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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

Natural flyers like birds and insects are speculated 

to utilize their wing flexibility, particularly thin 

flexible fins, for more efficient flight and effective 

flow control in different flight regimes. The flexible 

fins seem to play an important role in flapping flights 

where highly unsteady aerodynamics is nonlinearly coupled 

with the deforming wing. Bird flight inspired many early 

aviation pioneers like Lilienthal and Wright brothers who 

used flexible thin wings for flight control. In 

Lippisch's [1] first (and last) successful man-powered 

ornithopter test in 1929, the dramatic effect of quasi-

flexible trailing edges (made up of bamboo pieces 

attached to the rigid wing near the tips) on improving 

flapping propulsion over that of a rigid flapping wing 

was observed. However, as remarkable advances were made 

in fixed-wing aircraft, the potential benefit of wing 

flexibility had been largely ignored, partially because 

flexibility has usually been considered a dangerous 

factor and the associated unsteady aerodynamics is too 

complicated to handle. Recently, the potential advantage 
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of wing flexibility has been re-discovered, and relevant 

research has been supported by NASA's Morphing Program 

(McGowan 2001) [2]. 

Separation flow control is of massive importance to 

the performance of air, land, sea vehicles, turbo 

machinery and diffusers. Generally, it is desired to 

postpone flow separation so that form drag is reduced, 

stall is delayed, lift is enhanced, and pressure recovery 

is improved. Therefore, considerable research efforts 

have been made over years for separation control (or 

stall control) by using various techniques like synthetic 

jets (Glezer & Amitay [3], Mittal et al. [4]), vortex 

generators (Gad-el-Hak [5]), passive and active blowing 

(Gad-el-Hak [5]), local suction (Atik et al. [6]), 

flapping wing (Jones et al. [7]), and oscillating camber 

(Munday & Jacob [8] ) . In this thesis the concept of 

separation control (or stall control) for a post-stall 

NACA0012 airfoil is done by using a flexible fin to 

passively manipulate the interactions of the organized 

vortical structures in the separation region. 

1.2 Basic design 

The basic design is illustrated below in the figure 

1.1. A thin flexible fin is attached to the upper surface 

of a NACA0012 airfoil. The oscillation of the membrane, 



induced by the separated wake from the post-stall airfoil 

interacts passively with the flow field to alter the 

global aerodynamic properties of the NACA0012 airfoil. 

The oscillations allied with the shape deformations 

change the overall pressure distribution on the fin, 

which in turn affect the fin dynamics. Thus this mutual 

effect of inertial forces and elastic forces can be 

considered through fluid-structure interactions (FSI) . 

Hence in this thesis a computational fluid dynamic solver 

is combined with a computational structural dynamics 

solver in order to model these fluid structure 

interactions around the thin flexible fin attached to the 

upper surface of a NACA0012 airfoil that passively 

manipulates the flow field in fully separated flows. 

Figure 1.1: Flexible fin attached to a NACA0012 airfoil 



1.3 Fluid structure interactions 

4 

There are two major numerical techniques to compute 

the solution of fluid structure interaction problems. 

They can be classified as monolithic methods and 

partition/segregated methods. In monolithic methods the 

complete system of non linear equations for the fluid and 

structure are coupled and integrated into one system and 

solved at their common interface [9, 10]. This procedure 

leads to a single matrix containing all equations and 

couplings [11] . This matrix might be large and ill-

conditioned [11] and there is a chance for numerical 

difficulties in convergence of the solution. This could 

be a major problem when dealing with large geometries. On 

the other hand monolithic methods are considered to be 

more robust of the two numerical techniques. The second 

technique, segregated method, is the widely used method 

by commercial software packages where different software 

and different meshes are employed by the fluid and 

structural problems. In this method both the fluid as 

well as structural field are defined separately and 

solved and the interface conditions from the structure 

and the fluid are applied as boundary conditions at 

different times. These methods are very popular because 

the individual codes can be modified accordingly 

depending on the complexity of the problem. The 
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methodology presented in this thesis comes under the 

second category. 

Coupling the CFD and CSD solvers 

From a physical view point the fluid structure 

interaction problem is a combination of two problems, 

flow field and the structural field. These problems use 

different numerical procedures to compute the solution on 

different domains and meshes. In addition to using 

different meshes there is a need for data transfer 

(pressure from fluid to structure and displacement, 

velocity from structure to fluid) across the interface. 

The transfer of data which are the boundary conditions is 

a very important feature of fluid structure interactions. 

There are basically two different ways to transfer the 

data. 

Fluid Field 
(CFD solution) 

Pressure Force 

Structural Field 
(FEA solution) 

Fluid Field 
(CFD solution) 

Pressure Force Displacement & velocity-

Structural Field 
(FEA solution) 

Figure 1.2: One-way coupling vs. two-way coupling 



The easiest is one-way coupling. In this procedure the 

forces are transferred only one way from the fluid (CFD) 

solution to the structure (e.g. transferring static 

pressure loads from the fluid solution onto a structural 

model). The underlying assumption here is that the 

deformation of the solid is so small that it doesn't 

affect the overall fluid flow solution. The second 

coupling method is the widely used two-way coupling 

procedure for most problems involving large 

displacements. This is required when the fluid forces 

cause a significant oscillation of the structure. The 

results are mapped from the first solution to the second 

and back from the second to the first. Either the 

structural solution or the fluid solution takes the lead 

and at significant intervals the solution is mapped to 

and fro from fluid/structural to structural/fluid. For 

example when the total pressure force causes the 

structure to deflect, the solution is mapped from fluid 

to structure and in return the displacement (or position) 

and velocity of the structure is transferred back to the 

fluid domain. 

Immersed boundary method 

In the present thesis the term fluid structure 

interaction is considered as interaction of forces 



(pressure) and the corresponding movement of fin 

(momentum interaction) rather than thermal interaction. 

Hence coupling the computational fluid dynamics (CFD) 

solver with the computational structural dynamics (CSD) 

solver provides an effective tool for calculating the fin 

dynamics. There are a number of factors that need to be 

handled in order to couple the CFD solver with the CSD 

solver. Other than handling the different spatial as well 

as temporal characteristics of each solver difficulty 

arises because of the moving interface (i.e. fin) present 

in the domain. These dynamically moving boundary problems 

are amongst the most demanding problems in contemporary 

computational fluid dynamics. The major complexity arises 

from the fact that generally all the fluid dynamic 

domains are described in Eulerian frame of reference. 

This method is suitable and works well when the boundary 

location doesn't change with respect to time. This 

becomes a problem when the boundary location changes with 

time. There are different techniques that have been 

proposed to account for this time dependent movement of 

the boundary, such as the overset grid method, dynamic 

meshing and coordinate transformations which can be 

applied to body conformal grids. In order to account for 

the motion of the boundary these grids need to be 

regenerated at every time step and also the old solution 



needs to be projected onto the new grid. For problems 

involving large deformations and or large motions these 

grid regeneration methods are not only complex and time 

consuming but can have adverse effects on the simplicity, 

accuracy and efficiency of the solver. A study done by 

Liou & Pantula [13] where a dynamically moving flat plate 

was simulated using the commercial codes Fluent and Ansys 

CFX supports the above argument. Hence there is a need 

for developing a cost efficient numerical procedure that 

can deal with large boundary motions. An alternate to the 

boundary conforming methods which do not require the 

regeneration of grid at every time step is the widely 

used non conforming boundary fitted technique called 

immersed boundary method (IBM). In this method the 

boundary location need not be dependent on the mesh 

layout. The basic idea of the immersed boundary technique 

lies on the definition of the solid boundaries which may 

be static or dynamic. The immersed boundary technique 

mimics a solid body by means of suitably defined body 

forces applied to the discretized set of the momentum 

equations. These body forces impose a kinematic condition 

such that the velocity at each node point is coupled to 

the interpolated fluid velocity. The body force-field f 

is imposed so that a desired velocity distribution V can 

be specified on an immersed boundary [14] . This means 



that we just add the body force f to the Navier-stokes 

equations and solve for u from the equation 

— + V(uu) = -S/P + vV(Vu) + f, V.W = 0 . X 

dt 

The main advantage of this approach is that f can be 

prescribed on a regular mesh so that the accuracy and 

efficiency of the solution procedure on simple grids are 

maintained. Another advantage of these formulations is 

the simplification of grid generation, especially in the 

case of moving boundaries where the need for regeneration 

or deformation of the grid is eliminated. 

1.4 Numerical representation of FSI problem 

In figure 1.3 the numerical representation of 

procedure that is adopted and used in the present thesis 

is represented. The first step in the numerical procedure 

is to calculate the fluid solution on a eulerian grid. 

Then the total pressure force acting is exported as a 

condition for the structural field to obtain the velocity 

and the displacement. Then the location of the body is 

traced in a lagrangian fashion and appropriate virtual 

forces at interface locations are formulated and smoothly 

transferred onto the eulerian grid nodes using the 

immersed boundary technique. Then the solution is 
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advanced to next time step. The most convenient way for 

transferring the data between the CFD mesh and the FEA 

mesh would be if the nodes are concurrent. The pressure 

forces as well as the velocities and displacements need 

to be interpolated to the nearest node points if they are 

not coincident. 

CFD Mesh 
(Steady w.r.t time) 

Fluid Field 
(CFD solution) 

Export pressure forces 
from the nodes 

Structural Field 
(FEA solution) 

Immersed Boundary Method 
(Interpolate velocity and 

position onto the fixed CFD 
mesh) 

Export displacement & 
v e l o c i t y a t each node po in t 

FEA Mesh 
(Same node p o s i t i o n s as CFD mesh) 

Figure 1.3: Numerical representa t ion of the FSI problem 

The low Reynolds number K- s model of Launder and 

Sharma [15] i s a lso incorporated in to the CFD code to 

compute the turbulent sca les in the flow. One major 

factor tha t needs to be addressed here when using the 



immersed boundary technique is that the thickness of the 

fin is very small. The thickness of fin in the 

experiments is considered to be 0.0001 m but in the 

numerical procedure we consider the fin to be 

infinitesimally thin (i.e. thickness=0). Different 

interpolation techniques have been formulated to take 

care of this problem. These techniques are discussed in 

detail in the chapter IV of the thesis. 

1.5 Literature review of immersed boundary methods 

Fluid structure interaction modeling has a wide 

range of industrial applications ranging from blood 

vessels, functioning heart value, elastic arteries to 

flexible tubes to parachutes to tents bridges to flapping 

flag to swimming fish. The first non-conformal boundary 

method to conduct fluid structure interactions was 

proposed by Peskin [16] where a fluid structure 

interaction over a cardiovascular circulation was studied 

assuming a low Reynolds number (Re) flow. In this 

calculation the boundary was modeled as a set of elements 

linked by springs. The body forces were easily computed 

using Hooke's law. Numerical difficulties arose when this 

method was applied to solid/rigid boundaries because the 

assumption of elements being elastic becomes 

unacceptable. Goldstein [17] applied it to solid 



boundaries by introducing a feedback forcing approach 

that asymptotically enforces the desired boundary 

conditions on the solid. These come under the category of 

continuous forcing functions according to immersed 

boundary methods review by Mittal and Iaccarino [18]. The 

forcing is incorporated into continuous equations even 

before discretization. This feedback mechanism of 

Goldstein combined with the spectral method was used to 

simulate two-dimensional flow around a circular cylinder, 

as well as three-dimensional plane [17] and ribbed-

turbulent channel flow [18] . These results were in good 

agreement with the reference data. The major drawback of 

this procedure is in order to calculate the feedback 

forcing two empirical constants related to flow 

frequencies were introduced. These two free constants 

need to be tuned according to the frequency of the flow. 

The equations became stiffer when the magnitude of these 

constants was high. This induced spurious oscillations 

and numerical instability which restricted the 

computational time step size. Saiki and Biringen [20] 

used the same forcing to compute the flow around fixed 

and rotating circular cylinders using a fourth-order 

central finite-difference scheme. Their results showed 

that the use of finite difference scheme eliminated the 

occurrence of spurious oscillations of flow at the 



boundary. Even though this approach was successful at 

very low Reynolds number flows they cannot be used for 

high/moderate Reynolds number flows. 

Recently, Mohd-Yusof [21] and Fadlun [14] proposed a 

direct forcing embedded boundary formulation and showed 

that discrete time forcing is much more accurate and 

efficient compared to the feedback forcing. There are no 

empirical methods in this approach and the derivation of 

the forcing is explicit making the derivation of f flow 

independent. The methodology of Fadlun [14] was to 

introduce the forcing at the first grid point external to 

the immersed boundary using a velocity that, in a linear 

approximation, this point would have if the boundary had 

a desired velocity. Fadlun [14] reconstructed the 

solution at the fluid zones closest to the solid zone 

where as Kim [22], Majumdar [23] reconstructed the 

solution at ghost cells, which are solid zones closest to 

the fluid zone. Both the direct and feedback forcing 

procedures are discussed in detail in the later chapters. 

1.6 Manuscript organization 

The second chapter of the manuscript/thesis begins 

by describing the Navier-Stokes fluid dynamic solver. The 

governing equations, spatial and temporal discretizations 

of the momentum and continuity, pressure velocity 



couplings are discussed. 

Chapter three describes the subdivision finite 

element structural dynamics solver. The kinematics of 

deformation, finite element discretization and 

unstructured mesh generation techniques are presented in 

this chapter. 

Chapter four describes the immersed boundary method 

in detail. The application to moving boundaries as well 

as coupling between the CFD and the CSD solvers is 

discussed for the couple of FSI simulations conducted in 

this thesis. The velocity forcing applied on the fin is 

also discussed. 

In Chapter five the CFD solver and the CSD solver 

are validated. The turbulent flow over a NACA0 012 airfoil 

is simulated at Re=170,000 and compared with the 

published results. Different grid independence tests were 

done to validate the accuracy of the CFD solver. Then the 

CSD solver is validated by comparing unsteady simply 

supported beam solution with analytical results 

In Chapter six, different validations for the 

immersed boundary technique are presented. The major aim 

is to model the fluid structure interaction of a flexible 

fin attached to the upper surface of a post stall 

NACA0012 airfoil. The fin is considered infinitesimally 

thin. The Reynolds number of the flow is fixed at 63000. 
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In order for the immersed boundary technique to be 

applicable to the present design the following 

validations are imperative. 

• Steady state immersed boundary (laminar flow) 

a) Laminar flow over a NACA0012 airfoil at Reynolds 

number of 500. 

b) Laminar flow over a circular cylinder at Reynolds 

number of 40. 

• Unsteady immersed boundary (laminar flow) 

a) Unsteady laminar flow over a circular cylinder at 

Reynolds number of 200. 

• Unsteady flow over a infinitesimally thin flat plate. 

a) Unsteady flow over a flat plate at AOA of 30. 

• Steady state turbulent immersed boundary 

a) Turbulent flow over a NACA0012 airfoil on a 

rectangular grid using immersed boundary 

technique. 

• Moving boundary solution using immersed boundary 

method. 

a) Unsteady laminar flow around a flexible flat 

plate validated against a boundary fitted data of 

Pantula and Liou [13]. 

In Chapter seven combined fluid structure 

interaction modeling around a passively flapping flat 

plate at angle of attack of five is described. 



In Chapter eight the fluid structure interaction 

around a flexible fin attached to a NACA0012 airfoil is 

described. Firstly the experimental set up is described 

followed by the numerical procedure used to model the 

fluid structure interactions around the fin. 

Finally the conclusions and future directions are 

presented in chapter nine. 
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CHAPTER II 

THE NAVIER STOKES FINITE DIFFERENCE FLUID DYNAMIC SOLVER 

In this chapter the details of the fluid dynamic 

part of the coupled fluid structure interaction solver is 

discussed. The basic solver in curvilinear coordinates is 

discussed in detail. The chapter starts with transforming 

the coordinate system from Cartesian to curvilinear 

coordinates followed by spatial and temporal 

discretizations. 

The numerical method is based on partial 

transformation approach, where the appropriate forms of 

the incompressible governing Navier-Stokes equations 

expressed in curvilinear coordinates, with velocity 

components expressed in Cartesian coordinates. The basic 

advantage of utilizing general curvilinear coordinates 

comes from the fact that the numerical fluxes can easily 

be estimated for non-orthogonal grids. The Navier-Stokes 

equations 2.1 to 2.4 are discretized in space, on a non-

staggered mesh, using second order finite difference 

scheme for the pressure gradient and viscous terms, and 

second order upwind finite differencing for the 

convective terms. The upwind differencing of the 

convective terms eliminates the need for adding 
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artificial dissipation terms, to the right hand side of 

the momentum equations, to stabilize the numerical 

algorithm. This is due to the fact that a fixed amount of 

dissipation is inherent in the upwind differencing. The 

finite difference schemes employed for the pressure 

gradient, which pressure located on mesh points, and 

viscous terms, which calculating velocity components on 

half mesh points, are two-point central finite 

differencing, and for the convective terms are three-

point one-sided finite differencing. The pressure-

velocity equation is solved using the alternate-

direction- implicit (ADI) approximate factorization 

method. A four-stage Runge-Kutta method is also used to 

advance the discrete equations in time. 

2.1 Transforming Cartesian to curvilinear coordinates 

The Navier-Stokes equations in Cartesian coordinates 

can be written as 

dt dxyy x) dyyy yJ dzKH z) 

eux TT dux TT eux TT eux — - + u x — - + u v — - + u z — x -
dt dx By dz 

d d d 
T H T H r 

~\ xx ^ yx ^ z 

ox oy oz 

2 . 1 

dp 

dx 

+P8X 
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dt 

dUv dUv dUv^ 
•u,—y-+u„—y-+u. y 

dx dy dz 
a a a 

T H T H T 

dx xy dy ^ dz v 

+ Pgy 

P 
V 

dU, rr dUz TT 8U7 TT 8UZ 

— - + u x — - + u — z - + u z — z -
dt dx dy dz 

d a d 
T H T H T 

dx xz dy yz dz ' 

dp 

dp 

~dz 

2 .3 

2 .4 

+Pgz 

In equation 2.1 if the flow is incompressible the 

derivative of the density following the fluid material 

[the term in brackets] is zero. In many flows of interest 

the fluid behaves as a Newtonian fluid in which viscous 

stress can be related to the fluid motion by constitutive 

relation of the form 

T„ = 2M IJ 3 
-s^S, kk ij 

2.5 

Where Su is the instantaneous strain tensor defined 

by 

'' = 2 

du. du, 

From its definition, 

dxj dxf 

du, 
C = 2-

dxk 

if the 

2.6 

flow is 

incompressible skk=0 and the Newtonian constitutive 

equation reduces to Ttj = 2/uSy . Incorporating these changes 

into equation 2.1 to 2.4 the equations are transformed as 

at/^a^a^ = 0 
dx dy dz 

dux TT dux TT dux TT eu, ^ 
— - + Ux — - + U — - + Uz -

dt dx dy dz j 

:M 
d2ux d2ux d2ux 
dx2 + dy2 dz2 dx 

2.7 

2 .8 
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P 

rdUv dUv 3UV dUv^ 
— -+u x — y -+u y — y -+u z — y -

dt dx dy dz 
••P 

d2U„ d2Uv d2Uv 

- + r- + -dxl dy1 dz1 

dp 

"dy~ 

2 . 9 

duz TT eu2 TT duz TT duz — -+u x — z -+u v — z -+u z — z -
dt dx dy dz 

= M 
d2u, d2uz d2u, 

-+— T - + -
dxz dy' dz1 

dp 

~dz 

2.10 

Transforming the continuity equation 

Let's assume that there is a unique, single-valued 

relationship between the generalized coordinates and the 

physical coordinates, which can be written as 

4 = £(x,y,z), ri=ri(x,y,z), <Z = £(x,y,z) 

Introducing 

A_MA AZ.JL ^£A 
dx dx dE, dx drj dx dC, 

2 . 1 1 

2 .12 

A = M A ^ILA. KJL 
dy dy dE, dy drj dy dC, 

dz dz dE, dz drj dz dC, 

2 . 1 3 

2 .14 

And the contravariant velocity, 

* dx x dy y dz z 

vn=^ux+^uy+^uz 
* dx x dy y dz z 

2.15 

2.16 



21 

V-Ku+Ku+Kn 2 .17 

dx dy dz 

Substituting equations 2.12 to 2.14 into equation 

2.7, we have, 

dE. dux { drj dux { dc dux | d{ duy | drj euy | dc duy 

dx dE, dx drj dx dC, dy dE, dy drj dy d£ 

dE, dUz drj dU2 dC, dU 
+- • + - • + -

dz dt; dz drj dz d£ 
0 

2.1f 

Where, 
d£dUx 

dx dE, = d 
J dE. 

didu^ 
dx dE, = d 

J dE. 

dx 
J 

1'dE ^ 
dx 

•U. 

H 

'dp 
dx 
J 

V J 

J 

d f dy dz dy dz 
xdE,\dr\dCl dC, drj 

2 . 1 9 

dr]dUx 

dx drj _ d 
J ~ drj 

- > 

dr1dUx 

dx dij _ d 

drj 

rdrLu^ 
dx 

J 

dx 

-Ur 
dx 

drj J 
v J 

J J 

d f dy dz dy dz 
x~d~n\dl~di~^~d^ 

\ 

2 .20 
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d£dU^ 
dx dC, _ 

J 

_dx_dC_ = 

J 

dx 
J 

V 

x d£ 

dy d% 
J 

- > 

d£dUy 

dy d£ 

J 

dr}dUy 

dy dr] 
J 

dridUy 

dy drj 

J 

dy di; 
j 

dy d£ 
J 

_5_ 

_d_ 

d£, 

dx 
J 

V J 

dy y 

J 

Ur 
_d_ 

d£ 

'dO 
dx 
J 

V J 

dy dz dy dz 

d% drj drj d% 

2 . 2 1 

•U.. 
dt; 

fdj} 
dy_ 

J 

v j 

d f dx dz dx dz 

-U„ 

r dr^ 
dy_ 

drj\ J 

v ; 

dx dz dx dz 

d4d£ d$d§. 

_d_ 

dt, 

'' dt ^ 

dy } 

J 
-U„ 

d ( dx dz dx dz 

d<z{dr/di; dgdrj, 

2 .22 

2 .23 

2 .24 
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dz dt _ d 
J ~dt 

-» 

dldU^ 
dz dt _ d 

J dt 

drjdUz 

dz drj _ d 
J ~ drj 

-> 

drjdU2 

dz ' 
J 

dz ' 

-u. dt 

fd$} 
dz_ 
J 

V J 

2 .25 

J 

V 
(dri 

dz 

•U. 

dt 
dx dy dx dy 

drj dt, dt, drj 

U, 

J 
•u. 

_d_ 
drj 

fdr,} 
dz 
J 

V J 

dz drj _ d 

J ~dt] 

dCdU2 

dz dt, ^d 
J ~ d£ 

d£dUz 

d ( dx dy dx dy^ 
zJn\d^TfYt^. 

zd£ 

?dO 
dz_ 
j 

V J 

dz dt, _^d 

J ~dt, 
dz ' 

J 

v 

• v . -
zd£ 

dx dy dx dy^ 

dB, drj drj dt 

2 . 2 6 

2.27 

S u b s t i t u t e e q u a t i o n s 2 . 1 9 t o 2 . 2 7 i n t o e q u a t i o n 2 . 1 8 , 

J 
d 

d^ 

dE ^ 

—u, 
dx J 

( dtj 

+ -drj 

rdRu^ 
dx 

J + -dt; 
dx 

Ur 

J 

V 

+ -dt 
J 

J 

V J 

+ -dtj 

dyUy 

J + -
dC 

i' dc ^ 
dy y 

J + -dt 

'' dt ^ 
dz '• 

J 
+ • 

dtj 
dz ' 

J + -
^ 

'' dt ^ 
dz ' 

J 

2 .2 

= 0 
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which can be written as 

J 
dt; 

ox dy dz 
J 

V 

\ f 
d 

+ — 
drj 

) V 

dJLUx +
 dJLu +

dJLUz 
dx dy dz 

J 

2.29 

+ -
dx dy dz 

d£ J 

V 

= 0 

Substituting equations 2.15 to 2.17 into equation 

2.29, we have: 

J 
(V^ d 

K \J j 
+ • 

dr] 

fvA _d_ 
d£ \JJ 

fv,^ 
+• 

\J J 

2 .30 
= 0 

Equation 2.30 is the continuity equation in curvilinear 

coordinates. 

Transforming the momentum equation 

The LHS of the momentum equations can be written as 

LHS(eq(2.lO)) = p 
du++u (K^L+^l^L+

d^ du- ̂  

+u„ 
rd£, dUx drj_dU^ dt; dU ^ 

dy dE, dy dr] dy dC, 

dt \dx dE, dx dr] dx dC, 

+ U. 
rd%dUx djidU^ dC, dU.^ 

dz dt; dz drj dz dQ 

LHS(eq(2.\0)) = p 
dt 

• + Ku>+KUy+ilu,_ 
dx dy dz 

dU„ 

84 

+ dy y dz J drj dx 

dcTT dQ TT d<;TT)dux 
—Uz+-2-Uv+-2-Uz — -

x dy y dz z) d^ 
dx 

2 . 3 1 

2 .32 

Substituting equations 2.15 to 2.17 into the above 
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equation we have 

LHS(eq(2A0)) = p 
8UX T/ dUx .. dUx T. dUx 

— - + VP—- + V„—- + Vr—-d4 " dri ' dC, 

From the coordinate transformation formula we have 

2 .33 

3 3 

i=i y=i °h 

^d±_ 
J 64J 

2.34 

Where 

g'J =a'»aJ 

a' = V£= —-i +—-j + — k 
dx 3y dz 

2 . 3 5 

2 . 3 6 

_2 _ 3t] r dr] - 37; r 

dx 3y 3z 

2.37 

.3 „ - d£r d£- 8£r a =V<^=—-1 +-2-j+-2-k 
dx 3y dz 

2.38 

Subst i tu t ing equation 2.35 in to the RHS of equation 2.10 
3 3 

RHS(eq(2.10)) = Mj'£Zi — 
i=\ j=\ eg 

jf_3_ 

giJ 3UX 

J 341 

gn 3UX + g^_3U^+g'3 3UX 

= JXJ 
3 

J 34 J dri J 3£ 
f
g

n3ux ig
ndux , g 1 3 acO 

34 dp 3r] dp dC, dp 

dx d4 dx dr\ dx dC, 

(34 3p 3ri 3p 3£ 3p^ 

dx d4 dx dt] dx dQ 

2 . 3 9 

d4 
• + - - + -J d4 J dt] J d£ 

+ -
Q ( „2i arr „22 a f r ja , „ A 

dt] 

l l ^ + l l ^ l + l l ^ l 
J d4 J dri J d£ 

+ -
Q C „31 ATT „32 a r r „33 ^T T \ 

^ 
s du* +11^1+1 5 ^ 
J d£ J dri J d£ 

d4 dp dt] dp d^ dp 

dx d4 dx dt] dx d£ 

Finally equation 2.10 can be written as: 



p 
'eu, ,rdu,+vsu^+v^x 

dt 
- + K 

dt, " drj 
da 

c 8£ _ 

8 

dt 
V da 

J 8% J drj J 8<Z ' ' '" 

8tZ{j 8% J 8TJ J 8<Z J 

8t] J 8% ' J dr] J d£ 

8E, 8p drj dp 8C, dp 

8x 8E, dx drj 8x 8C, / 

S i m i l a r l y t h e momentum e q u a t i o n s 2 . 8 and 2 . 9 can 

w r i t t e n a s : 

8t * 

dUv 8UV 

8E, " dij c dC 

= juJ V 8U y , gn SUy , g« 8U ^ Vf^ + llS: 
d£,{jd£. J 8t] J 8C J 8r/{ J 8E, J drj J dC, 

8fgildUy g*dU 

dC 
y+g 

33 dU^ 

J 8E, + J drj + J 8C 

dt, dp 8r] dp d£ dp 

dy dZ, dy drj dy dC, 

g23 dU„ 

'8UZ _. 8UZ T. dUz T, 8U. 
— z -+v £ — -+v„ z •ir 

dt * ~-d% "5/7 c 54-J 
J d fgn dUz gn dU2 g13 dUz 

[d£,{ J d£. J dt] J d£ 

8C{ J 8% J dt] J 8£ ) 

V 1 8Uz | g22 dUz 
- i 1 

y drj\ J dt; J drj 

dt; dp dri dp dC, dp ^ 

v dz dt; dz drj dz dC, 

J 8Q 

Equations 2.4 0 to 2.42 are the momentum equations 

curvilinear coordinates. 
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2.2 Spatial discretization of continuity and momentum 
equations 

The tensor representation of incompressible Navier-

Stokes equations in generalized curvilinear co-ordinates 

is 

J-
3£ J 

V1 = 0 
J 

8UJ_ + rn^L = Kj!L_^ + .J 8 

g 
mn dU, \ 

d£n 

2.A3 

2.44 

dt dCm dx, d£m Re d£m v 

where U, is the mean velocity component in Cartesian 

space, x, is the component of Cartesian coordinates, p is 

the pressure, and Re is the Reynolds number. J is the 

Jacobian of the geometric transformation, and gmn 

represents the contravariant metric tensor of the 

geometric transformation defined as 

g J 

£ 
dX: 

2.45 

2.46 

Vm are the contra variant components of the mean 

Cartesian velocity components Ut, defined as 
•m 2.47 

C o n v e c t i v e t e r m s 

C(u,) = V" :Vf^L + Vn^L + VC^L 
2.48 

d% drj K 
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Introducing 

Vl±
t=- ' ij,k i,j,k 

° ^ \ )i,j,k " " . , , L ^V )i,j,k + ^V )i±\,j,k V )i±2J,k\ 

2 . 4 9 

2 .50 

and 
du. 
p,p i,J,k g V ' Ji,j,k 'yJ'k g V ' h,j,i 

du, 
Q i,J,k n \ >/iJ,k ',J,k n \ i Ji,j,k 

du, 
Vi—L = Vf+S- (u,) + Vf-k8

+, (u\.h 
fsf >,],k i \ i /i,j,k >,J,k b V ' >t,j,k 

2.51 

2.52 

2 .53 

Substituting equations 2.51 to 2.53 into equations 2.4 9 

and 2.50 we have 
2.54 

d% 4A£ 

4A£ 
(^+fel)r_3(ll<) +4(l//) tUi) i 

F , ^ = t e ^ [ _ 3 ( M i U + 4 ( ! i i W _ ( ! ( i W t ] 
(yi +\yi \) 

_A i_L_lZ -3(M) + 4(w,) , ,-(«,) , , 

2.55 

F̂  Sii^fe-fel) 
a^ 4A^ 

-3(w) + 4(w) -(V) 1 
V i/ij,k V i/t+ij,k V ' / /+2 ,y , i J 

2 .56 

fe+fe*l) 
4A^ 

-3(w,) , + 4 ( K . ) , , - («,) „ , 
V ' /i,j,k V ' Ji-\,j,k V ' /i-2,j,k 
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Then, the discretized convective terms can be 

written as: 

C(«,) = -
4A| 

(V1 +v* 

4A| 

+ 
(VP. Vi,j,k 

4 A TJ 

(y +\vi 

+ 

4ATJ 

\vij,k \yij,k 

4A^ 

fa + ij,k 

4AC 

V ' //,./,* V ' Ji+\J,k V ' /i+2,j,k J 

3 (« 'U + 4 ( M ' )M.^-( , I /L^ 

[-3(«/W+4(«/W-(«/L^] 

r-3(w,.) , + 4(w;) , , -(«,.) „ , 
|_ V ' //,/,£ V ' >i-\,j,k V ' >i-2,j,k _ 

-3(u.) , + 4(«,) , , -(«.) , ,1 

3(«,) , + 4(w,) , , -(«,) , 1 
V ' /i,y,t V ' /i-\,j,k V ' fi-2,j,k J 

2.57 

Viscous terms: 

/)(«,) = 
3C 

g 
mn Ct/y 

m V 5C 

+-

+-

d4 

d_ 

drj 

8_ 

* d% 8 dr, 8 d£, 

2X dii; 22 duj 23 8ut 

8 ~dlj+8 ~d^+8 ~d~c. 

-31 dut „ dw, „ du 33 

d£ 3^ 9^ 

2 . 5 S 

Central differencing gives, 



PS 
1 

= A£ 

11 fy | 12 fy , 13 g«, 
<3£ 6/7 d£" 

. ^ ST/ ^ J ( . + 1 / 2 j V t v 

ii 5M, ' i „12 5w, 

d£ 5^ 

V* )MI2,j,k frg 

i+l/2J,k + (gU) 

V s //+1/2,./, 

~\8 h-l/2J,, 

-(gU) 
V5 )l-V2J„ 

-(*"L 

("')/, 

("/)/. 

M/, 

("/)/, 

("/)/. 

/+u "("')/, 

V,t+1 " ( " / ) / , 

/,*-("')/-!,. 

/ , t + i - ( " ' ) / , , 

l-\,k V ' //+ 

4A/7 

• . . , + ( " , • ) • 

; , t - l V ' / i+ 4AC 

4 A 77 

U+U 

l,./,/t+l 

J+\,k 

J,k+l 

-(«.)„,, 

- ( « . ) « . 

-(«,),-,. 

- ( » . ) , - , 

y-u 

/ . t - i 

/ -U 

',*-! 
M2J,k 4A^ 

S i m i l a r l y , 



J?v i'zn-f! 
i-rn,,\ rn 

( '» ) - ' " ( ' ' 
hyp 

*-r\>n)- *' l+ r ' ( '«)+ M , ' H " ' ' ( ' " ) - M W ' ' ( ' n 

* r , - ' ( ' „ ) _ * r , + ' ( ' / i) + l - , r , - ' ( ' « ) - M , r , + ' ( ' « 

* r ' ( ' n ) - , + m ( ' n 

^Vt? 
* ' I _ / ' 'V /* . \ *' l+-'"'V/*1\ , l+^'1-r.Y ; „ \ [+?'!+/"'' 

t'zn-f'i 

rzii-ri 

l'Z/1+f'f 

1'Z/l+f'l 

Zll+1'f! 

'r'-'('„)_ m + ' ( 'n)+ l + ' r M ( ' « ) - ,+*"n+'('n) '(«») 

' " ^ ' ^ „ *e „ & Ji z / , + ? r r ^ 0 be o & ^ 
ng ££ -ng Z£ rag I£ ~ f f ^ + " i 7(^+1 ,fS 

ng ££ ng zi ng I£ 

I 

I 

'ng ££ 'ng Zi 'ng l£ I g 

5vt rzn-f! 

^-yn)-l+ri'n('n)+l 

^Vfr 

* r , - ' ( ' n ) _ m + ' ( ' n ) + r w 

' -^•'( /w)_'+^-'(?n) + ' 

in)— in) 

Uy 
n-r\'n)-rr,(>n) 

''-\>n)-n-f'w('n) 

-rr\>n)-l+rn('n) 

Uy 

*f\in)-n+f\>n) 

H'zn-f't 

I'zn-fi 

i'zn+f'i 

I'zn+f'i 

( = » ) -

( * * ) -

( « » ) -

(**) 

(**) 

+ 
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To compute the metrics and the Jacobian at the half 

nodes ( (i+1/2, j, k) and etc.), where they are needed for 

the discretization of the viscous terms, a simple 

averaging procedure is employed. Finally 

Pressure Gradient: 

H tp\ =
 5 C dp =di; dp | dri dp | d£ dp 

dxj dQm dxt dt, dxj drj dxt dC, 

Central differencing the above equation we get 

2 .62 

2 .63 

dE, dp 
{d£ 

i,k \®*i Ji,j,k 

Pi+\J,k Pl-\J,k 

2A£ 

dju dp 
dxt drj 

rdrj^ 

i,j,k \dX'Ju,k 

Pi ,./+U •PiJ-lJt 

2kri 

2 .64 

fd^d£ 
dx. dC , -,t \^XiJi,j,k 

PlJ,k+l PiJ,k-\ 

2A^ 

2 . 6 5 

2.3 Reynolds stress modeling 

The instantaneous momentum equations for a Newtonian 

fluid in tensor form can be represented as 

dU: ^ dU: 
—L + u,—-
dt dx j 

1 dp d U: 
= — + v—~-

p dxt dxj 

2.66 

Generally the incompressibility in the stress term is 

referred to the incompressible momentum equation in the 



following form 

i sp_+
dn (") —L + u —'-

dt chj p dxt dXj 

Laminar solutions to Navier-Stokes equations exist 

that are consistent with the boundary conditions but 

perturbations can lead to these solutions to become 

turbulent. It is convenient to analyze the flow into 

two parts, a mean (or average) component and 

fluctuating component. Thus the instantaneous 

velocity and stress can be written using Reynolds 

decomposition as : 

ui =Uj + ut 

p - P + p 

where capital letters represent mean motion and the 

small letters represent fluctuating motions. This 

technique for decomposing is referred to as Reynolds 

decomposition. Substituting 2.68 into 2.67 and 

considering the equation of averaged motion reduces 

to 

P 
dU BU. 

dt 1 dxj 

8P dT„ (v) 

• + • 

dx, dx,. 
•p(Uj 

dui 

dx.. 

Subtracting 2.67 from 2.69 we get the equation for 



fluctuation as: 

34 

P 
dut | ]J dut 

dt J dxj 

dp ^ 

dxt dxj 
~P 

dU; 
ut 3 dXi 

du; 
U; J dXi 

P\UJ dx, 

2.70 

The first two terms of the equation 2.70 are like 

that for the mean flow but the third term unlike the 

others , and will be seen later to represent the 

primary means by which fluctuations extract energy 

from the production terms. The last term in the 

equation is quadratic in fluctuating velocity unlike 

other terms which are linear. 

u,u,. Deriving the ' ^equation 

The steps for deriving the Reynolds stress 

equation is described below 

1) Multiply equation 2.70 with u} 

2) Time average the obtained equation 

3) Subtract the obtained from 2 with 2.7 0 

4) Repeat the same procedure for Uj 

5) Add them together to obtain the Reynolds 

stress. 

The equation obtained after completing the above 

procedure is displayed below in equation 2.71 
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d(u,u) | ^ d(u,Uj) 

dt J dx, P 

P 

dp\ dp 
ui-

J-) + (u — 
dxj / \ dx, t 

dx,, / \ dx,, 

utuk dx. 

2 . 7 1 

3x, 3xt 

Rearranging the terms and by expanding and 

after a large number of simplifications the equation 

becomes 

d i \ „ d i \ IP 
—(u,u ,) + U, luu .) = -
dt dx, ,P 

du, duj 
—'- + —-
dx, dx, dx. dx. 

2 .72 

+ -dx, 

-2v 

(puj) 8ik + {put) SJk ] - (u,UjUk) + 2v [(sikUj) + 

3ik 

dUj 

dx. 1 + U kj 

dut 

dx. 

This is the Reynolds stress equation that has been a 

primary vehicle for turbulence modeling over past few 

decades. The terms on the right hand side are referred to 

respectively as 

1) the pressure-strain rate term 

2) production term 

3) turbulence transport term 

4) dissipation term 

The number of unknown quantities in the above 



equation is much more than the number of equations. The 

absence of additional equations is often referred to as 

the Turbulence closure problem. There are different 

approximations in closing the equation. Lars Davidson 

[24] has a excellent description on the closure methods 

in this class notes. 

Algebraic Models: An algebraic equation is used to 

compute a turbulent viscosity, often called eddy-

viscosity. The Reynolds stress tensor is then computed 

using an assumption which relates the Reynolds stress 

tensor to the velocity gradients and the turbulent 

viscosity. This assumption is called the Boussinesq 

assumption. Models which are based on a turbulent (eddy) 

viscosity are called eddy viscosity models 

One equation models: In these models a transport 

equation is solved for a turbulent quantity (usually the 

turbulent kinetic energy) and a second turbulent quantity 

(usually a turbulent length scale) is obtained from an 

algebraic expression. The turbulent viscosity is 

calculated from Boussinesq assumption. 

Two equation models: These models fall into the 

class of eddy viscosity models. Two transport equations 

are derived which describe transport of two scalars, for 

example the turbulent kinetic energy k and its 

dissipation s . The Reynolds stress tensor is then 
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computed using an assumption which relates the Reynolds 

stress tensor to the velocity gradients and an eddy 

viscosity. The latter is obtained from the two 

transported scalars. 

Reynolds stress modeling: Here a transport equation 

\ u i u t ) is derived for the Reynolds tensor ^ Jl . One transport 

equation has to be added for determining the length scale 

of turbulence. Usually an equation for the dissipation 

is used. 

The turbulent kinetic energy can be obtained by 

setting indices i=j in the Reynolds stress equation. 

—+uk— 
dt dXj 

d I 1 * ' ""T 

k = — < ! (pu, )SlJ-- (q\ ) + 2v (sikut) \ - {utuk > —* 
ox. I p 2 v ' J oxk 

~2v{siksik) 

Where q is the average fluctuating kinetic energy per 

unit mass. 

Launder and Sharma closure model 

The second term on the LHS of the equation 2.73 is 

the production term. This is modeled from Boussinesq 

assumption. 

/ \ d J J i dU, dUk 
- + • — -

v dxk dxt j 

dU. 2 , dU, 2 ' 7 4 

L — pk-dx,, 3 dx, 

The last term in the above equation becomes zero. 

The triple correlations term or the diffusion term 
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which is the first term in the equation 2.73 can be 

modeled using a gradient law where we assume k is 

diffused down the gradient from higher k regions to lower 

k regions. We get 

\ ' " < ak axj 

2.75 

Finally the dissipation term which is the last term 

becomes 

£ = JU{ 
8ui dUj 

dx/ dXj I I 

The transport equation for e is 

ds 1 ._ . ds 
— + — < M . ) 
dt £p dxj dx.. 

v + -
V 

ds 

s J 
dx, 

+ CJ^G 

k k 

2 . 7 6 

2.77 

f ^ 
E = 2vv, 

''jr 

d\U2) 
dx\ j 

2.78 

Similarly, the forcing term in equation 2.77 

has been obtained by a simple scaling of the 

corresponding term in equation 2.73. As a result, the 

coefficient C, is a model constant. It was set at 0.11. 

The value of the model constants are crk 

C± = 1.44, C2 = 1.92, and CM= 0.09. 

1.0, cr = 1.3, 

The damping functions f , fir and f2 proposed by 



Launder and Sharma [25] a r e , 
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fM = exp[- 3.4/(1 + £t/50)2] (2.46) 

fx=l ( 2 . 4 7 ) 

f2 = 1 - 0 . 3 e x p ( - Rt
2) ( 2 . 4 8 ) 

2.4 Temporal discretization of continuity and momentum 
equations 

The system of the discrete continuity and momentum 

equations is integrated in time using the four-stage, 

explicit Runge-Kutta scheme. The Runge-kutta first used 

by Jameson et al. [26] to solve the compressible Euler 

equations although is explicit in time, is known to have 

very good error damping properties. The Runge-Kutta 

scheme is applied to the system of the governing 

equations as follows (for £ = 1,2,3,4): 

DI¥(Q!Jk) = 0 2-7: 

Qtj^&jt-aMjtXHSw ' 2 - 8 ' 

In the above equations, the superscript nn" denotes 

the time step at which the solution is known, while the 



superscript VL£" denotes an intermediate time level (or 

iteration level) used to advance the solution from time 

step "n" to time step "rz+1" (we designate Q• = Q" for £ = 0 

£ and Q = Q" for £- 4) . For the four-stage scheme, the 

coefficient of £ is: 1/4,1/3,1/2 and 1 for £= 1,2,3,4, 

in sequence. The RHS in Equation 2.8 0 denotes the 

discrete approximation of the right-hand side of the 

momentum equations (2.8-2.10) at the node (i,j,k): 

RHS = Ciu,)-£>&,) +Ht(p) 2 • 8 

tiij/k in equation 2.80 is the time increment which varies 

in space (local time stepping). 
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CHAPTER III 

THE SUBDIVISION FINITE ELEMENT STRCUTURAL DYNAMIC SOLVER 

3.1 Basic formulation 

In this chapter the details of the structural 

dynamic part of the coupled fluid structure interaction 

solver developed by Dr. Yang Yang as part of his PhD work 

at the computational engineering physics group of western 

Michigan University is discussed in detail. The fin is 

made of Mylar and only 0.0001 m in thickness, which 

ensures the validity of thin shell assumptions. The thin 

shell can be represented by the Cosserat surface i.e. the 

middle Surface and its normal director, denoted in figure 

3.1 by the dotted lines and the blue arrows respectively. 

As shown in figure 3.1 , a shell structure that undergoes 

a deformation F from the reference configuration to the 

deformed one1. This process can be represented by 

F(0l,02,03) = x(0\02) + 0ia3(0\02), --<03<-

1 In the text that follows the quantities belonging 

to the reference configuration are accentuated by an over 

bar while the quantities of the deformed configuration 

are not decorated. 



Courtesy of Dr.Yang 

Figure 3.1: Shell geometry in the reference (left) and 
deformed (right) configuration 

where the function x(0x,02) and x(9l,82) furnish the 

parametric representations of the middle surface in the 

reference and deformed configurations, respectively. The 

basis vectors of middle surface are 

— _ — 2 _ 3.3 
aa ~ X,a ' aa ~ X,a 

where a runs from 1 to 2. The covariant components of 

the surface metric tensors are 

aap =aa 'api> aa/} =a<x'ap 

The corresponding contravariant components are the 
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i n v e r s e of E q u a t i o n 3 . 4 , i . e . a"ray/3 =5%, a.ndaarar/j = dp . 

The J a c o b i a n f o r t h e r e f e r e n t i a l embedded [d\02J p l a n e 

r e l a t i v e t o t h e E u c l i d e a n s p a c e (JC1 , x2, JC3 J i s 

dQ = ^ad01d02 =\\d1xd2\\dd1dd2.. The s h e l l d i r e c t o r a3 i n t h e 

r e f e r e n c e c o n f i g u r a t i o n s h o u l d be t h e u n i t v e c t o r no rma l 

t o t h e m i d d l e s u r f a c e a s shown i n f i g u r e 3 . 1 , and i s 

g i v e n by 

a3 = 
6*1 X 6/\ 

Fixa2 

While the shell director in the deformed configuration, 

according to the Kirchhoff-Love thin shell assumptions, 

remains straight and normal to the middle surface. Hence 

we have 

Cti X C*9 

Q — i £_ 
I 1*1 X CXry It 

Now based on Equations 3.1 and 3.2, the covariant 

base vectors for the body of shell in the reference and 

the deformed configurations are 

_ dr _ ^3_ _ dr _ 3 •7 

g„ = = an + 0 a^n , g* = — r = ai 

5r ^3 dr 3 •8 

£/y - = Qn + & a%n J g% = 7 = ^ 

where a goes from 1 to 2. The corresponding 

covariant metrics of the shell body are simply the dot 

products of base vectors, gij=gi-gj and gij=gimgj, where i 
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and j run from 1 to 3. By definition the Green-Lagrange 

strain tensor is EtJ•=— \gtJ--gy\ to the first order in the 

shell thickness h, it can be shown that the Green-

Lagrange strain of the shell is of the following form 

where atj =—\ai-aj-7xi-~aj) and f5ap = aa -a3/3 —aa -a3/gand i , j from 

1 to 3; a, [} from 1 to 2. The in-plane components aap 

with a, /?running from 1 to 2, or the membrane strains, 

measures the straining of the surface; the components 

aaZ measures the shearing of the shell director; the 

component a33measures the stretching of the director; and 

the component PapOT the bending strains, measures the 

bending or change in the curvature of the shell. 

Since only the linear small deformation is 

considered, a simple relation between the reference and 

deformed configurations can be assumed 

x(e\o2) = x(e\62)+u(e\e2) 3.10 

where u is the displacement vector of the middle 

surface. After substituting Equation 3.10 into 

Equation 3.3, the strain tensors aa/} and ^ can be 

linearized as 

1 3.11 
aap=- {aa-up +ua-ap) 



Pap = ~U,afi • a3 + -f= [U,l • (aa,/S X «2 ) + U,2 ' («1 X ««,/» ) ] 

r-̂ '̂  [w J • (a2 x a3) + u 2 • (<J3 x a ,)] 

3.1 

+ 

a3 -a„ 

The comma in the subscript of a variable in the 

above equations, similar to Equation 3.3 represents 

the partial derivatives with respect to#". Equation 

3.11 and 3.12 show that the only unknowns are the 

displacement vectors u of the middle surface while 

the rest terms are all already known from the 

reference configuration. 

The simplest form of the strain energy per unit 

surface area for thin shell structures is due to Simo and 

Fox [27] 

WA^T""*8**** ̂ T ^ ^ ^ A rcfiyS i l * " " uaPfS 

2 1_ v.
 a«*a* 2 12(l-v2) 

where E is Young's modulus, vis Poisson's ratio, 

H"-va*a*+^-v)Qrni*+<rt») 

and aap and j3a/} are defined by Equations 3.11 and 3.12 

while aap is the inverse of aaj3 defined in Equation 3.4. 

If the hyper elastic material is assumed then the 
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constitutive relations between the membrane/bending 

stress and the strain can be derived as 

naP_dW___Eh_ PrS 3.15 

daap l-v2 

m<* .- dW __ Eh' H*»B
 3 ' 1 6 

dpap 12(l-v2) 

If the shell structure is subject to some kind of 

external loads, such as pressure p, then the total 

potential energy of the structure can be expressed as 

E = E - E 3-17 

total internal external 

= ^WdCl- f^p-udQ 

The integration in Equation 3.17 should be 

understood to be carried out on the reference 

configuration. By the minimum potential energy principal 

and the variational method, a static equilibrium 

configuration could be found by solving the following 

problem, 

SElotal = I[naPSaap + map8(5ap]dQ.- ^p• SudQ = 0 3.1i 

where na/i and m^are defined in Equations 3.15 and 3.16 

respectively. Equation 3.18 serves as the basis for the 

finite element approximation. 



3.2 Finite element discretization 
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Since the Kirchhoff-Love thin shell assumption was 

used in deriving the linear elastic formulation, it 

requires square integrable finite element space to 

maintain the C1 continuity. The subdivision finite 

element method proposed by Cirak [28] was adopted for 

this purpose. In this method, a thin shell surface is 

recursively triangulated by Loop's rule [29], which is a 

set of very simple linear relations. It can be proven 

that the repetitive use of Loop's rule on the thin shell 

will converge to a smooth surface with at least C1 

continuity property. And it can be conveniently 

represented by a closed-form mathematical formula. The 

hallmark of the subdivision finite element method is that 

the interpolation of a function involves not only the 

local nodal values but the ones in the first neighbor 

defined by a topological mask. The interpolants or the 

shape functions are twelve fourth order 

polynomials, JV7\t\t2J where I runs from 1 to 12, tla.nd t2are 

the triangular coordinates. Hence a continuous function 

such as the displacement vector u can be represented as 

u(ti,t2) = fjN
I(t\t2)uI 

i=\ 

For the elements that are on the boundary or 
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irregular in topology, there may not exactly be twelve 

nodes in the first neighbor. For these cases, special 

treatments such as building the ghost nodes and subpatch 

scheme need to be used. For the detailed implementation 

procedure, readers are referred to the paper by Cirak 

[29] . Here we only list the final working formula. 

After substituting Equations 3.15 and 3.16 into Equation 

3.18, the minimum potential energy principal can be 

written as 

8E,o,a, - £ 

Fh Fh3 

1-v2 rS aP 12(l-v2)' 

•\p- SudQ, 

3.20 

da 
= o 

The strain tensors aa/} and pap are interpolated using 

Equation 3.19. After some mathematical operations, the 

membrane and bending strain tensors for one element take 

the form 

12 3.21 

a„=YjM'ui 

12 3.22 

7=1 

where M and B are the elemental strain matrices, the 

components of which can be found by a series of 
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substitutions of the related equations as shown above. 

The integration in Equation 3.20 under the framework of 

finite element method, can be broken down to the 

summation of individual elemental integrations, as 

follows, where NEL represents the number of finite 

elements 

NEL 

K=\ 
kiK 

Su, Eh ..Tl,Tm£j, Eh' _{BlfHBj -(M'y HMJ +• UjdQ.k 

3.23 

1-v2"" ' ^ ' 12(1-v2) J " l = 0 

-f 8ulP-N'dak 

Since dul is an arbitrary small quantity, the above 

equation is equivalent to 

JQ, 

Eh (MIfHMJ+ fh ,AB'fHBJ 

1-v 12(l-v2) 
UjdQ.k 

1 p-N'dCl, 

3.24 

= 0 

Equation 3.23 can be put into a compact format, by 

recognizing the stiffness matrix K as 

NEL 

K"=^ 

NEL 

ki. 
Eh /Jljri.T TTI,J Eh3 

-{M'f HMJ +—, -r 
1-v2 12(l-v2) 

I\T TTT>J 
(B'Y HB dQ, 

= 2X u 
K=\ 

3 .25 

and the force vector f as 
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NEL 3.26 

Hence Equation 3.23 can be expressed as 

Mu + Ku = f 3.27 

where the double dots represent the second time 

derivative, and M is the mass matrix defined as 

NBL 3.28 
M" = Z I pN!NJdnK 

in which p is the material density. 

The method for integrating Equation 25 in time 

adopted in this work is the explicit Newmark central 

difference scheme for its advantages in easy algorithm 

organization and low computer memory requirement as long 

as the lumped mass matrix is used. A pseudo code for the 

Newmark method is provided in Listing 1. First the 

lumped mass matrix stored in mass_lump(:) is computed by 

calling subroutine Massassem on line 100, which is of the 

diagonal form so that the inversion is trivial. Then the 

stable time step is determined on line 102 followed by 

the main Newmark integration loop starting from line 104 

to line 122. In the loop, the displacement vector and 

velocity vector are first calculated at the predictor 

step on line 105 and line 106, and then the boundary 

conditions are applied explicitly. The internal and 
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external forces of the system are calculated in the 

subroutine Getforce on line 111 and their sums are stored 

in resi_global(:). The velocity vector is updated on line 

116 which concludes one Newmark integration iteration. 

The transient results are written to files in the 

followings lines at user-specified output frequency. 

Listing 1: Algorithm for explicit finite element method 

c a l l Massassem ( . . . } / calculate mass-lump (:) 

c a l l s t a b l e t i m e s t e p ( . . . ) 

d o s t e p = 1, numberOt 'Steps 
d i s p = d i s p + s t a b l e _ t i m e _ s t e p * v e l + c o e f l * a e c 
ve l = ve l •+- coet '2*acc 

!boundary conditions treatments 
!clamped B. C. and simply —support B. C. 

c a l l Ge t fo r ce ( . . . ) '.calculate resi.global (:) 
do i = 1, 3*allnodenumGlio 

ace ( i ) = ( r e s i . g l o b a l ( i ) — damping* ve l ( i )* mass- lump ( i ) ) / &: 
niass_lump( i ) 

enddo .' t 
ve l = ve l + coe f3*acc 
if ( m o d ( ( s t e p — 1 ) , p r i n t A t E a c h ) . e q . 0) t h e n 

!output interested variables at pre—set frequency 

e n d i f 
enddo '.step 

100 

102 

104 

106 

108 

110 

112 

114 

116 

118 

120 

122 
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CHAPTER IV 

IMMERSED BOUNDARY METHODS 

Non-boundary conforming methods are mainly developed 

to deal with complex moving boundaries. Many modern 

applications, the surfaces are in motion, either actively 

operated or passively responding to the fluid force. 

There is a significant advantage in using this non-

boundary conforming methods as compared to the boundary 

fitted techniques based on the arbitrary Lagrangian 

Eulerian (ALE) approach [29] . Although boundary fitted 

methods are very good for high Reynolds number 

simulations they are limited to boundaries with small 

deformations. This can be overcome by solving equations 

on fixed meshes and accounting for the body, either 

moving or stationary, which no longer coincides with the 

grid points by forcing the solution variables at grid 

points close to the boundary. 

4.1 Non-boundary conforming methods 

According to Gilmanov et al [31] the non-boundary 

conforming methods can be divided into two major 

categories: Cartesian methods and immersed boundary 

methods. In Cartesian grid methods the boundary is 

tracked as a sharp interface and computational domain is 
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modified at the cells which interact with the boundary. 

Figure 4.1 shows the different categories of non-

boundary conforming grids. 

Non-boundary conforming methods 

Cartesian 
Grid Methods 

Immersed 
Boundary Methods 

Feedback/ 
discrete forcing 

method 

Direct forcing 
method 

Figure 4.1: Classification of non-boundary conforming 
methods 

This method is used for both and inviscid and 

viscous flows [32, 33, 34 and 35]. The major disadvantage 

of this method is that when there are a large number of 



interactions between the boundary and the fixed 

computational grid it leads to a wide variety of cut-

cells. In order to apply to 3D configurations, complex 

numerical algorithms need to be devised to treat these 

cells efficiently. 

A Contrary to the above class of non-boundary 

conforming methods are immersed boundary methods where 

either a stationary or a moving boundary can be modeled 

by introducing external force into the momentum equation 

to satisfy the no-slip boundary condition. The major 

challenge for this method is the precise imposition of 

boundary condition on immersed boundaries. There are two 

methods for the imposing the boundary condition at the 

immersed boundary. They are 

1. Feedback Forcing 

2. Direct Forcing 

Feedback Forcing: 

The external force imposed at discrete surface 

points xs according to Goldstein [19] and Saiki and 

Biringen [20] the forcing f(xst) can be formulated as 

f(xs ,t) = a \(U(xs, t) - v (xs, t))dt + P(U(xs, 0 - v (xs, t)) 
0 



where aand/7 are constants, v is the velocity on the 

boundary (zero for stationary no-slip boundary). U is the 

desired fluid velocity at the immersed boundary location. 

The major drawback of this forcing, however, is those 

large values of a and/? render equation 4.1 stiff and its 

time integration requires very small time steps according 

to [14] . To take care of this Goldstein [17] performed 

simulations at a CFL of 0.001 and 0.01. Hence this 

approach for three dimensional flows will be very costly. 

A modification to equation 4.1 can be done by calculating 

the second term in equation 4.1 implicitly in time. This 

allows to relax the values of a and ft in the early stages 

of flow evolution but there is no unique criterion for 

this and ad hoc judgments are needed. 

Direct Forcing 

The direct forcing method is another way of 

representing immersed boundaries. It is a very straight 

forward and doesn't have any stability issues and 

therefore used in the current numerical implementation. 

The direct forcing function is derived by Mohd-Yusof 

[21]. According to Mohd-Yusof [21] when the Navier-Stokes 

equation 4.1 is discretized in time we have 



un+l-u" 

At 
-VP - V(uu) + vV(Vw) + / 
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4.2 

A simpler representation of equation 4.2 is 

un+x-un 

At 
= -RHS + f 

4.3 

Where RHS = VP + V(uu) - vV(Vw) 

To know the forcing f which will yield u=V on the 

immersed boundary, the solution can be obtained from 

equation (4.3) as 

/ = 
Vn+l-u" 

At 
+ RHS 

4.4 

This forcing in equation 4.4 would be true for all points 

on the immersed boundary but would be zero elsewhere. 

That is 

f = < 

4.5 

Vn+l-u" 
+ RHS on n 

elsewhere 

For a No-slip stationary boundary V is zero and hence the 

equation 4.5 becomes 
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4 . 6 

un 

< 
At 

+ RHS o n Q 

0 elsewhere 

There are no additional terms that are needed to compute 

f in equation 4.6 and hence there is no extra 

computational time required for computing f which is of a 

distinct advantage. 

4.2 Treatment of the immersed boundary (boundary 
reconstruction) 

The previous direct forcing procedure is based on 

the assumption that the immersed boundary coordinates 

coincide with the grid points of the computational 

domain. This assumption becomes invalid for most geometry 

such as the circular cylinder and a NACA0012 airfoil. In 

order to overcome this difficulty an interpolation 

procedure needs to be developed and implemented into the 

code and tested. There are two different schemes 

developed by different authors to overcome this 

difficulty. They are 

1. Smearing the forces in the vicinity of the 



boundary. 

2. Local reconstruction of the solution near the 

boundary. 

Peskin [16] proposed the earlier method but the main 

drawback of the method is that it has extra dissipation 

close to the immersed boundary thereby corrupting 

boundary layer development. 

Linear interpolation in one direction 

The procedure employed here is to compute the 

velocity value, in a linear approximation with the point 

closest to the boundary if the boundary had the 

particular velocity. We extend this concept by also 

computing the velocity value Vinside (inside the boundary) 

by linear approximation and set it as a negative value so 

that the velocity on the immersed surface would have an 

exact required value. This means just reversing the 

velocity at the 1st grid point inside the immersed 

boundary. The method and the expressions are discussed in 

the next section. The linear interpolations scheme can 

also be used for turbulent flows because for very fine 

grids used in turbulent simulations, the nearest grid 

point from the immersed surface would be in the viscous 

sub-layer. 
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Q Fluid Node points 

Q Solid Node points 

Figure 4.2: Schematic interpretation of one-direction 
linear interpolation for solid boundary with 

finite thickness 

The use of linear interpolation for tangential velocities 

can therefore be justified by the law of wall [53]. 

In figure 4.2 the red dotted line denotes the 

computed velocity at the grid point and the green line 

represents the velocity value that needs to be imposed 

that will render the velocity at the immersed boundary 

exactly equal to V (zero for stationary boundaries or the 

boundary point velocity for moving boundaries). Needless 

to say but the governing equations are all solved inside 
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at the solid nodes but all the unknowns are set to zero. 

The grid resolution must be very fine in order to for the 

linear interpolation procedure to be applicable for high 

Reynolds number flows. Therefore there are is a need, 

however, of using high order interpolation schemes for 

high Reynolds number flows. 

The procedure for imposed velocity for one grid 

point is shown below. 

^ | Immersed boundary 

Figure 4.3: Linear interpolation technique for forcing at 
one grid point 

Here we impose the velocities at nodes U± and Ui+1 by 

linear interpolation from the velocity value at U ^ .Let 

h be the grid spacing in the equidistant zone and hx be 

the distance between the immersed point and the solid 

node. The linear interpolated velocity values at nodes i 

and i+1 are 
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uM 

u»-v,_v,-uM 
2*h-hl \ 

2/2 — n. 2/7 - n, 
n •"'*• " i 

£/, 

U..-V U.-V 

4.7 

2*h-hx h-\ 

Ut = Vs(-^—)-Utl(^-^-) 
2h-h 2h-h 

The immersed boundary method formulation described 

above is applicable for geometries that have a small 

finite thickness associated with them. Therefore when 

applying the appropriate forcing on the grid points to 

model the no-slip condition, the use of negative forcing 

on the solid grid points is applicable, as the flow 
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pattern inside the body will be different from the 

previous case but the external flow computed will be 

unaffected. For the infinitesimally thin flat plate, 

however, this technique of forcing inside the solid body 

becomes invalid. Hence we discuss two techniques below to 

model the forcing on the fluid points so that the flow 

computed is accurate. 

Two-sided one direction Interpolation 

Let A be the mesh spacing and h be the distance of 

the forced point from the immersed surface. A linear 

extrapolation utilizing the point on the immersed surface 

(with specified boundary velocity) and the point just 

outside the solid (with computed velocity) is then used 

to obtain the velocity at the forced point inside the 

solid. Let Vim be the desired velocity at the point on the 

immersed surface and Vu be the computed flow velocity 

outside the solid surface. Therefore, the velocity at the 

forcing point Vuf is given by 

V -V f V t~V. 4 9 

A h 

if Vim=0 (for s ta t ionary bodies) 

K-vuf_vuf^v = yf h } 
h uf u A + h 
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Similarly an expression for forcing in the downward 

direction can be computed easily. The expression for Vdf 

can be calculated as 

Figure 4.4: Two-sided one-direction interpolation 
technique 

V —V 
v df v d 

r A-h } 

K2A-h 
4.11 

Two Direction one-sided interpolations 

Let Ax be the mesh spacing and dx be the distance 

of the forced point from the immersed surface in the x 

direction, Ay and Sy be the mesh spacing and distance 
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from the immersed surface in y-direction. The expressions 

for the velocity forcing can easily be obtained. The 

expression for x velocity forcing at point Uf is 

( Sx ^ 4.12 u,=u. 
Ax + Sx J 

u„ uf 

v u 

vu f Immersed Boundary point 

^ Y direction immersed boundary point position 

X direction immersed boundary point position 

Figure 4.5: Two-direction one-sided interpolation 
technique 

Y velocity forcing at point Vuf is 
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( 

vuf=vu 
dy \ 

Ay + Sy 

4.13 

Hence for the inf initesimally thin plate case a 

combination of the above two mentioned techniques are 

used, depending on the position of the immersed boundary. 
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CHAPTER V 

VALIDATION OF THE FLUID DYNAMIC AND STRUCTURAL DYNAMIC 
SOLVERS 

In this chapter the Navier-Stokes fluid dynamic 

solver is validated. The major part of the FSI solver 

being developed is to model fluid structure interactions 

of a flexible fin attached to the upper surface of a 

NACA0012 airfoil. The procedure would be to use a 

structured C-grid for computing flow around the unsteady 

NACA0 012 airfoil with an attached flexible fin. The total 

pressure force on the fin is calculated at every time 

step. Then the structural solver takes as an input, the 

total pressure force acting on the fin calculated from 

the CFD solver, and the position and velocity are 

outputted. Then the flexible fin movement due to the 

pressure loading is modeled using the immersed boundary 

method described in the previous chapter. The first part 

of the chapter validates the CFD solver by comparing 

results around a turbulent NACA0012 airfoil with the 

published data. The second part of this chapter contains 

the validation of the structural solver followed by 

immersed boundary method (IBM) validation in the next 

chapter. 



5.1 Turbulent flow over a NACA0012 airfoil (body-fitted 
coordinates) 

In this section turbulent flow around a NACA0012 at 

an angle of attack (AoA) of zero and five degrees are 

computed and validated against the published data [36] . 

The lift and the drag coefficient computed at various 

angles of attack are also validated against published 

results. Different grid densities are used to show that 

the turbulent flow computed is grid independent. 

Numerical details 

The three-dimensional incompressible dimensionless 

RANS equations in the generalized curvilinear coordinates 

are discretized in space, on a non-staggered mesh using 

second-order finite difference approximations, and 

advanced in time using a four-stage Runge-Kutta scheme 

following a similar procedure described in Chapter III. 

The CFL number used in these computations is 1.5 for 

both the A: and e equations. The numerical solution process 

was regarded as converged with four to five orders-of-

magnitude decrease of residual. 

Computational domain and grid 

The c-type computational grid used in the turbulent 

flow over a NACA0012 is generated using Meshpilot [39] 

software is shown in the figure 5.1. The computational 



domain is x/c=30 in length, the airfoil located in the x-

axis between 0 and 1, z/c=3 0 in height, and y/c = 0.2 in 

width. 

Typical C-grid 

Figure 5.1: C-type computational grid with nodes of 
200*95 

This means the computational domain extends from 15 

chord lengths upstream of the airfoil to 15 chord lengths 

downstream of the airfoil in the stream wise direction 

and 15 chord lengths in either direction normal to the 

airfoil in cross stream direction and 0.2 chord lengths 

in the span wise direction. The zoomed up plot of the 
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grid is shown in figure 5.2. It is evident that the grids 

are clustered near the NACA0012 airfoil and along the 

centerline of the wake. 

Typical C-grid 

0.5 

N 0 

-0.5 

-0.5 0 0.5 1 1.5 
X 

Figure 5.2: Close up of the body-fitted C-grid with a 
NACA0 012 airfoil 

Boundary conditions 

The inlet boundary conditions for the turbulent flow 

over a NACA0012 airfoil are assumed uniform for all 

variables, where U = cos (a) , V = sin(a), and k=£=l(T6. On 

the symmetry boundaries in the span wise direction, the 

mirror-image reflections for the grid and the flow 



variables are used. The exit boundary condition is 

imposed by assuming zero stream wise diffusion. At the 

outer boundary, the corresponding free stream recovery is 

assumed. The wall boundary condition is zero value for 

all variables, that is u= v= k= e= 0. 

Results and Discussion 

In order to first validate the in-house Navier-

Stokes finite difference solver grid independence tests 

are done. With the numerical setup as described in the 

previous section, turbulent calculations on a NACA0012 

airfoil were performed with a number of grids. The 

results for the time-averaged surface pressure 

coefficient distributions with four most dense grids used 

(160x95, 200x95, 200*125 and 240x95) is shown in figure 

5.3 for Re=170,000 and angle of attack of five and 

compared with data.[3 6] 
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Figure 5.3: Grid independence study by comparing surface 
pressure distributions 

The numerical results show little variance between the 

solutions and can be regarded as grid-independent. The 

computational distributions agree well the data along 

most part of the airfoil surface. The results presented 

hereafter were obtained by using the fine 200x125 grid. 

The pressure contours plots at three different 

angels of attack using the 200*125 grid are also plotted 

below in figure 5.4. The calculated lift and drag 

coefficients for the flow over a NACA0012 airfoil at 

various angles of attack are calculated and also compared 

Hegna-Exp Data 
Body-fitted a = 5° 160x95 
Body-fitted a = 5° 200x95 
Body-fitted a = 5° 240x95 
Body-fitted a = 5° 200x125 
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with the experimental data of Hegna [36] and Jacobs and 

Sherman [37] . The comparisons can be found in figure 5.5 

and 5.6 respectively. The lift and drag force components 

are computed using trapezoidal integration to sum the 

total surface stresses obtained from the flow field 

solution. 
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N oh 

N o h 

Figure 5.4: Pressure contours for three different angles 
of attack 
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It can be observed that the predicted lift 

coefficient curve from the present model is in good 

agreement with the experimental measurements [36]. 

Figure 5.5: Lift coefficient curve for different angels 
of attack for a NACA0012 airfoil 

From figure 5.6 it is clearly evident that the drag co­

efficient computed from this in-house solver compares 

well with the published data at different angels of 

attack. The important fact that needs to be noticed, from 

figures 5.6, is the accuracy in the drag measurement 

close to the stall. The lift coefficient computed even 



though under predicted compared to the published data 

close to stall, the error is within a reasonable limit. 
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Figure 5.6: Drag coefficient computed at different angles 
of attack 

5.2 Unsteady deflection of a simply supported square 
plate 

The next step in the process is to validate the 

structural dynamics solver developed by Dr. Yang at the 

computational engineering physics group of western 

Michigan University. In the following case a simple 

dynamic case is computed using the explicit Newark time 

Experimental-Jacobs and Sherman 
C-grid Body Fitted Coordinates 



integration scheme. Here a simply supported plate is 

impacted with a load of certain magnitude. Once the plate 

is loaded the plate bends due the structural loading. The 

maximum deflection which is close to the center of the 

plate is computed at every time step using the 

subdivision finite element method, as explained in 

chapter III. This transient variation of the deflection 

at the center is compared with the analytical solution of 

Yang and Bhatti [4 0] 

Results and discussion 

The simply-supported square plate has the following 

dimensions. The edge length is 2.438/77 and thickness of 

0.00635 m. Material properties is: density 2500 kg/m3, 

Young's modulus 6.90X1010 N/m2, Poisson ratio 0.25. The 

impact loading with the magnitude of 4 7.89 N/m2 is 

considered. In figure 5.7 the time varying central 

deflection of simply supported beam is plotted and 

compared with published data of Yang and Bhatti [4 0]. 

The results show that both the computed solution the 

analytical solution of Yang and Bhatti [40] collapse into 

a single curve over time. 
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0.05 0.1 
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0.15 

Figure 5.7: Time variation of central deflection of a 
simply supported plate 
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CHAPTER VI 

VALIDATION OF THE FINITE DIFFERENCE IMMERSED BOUNDARY 
NAVIER-STOKES SOLVER 

The immersed boundary method of Fadlun [14], Mohd-

yusof [21] is applied in this chapter. In order to 

evaluate the accuracy and the applicability of immersed 

boundary method a number of simulations are performed on 

different geometries and validated. This analysis shows 

the accuracy of the immersed boundary method developed 

here and also gives confidence that results to new 

problems will be valid. The following steps are followed 

while validation the immersed boundary method used in 

combination with the Navier-Stokes solver. 

• Step 1: Validate the steady state solver in 

combination with the Navier-Stokes solver. In order to 

accomplish this task the steady flow over a circular 

cylinder is validated against a published numerical 

result [41] . In addition to this the steady flow over 

a NACA0012 airfoil is computed and validated against a 

published result[43] 

• Step 2: Validate the unsteady solver in combination 

with the immersed boundary method. In order to 

accomplish this task the unsteady flow over a circular 

cylinder is computed and validated against other 



published results. [42] 

• Step 3: Validate the turbulent solver in combination 

with the immersed boundary method. Turbulent flow over 

a NACA0012 airfoil is computed using the immersed 

boundary method and validated against published 

results [36]. 

The major reason behind applying the immersed boundary 

method for modeling FSI over a flexible fin attached to a 

NACA0012 airfoil is to account for the fin movement just 

by using body forces rather than tradition grid movement 

algorithms. The fin used in the numerical simulation is 

considered infinitesimally thin (thickness=0). In both 

the previous steps the boundary that needs to be forced 

in the momentum equation has non-zero thickness. This 

means there were solid nodes inside the boundary, which 

facilitates the use of negative forcing while 

interpolation as explained in chapter IV on the solid 

boundary. This cannot be done for an infinitesimally thin 

object and hence combined one-sided two-direction forcing 

or two-sided one-direction forcing explained earlier are 

used. 

Step 4: Validate the immersed boundary method for 

infinitesimally thin plates. The flow over an 

infinitesimally thin plate at high angle of attack is 

validated with a published result [48]. 



• Step 5: Validate the solver for moving boundaries. 

This means that the immersed boundary method in 

conjunction with the finite difference Navier-Stokes 

solver needs to be validated for moving boundaries. 

According to the knowledge of the author there weren't 

any published data that used zero thickness moving 

boundaries in their numerical computations. Hence the 

zero thickness moving immersed boundary cases were 

validated with the work of Liou and Pantula [13] , 

where a commercial code Fluent was used to model flow 

around an unsteady flexible flat plate with a 

prescribed boundary motion. 

Step 1: Steady state solver combined with immersed 
boundary method 

6.1 Flow over a circular cylinder 

The flow over a circular cylinder has been studied 

quite extensively and a number of numerical and 

experimental data exist. This flow is very attractive 

because it varies with Reynolds number and it's not very 

easy to simulate on non-boundary fitted Cartesian grids. 

The flow is stationary at around Reynolds number of 40 

where two symmetrical standing vortices are formed but 

remain attached to the cylinder. As the Reynolds number 

is increases a wavy nature of the tail can be observed 

and gradually the vortices stretch and eventually at high 



Reynolds number alternating vortex shedding called the 

Karman vortex street can be observed. 

Computational Domain Details 

In this section a description about the domain and 

mesh used in the case I of simulations is given. A simple 

Cartesian grid is selected for this case. X and Y are the 

stream wise and cross stream directions respectively. A 

symmetry boundary condition is used in the Z-direction. A 

circular cylinder of 0.4 m diameter is deployed in a 

channel of 20m X 20m X 0.05m. The circular cylinder is 

placed at a center of the channel. The figure 6.1 below 

gives a schematic idea of the domain. The computational 

domain is x/L = 20 in length, z/L = 20 in height, and y/L 

= 1 in width, and the number of grid nodes are 181x181x5. 

In zone 1 from x=-10 to -0.5 grid stretching factor of 

1.15 is used and 4 0 grids are constituted in that region. 

In zone 2 From x=-0.5 to 0.5 where the cylinder is 

located an equidistant grid consisting of 100 nodes is 

used giving a grid spacing of 0.01 and again in zone 3 

from x=-0.5 to 10 like in zone 1 a grid stretching factor 

of 1.15 is used and 40 grids are constituted in that 

region. Similar in y direction zone 1 consists of 4 0 

grids from -10 to -0.5 with grid stretching factor of 

1.15 and zone 2 consists from -0.5 to 0.5 consisted of 
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100 nodes with an equidistant grid spacing of 0.01 in 

this zone. Similar to zone 1 in y-direction the zone 3 

consists of a grid form 0.5 to 10 with 40 nodes and a 

grid stretching factor of 1.15. The CFL number is set to 

1.5. All the residuals have reduced at least five orders 

of magnitude, and the values are all smaller than 10"6. 

Immersed Boundary Method-Circular Cylinder 

x 
Figure 6.1: Circular cylinder domain for 

181*5*181 mesh 

The pressure distribution curves in figure 6.2 are 

compared the published result of Fornberg [41] . Grid 

independence studies done using three different meshes 

showed that a reasonable number of forcing points are 
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required for accurate prediction of the boundary layer. 

Surface Pressure co-efficient Distribution 

Figure 6.2: Surface pressure distribution over a Circular 
Cylinder at Re=4 0 

From figure 6.2 we can observe that with Mesh I 

which has the coarsest resolution of all and there are 

wiggles or oscillations on the surface pressure curves. 

This is because of the fact that only 4 0 immersed 

boundary points were used to define the surface. Mesh II 

and III exhibit no wiggles because sufficient number of 

immersed points were used to define the surface geometry. 
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Mesh II uses 8 0 and Mesh III uses 160 immersed boundary 

points respectively to model the cylinder. 

Figures 6.3 and 6.4 show the surface pressure 

coefficient (Cp) and velocity contours along the cylinder 

surface at Reynolds number 4 0 using the immersed boundary 

technique. From the pressure contour and the x velocity 

contours in figures 6.3 and 6.4 one can see the flow is 

steady with separation bubble behind the cylinder. 
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- 2 0 2 4 
X 

Figure 6.3: Pressure contours over a circular cylinder at 
Re=40 
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Figure 6.4: Velocity contours over a circular cylinder at 
Re=40 

6.2 Laminar flow over a NACA0102 airfoil 

The laminar flow past a NACA0012 airfoil with zero 

degree angle of attack is simulated at Reynolds number of 

500 based on the chord length. The computational domain 

is x/L = 21 in length, the airfoil is located on x-axis 

between 0 and 1, z/L = 2 0 in height, and y/L = 1 in 

width, and the number of grid nodes are 281x281x3. Figure 

6.5 shows the computation domain and mesh used in the 

simulations. In zone 1 from x=-10 to -0.5 grid stretching 

factor of 1.15 is used and 40 grids are constituted in 

that region. In zone 2 From x=-0.5 tol. 5 where the 

airfoil is located from x=0 to 1 an equidistant grid 

* • i i i i i . i . . . j 



consisting of 200 nodes is used giving a grid spacing of 

0.01 and again in zone 3 from x=-1.5 to 11 like in zone 1 

a grid stretching factor of 1.15 is used and 4 0 grids are 

constituted in that region. Similar in y direction zone 1 

consists of 40 grids from -10 to -1 with grid stretching 

factor of 1.15 and zone 2 consists from -1 to 1 consisted 

of 200 nodes with an equidistant grid spacing of 0.01 in 

this zone. Similar to zone 1 in y-direction the zone 3 

consists of a grid form 1 to 10 with 4 0 nodes and a grid 

stretching factor of 1.15. The CFL number is set to 1.5. 

The numerical solution process was regarded as converged 

with four to five orders-of-magnitude decrease of 

residual. 

A grid independence study was done to check the 

order of accuracy of the code. The pressure distributions 

on the airfoil surface are computed and compared with the 

documented results from Ypeng et.al [4 3] as well as a 

boundary-fitted solution computed using commercial code 

Fluent. Then the obtained values of lift and drag co­

efficient are compared with documented values of D. Yu et 

al [49]. Figure 6.6 shows the pressure coefficient (Cp) 

along the airfoil surface at Re of 500 using linear 

extrapolation. 
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the boundary-fitted grid solution. The grid resolution 

study performed to analyze the accuracy of the linear 

interpolation scheme showed that the solution is grid 

independent. The pressure and velocity contours from the 

semi finest 281*3*281 grid using the immersed boundary 

technique are also shown in figures 6.7 and 6.8 

respectively. 

Pressure co-efficient distribution along the airfoil 

• Published result of Imamura & co. 
IBM result-200 forcing points 
IBM result-400 forcing points 
IBM result-100 forcing points 

— FLUENT BODY FITTED RESULT 

0.4 0.5 
X 

0.6 0.7 0.8 0.9 

Figure 6.6: Pressure distributions along the airfoil 

Drag Co-efficient 

The computed drag co-efficient is compared with the 

documented results of Dr. Yu [49]. The present value drag 
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coefficient of 0:1739 compares very well with the results 

reported in reference [44] where a drag coefficient of 

0:1762 was obtained using the Navier-Stokes equation-

based finite diference method, and the drag coefficient 

of 0:1717 was obtained when using Power flow code 

developed by EXA Corporation, which is based on the 

lattice Boltzmann equation method. 

Figure 6.7: Pressure contours over a NACA0012 airfoil 
using immersed boundary method at Re=500 



Figure 6.8: Velocity contours over a NACA0012 airfoil 
using immersed boundary method at Re=500 

Step 2: Unsteady solver coupled with the immersed 
boundary method 

6.3 Unsteady flow over a circular cylinder at Reynolds 
number of 200 

From the pressure and velocity contours from figures 

6.3 and 6.4, it is clear that the flow around a circular 

cylinder is steady with separation bubble behind the 

cylinder. As the Reynolds number is increase the wake 

becomes unstable due to perturbations. The cylinder wake 

becomes unstable and in stabilizes at Re > 47 . The 

velocity and pressure contours are displayed below in 
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Figure 6.9: Contours of pressure at three different times 
around a circular cylinder at Re=2 00 using immersed 

boundary technique (t=30, 40 and 50 sec) 

In figures 6.9 and 6.10 one can see the velocity contours 

and pressure contours in the near wake of a cylinder at 

three different time steps. We can clearly see that the 

present immersed boundary finite difference Navier-Stokes 

method accurately captures the wake deformation around a 

complex bluff body like the circular cylinder. Figure 

6.11 shows the time evolution of the lift co-efficient 

measured at Reynolds number of 200. From this lift 

history a very important quantity for unsteady bluff 

bodies called strouhal number can be computed. 
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Figure 6.10: Velocity contours at three different time 
steps of 30, 40 and 50 sec 
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Figure 6 .11: Lift coeff ic ient va r i a t ion with time 



Strouhal number: The Strouhal number is defined as the 

dimensionless frequency with which the vortices are shed 

behind the body 

f.d 
st = -— 

where f is the vortex shedding frequency. St tabulated in 

table 1 shows a good agreement with the published result 

from Kiris and Kwak [42] . 

Method 

Unsteady 

Solver-

current 

method 

Kiris and 

Kwak [42] 

Reynolds 

Number 

200 

Parameter 

Compared 

Strouhal 

number, Lift 

variation 

Strouhal 

number, Lift 

variation 

Comments 

0.19, ±0.68 

0.184, ±0.67 

Table 1: Strouhal number and lift variation 



Step 3: Turbulent model coupled with the immersed 
boundary method 

6.4 Turbulent flow over a NACA0012 airfoil at Reynolds 
number of 170000 

In this part of the chapter, turbulent flow over a 

NACA0012 airfoil is studied using the immersed boundary 

method. This part of the work validates the immersed 

boundary method application for turbulent flows. The 

Reynolds number of the flow based on the chord length of 

the flow is fixed at 170,000 with the angle of attack of 

7.5°. The two-equation low Reynolds number K-fmodel of 

Launder and Sharma [38] is used to resolve the turbulent 

properties in the flow region. The k and s transport 

equation as well the damping functions used by Launder 

and Sharma [38] are as indicated in chapter II. 

Computational domain details 

The computational domain is x/L = 21 in length, the 

airfoil is located on x-axis between 0 and 1, z/L = 20 in 

height, and y/L = 1 in width, and the number of grid 

nodes are 281x281x3. Figure 6.12 shows the computational 

domain and grid used in these simulations. In zone 1 from 

x=-10 to -0.5 grid stretching factor of 1.15 is used and 

4 0 grids are constituted in that region. In zone 2 from 

x=-0.5 tol.5 where the airfoil is located from x=0 to 1, 

an 
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with grid stretching factor of 1.15 and zone 2 consists 

from -1 to 1 consisted of 200 nodes with an equidistant 

grid spacing of 0.01 in this zone. Similar to zone 1 in 

y-direction the zone 3 consists of a grid form 1 to 10 

with 4 0 nodes and a grid stretching factor of 1.15. The 

CFL number is set to 1.5. All the residuals have reduced 

at least five orders of magnitude, and the values are all 

smaller than 10"6. 

Boundary conditions 

The inlet boundary conditions for the turbulent flow 

over a NACA0 012 airfoil are assumed uniform for all 

variables, where U = cos (a), V = sin(a), and k=£=10~6. On 

the symmetry boundaries in the span wise direction, the 

mirror-image reflections for the grid and the flow 

variables are used. The exit boundary condition is 

imposed by assuming zero stream wise diffusion. At the 

outer boundary, the corresponding free stream recovery is 

assumed. 

Results and discussion 

In order to validate the turbulent flow over a 

NACA0 012 airfoil using the immersed boundary method the 

time-averaged surface pressure coefficient distribution 

over the airfoil for Reynolds number of 170,000 and angle 
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of attack of 7.5° is compared with the experimental data 

of Hegna [36] . From figure 6.15 the numerical results 

show little variance between the solutions and can be 

regarded as grid-independent. The computational 

distributions agree well with the data along most part of 

the airfoil surface as shown in the figure 6.15. The 

pressure and velocity contours are displayed in the 

figures 6.13 and 6.14 respectively. 
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Figure 6.13: Pressure contours over a turbulent NACA0012 
airfoil at Re=170,000 using immersed boundary 

technique 
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Figure 6.14: Velocity contours over a turbulent NACA0012 
airfoil at Re=170,000 using immersed boundary-

technique 

1.5: 
Surface Pressure variation along a turbulent airfoil-IBM Method 

—Immersed boundary method - Mesh size 141*141*3 
• Hegna (Angle of attack = 7.5) 

I mmersed boundary method - Mesh size 281 *281 *3 

Figure 6.15: Grid independence test on a NACA0012 
computed using immersed boundary method 



Step 4: Steady infmitesimally thin flat plate 

6.5. Laminar flow over an infinitesimally thin flat plate 

In this part of the chapter flow over a 

inf initesimally thin flat plate at angle of attack of 30 

is investigated for Reynolds number of 100. The two 

dimensional flow over the flat plate is solved using the 

immersed boundary method and validated against the flow 

over a rectangular flat plate with experimental 

measurements from a companion tow-tank equipped with 

stereo digital particle image velocimetry (DPIV) and a 

six-axis force tensor. 

Computational domain and boundary conditions 

The laminar flow past a static flat plate with angle 

of attack a = 30° is simulated using the immersed 

boundary method on a Cartesian grid at Reynolds number, 

based on the chord length c, of 100. The CFL number is 

set to 1.5. The 2-D solutions are sought, and the 

computational domain is x/c = 20 in length, the plate is 

located on x-axis between 0 and 1, and z/c = 20 in 

height. The computational domain and grid used in this 

simulation is shown in the figure 6.16. The inlet 

boundary conditions for this high angle of attack flow 

over a infinitesimally flat plate are assumed uniform for 

all variables, where U = cos(a), V = sin(a). 
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Figure 6.16: 2D grid with the infinitesimally thin flat 
plate 

The exit boundary condition is imposed by assuming 
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zero stream wise diffusion. At the outer boundary, the 

corresponding free stream recovery is assumed. 

Grid independence study 

The results for the time-averaged surface pressure 

coefficient distributions with two grids (91x181, 

141x231) is shown in figure 6.17 for Re=100 and angle of 

attack of 3 0°. The numerical results show little variance 

between the solutions and can be regarded as grid-

independent . 
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Figure 6.17: Grid independence test for a infinitesimally 
thin plate computed using immersed boundary 

method 
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In figure 6.18 the y-vorticty contour after t=20 is 

plotted using the finest grid. 
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X 

Figure 6.18: Y-vorticty contours after t=20 

Lift Co-efficient from the current simulation 0.9123 

Experimental Lift Co-efficient of Ahuja and co 0.9678 

This is 

0.9678-0.9123/(0.9678)« 5.73% 

The lift coefficient computed is compared with the 

experimental publication [48] shows the computation 

agrees reasonably well with the published result. The 

infinitesimally thin flat plate used in the computations 

compared to a finite thickness plate used in the 

experiments could a reason behind this error. 



Step 5: Moving boundary model coupled with the immersed 
boundary method 

6.6 Flow over a flapping flat plate using immersed 
boundary method 

In this part of the chapter the flow around an 

unsteady flapping flat plate is studied using the 

immersed boundary technique and compare with the 

commercial code FLUENT. The Reynolds number is set as 

1000, based on the length of the flat plate. The same 

immersed boundary technique is applied as suggested in 

the earlier section. Since the plate moves with a known 

frequency the position of the plate is known as a priori, 

the forcing points are found using a search algorithm 

with respect to the plate position. Once this is done, 

appropriate forcing at these points is applied so that 

the velocity at the boundary is equal to the velocity of 

the flapping plate. 

In Fluent, the dynamic mesh method updates the 

volume mesh in the deforming regions by using spring 

based smoothing and local remeshing. These methods were 

employed to update the mesh at each time step to simulate 

the plate's new position. Interior nodes behave as if 

they have a series of springs attached to them. This 

enables the nodes which define the cells to be squished 

or pulled, but the number of nodes and cells remain 
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unchanged. Thus connectivity remains the same before 

remeshing. After each time step, these methods check the 

cells near the plate's centerline to ensure that they are 

within the specified minimum and maximum cell size limits 

and also under the maximum skewness. Cells that did not 

meet this criterion are remeshed to improve skewness 

[54] . This method works well, but only when the 

displacement of the boundaries is relatively small 

compared to the distance between the nodes on the same 

boundary. 

Kinematic models 

A kinematic model used for the flapping thin plate. 

The deformation y(x,t) is described as y(x,t) =-0.05xsin(2;zt). 

In this model, the plate is solid and the angular 

frequency of the flapping is 2n. Figure 6.19 mimics the 

motion of the flat plate. The position of the leading 

edge {x=0) of the plate remains unchanged for all 

flapping motions. In Fluent, the kinematic models are 

created in the software using user defined function 

(UDF) . 
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Figure 6.19: Kinematic model showing the object position 
at different times 

Solver characteristics 

Fluent 

The commercial computational fluid dynamics code 

Fluent version 6.2 has been used to model the flow field 

by solving the two-dimensional, incompressible, unsteady 

Navier-Stokes equations and the continuity equation given 

as: 
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V»F = 0 

where D/Dt denotes the total derivative with respect to 

time. The segregated solver has been used. The 

computational domain is two-dimensional and the 

calculations are considered time-accurate with the first 

order discretization. The discretization schemes used 

for the pressure and the momentum equations are standard 

second-order upwinding. For pressure velocity coupling 

the SIMPLE algorithm was used. 

Combined Navier-Stokes Immersed boundary method 

The two-dimensional incompressible dimensionless 

RANS equations in the generalized curvilinear coordinates 

are discretized in space, on a non-staggered mesh using 

second-order finite difference approximations, and 

advanced in time using a four-stage Runge-Kutta scheme 

following a similar procedure described in Chapter II. 

The CFL number used in these computations is 1.5 for 

the k and s equations. For all the results shown here, 

the residuals defined by the summation of differences 

between the current and the previous iterations were 

reduced by at least four orders of magnitude. 
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Computational domain and grid details 

The same computational domain used is used for both 

Fluent as well the combined immersed boundary Navier-

stokes method. The domain spans from x/L = -10 to x/L = 

11 in length, with the plate located on x-axis between 0 

and 1, z/L = -10 to z/L = 10 in height, and the number of 

grid nodes for the compared case fixed at 201x201. 

Figures 6.2 0 and 6.21 show the domain and the grid used 

for both Fluent and combined Navier-stokes immersed 

boundary method. The Reynolds number based on the plate 

length and the free stream velocity is 1000. The flow is 

assumed laminar at all time during the unsteady 

calculations and no turbulence model has been used. 

-10L<x<llL 

•10L<Y<10L 

Figure 6.20: Kinematic model showing the object position 
at different times 
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Figure 6.21: Computational grid employed by both codes 

Results and discussion 

The performance of the moving immersed boundary 

method is first validated by comparing the surface 

pressure coefficients from both Fluent and Immersed 

boundary Navier-stokes method at two different locations 

of the plate. From figure 6.19, since the starting motion 

is a down-stroke and the flapping period is 1 sec, the 

plate is at its lowest (trough), level, and highest 

(crest) positions every one second. The pressure 

distributions on the upper and the lower surfaces are 



symmetrical with respect to the plate positions. The 

surface pressures distributions at two different 

positions of the plate i.e. crest and level positions 

respectively are compared with the commercial code 

Fluent. The non dimensional times at which surface 

pressures are compared in both the codes are at the crest 

position (6.75) and at the base level position (7) 

respectively. The lift variation history (plotted in 

figure 6.22) is calculated for both codes and compared. 

From the surface pressure distributions and the lift 

histograms one can say that there is a difference in the 

variation of amplitude of the lift coefficient. In brief, 

when running dynamic grid motion algorithms the 

commercial code Fluent reduces its temporal order of 

convergence to 1st order where as the order of accuracy is 

close to 1.75 for the non-boundary stationary grid used 

in the immersed boundary case. This we predict could be 

one reason behind the difference of the surface pressures 

computed by the commercial code Fluent in comparison to 

the immersed boundary Navier-Stokes method. The spatial 

order of accuracy of both the codes remains close to 1.7. 
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Lift histogram comparision 

~i i i r 

Figure 6.22: Lift histogram comparisons (Solid line-
Immersed boundary method, Dotted line- FLUENT) 

Surface pressure distribution at crest level 

-Current moving Immersed boundary method 

-Fluent dynamic meshing 

-0.6 

O.t 0.2 0.3 0.5 
x/c 

0.7 0.8 

Figure 6.23: Surface pressure distributions on the plate 
at the maximum amplitude position 
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0.2, 
Surface Pressure Varition at the base level 

—Current moving Immersed boundary method 

—Fluent dynamic meshing 

-0.3 

-0.5 
0.1 0.2 0.3 0.4 0.5 

X/C 
0.7 0.8 0.9 1 

Figure 6.24: Surface Pressure distributions on the plate 
at the base level (zero amplitude position) 
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Figure 6.25: Stream lines with respect the plate position 
at maximum, baseline and minimum amplitude positions 



Figures 6.25 and 6.26 show the streamlines and the time 

varying x-velocity contours at different positions of the 

plate. From the plots the stirring of the fluid are 

significant as it passes through the base level position. 

The separation bubbles at the trailing edge can also be 

observed from the stream line plots. 
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Figure 6.26: Time varying x-velocity contours with 
respect the plate position at maximum, baseline and 

minimum amplitude positions 
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6.7 Order of convergence studies 

According to Roache [4 5] a CFD code uses a numerical 

algorithm that provides the theoretical order of 

convergence, however, the boundary conditions, numerical 

models, and grid will reduce this order. The Methods for 

examining the spatial and temporal convergence of are 

presented by Roache [45]. This method involves performing 

simulation on two or more finer grids. When the grid is 

refined (grid cells become smaller and the number of 

cells in the flow domain increase) and the time step is 

refined (reduced) the spatial and temporal discretization 

errors, respectively, should asymptotically approach 

zero, excluding computer round-off error. The solution 

error according to Roache is defined as the difference 

between the discrete solution and the exact solution. 

Error = f(h)-fexact = Chp 

where p represents the order of convergence and h is the 

measure of the grid spacing. When three levels of grids 

are used a more direct evaluation of P can be done using 

a constant grid refinement ratio r and assuming that the 

solution at the finest grid to be "exact", we obtain 
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In(AzA) / 6.4 
P — Ji~J\ / 

In order to calculate the spatial order of 

convergence, different grids need to be generated. Four 

uniformly spaced, successively refined meshes were used 

for this analysis. The approach that was taken in this 

study is to first generate a very fine grid. A coarser 

level grid is then built by removing every other grid 

line in each coordinate direction. The same procedure is 

also used to build the next level of coarse grids. The 

grid sizes used in the current work are 71*71, 141*141, 

281*281 and 561*561. The grid refinement ratio r then 

equals to 2. 

The grid convergence order is also examined by the 

averaged flow property changes in the computational 

domain. Thez^ norm of the streamwise velocity components 

can be written as, 

6 . 5 

e% = max 
i=l,N2 

ujN)-ufxact 

where u\N)denotes the streamwise component of the velocity 

at node i of the if grid and Misrepresents the exact 

solution at point i. 
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Flow over a circular cylinder 

The variation of L^ norm of error with grid spacing 

is calculated for flow over a circular cylinder at 

Reynolds number of 40. Figure 6.27 shows the variation of 

thei^ norm of the error with grid spacing in a log-log 

scale. This is evident from the figure 6.27 the solver 

for this flow convenes at a rate which is close to second 

order. The line with slope of 1 and 2 are also shown in 

the figure for reference. 

log(A/z) 

Figure 6.27: Convergence of L^ norm of error for the 
velocity field for flow over a circular cylinder 



Flow over a NACA0012 airfoil 
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The variation of LX norm of error with grid spacing 

is calculated for flow over a NACA0012 airfoil at 

Reynolds number of 500. Figure 6.28 shows the variation 

of thez^ norm of the error with grid spacing in a log-log 

scale. This is evident from the figure 6.28 the solver 

for this flow converges at a rate which is close to 

second order. The line with slope of 1 and 2 are also 

shown in the figure for reference. 

Slope 2 
Slope 1 

—•—Linf Norm 

log(AA) 

Figure 6.28: Convergence of L„ norm of error for the 
velocity field for flow over a NACA0012 airfoil 
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CHAPTER VII 

FLIUD STRUCTURE INTERACTION OVER A PASSIVE FLEXIBLE FLAT 
PLATE 

The developed fluid-structure coupled solver is 

first used to study a two-dimensional flow over an 

infinitesimally thin flat plate hinged at leading edge. 

All three remaining edges are free to move and are 

unconstrained. The simplicity associated with the wealth 

of properties involved make the flow over a flexible 

flapping plate a great start up problem to investigate 

the coupled fluid-structure solver. In this case we study 

the response of the fin due the fluid dynamic forcing 

acting on it. The flow dynamics are solved on a fixed 

Cartesian grid by interpolating values to the nearby grid 

points using the immersed boundary technique. The overall 

fluid dynamic forcing acting on the immersed boundary is 

calculated by extrapolation from the grid points and this 

is used as an external force to the structural dynamics 

solver. The coupling between the fluid and the structural 

solver is done in such a way that at every time step 

there is a switch between the fluid solver and the 

structural solver, where the boundary conditions are 

passed at the end of each individual solver time step. No 

sub iterations between the solutions takes place. 



7.1 Problem description 

The flow over a two dimensional passively flapping 

flat plate, which is hinged at leading edge and free to 

move in span wise direction at the trailing edge is as 

shown in figure 7.1. This flow over the passive flat 

flapping flat plate is performed using the coupled 

Navier-stokes immersed boundary with the subdivision 

finite element solver on this hinged flat plate at 

Reynolds number of 20,000. The plate is considered 

infinitesimally thin. The plate is made of mylar which 

can be stretched, deformed and bent and it resists these 

forces by its elastic nature. 

Figure 7.1: Schematic representation of the Mylar 
flapping flat plate hinged at the leading edge 

The mylar plate is a biaxially-oriented polyethylene 

terephthalate polyester film with high tensile strength 

and chemical/dimensional stability. Some of the 



interested properties are: Young's modulus (MD) 2.8 Gpa; 

Poisson ratio0.37 and Density of l.39g/cc . 

7.2 Computational domain 

In this section both the computational domain and 

the grids used by both the fluid solver as well as the 

structural solver are discussed. Different grids are 

employed by both the solvers. The node positions of both 

solvers are different since different grid orientations 

are used for different solvers. The values are 

interpolated to nearest grid points for both solvers to 

either input or output the appropriate boundary 

conditions from the fluid and structural solver and vice 

versa. 

Combined Navier-Stokes immersed boundary solver 

The computational fluid dynamic grid used in the 

laminar flow over a passive flapping flat plate is 

generated is shown in figure 7.2. The computational 

domain is x/c=20 in length, the plate is located at the 

base level located in the x-axis between 0 and 1, z/c=20 

in height, and y/c=0.2 in width. The grid is clustered 

near the inlet and is stretched using a hyperbolic 

stretching function toward the exit in the stream wise 

direction and cross stream directions. 
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The inlet boundary conditions for the laminar flow 

over a passive flapping flat plate are assumed uniform 

for all variables, where U = cos(a), V = sin(a). The flow 

is essentially laminar and hence no turbulence model 

used. On the symmetry boundaries in the span wise 

direction, the mirror-image reflections for the grid and 

the flow variables are used. The exit boundary condition 

is imposed by assuming zero stream wise diffusion. At the 

outer boundary, the corresponding free stream recovery is 

assumed. The wall boundary condition is zero value for 

all variables, that is u= v=0. 

Subdivision finite element solver 

The computational structural dynamic grid used to 

input the pressures on to the surface of the plate is as 

shown in figure 7.3. The computational domain is x/c=l in 

length, y/c=0.2 in horizontal cross stream or span wise 

direction. 
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Figure 7.3: Unstructured triangular mesh used in the 
structural code for the flexible flapping plate 

hinged at x=0 at the starting position 

An unstructured triangular grid of equal size is 

generated and used in the computations. The pressure 

loading is applied on the center line at y=0 and mirror 

image reflections for loading are used at the other lines 

in the span wise direction. 

7.3 Coupling CFD and the CSD solvers 

The computational techniques used for both the CFD 

and the CSD solvers are different (as suggested in 

chapter II and III) and this increases the complexity of 

the problem. The usage of different CFD as well as CSD 

solvers here to compute the problem works only when there 

is a proper coupling between the codes. There are 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 
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different techniques for exchanging the information, 

between the CFD and the CSD codes, which was suggested by 

Giannopapa [12] for a study of Fluid structure 

interaction in flexible vessels. One of the techniques 

described is used for the present coupling. 

1) The most basic approach Giannopapa [12] 

describes is non-iterative over all time. The 

Navier-Stokes equation and the thin shell 

formulation equations are solved separately for 

the whole computational domain, which remains the 

same for the solvers. The major underlining fact 

is that the effect of the structure on the fluid 

is considered to be negligible. Figure 7.4 shows 

the coupling procedure followed for this kind of 

formulation 

Fluid Solver 

__+. 
Start End 

P 
Time Time 

* • 

Structural Solver 

Figure 7.4: Non-iterative scheme over all time 

2) The second technique would be to couple both the 

solvers in an iterative manner and hence the name 
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iterative over all time. This technique is a 

combination of the above technique with the 

exception that the solution from the CSD code is 

used as a transient boundary condition on the 

fluid unlike the 1st techniques where the 

structural effect was neglected. The coupling 

procedure is shown below in figure 7.5 

Fluid Solver 

^\I \ » 
Start U End 

Time \ p Time 

Jk i p 

Structural Solver 

Figure 7.5: Iterative schemes over all time 

3) The other technique described by Giannopapa 

[12] is similar to the above two techniques with 

the exception that the information is passed from 

the fluid/structural solution to the 

structural/fluid solution at the end of every 

individual time step. The schematic techniques 

are depicted below in the figure 7.6. This is the 

technique that is used in this thesis where the 

pressure force acting on the structure is 

calculated from passing the total pressure force 

as an input to the structural boundary (i.e. 



plate) and the total deformation and velocity-

information is passed into the fluid solver where 

the plate velocity is forced at the nearby grid 

points using the two-direction interpolation 

techniques suggested in the earlier chapter. 

Fluid Solver 

3 5 

Start 

Time 

End 

Time 

dt dt dt 

Structural Solver 

Figure 7.6: Non-iterative schemes over each time step 

7.4 Results and discussion 

A grid independence study for laminar flow over a 

flapping flat plate has been performed, and the results 

are as shown in figure 7.7. Two different fluid grids of 

91x161 and 91x181, in the stream wise and the wall-normal 

directions, respectively are generated. The structural 

solver remains the same but two different grids of 

increasing mesh density are used on the fluid solver. The 

surface pressure distributions on the plate after the 

plate has stabilized are computed and compared on these 

two different grids. The computed pressure distributions 
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using these two different grids basically collapse 

indicating the flow solutions are grid independent. The 

91x181 grid is used later where the contours of vorticity 

are used to visualize the simulation results. The 

instantaneous positions of the plate as well as the 

bending stress are also plotted at those time steps to 

visualize the structural simulation results. 
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0.16 

0.12 

Surface pressure distributions 
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0.1 0.2 0.3 0.4 0.5 

X/C 
0.6 0.7 0.8 0.9 

Figure 7.7: Surface pressure variation at t=1.3 

In order to study the response of the plate to the 

incoming flow the tail displacement with respect to time 

and the lift variation are plotted as shown in figures 

7.8 and 7.9 respectively. From figure 7.8 it can be 

interpreted that initially as soon as the flow is 



impulsively started the plate moves randomly for a little 

while, then it experiences a periodic flapping, finally 

aligning itself close to the incoming flow angle. With 

the motion of the plate, the overall aerodynamic 

properties of the plate change. The time history of the 

lift through the whole process is plotted in the figure 

7.9. It is clear from the figure that the lift 

fluctuation follows the frequency of the flapping. 

0.15. 

t 
v 0.05-

-0.05' 

Time 

Figure 7.8: Tail amplitude variations with respect to 
time 
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Figure 7.9: Lift histogram of the flexible flat plate 

The instantaneous position of plate and the contours 

of vorticity are used to visualize the flow. In addition 

to this the bending stress and the pressure force on the 

plate are plotted in the following pages. The flow is 

from left to right when visualizing the vorticity 

contours. The same is true for position of the plate with 

the leading edge at the left end hinged. The vorticities 

and the plate positions are plotted at an equal time 

interval of 0.1 sec in between them. 
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Figure 7.10 a) Pressure, bending stress and y-vorticity 
magnitude after 0.1 sec 
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Figure 7.10 b) Pressure, bending stress and y-vorticity 
magnitude after 0.2 sec 
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Figure 7.10 c) Pressure, bending stress and y-vorticity 
magnitude after 0.3 sec 
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N OH 

-0.5 h 

Figure 7.10 d) Pressure, bending stress and y-vorticity 
magnitude after 0.4 sec 
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Figure 7.10 e) Pressure, bending stress and y-vorticity 
magnitude after 0.5 sec 



CHAPTER VIII 

MODELING FLUID STRUCTURE INTERACTION OVER A FLEXIBLE FIN 
ATTACHED TO THE UPPER SURFACE OF A NACA0 012 AIRFOIL 

This chapter explores a new concept of post-stall 

flow control for airfoils and wings by using a thin 

flexible fin attached on the upper surface of an airfoil 

to passively manipulate flow structures in the fully 

separated flows for drag reduction and lift enhancement. 

The flexible fin used for passive control in this chapter 

is a thin Mylar film. The fin is 0.25c long and is fixed 

at 0.1c on the upper surface of the NACA0012 airfoil. The 

Mylar thin film is a biaxially-oriented polyethylene 

terephthalate polyester film with high tensile strength 

and chemical/dimensional stability. The velocity and 

vorticity fields and the fin kinematics are given to 

provide insights into the physical mechanisms of the 

post-stall flow control. The lift and the drag 

coefficients are computed. The average drag co-efficient 

from experiments at angle of attack of 18° is compared 

with the running average drag from the computations. The 

average drag coefficients from the experiments as well as 

the computations at various angles of attack are also 

compared. The average viscous and pressure drags at 

various angles of attack are computed and compared with 



the baseline NACA0012 airfoil. 

8.1 Experimental set-up 

Experiments were conducted in the water tunnel (The 

Rolling Hills Research Corporation Model 1520) in the 

Fluid Mechanics Laboratory at Western Michigan University 

by Dr. Liu and Dr. Montefort. The test section is 

nominally 15 in wide, 2 0 in high and 6 0 in long. The 

tempered glass, 3/8 in thick on the sidewalls and 1/2 in 

thick on the bottom, is mounted with silicon rubber, 

allowing good optical access from the top, bottom, both 

sides and rear for flow visualization and Particle Image 

Velocimetry (PIV) measurements. The tunnel is operated as 

a continuous flow channel and the water level in the test 

section is typically adjusted to be roughly 50 mm below 

the top of the walls. The free water surface provides 

simple access to the model and easy setup of an external 

force balance. There is a 6:1 contraction section before 

the test section for turbulence reduction and avoidance 

of local separation and vorticity development. The test 

section flow velocity is variable from 0 up to 0.3 m/s. 

In the test section, the turbulence intensity is less 

than 0.1%, and the velocity non-uniformity is less than 

2%, and the mean flow angularity is less than 1% in both 

the pitch and yaw angles. 



A plastic NACA0012 airfoil section model that was 

built by a rapid prototype machine was tested. The chord 

and span of the model were 10 in and 12 in, respectively. 

A clear Mylar (PET-polyester) film was used as a flexible 

fin. The Young's modulus and Poisson ratio for Mylar were 

2.8 GPa and 0.37, respectively. The Mylar film was 

attached to the upper surface of the airfoil by Scotch 

tape. Figure 8.1 shows a flexible Mylar fin attached on 

the NACA0012 model in a typical PIV image. 

Figure 8.1: Experimental setup of the fin attached to a 
NACA0012 airfoil (Courtesy of Dr. Liu and Dr. 
Montefort) 

8.2 Computational set-up 

The flow over a passively flapping flat plate 

attached to the upper surface of a NACA0012 airfoil, 

which is hinged at leading edge and free to move in span 



wise direction at the trailing edge is as shown in figure 

8.2. This flow is computed on a C-Grid fitted on top of a 

NACA0012 airfoil is generated using Meshpilot [39] . The 

Reynolds number based on the chord length of the airfoil 

is fixed as 63,000 with a 18° angle of attack. The plate 

is considered infinitesimally thin. The leading edge of 

flexible plate as described earlier is fixed at 0.1 chord 

length to the upper surface of the airfoil. 

Figure 8.2: Schematic representation of the Mylar 
flapping flat plate attached to the upper 
surface of NACA0012 airfoil 

8.3 Domain and grid details 

The c-type computational grid used in the CFD solver 



for turbulent flow over a NACA0012 is generated using 

Meshpilot [39] software is shown in the figure 8.3. The 

computational domain is x/c=3 0 in length, the airfoil 

located in the x-axis between 0 and 1, z/c=3 0 in height, 

and y/c=0.2 in width. 

Typical C-grid 

Figure 8.3: Body fitted C-Grid generated using Meshpiolt 

This means the computational domain extends from 15 

chord lengths upstream of the airfoil to 15 chord lengths 

downstream of the airfoil in the stream wise direction 

and 15 chord lengths in either direction normal to the 

airfoil in cross stream direction and 0.2 chord lengths 



in the span wise direction. The zoomed up plot of the 

grid with the fin attached before the start of the 

simulation is shown in figure 8.4. It is evident that the 

grids are clustered near the NACA0012 airfoil and along 

the centerline of the wake. 

Figure 8.4: Zoomed up body-fitted grid showing the 
flexible fin orientation before the start of 

simulation 

The computational structural dynamic grid used to 

input the pressures on to the surface of the plate is as 

shown in figure 8.5. The computational domain is x/c=0.25 

in length, y/c=0.2 in horizontal cross stream or span 



wise direction. 

Figure 8.5: Unstructured triangular mesh for the flexible 
flapping plate hinged at x=0 at the start of the 

simulation 

An unstructured triangular grid of equal size is 

generated and used in the computations. The pressure 

loading is applied on the center line at y=0 and mirror 

image reflections for loading are used at the other lines 

in the span wise direction. 

The boundary conditions used on the CFD solver are 

the same ones used in the chapter IV when simulating when 

flow over a NACA0012 airfoil using a C-type grid. The 

conditions on the plate are same as suggested in the 



chapter VII. The coupling between the CFD and CSD solvers 

is same as the one used in chapter VII. 

8.4 Results and discussion 

In order to understand the underlying mechanism 

behind the flexible fin effect on the NACA0012 airfoil 

the development streamlines is studied. In order to 

understand how the global aerodynamic properties vary 

firstly the lift histogram from the computations with the 

fin is compared to the baseline NACA0 012 airfoil case. 

Secondly running average pressure, viscous and the total 

drag are computed and compared with the average drag 

coefficient from the experiments. Then the time averaged 

drag coefficients of the baseline NACA0012 airfoil as 

well as one with the fin are computed at different angles 

of attack and compared with the experimental counter 

parts. Finally the drag computed with the fin is 

decomposed into pressure and viscous drag at various 

angels of attack and compared with the baseline cases. 

Figure 8.6 shows the time history variation of the fluid 

dynamic forcing in the stream wise (drag) direction. This 

is compared to the average drag obtained from the 

experiments. From the figure 8.6 one can see that the 

running average drag from the computations approaches the 

experiments. 
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Figure 8.6: Running Pressure, viscous and total drag 
coefficients compared with the experiments 

The time history of the lift co-efficient is also 

computed and plotted in figure 8.7. The average lift 

coefficient with fin from computation is 1.3123 compared 

to 1.178 from the baseline NACA0012 airfoil case. This 

means that there is a lift enhancement of 11.4% when a 

fin is attached to a NACA0012 airfoil compared to the 

baseline airfoil case at angle of attack of 18. The fin 

kinematics at the trailing edge are computed and plotted 

in figure 8.8. 
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Lift 

Figure 8.7: Lift coefficient history with the fin 

,x 10 

Figure 8.8: Tail end displacements with respect to time 



Next the time varying U-velocity contours and stream 

lines are plotted to give more insight into the 

computations. In each plot the flow is from left to right 

side of the page. We can see from the following figures, 

the region behind the plate the flow separates and a low 

velocity zone is created. The size of the zone increases 

as the flow evolves. The streamlines behind the plate 

show a creation of small separation bubble. The plots are 

taken when the physical time step of the flow is 1.8, 

1.87, 1.96, 2.06 and 2.14 seconds respectively. 
z 
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Figure 8.9 a-1) Pressure forces on the fin after 1.8 sec 
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Figure 8.9 a-2) Stream lines with U-velocity contours 

after 1.8 sec 

Pressure 
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Figure 8.9 b-1) Pressure forces on the fin after 1.87 sec 
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Figure 8.9 b-2) Stream lines and U-velocity contours 

after 1.87 sec 

Pressure 

^ 
^ V 
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Figure 8.9 c-1) Pressure force on the fin after 1.96 sec 
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Figure 8.9 c-2) Stream lines and U-velocity contour after 
1.96 sec 

0.2^ 

Figure 8.9 d-1) pressure force on the fin after 2.06 sec 
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Figure 8.9 d-2) Stream lines and U-velocity contours 
a f t e r 2.06 sec 
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Figure 8.9 e-1) pressure forces on the fin after 2.14 sec 



Figure 8.9 e-2) Stream lines and U-velocity contours 
after 2.14 sec 

Finally the time averaged drag coefficient obtained 

from the experimental baseline and the fin cases at 

various angles of attack are compared with the 

computations. From figure 8.10 one can see that the 

numerical computations follow the trend similar to 

experiments, drag reduction at higher angles of attack 

and drag increment at lower angles of attack when a fin 

is attached to a NACA0 012 airfoil compared to the 

baseline NACA0012 airfoil case. Further this effect was 

studied by decomposing the overall drag coefficient into 
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viscous drag and pressure drag as plotted in figures 8.11 

and 8.12. 
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Figure 8.10: Drag coefficient as a function of angle of 
attack for baseline and fin 

From the viscous drag plots at various angles of 

attack one can see at lower angles of attack the viscous 

drag with the fin is very high compared to the baseline 

case. At lower angles of attack the fin motion or flutter 

is very small and it quickly settles to a steady state, 

hence becoming an intrusive object to the attached 

boundary layer, there by increasing the skin friction 

drag coefficient. This means that at higher angles of 

i i r 

-©-Exp Baseline 
-B-Exp Fin 
• Present Baseline 
• Present Fin 



attack the fin passively alters the flow structures to 

suppress separation and reduce the overall pressure drag. 

There is a significant viscous drag reduction at higher 

angles of attack with presence of the fin compared to the 

baseline airfoil. Hence we can conclude that the overall 

drag reduction at higher angles of attack with the fin is 

due to combined reduction of viscous and pressure drags 

compared to the baseline NACA0012 airfoil. 

10 12 14 
AOA (DEG) 

16 18 20 

Figure 8.11: Pressure drag as a function of angle of 
attack for baseline and fin (computations) 
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Figure 8.12: Viscous drag as a function of angle of 
attack for baseline and fin (computations) 
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CHAPTER IX 

CONCLUSIONS AND FUTURE DIRECTIONS 

In this thesis we developed a new fluid structure 

interaction (FSI) solver where the fluids code and the 

structural code are solved separately in a segregated 

manner and the information at the boundary is passed at 

the end of each time step. The motion of the boundary is 

modeled using a new novel procedure called immersed 

boundary method. The distant advantage of this method is 

the inherent capacity to solve transient moving boundary 

problems on fixed Cartesian grids, which eliminates the 

need for complex mesh regenerations schemes. This not 

only helps in cutting the computational time but is much 

easier to numerically add them to any developed in-house 

CFD code. The direct forcing method of Mohd-yusof [21] 

used for computing the force that is used to enforce the 

no-slip condition along the immersed boundary is 

determined implicitly , which facilitates the use of 

larger CFL numbers as compared to feed back forcing 

methods. The individual solvers used in the coupled fluid 

structure interaction solver are the Navier-Stokes 

Reynolds averaged solver which is discretized using the 

finite difference method and the structural solver 

discretized using finite element method. The CFD solver 



is verified and validated for turbulent flows by-

performing numerical simulations around a NACA0 012 

airfoil. The CSD solver is also validated against 

analytical results. Then a number of simulations were 

modeled starting from thick surfaces to infinitesimally 

thin surfaces, involving both stationary and moving 

boundary, with the Navier-stokes solver combined with the 

immersed boundary method for forcing the no-slip along 

the boundary. The spatial and temporal order of 

convergence studies showed that the immersed boundary 

solver almost approaches second order. 

This above discussed immersed boundary technique was 

used in combination with the Navier-Stokes method and 

coupled with the subdivision finite element solver for 

modeling a flow induced passively flexible plate as well 

as a passive flexible plate attached to the upper surface 

of the NACA0012 airfoil. The results from the flow 

induced flapping plate show three states, first a non­

linear flapping state, then a periodic flapping stare 

followed by a near steady state. 

The results from the fluid structure interaction 

study around a NACA0012 airfoil with a flexible fin show 

that there is an over all drag reduction with fin 

attached compared to the baseline case in both the 

experiments formed by Dr. Liu & Dr. Montefort [52] at the 



fluids lab at western Michigan University as well as the 

computations. The tail end frequency of the plate was 

plotted and compared with the experiments show that the 

computations were not able to match the experiments in 

terms of the frequency of the plate motion. The computed 

time averaged drag coefficients at different angles of 

attack showed a drag reduction at higher angles of attack 

with the fin compared to the baseline airfoil. 

The fin attached to the upper surface of the 

NACA0012 airfoil at post-stall angles of attack alters 

the flow structures to suppress separation, enhance lift 

and reduces the drag. The implementation of this study 

has many practical advantages. The present work of 

applying the flexible passive and active elements on 

airfoils and wings would be beneficial to a number of 

problems like gust alleviation for MAV, separation 

control on LPT blades impinged by unsteady wake, drag 

reduction of bluff bodies. 

Future directions 

The level of accuracy of 2D numerical solutions is 

not possible compared to the experimental values for 

large separation high angle of attacks flows. The 

accuracy of grid resolution, accuracy of numerical 

coupling, accuracy of the immersed boundary methods as 
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well turbulence modeling are some of the factors that may 

cause inconsistency. 

There are three major studies that need to done in 

the future as an extension of our research 

1. The present immersed boundary scheme devised 

and applied for various flows is a combination 

of ID and 2D linear interpolation schemes. In 

order for these schemes to be applicable to 

high Reynolds number flows the grid needs to 

refined in two or three directions, which might 

increase the computational cost. Hence higher 

order interpolation techniques need to be 

explored and tested. 

2. Different grid independent studies need to done 

to accurately access the discrepancy between 

the computations and the experiments for the 

flow control using a flexible fin attached to 

the NACA0012 airfoil case. Increasing the 

structural as well as the fluid mesh densities, 

changing the time step size by increasing the 

number of time steps in a period of flapping 

are a couple of strategies that need to be 

worked out to get a better understanding on the 



accuracy of the present FSI solver. 

3. The present FSI solver uses unsteady RANS 

modeling for predicting the turbulent scales in 

the flow. An extension of our present research 

would be to employ the same modeling approach 

for structure, but to combine the immersed 

boundary approach with a LES model. 
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