; x = 3 * abs (a);

Arithmetic Operator Replacement x = a + b; x = a - b;

Relational Operator Replacement if ( m > n ) if ( m >= n )

Conditional Operator Replacement if ( a && b ) if ( a || b )

Assignment Operator Replacement x += 3; x -= 3;

Unary Operator Insertion x = 3 * a; x = 3 * -a;
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Table 5.4: Mutations for method getOpposite().

# Line Mutation Type

1 3 if (!property.isNavigable()) { Unary Operator 
Insertion

2 5 if (association == null) { Relational Operator 
Replacement

3 8 if (memberEnds.size() != 2) { Relational Operator 
Replacement

4 8 if (memberEnds.size() > 2) { Relational Operator 
Replacement

5 8 if (memberEnds.size() < 2) { Relational Operator 
Replacement

6 11 if (index == -1) { Relational Operator 
Replacement

7 11 if (index > -1) { Relational Operator 
Replacement

8 11 if (index < -1) { Relational Operator 
Replacement

9 16 if (_association.getOwnedEnds().contains(otherEnd) ... Unary Operation 
Deletion

10 16 ... contains(otherEnd) && 
association.getNavigableOwnedEnds() ...

Conditional Operator 
Replacement

11 13 ... memberEnds).basicGet(Math.abs(index + 1)); ... Arithmetic Operator 
Replacement

12 13 ... memberEnds).basicGet(Math.abs(index * 1)); ... Arithmetic Operator 
Replacement

13 13 ... memberEnds).basicGet(Math.abs(index / 1)); ... Arithmetic Operator 
Replacement
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Table 5.5: Mutations for method earn().

# Line Mutation Type

1 2 points -= i Assignment Operator Replacement

2 2 points *= i Assignment Operator Replacement

3 2 points /= i Assignment Operator Replacement

4 2 points %= i Assignment Operator Replacement

5 2 points >= i Assignment Operator Replacement

6 2 points |= i Assignment Operator Replacement

7 2 points ^= i Assignment Operator Replacement

8 2 points <<= i Assignment Operator Replacement

9 2 points >>= i Assignment Operator Replacement

10 2 points >>>= i Assignment Operator Replacement

11 2 points += abs(i) Absolute Value Insertion

12 2 points += -abs(i) Absolute Value Insertion

13 2 points += failOnZero(i) Absolute Value Insertion

14 3 if (points >= 100) Relational Operator Replacement

15 3 if (points < 100) Relational Operator Replacement

16 3 if (points <= 100) Relational Operator Replacement

17 3 if (points != 100) Relational Operator Replacement

18 6 if (points < 0) Relational Operator Replacement

19 6 if (points <= 0) Relational Operator Replacement

20 6 if (points != 0) Relational Operator Replacement
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Table 5.6: Mutation testing comparison.

% Branch Coverage # Mutants Killed % Mutants Killed

Method CCUJ Small 
Scope

# of 
Mutants

CCUJ Small 
Scope

CCUJ Small 
Scope

earn() 100% 66% 20 19 19 95% 95%

getOpposite() 100% 64% 13 10 10 76% 76%

earn2() 100% 82% 116 110 42 95% 36%

ofAge() 100% 71% 11 10 5 91% 45%

checkDates() 100% 100% 8 8 8 100% 100%

knownServiceLevel() 100% 70% 4 4 2 100% 50%

correctCard() 100% 100% 4 4 4 100% 100%

levelAndColor() 100% 78% 22 22 10 100% 45%

minServices() 100% 58% 11 10 10 91% 91%

sizesAgree() 100% 55% 18 17 17 94% 94%

noAccounts() 100% 54% 34 32 32 94% 94%

numberOfParticipants() 100% 58% 11 10 10 91% 91%

numberOfParticipants2() 100% 58% 11 10 10 91% 91%

firstLevel() 100% 70% 4 4 2 100% 50%

isEmpty() 100% 58% 11 10 10 91% 91%

birthdayHappens() 100% 58% 11 10 10 91% 91%

upgradePointsEarned() 100% 58% 11 10 10 91% 91%

totalPoints() 100% 79% 11 10 7 91% 64%

totalPointsEarning() 100% 71% 33 31 20 94% 61%

totalPointsEarning2() 100% 90% 19 19 4 100% 21%

Average 100.00% 70.02% 383 360 242 93.78% 73.87%

97



Table 5.7: Test case generation comparison.

Number of Test Cases

Test No. Classes Finitazation Glass Box Black Box Finitazation Our Approach

Property::isAttribute() 2 3 26 6561 ∞ 2

2 4 64 65536 ∞ 2

2 5 125 390625 ∞ 2

           

StateMachine::ancestor() 8 3 27 6561 ∞ 10

8 4 64 65536 ∞ 10

8 5 125 390625 ∞ 10

           

Classifier::isTemplate() 4 3 108 2916 ∞ 6

4 4 256 16384 ∞ 6

4 5 500 62500 ∞ 6

           

Element::destroy() 3 3 27 531441 ∞ 3

3 4 64 16777216 ∞ 3

3 5 125 244140625 ∞ 3
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CHAPTER VI

CONCLUSIONS

This dissertation presents two consistency checking approaches. The first is based

on a bounded exhaustive testing technique with test input space pruning. Our prun-

ing technique is based on do not care fields that detects fields that are not relevant

for the method under test. Our technique was able to reduce the number of required

test cases and successfully detect errors in two industry strength UML projects [50].

However, our exhaustive testing technique includes some drawbacks, namely, it does

not guarantees a full exploration of the possible execution paths in the method un-

der test, which may result on missing test cases that could expose a problem in

the implementation, and a lack of efficiency compared to an approach that leverages

information about previous executions when generating test cases, e.g., test case gen-

eration based on branch coverage, bounded exhaustive test case generation is more

inefficient. Our second approach address these concerns. In our second approach

we introduce a consistency checking technique that uses a testing-based validation

technique that combines coverage criteria and dynamic symbolic execution with path

conditions analysis to reduce the number of input states without sacrificing accuracy.

It extends traditional lazy initialization for minimum test case generation from a class

diagram, and extends universal symbolic execution to work with Java bytecode for

consistency checking. Our approach was applied to multiple methods with invariants
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and post conditions in UML implementation projects, and was able to detect multiple

errors while efficiently generating a small number of test cases. Some of the draw-

backs of our approach are related to the limitations on SAT solver. Our approach

only supports as data types basic arrays, objects, and integer types, and basic path

condition constructs. Floating type numbers are not supported. As a future work we

intend to expand support for multiple data types and path conditions.
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APPENDIX A

UML ASSOCIATION PROPERTIES

FORMALIZATION

In the following subsections we present each of the association properties in more

detail and give examples of its use in a class diagram. Also we use the Object

Constraint Language (OCL) to strictly define each of the properties at M2 and M1

level. The formalization of the association properties allows us to find deviations

between a UML class diagram and its implementation in terms of the different types

of association relationships. The following sections are organized as follows: for each

property, we present its definition based on the UML specification, a formal definition

using the OCL language at M2 level, the algorithm used to generate the properties

constraints at M1 level, and an example of the generated M1 level constraints.

A.1 Navigability

As previously introduced, navigability on an association relationship is used to

specify the accessibility of class instances. Navigability is represented by an arrow

on the navigable end, if both ends are navigable, the arrows are normally omitted.

The class diagram in Figure A.1(a) shows an example of unidirectional navigability,
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Division Client

+divisions *

1..2 +clients

Division Client

+divisions *

1..2 +clients

(a) Navigability on Client's end

(a) Navigability on Division's end

Figure A.1: Navigability on a class diagram.

div1:Division cli1:Client

Figure A.2: An object diagram for class diagram in Figure A.1(a)

where an instance of class Division can efficiently access an instance of class Client

but not the opposite way. On Figure A.1(b) the navigability is bidirectional.

A.1.1 Navigability Constraint at M2 Level

The navigability constraint is defined for the Association context. Using Figure

A.1(a) as an example, for each member end on the association, m1 = clients, m2 =

divisions, if member end m1 is navigable, the instance associated with the opposite

member end m2 must have a reference to the instance associated with the navigable

member end m1. In Figure A.2, the instance div1 is associated with the navigable

member end m1, and instance cli1 is associated with the opposite member end m2.

The instance div1 must have a reference to instance cli1.

context As soc i a t i on
inv : s e l f . memberEnd−>f o r A l l (m1, m2 | m1 <> m2 i m p l i e s

(m1. i sNav igab l e ( s e l f ) i m p l i e s m2. hasReferenceTo (m1, s e l f ) ) )

In the constraint, the method isNavigable() returns true if the member end is

navigable, e.g., the method would return true for member end m1 (clients), and
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false for member end m2 (divisions). The method hasReference() returns true if the

instance associated with member end m2 (div1 in Figure A.2) has a reference to the

instance associated with the member end m1 (cli1 in Figure A.2). More details about

auxiliary operations, such as isNavigable(), can be found in Section 0.

A.1.2 Algorithm to Generate Navigability Constraint at M1 Level

The algorithm to generate navigability constraints at M1 works as follows: for

every association in the model that is not unidirectional (it has at least two navigable

member ends) the algorithm selects its navigable member ends and for each pair-wise

combination it generates a pair of constraints, one for each member end.

f o r each a s s o c i a t i o n ‘ ‘ a ’ ’ in the model

// s e l e c t s nav igab le member ends
l e t ends : Set ( Property ) = a . memberEnd−>r e j e c t (m | a . ownedEnd−>

i n c l u d e s (m) )

i f ends s i z e >= 2
ends−>f o r A l l ( e1 , e2 | e1 <> e2 , generate c o n s t r a i n t s )

// va lue s in square bracket s are r e s o l v e d from the model
context e1 : [ e1 type ]
inv : e1 . [ e2 name]−> f o r A l l ( e2 | e2 . [ e1 name]−>i n c l u d e s ( e1 ) )

context e2 : [ e2 type ]
inv : e2 . [ e1 name]−> f o r A l l ( e1 | e1 . [ e2 name]−>i n c l u d e s ( e2 ) )

A.1.3 Navigability Constraint at M1 Level

Using the class diagram in Figure A.1(b) as an example, we automatically generate

two OCL constraint for each of the navigable member ends in the diagram that are

part of a bidirectional association. For this example a total of 2 OCL constraints are

generated. Each constraint checks that, for each pair of classes, C1 and C2, that are

part of a bidirectional association, if an object of type C1 has a reference to an object

of type C2, the object of type C2 must also have a reference to the object of type C1.
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context d : D iv i s i on
inv : d . c l i e n t s−>f o r A l l ( c | c . d i v i s i o n s−>i n c l u d e s (d) )

context c:Client inv: c.divisions->forAll(d | d.clients->includes(c))

A.2 Multiplicity

The multiplicity of an association end constraints the number of references be-

tween the instances of the participating classes in the association. Multiplicity can

be specified by a single number or a range in the form “a..b”, where “a” represents

the lower multiplicity and “b” represents the upper multiplicity. An “*” can be used

to represent an unlimited upper multiplicity. As an example, Figure A.1(b), the mul-

tiplicity “0..5” on Client’s end specifies that an instance of class Division can have

a reference to 0 or at most 5 instances of class Client. The “*” on Division’s end

indicates that an instance of class Client can have a reference to 0 or an unlimited

number of instances of class Division.

Some associations can also include a qualifier property, a property used to group

a set of elements in a member end with a multiplicity greater than 1. For example,

the class diagram in Figure A.3 shows the qualifying property LineId, this property

is part of the class Items. This means that an instance of class Invoice can have a

reference to no more than 5 instances of class Item with the same LineId, but it can

have a reference to more than 5 if LineId is different.

Invoice Items

0..* 1..5

i +c
LineId

Figure A.3: Qualified association.
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A.2.1 Multiplicity Constraint at M2 Level

The multiplicity constraint is defined for the meta-class Class context. For each

instance i of class self, and for each association a where self is a participating class,

we count the number of links or instances of a where i is referenced. The number of

references must be within the multiplicity range for that particular association.

context Class
inv : s e l f . i n s t a n c e s ( )−>f o r A l l ( i |

As soc i a t i on . a l l I n s t a n c e s ( )−>f o r A l l ( a |
a . memberEnd−>f o r A l l (m1, m2 | m1. type = s e l f and m1 <> m2 and
a . l i n k s ( )−>s i z e ( ) > 0 i m p l i e s i f m2. q u a l i f i e r −>s i z e ( ) = 0
then checkCount ( l i nk sFor ( a , i , m1)−>s i z e ( ) , m2) e l s e
checkQua l i fy ing (a , i , m1, m2) e n d i f ) ) )

In the constraint, the operation allInstances() returns a collection with all the

instances of meta-class Association. The operation checkCount() returns true if the

number of links (linksFor()) is within the multiplicity range for the member end

m2. The operation checkQualifying() is similar to checkCount() but it takes into

consideration the qualifying property.

Bank Division

1..5

+divisions

Figure A.4: Class diagram with multiplicity constraints.

A.2.2 Algorithm to Generate Multiplicity Constraint at M1 Level

For each association in the model, the algorithm selects the navigable member

ends and generates a constraint for each. The algorithm considers two scenarios

related to the multiplicity type, the first one when the multiplicity is set to exactly

1 and the second one when the multiplicity is given by a range with a non-infinity

upper bound. The outline of the algorithm is as follows:

f o r each a s s o c i a t i o n ‘ ‘ a ’ ’ in the model
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a . memberEnd−>f o r A l l (m1 | generate c o n s t r a i n t s )

i f not a . ownedEnd−>i n c l u d e s (m1) // i f m1 i s nav igab le
// the va lue s i n s i d e square bracket s are r e s o l v ed from the model
case 1 : m1. upperValue = 1 and m1. lowerValue = 1

context c : [ m1 ownerClass ]
inv : c . [ m1 name ] <> OclVoid

case 2 : m1. upperValue > 1
context c : [ m1 ownerClass ]
inv : c . [ m1 name]−> s i z e ( ) <= m1. upperValue

and c . [ m1 name]−> s i z e ( ) >= m1. lowerValue

A.2.3 Multiplicity Constraint at M1 Level

A multiplicity constraint is automatically generated for each member end with a

bounded multiplicity. As an example, in Figure A.4, one OCL constraint is generated

for clients member end with a bounded multiplicity of 1..5.

context div : D iv i s i on
inv : div . c l i e n t s−>s i z e ( ) <= 5 and div . c l i e n t s−>s i z e ( ) >= 1

A.3 Subsetting

A subsetting association is defined by the UML specification as follows:

“Subsetting represents the familiar set-theoretic concept. It is applicable to the

collections rep-resented by association ends, not to the association itself. It means

that the subsetting association end is a collection that is either equal to the collection

that it is subsetting or a proper subset of that collection. (Proper subsetting implies

that the superset is not empty and that the subset has fewer members.) Subsetting is

a relationship in the domain of extensional semantics. [7]” p. 40. The class diagram in

Figure A.5 shows an example where properties b1 and b2 on class A1 subset property

b on class A. This means that the collection contained in property b1 and property

b2, is a subset of the collection contained in property b.
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A

A1

B

B1 B2
b1 {subsets b}

/b {union}

0..*

b2 {subsets b}

Figure A.5: Subsetting and Union associations.

A.3.1 Subsetting Constraint at M2 Level

The subsetting constraint is defined for the meta-class Class context. For each

instance i of class self, if self is a participating class on a subsetting association, the

instance i must be part of the union set of all subsetting association.

context Class
inv : s e l f . i n s t a n c e s ( )−>f o r A l l ( i |

s e l f . s u b s e t t i n g A s s o c i a t i o n s ( )−>f o r A l l ( a |
s e l f . va lue sForAssoc i a t i on (a , i )−>f o r A l l ( l |
s e l f . i s Subs e t ( i , l , s e l f . a l l Subse t t edVa lue s ( a , i ) ) ) ) )

The constraint uses several auxiliary operations, namely, instances(), subsettin-

gAssociations(), valuesForAssociation(), isSubset(), and allSubsettedValues(). For

more information about these methods, please refer to Section 0.

A.3.2 Algorithm to Generate Subsetting Constraint at M1 Level

The algorithm to generate subsetting constraints at M1 works as follows: for every

association in the model we select the navigable member ends that subset at least one

property. The generated constraint checks if the values in the subsetting property are

included in at least one of the subsetted properties.

f o r each a s s o c i a t i o n ‘ ‘ a ’ ’ in the model
a . memberEnd−>f o r A l l (m1 | generate c o n s t r a i n t s )

i f not a . ownedEnd−>i n c l u d e s (m1) and m1. r ede f inedProper ty i s not empty
l e t R = m1. r ede f inedProper ty

// the va lue s i n s i d e square bracket s are r e s o l v ed from the model
context c : [ m1 ownerClass type ]
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Inv : c . [ m1 name]−> f o r A l l ( x |

x . oclAsType ( [R[ 0 ] owenerClass ] ) . [ R[ 0 ] name]−>i n c l u d e s ( x ) or
x . oclAsType ( [R[ 1 ] owenerClass ] ) . [ R[ 1 ] name]−>i n c l u d e s ( x ) or
. . .
x . oclAsType ( [R[ n ] owenerClass ] ) . [ R[ n ] name]−>i n c l u d e s ( x ) )

A.3.3 Subsetting Constraint at M1 Level

For the subset property, we generate an OCL constraint for each of the subsetting

properties and the subsetted property. As an example, in Figure A.5 we generate an

OCL constraint for the subsetting properties b1 and b2, and one for the subsetted

property b. The constraints check that each element in the subsetting properties is

also an element of the subsetted property.

context a : A1
inv : a . b1−>f o r A l l ( x | a . oclAsType (A) . b−>i n c l u d e s ( x ) )

context a : A1
inv : a . b2−>f o r A l l ( x | a . oclAsType (A) . b−>i n c l u d e s ( x ) )

A.4 Union

An association end can be marked as a union to show that the end is derived

by the union of its subsets. On Figure A.5, property b on class A is the union of

properties b1 and b2 on class A1.

A.4.1 Union Constraint

On the meta-class Class context, if class self is part of a union, every instance i of

class self must be part of at least one of the subsetting sets.

context Class
inv : s e l f . i n s t a n c e s ( )−>f o r A l l ( i |

s e l f . un i onAssoc i a t i ons ( )−>f o r A l l ( a |
a . memberEnd−>f o r A l l (p | p . i sDer ivedUnion i m p l i e s
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s e l f . propertyValues (p , a , i )−>i n c l u d e s A l l ( s e l f . unionSubsetValues
(p , i ) ) and

s e l f . unionSubsetValues (p , i )−>i n c l u d e s A l l ( s e l f . propertyValues (p ,
a , i ) ) ) ) )

The constraint uses the OCL method includesAll() that checks if a collection in-

cludes all the elements in a second collection. The constraint also uses three auxiliary

operations, unionAssociations(), propertyValues(), and unionSubsetValues().

A.4.2 Algorithm to Generate Union Constraint at M1 Level

For each association in the model the algorithm selects the navigable member

ends that are subsetted at least once and generate a constraint using the following

template.

f o r each a s s o c i a t i o n ‘ ‘ a ’ ’ in the model
a . memberEnd−>f o r A l l (m1 | generate c o n s t r a i n t s )

i f not a . ownedEnd−>i n c l u d e s (m1) // i f m1 i s nav igab le
l e t R be a l l p r o p e r t i e s r e d e f i n i n g m1
// the va lue s i n s i d e square bracket s are r e s o l v ed from the model

context c : [ R[ 0 ] type ]
inv : c . oclAsType ( [R[ 0 ] ownerClass ] ) . [ m1 name]−> f o r A l l ( x |

c . [ r [ 0 ] name]−>i n c l u d e s ( x )

context c : [ R[ n ] type ]
inv : c . oclAsType ( [R[ 1 ] ownerClass ] ) . [ m1 name]−> f o r A l l ( x |

c . [ r [ n ] name]−>i n c l u d e s ( x )

A.4.3 Union Constraint at M1 Level

For the union property, we generate an OCL constraint for the union property b.

The constraints checks that each element in the property must be part of at least one

of the subsetting properties.

context a : A1
inv : a . oclAsType (A) . b−>f o r A l l (b | a . b1−>i n c l u d e s (b) )

context a : A1
inv : a . oclAsType (A) . b−>f o r A l l (b | a . b2−>i n c l u d e s (b) )
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A.5 Redefinition

A redefining association is defined by the UML specification as follows:

“Redefinition is a relationship between features of classifiers within a specialization

hierarchy. Redefinition may be used to change the definition of a feature, and thereby

introduce a specialized classifier in place of the original featuring classifier, but this

usage is incidental. The difference in domain (that redefinition applies to features)

differentiates redefinition from specialization. [7]” 40.

A redefining association must remain consistent with the redefined association

with respect of its type and multiplicity constraints. The type of the redefining prop-

erty must be a subtype of the redefined property and the lower and upper multiplicity

range must be contained on the lower and upper multiplicity range of the redefined

property.

A.5.1 Redefinition Constraint

The redefinition constraint is defined for the Association context. For each mem-

ber end m in the association, the constraint checks whether each redefining property

r is consistent with the multiplicity values of m.

context As soc i a t i on
inv : s e l f . memberEnd−>f o r A l l (m | m. rede f inedProperty−>s i z e ( ) > 0

i m p l i e s
m. rede f inedProperty−>f o r A l l ( r | m. type . conformsTo ( r . type ) and i f
r . upperValue . oclAsType ( L i t e ra lUn l im i t edNatura l ) . va lue < 0 then
m. upperValue . oclAsType ( L i t e ra lUn l im i t edNatura l ) . va lue < 0 e l s e
m. upperValue . oclAsType ( L i t e ra lUn l im i t edNatura l ) . va lue <=
r . upperValue . oclAsType ( L i t e ra lUn l im i t edNatura l ) . va lue e n d i f and
m. lowerValue . oclAsType ( L i t e r a l I n t e g e r ) . va lue >=
r . lowerValue . oclAsType ( L i t e r a l I n t e g e r ) . va lue ) )

A.5.2 Algorithm to Generate Redefinition Constraint at M1 Level

For each pair of redefined and redefining properties, we use the algorithms pre-

viously introduced to generate the navigability, multiplicity, subsetting, and union
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constraints.

A.5.3 Redefinition Constraint at M1 Level

For a redefining property, we automatically generate a constraint for each of the

properties previously defined, i.e. navigability, multiplicity, subsetting, and union.

The constraints are generated following the same approach. A true evaluation of

the redefining property implies a true evaluation of the redefined property. Also, a

violation of the redefined property implies a violation of the redefining property.

A.6 Composition

According to the UML specification, a composite aggregation, or composition, is a

strong form of aggregation. Composition is a subtype of the whole-part relationship.

A whole-part relationship indicates that an element is composed by one or more parts

(elements). A composition can be represented in a class diagram as a solid/filled black

diamond and is differentiated from a regular aggregation by the aggregationKind

property. Its representation is defined in the UML specification as follows:

“An association with aggregationKind = shared differs in notation from binary

associations in adding a hollow diamond as a terminal adornment at the aggregate end

of the association line. The diamond shall be noticeably smaller than the diamond

notation for associations. An association with aggregationKind = composite likewise

has a diamond at the aggregate end, but differs in having the diamond filled in” [7]

p. 42.

The diagram in Figure A.6 shows the aggregate end as a filled diamond next

to class Company. In this example, class Company is a composite class, and class

Division is the part class of the composite aggregation.

The semantics of composition applies certain constraints on the relationship be-

tween instances of the composite and part classes, i.e., instances of class Company
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and instances of class Division respectively.

“If a composite is deleted, all of its parts are normally deleted with it. Note

that a part can (where allowed) be removed from a composite before the composite

is deleted, and thus not be deleted as part of the composite. Compositions may

be linked in a directed acyclic graph with transitive deletion characteristics; that is,

deleting an element in one part of the graph will also result in the deletion of all

elements of the subgraph below that element. Composition is represented by the

isComposite attribute on the part end of the association being set to true” [7] p. 41.

We call the above constraint the lifetime property, because it is related to the

lifetime of the composite and its parts. In essence, this property requires that if a

composite is removed, its parts should also be removed.

Also from the UML specification, we can see the concept of the lifetime property

exemplified in the following sentences, where classifier refers to a composite class:

“A part declares that an instance of this classifier may contain a set of instances by

composition. All such instances are destroyed when the containing classifier instance

is destroyed” [7] p. 184.

The following fragment of the UML specification describes one more constraint:

“An association may represent a composite aggregation (i.e., a whole/part rela-

tionship). Only binary associations can be aggregations. Composite aggregation is a

strong form of aggregation that requires a part instance be included in at most one

composite at a time” [7] p. 41.

The above constraint is related to how a part can be shared among different

composites. The constraint specifies that a part should not be shared by more than

one composition at time. We call this constraint the shareability property.
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A.6.1 Composition Constraints

A.6.1.1 Shareability

We define the global shareability constraint for the meta-class Class context. The

constraint first checks if self is an owned class, if true, we check that for every instance

of self oc, and for every two composite classes where self is the part class, there is not

more than one link at a time from an owner object.

context Class
inv : s e l f . isOwnedClass ( ) i m p l i e s s e l f . i n s t a n c e s ( )−>f o r A l l ( oc |

s e l f . ownerCompositions ( )−>f o r A l l ( comp1 , comp2 | not ( comp1 <>
comp2 and

oc . l i n k E x i s t ( comp1 , comp2) ) ) )

A.6.1.2 Lifetime

For the lifetime property, our constraint first checks if self is a composite class,

then for each instance of self i, if i is deleted, each instance of part classes oci owned

by i should also be deleted.

context Class
inv : s e l f . i sCompos i teClass ( ) i m p l i e s s e l f . i n s t a n c e s ( )−>f o r A l l ( i |

i . i sUnde f ined ( ) i m p l i e s s e l f . ownedClasses ( )−>f o r A l l ( oc |
oc . i n s t a n c e s ( )−>f o r A l l ( o c i | i . ownsObject ( o c i )
i m p l i e s o c i . i sUnde f ined ( ) ) ) )

A.6.2 Algorithm to Generate Composition Constraint at M1 Level

The Lifetime Constraint is defined as post-condition for the method implementing

the lifetime property. For each class in the model that is an owner class we generate

two constraints as follows:

f o r each c l a s s c in the model that i s an owner c l a s s
l e t P be a l l nav igab le a s s o c i a t i o n member ends o f type c

// the va lue s i n s i d e square bracket s are r e s o l v ed from the model
context [ c name ] : : [ methodName ] ( ) : Boolean
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post : [P [ 0 ] ownerClass ] . a l l I n s t a n c e s−>f o r A l l ( x |
x . [ P [ 0 ] name]−>exc ludes ( s e l f ) ) and

[P [ 1 ] ownerClass ] . a l l I n s t a n c e s−>f o r A l l ( x |
x . [ P [ 1 ] name]−>exc ludes ( s e l f ) ) and

. . .
[P [ n ] ownerClass ] . a l l I n s t a n c e s−>f o r A l l ( x |

x . [ P [ n ] name]−>exc ludes ( s e l f ) ) and

f o r each c l a s s c in the model that i s an owner c l a s s
l e t M be the s e t o f composite member ends owned by c , f o r each m in M
l e t P be the s e t o f nav igab le a s s o c i a t i o n member ends o f the same

type o f m

// the va lue s i n s i d e square bracket s are r e s o l v ed from the model
context [ c name ] : : [ methodName ] ( ) : Boolean

post : s e l f . [m name]−> f o r A l l ( x |
[P [ 0 ] ownerClass ] . a l l I n s t a n c e s ( y | y . [ P [ 0 ] name]−>

exc ludes ( x ) and
[P [ 1 ] ownerClass ] . a l l I n s t a n c e s ( y | y . [ P [ 1 ] name]−>

exc ludes ( x ) and
. . .

[P [ n ] ownerClass ] . a l l I n s t a n c e s ( y | y . [ P [ n ] name]−>
exc ludes ( x ) )

A.6.3 Composition Constraint at M1 Level

Company

+cmpy *

1 +div

Client

+divisions *

* +clients

Division

Figure A.6: Composition example.

For the class diagram in Figure A.6, the following constraint, as a post-condition

of the method destroy, checks that no instance of class Client has a reference to the

destroyed division object.

context Company : : des t roy ( )
post : s e l f . div−>f o r A l l ( x | C l i en t . a l l I n s t a n c e s ( y | y . d i v i s i o n s−>

exc ludes ( x ) )

Also, for the shareability property we generate one OCL constraint for each pos-

sible combination of composition pairs that share the same part class. For the class

diagram in Figure A.7, we generate the following four constraints.
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Factory

+factory *

1 +car

Customer

+car

* +customer

Car

1

Figure A.7: Shared composition example.

context f a c t o r y : Factory
inv : f a c t o r y . car−>f o r A l l ( car | Customer . a l l I n s t a n c e s ( )−>f o r A l l ( c |

not c . car−>i n c l u d e s ( car ) )

context customer : Customer
inv : customer . car−>f o r A l l ( car | Factory . a l l I n s t a n c e s ( )−>f o r A l l ( f |

not f . car−>i n c l u d e s ( car ) )

A.7 Composition Constraint Auxiliary Operations

A.7.1 isComposition()

Returns true if self is a composite association, otherwise false.

context As soc i a t i on
de f : i sCompos i t ion ( ) : Boolean =

s e l f . memberEnd−>e x i s t s (me | me . isComposite )

A.7.2 isCompositeClass()

Returns true if self is a composite class, otherwise false.

context Class
de f : i sCompos i teClass ( ) : Boolean =

s e l f . supe rC la s s e s ( )−>e x i s t s ( c |
Property . a l l I n s t a n c e s ( )−>e x i s t s (p |
p . i sComposite and p . getOtherEnd ( ) . type = c ) )

A.7.3 superClasses()

Returns a set of classes that are super classes of class self.

context Class
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de f : supe rC la s s e s ( ) : Set ( Class ) =
Class . a l l I n s t a n c e s ( )−>s e l e c t ( c | s e l f . conformsTo ( c ) )

A.7.4 ownedClasses()

Returns a set of classes owned (part classes) by class self.

context Class
de f : ownedClasses ( ) : Set ( Class ) =

Class . a l l I n s t a n c e s ( )−>s e l e c t ( c |
Property . a l l I n s t a n c e s ( )−>e x i s t s (p |
p . i sComposite and c . supe rC la s s e s ( )−>e x i s t s ( s |
p . type = s and p . getOtherEnd ( ) . type = s e l f ) ) )

A.7.5 isOwnedClass()

Returns true if class self is owned by another class, otherwise false.

context Class
de f : isOwnedClass ( ) : Boolean =

Class . a l l I n s t a n c e s ( )−>e x i s t s ( c |
c . ownedClasses ( )−>i n c l u d e s ( s e l f ) )

A.7.6 compositions()

Returns the set of composite associations in the model.

context Class
de f : compos i t ions ( ) : Set ( As soc i a t i on ) =

Assoc i a t i on . a l l I n s t a n c e s ( )−>s e l e c t ( a |
a . i sCompos i t ion ( ) )

A.7.7 instances()

Returns a set with all the instances of class self.

context Class
de f : i n s t a n c e s ( ) : Set ( I n s t a n c e S p e c i f i c a t i o n ) =

I n s t a n c e S p e c i f i c a t i o n . a l l I n s t a n c e s ( )−>s e l e c t ( i |
i . c l a s s i f i e r −>i n c l u d e s ( s e l f ) )
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A.7.8 isUndefined()

Returns true if the instance self is undefined.

context I n s t a n c e S p e c i f i c a t i o n
de f : i sUnde f ined ( ) : Boolean =

I n s t a n c e S p e c i f i c a t i o n . a l l I n s t a n c e s ( )−>f o r A l l (
i | i . s l o t−>f o r A l l ( s | As soc i a t i on . a l l I n s t a n c e s ( )−>f o r A l l (
a | i . c l a s s i f i e r −>i n c l u d e s ( a ) i m p l i e s s . value−>f o r A l l (
v | v . oclAsType ( InstanceValue ) . i n s t anc e <> s e l f ) ) ) )

A.7.9 ownerCompositions()

Returns a set of composite associations where self is the owned class.

context Class
de f : ownerCompositions ( ) : Set ( As soc i a t i on ) =

compos i t ions ( )−>s e l e c t ( c1 |
c1 . memberEnd−>e x i s t s ( m |
m. isComposite and m. type = s e l f ) )

A.7.10 ownsObject(i:InstanceSpecification)

Returns true if the instance self owns the insntace i, otherwise false.

context I n s t a n c e S p e c i f i c a t i o n
de f : ownsObject ( i : I n s t a n c e S p e c i f i c a t i o n ) : Boolean =

s e l f . s l o t−>e x i s t s ( s | s . value−>e x i s t s (
v | v . oclAsType ( InstanceValue ) . i n s t anc e = i ) )

A.7.11 linkExist(a1:Association, a2:Association)

Returns true if the instance self is referenced by a link of type a1 and a link of

type a2 simultaneously.

context I n s t a n c e S p e c i f i c a t i o n
de f : l i n k E x i s t ( a1 : Assoc ia t ion , a2 : As soc i a t i on ) : Boolean =

I n s t a n c e S p e c i f i c a t i o n . a l l I n s t a n c e s ( )−>e x i s t s (
l i n k 1 , l i n k 2 | l i n k 1 <> l i n k 2 and
l i n k 1 . c l a s s i f i e r −>i n c l u d e s ( a1 ) and
l i n k 2 . c l a s s i f i e r −>i n c l u d e s ( a2 ) and
l i n k 1 . s l o t−>e x i s t s ( s | s . value−> e x i s t s (

117



v | v . oclAsType ( InstanceValue ) . i n s t anc e = s e l f ) )
and l i n k 2 . s l o t−>e x i s t s ( s | s . value−> e x i s t s ( v |
v . oclAsType ( InstanceValue ) . i n s t ance = s e l f ) ) )
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RIGOROUS ANALYSIS OF THE ALGORITHM 

IN PATH CONDITION ANALYSIS 

 

Structural Operational Semantics of Concolic Execution   

 

SR-SymVar-Seq: 
𝑣 is a symbolic expression

< 𝑣; 𝑒1, 𝜔 > ⟶< 𝑒1,𝜔 >
 

 

                 

SR-Read-Field 
  ω. γ(𝑣) ≠ 𝑛𝑢𝑙𝑙   

< 𝑣. 𝑓, 𝜔 > ⟶< ω. Γ(𝑣. 𝑓), ω[C: (ω. C)(𝑣! = 𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒>] >
 

 

 

SR-Field-Assignment 

 
ω.γ(𝑣) ≠𝑛𝑢𝑙𝑙    

<𝑣.𝑓=𝑣1,𝜔> ⟶<𝑣1,ω[γ:ω.γ[(𝑣,𝑓)⟼𝑣1],Γ:ω.Γ[(𝑣,𝑓)⟼𝑣1],C:[(ω.C)(𝑣!=𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒>]]>
 

 

 

SR-If 

  

 
.

<𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2,𝜔> ⟶<𝑒1,𝜔>
 

 

 
.

<𝑖𝑓 𝑓𝑎𝑙𝑠𝑒 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2,𝜔> ⟶<𝑒2,𝜔>
 

 

SR-While 

 
.

< 𝑤ℎ𝑖𝑙𝑒𝑘 𝑒0 𝑑𝑜 𝑒1,𝜔> ⟶< 𝑖𝑓 𝑒0 𝑡ℎ𝑒𝑛 𝑒1; 𝑤ℎ𝑖𝑙𝑒𝑘−1 𝑒0 𝑑𝑜 𝑒1 𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝,𝜔>
  if k > 0 

 

SR-New 

 
𝛼 ∉HOs     �̅� 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠 𝑜𝑓 𝐶

<𝑛𝑒𝑤 𝐶,𝜔> ⟶<𝛼,𝜔[γ:ω.γ[(𝛼,�̅�)⟼{𝑛𝑢𝑙𝑙}],𝛤:𝜔.𝛤[(𝛼,�̅�)⟼{𝑛𝑢𝑙𝑙}]]>
 

 

SR-Method-Call 

 
 ω.γ(𝑣)≠𝑛𝑢𝑙𝑙      𝑚𝑏𝑜𝑑𝑦(𝑚,𝑣)= �̅�.𝑒

<𝑣.𝑚(�̅�1),𝜔> ⟶<𝑒[�̅�1/�̅� ,   𝑣/𝑡ℎ𝑖𝑠],𝜔[𝐶:(𝜔.𝐶)(𝑣!=𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒>]>
 

 

SR-EQ-T 
𝜔. 𝛾(𝑣0) == 𝜔. 𝛾(𝑣1)

< 𝑣0 == 𝑣1, 𝜔 > ⟶< 𝒕𝒓𝒖𝒆, 𝜔[𝐶: ω. C(𝑣0 == 𝑣1)<𝑙,𝑡𝑟𝑢𝑒>] >
 

 

SR-EQ-F 
𝜔. 𝛾(𝑣0)  ! = 𝜔. 𝛾(𝑣1)

< 𝑣0 == 𝑣1, 𝜔 > ⟶< 𝒕𝒓𝒖𝒆, 𝜔[𝐶: ω. C(𝑣0 == 𝑣1)<𝑙,𝑓𝑎𝑙𝑠𝑒>] >
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SR-AND-T 
𝜔. 𝛾(𝑣0) == 𝑡𝑟𝑢𝑒

< 𝑣0&&𝑒1, 𝜔 > ⟶< 𝑒1, 𝜔[𝐶: 𝜔. 𝐶(𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑡𝑟𝑢𝑒>] >
 

 

 

 

SR-AND-F 
𝜔. 𝛾(𝑣0) == 𝑓𝑎𝑙𝑠𝑒

< 𝑣0&&𝑒1, 𝜔 > ⟶< 𝒇𝒂𝒍𝒔𝒆, 𝜔[𝐶: 𝜔. 𝐶(𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑓𝑎𝑙𝑠𝑒>] >
 

 

SR-OR-T 
𝜔. 𝛾(𝑣0) == 𝑡𝑟𝑢𝑒

< 𝑣0 || 𝑣1, 𝜔 >⟶<  𝒕𝒓𝒖𝒆, 𝜔[𝐶: (𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑡𝑟𝑢𝑒>] >
 

 

SR-OR-F 
𝜔. 𝛾(𝑣0) == 𝑓𝑎𝑙𝑠𝑒

< 𝑣0 || 𝑣1, 𝜔 >⟶< 𝑣1, 𝜔[𝐶: (𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑓𝑎𝑙𝑠𝑒>] >
 

 

 

SR-NOT-T 
𝜔. 𝛾(𝑣0) == 𝑡𝑟𝑢𝑒

< ! 𝑣0 , 𝜔 > ⟶< 𝒇𝒂𝒍𝒔𝒆, 𝜔[𝐶: (𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑡𝑟𝑢𝑒>] >
 

 

SR-NOT-F 
𝜔. 𝛾(𝑣0) == 𝑓𝑎𝑙𝑠𝑒

< ! 𝑣0 , 𝜔 > ⟶< 𝒕𝒓𝒖𝒆, 𝜔[𝐶: (𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑓𝑎𝑙𝑠𝑒>] >
 

 

 

 

Structural Operational Semantics of Concrete Execution  

 

S-Const-Seq: 
𝑣 is constant

< 𝑣; 𝑒1, 𝑠 > ⟶< 𝑒1,𝑠 >
 

 

                 

S-Read_Field 
 𝑣 ≠ 𝑛𝑢𝑙𝑙   

< 𝑣. 𝑓, 𝑠 > ⟶<  s(𝑣, 𝑓), s >
 

 

 

S-Field-Assignment 
   𝑣 ≠ 𝑛𝑢𝑙𝑙    

< 𝑣. 𝑓 = 𝑣1, 𝑠 > ⟶< 𝑣1, 𝑠 [(𝑣, 𝑓) ⟼ 𝑣1] >
 



121 
 

 

 

S-If 

 .

< 𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2, 𝑠 > ⟶< 𝑒1, 𝑠 >
 

 .

< 𝑖𝑓 𝑓𝑎𝑙𝑠𝑒 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2, 𝑠 > ⟶< 𝑒2, 𝑠 >
 

 

S-While 
.

< 𝑤ℎ𝑖𝑙𝑒𝑘 𝑒0 𝑑𝑜 𝑒1,𝑠> ⟶< 𝑖𝑓 𝑒0 𝑡ℎ𝑒𝑛 𝑒1; 𝑤ℎ𝑖𝑙𝑒𝑘−1 𝑒0 𝑑𝑜 𝑒1 𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝,𝑠>
  if k > 0 

 

 

S-New 

𝛼 ∉ HOs     𝑓 ̅𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠 𝑜𝑓 𝐶

< 𝑛𝑒𝑤 𝐶, 𝑠 > ⟶< 𝛼, 𝑠[(𝛼, 𝑓)̅ ⟼ {𝑛𝑢𝑙𝑙}] >
 

 

S-Method-Call 
 𝑣 ≠ 𝑛𝑢𝑙𝑙      𝑚𝑏𝑜𝑑𝑦(𝑚, 𝑣) =  �̅�. 𝑒

< 𝑣. 𝑚(�̅�1), 𝑠 > ⟶< 𝑒[�̅�1/�̅� ,   𝑣/𝑡ℎ𝑖𝑠], 𝑠 >
 

 

S-EQ-T .

< 𝑣0 == 𝑣0, 𝑠 > ⟶< 𝑡𝑟𝑢𝑒, 𝑠 >
 

 

S-EQ-F 
𝑣0! = 𝑣1

< 𝑣0 == 𝑣1, 𝑠 > ⟶< 𝑓𝑎𝑙𝑠𝑒, 𝑠 >
 

 

S-AND-T .

< 𝑡𝑟𝑢𝑒 && 𝑒1, 𝑠 > ⟶< 𝑒1, 𝑠 >
 

 

 

 

S-AND-F .

< 𝑓𝑎𝑙𝑠𝑒 &&𝑒1, 𝑠 > ⟶< 𝑓𝑎𝑙𝑠𝑒, 𝑠 >
 

 

S-OR-T .

< 𝑡𝑟𝑢𝑒 || 𝑣1, 𝑠 >⟶<  𝑡𝑟𝑢𝑒, 𝑠 >
 

 

S-OR-F .

< 𝑓𝑎𝑙𝑠𝑒 || 𝑣1, 𝑠 >⟶< 𝑣1, 𝑠 >
 

 



122 
 

 

S-NOT-T .

< ! 𝑡𝑟𝑢𝑒 , 𝑠 > ⟶< 𝑓𝑎𝑙𝑠𝑒, 𝑠 >
 

 

S-NOT-F .

< ! 𝑓𝑎𝑙𝑠𝑒 , 𝑠 > ⟶< 𝑡𝑟𝑢𝑒, 𝑠 >
 

 

 

          

   

 

 

Next we need prove the following lemmas and theorems. 

Lemma 1:  For any state s , 𝛚𝑠=(<𝛚𝑠 . 𝞬, 𝟂.𝝘, 𝛚𝑠. 𝐶>) is the corresponding concolic state, 

and e is an expression, if <e, 𝛚𝑠 > ⟶ < e’, 𝛚𝑠’> then 

i) If < e’, 𝛚𝑠’ > is an error configuration ⊥ in concolic execution, then <s(e’), 

s(𝛚𝑠′. 𝝘)> is an error configuration  ⊥ in the concrete execution. 

ii) If 𝛚𝑠. 𝐶 is satisfied by s then 𝛚𝑠′. 𝐶 is satisfied by s.  

iii) For any state 𝜎, if 𝛚𝑠′. 𝐶 is satisfied by 𝜎, then 𝛚𝑠. 𝐶 is satisfied by 𝜎. 

iv) For any state 𝜎 whose concolic state is  < 𝛚𝜎 . 𝞬, 𝟂.𝝘, 𝛚𝜎 . 𝐶 > such that 𝛚𝜎. 𝐶 

= 𝛚𝑠 . 𝐶, if 𝛚𝑠′. 𝐶 is satisfied by 𝜎, then 1) <σ(e), 𝜎(𝟂.𝝘)>⟶ <𝜎(e’), 

𝜎(𝟂’.𝝘) >;  and 2) 𝛚𝜎′. 𝐶 = 𝛚𝑠′. 𝐶 

 

Proof:  If < e’, 𝛚𝑠’ > is an error heap configuration  ⊥ then e’ is one of the following 

forms: i) null.f; ii)null.f=𝑣𝒜; iii) null.m(v ̅𝒜); or iv) 𝑤ℎ𝑖𝑙𝑒0 𝑒0𝒜
𝑑𝑜 𝑒1𝒜

 . Therefore, the 

corresponding concrete expression s(e’) should be one of the above four forms and so 

<s(e’), s(𝟂’. 𝝘)> is an error heap configuration ⊥ in the concrete execution (no rules can 

be applied). We conclude the proof of i). 
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To prove ii), we observe that the rules of the structural operational semantics of 

concolic execution can be divided into two groups based on how P’ is generated 

1) P’ ≡ P

2) P’ ≡ P ∧ r

For group 1, the rules include SR-SymVar-Seq. Since 𝛚𝑠′. 𝐶 is 𝛚𝑠. 𝐶, the 

conclusion is valid. 

For group 2, the rules include SR-Read_Field. s satisfies r since it is part of the 

premise of the rule. 

To prove iii), we observe that 𝛚𝑠. 𝐶 is part of 𝛚𝑠′. 𝐶 and the conclusion is valid. 

We prove iv) by the structural induction on the expression e.  Let state s be an any 

state and its concolic state is 𝛚𝑠. 

1. Rule SR-SymVar-Seq i.e. e is v; 𝑒1: we have < 𝑣; 𝑒1, 𝛚𝑠 > ⟶< 𝑒1, 𝛚𝑠 >  and

if 𝛚𝑠. C𝑠 is satisfied by 𝜎 then we prove < 𝜎(𝑣; 𝑒1), 𝜎(𝟂.𝝘 )>⟶ <σ(𝑒1),

𝜎(𝟂.𝝘)>. Let state 𝜎 be such a state and its concolic state is < 𝛚𝝈. 𝞬, 𝟂.𝝘,

𝛚𝝈. C > where 𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶 and 𝛚𝝈. 𝞬=𝜎. Then <𝜎(𝑣; 𝑒1), (𝟂. )>=

<𝜎(𝑣); σ(𝑒1), 𝜎(𝟂.𝝘)>. Since  𝑣 is a symbolic expression,  𝜎(𝑣) is a constant

too. By R-Cons-Seq, we have <𝜎(𝑣); σ(𝑒1), (𝟂.𝝘)>⟶ <σ(𝑒1), (𝟂.𝝘)>, and so

this concludes the first part. Since the C part of the symbolic state is not 

changed in this transition, this concludes the second part. 
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2. Rule SR-Read_Field i.e. e is v.f: we have 

< 𝑣. 𝑓, 𝛚𝑠 > ⟶< 𝛚. 𝚪(𝑣. 𝑓), 𝛚𝑠[C: (𝛚𝑠. C)(𝑣! = 𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒>] > and if 

𝛚𝑠′. 𝐶 is satisfied by 𝜎 and its concolic state is < 𝛚𝝈. 𝞬, 𝟂.𝝘, 𝛚𝝈. C > where 

𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶 and 𝛚𝝈. 𝞬=𝜎, then we prove < 𝜎(𝑣. 𝑓),  σ(𝛚. 𝚪)>⟶ < 

σ(𝛚. 𝚪(𝑣. 𝑓)), σ(𝛚. 𝚪)> .   Since 𝛚𝑠′. 𝐶 is satisfied by 𝜎,  σ(𝑣) ≠ 𝑛𝑢𝑙𝑙. By 

rule R-Read_Field, we have < 𝜎(𝑣. 𝑓), σ(𝛚. 𝚪)>⟶ <𝜎(v,f), σ(𝛚. 𝚪)>. Then, 

we have 𝜎(𝛚. 𝚪(𝑣. 𝑓))= 𝜎(𝛚. 𝚪(𝑣).𝑓) = 𝜎(𝑣, 𝑓). This concludes the first part. 

Since 𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶, both 𝛚𝜎′. 𝐶 and 𝛚𝑠′. 𝐶 add (𝑣! = 𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒> to the 

original ones. So this concludes the second part. 

3.  Rule SR-Field-Assignment ie.e is v.f: we have< 𝑣. 𝑓 = 𝑣1, 𝛚𝑠 > ⟶< 𝑣1,

𝛚𝑠[𝛄: 𝛚𝑠. 𝛄[(𝑣, 𝑓) ⟼ 𝑣1], 𝚪: 𝛚. 𝚪[(𝑣, 𝑓) ⟼ 𝑣1], C: (𝛚𝑠. C)(𝑣! =

𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒>] > and if 𝛚𝑠′. 𝐶 is satisfied by 𝜎 and its concolic state is < 𝛚𝝈. 𝞬, 

𝟂.𝝘, 𝛚𝝈. C > where 𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶 and 𝛚𝝈. 𝞬=𝜎, then we prove <σ(𝑣. 𝑓 = 𝑣1), 

σ(𝛚. 𝚪) > ⟶<σ(𝑣1), σ(𝛚𝝈
′ . 𝛤)> where 𝛚𝝈

′ = 𝛚𝝈[𝛄: 𝛚𝝈. 𝛄[(𝑣, 𝑓) ⟼

𝑣1], 𝚪: 𝛚. 𝚪[(𝑣, 𝑓) ⟼ 𝑣1], C: (𝛚𝝈. C)(𝑣 ! = 𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒>]. We have <σ(𝑣. 𝑓 =

𝑣1), σ(𝛚. 𝚪) > =<σ(𝑣. 𝑓) = 𝜎(𝑣1), σ(𝛚. 𝚪) >=<σ(𝑣). 𝑓 = 𝜎(𝑣1), σ(𝛚. 𝚪) >. 

Since 𝛚𝑠′. 𝐶 is satisfied by σ, σ(𝑣)!=null, by rule R-Field-Assignment, we 

have  <σ(𝑣). 𝑓 = 𝜎(𝑣1), σ(𝛚. 𝚪)> ⟶ <𝜎(𝑣1), σ((𝛚. 𝚪)[(𝑣, 𝑓) ⟼ 𝜎(𝑣1)] >. 

Since σ(𝛚. 𝚪(𝑣)) = 𝜎(𝑣), we conclude the first part. Since 𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶, 

both 𝛚𝜎′. 𝐶 and 𝛚𝑠′. 𝐶 add (𝑣! = 𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒> to the original ones. So this 

concludes the second part. 

4. Rule SR-While i.e. e is  𝑤ℎ𝑖𝑙𝑒𝑘 𝑒0 𝑑𝑜 𝑒1: we have < 𝑤ℎ𝑖𝑙𝑒𝑘 𝑒0 𝑑𝑜 𝑒1, 𝛚𝑠 >

⟶< 𝑖𝑓 𝑒0 𝑡ℎ𝑒𝑛 𝑒1; 𝑤ℎ𝑖𝑙𝑒𝑘−1 𝑒0 𝑑𝑜 𝑒1𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝, 𝛚𝑠> and if 𝛚𝑠′. 𝐶 is satisfied 
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by 𝜎 and its concolic state is < 𝛚𝝈. 𝞬, 𝟂.𝝘, 𝛚𝝈. C > where 𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶 and

𝛚𝝈. 𝞬=𝜎, then we prove <𝜎(𝑤ℎ𝑖𝑙𝑒𝑘 𝑒0 𝑑𝑜 𝑒1), σ(𝛚. 𝚪)> 

⟶<σ(𝑖𝑓 𝑒0 𝑡ℎ𝑒𝑛 𝑒1; 𝑤ℎ𝑖𝑙𝑒𝑘−1 𝑒0 𝑑𝑜 𝑒1𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝), σ(𝛚. 𝚪)> assuming k>0. 

<𝜎(𝑤ℎ𝑖𝑙𝑒𝑘 𝑒0 𝑑𝑜 𝑒1), σ(𝛚. 𝚪)> =<𝑤ℎ𝑖𝑙𝑒𝑘 𝜎(𝑒0) 𝑑𝑜 𝜎(𝑒1), σ(𝛚. 𝚪)>. By R-

While, we have 

<𝑤ℎ𝑖𝑙𝑒𝑘 𝜎(𝑒0) 𝑑𝑜 𝜎(𝑒1), σ(𝛚. 𝚪)>⟶<

 𝑖𝑓 𝜎(𝑒0) 𝑡ℎ𝑒𝑛 𝜎(𝑒1); 𝑤ℎ𝑖𝑙𝑒𝑘−1 𝜎(𝑒0) 𝑑𝑜 𝜎(𝑒1) 𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝, σ(𝛚. 𝚪) >. So this

concludes the first part. Since the C part of the symbolic state is not changed 

in this transition, this concludes the second part. 

5. Rule SR-New, i.e. e is new C: we have < 𝑛𝑒𝑤 𝐶, 𝛚𝑠 > ⟶< 𝛼, 𝛚𝑠
′ >

𝑤ℎ𝑒𝑟𝑒 𝛚𝑠
′ = 𝛚𝑠 [𝛄: 𝛚𝑠 . 𝛄[(𝛼, 𝑓)̅ ⟼ {𝑛𝑢𝑙𝑙}], 𝜞: 𝝎. 𝜞[(𝛼, 𝑓)̅ ⟼ {𝑛𝑢𝑙𝑙}]] and

if 𝛚𝑠′. 𝐶 is satisfied by 𝜎 and its concolic state is <𝛚𝝈. 𝞬, 𝟂.𝝘, 𝛚𝝈. C > where 

𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶 and 𝛚𝝈. 𝞬=𝜎, then we prove< 𝜎 (new C), 

σ(𝛚. 𝚪) >⟶< 𝜎(𝛼), 𝜎(𝝎′. 𝜞)>. Since 𝛼 ∉ HOs holds, we take the same  𝛼

used by SR-New and we have < 𝜎 (new C), σ(𝛚. 𝚪) >=<new C, 

σ(𝛚. 𝚪) >⟶< 𝛼, σ(𝛚. 𝚪)[(𝛼, 𝑓)̅ ⟼ {𝑛𝑢𝑙𝑙}] >=< 𝜎(𝛼),(𝝎′. 𝜞) >.  So this

concludes the first part. Since the C part of the symbolic state is not changed 

in this transition, this concludes the second part. 

6. Rule SR-Method_Call, i.e. e is 𝑣0. 𝑚(�̅�1): we have < 𝑣. 𝑚(�̅�1), 𝛚𝑠 >⟶<

𝑒[�̅�1/�̅� ,   𝑣/𝑡ℎ𝑖𝑠], 𝛚𝑠
′ > 𝑤ℎ𝑒𝑟𝑒 𝛚𝑠

′ = 𝛚𝑠[𝐶: (𝛚𝑠. 𝐶)(𝑣! = 𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒>]

and, if 𝛚𝑠′. 𝐶 is satisfied by 𝜎 and its concolic state is < 𝛚𝝈. 𝞬, 𝟂.𝝘, 𝛚𝝈. C >

where 𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶 and 𝛚𝝈. 𝞬=𝜎, then we prove

< 𝜎(𝑣. 𝑚(�̅�1)), σ(𝛚. 𝚪)>⟶< 𝜎(𝑒[�̅�1/�̅� ,   𝑣/𝑡ℎ𝑖𝑠], 𝜎(𝝎′. 𝜞) >. Since 𝜎
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satisfies 𝛚𝑠′. 𝐶,  𝜎(𝑣)!= null holds. < 𝜎(𝑣. 𝑚(�̅�1)), σ(𝛚. 𝚪)> =<

𝜎(𝑣). 𝑚(𝜎(�̅�1)), σ(𝛚. 𝚪)> ⟶ < 𝑒[𝜎(�̅�1)/�̅� ,   𝜎(𝑣)/𝑡ℎ𝑖𝑠], 𝜎(𝛚. 𝚪) >⟶<

𝜎(𝑒[�̅�1/�̅� ,   𝑣/𝑡ℎ𝑖𝑠], 𝜎(𝝎′. 𝜞) > (𝝎′. 𝜞 is not updated in the target

configuration).  So this concludes the first part. Since 𝛚𝜎 . 𝐶 = 𝛚𝑠 . 𝐶, both 

𝛚𝜎′. 𝐶 and 𝛚𝑠′. 𝐶 add (𝑣! = 𝑛𝑢𝑙𝑙)<𝑙,𝑡𝑟𝑢𝑒> to the original ones. So this

concludes the second part. 

7. Rule SR-EQ-T, i.e. e is 𝑣0 == 𝑣1: we have < 𝑣0 == 𝑣1, 𝛚𝑠 > ⟶<

𝒕𝒓𝒖𝒆, 𝛚𝑠
′ > 𝑤ℎ𝑒𝑟𝑒 𝛚𝑠

′ = 𝛚𝑠[𝐶: 𝛚𝑠. C(𝑣0 == 𝑣1)<𝑙,𝑡𝑟𝑢𝑒>] and, if 𝛚𝑠′. 𝐶 is

satisfied by 𝜎 and its concolic state is <𝛚𝝈. 𝞬, 𝟂.𝝘, 𝛚𝝈. C > where 𝛚𝜎 . 𝐶 =

𝛚𝑠. 𝐶 and 𝛚𝝈. 𝞬=𝜎, then we prove < 𝜎(𝑣0 == 𝑣1), σ(ω. Γ) > ⟶<

𝜎(𝒕𝒓𝒖𝒆), 𝜎(𝜔′. 𝛤) >. < 𝜎(𝑣0 == 𝑣1), σ(ω. Γ) > =< 𝜎(𝑣0) ==

𝜎(𝑣1), σ(ω. Γ) >. Since 𝜎 satisfies 𝛚𝑠′. 𝐶,  𝜎(𝑣0) == 𝜎(𝑣1) holds, by S-EQ-

T, we have < 𝜎(𝑣0) == 𝜎(𝑣1), σ(ω. Γ) >⟶< 𝑡𝑟𝑢𝑒, σ(ω. Γ) =<

𝜎(𝒕𝒓𝒖𝒆), 𝜎(𝜔′. 𝛤) > (𝜔′. 𝛤 is not updated in the target configuration). So, this

concludes the first part. Since 𝛚𝜎 . 𝐶 = 𝛚𝑠 . 𝐶, both 𝛚𝜎′. 𝐶 and 𝛚𝑠′. 𝐶 add 

(𝑣0 == 𝑣1)<𝑙,𝑡𝑟𝑢𝑒>to the original ones. So this concludes the second part.

Same proof for the SR-EQ-F. In the same manner, we can prove  SE-EQ-F. 

8. Rule SR-AND-T, i.e. e is 𝑣0&&𝑒1: we have < 𝑣0&&𝑒1, 𝛚𝑠 > ⟶< 𝑒1, 𝛚𝑠
′ >

𝑤ℎ𝑒𝑟𝑒 𝛚𝑠
′ = 𝛚𝑠[𝐶: 𝛚𝑠. 𝐶(𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑡𝑟𝑢𝑒>] and , if 𝛚𝑠′. 𝐶 is satisfied by

𝜎 and its concolic state is < 𝛚𝝈. 𝞬, 𝟂.𝝘, 𝛚𝝈. C > where 𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶 and 

𝛚𝝈. 𝞬=𝜎, then we prove < 𝜎(𝑣0&&𝑒1), σ(ω. Γ) > ⟶< 𝜎(𝑒1), 𝜎(𝜔′. 𝛤) >.

Since 𝜎 satisfies 𝛚𝑠′. 𝐶,  𝜎(𝑣0) == 𝑡𝑟𝑢𝑒 holds, by S-AND-T, we have 

< 𝜎(𝑣0&&𝑒1), σ(ω. Γ) >= < 𝜎(𝑣0)&& 𝜎(𝑒1), σ(ω. Γ) >⟶<
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𝜎(𝑒1), σ(ω. Γ)>= < 𝜎(𝑒1), 𝜎(𝜔′. 𝛤) > (𝜔′. 𝛤 is not updated in the target

configuration). So, this concludes the first part. Since 𝛚𝜎 . 𝐶 = 𝛚𝑠 . 𝐶, both 

𝛚𝜎′. 𝐶 and 𝛚𝑠′. 𝐶 add (𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑡𝑟𝑢𝑒>to the original ones. So this

concludes the second part. In the same manner, we can prove SE-OR-T and 

SE-OR-F. 

9. Rule SR-NOT-T, i.e e is ! 𝑣0: we have < ! 𝑣0 , 𝛚𝑠 > ⟶< 𝒇𝒂𝒍𝒔𝒆, 𝛚𝑠
′ >

𝑤ℎ𝑒𝑟𝑒 𝛚𝑠
′ = 𝛚𝑠[𝐶: 𝛚𝑠. 𝐶(𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑡𝑟𝑢𝑒>] and, if 𝛚𝑠′. 𝐶 is satisfied by

𝜎 and its concolic state is <𝛚𝝈. 𝞬, 𝟂.𝝘, 𝛚𝝈. C > where 𝛚𝜎 . 𝐶 = 𝛚𝑠. 𝐶 and

𝛚𝝈. 𝞬=𝜎, then we prove 𝜎(! 𝑣0) , σ(ω. Γ) > ⟶∗< 𝜎(𝒇𝒂𝒍𝒔𝒆), 𝜎(𝜔′. 𝛤) >.

Since 𝜎 satisfies 𝛚𝑠′. 𝐶,  𝜎(𝑣0) == 𝑡𝑟𝑢𝑒 holds, by S-NOT-T, we have

< 𝜎(! 𝑣0), σ(ω. Γ) > = < ! 𝜎(𝑣0), σ(ω. Γ) = < ! 𝑡𝑟𝑢𝑒, σ(ω. Γ) >⟶<

𝑓𝑎𝑙𝑠𝑒, σ(ω. Γ) > (𝜔′. 𝛤 is not updated in the target configuration). So this

concludes the first part. Since 𝛚𝜎 . 𝐶 = 𝛚𝑠 . 𝐶, both 𝛚𝜎′. 𝐶 and 𝛚𝑠′. 𝐶 add 

(𝑣0 == 𝑡𝑟𝑢𝑒)<𝑙,𝑡𝑟𝑢𝑒>to the original ones. So this concludes the second part.

In the same manner, we can prove SR-NOT-F. 

Lemma 2:   For any state s whose symbolic state is 𝛚𝑠=< 𝛚𝑠. 𝞬, 𝟂.𝝘, {}>, if <e, 𝛚𝑠> 

⟶∗ < e’,𝛚𝑠
′> then

i) If  < e’,𝛚𝑠
′> is an error concolic configuration ⊥, then <s(e’),s(𝛚′. 𝚪)> is an

error heap configuration  ⊥in the concrete execution

ii) State s satisfies 𝛚𝑠
′.C.

iii) For state 𝞼, if 𝞼 satisfies 𝛚𝑠
′.C and 𝛚𝝈=< 𝛚𝝈. 𝞬, 𝟂.𝝘, {}> is the

corresponding concolic state, then 𝛚𝑠
′.C=𝛚𝝈

′.C.
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iv) For state 𝞼, if 𝞼 satisfies 𝛚𝑠
′.C, then < 𝞼(e), 𝞼 > ⟶* <𝛔(e’), 𝛔(𝛚’. Γ)  > 

 

Proof: We prove i) by induction on the length n of the chain of symbolic reductions. 

1. Base case, when n =0, i.e. < e’,𝛚𝑠
′> =<e, 𝛚𝑠> is  ⊥ . Then < e’,𝛚𝑠

′> should 

be one of the following four configurations: 

 < null.f, 𝛚𝑠
′> 

 < null.f=e, 𝛚𝑠
′> 

 < null.m(�̅�), 𝛚𝑠
′> 

 < 𝑤ℎ𝑖𝑙𝑒0 𝑒0 𝑑𝑜 𝑒1, 𝛚𝑠
′> 

Therefore <s(e’),s(𝛚′. 𝚪)> should be an error heap configuration too. 

2. Induction step: assume i) is valid for any n = k -1. We consider the following 

two cases: 

 If <e, 𝛚𝑠 > ⟶𝑘−1 < e’, 𝛚𝑠
′> and < e’, 𝛚𝑠

′> is ⊥, then <s(e’),s(𝛚′. 𝚪)> 

is ⊥ by induction. So there is no kth reduction from < e’, 𝛚𝑠
′>.  

 If <e, 𝛚𝑠 > ⟶𝑘−1  < e’, 𝛚𝑠
′> and < e’, 𝛚𝑠

′> is not ⊥ so we have a 

rule to be applied and the next configuration is < e’, 𝛚𝑠
′> ⟶< e”, 𝛚𝑠”> 

and < e”, 𝛚𝑠”> is an error configuration. Then similar to the base case, 

< e”, 𝛚𝑠”> has one of the four error configurations. Therefore, 

<s(e”),s(𝛚”. 𝚪)> should be an error heap configuration too 

We prove ii) by induction on the length n of the chain of symbolic reductions. 

1. Base case when n =0, i.e. <e, 𝛚𝑠 > where 𝟂.C={}. State s satisfies 𝛚𝑠.C. 

2. Induction step: assume ii) is valid for any n=k-1. We will prove for the state s, 

if <e, 𝛚𝑠 > ⟶𝑘 < e’’, 𝛚𝑠”> then s satisfies 𝟂”.C. <e, 𝛚𝑠 > ⟶𝑘  < e’’, 𝛚𝑠”> 
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can be broken into <e, 𝛚𝑠> ⟶𝑘−1< e’, 𝛚𝑠’> ⟶ < e’’, 𝛚𝑠”>. By induction, s

satisfies 𝛚𝑠’.C. By lemma 1 (ii), s satisfies 𝟂”.C. 

We prove iii) by induction on the length n of the chain of symbolic reductions 

1. Base case when n = 0, i.e. <e, 𝛚𝑠 >=< e’,𝛚𝑠
′> where 𝛚𝑠.C={}. Then for all

state 𝞼, we have 𝛚𝑠
′.C=𝛚𝝈

′.C.

2. Induction Step: assume iii) hold for any n = k-1 . We will prove for any state

𝞼, if 𝞼 satisfies 𝛚𝑠
′.C, then < 𝛔(e), 𝛔 > ⟶* <𝛔(e’), 𝛔(𝛚’. Γ)   >. <e, 𝛚𝑠> ⟶𝑘

< e’, 𝛚𝑠’> can be broken into <e, 𝛚𝑠> ⟶𝑘−1<e”, 𝛚𝑠”> ⟶ <e’, 𝛚𝑠’>. Since 𝞼

satisfies 𝛚𝑠
′.C, by lemma 1 (iii) 𝞼 satisfies 𝛚𝑠”.C. By induction for n=k-1,

𝛚𝑠".C=𝛚𝜎". 𝐶 holds. Next by lemma 1 (iv)(2) and <e”, 𝛚𝑠”> ⟶ <e’, 𝛚𝑠’>,

we have 𝛚𝑠
′.C=𝛚𝝈

′.C. This concludes the case.

We prove iv) by induction on the length n of the chain of symbolic reductions 

1. Base case when n = 0, i.e. <e, 𝛚𝑠 > =< e’,𝛚𝑠
′> where 𝟂.C={}. Then for all

state 𝞼, we have < (e), 𝞼 > = <𝛔(e’), 𝛔(𝛚’. Γ) > immediately.

2. Induction Step: assume iv) hold for any n = k-1 . We will prove for any state

𝞼, if 𝞼 satisfies 𝛚𝑠
′.C, then < 𝛔(e) , 𝛔 > ⟶* <𝛔(e’), 𝛔(𝛚’. Γ)   >. <e, 𝛚𝑠>

⟶𝑘 < e’, 𝛚𝑠’> can be broken into <e, 𝛚𝑠> ⟶𝑘−1<e”, 𝛚𝑠”> ⟶ <e’, 𝛚𝑠’>.

Since 𝞼 satisfies 𝛚𝑠
′.C, by lemma 1 (iii) 𝞼 satisfies 𝛚𝑠”.C. By induction for

n=k-1, < 𝛔(e),  𝛔 > ⟶* <𝛔(e"), 𝛔(𝛚". Γ)> holds. Next by lemma 1 (iv)(1),

from <e”, 𝛚𝑠”> ⟶ <e’, 𝛚𝑠’> and 𝛚𝑠".C=𝛚𝜎". 𝐶 (using lemma 2(iii)), we 

have <𝛔(e"), 𝛔(𝛚". Γ) >⟶<𝛔(e′), 𝛔(𝛚′. Γ) >. This concludes the case.
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This concludes our proof. 

Lemma 3:  For any state s whose symbolic state is 𝛚𝑠=<𝛚𝑠. 𝞬, 𝟂.𝝘, {}>, assume <𝑒1; 𝑒2, 

𝛚𝑠> ⟶∗ < 𝑒2,𝛚𝑠1
> ⟶∗  <𝑒,𝛚𝑠2

> and let pc1be 𝛚𝑠1
.C and pc2 be 𝛚𝑠2

.C-𝛚𝑠1
.C. For

any state 𝜎 whose concolic state is 𝛚𝜎=<𝛚𝜎 . 𝞬, 𝟂.𝝘,{}> such that 𝜎 satisfies 𝛚𝑠1
.C. If

pc1⇒pc2 is a tautology, then 𝛚𝑠2
.C = 𝛚𝜎2

.C.

Proof: For any state s whose symbolic state is 𝛚𝑠=<𝛚𝑠. 𝞬, 𝟂.𝝘, {}>, assume <𝑒1; 𝑒2, 

𝛚𝑠> ⟶∗ < 𝑒2,𝛚𝑠1
>. Then any state 𝜎 whose concolic state is 𝛚𝜎=<𝛚𝜎 . 𝞬, 𝟂.𝝘,{}>

such that 𝜎 satisfies 𝛚𝑠1
.C, we have 𝛚𝑠1

.C = 𝛚𝜎1
.C by lemma 2 iii). Since pc1⇒pc2

is a tautology and 𝜎 satisfies 𝛚𝑠1
.C(=pc1), 𝜎 satisfies pc2. So 𝜎 satisfies 𝛚𝑠2

.C.

Consider <𝑒1; 𝑒2, 𝛚𝑠> ⟶∗<𝑒,𝛚𝑠2
> and 𝜎 satisfies 𝛚𝑠2

.C, we have 𝛚𝑠2
.C = 𝛚𝜎2

.C by

lemma 2 (iii). 

Theorem 1: At the end of the execution of Concolic_CCUJ on the expression 

α .m;α .mpost, the set B should satisfy the following properties: 

i. B contains the finite number of path constraints

ii. B contains all path constraints in α .m;α .mpost

Proof: We first prove i). We add a new path constraint to B after the concolic 

execution of α .m;α .mpost. Note k is set for the execution bound of a loop structure 

and so the number of path conditions in a path constraint is bounded. And each path 

condition has at most two branches, either true or false.  So, the number of path 

constraints in B is finite. 

We next prove ii). Assume B misses one path constraint which is (𝑙1, 𝑏1) 

(𝑙2, 𝑏2)… (𝑙𝑖, 𝑏𝑖)… (𝑙𝑛, 𝑏𝑛) where 𝑙𝑖 ∊ 𝐿𝑎𝑏𝑒𝑙𝑁𝑎𝑚𝑒, 𝑏𝑖 is either true or false, and 
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i={1,2,…n}. Then we find the longest path constraint lpc in B that shares the longest 

prefix of the missing path constraint. Formally, lpc is (𝑙1, 𝑏1) (𝑙2, 𝑏2)… (𝑙𝑖, ! 𝑏𝑖)… 

(𝑙𝑘, 𝑏𝑘) where i is the largest number from 1 to n. Note algorithm Conc_Symb_Exe 

pops a top element from stack_pc if 1) the top element has been flipped, 2) the path 

constraint consisting of stack_pc[1]∧..∧!stack_pc[top]∧Pre is not satisfiable, or the 

path constraint consisting of stack_pc[1]∧..∧stack_pc[i] is produced by  method α .m, 

denoted as 𝑝𝑐1 and the path constraint consisting of stack_pc[i+1]∧..∧stack_pc[top]

is produced by  method α .mpost, denoted as 𝑝𝑐2, and  𝑝𝑐1⇒𝑝𝑐2 is tautology and the 

top element is any of path conditions from 𝑝𝑐2. Now back to our case. If 𝑝𝑐𝑖’s flipped 

value is true, from lpc in B,  then there are two cases where 𝑝𝑐𝑖’s flipped value: 1) 

(𝑙1, 𝑏1) ∧ (𝑙2, 𝑏2) ∧… ∧ (𝑙𝑖, 𝑏𝑖) ∧Pre is satisfiable, 2) 𝑝𝑐𝑖 is not flappable, i.e.  the path 

condition from one of SR-Read-Field,SR-Field-Assignment,and SR-Method-Call. 

Since (𝑙1, 𝑏1) (𝑙2, 𝑏2)… (𝑙𝑖, 𝑏𝑖) is part of the missing path condition, we ensure (𝑙1, 𝑏1)

(𝑙2, 𝑏2)… (𝑙𝑖, 𝑏𝑖) is satisfiable. So, it should be in B and this contradicts our 

assumption that lpc is the longest path constraint in B. If (𝑙1, 𝑏1) (𝑙2, 𝑏2)… (𝑙𝑖, 𝑏𝑖) is 

not satisfiable combined with Pre, then it contradicts the assumption of the missing 

path constraint. If (𝑙1, 𝑏1) (𝑙2, 𝑏2)… (𝑙𝑖−1, 𝑏𝑖−1), denoted as 𝑝𝑐1, in lpc is the path 

constraint of α .m and (𝑙𝑖, ! 𝑏𝑖)… (𝑙𝑘, 𝑏𝑘), denoted as 𝑝𝑐2, in lpc is the path constraint 

of α .mpost and  𝑝𝑐1⇒𝑝𝑐2 is a tautology, then it contradicts lemma3 which shows both

path constraints in α .mpost are the same. 

 Theorem 2: Assume Concolic_CCUJ  can terminate. If Concolic_CCUJ returns true if 

and only if for any state s, if s satisfies Pre(denoted as Pre(s)), then ( <α .m, s >⟶* < e’, 
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𝒔𝒎> (denoted as Method(s))) ∧ (< 𝛼. 𝑚𝑝𝑜𝑠𝑡, 𝒔𝒎 >⟶*<true, 𝒔𝒑𝒐𝒔𝒕> (denoted as Post(s)))

is true. 

Proof:  We first prove Concolic_CCUJ returns true only if for any state s, if s 

satisfies Pre( denoted as Pre(s)), then ( <α .m, s >⟶* < e’, 𝒔𝒎> (denoted as 

Method(s))) ∧ (< 𝛼. 𝑚𝑝𝑜𝑠𝑡, 𝒔𝒎 >⟶*<true, 𝒔𝒑𝒐𝒔𝒕> (denoted as Post(s))) is true. 

Assume Concolic_CCUJ returns true. Notice S is initialized to Pre at line 1. At line 2, 

there are two possibilities for the condition for the while statement: 

i) If S is not satisfiable, then there is no concrete state satisfying S. Then, the

conclusion is valid. 

ii) If S is satisfiable we need to prove that 𝓘 is a loop invariant.

 If S is satisfiable and let s be such a state that statisfies S, then Pre(s).

 If S is not satisfiable, then for any state s if Pre(s)⇒Method(s) ∧ Post(s)

The invariant holds at the beginning of the while loop statement since it is 

under the false branch of the if statement at line 2. Assume we find a state s, 

whose corresponding concolic state is < 𝟂. 𝞬, 𝟂.𝝘, {}> and at line 6, the 

concolic execution results in < α .m, < 𝟂. 𝞬, 𝟂.𝝘, {}>> ⟶∗ <e’, <𝟂𝑚.𝞬,

𝟂𝑚.𝝘,𝟂𝑚. 𝐶> > . Since Concolic_CCUJ returns true, then the condition of 

line 7 is not true so line 8 is skipped. By Lemma 2, we have for any 𝜎, 

including s, such that 𝜎 satisfies 𝟂𝑚. 𝐶, <α .m, 𝜎(𝟂.𝝘 )> ⟶∗ <σ(e’), 𝜎(𝟂𝑚.𝝘)>
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holds. At line 9, the symbolic execution continues to call 𝑚𝑝𝑜𝑠𝑡using <

𝟂𝑚. 𝛄, 𝟂𝑚. 𝚪, 𝜙 > as an initial concolic state. Again line 10 cannot be true; 

otherwise Concolic_CCUJ returns false. So, by Lemma 2, from < α . mpost, <

𝟂𝑚. 𝛄, 𝟂𝑚. 𝚪, 𝜙 >> ⟶∗  <true, 𝟂𝑝𝑜𝑠𝑡> we have < 𝛼. 𝑚𝑝𝑜𝑠𝑡, 𝜎(𝟂𝑚. 𝝘)  >

⟶∗ < 𝜎(true), σ(𝟂𝑝𝑜𝑠𝑡. 𝞒)>. Using the transitive property of ⟶ and lemma 2,

for any 𝜎 such that 𝜎 satisfies 𝟂𝑚. 𝐶 and 𝟂𝑝𝑜𝑠𝑡. 𝐶, we have Pre(𝜎) 

⟹Method(𝜎) ∧ Post(𝜎) holds at line 13. Since there is no change Pre(𝜎), 

Method(𝜎), Post(𝜎) at line 13, we still have  Pre(𝜎) ⟹Method(𝜎) ∧ Post(𝜎).  

At line 14, there are two scenarios: 

1).   if 𝟂𝑚.C ⇒ 𝟂𝑝𝑜𝑠𝑡.C is not a tautology then there exists state 𝜎 such that 𝜎 

satisfies 𝟂𝑚. C but  not 𝟂𝑝𝑜𝑠𝑡. C; so we need to explore a different path in 

𝑚𝑝𝑜𝑠𝑡. Thus, Concolic_CCUJ tries to find a new_pc. Since there is no 

execution of methods α .m and α . mpost, Pre(𝜎) ⟹Method(𝜎) ∧ Post(𝜎)  still 

holds at lines 14, and 15. 

2).  If 𝟂𝑚.C ⇒ 𝟂𝑝𝑜𝑠𝑡.C is a tautology, then for any state 𝜎 if 𝜎 satisfies 𝟂𝑚.C 

then 𝜎 satisfies 𝟂𝑝𝑜𝑠𝑡.C. By Lemma 3, for all these states have the same 

𝟂𝑝𝑜𝑠𝑡.C. In this case, we need to explore a different path in α .m. Since there 

is no execution of methods α .m and α.mpost, Pre(𝜎) ⟹Method(𝜎) ∧ Post(𝜎) 

holding at line 13 still holds at line 16,17, and 18. 

At line 19, S is updated to Pre ∧ new_pc. There are two possibilities for 

new_pc. First, if  new_pc is not false, then S is satisfiable because method 

backtracking pops all the top elements whose path constraint combined with 
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Pre is not satisfiable. Since Pre is part of S, so any state s satisfies S, s should 

satisfy Pre.  If new_pc is false, then S is not satisfiable. Then, from the 

previous execution, we show for any state s we have Pre(s)⇒Method(s) ∧ 

Post(s). So the invariant holds at the end of the while statement.  

 

Next, if the while statement can terminate, namely, S is not satisfiable, then for 

any state s, Pre(s)⇒Method(s) ∧ Post(s) holds. We conclude the “only if” part 

proof. 

 

Next we prove the “if” part.  

 

Assume Concolic_CCUJ returns false if there exists a state s such that  

Pre(s)⇒Method(s) ∧ Post(s) holds. There are two scenarios that return false: 

i) If the condition is false at line 7, then <e’, 𝝎𝒎> in < α .m, 𝟂>⟶∗<e’, 𝝎𝒎 > 

is an error heap configuration . By Lemma 2, <e’, 𝟂𝑚. 𝛄> is an error heap 

configuration  and this contradicts the following fact: Pre(s) ⟹Method(s) 

∧  Post(s) where Method(s) is false. Otherwise, the condition is true at line 

4. Then, 

ii) If condition at line 10 is false and it means 

<  α . m𝑝𝑜𝑠𝑡, < 𝟂𝑚. γ, 𝟂𝑚. Γ, ϕ >> ⟶∗ <false, 𝟂𝑝𝑜𝑠𝑡 >  . By Lemma 2, 

<  𝑠(α . m𝑝𝑜𝑠𝑡), s(𝟂𝑚. γ) > ⟶∗ <s(false), s(𝟂𝑝𝑜𝑠𝑡) >  holds and 

s(false)=false which contradicts the fact: Pre(s) ⟹Method(s) ∧ Post(s) 

where Post(s) is false. 
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This concludes our proof. 

Theorem 3: Algorithm Concolic_CCUJ should terminate. 

Proof: To prove the termination of Algorithm Concolic_CCUJ, we need to prove 

that the while statement can terminate. By Theorem 1, we know B includes a 

finite number of path constraints of α .m;α .mpost. Next, we will show that during 

each loop execution, a new path constraint according to new_pc is added to B. If 

this is true, then number of the execution of the while statement is equal to the 

number of elements in B. 

Method backtracking is the only place to return a path condition. When method 

backtracking returns a path condition other than false, it must satisfy the 

following conditions: 

 stack_pc[top].flipped=false;

 the path condition consisting of stack_pc[1]∧..∧!stack_pc[top]∧Pre is

satisfiable; 

 top>0

Also, a path constraint including path conditions stack_pc[1],…,stack_pc[top] is 

in B. In this case, we can guarantee that there are no path constraints in B that 

have the path conditions stack_pc[1],.., stack_pc[top-1] and !stack_pc[top] as 

their prefix. To prove this, we assume there exists a path constraint in B that has 
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the path conditions stack_pc[1],.., stack_pc[top-1] and !stack_pc[top] as its prefix. 

Then, stack_pc[top].flippped=true since another path constraint 

including path conditions stack_pc[1],…,stack_pc[top] has been in B. This 

contradicts the first condition which is stack_pc[top].flipped=false. So, the path 

constraint new_pc consisting of stack_pc[1]∧..∧!stack_pc[top] is not a prefix of 

any path constraint in B. Thus, the Concolic_CCUJ path constraints generated by 

new_pc is new in B. 
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