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OPTIMIZATION METHODOLOGY FOR CVT RATIO SCHEDULING WITH 
CONSIDERATION OF BOTH ENGINE AND CVT EFFICIENCY 

Steven Beuerle, M.S.E. 

Western Michigan University, 2016 

A transmission ratio schedule is developed to optimize the fuel consumption for an 

automotive continuously variable transmission (CVT) connected to an internal combustion 

engine (ICE). Although the optimal operating line (OOL) generated from an engine brake 

specific fuel consumption (BSFC) map can be used to generate a CVT ratio schedule that yields 

maximum engine efficiency, it was found that OOL-based CVT ratio scheduling does not 

necessarily offer the best fuel economy because optimal CVT efficiency does not always 

correspond to OOL tracking. To develop a CVT ratio schedule that can offer the best fuel 

economy, a novel ratio-scheduling methodology is proposed in this paper. The methodology uses 

an empirical approach to minimize fuel consumption by considering engine efficiency, CVT 

efficiency, and requested vehicle power. The proposed CVT ratio scheduling methodology has 

been simulated using the various portions of the FTP-75 (Federal Test Procedure) cycle. 

Simulation results show that a significant improvement of engine-CVT overall fuel economy 

gain is achieved when using the proposed ratio scheduling methodology compared with the case 

where OOL operation is assumed to yield the highest combined engine-CVT efficiency. 
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INTRODUCTION 

Improving fuel economy in an automotive powertrain has always been a driving force for 

continued improvement in the automotive industry. Thus, vehicle powertrain research is 

constantly searching for ways to change or alter the mechanical operation of a vehicle in order to 

save fuel. Such research has yielded large advancements in the area of engine power delivery 

through transmissions. The stepped-ratio gearbox transmission has long been used as the most 

efficient way to transfer power from the engine to the wheels. However, the continuously 

variable transmission (CVT) has recently emerged as the more efficient transmission due to the 

ability of operating within a wide range of gear ratios, coincidentally giving the engine the 

capability to run near optimum operation for longer periods of time. One type of CVT often used 

in automotive applications is the variable diameter CVT. This CVT is a belt and pulley system, 

where the two pulleys are each made of two conical sheaves facing each other. Figure 1 shows a 

typical configuration of a variable diameter CVT. 

Figure 1: Pulley and belt configuration for a variable diameter CVT [1] 
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In this type of CVT, the primary pulley is connected to the engine crankshaft, usually 

separated by a torque converter or centrifugal clutch. The secondary pulley is attached to the 

driveshaft, and transmits power to the wheels through a final gear reduction. For both pulleys, 

the sheaves are allowed to move closer and farther apart. Since the width of the belt running 

between them remains constant, this movement changes the diameter of the pulleys, allowing the 

speed ratio (hereafter referred to as CVT ratio) between the pulleys to change. This ability allows 

for the CVT to operate at gear ratios in between the stepped ratios at which the gearbox 

transmission can explicitly operate, ultimately allowing the engine to consume less fuel for the 

same power output. Figures 2 and 3 show a sample 4-speed automatic transmission speed map, 

and a sample CVT speed map, respectively. 

 

 

Figure 2: Sample 4-speed automatic transmission shift schedule 
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Figure 3: Sample CVT shift schedule 

 
As seen in Figure 2, as the vehicle speed increases, the transmission shifts from gear to 

gear while simultaneously lowering engine speed. The discrete transmission ratio causes the 

engine to operate away from the points of optimal engine efficiency. In Figure 3, it is shown that 

in a CVT, shifting does not occur. Instead the CVT can change ratio as necessary to allow the 

engine speed to remain constant as the vehicle speeds up. Theoretically, if the engine speed 

remains closer to the optimal engine operating speed, less fuel is consumed. Due to this fact, 

there has been a large amount of attention recently towards the study of improving fuel economy 

by the implementation of CVTs in the automotive driveline. 

Both the engine and CVT efficiencies have a direct impact on the fuel economy. It is 

known that engine efficiency is highest when the engine operates at points along the optimal 

operating line (OOL). The OOL is defined as the line created by connecting points of least 

Ratio	works	
between	
discrete	gears	
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specific fuel consumption across the operating speed and torque range of the engine. This is 

shown in Figure 4, where the OOL is constructed by following the gradient of the engine 

efficiency contour lines.  

 

	

Figure 4: Sample speed vs. torque map with the derivation of an engine OOL. 

 
However, this approach neglects the effects of CVT efficiency. In this paper, we present 

a CVT ratio scheduling methodology that incorporates varying engine and CVT efficiency while 

optimizing for lowest fuel consumption based on vehicle power requests. 

 

Literature Review 
 

The foci of previous and current research in this field of study are not always consistent. 

Therefore, comparison of previous work to the work presented in this paper appears in different 

areas. Some research has been done with more focus on different methods of control for the 
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CVT, while other studies have given more attention to the factors that impact the overall 

powertrain efficiency. First, studies where CVT efficiency is not considered are discussed, 

followed by those that do consider CVT efficiency. Of the studies where CVT efficiency is 

considered, other aspects are introduced in order to further separate the presented methodology 

from previous work. 

Bonsen et al. presents a study in which stepped ratio transmissions are compared to CVT-

implemented systems [2]. In this study, different ratio control strategies are compared on the 

basis of fuel economy and drivability measures such as acceleration time. The assumption that 

using OOL tracking as a method of determining highest efficiency yields the best fuel economy 

was made in this study, and therefore CVT efficiency was not included. However, we propose 

that when varying CVT efficiency is considered within the overall efficiency calculation, highest 

engine efficiency alone does not translate to the best fuel economy. Pfiffner and Guzzella (2003) 

also assume OOL tracking to be the best way to operate the engine [3]. However, since this study 

is focused on fuel-optimal control strategies of a CVT during transient operation, the CVT 

efficiency is assumed to be 100 %, presumably to save time and complexity of the project scope. 

Investigating studies that consider CVT efficiency, an earlier study by Pfiffner and 

Guzzella (2001) focuses only on the optimal operation of CVTs (not the control of them), and 

presents how the CVT efficiency is modeled when it is not neglected or assumed constant [4]. 

The observation that CVT efficiency is a three-dimensional function is made, and therefore, a 

three-dimensional map is developed for the purposes of optimization. This representation of 

CVT efficiency is comparable to the methodology we present, and results in a more accurate 

model from an overall powertrain efficiency standpoint. The primary discrepancy between the 

methodology used in [4] and the proposed methodology in this paper lies within the formulation 
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of the optimization cost function. In two other studies performed by Ryu and Kim, and Luo et 

al., CVT efficiency is considered through the use of analytical equations [5,6]. In the 

methodology presented in this paper, engine and CVT efficiencies, as well as fuel consumption 

data, are approximated and/or interpolated from empirical data sets. The methods for 

approximating the data were developed for faster and smoother optimization, thereby reducing 

computational load and processing time. These methods are discussed in further detail in 

Chapters 2 and 3 of this paper. 

Lastly, a study performed by Lee et al. focuses on control algorithm development with 

consideration of CVT powertrain response lag time [7]. Within this study, the powertrain lag is 

cited as a result from a number of factors including CVT shift dynamics, and CVT filling time – 

the time it takes for the hydraulic fluid to engage the clutches that move the sheaves of the CVT 

pulleys. Although these factors may contribute to powertrain lag, and therefore a decrease in 

potential fuel economy, this study does not consider the selection of operation points to improve 

the CVT efficiency itself. Regardless, this study remains relevant for comparison to the 

presented work because of the very similar velocity-based approach taken within the 

optimization of the control algorithm developed in [7]. 

One last measure divides this work from previous studies: due to the empirical nature of 

the project, the proposed methodology works in a backwards fashion, using vehicle velocity to 

determine the wheel power demanded. CVT efficiency is assumed to be the sole contributor in 

the relationship between demanded wheel power and requested engine power. Fuel power, as a 

function of engine efficiency, is then optimized subject to the requested power constraint such 

that the engine power requested is equal to or greater than that which is demanded by the wheels. 
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This formulation allows the engine to operate away from the OOL when a higher CVT efficiency 

is achievable within the power and ratio constraints. 

Assumptions 

Some assumptions of the theoretical system were made to limit the focus of this 

methodology as well. Torque converter losses are not considered for optimization. Although the 

torque converter is a vital component for power transferal within the vehicle powertrain, this 

assumption allows for a simplified optimization problem with fewer constraints. The fluid 

dynamics and mechanical losses of the torque converter are complex enough that the accuracy 

gained from including them within the system compared to the added time and width of project 

focus was not justified. A second assumption made was steady state operating conditions with 

constant engine coolant and transmission fluid temperature. In reality, it is known that engine 

and CVT efficiencies are dependent on these operating temperatures. Fluctuation in temperature 

was neglected for this project.  

ENGINE EFFICIENCY DATA 

A 2.5L, 4-cylinder internal combustion engine (ICE) was used for this data collection. 

The engine efficiency was measured at many different engine speed and crankshaft torque 

values, testing points within the ranges of 600 – 6500 RPM and 20 – 260 Nm, respectively. 

When plotted, the data create an engine brake specific fuel consumption map. As mentioned in 

Chapter 1, this map is what determines the shape of the OOL. However, the data set had multiple 

areas of concern regarding optimization, mainly areas of local maxima. In order to attain a 
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working surface that would not yield problems within the optimization routine, the empirical 

data was smoothed in MATLAB using a nonlinear regression surface polynomial fit. The order 

of this polynomial surface was 4th order in both the engine speed and engine torque dimensions. 

Although this surface fitting eliminated the areas of local maxima, it was determined that this 

polynomial surface fit had filtered out too much of the reality of the data. Therefore, a 

combination of the initial data set and the filtered surface was developed using a torque-weighted 

relaxation. This alteration eliminated local maxima in the original dataset, while retaining 

realistic characteristics. A three-dimensional representation of the final map used is shown in 

Figure 5 where areas of red and blue indicate high and low engine efficiency, respectively. 

 

 

Figure 5: Example engine efficiency map after polynomial surface fit and torque weighting. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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CVT EFFICIENCY DATA 
 

CVT efficiency was determined using benchmarked CVT torque-loss (Nm) data. The 

CVT efficiency is dependent on three variables: torque converter turbine speed, CVT input 

torque, and CVT ratio. Torque-loss quantities were measured across ranges of torque converter 

(TQC) turbine speeds and CVT input torque values. Additionally, this set of measurements was 

taken at five different CVT ratios. The ranges of TQC turbine speeds and CVT input torque 

values for this set of measurements were 0 – 6000 RPM and 0 – 250 Nm, respectively. The five 

CVT ratios at which these measurements were taken were 0.378, 0.7, 1.05, 1.5, and 2.631. Due 

to the higher dimension set of input variables, a different method for approximating CVT 

efficiency was needed to create a function that was compatible with the computational 

optimization. 

Multiple linear regression was used to fit the data to a three-dimensional function for the 

approximation of CVT efficiency at any point. Using the data set available and the known 

dynamic relationships between the components of the torque converter and the CVT, the 

predictors for the equation to be developed to determine CVT efficiency can be formulated as 

functions of three variables: torque input to the CVT, the TQC turbine speed, and the CVT ratio. 

The regression then gives the coefficients that are combined with these predictors, resulting in a 

nonlinear function that can approximate the CVT efficiency at any point. This nonlinear function 

is of the form: 

 

𝜂!"# =  𝑏! +  
𝑏!
Τ!"#

+  𝑏!𝜔!"# +  𝑏! log 𝑟!"# +  𝑏!
𝜔!"#
Τ!"#

+  𝑏!𝜔!"# log 𝑟!"# +  𝑏!
log 𝑟!"#
Τ!"#
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This form shows that 𝜂!"# is a function of the engine speed, engine torque, and the log of the 

CVT ratio. The bi values are constant terms found from the output of the regression fitting. This 

way, the regression only needs to be performed once for the data set, and then this nonlinear 

function can predict the value of 𝜂!"# for any given point between the limits of the benchmark 

data set. This methodology was derived for this system by Yang Xu of Ford Motor Company and 

can be found in detail in Appendix A. Figure 6 shows regression surfaces generated using this 

methodology for each of the five CVT ratios, where areas of red and blue again indicate high and 

low CVT efficiency. 
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Figure 6: Regression surfaces for each CVT ratio. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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OPTIMIZATION 
 
 

Criteria 
 

 The optimization methodology was developed to optimize combined engine and CVT 

efficiency during power-on operation. From a vehicle cycle standpoint, this translates to only 

optimizing during positive acceleration. It is important to note that when the optimization is not 

being run, CVT efficiency is still being considered in the overall powertrain efficiency. 

Furthermore, simple limits for locked and unlocked TQC cases were set to govern the 

optimization routine. When either the engine speed or the forward vehicle speed is below the 

limit, the TQC is assumed to be slipping, or unlocked, and therefore the optimization is not 

carried out because of lack of TQC efficiency consideration. The points that do not meet the 

criteria for optimization as outlined above correspond to points where only engine efficiency is 

considered. 

 

Methodology 
 

 For the case of a locked TQC, (1) primary CVT pulley speed is equal to the engine 

crankshaft speed, and (2) CVT torque input is equal to engine crankshaft torque output: 

 𝜔!"# =  𝜔!"# [Eq. 1] 

 Τ!"#!" =  Τ!"# [Eq. 2] 

 The methodology is initiated with a given forward vehicle velocity and demanded 

acceleration. From these parameters, the wheel power needed to meet the acceleration 

requirement is calculated using dynamic relationships, starting with the calculation of vehicle 

acceleration, 
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 𝑎 =  
𝑑
𝑑𝑡 𝑣 , [Eq. 3] 

where 𝑣 is forward vehicle velocity. The force applied to the wheels is then, 

 𝐹! = 𝑚𝑎 [Eq. 4] 

where 𝑚 is the vehicle mass. The resistances of rolling friction, air, and grade make up the rest 

of the forces acting on the vehicle, and are shown in Equations 5 through 8: 

 𝑅!"##$%& =  0.02𝑚𝑔 cos𝜃 [Eq. 5] 

 𝑅!"# =  0.5𝜌!"#𝐶!𝐴𝑣! [Eq. 6] 

 𝑅!"#!" =  𝑚𝑔 sin𝜃 [Eq. 7] 

 𝐹! = 𝑅!"##$%& +  𝑅!"# +  𝑅!"#$% [Eq. 8] 

where 𝑔 is the acceleration due to gravity, 𝜃 is the grade of the driving surface, 𝜌!"# is the 

density of air, 𝐶! is a drag coefficient, and 𝐴 is the frontal area of the vehicle. Equation 9 then 

gives the wheel power required to accelerate the vehicle, 

 𝑃!!!!",!"#$%! = (𝐹! +  𝐹!) ∙ 𝑣 [Eq. 9] 

From demanded wheel power, the engine power requested is found using CVT efficiency, as 

shown by Equation 10: 

 𝑃!"#,!"#$"%& =  
𝑃!!!!",!"#$%!

𝜂!"#
 [Eq. 10] 

Equation 10 is one of the constraints used for optimization. Two more constraints come from 

restricting the CVT ratio between a maximum and minimum predefined ratio: 

 𝑟!"#  ≤ 𝑟 [Eq. 11] 

 𝑟 ≤  𝑟!"# [Eq. 12] 

The final constraint is a CVT shift rate limit. Since test data was not given for CVT shift 

speed, the development of this constraint is based on previous work. Pfiffner and Guzzella 
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(2003) stated that the CVT used in their study could shift from maximum to minimum ratio in 

roughly two seconds [3]. The maximum ratio difference for that CVT was 5.5. This translates to 

the CVT shifting through half of the ratio range, 2.75, in about one second. The maximum ratio 

difference for the CVT used in the work presented was 2.253. This was considered close enough 

to the half difference observed in [3], so an assumption was made that the CVT used in this work 

could shift from maximum ratio to minimum ratio in one second. For the case of a time step of 

0.1 seconds (as used in the optimization routine), the most the ratio could change by would be 10 

percent of the previous value, as shown in Equations 13 and 14. 

 𝑟!"#! ≤ 𝑟!"#!!! +
𝑟!!" − 𝑟!"#

10  [Eq. 13] 

 𝑟!"#!!! −
𝑟!"# − 𝑟!"#

10 ≤  𝑟!"#! 
[Eq. 14] 

Bonsen et al. made mention of shifting being limited to 0.5 Hz for smoothness [2]. Given 

that the Hertz unit represents cycles per second, the cycle in this case was interpreted as a 

maximum ratio change. Therefore, the 0.5 Hertz can also be stated as half of a cycle per second 

(or a full cycle in two seconds), further reinforcing the assumption made in our work, as it is 

similar to that of [3]. 

Finally, the objective function to be optimized is an equation that relates fuel power to 

engine power through the engine speed and engine torque. 

 𝑃!"#$ =  
𝜔!"# ∙ Τ!"#

𝜂!"#
 

[Eq.15] 

By optimizing fuel power, theoretically, minimal fuel should be consumed while maintaining 

sufficient engine power to meet the constraint given in Equation 10. 
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Process 
 
 

The proposed methodology is an iterative process. In short, velocity and acceleration 

determine the requested engine power, and therefore, the engine speed and torque. As such, all 

iterations begin the same way, assuring consistency. The criterion for optimization then 

determines how each iteration is carried out. As described in Chapter 1, the optimization is only 

applied in the power-on case, and locked torque converter condition. In cases that don’t meet the 

criterion, some constraints are still placed on the OOL tracking in order to remain within the 

realm of drivability. For instance, under circumstances that do not meet the criteria for 

optimization, ratio limits and shift rate limits are still enacted on the system even though CVT 

efficiency is not being considered. This assures realistic CVT operation throughout the full 

schedule. 

Further steps were taken to guarantee accuracy in the results. As detailed in the previous 

sections, the data for engine and CVT efficiencies was modified slightly to present more 

optimization-friendly functions. However, it is important to note that empirically gathered data is 

not always accurate. Therefore, the alteration of inaccurate data could theoretically lead to 

inaccurate approximations. In optimization, inaccurate approximations can lead to local maxima 

within the data, where an optimized solution may converge. To eliminate this possibility of local 

maximum convergence, a further iteration procedure was developed for the optimization routine. 

Starting with the engine operation point that coincides with the power requested by the engine, 

many random seed points were generated within a defined space around this starting point. Each 

seed point is then optimized, and the point(s) that consume the least fuel is taken as the optimal 

solution. 
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RESULTS 
 

 MATLAB was used to test the proposed methodology. The Bag-3, Bag-2, and Highway 

portions of the FTP75 cycle were used as the cycle velocity input, and change in fuel economy 

was used as the sole comparator. Figure 7 shows the entire FTP75 cycle. 

 

	

Figure 7: FTP75 cycle with portions highlighted. 

 
Notice in Figure 7 that the Bag-1 and Bag-3 portions are identical. The difference between these 

two portions is that Bag-1 is a cold start, meaning the engine has not warmed up to operating 

temperature. Recall that this affects the powertrain efficiency, and we have neglected this change 

in temperature for this study. Bag-3 presents the same cycle portion, but a steady state operating 

temperature is assumed. 
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Results for the Bag-3, Bag-2, and Highway portions of the FTP75 cycle have been 

obtained for two scenarios: one where the CVT shift rate constraint has not been applied, and 

one where it has been. This was done to illustrate how the addition of a CVT shift rate constraint 

alters the resulting CVT ratio schedule. Therefore, we first present the results that correspond to 

the scenario lacking the shift rate constraint, followed by the results where the shift rate has been 

included. Furthermore, the results for both scenarios for all portions of the FTP75 cycle display 

very similar characteristics, thus only the Bag-3 results are discussed in detail below. Percent 

change in fuel economy for each cycle is also presented. The results for both scenarios for the 

Bag-2 and Highway cycles can be found in Appendices A, B, C, and D. 

 

Bag-3 Cycle Results Without the CVT Shift Rate Constraint 
 
 

To start analyzing the results, the first plot investigated is Figure 8, where the optimized 

solutions (red), and the un-optimized solutions (cyan) are plotted point by point on the engine 

speed versus engine torque plane. The original OOL is shown as a solid blue line for reference. 

The corresponding ratio schedule for this set of results is shown in Figure 9. 
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Figure 8:	Bag-3 optimized speed-torque map: No 
CVT shift rate constraint. 

	

Figure 9: Bag-3	CVT ratio schedule: No CVT shift 
rate constraint.	

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

 
Two interesting characteristics are noticed when analyzing this plot. First, starting around 

1200 RPM and moving left, many optimized solutions seem to deviate away from the OOL 

towards a region of high torque and low engine speed. This phenomenon is due to low 

acceleration (and therefore low wheel power demand), and trends observed in the CVT 

efficiency contours. As seen in Figure 6, areas of high torque and low engine speed exhibit 

higher CVT efficiency, thus the optimal solutions tend to deviate in that direction when the 

power request is not a limiting factor. Similarly, the vertical line of red solutions located near an 

engine speed of roughly 750 RPM indicate those solutions that met the criteria for optimization, 

but observed a very low power request, and therefore deviated towards the highest CVT 

efficiency before meeting the engine idle speed constraint. In these situations, CVT efficiency 

played the dominant role in the overall powertrain efficiency calculation. The second 

characteristic of interest is in the region of 1800-2500 RPM. The majority of optimal solutions in 

this region fall below the original OOL. This is believed to occur because in that region, the 
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change in CVT efficiency is not enough to justify deviating away from an area of higher engine 

efficiency. 

Figure 10 displays the combined powertrain efficiency for the Bag-3 cycle without a 

CVT shift rate constraint, while Figure 11 shows a zoomed section of the same plot as to 

illustrate better how the optimization routine is working. This section exhibits characteristics that 

are present throughout the entire cycle. 

 

	

Figure 10: Bag-3 combined powertrain efficiency 
comparison: No CVT shift rate constraint.	

	

Figure 11: 25-second section of Bag-3 combined 
powertrain efficiency comparison: No CVT shift rate 

constraint. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

 
The portions of Figure 11 where the two curves overlap correspond to solutions where 

the optimization is not being run, and OOL tracking is being performed. These solutions 

therefore remain on the OOL, as represented in Figure 8 by the un-optimized points. In other 

sections of the plot, the optimized solutions often result in higher overall combined powertrain 

efficiency than the un-optimized solutions. This confirms that the optimization problem 
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formulation is correct and the routine is working as expected. Figures 12 and 13 compare the fuel 

consumption rate without a CVT shift rate constraint in a similar manner. 

 

	

Figure 12:	Bag-3 fuel consumption rate comparison: 
no CVT shift rate constraint.	

	

Figure 13:	25-second section of Bag-3 fuel 
consumption rate comparison: no CVT shift rate 

constraint.	

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

 
The same trend from Figure 11 is also present in Figure 13, where the optimal points 

yield a lower fuel consumption rate than those that follow the OOL. Again, this 25-second 

section depicts characteristics seen throughout the entire cycle shown in Figure 12. The increase 

in combined powertrain efficiency results in a decrease in fuel consumption, thereby leading to 

an increase in fuel economy for the Bag-3 cycle. 

 

Bag-3 Cycle Results With the CVT Shift Rate Constraint 
 
 

 As observed in Figure 9, there were many points during the Bag-3 cycle where the CVT 

ratio would instantaneously jump to a minimum or maximum value. These points correspond to 

the abnormal solutions seen in Figure 8. Although these spikes in ratio are caused by solutions 
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that mathematically meet all constraints on the system, this does not represent a realistic shift 

schedule because the CVT cannot operate that quickly. The addition of a CVT shift rate 

constraint as formulated in Chapter 4, limits the shifting to a percentage of the maximum ratio 

difference, and therefore eliminates these spikes in the CVT ratio schedule. The results for the 

scenario where the CVT shift rate has been applied show a much cleaner optimized speed-torque 

map, and CVT ratio schedule, as shown in Figures 14 and 15, respectively. However, it is 

important to note that this comes at the sacrifice of a portion of the improvement in fuel 

economy observed. 

 

 

Figure 14: Bag-3 optimized speed-torque map: CVT 
shift rate constraint applied. 

 

Figure 15: Bag-3 CVT ratio schedule: CVT shift rate 
constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

 
With the addition of the CVT shift rate constraint, the optimized combined powertrain 

efficiency curve changes very slightly. When the CVT ratio change is limited from one point to 

the next, the optimal solution may yield a slightly smaller combined powertrain efficiency 

compared to the case where it was not limited. Figures 16 and 17 show the combined powertrain 
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efficiency comparison again, and small differences can be seen between the shift-limited solution 

in Figure 17, and the solution from Figure 11. 

 

 

Figure 16: Bag-3 combined powertrain efficiency 
comparison: CVT shift rate constraint applied. 

 

Figure 17: 25-second section of Bag-3 combined 
powertrain efficiency comparison: CVT shift rate 

constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

 
 The same trend is also seen in the fuel consumption rate comparison plots in Figure 18 

and 19. Again, the CVT shift rate constraint limits the solution at some points. Very similar to 

the comparison between Figures 17 and 11 for the optimized combined powertrain efficiency 

curves, small differences can be seen between the optimized fuel consumption rate curves in 

Figures 19 and 13. 
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Figure 18: Bag-3 fuel consumption rate comparison: 
CVT shift rate constraint applied. 

 

Figure 19: 25-second section of Bag-3 fuel 
consumption rate comparison: CVT shift rate 

constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

 
 These small changes between the two scenarios yield slightly different overall fuel 

economy changes between the optimized and un-optimized solutions. The percent increase in 

fuel economy for both scenarios of all three portions of the FTP75 cycle are displayed in Table 1. 

 
Table 1: Fuel economy results for different portions of the FTP75 cycle 

FTP75 Cycle 

Portion 

% Change Without Shift Rate 

Constraint 

% Change With Shift Rate Constraint 

Bag-3 + 2.9222 % + 1.2808 % 

Bag-2 + 3.4561 % + 2.5566 % 

Highway +1.2354 % + 0.2621 % 

 
 

As expected, for all three sections of the FTP75 cycle, in the scenarios where the CVT 

shift rate is not constrained, the percent change in fuel economy is larger than in those for which 

the shift rate constraint has been applied. Another observation is that the highway results show a 
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smaller percent increase than those seen for the Bag-3 and Bag-2 results. This is expected 

because of the nature of highway driving. Not as much variation in vehicle speed (and therefore 

engine speed) over time indicates that the optimization would not be needed as frequently as the 

Bag-3 and Bag-2 cycles. Regardless, each portion of the cycle resulted in an increase in fuel 

economy when the optimization was allowed, and therefore validates the methodology. 

CONCLUSIONS AND FUTURE WORK 

The methodology presented in this paper has been compared to previous work in a 

comprehensive literature review. Measures have been taken to assure the scope of this project 

presents something new in the field of CVT ratio scheduling. Once developed, the methodology 

was then modeled and simulated in MATLAB using three separate FTP75 cycle inputs. Each 

input results in an increase in fuel economy, implying a successful optimization routine was 

developed. To maintain realistic operation, a CVT shift rate constraint was then added to the 

system. These results were compared with the results found prior to the addition of this 

constraint. It was shown that even with the new constraint, positive changes in fuel economy 

were still observed, although the magnitude of percent change in fuel economy was slightly 

smaller. It is evident that with this methodology, lower fuel consumption rates can be obtained 

when the engine operating point is allowed to deviate from the OOL if a higher CVT efficiency 

is attainable. This shows the importance in accounting for a varying CVT efficiency, and 

optimizing fuel power such that the overall engine-CVT efficiency is increased. Therefore, we 

suggest that neglecting the effects of CVT efficiency and assuming OOL tracking to be the 

optimal approach results in the sacrifice of fuel economy. 
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Finally, it is important to note that the proposed ratio scheduling methodology only 

results in a target CVT ratio schedule. As such, future work can focus on the control theory 

development and implementation to further improve fuel economy or drivability of the system 

using this ratio scheduling methodology to develop a target schedule for which the control theory 

can be developed. 



26 

REFERENCES 

[1] Crowe, P., 2013, “Basic CVT Insight,” from http://www.hybridcars.com/basic-cvt-insight/ 

[2] Bonsen, B., Steinbuch, M., and Veenhuizen, P. A., 2005, “CVT ratio control strategy 

optimization,” 2005 IEEE Vehicle Power and Propulsion Conference, pp. 227-231. 

[3] Pfiffner, R., Guzzella, L., Onder, C. H., 2003, “Fuel-optimal control of CVT powertrains,” 

Control Engineering Practice, 11(3), pp. 329-336. 

[4] Pfiffner, R., Guzzella, L., 2001, “Optimal Operation of CVT-based Powertrains,” 

International Journal of Robust and Nonlinear Control, 11, pp. 1003-1021. 

[5] Ryu, W., and Kim, H., 2008, “CVT Ratio Control with Consideration of CVT System Loss,” 

International Journal of Automotive Technology, 9(4), pp. 459-465. 

[6] Luo, Y., Sun, D., Qin, D., Chen, R., and Hu, F., 2010, “Fuel optimal control of CVT equipped 

vehicles with consideration of CVT efficiency,” Journal of Mechanical Engineering, 46(4), pp. 

80-86. 

[7] Lee, H., Kim, C., Kim, T., Kim, H., 2004, “CVT Ratio Control Algorithm by Considering 

Powertrain Response Lag,” Transmission and Driveline Symposium. 



27 

APPENDIX A 

Multiple Regression Formulation for CVT Efficiency 

One assumption made for this model is that the relationships between the TQC and the 

CVT are linear. If the relationships are examined using one variable at a time (i.e. – the other two 

are held constant), the CVT torque-loss can then be expressed by two equations formulated using 

two different approaches: 

Approach 1: Given a fixed CVT ratio (𝑟!"#) and CVT input torque (Τ!"#!"), the torque loss 

can be expressed as: 

Τ!"## = 𝑎 + 𝑏 ∙ 𝜔!"!!"#$%&' [Eq. 16] 

where a and b are functions of the fixed variables: 

𝑎 = 𝑓!(𝑟!"# ,Τ!"#!") [Eq. 17] 

𝑏 =  𝑔!(𝑟!"# ,Τ!"#!") [Eq. 18] 

Approach 2: Given a fixed CVT ratio (𝑟!"#) and TQC turbine speed, (𝜔!"#!"#$%&'), the 

torque loss can be expressed as: 

Τ!"## = 𝑐 + 𝑑 ∙ Τ!"!!" [Eq. 19] 

where c and d are functions of the fixed variables: 

𝑐 = 𝑓!(𝑟!"# ,𝜔!"#!"#$%&') [Eq. 20] 

𝑑 =  𝑔!(𝑟!"# ,𝜔!"#!"#$%&') [Eq. 21] 
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If the input torque to the CVT is small, or if the rotational speed of the TQC turbine is 

small, losses are still contributed to the system through Equations 17 and 20. Equations 18 and 

21 represent the slope between the change in CVT torque loss and the change in input torque, 

and the slope between the change in CVT torque loss and the change in TQC turbine speed, 

respectively. 

In order to translate the torque loss data to CVT efficiency, Equation 22 is used: 

𝜂!"# =  
Τ!"!!" −  Τ!"##

Τ!"!!"

[Eq. 22] 

If Equations 16 and 19 are substituted into Equation 22, CVT efficiency is then expressed in 

terms of CVT torque input and TQC turbine speed. First, by substituting Equation 16, we  arrive 

at Equation 23: 

𝜂!"# =  
Τ!"!!" − (𝑎 + 𝑏 ∙ 𝜔!"#!"#$%&')

Τ!"!!"

[Eq. 23] 

After some rearrangement of Equation 23, Equation 24 becomes: 

𝜂!"# =  
𝑇!"#!" − 𝑎
𝑇!"#!"

 −  
𝑏

𝑇!"!!"
∙ 𝜔!"#!"#$%&'

[Eq. 24] 

Recall that for this case, CVT input torque is held constant. Therefore, simplifying the constant 

terms gives Equations 25 and 16: 

𝐴 =  
𝑇!"#!" − 𝑎
𝑇!"#!"

 
[Eq. 25] 

𝐵 =  −  
𝑏

𝑇!"#!"

[Eq. 26] 
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Substitute Equations 25 and 26 into Equation 24 to get a simplified form in Equation 27: 

𝜂!"# = 𝐴 + 𝐵 ∙ 𝜔!"#!"#$%&' [Eq. 27] 

The form of Equation 27 implies that the CVT efficiency can be predicted by a linear equation 

with a nonzero constant. Therefore, the first two regression predictors are: 

𝑃! = 1 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [Eq. 28] 

𝑃! =  𝜔!"!!"#$%&' [Eq. 29] 

Using the same substitution method, but with Equation 19, we get: 

Again after some rearranging of terms: 

Simplifying the constant terms from Equations 20 and 21 gives Equation 32 and 33: 

𝐶 =  −𝑐 [Eq. 32] 

𝐷 = 1− 𝑑 [Eq. 33] 

Substituting Equations 32 and 33 into Equation 31 gives a simplified form in Equation 34: 

𝜂!"# = 𝐷 +
𝐶

Τ!"!!"
[Eq. 34] 

Again, Equation 34 is a linear equation with a nonzero constant term. So the third regression 

predictor is: 

𝑃! =  
1

Τ!"!!"
[Eq. 35] 

A fourth predictor can be developed by analysis of varying CVT ratio when TQC turbine speed 

and CVT torque input are held constant. In this case, torque-loss was approximated as a 

logarithmic relationship to the CVT ratio. Therefore, the fourth predictor is: 

𝜂!"# =  
Τ!"!!" − (𝑐 + 𝑑 ∙ Τ!"#!")

Τ!"!!"

[Eq. 30] 

𝜂!"# = 1− 𝑑 −  
𝑐

Τ!"!!"
[Eq. 31] 
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𝑃! = log 𝑟!"# [Eq. 36] 

After initial analysis, it was speculated that it is not sufficient to look at these variables 

one at a time. Often, they vary together, so the interactions of the four variables together give us 

three more predictors. By combining Equations 28, 29, 35 and 36 together through 

multiplication, we get Equations 37 through 39: 

𝑃! =  
𝜔!"!!"#$%&'
Τ!"!!"

[Eq. 37] 

𝑃! =  𝜔!!!!"#$%&' ∙ log 𝑟!"# [Eq. 38] 

𝑃! =
log 𝑟!"#
Τ!"!!"

[Eq. 39] 

Recall that the focus of this problem formulation is for a locked torque converter. This 

introduces two major assumptions: 

1. Torque converter turbine speed is equal to the engine crankshaft speed:

𝜔!"!!"#$%&' =  𝜔!"# [Eq. 40] 

2. Torque applied to the CVT is equal to the torque being transferred by the crankshaft:

Τ!"!!" =  Τ!"# [Eq. 41] 

Substituting Equations 40 and 41 into the equations derived for each predictor yields a slightly 

different set of equations for the predictors of the data. Notice that Equations 28 and 36 did not 

change after these assumptions were applied. All seven predictors are now given as: 

𝑃! = 1 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (no change) [Eq. 28] 

𝑃! =  𝜔!"# [Eq. 42] 

𝑃! =  
1
Τ!"#

[Eq. 43] 
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𝑃! = log 𝑟!"# (no change) [Eq. 36] 

𝑃! =  
𝜔!"#
Τ!"#

[Eq. 44] 

𝑃! =  𝜔!"# ∙ log 𝑟!"# [Eq. 45] 

𝑃! =
log 𝑟!"#
Τ!"#

[Eq. 46] 

An n-by-p matrix of predictors to fit to the p predictors at each of the n observations is then 

constructed by the predictors that were chosen. Matrix P is shown as: 

𝑃 =  

1
1

Τ!"#(1)
𝜔!"!(1) log 𝑟!"# (1)

𝜔!"#(1)
Τ!"#(1)

𝜔!"#(1) ⋅ log 𝑟!"# (1)
log 𝑟!"# (1)
Τ!"#(1)

1
1

Τ!"#(2)
𝜔!"#(2) log 𝑟!"# (2)

𝜔!"#(2)
Τ!"#(2)

𝜔!"#(2) ⋅ log 𝑟!"# (2)
log 𝑟!"# (2)
Τ!"#(2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1
1

Τ!"#(𝑛)
𝜔!"#(𝑛) log 𝑟!"# (𝑛)

𝜔!"#(𝑛)
Τ!"#(𝑛)

𝜔!"#(𝑛) ⋅ log 𝑟!"# (𝑛)
log 𝑟!"# (𝑛)
Τ!"#(𝑛)

The regression fitting outputs a p-by-1 vector b of predictor coefficients. These 

coefficients are then applied to the predicting equation such that any point in the data surface can 

be approximated. The result is Equation 47. 

𝜂!"# =  𝑏! +  
𝑏!
Τ!"#

+  𝑏!𝜔!"# +  𝑏! log 𝑟!"# +  𝑏!
𝜔!"#
Τ!"#

+  𝑏!𝜔!"# log 𝑟!"# +  𝑏!
log 𝑟!"#
Τ!"#

[Eq. 47] 
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APPENDIX B 

Bag-2 Cycle Results: Without CVT Shift Rate Constraint 

Figure 20: Bag-2 optimized speed-torque map: No 
CVT shift rate constraint.	

Figure 21: Bag-2 CVT ratio schedule: No CVT shift 
rate constraint.	

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

Figure 22: Bag-2 combined powertrain efficiency 
comparison: No CVT shift rate constraint.	

Figure 23: 25-second section of Bag-2 combined 
powertrain efficiency comparison: No CVT shift rate 

constraint.	

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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Figure 24: Bag-2 fuel consumption rate comparison: 
No CVT shift rate constraint.	

Figure 25: 25-second section of Bag-2 fuel 
consumption rate comparison: No CVT shift rate 

constraint.	

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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APPENDIX C 

Bag-2 Cycle Results: With CVT Shift Rate Constraint 

Figure 26: Bag-2 optimized speed-torque map: CVT 
shift rate constraint applied. 

Figure 27: Bag-2 CVT ratio schedule: CVT shift rate 
constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

Figure 28: Bag-2 combined powertrain efficiency 
comparison: CVT shift rate constraint applied. 

Figure 29: 25-second section of Bag-2 combined 
powertrain efficiency comparison: CVT shift rate 

constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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Figure 30: Bag-2 fuel consumption rate comparison: 
CVT shift rate constraint applied. 

Figure 31: 25-second section of Bag-2 fuel 
consumption rate comparison: CVT shift rate 

constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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APPENDIX D 

Highway Cycle Results: Without CVT Shift Rate Constraint 

Figure 32: Highway optimized speed-torque map: 
No CVT shift rate constraint.	

Figure 33: Highway CVT ratio schedule: No CVT 
shift rate constraint.	

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

Figure 34: Highway combined powertrain efficiency 
comparison: No CVT shift rate constraint.	

Figure 35: 25-second section of Highway combined 
powertrain efficiency comparison: No CVT shift rate 

constraint.	

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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Figure 36: Highway fuel consumption rate 
comparison: No CVT shift rate constraint.	

Figure 37: 25-second section of Highway fuel 
consumption rate comparison: No CVT shift rate 

constraint.	

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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APPENDIX E 

Highway Cycle Results: With CVT Shift Rate Constraint 

Figure 38: Highway optimized speed-torque map: 
CVT shift rate constraint applied. 

Figure 39: Highway CVT ratio schedule: CVT shift 
rate constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 

Figure 40:	Highway combined powertrain efficiency 
comparison: CVT shift rate constraint applied.	

Figure 41: 25-second section of Highway combined 
powertrain efficiency comparison: CVT shift rate 

constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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Figure 42: Highway fuel consumption rate 
comparison: CVT shift rate constraint applied. 

Figure 43: 25-second section of Highway fuel 
consumption rate comparison: CVT shift rate 

constraint applied. 

Note: Axis values have deliberately been removed to protect the sponsor’s sensitive data. 
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