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A STUDY ON THE CAUSES OF VARIATIONS IN
TRANSMISSIVITY AND STORATIVITY DURING
PUMP TESTS AT ASYLUM LAKE

Paul Joseph Pare, M.S.

Western Michigan University, 1995

Over a two year period, Western Michigan.University
ran a number of pump tests in the Asylum Lake Area in
Kalamazoo, Michigan. The transmissivities and stor-
ativities calculated from these tests differed signifi-
cantly from well to well in any particular test, and from
pump test»to pump test. Utilizing the computer programs
AQTESOLV 3.0 and Aquifer Parameter Estimator, a number of
T and S values were calculated. After analysis of the
results, the following conclusion was drawn. The main
reason for the deviations in the T and S values arose
from the mixing of the results of numerous methods (some
of which were confined aquifer methods). The aquifer
that was affected by the pump test is an unconfined
aquifer, which required an un?onfined analysis method in

order to get results within reasonable limits.
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CHAPTER I

INTRODUCTION

Thesis Statement

The objective of this study is to determine the
reasons for the seemingly wide variance in the trans-
missivities and the storativities which have been ob-
served in four different pump tests conducted over two
years at the Asylum Lake study area during the Western

Michigan University hydrogeological field camps.

Overview

The following study deals with the analysis and
interpretation of four pump tests from the Lee Baker Farm
(near Asylum Lake) Western Michigan University Hydro-
geological study station in Kalamzaoo located off Drake
Road between its intersections with Parkview and Stadium
Drive. These pump tests were run in Spring 1993 (July
13-16), Summer 1993 (August 24-27) , Spring 1994 (June

21-24), and Summer 1994 (August 1-6). The initial pur-
1
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pose of these pump tests was to serve as field exercises
for the WMU Hydrogeological field courses. Pump tests
are used as a tool to determine the characteristics of an
aquifer; specifically, how readily water flows through
aquifers. This knowledge can be used in a variety of
ways, such as determining water availability for a munic-
ipal well, the parameters used in designing a remediation
effort, etc. In this case, the pump test was being used
as an exercise to define the characteristics of the area
in a systematic way. Having data for multiple pump tests
in this area is an additional advantage, because it
allows a degree of reproducibility, along with determin-

ing any temporal changes that may have occurred.
Short History of Hydrogeology and Pump Tests

The first person to integrate pump time and drawdown
data into a single analysis method was Charles Theis
(Theis, 1935). This allowed analysis of transient draw-
down data to determine aquifer parameters. Previously, a
pump test had to be continued until the aquifer reached

steady-state conditions conditions (where recharge = dis-
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charge) in order to determine aquifer parameters. The
Theis solution method includes a number of equations and
a type-curve. A type-curve is a theoretical curve which
is fit to measured data points in order to determine ne-
cessary information to plug into the Theis equations.
This method does require a number of assumptions (called
the Theis assumptions) in order for its results to be as
accurate as possible:

1. Discharge from the pumping well is instantaneous
with decline in pressure.

2. The well fully penetrates and is open through the
entire extent of the aquifer.

3. The well's radius is very small so that in the
well storage is negligible.

4. Flow to the well screen is radial, horizontal and
laminar.

5. The aquifer is homogeneous and isotropic.

6. Aquifer thickness is uniform.

7. The aquifer is horizontal and bounded above and
belqw by impermeable beds (aquifer is confined).

8. The aquifer remains saturated during the entire

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pumping test.

9. The aquifer is infinite (in areal extent, no
areal boundaries and thus, no recharge).

10. All water released from storage within the
aquifer comes from the cone of depression (the aquifer is
isolated from the overlying or underlying leaky aquifers,
local recharge, precipitation, irrigation, rivers, lakes,
and wetlands) (Kasenow, 1995).

Two difficulties with the Theis method are: the
Theis method's curve matching technique has a strong sub-
jective component to it and the curve matching is time/
labor intensive. 1In 1946, Jacob and Cooper created an
alternative method to the Theis curve. While it still
must meet the assumptions discussed above, its results
are obtained from fitting a straight-line through the
test data (usually the late-time data). The need for
using late-time data (or nearby observation wells) arises
from the fact that there is an additional assumption in
the Jacob-Cooper method. The benefits of using this
method include: (a) the straight-line analysis is less

subjective, (b) the time/labor is greatly reduced, and
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(c) this method can be applied to different wells simul-
taneously, to one well over time, or both.

The disadvantages to obtaining aquifer parameters
using graphs are numerous, the largest being that it is
time consuming to create and there is a certain subjec-
tivity in the actual construction and interpretation.
Therefore, Sheahan (Sheahan, 1967) created a method for
calculation of T and S without a Theis graph (but using
the Theis equations), therefore making the technique more
efficient. Using a list called the Z(u) list, Sheahan
developed a method to obtain u and W(u), needed for the
Theis equations. The difficulty involved was that it was
time consuming to do this method by hand, and it was not
until computers became more readily avaiable this method
was incorporated into a computer program. An adaption of
Sheahan's method was used in Aquifer Parameter Estimator.

The above discussion of pump test data analysis con-
sidered only confined aquifer solutions. Although these
equations can be modified to simulate an unconfined sol-
ution, they are not true unconfined aquifer solutions.

This makes the results suspect. One such solution was
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used this study, based on the work of Neuman (1974,
1975) . He created a solution which would analyze delayed
yield behavior in an aquifer. The delayed yield effect
is caused by the aquifer pores dewatering during the test
(Bouwer, 1978). This causes the graph to become flat in
the middle, thereby deviating from the Theis curve.
Neuman essentially created a solution to match both parts
of the S-shaped curve produced by the pump test data on
log-log axes. The transmissivity and storativity can
then be obtained from curve matching and using the match-
ed points in his equations.

Both Theis (Theis, 1935) and Jacob (Jacob, 1963)
created equations and graphs that allowed transmissivity
to be calculated using the data obtained as the wells
recover after the pump has been turned off. Both these
methods use the water level measurements as the wells re-
cover, called residual drawdowns (or drawup), and these
points are plotted on graphs (both Theis and Jacob recov-
ery techniques are straight line methods). 1In more re-
cent times, Kasenow (1995) created a method allowing the

Theis equations to be implemented using a non-graphical
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technique. Kasenow's method allows the storage coeffi-
cient to be obtained. While Kasenow was not the first
person to come up with such a method, he was the first to
implement it in a fashion which could be used quickly in

a non-graphical fashion.
Location

The pump tests were run on the Lee Baker Farm (near
Asylum Lake) Western Michigan University Hydrogeological
study station in Kalamazoo located off Drake Road between
its intersections with Parkview and Stadium Drive. The

aquifer pumped is an unconfined aquifer.
Lithology

In the study area, the soils at depths between 1 to
3 feet are a mixture of fine/medium sand, loamy soil, and
organics. From 3 feet down to a clay layer at 180 feet,
the aquifer consists of sand ranging from fine to medium
grained. From a number of wells installed in the area,
both lenses of very fine material (very fine sand to

almost silt) and coarse material (pebbles) have been
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observed. These lenses appear random and non-uniform

throughout the area.

Well Design/Configuration

The site is during this study was configured with a
pumping well and four observation wells (Figure 47,
Appendix G). The pumping well is designated as AL-4; it
is a 5.25 inch diameter steel cased well installed by
cable tool rig. It is screened from 74 to 89 feet below
the surface, using a 10 slot stainless steel screen from
74 to 84 feet and a 15 slot stainless steel screen from
84 to 89 feet. The pump is a 5 horsepower Flint and
Walling submersible pump. The observation well AL-18 is
45.67 feet east of AL-4, and is screened from 55 to 70
feet (Figure 45, Appendix G). There are two observation
wells on the west side of AL-4. AL-1 is 23.75 feet from
AL-4 and is screened from 80 to 95 feet. AL-27 is 64.67
feet from AL-4 and is screened from 63 to 78. AL-28 is
52.75 feet north of AL-4 and is screened from 63 to 78
feet (Figure 46, Appendix G). All observation wells are

2 inch PVC wells, with 10 slot PVC screens.
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CHAPTER II

METHODOLOGY

Test Specifications

Four data sets were used in the analysis. The first
data set was collected in the Spring 1993 Hydrogeology
field camp. AL-1, AL-4, and AL-18 were used in the ana-
lysis of the pump test. The pumping rate was 73.7 gal-
lons per minute (gpm) over a 48 hour period. The Summer
1993 Hydrogeology field camp used AL-1, AL-4, and AL-18
in the analysis. The pumping rate was 77.3 gpm for 50
hours and 45 minutes. AL-1, AL-4, and AL-18 were used
for the Spring 1994 analysis; the test ran for 51 hours
and 30 minutes at a rate of 71 gpm. Finally, the Summer
1994 test analysis used AL-1, AL-4, AL-18, AL-27, and

AL-28. The pumping rate was 67.5 gpm for 97 hours.

Computer Programs Used in Analysis

The four sets of data were analyzed using both pump

test equations and recovery equations. Two computer pro-
9
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10
grams were used in the analysis of the data: Aquifer

Parameter Estimator 1.0-3.0 (APE) and AQTESOLV 2.0.
AQTESOLV 2.0 is published by Geraghty & Miller Modeling
Group and APE is published by Water Resources Publica-
tions. The analysis with APE included: Jacob-Cooper Re-
gression Analysis, Theis Sensitivity Analysis, Theis
Time-Drawdown Analysis, and Theis Recovery Analysis. In
the AQTESOLV program, the following analyses were used:
Jacob-Cooper.time-drawdown analysis using visual curve
matching or statistical curve matching, Theis method
using visual curve matching and statistical curve match-
ing, Neuman method (both visual and statistical curve
matching), and Theis recovery using both the curve match-
ing and statistical options. The graphical results are

presented in Appendices A-E.
Equations

The following equations are the basic equations used
in the analysis of pump test data. The other equations

(presented later) are derivatives of these equations.
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11
Theis

Z(u) = s(1/2t)/s(t)

T = 144.6*Q*W(u) /s

S = uTt/1.8r"2 (Kasenow, 1995)
.s = drawdown at time t = ft
T = transmissivity = gpd/ft
S = storage coefficient or specific yield = unitless
Q = pump rate = gpm
W(u) = Theis parameter
u = Theis parameter = r”2*S/(4*T*t)
r = observation well distance = ft
Jacob-Cooper

T = (264*Q) /As

S = (0.3*T*t (o)) /xr"2

As = slope of straight line data fite over one log cycle
= ft

t (o) = time of zero drawdown on straight line = min

Recovery

T = 264*%Q/(As') = 114.6*Q/s'*1ln(t/t') (Kasenow,
1995)
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As'= slope (rise over one log cycle) of residual drawdown
= ft

t = time duration of pumptest + residual time = min

t'= residual time = time since pumping ceased = min

s' = residual drawdown

Aquifer Parameter Estimator

The program APE, Aquifer Parameter Estimator, is a
groundwater analysis program based on the work of prior
hydrogeologists, with further developments by Michael
Kasenow (Kasenow, 1995). The version published in 1993
and further embellished versions were used throughout
this study. It has modules that can handle anything from
steady-state data to pumping well data to observation
well data, using a variety of methods and techniques.

The main solutions used were: a Theis-z(u) time-drawdown
method, a regression analysis time-drawdown method, a
sensitivity analysis method, and a Theis-Z(u) recovery
and regression analysis method for observation well data.
Pumping well data sets were analyzed using a Theis-Z(u)

recovery and regression analysis solution.
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13
Theis-z(u) Time-d 3 Soluti
This method uses time-drawdown data, calculating a
transmissivity and a storativity for each point. This is

accomplished using the equation

Z(u) = s(1/2t)/s{t) (Kasenow, 1995)

The power of this equation lies in the fact that this
value has been calculated, it is related to the list of u
and W(u) values which are part of Theis' equations. This
list is searched and an interpolated matched u and W(u)
are found. T and S are then calculated for this particu-
lar data point. These individual T and S values are then
averaged for a range of data points. The information
output to the user includes a the list of these T and S
values, along with the slope at each point. One can use
the slope, T, and S values to look for trends, and there-
by take only a select interval of points to calculate

one's final T and S values.

. {on Analvsi : me - drawd soluti

This takes time-drawdown data and uses a least-
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14
squares statistical approach to determine the T and S

values. The following equations are used obtain the

needed information to calculate T and S.

m = [n(ZXY) - (ZX)(ZY)] /
[n(Zx*2) - (ZX)*2]
b = [(ZY) (2X*2) - (ZX) (ZXY)] /
[ n(Zx*2) - (2ZX)*2]
m = slope of least-squares line fit through the data = ft
n = # of data points
b = y-intercept = 1ln(t (o))
2X = summation of the natural log of the times
2Y = summation of the drawdowns = ft

ZX*2 = summation of the square of the natural log of the
times

XY = XX * LY

With these variables, T and S can be calculated using the

equations

T

]

Q / (4) (P) (m)

S [2.25(T) / r*2) [Exp[(-4) (P) (T) (b) / Q1]

(Khan,1982)

Q = discharge = gpm
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r = observation well distance = ft
It is also possible to calculate the correlation coeffi-
cient, R. R is a guage of the édequacy of the line fit.
The value of R approaches 1.0 as the line.fit approaches
perfection. The equation for R is:
R = [n(ZXY) - (2X)(ZY)] /
{[n(ZX*2) - (ZX)*2] [n(ZY"2) - (Z¥)*2]}"y%

Zy*2 = summation of the drawdowns squared = ft*2
S Lt ivi Analvsi

In this approach, a preliminary T and S are cal-
culated and then these values are slowly changed by minor
increments, until both of them (simultaneously) fit with-

in certain tolerance limits.
Recovery Analysis

This method uses residual drawdown data and a number
of unique equations to calculate T and S. The following

equations are used in order to calculate T and S.

=3
]

(114.6*Q) *s'*1n(t/t')

(264)(Q) / T

3
]
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16
t(o)' = -[s(off) + {(m) (log(t/t'))} - 8'] / m

S = (0.3)(T)(t(o)') / r * 2 (Ulrick and Associates,
1989)

Q = pumping rate = gpm

t' = time since pump was turned off = min
t = total time of pump test + t' = min
s' = residual drawdown = ft

m = slope of straight-line fit = £t
t(o)' = time of zero recovery = min
s (0off) = drawdown when pump was turned off = ft

r = oObservation well distance = ft

Just as in the Theis Z(u) method, T and S are calculated
for each residual time-drawdown point. An average of
these T and S values is then calculated. It is possible
to take an interval of residual time-drawdown points, and
obtain the average T and S values from this. The inter-
val is based on looking at a consistency in‘the slopes
calculated and upon the T and S values determined. This
solution method appears best because this data set does

not have the inherent error present in time-drawdown data

from the pumping phase; that is, data from the pumping
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phase has fluctuations caused by turbulence in the well,
oscillations in the well, and a plethora of other mechan-

ical type variations.
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CHAPTER III

RESULTS

Previous Methods

Prior to this study, a consistent analysis of the
data from these pump tests had never been carried out.
During the field camps, the data was split among groups
who did the analysis in their own manner. Differences in
method occured, such as: entering the data differently
(for example, taking the drawdown when it first appears
versus when it appears last), using different computer
programs for different methods, using slightly different
numbers of observation well distances, using slightly
different numbers for pump rates, etc. None of these
differences, however, can account for the variance seen
from test to test, or from well to well. The most proba-
ble reason for the differences is because methods used
were inapplicable to this situation. The analyses done
by the groups were mainly Theis methods, while this un-

confined aquifer requires delayed-yield solutions. 1In
18
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order to correct this problem, the Neuman method in
AQTESOLV 2.0 was used; both the analytical and the graph-
ical aspects were utilized. The results (as shown in
Tables 9 and 10) showed better consistency from well to
well and from year to year than the Theis and/or Ja-

cob-Cooper derived solutions.

Theis Methods

Variations in T and S were wide (Tables 1 through
8). At times the transmissivity or storativity are fair-
ly close to one another from two different wells (or pump
tests), but the other parameter (T or S) is a great deal
different. The Theis (statistical) method for AL-18 for
Spring 93 and Summer 93, is one example. The T is of
similar magnitudes for the two, but the storativities
differ by a whole order of magnitude. The limitations of
the confined methods is apparent in the actual graphical
matches (Appendices A, B, C, D, and E). The most appar-
ent ones occur is in the Theis curve matches. Most of
the matches only approximate half of the curve, indicat-

ing a different solution was needed.
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Table 1

Transmissivity (gpd/ft) and Storativity Results
From AL-1 for 1993

20

Spring Summer
T S T S

APE
Regression 79986 .0076 85014 .0042
Sensitivity 84162 .0029 85333 .0026
Theis-Zu 62775 .0348 89022 .0072
Recovery-> Theis 67444 .0264 82046 .0040

Regression 67368 .0254 86242 .0030
AQTESOLV 2.0
Theis (g) 68354 .0205 61600 .0300
J-¢ (qg) 65090 .0243 57895 .0386
Recovery-> Theis (g) 52035  ----- 57722  -----
Neuman (g) 61966 .0306 62936 .0249
Neuman (n) 61967 .0306 62904 .0249
g = graphical
n = numerical
Neuman Methods

The matches of the Neuman curve (Appendices A
through E) are moderately close, and the results for
wells are within a similar range. The major exception is
Summer 1993 data, which shows highly suspect T and S val-

ues.
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Table 2

Transmissivity (gpd/ft) and Storativity Results
From AL-1 for 1994

Spring Summer
T S T ]

APE
Regression 95969 .0044 75285 .0011
Sensitivity 99779 .0014 75953 .0088
Theis-Zu 00 cece- eeeee cecen —eeen
Recovery-> Theis 86148 .0069 78744 .0073

Regression 88525 .0058 76401 .0081
AQTESOLV 2.0
Theis (g) 58484  .0814 65036 .0263
J-C (qg) 53058 .0753 59133 .0384
Recovery-> Theis (g) 77757  ----- 50904  -----
Neuman (g) 55606 .1039 65919 .0244
Neuman (n) 55471 .1039 65918 .0243

21

g = graphical

n = numerical

One indirect piece of support for using the Neuman method
for this aquifer is that T and S from data set to data
set vary much less. That is, a similar T shows a similar
S in many more cases using this method. The Neuman meth-
od results are much closer to one another than with the

confined Theis-type solutions.
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Table 3

Transmissivity (gpd/ft) and Storativity Results
From AL-4 for 1993

22

Spring Summer

T S T S
APE
Recovery-> Theis 72203  ----- 72686 « -----

Regression 69466  ----- 74896 2« -----

AQTESOLV 2.0
Recovery-> Theis (g) 46574  ----- 48739  —ewe-
g = graphical

Table 4

Transmissivity (gpd/ft) and Storativity Results
From AL-4 for 1994

Spring Summerx
T S T S
APE
Recovery-> Theis 81753  ----- 65764  -----
Regression 87492  ----- 68218 -----
AQTESOLV 2.0
Recovery-> Theis (g) 51508 ----- 46327 —ec-=-

g = graphical
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Table 5

Transmissivity (gpd/ft) and Storativity Results
From AL-18 for 1993

23

Spring Summer
T S T (]

APE
Regression 85069 .0102 84737 .0211
Sensitivity 64829 .0400 69064 .0455
Theis-Zu 57619 .0712 68005 .0668
Recovery-> Theis 78916 .0216 77747 .0333

Regression 84771 .0185 79052 .0322
AQTESOLV 2.0
Theis (g) 62591 .0500 55428 .0902
J-C (g) 57324 .0642 83754 .0576
Recovery-> Theis (g) 54297  ----- 46887 -----
Neuman (g) 58379 .0635 56839 .0770
Neuman (n) 58377 .0616 56837 .0770
g = graphical
n = numerical
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Table 6

Transmissivity (gpd/ft) and Storativity Results
From AL-18 for 1994

24

Spring . Summer

T S T (]
APE
Regression 83343 .0301 56151 .0763
Sensitivity 54622 .1626 52065 .1066
Theis-Zu = =-c---  c--e- aeeee ame--
Recovery-> Theis 94373 .0226 72393 .0316

Regression 99247 .0208 74224 .0301

AQTESOLV 2.0
Theis (g) 72253 .0589 59704 .0703
J-c (g) 50032 .1650 54254 .0883
Recovery-> Theis (g) 54157 ----- 53522 -----
Neuman (g) 40930 .2500 51121 .0790
Neuman (n) 45055 .2275 51055 .0799
g = graphical
n = numerical
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Table 7

Transmissivity (gpd/ft) and Storativity Results
From AL-27 for 1994

Spring Summer
T S T S

APE
Regression @ 00 os----  —---- 95210 .0201
Sensitivity = === -----  ----- 70123 .0753
Theis-Zu =0 —-cece  cceee emeen o--e-
Recovery-> Theis = =  ----- «=--- 69196 .0946

Regression  ----- ~---- 76083 .0828
AQTESOLV 2.0
Theis (g0 = ==-ee  --ee- 64853 .0861
Jg-c (g0  meeee eeea- 65111 .0762
Recovery-> Theis (g) = ----- ~---- 53672 -----
Neuman (g) = ===--- ----- 59241 .1000
Neuman (n) = —-==-  ----- 62439 .0836
g = graphical
n = numerical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25



Table 8

Transmissivity (gpd/ft) and Storativity Results
From AL-28 for 1994

26

Spring Summer
T S T ]

APE
Regression =0 @=---~  ----- 79157 .0207
Sensitivity = ====00s-e-- -e--- 72678 .0372
Theis-Zu 0 —=ec- ae-ece cccen cme--
Recovery-> Theis = = = -==-- «w--- 74393 .0356

Regression  ----- ----- 78147 .0320
AQTESOLV 2.0
Theis (g0 = ===e-  —---- 71542 .0349
J-¢c (g0  eemeee eeee- 67363 .0391
Recovery-> Theis (g) = =----- «---- 52466 -----
Neuman (g) = =—===e <cw=-- 64732 .0500
Neuman (n}) = <-==ec= ----- 62472 .0476
g = graphical
n = numerical
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‘Table 9

Neuman Solution Transmissivity(gpd/ft) and Storativity
Results From 1993 (Compilation)

Spring Summer

T S T S
AL-1
Neuman (g) 61966 .0306 62936 .0249
Neuman (n) 61967 .0306 62904 .0249
AL-18
Neuman (g) 58379 .0635 56839 .0770
Neuman (n) 58377 .0616 56837 .0770
g = graphical
n = numerical
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Table 10

Neuman Solution Transmissivity (gpd/ft) and Storativity
Results From 1994 (Compilation)

Spring Summer
T (] T ]

AL-1

Neuman (g) 55471 .1039 65919 .0244
Neuman (n) 55606 .1039 65918 .0243
AL-18

Neuman (g) 40930 .2500 51121 .0790
Neuman (n) 45055 .2275 51055 .0799
AL-27

Neuman (g) = =—-===  —-=== 59241 .1000
Neuman (n) = -—--==  —-=-- 62439 .0936
Al-28

Neuman (g) = =—==== —-==- 64732 .0500
Neuman (n) = —--==  —--ae- 62472 .0476
g = graphical

n = numerical
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CHAPTER 1V

DISCUSSION

The variances in transmissivity and storativity had
a number of different causes. These causes included:
previous methods of analysis were insufficient, oscilla-
tion of the pump, the flow meter worked improperly, lack
of development of the pumping and observation wells, and

minor changes in lithology in the subsurface.

Difficulties Involved in Each Pump Test

July 1993

There were a number of difficulties encountered
during this field session. During this time period it
rained intermittently for both pumping and recovery
phases. This could lead to errors in two ways. First,
there could have been some recharge present from the rain
and second, the rain makes measuring water levels dAiffi-
cult. The pumping rate also fluctuated from 69 gpm to 74

gpm, which could lead to errors in the results.
29
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Augugt 1993

During this session, the pumping rate varied from 74
gpm to 78 gpm. Normal human errors were involved, such
as different people reading the water levels slightly
differently, darkness makes taking water level measure-
ments at night difficult, and a variety of other diffi-

culties.

June 1994

During this pump test the pump oscillated by an
increasing amount (in comparison to previous years),
ranging from 65 gpm to 72 gpm. There were large quanti-
ties of rain during the recovery period, which leads to
both human errors and possibly aquifer recharge errors.
In addition, no data were obtained from AL-27 since it

required developing in the middle of the pump test.

August 1994

It rained during the pump test, but to a lesser deg-
ree than in previous years. The pump again oscillated

during this pump test, to approximately the same degree
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as in the previous pump test, ranging from 64 gpm to 70
gpm. In addition, the students were running two pump
tests. This required the water level measurements needed
to be taken in a quicker succession and the measurements
were taken with different water level meters. 1In past
pump tests dedicated meters were used to avoid mechanical

error associated with using different meters.
Difficulties With the Flow

One difficulty involved in any pump test is trying
to keep the pump running as steady as possible, in orxder
to assure a consistent pump rate. In order to use the
solutions used in this study one must have a constant
pumping rate (Kasenow, 1995). Unfortunately, the pump
rate varied during all the pump tests. While this is not
the largest factor involved in the variances of T and S,
the pump rate is very important in their determination.
As such, variances in the pump rate could cause inconsis-
tences in the data obt;hned. Combined with the factors

already discussed, this could explain the variances from

test to test. This however, does not explain the vari-
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32
ances seen from well to well in a single test.

Development Concexrns

The pumping well was installed with a cable tool
rig, observation well AL-1 was installed using hollow
stem auger, and the other observation wells were in-
stalled with mud rotary. All disturb the formation as
they are installed, but most dramatically mud rotary.

Mud rotary clogs the formation around the bore hole,
leading to a alteration in the true lithology of the for-
mation. The pumping well and the observation well may
also have been developed differently from each other and/
or insufficiently. Any of these factors could lead to
differences in the T and S values within the same pump

test or different tests.

Changes in Lithology

Overall at the site, the lithology stays fairly
constant. Observation well AL-1 was drilled using the
hollow stem auger technique, with a large number of split

spoon samples being taken (Figure 48, Appendix H). These
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samples (along with others taken from wells drilled at
the site) indicate the lithology is mainly a fine-grained
sand, with lenses of gravel or very fine sand or silt.
Therefore, while the material varies to a minor extent,
the actual lateral variation in the area is fairly small.
One cavet should be made to the above statements. Three
of the observation wells were drilled with mud rotary
techniques, and the non split spoon samples seem to have
sluff (material falling from above the drill bit) mixed
in. The split-spoon samples are few and far between (be-
cause taking split spoon samples with a mud rotary rig is
difficult); therefore the characterization of these wells
is rather uncertain. Gamma-ray logs are available from
the Department of Geology, which could give further de-
tailed information about the lithology of these particu-

lar wells.
Miscellaneous Factors

During the pump tests discused it did indeed rain
(sometimes quite heavily). This is probably not a major

factor since the water table is approximately 60 feet be-
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low the surface and this soil would not have allowed such

quick recharge (the pump tests did not last long). One
piece of additional proof is the control well (AL-11) did
not show any rapid fluctuation during or after these
rains (therefore this indicates our test should not have
been affected by the rain). One possible recharge point
could be our discharge hose. An attempt was made to keep
the hose as far from the pumping well as possible, but
resources are finite. If this was a factor in our vari-
ances, it was a very minor one (since AL-18, the well
closest to the discharge hose, did not show extreme chan-
ges in water level measurements). Finally, these data
were collected by a class containing inexperienced peo-
ple. Therefore, human error is always a distinct possi-

bility in such circumstances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER V
CONCLUSIONS

The conclusion of this study is: by using the
Neuman method discussed in the study, the variations seen
in the past can be lessened from several orders of magni-
tude to within one order of magnitude. Methods which
assume an unconfined aquifer do not give correct T and S
values. The graphs (Appendices A thru E) pictorally show
the solutions failures, particulary Theis curves pre-
sented. There were other minor difficulties. The pump-
ing rate was not constant during the pump tests, which is
a requirement of the methods employed in this study. The
lithology does vary, therefore this can cause deviations
to be present in the T and S results. Finally, weather
and human error could have contributed to errors in the
water level measurements. With more careful field work,
a consistent pump rate, and the use of the Neuman (or
equivalent unconfined solution), the results could become

even more consistent.

35
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Appendix A

T and S Results From AL-1
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Confined

SOLUTION METHOD:
Theis

TEST DATA&

Q= 9.028 ft°/ain
r= 23,78 ft

re= 0.8 7t Y
ry= 0.8 ft

b= 4, f¢t

PARAMETER ;srm&*rss:
T = 8.038 ft</min
8 = 0.028%4
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Figure 13. Theis Curve for Well AL-1 for August 1994.
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DATA SET:
W1SU94P.AQT
08/30/95

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Cooper-Jacob

TEST DATA;

Q = 8.023 ft°/min

rw 23,78 ft

re= 0.5 ft ’
ry= 0.5 ft

b= g, ft

PARAMETER_ESTIMATES:
T = 5.49 ftZ/mtn
S = 0.03843

1

1° 1 lllllll| { llllllll 1 llllllll | llllllll Lyl

0.8

S
o

0.4

Drawdown (ft)

0.2

O;l 1. 10. 100. 1000. 10000.
Time (min)

Figure 14. Jacob-Cooper Curve for Well AL-1 for August 1994.
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WiSUS4P.AQU
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AQUIFER MODEL:
Unconfined

SOLUTION METHOD:
Nsuman

TEST DATA;

Q = 9.028 ft/min
r=2375 ft

b = 35, ft g

PARAMETER_ESTIMATES:
T = 8.12 ft/min

8 = 0.000372

8y = 0.02438

s = 0.04428

Drawdown (ft)

0;1 1. 10. 100. 1000. 10000.
Time (min)
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Figure 15. Neuman Method Curve for Well AL-1 for August 1994.
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0.7

DATA SET:
W4SUD4R.AGR
02/08/98

AQUIFER MODEL:
Confined

SOLUTION METHQD:
Theis Recovery

TEST DATA's

Q = 9.028 ft¥/min

re g1, ft

bw g, ft 4

PARAMETER ESTIMATES:
T = 4.726 ft</min
8° = 3.208

0.56

0.42

0.28

Residual Drawdown (ft)

0.14

Tll1llllllll[l|jllllllll

0 | llllllll | lIIllIII 1 llllllll 1 lllllll| (AR

1. 10. 100. 1000. 10000. 1.E+05
Dimensionless Time, t/t" (min)

Figure 16. Theis Recovery Curve for Well AL-1 for August 1994.
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DATA SET:
W4SPG3R.AGR
02/08/98

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Recovery

TEST DATA;

Q = 9.854 ft /ain
r=4q, ft

b=yg, ft 9

PARAMETER ESTIMATES:
T = 4.324 ft/min .
8° = 9.473

10000.

Figure 17. Theis Recovery Curve for Well AL-4 for July 1993.
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I I lllllll ! !,l—llll_ DATA SET:
W4SU93A.AGR
06/30/93

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Recovery

TEST DATA,

@ = 10.34 ft /ain
req.ft

b=y, ft ’

PARAMETER ESTIMATES:
T = 4.828 ft</min
8 = 3,022

0.64

0.48

0.32

Residual Drawdown (ft)

0.16
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1. 10. 100. 1000. 10000.
Dimensionless Time, t/t" (min)

Figure 18. Theis Recovery Curve for Well AL-4 for August 1993.
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0.8

1 lTllllll LI lllllll LI | DATA SET:
W4ASPB4RA.AGR
06/30/83

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Recovery

TEST DATA,

Q = 9.493 ft%/ain
reg.ft

be=4g.ft ’

PARAMETER ESTIMATES:
T = 4.782 ft/min
8° = 3.418

0.64

0.48

0.32

Residual Drawdown (ft)

0.16

lJlIlllLllllL'LllLlJlil‘

ITIIIITIIIIIIIIIIIIIIIT
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Figure 19. Theis Recovery Curve for Well AL-4 for June 1994.
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DATA SET:
W4ASUS4R.AGR
08/30/95

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Racovery

TEST DATA,

Q = 9.025 ft /ain
=4 ft

b=4g, ft Y

PARAMETER ESTIMATES:
T = 4,301 ft“/min .
8°' = 2,807

10000.

Figure 20. Theis Recovery Curve for Well AL-4 for August 1994.
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DATA SET:
-] W18SP83P.AGT
02/06/98

"] AQUIFER MODEL:

— Confined

<1 Theis
TEST DATA;

r = 45.67 ft
re= 0.8 ft
[ 0.5 ft
b=y, ft

PARAMETER
T = 8.811 ft
S = 0.05001

Illlll

0.01
0.1

1.

Figure 21.

10.

100.

Time (min)

1000.

10000.

Theis Curve for Well AL-18 for July 1993.

SOLUTION METHOD:

-1 @ = 9.854 tt3/ain

;STIMATES:
/min
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Figure 22.
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DATA SET:
W185P83P.AQT
02/08/98

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Cooper-~Jacob

TEST DATAS

Q = 9.854 ft3/min

r = 45.87 1t

Pe= 0.5 ft ’
re= 0.8 ft

b=4g. ft

PARAMETER gsumfss:
T = 5,322 ft“/ain
8 = 0.08424

10000.

Jacob-Cooper Curve for Well AL-18 for July 1993.
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1.

DATA SET:
W18SPE3P. AGU
02/06/85

AQUIFER MODEL:
Unconfined

SOLUTION METHOD:

Neuman

TEST DATAS

QG = 9.854 ft°/ain
r = 48,87 ft

b = 48. ft

PARAMETER_ESTIMATES:
T = 5.42 ft/min

8 = 0.004

Sy = 0.0638

p = 0.748

UL
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e
-
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Figure 23. Neuman Method Curve for Well AL-18 for July 1993.
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Figure 24.
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DATA SET:
W18SPB3A.AGR
02/08/98

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Recovery

TEST DATAS

Q = 9.854 ft /min
reg, ft

b= g, tt P

PARAMETER ;STIMATES:
T = 85.041 ft</min
8° = 2,834

10000. 1.E+05
Dimensionless Time, t/t" (min)

Theis Recovery Curve for Well AL-18 for July 1993.
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DATA SET:
W18SUS3P.AGT
02/08/93

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis

TEST DATI\’s

Q = 10.34 ft7/sin

r = 45.67 ft

re® 0.5 ft »
ry= 0.5 ft

b=1. ft

0.1

T = 85.148 ft
8 = 0.08024

/min

Drawdown (ft)

0‘01 | llllllll L 11 lIlII 1 llllllll | llllllll L el

0.1 1. 10. 100. 1000. 10000.
Time (min)

Figure 25. Theis Curve for Well AL-18 for August 1993,

PARAMETER ESTIMATESZ
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NiBSUOSP.AO.T
02/06/88

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Cooper-Jacod

TEST DATAS

Q= 10.34 ft /min

r = 48.67 1t

re™ 0.8 ft ’
ry= 0.8 ft :
be=1g, ft

0.64

o
N
@
LI N O L L L O L L

T = 5.818 ft
8 =~ 0.08788

/min

0.32

Drawdown (ft)

0.16

IJIIIIIIIIIIIIILIIIIIIII

0.1 1. 10. 100. 1000. 10000.
Time (min)

Figure 26. Jacob-Cooper Curve for Well AL-18 for August 1993.
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DATA SET:
W18SUD3P . AQU
02/068/98

AGQUIFER MODEL:
Unconfined

SOLUTION METHOD:
Neuman

TEST DATA,

@ = 10.34 ft%/min

r = 45.67 ft

b= 18. ft s

T = 85.277 ft
8 = 0.019

8y = 0.077

s = 0.2088

/ain

Drawdown (ft)
e
b

llll_lll

0.01 i 1 IllllJlL 1 llllllll [ llIIlIlI L Liitin

0.1 1. 10. 100. 1000. 10000.
Time (min)

Figure 27: Neuman Method Curve for Well AL-18 for August 1993,

PARAMETER ESTIMATES:
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Residual Drawdown (ft)
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0.48
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DATA SET:
W1BSU93A.AGR
02/08/95

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Recovery

TEST DATA’s

Q@ = 10.34 ft /min
r=q, ft

b=21, ft ¢

PARAMETER ESTIMATES:

T = 4,389 ft
8° = 3.014

/min

10000._ 1.E+05
Dimensionless Time, t/t" (min)

Theis Recovery Curve for Well AL-18 for August 1993.
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DATA SET:
W18SP94P.AQGT
02/06/98

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis

TEST DATA'3

Q = 9.493 1t /min

r = 45.67 ft

re= 0.8 ft v
ry= 0.8 ft

b= 4, ft

PARAMETER ESTIMATES:
T = 68.708 ft</min
8 = 0.05888

Drawdown (ft)
o
=t

0.01
0.1 1. 10. 100. 1000. 10000.
Time (min)

Figure 29. Theis Curve for Well AL-18 for June 1994.
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0.7
DATA SET:
W185P4P . AQT
02/06/98

AGUIFER MODEL:
Confined

SOLUTION METHOD:
Cooper~-Jacob

TEST DATA;

Q = 0.493 ft°/min

r = 45.67 ft

re™ 0.8 ft ’
ry™ 0.5 ft

be g, ft

PARAMETER ESTIMATES:
T = 4.845 ft°/min
8 =0.183

0.56

e
N
N

0.28

Drawdown (ft)

0.14

Illl||llllllll|llllllll[

Illlll[lrlllllllllllllll

e
-y

1. 10. 100. 1000. 10000.
Time (min)

Figure 30. Jacob-Cooper Curve for Well AL-18 for June 1994.
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Figure 31.

DATA SET:
W18SPO4P . AQU
02/06/9%

1 1 L1

Unconfined

TEST DATA;

r = 45,87 ft
b= 15, ft

PARAMETER
T =3.8ft
8 = 0.005991
Sy = 0.25
s = 0.714

Illlll

1. 10. 100. 1000. 10000.
Time (min)

Neuman Method Curve for Well AL-18 for June 1994.

AQUIFER MODEL:
SOLUTION METHOD:

Q= 0.493 ftsllll'l

ESTIMATES:

/ain
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Figure 32.

10.

100.

1000.

DATA SET:
W18SPO4R.AGR
02/06/83

AQUIFER MODEL:
Confined

SOLUTION METHOD:

Theis Recovery

TEST DATA,

Q = 9.493 ft7/min
reg, ft

beg. ft

PARAMETER ESTIMATES:

T = 5.028 ft
8° = 4,302

/ain

10000.

Dimensionless Time, t/t" (min)

Theis Recovery Curve for Well AL-18 for June 1994.
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Figure 33.
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DATA SET:
W1BSUS4P.AQT
02/13/98

AGUIFER MODEL:
Confined

SOLUTION METHOD:
Theis

TEST DATA&

Q= 9.028 ft9/min

r = 45.087 ft

rc= 0.5 ft ’
ry= 0.8 ft

bew i, ft

PARAMETER ;STIMATES:

T = 8.543 ft
8 = 0.07028

/min

10. 100. 1000. 10000.
Time (min)

Theis Curve for Well AL-18 for August 1994.
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DATA SET:
W18SUD4P . AQT
02/13/98

AQUIFER MODEL.:
Confined

SOLUTION METHOD:
Cooper~Jascob

TEST DATA'3
Q=908 ft /min

r = 45.87 ft

re™ 0.8 ft 4
ry= 0.8 ft

b= 4, ft

PARAMETER ESTIMATES:
T = 5.037 ft</ain
8 = 0.08832

0.64

e
N
®

0.32

Drawdown (ft)
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Figure 34. Jacob-Cooper Curve for Well AL-18 for August 1994,
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1. | ™ DATA SET:
W18SUS4P . AQU
02/06/98

AQUIFER MODEL:
! Unconfined

SOLUTION METHOD:
Neuman

TEST DATAS
Q= 9.028 tt°/min
r = 45.67 ft

b = 15, ft

PARAMETER_ESTIMATES:
T = 4.74 tt2/min

8 = 0.02213

Sy = 0.079

p = 0.4612

U DR LA
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0.001 '
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Figure 35. Neuman Method Curve for Well AL-18 for August 1994,
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DATA SET:
W18SU94R.AGR
02/13/98

AGUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Recovery

TEST DATA‘s

Q= 9.028 ftY/min

re 3, ft

bw g, ft ]

PARAMETER ESTIMATES:

T = 4,969 ft
8°' = 2,688

/min

10000.. 1.E+05
Dimensionless Time, t/t" (min)

Figure 36. Theis Recovery Curve for Well AL-18 for August 1994.
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W275U84P. AQT
02/08/98

AQUIFER MODEL:

Confined

SOLUTION METHOD:

Theis
TEST DATA;

Q = 9.025 t3/min

r = 84.87 ft
re= 0.8 ft -
ry= 0.8 ft
b= 4§, ft

PARAMETER
T = 6.021 ft
8 = 0.08808

0.1 1. 10. 100. 1000. 10000.

Time (min)

Figure 37. Theis Curve for Well AL-27 for August 1994.
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DATA SET:
W278UB4P . AQT
02/06/88

AGUIFER MODEL:
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SOLUTION METHOD:
Cooper-Jscob

TEST DATA's

@ = 9.028 ft7/min

r = 64.67 ft

re= 0.8 ft y
ry= 0.5 ft

b=1. ft

PARAMETER gsuMA"TEs:
T = 8,048 tt</min
8 = 0.07618
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* Figure 38. Jacob-Cooper Curve for well AL-27 for August 1994,
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DATA SET:
W275U94P . AQU
02/08/95

AGQUIFER MODEL: -
Unconfined

SOLUTION METHOD:
Neuman

TEST DATA,

Q = 9.025 ft/min

r = 84.67 ft

b= 18, ft ’

0.1

T = 8.8 ft</ain
8 = 0.0006948
8y = 0.1

p = 0.6014

Drawdown (ft)

0.01
0.1 1. 10. 100. 1000. 10000.
Time (min)

Figure 39. Neuman Method Curve for Well AL-27 for August 1994.

PARAMETEg ESTIMATES:

8L



‘uoissiwsad noyum paugiyold uononpoidas Jayung “Jaumo WBLAdoo oy} Jo uolssiuad yum paonpoiday

Residual Drawdown (ft)

0.7

0.56

0.42

0.28

0.14

Illllrllllllllllllllllfl

| lIIlIII

11 Lllllll

Illllllllllllllllllllll

10.

100.

1000.

Dimensionless Time, t/t" (min)

DATA SET:
W27BUD4R. AGR
02/08/98

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Recovery

TEST DI\TA‘s

Q= 9.028 ft°/sin

re 4, ft

bwei{, ft ’

PARAMETER ESTIMATES:

T = 4.883 ft
8*' = 41.678

/uin

10000. 1.E+05

40. Theis Recovery Curve for Well AL-27 for August 1994.
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Figure 41.

Theis

DATA SET:
N285U94P. AQT
02/19/98

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis

TEST DATA

Q= 9.028 ft/ain

r = 52,78 ft

re= 0.8 ft v
ry~ 0.8 ft

beg, ft

PARAMETER ;STIMATES:
T = 8,642 ft</ain
8 = 0.03404

10. 100. 1000. 10000.
Time (min)

Curve for Well AL-28 for August 1994.
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Figure 42.

DATA SET:
W28SU94P . AQT
02/13/98

Confined

Cooper-Jacob
TEST DATA;

r=82.75 ft
re= 0.5 ft
ry= 0.8 ft
be=1.ft

PARAMETER
T =6.254 ft
8 = 0.03907

llllllllllllllllllllllLl—

1. 10. 100. 1000. 10000.
Time (min)

Jacob-Cooper Curve for Well AL-28 for August 1994.

AGUIFER MODEL:
SOLUTION METHOD:

Q= 0,028 ftslnin

;STIMATES:

/min
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Drawdown (ft)
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Figure 43.

DATA SET:
W285U94P . AQU
02/13/98

Unconfined

Neusean
TEST DATA;

r=852.78 ft
b= 18. ft

PARAMETER
T =85.8ft
8 = 0.001747
Sy = 0.08

s = 0.2024

1. 10. 100. 1000. 10000.
Time (min)

Neuman Method Curve for Well AL-28 for August 1994,

AQUIFER MODEL:
SOLUTION METHOD:

Q= 9.028 ftsllin

ESTIMATES:

/min
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0.56

0.42

0.28

Residual Drawdown (ft)

0.14
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44.
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DATA SET:
W28SUD4R.AGR
02/13/98

AQUIFER MODEL:
Confined

SOLUTION METHOD:
Theis Recovery

TEST DATQ:

Q@ = 9.02 ft'/ain

r= 4, ft

bew g, ¢t J

PARAMETER ESTIMATES:

T = 4.071 ft
8 = 2.3

/min

10. 100. 1000.,6 10000. 1.E+05

Dimensionless Time, t/t" (min)

Theis Recovery Curve for Well AL-28 for August 1994.
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Site Map
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Figure 45. Site Map.
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Appendix G

Well Configuration Diagrams
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| EES—— |
| i 10" [10' EJWell Screen
I 1
64.67" Z Water Table
| ! : W
23.75" 45.67°
AL-27 AL-1 AL-4 AL-18
Lithology
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~ 62" E
é&a—m' ) 55-70"
80-95° . 74-89 é

Clay Layer--180"

Figure 46. West-East Well Configuration Cross-Section.

88



89

"UCI}DAa§-SSOI) UOIQLINBIIUOD [I9M YIION-Yanos “/p

axnbtr g

08T --I04e] Aei)

) whlm@

82-1T¥

3
Nefs “
M

a[qel Iajeym X

uwsaiIds 11°8 5 0T “_ 101

1SL°¢ES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g
o
=
)
)
H
=
© Z
N L= ] ]
| | g
E’e é@ 3]
-
g
-y - —
z"‘I’”” g - o
= :‘: ! =

o O é@
2 5
o =

g 2

¥y :
s &3 o
i ®® by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90



Appendix H

Well Log
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Depth (ft)

—0
AL-1A

12 -

AL-1B

36 |-

48 I~

AL-27

72

96 -

U.s.C.s.

Very fine sands to silts

[E———<]Fine-grained sand
[__]coarse sands and gravel

5P, SM

S.p

5-7': S yr 4/4; brown; fine-grained sand;
10 yr 4/4; very fine-grained sand with some
silt

10-12': 10 yr 5/4; yellowish-brown; fine-
grained sand with a little gravel

15-17': 10 yr 5/4; yellowish-brown; fine-
grained sand

20-22': 10 yr 5/4; yellowish-brown; fine-
grained sand

25-27': 10 yr 5/4: yellowish-brown; fine-
grained sand with a little gravel

35-37': 10 yr 5/4; yellowish-brown; fine-
grained with a little fine-grained and some
course-grained sand mixed in

40-42': 10 yr 5/4; yellowish-brown; fine-

grained sand with more fines presents than
prior samples

45-47': 10 yr 4/2; dark yellowish-brown;
fine-grained sand
50-52': 10 yr 4/2; dark yellowish-brown;

fine-grained sand with some finer material
present

58-60': 10 yr 5/4; yellowish-brown; fine-
grained sand with a few gravels present
63-65': 10 yr 5/4; yellowish-brown
(slightly yellower); fine-grained sand with
a few gravels present; some black mottling
68-70': 10 yr 5/4; yellowish-brown; fine-
grained sand with a few gravels present;
some black mottling

73-75': 10 yr 5/4; yellowish-brown; fine-

grained sand with a few gravels present;
some black mottling; a 4-5" course sand lens
is present also

78-80': 10 yr 5/4; yellowish-brown; fine-
grained sand with a few gravels present;
some black mottling

89-91': 10 yr 5/4; yellow-brown; fine-
grained sand, with some very find-grained
sand present

SM: Poorly graded very fine sand and silt sP Poorly graded fine sand
Intervals are 2 foot samples using split spoon sampling

Figure 49. Composite Well Log for Asylum Lake Area.
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