
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Master's Theses Graduate College

12-1992

An Integrated Simulation Model Development Environment for An Integrated Simulation Model Development Environment for

Slam II Using Object-Oriented Paradigm Slam II Using Object-Oriented Paradigm

Rizvan Erol

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons, Industrial Engineering Commons, and the Statistics and

Probability Commons

Recommended Citation Recommended Citation
Erol, Rizvan, "An Integrated Simulation Model Development Environment for Slam II Using Object-Oriented
Paradigm" (1992). Master's Theses. 883.
https://scholarworks.wmich.edu/masters_theses/883

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Master's Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/883?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

AN INTEGRATED SIMULATION MODEL DEVELOPM ENT
ENVIRONM ENT FOR SLAM II USING

OBJECT-ORIENTED PARADIGM

by

Rizvan Erol

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Science

Department of Industrial Engineering

Western Michigan University
Kalamazoo, Michigan

December 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AN INTEGRATED SIM ULATION MODEL DEVELOPM ENT
ENVIRONM ENT FOR SLAM II USING

OBJECT-ORIENTED PARADIGM

Rizvan Eroi, M.S.

Western Michigan University, 1992

An integrated simulation model development environment was implemented to

assist the modeler by automating certain activities of simulation modeling. The system

included interactive model definition, experimental design, automatic simulation pro­

gram generation in SLAM II. Object-oriented paradigm at software development stage

was extensively used to conceptualize the structure, and rules of the SLAM II

language in order to generate efficient, and modular program code. The present sys­

tem targeted modeling of various probabilistic inventory control system problems. The

remarkable advantages of the system were rapid model development time, and

achieving reliable program code without requiring any knowledge in SLAM II. Ob­

ject-oriented programming was very promising, and effective programming paradigm

in system development cycle.

At the final stage, Response Surface Methodology (RSM) in conjunction with

the steepest-ascent method was used to find the optimum inventory policy minimizing

the average cost per unit of time based on the simulation output. Comparing the RSM

results to those of the deterministic relaxation of the probabilistic inventory model

demonstrated that RSM is an efficient tool for optimization in simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I should admit that I received significant contribution in the completion of this

study from my professors. First, to my advisor, Dr. Tarun Gupta, I appreciate his

guidance and support throughout the study. Without spending almost every weekend

in his office, it would have not been possible to achieve the goals of this study. Also, I

would like to thank my committee members Dr. Kailash Bafna, and Dr. Richard

Munsterman for their review, and suggestions in preparing the final report. I thank

Dr. Franklin W olf for his constructive suggestions in this study.

Finally, I would thank the Turkish Government for supporting my graduate

study at Western Michigan University. To all my family who continuously provided

support and encouragement, I owe a debt of gratitude.

Rizvan Erol

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Order Num ber 1351252

An integrated simulation model development environment for
SLAM II using object-oriented paradigm

E rol, R izvan, M.S.

Western Michigan University, 1992

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ACKNOW LEDGM ENTS... ii

LIST OF TABLES... vi

LIST OF FIGURES... vii

NOM ENCLATURE.. x

CHAPTER

I. INTRODUCTION.. 1

Statement of the Problem... I

Objectives... 7

Organization o f the Study... 7

II. REVIEW OF THE RELATED LITERATURE...................................... 9

Simulation Support Systems.. 9

Related Inventory M odels... 13

Optimization in Simulation... 14

Response Surface Methodology (RSM)............................... 15

Other Optimization Methods in Simulation............................. 21

Comparison of the M ethods... 23

III. PROBLEM DOMAIN: INVENTORY CONTROL SYSTEM S 25

Characteristics of the Investigated Inventory Problems................ 25

Inventory Control Mechanisms.. 25

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents-Continued

CHAPTER

Cost Elem ents.. 28

Customer Arrivals, Demand Pattern, and Lead Time 28

Price Breaks... 30

Backlog Policy.. 30

Substitution Mechanism.. 33

Performance M easures... 35

IV. ARCHITECTURE OF THE INTEGRATED SIMULATION
MODEL DEVELOPM ENT ENVIRONM ENT.. 37

Computer System Specifications... 37

Operating System .. 37

Programming Paradigm, and Language.................................. 38

System Architecture... 39

System Com ponents.. 39

Class Hierarchy.. 44

File Organization... 53

Code Generation Process... 57

V. AN IMPLEMENTATION - CASE STUDY... 63

Definition of the Example Inventory Problem................................... 63

Code Generation in SLAM II and Execution of the Model............ 66

Discussion of the Simulation Results... 66

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents-Continued

CHAPTER

VI. APPLICATION OF RESPONSE SURFACE METHODOLOGY
AT OPTIM IZATION STAGE.. 73

Description of the Problem .. 73

Optimization Using RSM .. 74

Deterministic Model Approximation...83

Validation of the Results Using the Deterministic Model................87

VII. FUTURE RESEARCH SUGGESTIONS... 91

VIII. CONCLUSIONS... 93

APPENDICES... 95

A. Model Description File of the Example..95

B. Description of the Variables Used in Model Description File................ 100

C. SLAM II Code of the Example Generated by the Program
G enerator.. 105

D. User's Guide for the Integrated Simulation Environment........................ 114

E. Terminology of the Object-Oriented Programming................................. 120

F. Program Screens... 126

BIBLIOGRAPHY... 139

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

1. Inventory Policy Parameters for the Example Problem... 64

2. Parameters of Statistical Distributions Used in the Example M odel..................... 65

3. Results of Simulation Runs for First-Order Regression Model in Iteration.1.......76

4. Coordinates Along Path of Steepest Ascent (Uncoded Variables) and the
Response Variable (Average Profit Per Day), for Iteration 1................................ 78

5. Results of Simulation Runs for First-Order Regression Model in Iteration II...... 79

6. Coordinates Along Path of Steepest Ascent (Uncoded Variables) and the
Response Variable (Average Profit Per Day), for Iteration II............................... 80

7. Second-Order Regression Model Parameter Estimates and t - Test Results 82

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1. Diagram of the Continuous Review Model With Backlog Permitted....................26

2. Diagram of the Production Inventory M odel..27

3. User-Defined Empirical Distribution Function.. 29

4. Diagram of Continuous Review Model With No Backlog (/> = 1)........................31

5. Conditional Probability Function of Customer Reneging for a Given
Expected Waiting Time (f»).. 32

6. Flow Chart of the Substitution Decision Mechanism... 34

7. Organization of the Integrated Model Development Environment......................41

8. Organization of the FORTRAN Subroutines.. 43

9. Hierarchy of the SLAM II C lasses.. 46

10. Hierarchy of the Classes for Code Generation... 48

11. Hierarchy of the Model Definition Classes.. 50

12. Hierarchy of the User-Interface Classes... 52

13. A Project File Example.. 54

14. An Overview of the Model Description File..56

15. Generic SLAM II Network Diagram of Customer Arrivals and Resource
Blocks... 60

16. Flow Chart of the Code Generation Process... 67

17. Simulation Report for Individual Products (Example Given for Product 1)......69

18. Simulation Report for Aggregated Product M easures... 70

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures-Continued

19. Simulation Report for Substitution Statistics..70

20. SLAM II Output for Safety Stock, Customer Renege, and Cycle Length...........71

21. SLAM II Output for Time-W eighted Average of Backlog Level........................72

22. SLAM II Output for Queue, and Resource Statistics.. 72

23. Flow Diagram of Response Surface Methodology Along With
Steepest-Ascent Method for Optimization of the Inventory Model..................... 75

24. Central Composites Design for Two-factor Experiment With Distance
From the Center a = 1.414... 81

25. Diagram of the Submodel 1.. 85

26. Diagram of the Submodel II... 86

27. Diagram of the Submodel III.. 87

28. Response Surface of the Average Profit as a Function of Reorder Level, and
Reorder Point of the Deterministic Model...89

29. Contour Plot of Average Profit as a Function of Reorder Level, and
Reorder Point of the Deterministic Model...90

30. Prototype of a Class.. 121

31. Class Hierarchy and Inheritance... 122

32. Describing the take r;//M ethod as a Virtual Function in the FlyingObjects
Class...123

33. Dialog Box for Defining Control Mechanisms for Products............................... 126

34. Dialog Box for Selecting Experimental Design Type...127

35. Dialog Box for Defining Parameters of Orthogonal Experimental Design.........128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures-Continued

36. Dialog Box for Defining Increments for Inventory Policy Parameters......... 129

37. Dialog Box for Selecting System Variables for Regression Analysis........... 130

38. Dialog Box for Substitution M atrix... 131

39. Main Dialog Box for Product Information Entry... 132

40. Dialog Box for Distribution Parameters... 133

41. Dialog Box for User-Defined Empirical Distribution.. 134

42. Dialog Box for Price Breaks... 135

43. Dialog Box for Backlog Policy.. 136

44. Dialog Box for Project File Names.. 137

45. Program Editor.. 138

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOMENCLATURE

h = Holding Cost ($ per unit per unit of time)

p = Backlog Cost ($ per unit per unit of time)

K = Setup Cost ($ per setup)

Q = Order Quantity (unit)

S = Reorder Level (unit)

s = Reorder Point (unit)

t = Review Period (unit of time)

/• = Production, or Supply Rate (unit per unit of time)

tw = Expected Waiting Time for Customer (unit of time)

tr = Cycle length (unit of time)

L = Lead time (unit of time)

a = demand (depletion) rate (units per unit of time)

p r = customer renege probability

/;.> = Probability of Substituting zth product by y'th product

q<j = Multiplication Factor between zth product and /th product

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

Statement of the Problem

Simulation modeling has become the most powerful modeling tool in manufac­

turing systems area after the recent dramatic advancements in computer hardware, and

software technology. A survey conducted by the Bell Labs showed that H()% of exist­

ing visual interactive modeling environments were dedicated to manufacturing prob­

lems, and among them simulation was the most preferred modeling tool (Haddock &

O'Keefe, 1990). Paul (1991) sees the growing number of existing simulation software

avalaible to the modelers as an indication of greater demand, and interest toward

simulation.

Growing popularity of simulation can be attributed to the following factors: (a)

introduction of computer assisted simulation environments with faster model execution

speed and graphics facilities; (b) greater responsiveness required from current manu­

facturing systems due to the dynamics of business environment; (c) increasing need

for modeling tools for systems with stochastic behavior and state-dependent decision

mechanisms; (d) fewer rules to follow in simulation, and greater flexibility given to the

modeler by simulation, and (e) the ease of interpretation of simulation results by

decision-makers.

Today's manufacturing systems have more sophisticated and dynamic nature

than the ones in the past. In some cases where analytical models happen to be

inadequate or oversimplified, simulation may become the only tool to represent these

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems in greater detail with as few assumptions as possible (Chaharbaghi, 1990).

Applications of simulation in manufacturing are broader due to its global and less re­

stricted approach to systems modeling.

Recent dramatic improvements in both number and quality of simulation

model development environments have played the major role in boosting the

popularity and applicability of simulation to broader range of application fields.

However, simulation studies still take considerable amount of time, and require a team

of experts from various fields (e.g., application domain knowledge, computer

programming, statistical analysis) (Balci & Nance, 1987). It is obvious that the ease

with which complex systems can be modeled depends on the capabilities and features

of the simulation software employed by the modeler. Many researchers have been

trying to shorten the elapsed time during a simulation modeling study through artificial

intelligence and expert systems methodologies.

Program coding holds the largest portion of the total elapsed time to finish a

simulation study with its every aspect. Law and Haider (1989) estimated that program

coding takes about 30-40% of the total simulation project time. This is why, program

generators were the first examples of expert simulation systems introduced in the

literature due to the significance of coding within problem solution time.

Although high-level programming languages such as FORTRAN, C and Pascal

have the greatest flexibility in writing program code, a large amount of time in coding,

debugging, and verifying the code has to be allocated. The lack of extensibility of the

code written in these languages limits possible future modifications. The major

motivation for the introduction of the first general-purpose simulation languages such

as SLAM II and SIMAN was to overcome these difficulties in using high-level pro­

gramming languages. These languages have built-in functions, nodes, and control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statements to perform frequently used operations for simulation entities, data

collection, and reporting results. Unfortunately, computer programming and model

development expertise are still required to employ any of the simulation languages,

may be to a lesser degree (Law & Haider, 1989; Shannon, Mayer, & Adelsberger,

1985).

Crookes (1987) estimated that 70% of a simulation code could be generated

with the use of generic models, and program generators. A generic family of model

development classes based on a simulation language, for example SLAM II, can be

used to generate simulation program code for various set of application domains

(Ulgen, Thomasma, & Mao, 1989). Program generators can increase the efficiency of

the modeler allowing him, or her to put more attention on the intellectual activities of

simulation modeling. O'Keefe (1986) described program generators as Intelligent

Front Ends (IFE) to existing simulation languages. Going one step further, modeler

might need more diversified support from an assisting simulation system beyond pro­

gram generation to automate the other tasks of simulation modeling (i.e., experimental

design, statistical analysis, intelligent reasoning on the results, optimization). A trend

that current simulation software systems have been mainly designed to automate simu­

lation modeling activities was indicated by Paul (1991) in his extensive review of exist­

ing simulation software in the market.

In this study an integrated simulation model development environment based

on the SLAM II simulation language using the object-oriented paradigm of the C++

language was implemented. Inventory control systems was the application domain of

the proposed system. The system is basically a modular integration of some of simula­

tion modeling tasks within a single computer system. These are: (a) experimental de­

sign, (b) program generator, (c) model execution, and (d) optimization of simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output. The system was developed in such a way that additional application domains

could be added with little additional effort in the future.

Inventory control systems hold a major research interest in manufacturing sys­

tems area. An efficient inventory control system requires that its optimal control strat­

egy and performance measures be established so that the total inventory cost can be

minimized. Many analytical models subject to some pre-defined assumptions have

been introduced in the literature to find the optimal inventory policy for a given inven­

tory problem type (Koulamas, 1990; Park, 1989). Most mathematical models appeal

to only a particular inventory problem type. The economic order quantity (EOQ)

model is the simplest inventory model to find the optimum policy. However, as

inventory problems become more and more complex with the inclusion of random

customer arrivals, demand size, multiple items, and complex decision mechanisms,

assumptions made by the analytical inventory models become unrealistic, for instance

very small constant depletion rate, deterministic demand pattern. Moreover,

establishing the mathematical relationships between system parameters may become an

impossible task. At this point, the developed simulation modeling system became a

powerful tool to analyze the effectiveness of complex inventory control mechanisms,

and policies.

In general three types of inventory control mechanisms were considered in this

study. These are as follows:

1. Continuous review (S , s) model: where S , and .vare reorder level and

reorder point in units respectively. Inventory level is reviewed after each inventory

transaction (i.e., customer arrivals). When the inventory level is less than or equal to

the reorder point, a new order is placed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Periodic review model (S ,s , t): t is time period to review inventory level.

It has a similar decision-mechanism to the one in case 1 with one exception that review

of inventory is performed after each t time units.

3. Production model with continuous review: In this case when the inventory

level is less than or equal to s (reorder point), manufacturer starts production at a pre­

defined production rate until the inventory level is equal to the S level.

Inventory systems having multiple items subject to the same, or different con­

trol mechanisms can be analyzed within a single simulation model using the modeling

framework. Substitution of an inventory item by another can be modeled for cases

that customer order may be met from other products in the system when there is a

shortage in inventory on hand. Substitution mechanism causes an interaction between

individual inventory levels of products in the system.

User-selected random distributions can be assigned to customer arrivals, de­

mand size, lead time, and order processing time. The system also allows the user to

define price breaks, and various backlog policies. The user can create various types of

inventory models ranging from single-item inventory model to multi-item inventory

model with complex decision mechanisms by simply changing appropriate values, and

options enabled by the system.

As emphasized, automatic program generation alone cannot cover all aspects

of a simulation study. The same emphasis should be also given to post-simulation

analysis after the execution of simulation model to compare a set of alternatives. At

this stage appropriate use of statistical tools becomes crucial due to existence of

variations in system performance variables. Since simulation modeling, in some way,

is to perform experiments on a given system by changing the levels of controllable

factors, experimental design stage prior to model execution affects the statistical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

evaluation of post-simulation analysis results. To address this issue the developed

modeling system provided also a user-interactive computer program for experimental

design. Experimental design were required in two-aspects of post-simulation analysis.

These are:

1. Establishing regression meta-model to explore the relationship between con­

trollable (independent) factors (i.e., reorder point (,v), reorder level (5) , time period

(t), and production rate), and system performance variables(e.g., total inventory cost,

average holding level, average profit, and etc.). Sensitivity analysis can also be per­

formed using a regression model within a pre-defined solution region.

2. Finding the optimum inventory policy (i.e., the best levels of controllable

factors). First-order model design (full or fractional orthogonal design) and second-

order model (central composite design) designs were required in using Response Sur­

face Methodology (RSM) to search for optimum policy. It should be noted that since

the true total inventory cost function is unknown, existing analytical algorithms such as

non-linear programming could not be employed here directly. However, certain ana­

lytical inventory models were used to narrow down the potential search region in opti­

mization by simplifying stochastic simulation model into its deterministic equivalent.

The accuracy of this estimation depends on both the complexity of the simulation

model and the analytical model selected. Nanowing down the search region resulted

in fewer simulation runs, and less computer CPU time. RSM was used in conjunction

with steepest-ascent search method in optimization stage to perform additional simula­

tion runs along the steepest path to improve the response variable (i.e., total cost). A

detailed discussion of RSM and other optimization methods in simulation is provided

in Chapter II.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Objectives

7

The increasing need for expert simulation systems is well emphasized by many

authors (O'Keefe, 1986; Paul, 1991). The main objective in this study was to design

an integrated simulation model development environment in which the user could

develop and run simulation model within a short time. Other supportive objectives

were as follows:

1. Design of user-friendly interactive model input system.

2. Design of efficient model retrieval, storage, updating mechanism for models.

3. Design of a reliable simulation program generator.

4. Design of experimental design module to create efficient, and correct

design matrix for a given problem.

5. Application of RSM at optimization stage, and evaluation of its efficiency.

6. Comparison of the results calculated using appropriate analytical model with

the ones using RSM.

7. Assessment of advantages of using object-oriented paradigm in the

computer system development, and its potential contribution in further esearch.

8. Assessment and discussion of advantages of using the proposed model

development system.

Organization of the Study

Basically in this study, major steps to achieve the proposed objectives were ex­

perimental design, model building, program generation, and execution, and finally op­

timization of the simulation output using RSM. A brief description of each remaining

chapters in this report is as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Chapter II, a review of the literature on simulation support systems, related

analytical, and stochastic inventory models, and optimization methods in simulation is

introduced. Main issues in this chapter are: (a) current trend and examples in

computer-aided simulation modeling systems; (b) object-oriented programming as a

new approach to software development; (c) shortcomings of analytical models for

inventory theory, and the need for simulation as alternative tool; and (d) important

optimization methods in simulation, comparison of RSM with other methods, and

future directions in RSM.

In Chapter III, detailed outline of the inventory systems that can be modeled

using the proposed system is made regarding modeling flexibility, modeling options,

and problem parameters.

In Chapter IV, the integrated model development environment is fully

explained. The details of the implemented class hierarchies, the file organization, and

the code generation process in the computer program are discussed.

In Chapter V, a modeling session example demonstrating most of the features

of the developed system is introduced. A brief discussion of the example model results

is also provided.

In Chapter VI, first, the guidelines on how to use RSM in optimization of

inventory simulation models are presented. Then, an optimization example for a

continuous review inventory model is introduced. At the end of this chapter,

performance assessment of RSM is provided.

In Chapter VII, further research suggestions in the subject are made,

specifically integrating the system with a statistical package, and addition of more

application domains.

Finally, Chapter VIII introduces the conclusions and the findings of this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

REVIEW OF THE RELATED LITERATURE

Simulation Support Systems

Increasing demand to simulation as alternative decision-making tool has en­

couraged many researchers to improve simulation modeling methodology in its every

aspects. Simulation projects usually take lengthy time, and require the collaboration of

experts from various fields (Shannon et al., 1985). Model building and program

coding activities take the biggest share within total elapsed time during a simulation

project (Balci & Nance, 1987). As Law and Haider (1989) estimated, program coding

alone could be about 30-40% of the total time. General-purpose simulation languages

took the first steps toward making simulation affordable, and efficient tool to more

people. Fifth-generation simulation languages have taken the matter one step further

by adding design, and model building activities to the ongoing automation trend

(Shannon et al., 1985).

Besides the time factor in simulation, another prominent reality is that coming

up with the right model, and code, and the correct interpretation of the simulation out­

put could be at risk even after days of work, if there are any misuse of concepts, and

logical errors in the program code. Flitman and Hurrion (1987) suggested combining

the knowledge and expertise of people from various backgrounds within an expert

simulation system framework to ease the problem. In this regard, intelligently de­

signed program generators can shorten the coding time drastically to minimum levels

(Crookes, 1987; Paul, 1991).

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Due to the dynamic nature of the current manufacturing systems (e.g., FMS),

the modeler is subject to revise the model occasionally. Rapid retrieval, changing, and

reusing of previously developed models are essential to increase the responsiveness

of simulation models in this sense (O'Keefe, 1986). A rapid model prototyping

environment called (SDME) by Balci and Nance (1987) was introduced for UNIX-

based Sun workstations. Multitasking and powerful window management of the Sun

workstations improved the efficiency of the modeler in terms of modeling time. This

system used both the top-down model definition and bottom-up model specification

approaches simultaneously in order to get as much as information from the user during

data collection. The user was directed to break down his model into logical and hier­

archical objects, and attach some attributes to them at model building stage. This ap­

proach is an efficient way of constructing rapid prototypes when there is no exact

specification about the problem in the beginning. Later, as more data is collected, the

user could build more complex and specific models on the prototypes.

As far as domain-dependency is concerned, program generators can be either

domain-dependent or domain-independent. Domain-independent generators use ac­

tivity cycles, casual diagrams, or intermediate model description languages as model

definition mechanism (Ulgen & Thomasma, 1989). In Activity Cycle Diagram (ACD)

approach the user is required to specify the life cycle of each entity in the system such

as customers, and parts starting from source to sink including decision points.

AUTOSIM used ACD to collect data, and generate code in Pascal using the library

containing Pascal routines for simulation (Paul & Chew, 1987). In ACD approach,

some logical errors may occur if there exists misidentifying or missing some simulation

entities which are not physical (e.g., control entities). On the other hand, it gives

more flexibility to the user as compared to domain-dependent program generators.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A domain-independent simulation framework called SPIF using a natural lan­

guage interface to interact with the user was introduced for discrete-event simulation

by Doukidis (1987). English-like model description languages are commonly designed

to create an intermediate file to be converted either to a high-level programming

language, or to a well-known simulation language subsequently. These languages can

ease writing code, but the user may be still required to learn some rules to build

models to a lesser degree. In this study, a model description language was also

utilized to store model-input data in such a form that can be interpretable to the

program generator.

Another model generator (PASSIM) using a description language accommo­

dated three different modeling frameworks in terms of the level of experience, and

knowledge of the user (Shearn, 1990). Advanced users were able to add their own

Pascal code to be linked with the main code. Pascal was also preferred language in

another program generator for queuing models due to its ability to allocate dynamic

memory to hold temporary entities during run time (Raczynski, 1990). The generator

facilitated a block-diagram editor for model entty, and translated the blocks into

corresponding PASSION code (Pascal-based simulation libraries).

Flexible manufacturing systems have been a commonplace problem domain to

some program generators reported in the literature due to its significance in

manufacturing area, and complex modeling nature. An intelligent program generator

for SIMAN was developed in PROLOG by Haddock and O'Keefe (1990). Arrival

patterns, description of machine centers, part types, batch size, and part sequences

were some of the system parameters introduced to the user. Statistical tests, and

confidence intervals could be done automatically by this system in post-simulation

analysis. Another generator for FMS generating code in SLAM II provided the similar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modeling parameters along with a menu-driven data collection facility (Co & Chen,

19X8). Both generators are data-driven which is commonly used approach in domain-

dependent program generators.

The profound effect of object-oriented paradigm (OOP) in software develop­

ment productivity has proved itself extensively in simulation support systems. Physical

objects (e.g. machines, resources, entities), and conceptual objects (e.g. control,

decision objects) can be modeled within hierarchy of classes in OOP languages.

Ability to reuse existing classes, and derive new classes from earlier ones can boost

modeling efficiency in great deal. Also, OOP concepts are quite helpful in simplifying

the complexity of systems in more natural way resulting in less confusion.

OOP has been replacing procedural programming as the dominant software

paradigm in designing simulation modeling systems today. Simulation languages

ModSim (Herring, 1990), SmarterSim (Ulgen et al., 1989), model development

environments DEVS-Scheme (Zeigler, 1987), SIMBIOS (Guasch & Luker, 1990)

were all object-oriented. A fundamental feature of these systems is to support

modular, and hierarchical modeling approach that is to build a complete simulation

model from earlier hierarchical submodels rather than starting from scratch. In this

study OOP was also the programming paradigm to design the integrated simulation

system.

It is obvious that more expert systems to enhance simulation will be available

to wider range of users in the future. Paul (1991) predicted three major trends in re­

search on simulation modeling environments: (1) ease of use and flexibility, (2) rapid

model formulation, and (3) inclusion of expert statistical systems. Significant im­

provements have been achieved in first two items so far. However, most of the

modeling environments fail to provide assistance for statistical design and validation of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulation models. Automation of optimization process in simulation has not taken

enough attention in existing systems. Integration of analytical tools with advanced

simulation systems can improve the optimization process in simulation by narrowing

down the search region, and validation of results (Sabuncuoglu & Hommertzheim,

1989).

Related Inventory Models

Problem of determining optimum policy for a given inventory problem type has

been investigated extensively in operations research literature. Classical inventory

models including the economic order quantity (EOQ) model make some assumptions

(e.g., constant demand, no lead time, and so on) that may not fit to real-life inventory

problems (Datta & Pal, 1990).

Park (1989) introduced a constant renege rate p , that a customer waiting in

the line do not wait longer than a duration which is also exponential distribution func­

tion with parameter p . He assumed that lead time was known, and constant, and

more importantly only one customer order can wait at the maximum. An iterative

process that converged with probability of one was performed after an initial estimate

for average demand per cycle to find an optimum solution. Probabilistic renege rate

p was appeared to be sensitive to the average inventory cost.

Analytical solution to single supplier, multiple-item inventory model with con­

stant demand rates was introduced by Kumar and Arora (1990). All items were sub­

ject to a common inter-order time, which was decision variable, constant demand rate,

and lead time. This model is applicable to small stores having single supplier for

certain items. They indicated that introducing probabilistic demand to the system

increased the complexity drastically. Their suggestion was to use mean demand rates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for the constant demand rate in the model, and keep higher safety-stock levels to

absorb the randomness in demand.

Datta and Pal (1990) used inventory-level-dependent demand rate for single­

item inventory model assuming that demand may increase or decrease depending upon

the inventory level on hand. Proposed demand rate R(i) as a function of inventory

level i was

/? (t)= a A i > S o

= D, 0 < /' < S' o,

where a > 0 a n d 0 < P < 1 are scale, and shape parameters, So is the inventory level

after which demand rate is assumed to be constant (i.e., D). Their two prominent

assumption were zero lead time, and no shortage.

Optimization in Simulation

Optimization of simulation output is much more complex, and time consuming

than using analytical models, and it can be regarded as ultimate goal for simulation

studies. Since there exists random error in response variables, the term optimization

should be referred as optimum-seeking procedure for simulation studies (Safizadeh,

1990). In general, k controllable factors X \ , a n d m response variables

y\ ,y 2 ,...,ym produced by the simulation model are considered, and objective is to find

combination of controllable factors such that it maximizes or minimizes the response

variables. In this study only single response variable optimization methods were

investigated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Major characteristic o f optimization in simulation is the lack of knowledge

about the true response function that could be investigated directly. Basically it is

assumed that the response function can be estimated within a region through re­

gression, or meta-models based on simulation output under different combinations of

controllable factors. Many techniques to search the optimum from the simple random

search to RSM have been introduced in the literature. However, there are some

trade-offs in selecting the appropriate method for a given problem type. When simu­

lation model execution time is very large, selection of optimization method becomes

more important due to the limited number of runs. As pointed out by Smith (1973a),

the performance of the selected method depends upon the following factors: (a)

number of controllable factors (i.e., independent variables), (b) number of available

computer runs, (c) existence of local optima, (d) size of random error (i.e., statistical

variation in response), (e) distance of starting point from the true optimum, and (f)

significance of interaction between controllable factors.

In the following sections, the most used optimization methods for simulation

are discussed. RSM was particularly investigated in more detail as it was employed in

this study.

Response Surface Methodology CRSM)

RSM was first developed to find optimum operating conditions in the chemical

industry in the 1950s (Myers, Khuri, & Carter, 1989). Box and Wilson (1951) first

developed the principles of RSM. RSM is based on an assumption that a response

variable y as a function of k controllable variables X\ can be approximated

within some pre-defined region by a polynomial function. As a matter of fact, this as­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sumption is based on the Taylor's series approximation of a function. The two promi­

nent polynomial models are the first-order model

y = Po + Pixi + P2.V2 +....+pt (1)

and the second-order model

y = Po + £ p * '- + i > * ' 2 + Z ^ i j X i X j (2)
i=l i=l i=l ;< j j=2

Generally the least-squares method is employed to estimate the true coefficients

pi,(32,...,|3/. in the model without bias, and with minimum variance in error.

Issues in Experimental Design

Selection of experimental design parameters (i.e., number of runs, number of

levels, number of replications) affects the quality of estimation of the response surface

ill terms of statistical significance, and reliability. Orthogonal designs can reduce the

number of runs needed. They also prevent confounding effects of individual factors

resulting in lesser error variance. This is because each column in an orthogonal design

matrix is independent from each other due to the fact that the summation of cross-

product of any two columns is always zero. When two levels exist for each controlla­

ble factor, the required number of runs for full factorial orthogonal design would be

2*. In some cases where k is very large, a 2kA fractional factorial experiment could be

satisfactory to make statistically significant estimates of regression coefficients

(Safizadeh, 1990).

In actual simulation studies number of conU'ollable factors could be very large

resulting in need for too many runs. However, in general only a small portion of con­

trollable factors have a significant effect on the response. Considering this fact, group

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

screening methods can be employed to detect the significant factors by putting factors

into groups, and treating these groups as single factor. Cochran and Chang (1990)

implemented a two-stage group screening method to find optimal settings for a flight

simulation. Only two of the six original factors in the beginning were selected to be

used in performing the steepest-ascent method as a result of the two-stage group

screening. As a potential drawback, in group screening some significant factors may

be excluded when factor effects within a group are neutralized by each other.

Therefore, forming groups requires some pre-knowledge about factors (Mauro &

Smith, 1982).

The success of RSM depends on the variance reduction method used, and the

quality of estimation of the gradient (i.e., P's). The presence o f error variance in re­

sponse makes optimization difficult for simulation (Safizadeh, 1990). Making longer

runs, using expected value of response, and steady state values free the optimization

process from variance and bias to a certain degree. Several methods, and guidelines

called variance reduction techniques have been introduced to address this problem.

Most widely used method is to have common pseudo-random numbers for each cell in

the design (Law & Kelton, 1991, p. 613). Other methods include antithetic variates,

control variates, indirect estimation, and so on. Use of common pseudo-random num­

bers is the easiest one as it does not require sophisticated statistical covariance calcu­

lations, and adjustments.

Second-order model design is constructed at the final stage of optimization in

simulation to find optimum settings. Rotatable designs for a second-order model can

keep the error variance of predicted value y at some point x that are equal distant

from the center of the design (Montgomery, 1984, p. 462). Furthermore, rotatability

of a design implies that the error variance is not a function of direction. Orthogonal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design for the first-order model, and central composite design (CCD) for the second-

order model satisfy this important property (Myers et al., 1989; Safizadeh, 1990).

However, the distance from center of the design to other points is an important

parameter to make CCD rotatable (Biles & Ozmen, 1987).

Steepest ascent method RSM is used in conjunction with the steepest-ascent

method to find the optimum settings of controllable factors. Procedure starts with

identifying the search region, in other words determining the upper, and lower limits

for each factor. At the outset fairly small region should be selected so that parameters

for gradient search can be estimated more accurately (Box & Draper, 1987). In

summary the following steps are carried out in the method of steepest ascent (Myers,

1976):

1. Fit a first-order regression model (see Equation 1) in some restricted region

of the controllable factors X i 2 , . . . *.

2. Locate a path of steepest ascent based on parameter estimates in Step 1.

3. Perform simulation runs along the path until no additional improvement (i.e.,

increase, or decrease) in response is evident.

4. Steps 1, 2, and 3 are repeated within new regions until first-order model is

inadequate (i.e., F-test fails). If model is inadequate, proceed Step 5.

5. If interaction and second-order terms in model become significant (i.e., a

curvature in response is evident), then use central composite design to build a second-

order model (see Equation 2).

6 . Perform canonical ridge analysis to find the optimum levels of factors, or use

partial derivations to find the optimum if the second-order model function is convex.

In Step 1 if there are k factors, a simple 2* factorial design can be used to

estimate the coefficients of the following (k + 1) dimensional hyperplane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

y> = bn + ^ bjX ij + a (3)
j=i

The experimenter wishes to advance from the center of the design r units such

that maximum increase in response is obtained. If factors are coded, with design cen­

ter being (0 , 0, . . . , 0), the experimenter wishes to find the values of (x\,xi, . . . ,Xk)

which maximize

k
ba + ^X i

i=l

with subject to the constraint

i= i

Using the Lagrange multipliers for the restricted maximization, we define the function

k k
Q (x \ j 2 ,...j:k)= bn + ^ boa - X(x f - r) (5)

;=1 X/=l

where X is the Langrange multiplier.

Equating the partial derivations of (5) to zero

3 e c y = 0 (j = l x „Jc)
a x>

and

dQ (x \ ,X 2 , . . . ,xk)
dX

we obtain the following

= 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rather than selecting the value of A, corresponding to a particular r , a reasonable

increment in one of the factors is selected by the experimenter based on his experience

to calculate increment values for other factors using Equation 6 . New experiments

are performed with these increments until no improvement in response is evident.

As mentioned, first-order models are likely to be inadequate when the interac­

tion, and higher polynomial degree terms (e.g., quadratic effects) become significant

eventually. Then, second-order model (see Equation 2) is built for the final step. The

following two methods can be followed to find the optimum settings based on the

second-order model function:

1. Partial Derivations: Equating the partial derivations of the response function,

we get the following equations to find stationary points.

dy _ _ _ dy =Q
dx'j dx2 dxk

At this point, a stationary point can represent (a) a point of maximum response, (b) a

point of minimum response, or (c) a saddle point (i.e., inflection point) (Montgomery,

1984, p. 453). A saddle point is a stationary point which does not respond to a local

optimum (minimum, or maximum).

2. Ridge Analysis: It is a canonical search method that is basically cutting the

response surface by equally distanced circles, and recording the change in response.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to decide whether a stationary point is a local optimum, or a saddle point, we

should transform the second-order model to the canonical form shown in Equation (8)

in the new coordinate system, with the origin at the stationary point, and the axes of

the new coordinate system being parallel to those of original fitted regression function.

i 5 = + M-i wi + ^2W2"* wl (8)

where the { w; } are the transformed independent variables and the {(i ,} are constants.

Based on the sign, and magnitude of the {p., }, the following conclusions are

made in terms of the nature of the response function (Montgomery, 1984, p. 455).

1. If all the {p .,} are positive, then the stationary point is a minimum.

2. If all the {p.,.} are negative, then the stationary point is a maximum.

3. If the {p ; } have different signs, the the stationary point is a saddle point.

Other Optimization Methods in Simulation

Random Search

In this method, values o f controllable factors are chosen randomly within a

search region, and then simulation is run at these points. The best value among them

is claimed to be optimum (Farrell, 1977; Smith, 1973b). There is no guarantee for

finding the optimum in this method. Some variations also exist such as intensifying the

search within a certain region after some pre-runs. It is not a structured method, but

easy to use. As number of runs increases better estimate for optimum can be made.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Coordinate Search

Only one variable at a time is changed starting with an initial point until no

more improvement in response is evident. The search is continued with another factor

until available number of runs are exhausted. If interactions between factors are

significant this methods may fail as the search path is always parallel to the axis

(Farrell, 1977; Smith, 1973b).

Pattern Search

The search starts with an initial point (bn), and another point (b \) to find a

pattern (b\ ~ bn) for the search. Simulation is run along the pattern as long as there is

improvement in response. Another pattern is determined for further runs.

Perturbation Analysis (PA)

Main idea in PA is to estimate derivatives of factors with respect to the

response in single run. Infinitesimal PA is used for continuous variables while finite

PA is for discrete variables such as buffer size (Suri & Leung, 1989). Infinitesimal PA

assumes that perturbations in the control variables do not change the order of events in

simulation. In most simulation models with state-dependent events, and multiple

types of customers, it is impossible to satisfy this condition (Meketon, 1987;

Safizadeh, 1990). Therefore, PA applications are limited to only queuing networks

based on up to date literature (Wilson, 1987), for example M/M/1 queue (Suri &

Leung, 1989), M /G/l queue (Suri & Zazanis, 1988), and tandem queue networks (Ho

& Cao, 1983).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Likelihood-Ratio Methods

They are limited to applications with Markov chains, and Poisson process.

Currently, they have been applied to regenerative simulation analysis (Wilson, 1987).

Frequency Domain Methods

These methods require careful indexing of simulation generated observations

together with sinusoidal variation of selected factors according to time index. Such

variation could be difficult to arrange especially for discrete input variables (Wilson,

1987).

Comparison of the Methods

Smith (1973a) compared random search, coordinate search, and response sur­

face methodology along with steepest ascent method based on some performance

measures for pre-known true response function. His findings were:

1. As the number of runs was increased, RSM was better than the others.

2. When the number of runs was small, the random search was the best.

3. The steepest ascent methods required fewer runs to estimate the search

direction.

4. Coordinate search performed poorly.

Mathematical and statistical foundations of RSM are more clear, and com­

pletely developed as compared to the other methods (Wilson, 1987). Safizadeh

(1990) concluded that RSM in conjunction with gradient search methods was the best

optimization method for simulation due to its practical dealings with statistical vari­

ance, and optimization. Although perturbation analysis gives estimates of derivatives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of response function in single run, and makes single-run optimization possible, its ap­

plication to complex simulation models is limited. PA is still in its fancy, more theo­

retical validity research is needed to strength its foundations of its applications in wider

range of problems (Safizadeh, 1990).

The success of random search, coordinate search methods depends upon char­

acteristics of the response surface. They cannot guarantee the optimum solution even

though there is a single optima.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER III

PROBLEM DOMAIN: INVENTORY
CONTROL SYSTEMS

Characteristics of the Investigated Inventory Problems

Inventory Control Mechanisms

As modeling flexibility, three types of control mechanisms can be attributed to

a particular product in the model. If inventory model is a multi-product model,

different types of control mechanisms can be assigned to products. The following is

the description of these three control mechanisms:

1. Continuous review (S ,.v): Inventory level is reviewed after each transaction

(i.e., change in the level) to place a new order when the inventory level is less than or

equal to the reorder point. Order quantity Q for a new order is calculated from

Q = S - I + Di. (8)

where I , D l are inventory level on hand, and expected demand during lead time

respectively. In general, D l

Dl =(/.L, a = — d , (9)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

where t<> is average time between customers arrivals in unit of time, cl is average

demand size for a customer, a average demand rate, and L average lead time. Inven­

tory level I may take negative values to represent the amount of backordered units.

The following assumptions are made regarding this control mechanism: (a) order

quantity arrives as whole at once after a certain deterministic, or probabilistic lead

time, and (b) another order cannot be placed before the earlier one arrives.

In Figure 1 the diagram of the inventory level as a function of time is depicted

for continuous review model with backlog permitted, where tc is cycle length.

S-at

S/a

tim e
m iixim um shortage

lead time

Figure 1. Diagram of the Continuous Review Model With Backlog Permitted.

2. Periodic review: It has a similar decision mechanism to the one in

continuous review with one exception that inventory level is reviewed after each t

time period. Equations 8 , and 9 are still valid for periodic review. This review system

can be applicable to products which are not very valuable, and not critical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

3. Production model with continuous review: When the inventory level is less

than or equal to reorder point, product is produced, or supplied by the vendor at a

constant rate r until inventory level reaches to the reorder level (S). A deterministic,

or probabilistic lead time may exist prior to the start of production.

As seen in Figure 2 inventory level increases steadily at a constant rate along

with a probabilistic demand. One should note that there is an obvious condition that

production rate r has to be greater than demand rate a , otherwise an infinite customer

queue occurs in the system.

/ [\

lead tim e

tim e

Figure 2. Diagram of the Production Inventory Model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cost Elements

Five types of inventory costs associated with each product can be defined in a

given inventory problem. All unit costs are assumed to be constant, and independent

from quantity. These cost elements are:

1. Holding cost (/?): The cost of maintaining inventory which covers the costs

of capital tied up, insurance, warehouse space, and so on. It is measured in $ per unit

per unit of time.

2. Backlog cost (/;): The cost of backordering customer due to not having

inventory on hand per unit per unit of time.

3. Setup (ordering) cost (K): the cost of placing an order, or starting new

production per setup.

4. Cancellation cost (Cc): This cost occurs when a customer cancels the order

based on the pre-defined backlog policy due to the shortage on hand. Profit losses

are covered in this cost element, and measured as $ per unit.

5. Review cost (G-): A unit cost per review may be included in the model to

consider costs that occur during review process of inventory level such as labor,

equipment cost to review, and so on.

Customer Arrivals. Demand Pattern, and Lead Time

Customer Arrivals

Time between customer arrivals can be either deterministic (i.e., constant), or

based on a user-selected random distribution function such as exponential, uniform,

and normal distribution. Furthermore, each product in the model can have its own

arrival pattern. Basic assumptions made for customer arrivals were: (a) it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

independent from inventory level, and (b) it is independent from the queue length of

backlogged customer orders.

Demand Size

Deterministic, or probabilistic demand size for a customer arriving to the

system exists for each product in the model. It is assumed that demand size is inde­

pendent from inventory level, and customer queue length. User-defined empirical dis­

tribution can be alternative choice when any known standard distribution does not fit

the past data for demand size.

Figure 3 shows the graph of a discrete-distribution having k possibilities.

Note that the sum of probabilities must be one (i.e., pi + p i + . . . + pt = 1)

Figure 3. User-Defined Empirical Distribution Function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Lead Time

Deterministic, or probabilistic lead times prior to order arrival, and the start of

production are enabled.

Price Breaks

Selling price p* to customer, and purchase price c (or, manufacturing cost) as­

sociated with a particular product can have price breaks, or single constant unit price.

Up to 20 price breaks can be specified for any of the products in the model. The price

breaks should be entered in the following format:

t) < Q < q \

q \ < Q < q i

q t - \ < Q

where <71 ,and q 2 are the lower, and the upper limits of the second price break, and k

is the number of price breaks.

Backlog Policy

What action should be taken when there is a shortage in inventory on hand is

outlined through a user-defined backlog policy. Three options are available to the

user in this respect:

1. Constant probability: Customer leaves the system without waiting at a

constant probability (/>) when backorder occurs. Two extreme cases can be modeled

using this option:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

(a) Customer leaves the system when backlogged (/?/■ = 1). This may be

applicable to products which are readily available from other sources. Figure 4 shows

that case when p r is 1, that is there is no backlog.

lead tim e

tim e(t)

Figure 4. Diagram of the Continuous Review Model With No Backlog (p r=1).

(b) Customer does not leave the system regardless of length of customer queue

(p r = 0). This may occur when there is only one producer, or retailer in the market

(i.e., monopoly), and substitution of the same product by another is not possible.

2. Number of units backordered: Customer leaves the system without waiting

if total number of units backordered at that moment exceeds the pre-defined limit.

The two extreme cases explained in 1 (a), and (b) occur if the limit is set to zero, and

infinity respectively.

3. Customer leaves the system at a conditional probability for a given expected

waiting in the system before his demand is satisfied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Let A be the event that customer leaves the system. W e define a conditional

probability function of A for a given expected waiting time tw, that is:

0

t - t i

0 < t < t \

P(A/tw = t) t \ < t < t i (10)
t i - t i

where 11 and t i are lower limit and upper limits for expected waiting time respectively.

It is assumed that probability of canceling order by the customer is a linear function of

expected waiting time between the lower, and upper limits. Figure 5 shows this

conditional probability function. As seen in the graph the custom er does not cancel

the order when U is up to t\ while the customer cancels his order when tw is greater

than upper limit t i with the probability of one.

P(A /t)

w ailin g time

t - t \
t i - t \

Figure 5. Conditional Probability Function of Customer Reneging
for a Given Expected Waiting Time (tw).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Substitution Mechanism

This mechanism enables unsatisfied demand to be substituted by other products

if possible. Two prominent data for substitution are probability matrix, and amount

multiplier matrix. Equations 9, and 10 are the general form of these two matrices for a

problem with / products respectively, po is the probability of substituting /th prod­

uct with yth product. qij represents the multiplication factor if ith product and y'th

product cannot be substituted one to one in terms of quantity. Value of one is used to

indicate one to one substitution.

' 0 [) 12 pn . . pu

[)2I 0 P ■ . P2I

in i p n 0 . . pv

_pn pn pn . . 0

' 0 qn qn . . qu

q2\ 0 qn . . q2i

q-i i q 32 0 . . qv

qt\ qi2 qn . . 0

The detailed flow chart of the decision mechanism is depicted in Figure 6 . It is

assumed that more than one item can be candidate for substitution for a particular

product. Therefore the sum of probabilities for a given product (i.e., the sum of

corresponding row in probability matrix) does not have to be one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start C hecking

D em and is satisfied.

D eterm ine Candidate for Substitution
Based on Substitution Matrix

\ /
Determ ine Expected Available Tim e

o f Each Candidate

\ /
Elim inate Candidates that have greater

expected available time than the original one

\ /
Choose one to substitute the original

inventory item based on the criterion
or none if backlog policy results in order cancel

Update Substitution Statistics J

Check custom er w hether w ants to
cancel the order based on backlog policy

YesNo
.Cancel (Irder U pdate Statistics

Put the dem and into queue

Figure 6 . Flow Chart of the Substitution Decision Mechanism.

Substitution
Accepted ?

.Inventory Level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Selection of the product to substitute is state-dependent meaning that it is

based on either on its expected available time at the current state of the simulation, or

total price. Any of these two selection criteria can be set by the user.

Performance Measures

The simulation programs generated for various types of inventory problems are

designed to provide some system performance measures at the end of each simulation

run using the data collection facilities of SLAM II. Along with mean value of each

performance measure, standard deviation, maximum, and minimum value, number of

observations are also supplied if appropriate. Multiple-product inventory models

provide both individual statistics for each product, and overall system performance

statistics. The following measures are calculated by the simulation: (a) number of

setups, i.e., total number of setups (or, orders) during simulation run length; (b)

average holding level per unit of time; (c) average backlog level as time weighted

average of number of units backlogged; (d) number of customer demands, and demand

rate per unit of time; (e) number of satisfied demands, total amount of satisfied within

a simulation run; (f) number of lost demands, and total amount of lost demand within

a simulation run; (g) average holding cost per unit of time; (h) average backlog cost

per unit o f time; (i) average setup cost per unit o f time; (j) average lost demand cost

per unit of time; (k) average purchase (or, production) cost per unit of time; (1)

average review cost per unit of time; (m) average sales revenue per unit of time; (n)

average inventory cost per unit of time which is the sum of holding, backlog, setup,

lost demand, and review costs; (o) average profit per unit of time; (p) average safety

stock level; (q) average cycle length, and (r) substitution statistics, i.e., total number of

demands, and amount of units that are used to substitute /th product for the place of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j th product. These statistics show the significance of the interaction between different

product inventory levels caused by the substitution mechanism used in this study.

Some of the performance measures cited here such as average inventory cost,

and average profit can be considered as an overall system response variable, and can

be optimized to find the optimum inventory policy. However, for most of the meas­

ures explained here, there is no known mathematical formulation, or function for

actual inventory problems having probabilistic patterns, and decision mechanisms. In

this regard RSM can give better insight into the relationships between a certain

measure and its corresponding influential factors using regression models. RSM was

used in Chapter VII to find optimum policy for continuous review case. Furthermore,

the same methodology can be applied to other types of inventory problems with the

same principles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

ARCHITECTURE OF THE INTEGRATED SIMULATION MODEL
DEVELOPM ENT ENVIRONMENT

Computer System Specifications

Operating System

The selection of the operating system in which the computer system of this

study would be operating was a crucial decision. The Microsoft Windows operating

system was chosen due to its following powerful features (Microsoft Press, 1990):

1. It is easier to integrate other related applications with our program such as

statistical software, and more importantly the SLAM II software itself.

2. It has advanced user interface elements standard for all programs such as

menus, dialog boxes, buttons, and multiple windows.

3. Dynamic Link Libraries (DLL) allows to link functions during run-time

rather than compile time resulting in smaller program code size.

4. The user can work on more than one simulation project by running more

than one copy of the developed program simultaneously.

5. Rapid model prototyping is easier by using the multi-tasking and multi­

windows facilities.

6. It permits direct access to other programs in the system without terminating

working session.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Object-oriented programming can take the full advantage of the message-

based execution in Windows by transferring system, and user input messages to corre­

sponding objects created in computer program.

Programming Paradigm, and Language

As a new programming paradigm, the object-oriented approach was first pro­

posed in order to overcome the software crisis that took place in early 70s due to the

shortcomings of procedural programming approach in developing large-scale software

systems. In procedural programming approach, the entire computer program is bro­

ken down into logical functions (i.e., subroutines) to cope with the complexity of the

system, and to achieve modularity. Implementation of functions usually becomes an

immediate issue in software development process. On the contrary the software devel­

oper is encouraged to give more attention to the design stage assuring a well-defined

architecture required for modular and robust software design when he, or she uses

object-oriented programming (Eckel, 19X9, p. 15).

As being discussed, object-oriented programming is the most powerful pro­

gramming paradigm currently available in computer science. Object-oriented features

of C++ have indicated significant benefits at the current state of the system. At

present Smalltalk and C++ are the two most promising object-oriented languages in

computer programming area. The powerful features of the C language were enhanced

in C++ by adding the object-oriented extensions by Bjarne Stroustrup in AT&T labs

(Jordan, 1990).

In terms of execution speed C++ is faster than Smalltalk which is not as re­

strictive as C++ in type checking and data binding processes. Dynamic binding

decides which object to call during run time while static binding makes decision during

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compiling the program. Smalltalk performs dynamic binding which gives greater

flexibility to the programmer along with some reduction in execution speed. However,

C++ is the primary language for application development in the Microsoft Windows

operating system. In this study Borland C++ Version 3.1 compiler was used along

with its ObjectWindows class library for user-interface objects, and its container class

library to implement some object handling operations (e.g., sorting, queue operations,

and so on). The C++ language has been selected due to its following advantages: (a)

dynamic memory allocation, (b) extensive class library support, (c) greater execution

speed, (c) complete support of OOP concepts such as inheritance, and data abstrac­

tion, and (d) portability.

System Architecture

System Components

T'he integrated development system was built on a system architecture of the

modular computer programs, and files to store data, and results. Figure 7 shows the

interaction, and data flow between the program modules, and the files. A detailed dis­

cussion of each module is as follows:

Project Manager: It is a computer program written in C++ to administer main

menu operations by calling other C++ programs when a menu selection is made. It has

the following responsibilities: (a) open, and save simulation project files, (b) associate

files in a project with the other programs, (c) call program generator, (d) call user-

interactive model entry program, (e) call the experimental design program, and (f)

close a working session when requested.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experimental Design: It is a C++ program to form the experimental design

matrix based on the input supplied by the user. Program screens given in Appendix F

present some idea on the input for experimental design entered by the user during a

working session. Prior to executing the SLAM II program, experimental design stage

has to be completed so that model execution can be performed based on the factor

levels in the design matrix. This program writes experimental design matrix to the file

specified in the project file (see Figure 8 for a project file example) after design

parameters are completely specified.

Interactive Model Entry Program: It is a C++ program to create the model de­

scription file for a given problem based on the input collected from the user during in­

teractive session. It is equipped with program routines to get input and make logical

checks on customer arrival patterns, demand patterns, price breaks, backlog policies,

etc.

Code Generator: It is a simulation program generator written in C++ for the

SLAM II language. It reads, skims the model description file, and finally generates the

appropriate SLAM II code based on the rules, and guidelines built in its inference en­

gine.

SLAM II simulation program : It is a program code written in SLAM II by the

program generator. It collaborates with the FORTRAN routines during model execu­

tion, and reports the simulation output to the corresponding report files (i.e., simula­

tion summary report, and regression input file) specified in the project file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

fC
Sim ulation

Sum m ary R eport

Report
fo r R egression

L .

PR O JE C T
M A N A G E R

E X P E R IM E N T A L
D E SIG N

IN T E R A C T IV E M O D E L
E N T R Y P R O G R A M

C O D E
G E N E R A T O R

\ l/
S L A M II

S IM U L A T IO N PR O G R A M

F O R T R A N
S U P P O R T R O U T IN E S

IN T E G R A T E D M O D E L
D E V E L O P M E N T
E N V IR O N M E N T

Experim ental
D esign

M odel
D efin ition

Figure 7. Organization of the Integrated Model Development
Environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FORTRAN support routines: They are the collection of FORTRAN subpro­

grams to support the generated SLAM II program during model execution. It was es­

sential to design these subprograms as flexible as possible so that they can cooperate

with various SLAM II codes without any need for change. SLAM II allows the

modeler to write FORTRAN subprograms to be linked with the main SLAM II code

when the flexibility of the SLAM II nodes does not satisfy the needs of the modeler.

Especially complex mathematical calculations, user-defined functions, and complex

discrete-event mechanisms can be modeled in FORTRAN routines. This capability re­

sults in greater flexibility for the modeler. The classification of the FORTRAN routines

created for this system is shown in Figure 8.

Subroutine INTLC initializes the SLAM II variables prior to each simulation

run. The model reading routines are called by this subprogram to read model descrip­

tion blocks. For the first simulation run, this subroutine reads the entire model de­

scription file, and transfers the necessary data into corresponding SLAM II variables

and arrays. Initialization of the controllable factors (i.e., inventory policy parameters)

is carried out by reading the appropriate record from the experimental design file for

succeeding runs.

Subroutine OUTPT is called at the end of each run to collect statistics, and

write them into eport files. The event subroutines are invoked by using the EVENT

node in SLAM II code to update performance measures when a change occurs. The

user-defined functions are mainly designed for random variable generation, price cal­

culations, expected waiting time, and other complex calculations. Some standard sub­

programs supplied by the SLAM II environment for discrete-event simulation are also

called when required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FORTRAN SUPPORT ROUTINES

r~ ------------------ • — ~
E V E N T SU B R O U T IN E S

U pdate Substitution Statistics

Update Total Sales

U pdate Purchase(ml'g.) Cost

U SE R -D E F IN E D FUN C TIO N S

R andom Variable G eneration

E xpected A vailable T im e

Probability o f Order G rncel

D einad During Lead Tim e

Probability o f Substitution

N ext Item for Substitution

A m ount M ultiplier

M O D E L IN TIALIZATIO N (INTLC

M O D E L O U T P U T (O UTPT)

M O D E L R E A D IN G RO UTINES

Figure 8. Organization of the FORTRAN Subroutines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class Hierarchy

As mentioned earlier, the integrated simulation system is implemented using

object-oriented programming approach. Classes form the skeleton of an object-

oriented computer program. In simple terms, a class is a functional unit containing

functions and data to be processed by those functions aimed for a particular purpose.

There is a similarity between classes and subroutines used in procedural programming

languages such as FORTRAN and Pascal in terms of their functionality in simplifying

the complexity of the program. This is to break down the entire program into more

manageable submodules. However, classes have better tools such as inheritance and

encapsulation to deal with program complexity .

In this section, all classes used in this study are discussed in detail with respect

to their position in the class hierarchy. We suggest the reader to review terminology

used in object-oriented programming introduced in Appendix E when needed. Classes

are discussed in six main groups based on their functionality in the system.

Classes for the SLAM II Nodes and Control Statements

A SLAM II program code consists of nodes, and control statements subject to

some syntax and structural rules. Nodes represent queues, servers, decision points,

and entity manipulation functions in a simulation program. On the other hand, control

statements are used to initialize variables, and to send declarations to the SLAM II

preprocessor.

The taxonomy of SLAM II is completely represented in object-oriented way

using a well-defined class hierarchy for the nodes and control statements. Figure 9

shows the class hierarchy of these classes. These classes are solely designed to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used at program generation stage by creating instances of them. At the top of the hi­

erarchy, the class SlamStructure, an abstract class, describes common data and pure

virtual functions for the classes related to the SLAM node and the control statements,

for instance a unique code to identify one node from another. Two new abstract

classes derived from SlamStructure are: (a) SlamNodes, and (b) SlamStatements.

Both classes serve as an umbrella to the other classes by declaring common data and

member functions. The syntax, and rules of the nodes and control statements of SLAM

II are encapsulated in the classes derived from these two base classes (i.e., SlamNodes,

and SlamStatements).

Notice that all the classes related to the SLAM nodes appearing at the bottom

of the class hierarchy take the class Sortable as base class (e.g., AwaitNode). By mak­

ing these node classes sortable, they can be stored in PriorityQueue which is another

class designed to sort and hold objects based on a pre-defined priority rule. These

rules are implemented within the corresponding classes based on the general guidelines

for the SLAM nodes, and application specific rules. As order in which nodes appear in

a SLAM II program is important, during program generation process the defined

nodes in the priority queue can be extracted in order, and then written to the user-

defined SLAM II file. On the other hand, the SLAM II control statement classes

(e.g., Gen, Array, Limits) in the hierarchy are not made sortable since where a control

statement should appear is almost fixed in SLAM II.

Code Generation Classes

These classes form the architecture of the simulation program generator.

GeneratorBase is an abstract base class to all the derived classes in this hierarchy (see

Figure 10). Notice that the class Sortable is again a base class to some classes which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AlterNode
Sortable

FreeNode

RegularActivityCreateNode

ServiceActivity

QueueNodeQueueBase

AwaitNodeTerminate

Slam Nodes
CollectNode

Accumulate
SlamStructure

GoonNode

AssignNode

EventNode

Gen

Array

SlamStatements
Limits

Equivalence

Resource

Initialize

Monitor

Seeds

Stat

Timst

Figure 9. Hierarchy of the SLAM II Classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are responsible for deciding appropriate SLAM II control statements, and nodes to

carry out a particular task. For example, the class CancelOrder is responsible for gen­

erating the nodes required to cancel a customer order. In the design process of the

generator, first a generic SLAM II program for inventory problems was developed,

and, then this generic program was broken down into some tasks such as creation of

customer arrivals, and defining variables, and arrays. At the stage of combining these

code blocks to form a complete SLAM II code, their order in the final SLAM II code

is crucial to generating the correct code. Therefore, objects o f these classes are de­

signed to be sortable so that they can be sorted by using priority rules. The following is

the brief discussion of each class in this group.

1. LoadModel: It reads model description file, and assigns data to dynamic

objects.

2. RunModel: It generates the simulation program in SLAM II using other ob­

jects in this hierarchy, CreateCustomers, Define Array':, and others. It skims the in­

formation in description file, and puts into variables so that other classes can use them

during code generation.

3. Define Arrays: It is responsible for selection of variables, attributes, time-

persistent variables, and arrays to be used in SLAM II program, and generation of the

ARRAY, EQUIVALENCE, TIM ST, and STATS statements.

4. Define Resources: Inventory on hand is modeled as resource in the SLAM II

program. This class specifies the parameters of resource blocks used in SLAM II.

5. CreateCustomers: It is responsible for specifying nodes for customer

arrivals.

6. DoPeriodicReview: It creates a control entity to review inventory level peri­

odically if periodic review mechanism is specified for any item.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

CreateCustom ers

DefineA rrays

D efineR esources

D oP eriodicR eview

Period icR eview C om m on

StartProduction

Sortable
PlaceO rder

H andleSubstitution

SeperateO rder

CaneelO rder

RecordT ransaction

HtuidleBackOrder

RunM odelInvenloryM odule

G eneratorBase

LoadM odel

Figure 10. Hierarchy of the Classes for Code Generation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. PeriodicReviewCommon: It is responsible for specifying nodes common to

all periodic review mechanisms.

8. StartProduction: It is responsible for specifying nodes to start production

when inventory level is less than or equal to the reorder point, and then to continue

until inventory level is equal to the desired level (S).

Model Description Classes

A model description file is used to store the information about an inventory

problem. This file consists of some blocks referring to information pieces in the entire

problem such as arrival pattern, price breaks, and inventory control mechanism.

Figure 11 shows the hierarchy of the classes designed to handle operations related to

model description blocks. Each class in this hierarchy is derived from an abstract base

class called ModelFiteBlocks which defines the common data and functions. These

classes are capable of reading from a model description file, and writing modified

model description data to the same file based on the pre-defined file structure. The

following is the list of data described in individual classes:

1. ModelOutline: modeler name, model name, date, number of items, and types

of control mechanism selected.

2. ReportOptions: selected options for simulation reports.

3. SubstitutionData: probabilities of substitution between items, corresponding

amount multipliers if any.

4. Distributions: selected distributions for customer arrival, demand, lead time,

and processing time.

5. PriceBreaks: definition of breaks for selling and purchasing price for a

particular item.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M odelF ileB locks

InvC ostE lem ents

BackOrderPoIicy

Increm entalD esign

FactorL evels

E xperim entalD esign

M odelO utline

Distributions

U nitPrice

SubstitutionD ata

R egression V.'iriables

ReportO ptions

Figure 11. Hierarchy of the Model Definition Classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. BackOrderPolicv: definition of backlog policy and its parameters.

7. InvCostElements: unit costs for setup, holding, backlog, lost sale, and re­

viewing.

User-Interface Classes

User-Inteiface classes are all derived from the ObjectWindows Library (OWL)

classes supplied by Borland C++ to write Microsoft Windows Applications. These

classes are mainly responsible for the following tasks: (a) management of the program

windows and user dialogs, (b) handling interactive data entry routines and transferring

data into objects in the program, and (c) calling appropriate main menu operation ob­

jects. The description of some important classes in the hierarchy (see Figure 12 for in­

dividual classes) is as follows:

1. Program initialization classes: They are responsible for performing initializa­

tion operations of a Windows program at the beginning such as registering the pro­

gram into the operating system (i.e., Windows). Classes MainProgram and Genera-

torApp belong to this group.

2. User dialog classes: All classes in this group are derived from the class

TDialog. They mainly provide the necessary user interface for interactive data entry at

model description stage. For example, the class PriceBreaks administers user interac­

tion to define price breaks for an inventory item. Some other classes in this group are

PriceDlg, InvItemDataDlg, and DefuwProblem.

3. Experimental Design Classes: They are constructed to create experimental

design matrix for controllable factors (i.e., reorder point, time period, production rate)

for a given inventory model. There are three classes in this group :

(a) SelectDesign: choosing experimental design type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O bject

T M od u le

T S treain able
I I ~

T W indow sO bject

I I -----

T A p plication

I L

T D ia lo g

M ainProgram Generator A p p

T F ilcD ia lo g

T Inp utD ialog

T E xponentialD Ig

TI Inifom iD Ig

TN orm alD Ig

T U serD cfinedD Ig

TC onstantD Ig

T L ogN on n alD Ig

S electD esig n D Ig

O rth ogon alD esign D lg

SubstilutinnD Ig

C ostD Ig

P riceD Ig

I’riceB reaksD Ig

InvItem DataDIg

M od elE d ilD Ig

R egV ariab lesD lg

P rojectF ilesD Ig

D efineP rob lem D Ig

M onitorD Ig

R eportO ptionsD Ig

BackO rderl’o licy D Ig

(ien eratorD lg

Increm ental D csignD Ig

3_
T W indow

TEdit

TL istB nx

T C om b oB ox

T(irotipRox

TB ulton

T C h eck ltox

TRadioH utton

T S cro ller

TC ontrol T E d itW ind ow T M D IC licn t

I.ScrollIliir T F ilu W in d ow T M D IF ram c

i

r.Static M ain l’rogram W in

Figure 12. Class Hierarchy of the User-Interface Classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) OrthogonalDesign: It is used to design full or fractional factorial experi­

ment.

(c) IncrementalDesign: It is used to construct simple incremental design.

4. Interface Control Classes: They are created to control the interface objects

in a user dialog box such as list boxes, buttons, and check boxes.

File Organization

A well-defined, flexible, and consistent file handling system is crucial to per­

forming model retrieval, storage and review operations efficiently. In order to satisfy

these requirements the developed computer system stores data and results associated

with a simulation project in appropriate files with pre-defined structure. At this stage,

C++'s flexible and object-oriented file handling system provided excellent tools to per­

form file operation routines efficiently. In C++ data flow (a) from the console to

RAM, (b) from the console to external files, and (c) data flow in the reverse direction

are all handled through its unified approach called streams.

The current system has five types of files of which structures are subject to

pre-defined rules. These files are: (1) model description file, (2) SLAM II code file,

(3) experimental design file, (4) regression input file, and (5) simulation summary re­

port file. Besides these files a project file is used to hold all the file names related to a

simulation project to identify them during a session. The name of a project file must

have always .PRJ as its extension. A project file example is shown in Figure 13.

The project file can be created either through the program editor, or through

the dialog box shown in Appendix F. The content of a project file can be changed any

time to associate different files with a project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

[PROJECTFILE]
SFiles

ModelFile = 'INV.MOD',
SlamFile ='IN V .D A T,
DesignFile = 'DESIGN.DAT,
RegFile = 'REG.OUT,
ReportFile = 'INV.OUT $

Figure 13. A Project File Example.

All user files in a project are ASCII files. Therefore, any number of these files

can be reviewed without quitting the working session through program editor fea­

tured with multiple document interface (MDI). MDI is an advanced interface capabil­

ity that enables the user to edit more than one file during a working session.

Files used in code generation, and model execution are discussed in two main

groups in terms of type of data that they contain.

1. Input files: They contain data for the program generator, and experimental

design information.

2. Output files: These files are produced by the C++ program (e.g., generated

SLAM II code), and by the generated SLAM II program to present results after simu­

lation.

Input Files

Model Description File. It contains information about the inventory problem in

pre-defined blocks collected from the user in interactive manner. The order of data

blocks, and their structure are designed to be self-explanatory so that the user can un­

derstand its content without any difficulty. Its content is used by both the program

generator and the SLAM II program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The general structure of model description file is illustrated in Figure 14. Each

italic expression in the figure represents a data block containing specific piece of in­

formation about the problem. In Appendix A, an example model description file is

provided. Also, Appendix B provides the full description of all variables that appear

in the model description file. The model description file is subject to the following ba­

sic syntax rules.

1. Fields with italic letters are user input to a particular variable.

2. The comma sign follows each input field to separate it from others.

3. The dollar sign must appear at the beginning and at the end of each descrip­

tion block to show beginning and ending of a block. A description block name follows

the first dollar sign in the beginning of a block.

4. Any number of spaces can be inserted between fields to increase readability.

5. All variable names which are typed in normal style must be followed by the

equal sign before being initialized.

As a matter of fact the user does not have to know all these rules as long as he

or she uses the interactive model entry mode at model description stage. However,

after becoming familiar with the structure and syntax, the user can make direct

changes in the description file through the program editor.

Experimental Design File. It consists of rows of input data of controllable

factors, i.e. inventory policy parameters such as S , and ,v, for corresponding simula­

tion runs. It is created by the experimental design module based on factor levels, and

design type, i.e., orthogonal, or incremental.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[problem]
PROBLEM OUTLINE

[experimental_design]
DESIGN OPTIONS
ORTHOGONAL DESIGN or INCREM ENTAL DESIGN
FACTOR LEVELS
REGRESSION VARIABLES

[substitution]
SU BSTITU TIO N J4ATRIX

[options]
REPORTJDPTIONS
M O N ITO R O P TIO N S

[products]

[ITEM_NAM E /]
[distributions]

CUSTOMER ARRIVALS
DEMAND SIZE
LEAD TIME
ORDER PROCESSING TIME

[cost]
INVENTORY COST ELEMENTS

[pricebreaks]
PURCHASING PRICE
PURCHASING PRICE BREAKS (i f any)
SELLING PRICE
SELLING PRICE BREAKS (if any)

[backorder]
BACKORDER POLICY

[END]
[ITEM_NAME2\

define other inventory item s(if any) as above.

[END]
[EndOfModel]

Figure 14. An Overview of the Model Description File.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output Files

SLAM IT Code File. It is a SLAM II simulation program file generated by the

program generator based on the information given in the model description file.

Regression Input File. This file stores the values of user-selected system vari­

ables (i.e., controllable factors, and corresponding performance measures) for each run

in columns. Later, this file can be used in any of the statistical packages (e.g., SAS)

for statistical analysis (i.e., regression analysis, analysis of variance) without any

format change. This feature permits integration of the current system with a statistical

package to automate optimization process in the future.

Simulation Summary Report File. The simulation output is stored in this file.

Model input data (i.e., distributions, costs, price breaks, etc.) are printed in the begin­

ning of the file. Performance measures (e.g., total cost, average holding level, etc.) for

individual items in the system are summarized in order. At the end, overall system per­

formance measures (e.g., overall total cost, average profit, etc.) are reported.

Code Generation Process

The developed system has a domain-dependent program generator. At present

the generator is designed to generate simulation code for inventory systems. It is pos­

sible to add more application domains to the existing system using the classes defined

for the present system.

Program generators are intelligent front ends to existing simulation languages

(O'Keefe, 1986). Program generation is an intelligent work which requires to develop

reliable, and correct simulation code for a given problem based on the pre-defined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rules and facts. A system designer should follow the following logical steps to design

a generator:

1. Define problem domain: It is to outline the boundaries of the problem do­

main in clear terms. In general the more flexibility the program generator has, the

more complex it becomes.

2. Familiarize with domain: This step is devoted to understand the problem

domain thoroughly in terms of input-output relations between system variables. The

purpose of this step can be accomplished by familiarizing with variants of the problem

domain from different degree o f difficulty. Coding each category of problems helps in

the requirements of the program generator. The designer of generator attempts to

draw rules, and facts regarding the structure of the simulation code. At this stage, the

developer should be able to construct a family of well-structured program codes.

3. Transfer of knowledge: Next step is to transfer the knowledge of the expert

as rules, and facts to the program generator's inference engine. Inference engine is an

intelligent program which is capable of deciding what SLAM II nodes, and control

statements should be used for a given problem. This program usually contains many

if-then statements to process model description file to make its own decisions in gen­

erating simulation program. In this respect the correctness of the rules in the inference

engine is vital.

For the present generator, the same steps were carried out. A family of SLAM

II programs for various inventory problems were created to see how the program

structure was changing, and what types of simulation event handling blocks were

needed. Later, the entire program code was broken down into submodules of SLAM

II program blocks. The rules related to selection of the SLAM II nodes, statements,

and specifying their arguments are encapsulated within the code generation classes dis­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cussed earlier. For example, the class CreateCustomers is responsible for deciding the

necessary nodes, and their specifications to create customer entities in the system.

Figure 15 shows the generalized SLAM II network diagram used as modeling rule in

this class. In the figure, note that depending upon number of items, the number of the

CREATE nodes required changes along with arguments (i.e., ARRIVAL 1,

ARRIVAL2). Also, the number of resource blocks is determined by the number of in­

ventory items. All the code generation classes are capable of sorting the required

SLAM II nodes for processing.

Another important decision at code generation stage is to select the required

variables, arrays, and attributes associated with entities that are used throughout the

program. The class DefmeArrays perforins this operation in the beginning of code

generation for a given problem.

Object-oriented approach is implemented throughout the code generation

process. Figure 16 illustrates the two main stages in code generation. The preparation

stage prior to code production consists of the collection of data from the user, creation

of model description file, and then skimming the information in that file to detect

factors that affect the selection of the SLAM II nodes. For example, types of

inventory control mechanisms, backlog policies, and whether it is a single or multi­

item system are some of the factors that the generator takes into consideration.

Next step is the code production stage in which the program generator creates

objects of the code generation classes described earlier. For instance, it is necessary to

create the object of the class StartProduction, if the inventory problem is a production

model. Next, the created objects of code generation classes make decision on the se­

lection of the nodes internally. Later, based on the pre-defined priority rules, a priority

number is attached to each object of code generation classes before being inserted to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N : N um ber o f Servers
server

N : N um ber o f Inventory Items

resource / initial capacity / queue file #

ARRIVAL1 : C ustom er arrival distribution

PRO D _N O : Product num ber, as attribute

ITEM j 0 1

i t e m 2 0 2

i t e m n 0 N

Server N
server

N +l

resource
/ blocks

A R R IV A Ll

'R ()D _N O = 1

ASSIGN
C R EA TE

tT o o n tPR ()I)_N O = 2

ASSIGN
CR EA TE

ARRIVALN

—A/V :>R()I)_N() = N

ASSIGN
CR EA TE

Figure 15. Generic SLAM II Network Diagram of Customer Arrivals and Resource
Blocks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

USER

Interactive M odel
Entry

Create M odel
the D escription F ile

preparation stage

Skim M odel
D escription File

D ecid e to what generation
objects to use

let each generation object
sp ecify its nodes and statem ents

S p ecify the priority o f each
generation object

Insert generation objects
into PriorityQ ueue

code production
 stage

Y es
DONE

No

Extract next generation
object from the queue

 ^ __________
Vrite the contents o f the object

to SLA M II file

Figure 16. Flow Chart of the Code Generation Process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the BlocksQueue which is an instance of the class PriorityQueue. The logic behind this

is to make sure that the correct order of the objects (i.e., blocks) of code generation

classes as it appears in the simulation program code is achieved. At the last step, the

contents of the objects (i.e. SLAM II nodes) are written to the user-defined SLAM II

file by extracting them from the BlocksQueue in order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

AN IMPLEMENTATION - CASE STUDY

Definition of the Example Inventory Model

An inventory model having three products was built to demonstrate some

modeling features of the integrated model development environment of this study. All

products were subject to different inventory control mechanisms. From now on the

products in the model will be referred as Product 1, Product 2, and Product 3. The

model description file of this example is provided in Appendix A. It is recommended

to review this file for more detailed data on the example problem along with the de­

tailed description of the fields provided in Appendix B. The following is the summary

of some important model data:

1. Control mechanisms: Product 1, and Product 2 are reviewed continuously,

and periodically respectively to decide to place a new order. Product 3 is also re­

viewed continuously with one difference that when a new setup takes place, replen­

ishment is made continuously at a constant rate (i.e., production, or supply rate) rather

than a bulk at once.

2. Factor levels: In this example single simulation was run for inventory poli­

cies obtained using the simple EOQ model with some modifications for Product 1,

Product 2 (see Table 1). Production rate was additional parameter for Product 3 in

the model. A production rate (65 items/day) higher than the demand rate (i.e., 50

items/day) was selected to prevent the possibility of infinite queue of demands

(customers).

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Statistical distributions: Statistical distributions were attributed to demand

arrivals, demand size, and lead time. Table 2 summarizes the distribution types and

their parameters used in the example with respect to each product.

4. Unit costs: Holding, backlog, setup, demand cancellation, and review costs

associated with each product in the model can be seen in the model description file

provided in Appendix A.

Table 1

Inventory Policy Parameters for the Example Inventory Problem

Product
No

S
(reorder level)

[units]

s
(reorder point)

[units]

t
(review period)

[days]

r
(rate)

[units per day]

1 290 132 N/A N/A

2 1224 250 9 N/A

3 300 2 0 0 N/A 65

5. Substitution: Substitution between Product 1 and Product 3 was allowed on

one to one basis. On the other hand Product 2 cannot be substituted by any product in

case of backorder.

6 . Price breaks: Product 1 has price breaks for both purchase (or, manufactur­

ing) and selling prices, while Product 2, and Product 3 have a single unit price instead

(see the model description file for the related data).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

7. Backlog polices: Product 2 has customer renege probability of 0.5 for back­

order cases. If 50 units are waiting in the queue (i.e., backordered), next customer for

Product 1 reneges the system. Customer renege probability for Product 3 depends on

the expected waiting time of the customer. Lower, and upper limits are supplied by

the modeler for expected waiting time as parameters to determine the probability of

customer renege. Particularly for this example, if expected waiting time for a cus­

tomer arriving to the system is less than or equal to the lower limit, 2 days, the cus­

tomer will accept to be backordered (i.e., no demand cancellation). Expected times

longer than the upper limit, 7 days, cause the customer to leave the system (i.e.,

cancel the order). A conditional probability depending on expected waiting time was

defined for expected waiting times between two and 7 days (see Equation 10).

Table 2

Parameters of Statistical Distributions Used in the Example Model

Product No

Random
Variable 1 2 3

Customer Exponential Constant = 0.2 Exponential
Arrivals X =0.5 X =0.5

Demand Size Discrete Normal Normal
M. = 2 2 |i =25, 0 = 5 .0 |a = 15, 0 = 2 .5

Lead Time Constant Constant Uniform
3.0 3.0 a =2.0, />=3.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Code Generation in SLAM II and Execution of the Model

After entering the model data using the interactive session of the data collec­

tion program, corresponding simulation program code in SLAM II can be created

through the program generator. In Appendix C the list of the SLAM II program is

provided for the example.

A single simulation of the example problem was run for 3500 days to get fairly

good estimates of the performance measures mentioned in Chapter III resulting in less

error variance, and tighter confidence intervals. This way, randomness of some sys­

tem parameters such as lead time, and customer arrivals can be absorbed in longer run

to get steady-state estimates of the system output variables, average holding level, av­

erage backorder level, average cycle length, and etc.

Discussion of the Simulation Results

Generated SLAM II program provides some statistics in well-organized re­

ports at the end of simulation for pre-defined system performance measures mentioned

in Chapter III. SLAM II outputs are discussed in the following sections in terms of

their content:

1. Standard output for individual products: This report is produced by the

FORTRAN OTPUT subroutine in addition to the SLAM II standard output to provide

separate output for each product in the model (see Figure 17). In this output, statistics

on the average holding level, average backlog level, inventory costs, average profit,

and the other performance measures are provided. Looking at the report, we observed

that within the simulation run length, i.e., 3500 days, 7070 customers arrived for

Product 1, and 307 of them were actually customers for the other products that were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

substituted by Product 1 due to the shortage. 6928 customer orders were met while

31 customers (i.e., 3% of the demand) canceled their order due to shortage on hand

inventory. Backorder policy was the influential factor that determined the number of

the order cancellations. In the report, inventory cost elements are classified into setup

cost, holding cost, backlog cost, order cancellation cost, and review cost. The last

line in the report provides the average profit per day from the product, which is aver­

age sales per day minus average inventory and purchasing (or, manufacturing) cost.

The average profit was $ 161.83 per day for Product 1.

2. Overall system performance measures: In this report results for overall

holding cost, backlog cost, setup cost, average profit, and other related cost terms are

provided as aggregate total of costs given in individual product reports (see Figure 18

for the example report). As an important performance variable, average profit per day

for the entire system was $367.8.

3. Substitution statistics: In this report the number of customer orders substi­

tuted and its total amount in units is provided for each pair of products. For instance,

looking at the report for the example in Figure 19, 307 customers, 4650 units of

Product 1 were substituted by Product 3 due to shortage in inventory of Product 1 on

hand. On the other hand substitution figures for the other cells are zero as the substi­

tution probabilities are defined to be zero for these cells in the substitution matrix.

Significance, and magnitude of customer flow between products can be evaluated

analyzing the substitution statistics. Ability to substitute one product by another may

decrease the number of custom er order cancellation drastically if reorder levels, and

reorder points permit the significant interaction. In other words, if the two products

have very high reorder points, substitution may not occur at all as the shortage prob­

abilities of both products appear to be very low.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SLAM II standard outputs: SLAM II provides standard outputs for queues,

resources, time-persistent variables, and so on. Simulation output is organized in the

following groups.

(a) Statistics based on observation: Average safety stock level, average time

between customer reneges, and average cycle length for each product are calculated

based on observations acquired during simulation. Looking at Figure 20 it can be seen

that there is no customer renege observed for Product 3 due to its high safety stock

level, i.e., 63.7 units. On the other hand, Product 2 has no safety stock on the average

resulting in the highest number of order cancellations, i.e., 3840 customers. Cycle

length is defined to be the time interval between two consecutive production starts, or

manufacturer orders. Product 3 had the largest average cycle length as being consis­

tent with 147 setups occurred simulation run. Since the production rate of Product 3

was chosen above the demand rate in order to absorb the fluctuations in probabilistic

demand, the manufacturer was able to satisfy the demand on regular basis instead of

using bulk orders.

(b) Statistics for time-persistent variables: Time-weighted average of backor­

der level was determined for each product by recording changes over time. Product 1

had the highest average backlog level as being consistent with the pervious results for

customer renege, and safety stock. Average backlog level for Product 3, 0.36 units

was the lowest among others with a maximum value of 173 units.

(c) File statistics: In SLAM II program customer entities were subject to wait

in corresponding queues when they are backordered. Looking at queue file statistics

(see Figure 22) we can get information on average customer length, maximum length,

and average waiting time. There were 5 customers waiting for Product 2 on the aver­

age, and the maximum customer length was 29 customers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

PRODUCT NO : 1

DEMAND
(in number of customers)

Satisfied : 6928
Lost(cancel) : 31
Substituted : 418

(-) Used for substitution : 307
Total : 7070

(in units of products)
Satisfied : 151050
Lost(cancel) : 760
Substituted : 9370

(-) Used for substitution: 4650
Total : 156530

HOLDING/BACKLOG/SETUPS
Holding Level [units/day] : 158.71
Backlog Level [units/day] : 1.19
Number of Setups : 506
Number of Reviews : 6928

COSTS/PROFIT
(+) Sales [$/day] : 718.04

Setup Cost[$/day] : 21.69
Holding Cost[$/day] : 15.87
Backlog Cost[$/day] : 0.24
Cancel Cost[$/day] : 0.54
Review Cost[$/day] : 0.02

Inventory Cost[$/day] : 38.37
Purchase Cost | $/day] : 517.86

(-) Total Cost [$/day] : 556.22

Profit | $/day] : 161.83

Figure 17. Simulation Report for Individual Products (Example Given for Product 1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Overall System Performance Measures

COSTS/PROFIT
(+) Sales [$/day] 1410.11

Setup Cost[$/day] 43.53
Holding Cost[$/day] 38.67
Backlog Cost[$/day] 9.84
Cancel Cost[$/day] 11.49
Review Cost[$/day] 0.59

Inventory Cost[$/day] 104.11
Purchase Cost [$/day] 938.20

(-) Total Cost [$/day] 1042.31

Profit [$/day] 367.80

Figure 18. Simulation Report for Aggregated Product Measures.

Substituted by
Substitution Statistics

number of customers(amount in units)

1 2 3
1 0 (0) 0 (0) 418(9370)
2 0 (0) 0 (0) 0 (0)
3 307(4650) 0(0) 0 (0)

Figure 19. Simulation Report for Substitution Statistics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

♦ •S T A T IS T IC S F O R V A R IA B L E S B A S E D O N O B S E R V A T IO N * *

M E A N S T A N D A R D C O E F F . O F M IN IM U M M A X IM U M N U M B E R O F
V A L U E D E V IA T IO N V A R IA T IO N V A L U E V A L U E O B S E R V A T IO N S

S A F E T Y S T O C K 1 0 .1 8 2 5 E + 0 2 0 .2 7 6 6 E + 0 2 0 .1 5 1 6 E + 0 1 O.OOOOE+OO 0 . 1 2 2 0 E + 0 3 5 0 6
S A F E T Y S T 0 C K 2 O.OOOOE+OO O.OOOOE+OO 0 .9 9 9 9 E + 0 4 O.OOOOE+OO O.OOOOE+OO 196
S A F E T Y S T O C K 3 0 .6 3 7 4 E + 0 2 0 .4 5 1 2 E + 0 2 0 .7 0 7 9 E + 0 0 O.OOOOE+OO 0 . 1 6 3 0 E + 0 3 147
T IM E B E T . C A N C E L 1 0 . 1 0 8 2 E + 0 3 0 .1 7 5 9 E + 0 3 0 . 1 6 26E + 01 0 .3 1 7 4 E -0 2 0 .8 4 2 9 E + 0 3 31
T IM E B E T . C A N C E L 2 0 .9 0 9 7 E + 0 0 0 .2 2 9 3 E + 0 1 0 .2 5 2 1 E + 0 I 0 .2 0 0 0 E + 0 0 0 .2 I 2 0 E + 0 2 3 8 4 0
T IM E B E T . C A N C E L 3 N O V A L U E S R E C O R D E D
C Y C L E L E N G T H 1 0 .6 9 1 5 E + 0 1 0 .1 7 2 1 E + 0 1 0 .2 4 8 9 E + 0 0 0 .3 6 0 5 E + 0 1 0 .1 2 I 4 E + 0 2 5 0 6

C Y C L E L E N G T H 2 0 .1 7 8 3 E + 0 2 0 .1 2 1 1E+01 0 .6 7 9 5 E -0 1 0 .9 0 0 0 E + 0 1 0 .1 X 0 0E + 02 196
C Y C L E L E N G T H 3 0 .2 3 6 0 E + 0 2 0 .1 0 3 9 E + 0 2 0 .4 4 0 4 E + 0 0 0 .2 5 9 4 E + 0 1 0 .7 8 5 9 E + 0 2 147

Figure 20. SLAM II Output for Safety Stock, Customer Renege, and Cycle Length.

♦ ‘ S T A T IST IC 'S F O R T IM E -I’E R N IS T E N T V A R IA B L E S * *

M E A N S T A N D A R D M IN IM U M M A X IM U M T IM E C U R R E N T
V A L U E D E V IA T IO N V A L U E V A L U E IN T E R V A L V A L U E

B A C K L O G L E V E L 1 0 .1 1 8 X E + 0 1 0 .5 7 2 7 E + 0 1 O.OOOOE+OO 0 .7 7 0 0 E + 0 2 0 .3 5 0 0 E + 0 4 0 .0 0 0 0 E + 0 0
B A C K L O G L E V E L 2 0 . 1 1 9 6 E + 0 3 0 .1 6 9 7 E + 0 3 O.OOOOE+OO 0 .7 0 8 0 E + 0 3 0 .3 5 0 0 E + 0 4 0 .0 0 0 0 E + 0 0
B A C K L O G L E V E L 3 0 .3 6 1 9 E + 0 0 0 .4 I 5 2 E + 0 1 O.OOOOE+OO 0 .I 7 3 0 E + 0 3 0 .3 5 0 0 E + 0 4 0 .0 0 0 0 E + 0 0

Figure 21. SLAM II Output for Time-Weighted Average o f Backlog Level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

♦ •F IL E S T A T IS T IC S ”

FILE A V E R A G E S T A N D A R D M A X IM U M C U R R E N T A V E R A G E
N U M B E R L A B E L /T Y P E L E N G T H D E V IA T IO N L E N G T H L E N G T H W A IT IN G T IM E

I A W A IT 0 .0 8 2 4 0 .3 3 8 3 5 0 0 .0 4 0 1
2 A W A IT 5 .0 0 4 4 6 .9 7 6 7 29 0 1 .2647
3 A W A IT 0 .0 3 9 6 0 .3 5 0 3 II 0 0 .0 1 1 6

♦ •R E S O IIR C E S T A T IS T IC S * *

R E S O U R C E R E S O U R C E C U R R E N T A V E R A G E M IN IM U M M A X IM U M
N U M B E R L A B E L A V A IL A B L E A V A IL A B L E A V A IL A B L E A V A IL A B L E

I IT E M I 2 8 2 1 5 8 .7 0 2 9 0 4 1 2
2 IT E M 2 4 9 2 3 3 8 .2 1 4 8 0 1308
3 ITE M 3 221 1 4 7 .1 0 7 8 0 3 6 0

Figure 22. SLAM II Output for Queue, and Resource Statistics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

APPLICATION OF RESPONSE SURFACE METHODOLOGY
AT OPTIMIZATION STAGE

Description of the Problem

It is a difficult task to build exact analytical models under few assumptions for

complex inventory models that embrace probabilistic demand, customer arrivals, lead

times, and state-dependent decision mechanisms. Simulation can represent these types

of inventory systems in greater detail due to its unrestrictive approach which requires

fewer assumptions in modeling a problem. However, due to the existence of

unknown mathematical relationships between system variables, intense computational

effort is required for optimization in simulation. In Chapter II some of the well-known

optimization methods for simulation were investigated. Here in this chapter, the

applicability of RSM to inventory problems is demonstrated by finding the optimum

inventory policy of the probabilistic continuous review inventory problem based on the

simulation output. A deterministic approximation of the original problem was also

developed in order to compare and evaluate the performance of RSM, and be able to

validate the results.

The proposed inventory problem has the following characteristics:

1. Time between demand arrivals is exponential.

2. Demand size for a customer is normally distributed.

3. Lead time is normally distributed.

4. Inventory level is reviewed after each transaction to decide a new order, i.e.,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

(S , s) model with continuous review.

5. Customers renege the system at certain probability p r when backordered.

6 . Holding, backlog, setup costs are constant.

7. Purchase (manufacturing) cost, and selling price are assumed to be con­

stant.

8 . Response variable to be maximized is average profit per day.

The following specific data are supplied for the example problem:

1. Customer arrivals: exponential, X = 10 customers per day.

2. Demand size: normal distribution, |!= 20, 0=2.5.

3. Lead time: normal distribution, p = 3.0, a=0.5.

4. Costs: holding cost = $0.3 per unit per day, backlog cost = $0.4 per unit

per day, setup cost = $1500 per setup, purchase cost = $ 1 1 per unit, and selling price

= $14 per unit.

5. Renege probability />= 0.6.

Optimization Using RSM

Statistical, and mathematical principles of RSM were well presented previously

in Chapter II. Generalized steps of the optimization procedure for inventory problem

are summarized in Figure 23.

The distance of the starting point from the true optimum affects the number of

runs needed to reach the optimum in great deal. In general it can be claimed that the

closer the starting point to the true optimum, the fewer the number of runs. In this re­

gard the simple EOQ model with no-shortage permitted can provide a good starting

point for the search process. The equivalent (S , s) policy of an EOQ solution can be

calculated from the following formulas:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Yes

No

M odel
Adequate?,

START

STOP

Build Second-O rder R egression M odel

Run Sim ulation M odel

D eterm ine upper and low er lim its for factors

Build First-Order R egression M odel

Run Sim ulation M odel

Find the optim um policy using
R idge analysis, or partial derivations

Build Central C om p osite D esign
for Second-O rder R egression M odel

D eterm ine a starting point using EO Q M odel
with no shortage perm itted

Full or Fractional Factorial D esign
for First-order R egression M odel

Run new Experim ents along the
steepest ascent until no m ore
im provem ent is evident

Select Reorder L evel S , and reorder point as
controllable factors ;ind average profit ;ts

response variable

Figure 23. Flow Diagram of Response Surface Methodology Along With the Steepest-
Ascent for Optimization of the Inventory Model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

_ \ 2aK 12*200*1500
S = J J ------------------- = 1414 units

M h V 0.3

s = La = 3 * 200 = 600 units

A two-level orthogonal design with starting point (1414,600) being the center

of the design was constructed to make runs for the first-order model, and to estimate

the first steepest-ascent, that is

- 1 - 1 1364 575

- 1 1 1364 625

1 - 1
=>

1464 575

1 1 1464 625

Based on the model description, corresponding simulation model in SLAM II

was generated automatically by the program generator. Initial four simulation runs for

the first experimental design were performed, and the results are summarized in Table

3.

Table 3

Results of Simulation Runs for First-Order Regression Model in Iteration I

Run No S .V Average Profit
1 1364 575 176.88
2 1364 625 168.95
3 1464 575 176.89
4 1464 625 168.72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let xi, x i be the coded variables for Xi , and X i which represent S , and .v respec­

tively. Based on data in Table 3 the following first-order regression model can be

constructed using SAS statistical software (SAS Institute, 1985):

y = 172 .86 -0 .055x1 -4 .025^2

where jyis average profit per day. The F -value was 2250.7, and corresponding p-

value (i.e., significance probability) was 0.015 which was less than 0.05 indicating that

linear relationship was significant. Since the coefficient of the term xi in the model is

negative, and the problem is a maximization, a negative increment for X i must be se­

lected to increase y . Let AX2 be -20 units from the center of the design (i.e., 600),

and then using the following equation increment in the coded variable can be also cal­

culated:

X i - Y i
x; = --------- (13)

s*

where s.« is the scale factor of i th variable Xi which is the selected equal distance

from the center of design to the lower, and upper levels. By placing the values in

Equation 13, we get

-2 0 „ „ .
X2 = -------= - 0 . 8 units

25

Using Equations 6 , and 7 in Chapter II, we find the Lagrange multiplier to be

X - ^ l . 2 . 5 , 5 .
- 2 * 0.8

and then the corresponding increment in xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

-0 .055
j o = -----------------------= - 0 . 0 1

2*2 .515

Next AXi is obtained to be -0.5 units by multiplying j o by sxi, i.e. 50.

A series of simulation starting at the center of the design were run until no

more increase in y was evident. The simulation run length was determined to be 3500

days for each run so that steady-state results could be achieved with less random error

variance in the response variable. Common pseudo-random numbers for each run

were also used to reduce variance in error. The results are summarized in Table 4.

Table 4

Coordinates Along the Path of Steepest Ascent (Uncoded Variables), and the
Response Variable (Average Profit Per Day), for Iteration I

Run # Increment Xi Xi y

1 base 1414.0 600 176.03

2 base + A 1413.5 580 177.83

3 base + 2 A 1413.0 560 177.98

4 base + 3 A 1412.5 540 178.71

5 base + 4A 1412.0 520 179.41

6 base + 5A 1411.5 500 180.34

7 base + 6 A 1411.0 480 180.71

8 base + 7 A 1410.5 460 180.89

9 base + 8 A 1410.0 440 181.93

10 base + 9 A 1409.5 420 182.38

11 base + 10 A 1409.0 400 182.16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4--Continued

Run # Increment Xi X i y

12 base + 1 1 A 1408.5 380 182.43

13 base + 12 A 1408.0 360 182.81

14 base + 13A 1407.5 340 183.30

15 base + 14A 1407.0 320 183.35

16 base + 15A 1406.5 300 183.44

17 base + 16A 1406.0 280 183.99

18 base + 17A 1405.5 260 184.45

19 base + 18A 1405.0 240 184.47

2 0 base + 19A 1404.5 2 2 0 183.66

21 base + 20 A 1404.0 2 0 0 183.24

The two consecutive decreases in y after 19th run (1405, 240) suggested that

a new path is required to increase y . Another two-level orthogonal design with

(1405,240) being the center of the design was constructed within a smaller search re­

gion to estimate the next search path. Table 5 shows the results of simulation runs

made at this step.

Table 5

Results of Simulation Runs for First-Order Regression Model in Iteration II

Run # S s Average Profit
1 1385 260 182.95
2 1385 2 2 0 182.97
3 1425 260 182.86
4 1425 2 2 0 182.87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Based on the observations in Table 5, first-order regression model in coded

variables for Iteration II was

y = 182.91 - 0.0475X1 + 0.0075x2,

and F -value, and / ; -value of the Ho hypothesis that there is a linear associationship

between the dependent, and the independent variables were 185.000, 0.05 respec­

tively. The new path was determined in the same way as in Iteration I by selecting

AXi to be -5 units, and then A X 2 = 0.8. Further runs are made in order to increase av­

erage profit along the new path. As seen in Table 6 , increase in y stops in 4th run.

Table 6

Coordinates Along Path of Steepest Ascent (Uncoded Variables), and the Response
Variable (Average Profit Per Day), for Iteration II

Run # Increment X\ X 2 y

0 base 1405.0 240.0 184.47

1 base + A 1400.0 239.2 184.56

2 base + 2 A 1395.0 238.4 184.90

3 base + 3 A 1390.0 237.6 185.12

4 base + 4A 1385.0 236.8 183.55

However when another first-order model was built about (1390,237.6),

p - value for linear associationship was 0.505 indicating the need for a second-order

design due to inadequacy of first-order design. Therefore, a central composite design

having nine design points which are equidistant from the center of the design, i.e.,

(1390,238) was built to achieve rotatability necessary for less error variance, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

fewer runs (see Figure 24 for the plot of the points). The design matrix used was as

follows:

-1 -1 1340 208

-1 1 1340 268

1 -1 1440 208

1 1 1440 268

0 0 => 13% 238

1.414 0 1460 238

-1 .414 0 1319 238

0 1.414 1390 280

0 -1 .414 1390 195

1.414

0,0
1.414-1.414

-1.414

Figure 24. Central Composite Design for Two-Factor Experiment With
the Distance From the Center a = 1.414.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Four replications are made at the center of the design to improve the quality of

the parameter estimation due its highly influential location in the design. Based on the

twelve simulation runs made, the following second-order model in terms of the un­

coded variables was reached:

y = 15.605 + 0.239 Xi + 0.0216X 2 - 0 .8 6 .10-4 X ,2 - 0 .45.10"4 X ; (12).

Looking at Table 7, it appears that all terms in the model, i.e., intercept, first-

order, and second-order terms, except the interaction term X \ X i were significant.

Table 7

Second-Order Regression Model Parameter Estimates and t - Test Results

Parameter Degrees of
Freedom

Estimate Standard
Error

t -value p -value

Intercept 1 15.6050 2.0310 7.683 0.0003

X 1 1 0.2390 0.0056 86.898 0 .0 0 0 0

X 2 1 0.0216 0.0031 6.958 0.0004

X 1X 2 1 5.9.10- 15 0 .2 x l 0 - 5 2.9x10 'y 1 .0 0 0 0

1 -O.8 6 IO-4 0.974x1 O' 6 -88.205 0 .0 0 0 0

* 2
1 -0 .45xl0 -4 0.267xHT5 -16.602 0 .0 0 0 0

By obtaining partial derivations of Equation 12 with respect to X 1 ,and X 2 , and

equating them to zero, we can find the following optimum solution:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

dy_ = ----- 01239_ ^
dXi 2 * 0.86 *10

0.0216 .
dXi 2*0.45*10"*

In order to confirm the mathematical solution with the canonical ridge analysis

results, the RSREG procedure of SAS was called using the 12 observations of the

second-order model. As expected, the optimum solution results were very close the

ones obtained through partial derivations of the second-order model. Namely, the

ridge analysis solution was 1391.1, 242.5 for S and ,v respectively. Average profit at

this point was predicted to be $ 184.48 per day.

Deterministic Model Approximation

A deterministic model approximation of the present probabilistic inventory

problem was introduced in order to validate simulation, and optimization results. Ba­

sic approach in approximation was to use the mean values of the distribution functions

attributed to customer arrivals, demand size, and lead time by ignoring the randomness

in demand size, customer arrivals. Two additional approximations are also made with

respect to depletion rate separately for positive inventory level, and negative inventory

level periods. It is approximated that depletion rate can be calculated as follows:

a = — d
t i l

where U is mean time between customer arrivals, d is mean demand size per cus­

tomer. Subsequently, depletion rate during negative inventory level period is ap­

proximated to be «/>, where p> is customer renege probability when customer is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

backordered. The determistic model was broken down into three different inventory

submodels with respect to relationships among S, s and Q as formulas for order

quantity, cycle time, time-weighted average holding, and backlog cost differ from one

case to another. For all submodels average profit is defined as

Sales - Purchasing cost - Holding cost - Backlog cost - Setup cost f $ per unit of time]

Note that all cost formulations are also dollar per unit of time in all cases.

Submodel 1. (s >Q,Q> S)

Figure 25 depicts the change inventory level over time for this submodel. The

following formulas are obtained to find average profit per unit of time.

(a) order quantity:

Q = S +(L - —)a(1 - pr) ,
a

(b) cycle length in unit of time:

0

(c) holding cost per unit o f time:

S 2h
la te '

(d) backlog cost per unit o f time:

{ L - - f a { \ - p r) p
a___________

2 U

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

S-at

time
m axim um shortage

Figure 25. Diagram of the Submodel I.

Submodel II (s>Q.O < S):

Based on Figure 26 the following formulas are valid for this case:

(a) cycle length: It is the same as case I.

(b) order quantity: Q - S - s + La

(c) holding cost

2 S - Q
2 tc

(d) backlog cost = 0

Submodel III (s <0) :

Figure 27 shows the diagram of this case where reorder point is negative. This

case may be applicable to situations where a new order is placed only after a certain

amount of demand is accumulated in the system. The formulas for this case are as

follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

S-at

tune
m axim um shortage

Figure 26. Diagram of Submodel II.

(a) cycle time:

tc = ~ + L ------- (p r > 0),
a a(1 - p r)

(b) order quantity:

Q = S - s + L a (l - p r),

(c) holding cost:

S 2h

late

(d) backlog cost:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

(- s + L a (l - p r)
2 7c

L —
a (\ - p r)

P (Pr> 0).

5

S-at

tim ezap,
s

Figure 27. Diagram of Submodel III.

Validation of the Results Using the Deterministic Model

In order to validate the optimization results obtained through RSM, the de­

terministic model was tested under the same inventory policies. For all different in­

ventory policies tested, very close results to those of the simulation model were ob­

tained, which confirmed the optimization results strongly.

Using the deterministic formulas developed for the three cases, the theoritical

response surface was plotted within reasonably large interval of S (400-2000), and

s (-200,1500). As seen in Figure 28 the surface is convex indicating that there is no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

local optimum in the search region. In the contour plot of the surface shown in Fig­

ure 29, a steady increase in the average profit toward the optimum point can be ob­

served easliy. The optimum solution maximizing the average profit ontained using the

determistic model (i.e., S = 1383, .v = 242) was very close to the optimum solution

obtained from RSM (i.e., 5 = 1389, ,v =240).

As a conclusion, the proposed determistic model confirmed the success of

RSM in locating the optimum solution with great accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average Profit

Figure 28. Response Surface of Average Profit as a Function of Reorder Level, and
Reorder Point Based on the Deterministic Model Data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

2500

1925

S 1350

775

200
-2 0 0 225 650 1075 1500

Average Profit -194 -155
36

-117
74

-7 9
113 151

Figure 29. Contour Plot of Average Profit as a Function of Reorder Level, and
Reorder Point Based on the Deterministic Model Data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VII

FUTURE RESEARCH SUGGESTIONS

The present system can be considered as first step implementations of a greater

system which can improve the simulation modeling in more diverse domains, and more

automated way in the future. The potential extensions to the present study can be

done in two aspects:

1. Improvements in simulation model development: At present, only inventory

systems can be modeled using the current computer program. However, we have

already designed object-oriented classes which can be used for more application

domains. Therefore, addition of new applications domains such as flexible

manufacturing systems, and job-shop production can be carried out a little more effort

due to the ability to reuse and extend the previously defined classes in object-oriented

programming.

2. Improvements in optimization process: As optimization in simulation using

RSM requires considerable amount of time, and statistical expertise, the first priority

should be given to the automation of this method. In this regard, integration of the

present system with a statistical software is required so that statistical calculations

such as model building, and performing hypothesis tests can be carried out internally

during the optimization process without the user involvement.

Second improvement can be for multiple-item inventory problems which have

significant demand flow from one product to another through substitution. In this case

finding individual optimum policies for products would be obsolete as this approach

ignores the significance of the interaction between policy parameters. Group screening

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methods can be an alternative to cut down the number of runs by grouping the pa­

rameters which have similar effects. However, one should note that if there are too

many products considered, then even group screening methods may be inefficient eas­

ily due to the unmanageable number of factors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER Vffl

CONCLUSIONS

In this study, an expert computer system has been developed to automate some

aspects of simulation modeling, which were model building, automatic simulation pro­

gram generation in SLAM II, and experimental design. Subsequently, response sur­

face methodology was employed to optimize the simulation output, i.e. average profit

of the probabilistic continuous review inventory problem. Optimization results were

validated through the proposed deterministic approximation (relaxation) of the original

probabilistic model. In conclusion, the following results have been reached in the two

following aspects of this study:

1. Simulation model development using the expert system.

(a) Potential benefits of the present system to the user can be expressed in

terms of time, reliability, and correctness of simulation models. It is expected that the

present system can boost the efficiency of both experienced, and inexperienced simu­

lation modelers. People with very little simulation background can benefit from the

system without requiring the knowledge of a simulation language. Advanced user-

interface, multi-tasking features of Windows operating system had great contribution

to creating rapid prototypes. A number of design alternatives for a inventory system

can be tested within a short time by changing model description file, and generating

the corresponding SLAM II code automatically.

(b) Advantages of object-oriented programming in the development of the

software were tremendous. M ost prominent of them were data abstraction through

encapsulation, and class prototypes, ability to reuse and extent earlier classes. One

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

potential advantage of using OOP for future extensions to the present system is that

addition of new application domains will require less effort as compared to the proce­

dural programming by taking advantage of modularity, and extendibility of the present

system. Object-oriented programming was able to represent the taxonomy of SLAM

II in modular, and natural way through the classes organized in a top-down hierarchy.

Future application domains will be able to use those classes without any change.

2. Optimization using RSM:

(a) RSM showed a great performance as optimization tool. The results of

RSM for the example inventory problem were very close to those obtained from the

proposed deterministic model. This can be attributed to the consistency of RSM for a

given optimization problem due to its well-defined statistical, and mathematical foun­

dations. RSM provides a unified approach that can be applied to any type of optimi­

zation problem in simulation studies. However, one should note that its performance

heavily depends on the location of starting point, characteristics of the response sur­

face (i.e., existence of local optima), and the size of error variance. In case of local

optima, RSM should be performed with different starting points so that the chance of

missing the global optimum can be decreased.

(b) Use of the deterministic models related to a problem domain can help in

locating a good starting point which usually results in fewer runs. In this study the

simple EOQ model was very successful in determining a good starting point. Another

important use of the deterministic model was validation of the optimization results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Model Description File of the Example

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

The following is the list of the model description file for the example

discussed in Chapter VI.

[problem]
$Problem Model='MULTI-PRODUCT',

Modeler = 'RIZVAN',
Date = '7/18/92 ',
OrderSep ='Y',
nOfProducts = 3,
Product(1) ='ITEM 1', InvType(1) = 1,
Product(2) ='ITEM2', InvType(2) = 2,
Product(3) ='1TEM3', InvType(3) = 3$

[experimental_design]

$Design DesignType = 1,
nOfReplications= 1,
nOfCells=l,
SimulationLength=3500$

$Orthogonal Option = 1,
nOfSS Levels = 1,
nOfsLevels = 1,
nOftLevels = 1,
nOfrateLevels = 1 $

SFactorLevels SSV alues(l,l) = 290,
sV alues(l.l) = 132,
SSV alues(l,2) = 1224,
sValues(l,2) = 250 ,
tValues(l,2) = 9 ,
SSValues(l,3) = 300,
sValues(l,3) = 200 ,
rateValues(l,3) = 65$

$RegVariables
nOfVariables(l) = 4 ,
R egPrintV ar(l,l) = 'SC L(l)', ln d ex (l,l)= l,
RegPrintVar(1,2) = 'RPT(1)', Index(1,2)=2,
RegPrintV ar(l,3) = 'N_SETUP', Index(l,3)=3,
RegPrintVar(1,4) = 'AVE_COST', Index(1,4)=4,
nOfVariables(2) = 2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

RegPrintV ar(2,l)= 'SCL(2)', Index(2 ,l)= l,
(Continued)

RegPrintVar(2,2)= 'AVE.COST', Index(2,2)=2,
nOfVariables(3) = 0 $

[substitution]
$SubstitutionMatrix

IsThereSubstitution = 'Y',
pro(l,2)=0.0, pro(l,3)=1.0,
pro(2,l)=0.0, pro(2,3)=0.0,
pro(3,l)=1.0, pro(3,2)=0.0,
qcf(l,2)=1.0, qcf(l,3)=1.0,
qcf(2,l)=1.0, qcf(2,3)=1.0,
qcf(3,l)=1.0, qcf(3,2)=1.0,
SelectionRule = 1 $

[options]
$Options PrintData ='Y',

PrintReg ='Y',
PrintFuil ='Y',
PrintS lam ='Y'$

$M onitor UseM onitor ='Y',
MonitorOp ='TRACE',
FromTiine = 0.0,ToTime=15.0,
variable(1)='INV_POS
variable(2)='NNQ(l)',
variable(3)='AMOUNT'$

[products]

[ITEM1]
[distributions]

SArrivals Distribution='exponentiar, Parameter=0.5$
$Demand Distribution='user defined',

nOfValues = 3,
x (l)= 10,px(l)= 0 .2 ,
x(2)=20,px(2)=0.4,
x(3)=30,px(3)=0.4$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

SLeadtime Distribution='constant', Parameter=3.0$
$Processing Distribution='constant', Parameter=0.0$

[cost]
$COST SetupCost =150,

HoldingCost =0.1,
BacklogCost =0.2,
LostSaleCost =2.5,
ReviewCost =0.01$

[pricebreaks]
SPurchase nOfPurchaseBreaks = 3$
$PurchaseBreaks

From (l)=0, T o(l)=600, Price(l)=12.0,
From(2)=601, To(2)=1000, Price(2)=10.0,
From(3)= 1001 ,To(3)=3000, Price(3)=7.0 $

$Sales nOfSalesBreaks = 3$
$SalesBreaks

From(1)=0, T o(l)= 10, Price(l)=19.0,
From(2)=l 1, To(2)=25, Price(2)=17.0,
From(3)=25, To(3)=1000, Price(3)=16.0$

[backorder]
$BackOrder Case=2, RejectPoint=50$
[END]

[ITEM2]
[distributions]
$Arrivals
$Demand
SLeadTime
$Processing

Distribution='constant',
Distribution='normar,
Distribution='constant',
Distribution='constant',

Parameter=0.2$
Parameter=25.0,5.0$
Parameter=2.0$
Parameter=0.0$

[cost]
$Cost SetupCost =300,

HoldingCost =0.05,
BacklogCost =0.08,
LostSaleCost =0.4,
ReviewCost =3.6$

[priceBreaks]
$Purchase nOfPurchaseBreaks=0, UnitPrice = 3.0$
$Sales nOfSalesBreaks=0, UnitPrice = 5.2$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[backorder]
$BackOrder Case=l, Probability=0.5$
[END]

[ITEM3]
[distributions]
SArrivals Distribution='exponential',
$Demand Distribution='normar,
SLeadTime Distribution-uniform '
$Processing Distribution='constant',

Parameter=0.3$
Parameter=15.0,2.5$
Parameter=2.0,3.0$
Parameter=0.0$

[cost]
$Cost SetupCost =120,

HoldingCost =0.04,
BacklogCost =0.09,
LostSaleCost=0.9,
ReviewCost =0.05$

[priceBreaks]
$Purchase nOfPurchaseBreaks=0, UnitPrice = 2.5$
$Sales nOfSalesBreaks =0, UnitPrice = 3.6$
[backorder]
$BackOrder Case=3, time 1=2.0, time2=7.0$
[END]
[EndOfModel]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Description of the Variables Used in Model Description File

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Block Problem

M o d el: simulation project name.

M odeler : modeler name.

D a te : project date, MM/DD/YY.

nOfProducts : number of products in inventory system.

Product(i): name of /th product.

InvType(i): type of inventory control of /th product, the following codes are used:

(1) continuous review.

(2) periodic review.

(3) production problem with continuous review.

Block Design

DesignType : type of experimental design used, the following codes are used:

(1) orthogonal design.

(2) central composite design.

(3) incremental design.

nOfReplications : number of replications (n) made in experimental design.

nOfCells : number of rows in design matrix.

SimulationLength : length of the simulation run in unit of time.

Block Orthogonal

Option : experimental design option, the following codes are used:

(1) contruet a common experimental design for all products.

(2) seperate design for each product.

nOfSSLevels: number of levels for (5).

nOfsLevels: number of levels for (.v).

nOftLevels: number of levels for (t).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

nOfrateLevels : number o f levels for production rate.

Block Incremental

nOflncrements : number of increments (iterations) used.

SSStart(i): starting point of (S) for /th product.

SSIncrem ent(i): increment in (S) for /th product.

sStart(i): starting point of (.v) for /th product.

slncrem ent(i): increment in (.v) for /th product.

tStart(i) : starting point of (f) for /th product.

tlncrenw nt(i): increment i (t) for /th product.

rateStart(i): starting point of production rate for /th product.

ratelncrement(i): increment in production rate for /th product.

Block FactorLevels

SSValues(i): S values for /th product.

a'Values(i): s values fo r/th product.

tValues(i): t values fo r/th product.

rateValues(i): production rate values for /th product.

Block ReuVariables

nOJVariables(i): number of variables that will be used in regression for product;.

RegPrintvar(ij) : name of jih regression variable /th for product.

Varlndexes(ij) : index number of yth regression variable for /th product.

Block SubstitutionMatrix

UseSubstitution: " Y " : there is substituion, " N " : no substitution.

pro(ij): the probability of substituting z'th product by y'th product.

qcflij): amount multiplier betw een/th product and yth product.

SelectionRule: selection criterion to select product to substitute.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

(1) expected waiting time,

(2) total price.

Blo.ckJDistribiiti.on for standard distributions

distribution: name of distribution.

param eter(i): /th parameter of the selected distribution.

Block Distribution for user-defined empirical distributions

x(i): A'value

p(x): probability of x , p (x).

Block Cost

SetupC ost: setup cost, $ per setup.

HoldingCost: holding cost, $ per item per unit of time.

BacklogCost: backlog cost, $ per item per unit of time.

LostSaleCost: cancellation cost, $ per item.

ReviewCost: cost of reviewing inventory level, $ per review.

Block PurchasePrice/SellingPrice

nOJBreaks: number of price breaks.

UnitPrice: price per unit.

Block PurchaseBrenks/SellinpBreaks

Frorn(i): lower limit of /th break in units.

To(i): upper limit of /th break in units.

Price(i): unit price within /th break.

Block Backlog

Case: backlog policy type. Customer may cancel his order when it is backlogged

depending upon:

(1) a constant probability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2) number of units backlogged.

(3) expected waiting time.

probability: probability of cancelling order.

RejectPoint: reject point for number of units backlogged.

TimeI: lower limit of expected waiting time.

Time2: upper limit of expected waiting time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

SLAM II Code of the Example Generated by
the Program Generator

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following is the list of SLAM II code generated by the program generator

for the example given in Chapter VI.

GEN,RIZVAN,INVENTORYM ODEL, 1/12/92,1,NO, YES,YES/YES,YES, YES/F, 13
2;

LIMITS,4,9,100;
ARRAY(1,3)/2 ,1,3;Backorder cases (CASE)
ARRAY(2,3)/0,0.8,0;Probability of cancellation (P)
ARRAY(3,3)/100,(),0;Threashold value(units backordered)for balking(CUT)
ARRAY(4,3)/l,2,3;Type of inventory control (INV_TYPE)
ARRAY(5,3);Current Inventory Level(INV_POS)
ARRAY(6,3);number of customer orders (N_ORDERS)
ARRAY(7,3);number of setups (N_SETUPS)
ARRAY(8,3);number of lost sales (N_LOST)
ARRAY(9,3);number of customer orders satisfied (N_SATISFIED)
ARRAY(10,3);amount of lost salesfunits] (TOTAL_LOST)
ARRAY(1 l,3);maximum inventory level (SCL)
ARRAY(12,3);reorder point (RPT)
ARRAY(13,3);review period (PERIOD)
ARRAY(14,3);production rate (RATE)
ARRAY(15,3);whether or not place new order (CAN_ORDER)
ARRAY(16,3);time that the last order is placed
ARRAY(17,3);Earliest time that product is available
ARRAY(18,3);Order quantity (ORDER_QT)
ARRAY(19,3);Number of reviews (N_REVIEW)
ARRAY(20,3);Last time of customer balking
ARRAY(21,3);Satisfied Quantity (SATISFIED_QT)
ARRAY(22,3)/3.464967e-22,3.464967e-22,3.464967e-22;Current Backlog Level
EQUIVALENCE/XX(1),INDEX;
EQUIVALENCE/ATRIB(1), ARRIVAL;
EQUIVALENCE/ATRIB(2),AMOUNT;
EQUIVALENCE/ATRIB(3),PROD_NO;
EQUIVALENCE/ATRIB(4),EXTW AIT;
EQUIVALENCE/ATRIB(5),SUB_AMOUNT;
EQUIVALENCE/ATRIB(fi),CRITERIA;
EQUIVALENCE/ATRIB(7),SUB_PRNO;
EQUIVALENCE/ATRIB(8),REMAIN;
EQUIVALENCE/USERF(6),NEXT;
EQUIVALENCE/USERF(7),PRO;
EQUIVALENCE/USERF(8),COEF;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQUIVALENCE/USERF(9),GETPR0;
EQUI VALENCE/USERF(10),GETTIME;
EQUIVALENCE/ARRAY(1,PR0D_N0),CASE;
EQUIVALENCE/ARRAY(2,PR0D_N0),P;
EQUIV ALENCE/ARRA Y (3 ,PR 0D _N 0),C U T ;
EQUIVALENCE/ARRAY(1,SUB_PRN0),SUB_CASE;
EQUIVALENCE/ARRAY(2,SUB_PRN0),SUB_P;
EQUIVALENCE/ARRAY(3,SUB_PRN0),SUB_CUT;
EQUIVALENCE/ARRAY(4,PR0D_N0),INV_TYPE;
EQUIVALENCE/ARRAY(4,SUB_PRN0),SUB_INVTYPE;
EQ UIVA LENCE/A RRAY (5,PR0D_N 0),INV _P0S;
EQUIVALENCE/ARRAY(5,SUB_PRN0),SUB_INV_P0S;
EQUIVALENCE/ARRAY(6,PR0D_N0),N_0RDERS;
EQUIVALENCE/ARRAY(7,PR0D_N0),N_SETUP;
EQ UIVA LENCE/A RRAY (8,PR0D_N 0),N _L0ST;
EQUIV ALENCE/ARRAY(9,PR0D_N0),N_SATISFIED;
EQUIVALENCE/ARRAY(10,PROD_NO),TOTAL_LOST;
EQUIVALENCE/ARRA Y(11 ,PROD_NO),SCL;
EQUI V ALEN CE/ARRA Y (12,PROD_NO),RPT;
EQUIVALENCE/ARRA Y(13,PROD_NO),PERIOD;
EQUIV ALENCE/ARRA Y(14,PROD_NO),R ATE;
EQUIVALENCE/ARRAY (15,PROD_NO),CAN_ORDER;
EQUIVALENCE/ARR A Y(16,PROD_NO),LAST_ORDER_TIME;
EQUIV ALENCE/ARRA Y(17,SUB_PRNO),SUB_A V AIL ABLE_TIME;
EQUIV ALENCE/ARRA Y(17,PROD_NO), A V A1LABLE_TIME;
EQUIV ALENCE/ARRAY(18,PROD_NO),ORDER_QT;
EQUIVALENCE/ARRA Y (2 1 ,PROD_NO),SATISFIED_QT;
EQUIVALENCE/ARRAY(19,PROD_NO),NREVIEW ;
EQUIV ALENCE/USERF(2),DEM AND_SIZE;
EQUIVALENCE/USERF(3),LEAD_TIME;
EQUIVALENCE/USERF(5),QUANTITY;
EQUIVALENCE/USERF(4),PROCESSING;
EQUIVALENCE/XX(2),PRONOTEMP;
EQUIVALENCE/XX(3),AMOUNTTEMP;
EQUIVALENCE/ARRAY(22,PROD_NO),BACKLOG;
EQUIVALENCE/ARRA Y (22,1), BACKLOG 1;
EQUIVALENCE/ARRAY(22,2),BACKLOG2;
EQUIV ALENCE/ARRA Y(22,3),BACKLOG3;
EQUIV ALENCE/USERF(101), ARRIVAL 1;
EQUI VALENCE/USERF(102), ARRIV AL2;
EQUIVALENCE/USERF(1()3),ARRIVAL3;
EQUIVALENCE/ARRAY(13,2),PERIOD2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

; Time-persistent variables
TIM ST,BACKL0G1 .BACKLOG LEVEL 1
TIMST.BACKLOG2,BACKLOG LEVEL2
TIMST.BACKLOG3,BACKLOG LEVEL3

; Statistics based on observations
STA T.l,SAFETY STOCK 1
STAT,2,SAFETY STOCK2
STAT,3,SAFETY STOCK3
STAT,4,TIME BET. CANCEL 1
STAT,5,TIME BET. CANCEL2
STAT,6,TIME BET. CANCEL3
STAT,7,CYCLE LENGTH 1
STAT,8,CYCLE LENGTH2
STAT,9 ,CYCLE LENGTH3

; Beginning of SLAM II Network
NETWORK;

; ResourceBlocks
RES O U RCE/1 ,ITEM 1 (100), 1;
RESOURCE/2,ITEM 2(100),2;
RESOURCE/3,ITEM 3(100),3;
RESOURCE/4,SERVER(3),4;

C R EA TE,A R RIV A Ll,0,l„;Create Customers for Product 1
ASSIGN,PROD_NO= 1;
ACT,„CONT;
CREATE,ARRIVAL2,0,2„;Create Customers for Product 2
ASSIGN, PROD_NO=2;
ACT,„CONT;
CREATE,ARRIVAL3,0,3„;Create Customers for Product 3
ASSIGN,PROD_NO=3;
ACT,„CONT;

CONT ASSIGN,AMOUNT=DEMAND_SIZE;
ASSIGN,N_ORDERS = N_ORDERS + 1;
EVENT(1); Update demand statistics
ASSIGN,II=PROD_NO;
G O O N .l;
ACT„NNRSC(II).EQ.O,OTHR;
ACT„NNRSC(II).GT.0,KEEP;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

; Demand will be satisfied
KEEP AS S IGN,N_S ATISFIED=N_S ATISFIED+1;

ASSIGN,SATISFIED_QT=SATISFIED_QT+AM OUNT;
EVENT(3); Update statistics on revenues
GOON,2;
ACT,„UPDT;
ACT,„SEPR;

QUE1 ASSIGN,BACKLOG=BACKLOG+AMOUNT;
AW AIT(PROD_N O = 1,3),PROD_NO/AMOUNT;
ASSIGN, BACKLOG=BACKLOG-AMOUNT;
AW AIT(4),SERVER/1;
ACT,PROCESSING,,;
FREE,SERVER/1;
TERM;

UPDT ASSIGN,INV_POS = INV_POS - AMOUNT;
G O O N ,l;
ACT,, IN V_TY PE. EQ. 1 .OR.INV_TYPE.EQ.3,CHOD;
ACT,,,;
TERM;

CHOD ASSIGN,NREVIEW=NREVIEW+1;
G O O N ,l;
ACT„INV_POS.LE.RPT.AND.CAN_ORDER.EQ. l,PTOD;
ACT„INV_POS.GT.RPT.OR.CAN_ORDER.EQ.O,;
TERM;

PTOD GO O N ,l;
ACT„INV_TYPE,EQ.3,PROD;
ACT„INV_TYPE.EQ. 1 ,BULK;

; Split the demand into two orders
SEPR ASSIGN,II=PROD_NO;

G O O N ,l;
ACT„NNRSC(II).GT.O.AND.AMOUNT.GT.NNRSC(II),SPOK;
ACT„NNRSC(II).LE.O.OR.AMOUNT.LE.NNRSC(II),QUE1;

; Separation of the order
SPOK ASSIGN,II = PROD_NO;

ASSIGN,REMAIN = AM OUNT - NNRSC(II);
ASSIGN,AM OUNT = NNRSC(II);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACT,„QUE1;
ACT,0.0000001 „QUE2;

QUE2 ASSIGN,BACKLOG=BACKLOG+REMAIN;
AWAIT(PROD_NO= 1,3),PROD_NO/AMOUNT;
ASSIGN,BACKLOG=BACKLOG-REMAIN;
AW AIT(4),SERVER/1;
ACT,PROCESSING,,;
FREE,SERVER/1;
TERM;

; Handling Backlog Cases
CHBL GO O N ,l;

ACT„CASE.EQ. 1 ,CAS 1;
ACT„CASE.EQ.2,CAS2;
ACT„CASE.EQ.3,CAS3;

CAS1 GO O N ,l;
ACT„P,LOSE;
ACT,, 1-P,KEEP;

CAS2 G O O N ,l;
A C T,,-1 *INV_POS.GE.CUT,LOSE;
A C T,,-1 *INV_POS.LT.CUT,KEEP;

CAS3 ASSIGN,PRONOTEMP = PROD_NO;
ASSIGN,AM OUNTTEM P = AMOUNT;
ASSIGN, EXTW AIT = GETTIME;
ASSIGN,P = GETPRO;
ACT,„CAS1;

; Try to substitute with another product
OTHR GOON,2;

ACT,„PR1;
ACT,„PR2;

PR1 ASSIGN,INDEX = 1;
ACT,„GENR;

PR2 ASSIGN,INDEX = 2;
ACT,„GENR;

GENR ASSIGN,SUB_PRNO = NEXT;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

ASSIGN,PRONOTEM P = PROD_NO;
ASSIGN,AM OUNTTEM P = AMOUNT;
ASSIGN,A VAILABLE_TIME = GETTIME;
ASSIGN,PRONOTEMP = SUB_PRNO;
ASSIGN,SUB_AM OUNT = AMOUNT*COEF;
ASSIGN,AM OUNTTEM P = SUB_AMOUNT;
ASSIGN, SUB_AVAILABLE_TIM E = GETTIME;
G O O N ,l;
ACT„AVAILABLE_TIM E.GT.SUB_AVAILABLE_TIM E,CHK1;
ACT,„A1;

; check whether customer wants to substitute
CHK1 GO ON ,l;

ACT„PRO,A2;
A C T „l-PR O ,A l;

;Assignment of available time as criterion

A1 ASSIGN,CRITERIA = 10.0E20;
ACT,„ACCU;

A2 ASSIGN,CRITERIA = SUB_AVAILABLE_TIME;
ACT,„ACCU;

; Selection of the product for substitution
ACCU ACCUMULATE,2,2,LOW (7), 1;

ACT„CR1TERIA.EQ. 10.0E20,CHBL;No Substitution
ACT„CRITERIA.NE.10.0E20,CHAV;Check availability

;Checking the availability of the selected product for substitution
CHAV ASSIGN,II=SUB_PRNO;

G O O N ,l;
ACT„NNRSC(II).GE.SUB_AM OUNT,ACSU;Accept Substitution
ACT„NNRSC(II).LT.SUB_AM OUNT,CHSB;

; Handle Backlog Situation
CHSB GO O N ,l;

ACT„SUB_CASE.EQ. 1 ,SCA 1;
ACT„SUB_CASE.EQ.2,SCA2;
ACT„SUB_CASE.EQ.3,SCA3;

SCA1 GO O N ,l;
ACT„SUB_P,CHBL;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACT„1-SUB_P,ACSU;

SCA2 G 00N ,1 ;
A C T,,-1 *INV_POS.GE.SUB_CUT,CHBL;
A C T,,-1* INV_POS. LT. S UB_CUT, ACS U;

SCA3 ASSIGN,PRONOTEMP = SUB_PRNO;
ASSIGN,AM OUNTTEM P = SUB_AMOUNT;
ASSIGN,EXTW AIT = GETTIME;
ASSIGN,SUB_P = GETPRO;
ACT,„SCA1;

; Accept Substitution
ACSU EVENT(4); Update statistcs on substitution

ASSIGN,PROD_NO=SUB_PRNO;
ASSIGN, AMOUNT=SUB_AMOUNT;
ACT,,,KEEP;

; Customer cancels the order
LOSE ASSIGN,N_LOST = N_LOST + 1;

ASSIGN,TOTAL_LOST = TOTAL_LOST + AMOUNT;
EVENT(6); Collect stat. on time between cancels
TERM;

CREATE,PERIOD2,0„,;Review Inventory Level of P roduct: ITEM2
ASSIGN, PROD_NO=2,

NREV IEW=NRE V IEW +1;
ACT,„CPER;

; Periodic Review for ITEM2
CPER GOON, 1 ;Decide to a new setup

ACT,,INV_POS.LE.RPT,ORD;Place a new order
ACT„INV_POS.GT.RPT,TERM ;Do not place any order

ORD ASSIGN, ORDER_QT = QUANTITY,
N_SETUP = N_SETUP + 1,
LAST_ORDER_TIME = TNOW;

EVENT(2);Calculate Purchase Cost
ACT,LEAD_TIME„;Lead time of new order arrival
EVENT(8); Collect stat. on cycle length
EVENT(5); Collect stat. on safety stock
ALTER, ITEM2/ORDER_QT;
ASSIGN,INV_POS = INV_POS + ORDER_QT;

TERM TERM;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

; Start production, or supply
PROD ASSIGN,N_SETUP=N_SETUP+1;

ASSIGN,CAN_ORDER = 0;
ASSIGN, LAST_ORDER_TIME = TNOW;
ACT,LEAD_TIME„;
EVENT(8); Collect stat. on cycle length
EVENT(5); Collect stat. on safety stock

CPRO G O O N ,l;
ACT„INV_POS.GE.SCL,STOP;
ACT, 1, IN V_POS. LT. S CL,;
ALTER,PROD_NO/RATE;
ASSIGN, INV_POS=INV_POS+RATE;
ASSIGN, ORDER_QT = RATE;
EVENT(2); Update total purchase cost
ACT,,,CPRO;

STOP ASSIGN,CAN_ORDER = 1;
TERM;

; (Continuous Review) Place a new order for ITEM 1
BULK ASSIGN,ORDER_QT = QUANTITY;

ASSIGN,N_SETUP = N_SETUP + 1;
ASSIGN,CAN_ORDER = 0;
ASSIGN,LAST_ORDER_TIM E = TNOW;
EVENT(2);
ACT,LEAD_TIM E„;
EVENT(8); Collect stat. on cycle length
EVENT(5); Collect stat. on safety stock
ALTER,ITEM l/ORDER_QT;
ASSIGN,INV_POS = INV_POS + ORDER_QT;
ASSIGN,CAN_ORDER = 1;
TERM;

ENDNETWORK;
INITIALIZE,0,720, YES/1, YES, YES;
SEEDS,0(1)/YES,0(2)/YES;
FIN;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

User's Guide for the Integrated Simulation Environment

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Computer requirements: The model development environment runs in the user-

friendly Windows operating system. Windows 3.0, or Windows 3.1 must be installed

on the PC prior to running the program. A Windows compatible mouse is suggested

in order to take the advantage of the mouse-driven operation facility. At least 2M

RAM memory is recommended to be able to run the program without any low in

memory problem.

Basic features: The program has multiple a document interface (MDI) that

allows the user to edit more than one file at once, and switch from one to another

instantly. The program is hosted by a main window having top-down menu options.

Appropriate dialog boxes are displayed at the user request to collect data interactively.

By running multiple copies of the program the user can work on more than one project

at the same time. Access to other programs in the system without quitting the

generator is enabled through the operating system when needed.

Opening a new, or existing project file: Project in the program indicates a

simulation project that consists of model description file, SLAM II code file,

experimental design file, regression input file, and simulation summary report file. To

start a new project:

1. Choose Project, and New Project options respectively from the menu.

2. A simulation model definition dialog box will be displayed to initiate the

interactive data collection process.

3. Press the Define Problem button to display the dialog box to enter data.

4. Type first Modeler Name, Model Name, Date in the appropriate fields if

you want to change the default values.

5. Type Item No, Item Name fields for each product in the problem along with

checking the desired Inventory Control Type. Then, press Add button.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Press Ok to save data, or Cancel not to save changes.

File names associated with a project can be changed by selecting Options, File

Locations from the menu that displays the corresponding dialog box (Figure 44).

Type appropriate file names in the boxes, and press Ok button to validate the changes

made.

Working on text files: From File menu select New to start new text file, and

select Open to open an existing file. A file dialog box will appear to allow you to

select a file among the list of files in the current directory. You might change the

current directory by simply a double click on a particular directory name. You may

cancel this process using the Cancel button. If a file is selected, the content of the file

will be displayed on the screen. The program editor is fully equipped with cut, paste

facility, searching specify text, and so on. Model description file may be edited

directly through the program editor. After changes are made, the file can be saved by

selecting File, and Save options in order from the menu. If file is new, you should

supply a file name through the file dialog box.

Outlining problem: This step is to specify how many products exist in the

system, and their corresponding inventory control mechanism. This step must be done

first for new projects as other steps (i.e., buttons) are automatically disabled in the

beginning. Pushing Define Problem button causes the corresponding dialog box to be

displayed on the screen (Figure 33). Model Name, Modeler, Date fields should be

typed in the indicated boxes. Product no, product name, and control mechanism are

specified for each product. Using Add button adds the current product to the list.

Press Ok to save changes.

Experimental design: There are three user dialog boxes to get data, and form a

experimental design matrix for controllable factors, i.e., reorder level, reorder point,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and so on. After pressing Experimental Design button from the model definition

dialog box, there are three options available to the user as design option in the first

dialog box (Figure 34). Incremental design is a design in which the variable value is

increased steadily by an increment. This option is for designs required to perform

some runs along the steepest ascent. Separate, and Combined design options are for

orthogonal design. When Separate Design is selected, individual design matrices are

created for each product. On the other hand Combined Design option creates a single

design matrix for all products resulting in greater number of runs since number of the

factors is increased. Simulation length is also entered in the first design dialog box.

To define design parameters, press Go Experimental Design button. One of the two

different dialog boxes is displayed based on the user selection. These are:

1. Incremental design: In this dialog box (Figure 36) starting point, and

increment for each factor, and an overall number of increments are acquired from the

user. By pressing Ok button, corresponding design matrix is written to the

experimental design file.

2. Orthogonal design: Full, or fractional factorial design, and central

composite designs are constructed through the dialog box in Figure 35. Choose one

of the design options, full, fractional, or central composite design. Supply factor levels

for each inventory policy parameter. Finally, press Ok button, to create the design

matrix.

Regression variables: This facility is to specify the name of the variables for

regression analysis, eventually for the optimization of the output. Press Regression

Variables button to display the dialog box in Figure 37. Select the variables that you

want to write the regression analysis input file, and then press Ok button to save

changes, Cancel otherwise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Substitution matrix: This button is to specify the substitution matrix for a given

problem. An initial dialog box will appear to ask whether there is substitution in the

model. If you check the question box, then you may enter the substitution matrix

using Define Substitution button, and display the dialog box in Figure 38. Enter

probability of substitution, and amount multiplier between product pairs, and update

the list using A M button. When you are done, press Ok to save changes, Cancel

otherwise.

Specifying statistical distributions: You can assign statistical distributions to

customer arrivals, demand size, and lead time. When you press any of the buttons to

specify these parameters, a dialog box showing a list of available statistical

distributions will appear. Choose a distribution, and specify the distribution

parameters, as in the example dialog box in Figure 40. You may also specify, a user-

defined empirical distribution when any of the well-known distribution functions does

not fit your data well. Use the dialog box in Figure 41 to enter an empirical

distribution.

Entering price breaks: As an option you may enter a single unit price for

purchasing price, and selling price, or enter multiple price breaks for any of the items

in the model. Use the following steps to enter price breaks:

1. Press purchasing price, or selling price button.

2. A dialog box will appear to ask you whether you have a single price, or

price breaks. If you do not have price breaks, do not check Price breaks check box,

and type your unit price, and press Ok.

3. If you check Price breaks, then press Define Price Breaks button, and enter

price breaks using the dialog box in Figure 42.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Entering backlog policy: Each product in the model may have a different

backlog policy. Specify a backlog policy for a product, press Backlog policy button.

A dialog box will appear (Figure 43), you will have three options as backlog policy:

1. You may define a certain probability for customer renege when customer is

backordered.

2. You may set an upper limit for the number of units backordered above

which customers leave the system without being their orders are met.

3. You may set a lower, and upper limit for expected waiting time to determine

the probability of customer renege.

Generating SLAM II code: Upon completion of data entry, you save your

model description using the Save button on the M odel Definition Box. To generate

SLAM II code for the problem, select Simulation, and Generate from the menu. This

will run the program generator automatically by displaying its window. Press

Generate button to initiate code generation process. After completion of the code

generation, The list of the SLAM II code will be displayed in the bottom window. You

may browse the code using the scroller of the window, or loading the SLAM II file

onto the program editor after exiting the program generator by pressing Exit button.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E

Terminology Used in
Object-Oriented Programming (OOP)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Function: Building blocks of C++ program within which all program activities

occur. It has the same functionality as FORTRAN subroutines.

Class: Its declaration forms a new type that links functions and data. This new

type is then used to declare objects of that class. When we say "Apple is a tree.",

"tree" defines a class type in that sentence. Classes provide mechanisms for data

abstraction, and information hiding. Every class in OOP has three sections describing

the accessibility to its members from outside users (see Figure 29).

C lass D efin ition

private:
data and functions

protected:
data ;md functions

public:
data ;tnd functions

Figure 30. Prototype of a Class.

Private and protected members of a class are accessible to only its members

while public members can be accessible to other parts of the program. Protected

members are also available to inherited classes. Two types of classes used in OOP as

follows:

1. Instance classes which can be instantiated to create usable objects. When all

functions in a class are clearly described at least by default behavior, that class

becomes an instance class.

2. Abstract classes serve as an umbrella for related classes. As such, it has few

if any data members, and some or all of its member functions are pure virtual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functions. Pure virtual functions serve as a placeholder for the functions with the same

name in classes derived from that class.

Object: Objects are instances of pre-defined classes. When they are created,

they take up space in memory. W hat an object should do is described by its classes.

"Apple is a tree." is just a short way of saying "Apple is an instance of class tree.". In

OOP, objects communicate with each other via messages. When we send a message to

an object, it performs internally particular operations designed for that message.

Inheritance: Inheritance is the process by which one class (i.e., derived class)

can access the properties of another class (i.e., base class). It is an important

mechanism in OOP because it supports the concept of classification and reuse of code

created in base class. Knowledge and functions in the system become more

manageable by using inheritance between related classes and putting them in a class

hierarchy. Figure 2 shows two classes derived form a base class. Inheritance protocol

is used to specify what members of a base class can be transferred to the derived class.

inheritance protocol

Derived C lass Derived C lass

Base Ckiss

Figure 31. Class Hierarchy and Inheritance.

C++ allows multiple inheritance that a class can take more than one class as

base class when it is inherited.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Encapsulation: It is the mechanism which prevents other parts o f program from

changing the members of a class. Placing data members and functions into private and

protected parts of a class prevents any accidental change.

Polymorphism: It is characterized by the phrase "one interface, multiple

implementation". In OOP one function name can be used for several related but

slightly different purposes. In essence, polymorphism permits one interface for a

general class of actions. Virtual functions, function and operator overloading are used

to achieve polymorphism.

Virtual functions: A virtual function is defined as a function which can be

overridden by its derived class versions. When a base class does not give any

definition of a function but prototype of the same function, that function is said to be

pure virtual function. In pure virtual function case, all classes derived from the base

class must give their own definition of the pure virtual function. Calling the right

version during run time is the responsibility of the compiler. Figure 3 is the illustration

of the take o ff method as a virtual function in the derived classes of flying objects, i.e.,

airplane and helicopter.

take o ff m ethod

flying objects

ttike o f f im m ediately

helicopter

t.ike o f f gradually

airplane

Figure 32. Describing the take o ff Method as a Virtual Function
in the FlyingObjects Class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function and class templates: They are also called generic types, to construct a

family of related functions or classes which can work with many types of objects. For

instance, you may create a generic function to write any type of object to an external

file. Generic classes and functions decrease the size of the program code and simplify

the program.

Function and operator overloading: Two or more functions can share the same

name as long as their argument lists are different. In this situation, functions that share

the same name are said to be overloaded, and the process is referred to as function

overloading.

By the same token, standard operators used in computer languages (e.g., =, +)

can have different meaning relative to a specific class. Overloading mechanism is

another way in OOP to deal with complexity and achieve polymorphism in large

software systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix F

Program Screens

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENSLAM I I -c:\project\inv.prj

Fi e Edit Search Simulation Project Options Window Help

Save

General

Inventor
1 n
2 n
3 17

Simulation Model Definition

MODEL

MODELER

DATE

INVENTORYMODEL

RIZVAN

1/12/92

ITEM NO 1

ITEM NAME ITEM1

Inventory Control Cases

< f {Continuous Review |
> Periodic Review
> Production Rate-Continuous Review

Defined Inventory Items

CO Islflll N 0 0 ©SlRiE VIEW
ITEM2 PERIODIC_REVIEW
ITEM3 PRODUCTION

CM SKfSS
1 - 2 -

c:\project\inv.mod c:\project\inv.dat

 ---------’T?

□K

C an cel

'H elp

Add

Delete

Figure 33. Dialog Box for Defining Control Mechanisms for Products.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENSLAM II -c:\project\inv.prj

File Edit Search Simulation Eroject Options Window Help

Simulation Model Definition

Save

General Data

: j r . v r n .v t

Design Option

4 Separate Design
> Combined Design
> incremental Design

Simulation Length [time] 720

Go Experimental Design

inventory Items
1 ITEM1 CONTINUQUS_REVIEW
2 ITEM2 PERIODIC_REVIEW
3 ITEM3 PRODUCTION

m
:iSSHT

1 - 2 -

c:\project\inv.mod c\projed \inv.dat

OK

Cancel

Help

Figure 34. Dialog Box for Selecting Experimental Design Type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENSLAM I I -c:\projecttinv.prj
Fi e Edit Search Simulation Project Options Window Help

Ge

Invi

Sim Experimental Design

Design Options

Number of Replications

Factors and Levels

Max. Inv Level (S) [units]
800-1000

Reorder point (s) [units]
10 0-20 0|
Time period to review inventory level

Production rate [units/time]

1 - 2 -

c:\project\inv.mod c:\project\inv.dat

Product No 1

Inventory Control

<♦ Full Factorial Design
> Fractional Factorial Design
> Central Composite Design

OK

C ancel

Help

Qefine

Next

OK

incel

lelp

Figure 35. Dialog Box for Defining Parameters of Orthogonal Experimental Design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

GENSLAM I I -c:\projectiinv.prj

£i e Edit Search Simulation Project Options Window Help

Simulation Model Definition

Save

General

r r z i i r i f n HMn1
Experimental Design

Design Option

> Separate Design
> Combined Design

Number of Increments

nventory Item_________

ID

Item No
Inventory Control

Factors

[Text

Starting Point Increment

Max. Inv. Level

Reorder Point

Time Period

Production Rate

750 10

100 -5

OK

Cancel

Help

Define

Next

1- , 2 ' .
c:\project\inv.mod c:\project\inv.dat

Figure 36. Dialog Box for Defining Increments for Inventory Policy Parameters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENSLAM I I -c:\project\inv.prj

Fi e Edit Search Simulation Project Options Window Help

Simulation Model Definition

Save ! iPvG-it Help

General Data

Define Problem
■M&i# 7-1vddS

.-jmm&esmi

Available Variables
MAX_LEVEL
REORDERPOINT
PERIOD
IPRODlRATiE
AVE_HOLDINGCOST
AVE_B ACKLO G CO ST

leaning

production rate
[unit/time]

Selected Variables Index
MAX_LEVEL(1)
REORDERPOINT(I)
PERIOD(1)
PROD_RATE(1)
PERIOD(2)_________

1 -> 1 t
1 -> 2
1 -> 3 —
1 -> A
2 -> 3 4-

OK

C an cel

Help

Add

Del

1- , 2 ' .
c:\projed\inv.mod c:\project\inv.dat

Figure 37. Dialog Box for Selecting System Variables for Regression Analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENSLAM I I -c:\project\inv.prj

File Edit Search Simulation Project Options Window Help

Is There Substitution ?

| td Use Substitution

Selection Based On

<? Expected waiting time
> Total selling price

Go Define

Model Definition

Help

e Problem

ental Design

OK

[
In vi

m

I j

Substitution of

Item (No)

by Item(No)

Probability

Amount Coefficient

O.G

1.0|

From To c.f
1 2 0.8 1 *
1 3 0.6 1
2 1 0.7 1 —

2 3 0.0 1
3 1 0.7 1.2 *

HiW

OK

C an cel

Help

Add

Del

1- , 2\
c:\project\inv.mod c:\project\inv.dat

Figure 38. Dialog Box for Substitution Matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

GENSLAM II -c:\projecttinv.prj

File Edit Search Simulation Project Options Window Help

Simulation Model Definition

Define Distributions

iCustomer Arrivals

Demand Size

Lead Time

Order Processing Time

Cost - Price - Backorder Policy

Cost Elements

Purchase Price

Selling Price

Backorder Policy

OK [C a n ce l

□

Help

Help

gn

les

H
/IEW

1- , 2\
c:\project\inv.mod c:\project\inv.dat

Figure 39. Main Dialog Box for Product Information Entry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

GENSLAM II -c:\project\inv.prj
f i e Edit Search Simulation Project Options Window Help

Simulation Model Definition

Save

Product Data

Define Distributions

Customer Arrivals

Demand Size

Lead Time

Select Distribution - ITEM1

I NORMAL
EXPONENTIAL
CONSTANT
USER-DEFINED DISCRETE
UNIFORM

pppssapiiiLOGNORMA
ERLANG
BETA

exponential

OK

gn

les

it- .. .- .________ ;

Mean

Help

H i

| / 0 K

^ C a n c e l

Help

1 - . 2 -
c:\project\inv.mod c:\project\inv.dat

Figure 40. Dialog Box for Distribution Parameters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENSLAM I I -c:\projecttinv.prj

File Edit Search Simulation Project Options Window Help

Simulation Model Definition

Save Help

Product Data

Define Distributions

Select Distribution - ITEM1 gn

NORMAL
EXPONENTIAL
CONSTANT

Distribution Paramater:
UNIFORM
LOGNORMAL
ERLANG
BETA P(x)

user-defined
Cumulative p(x) Help

Mean
S h o wStd. Deeviation

P &
0.2
0.4
0.4

A d d

D e l e t e

c:\project\inv.mod cApi

Figure 41. Dialog Box for User-Defined Empirical Distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENSLAM II -c:\project\inv.prj
File Edit Search Simulation Project Options Window Help

Simulation Model Definition

Purchase - Price - ITEM 1

Help

Price Breaks

Unit Price [S/unit]

OK

fC ance l

Define Price Breaks

Price Break Intervals

From

To

Price(t)

I

From To Price

0
601
1001

600
1000
3000

1.0
0.75
0.60

1 - 2 -

c:\project\inv.mod c:\project\inv.dat

IV ■

OK

^ancelj

Help

A d d

Delete

Figure 42. Dialog Box for Price Breaks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

GENSLAM I I -c:\projecttinv.prj

£i e Edit Search Simulation Eroject Options Window Help

Simu ation Model Definition

Product Data

Define Distributions

Order Cancellation Depends On Data

> Depends on # of units backlogged Cut Point[units]

> Depends on expected waiting time From To

< t Depends on a constant probability (p) Probability 0.3|

OK C ancel Help

OK

Backorder Policy

SJTCancel Help

1- , 2 ’ .
c:\project\inv.mod c:\project\inv.dat

Figure 43. Dialog Box for Backlog Policy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GENSLAM II -c:\projecttinv.prj
File Edit Search Simulation Project Options Window Help

Project Files-

Files

Model File
|INV:MOD|

INV.DAT

Experimental Design File
DESIGN.DAT

Regression Report File
REG.OUT

Summary Report File
INV.OUT

Cancel Help

Simulation
Model

Definition
c:\project\inv.mod c:\projed\inv.dat

Figure 44. Dialog Box for Project File Names.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

• v . .‘'^G E N S LA M II -c:\project\inv.pri,
f ile Edit Search Simulation Project Options Window Help

2 - c:\project\inv.dat

[ITEM1]
[distributions]

SArrivals Distribution-exponei
SDemand DIstribution='user-c

SLeadtime Distribution='const;
SProcessing Distribution=’norm

[cost]
SCost Setup Cost =150,

HoldingCost =0.01,
Backlog Cost =0.02.
xLostSale Cost =0.2,
Review Cost =2.5$

[pricebreaks]
SPurchase nOfPurchaseBreak
SPurchaseBreaks

From(1)=0, To(1)=6
From(2)=601, To(2)=
From(3)=1001,To(3)=

RESOURCE/3,ITEM3(100),3
RESOURCE/4,SERVER(3),<i

CREATE,ARR!VAL1,0.1„;Ci
ASSIGN,PR0D_N0=1;
ACT.,. CO NT;
CREATE,ARRIVAL2,0,2„;Ci
ASSIGN, PROD_NO=2;
ACT,,, CO NT;
CREATE,ARRIVAL3,0,3„;Ci
ASSIGN,PROD_NO=3;
ACT,,, CO NT;

CONT ASSIGN.AMOUNT = DE
ASSIGN,N_ORDERS = N_C
EVE NT, 1;
ASSIGN.II = PROD_NO;
GOON.1;
ACT„NNRSC(II).EQ.0,CHBI
ACT,, NNRSC(II). NE.0, KEEP

KEEP GOON.2;
ACT„.UPDT:
ACT,„SEPR;

I I
4-

Simulation
Model

Definition

3-
c:\project\debug.mod

Figure 45. Program Editor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Balci, O., & Nance, R. E. (1987). Simulation model development environments: A
research prototype. Journal of Operational Research Society. 38(8),753-763.

Biles, W. E., & Ozmen, H. T. (1987). Optimization of simulation responses in a
multicomputing environment. In A. Thesen (Ed.), Proceedings of the 1987
Winter Simulation Conference (pp. 402-407). Atlanta, GA: IEEE.

Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response
surfaces. New York: John Wiley & Sons, Inc.

Box, G. E. P., & Wilson, K. B. (1951). On the experimental attainment of optimum
conditions. Journal of the Roval Statistical Society. 13. 1-45.

Chaharbaghi, K. (1990). Using simulation to solve design and operational problems.
International Journal of Operations & Production Management. 10(9), 89-105.

Co, H. C., & Chen, S. K. (1988). Design of a model generator for simulation in
SLAM. Engineering Costs and Production Economics. 14. 188-198.

Cochran, J. K., & Chang, J. (1990). Optimization of multivariate simulation output
models using a group screening method. Computers & Industrial Engineering.
18(1), 95-103.

Crookes, J. G. (1987). Generators, generic models and methodology. Journal of
Operational Research Society. 38181. 765-768.

Datta, T. K., & Pal, A. K. (1990). A note on an inventory model with inventory-level-
dependent demand rate. Journal of Operational Research Society. 41(10), 971 -
975.

Douikidis, G. I. (1987). An anthology on the homology of simulation with artificial
intelligence. Journal of Operational Research Society. 38181. 701-712

Eckel, B. (1989). Using C++. Berkeley: McGraw-Hill Inc.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Farrell, W. (1977). Literature review and bibliography of simulation optimization. In
H. J. Highland (Ed.), Proceedings of the 1977 Winter Simulation Conference
(pp. 117-124). Gaitersburg, MD: IEEE.

Flitman, A. M., & Hurrion, R. D. (1987). Linking discrete-event simulation models
with expert systems. Journal of Operational Research Society. 38(8). 723-733.

Guasch, A., & Luker, P. A. (1990). SIMBIOS: Simulation based on icons
and objects. In V. Maolisetti (Ed.), Proceedings of the 1990 SCS
Multicor.ference (pp. 61-67). San Diego, CA: Society for Computer Simulation.

Haddock, J. (1987). An expert system framework based on a simulation
generator. Simulation. 48(2), 45-53.

Haddock, J. (1988, March). A simulation generator for flexible manufacturing systems
design and control. IEE Transactions, pp. 22-30.

Haddock, J., & O'Keefe, R. M. (1990). Using artificial intelligence to facilitate
manufacturing systems simulation. Computers & Industrial Engineering. 18(3),
275-283.

Herring, C. (1990). ModSim: A new object-oriented simulation language. In V.
Maolisetti (Ed.), Proceedings of the 1990 SCS Multiconference (pp. 55-60).
San Diego, CA: Society for Computer Simulation.

Ho, Y. C., & Cao, X. (1983). Perturbation analysis and optimization of queueing
networks. Journal of Optimization Theory and Applications. 40(4), 559-582.

Jordan, D. (1990). Implementation benefits of C++ language mechanisms.
Communications of the ACM . 33(9), 61 -64.

Koulamas, C. P. (1990). Optimal lot-sizing and machining economics. Journal of
Operational Research Society. 41(10). 943-952.

Kumar, S., & Arora, S. (1990). Optimal ordering policy for a multi-item, single
supplier system with constant demand rates. Journal of Operational Research
Society. 41.(4), 345-349.

Law, A. M., & Haider, S. W. (1989). Selecting simulation software for manufacturing
applications. In E. A. Nachal (Ed.), Proceedings of the 1989 Winter Simulation
Conference (pp. 29-32). W ashington, DC: IEEE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Law, A. M., & Kelton, W. D. (1991). Simulation modeling & analysis (2nd ed.). New
York: McGraw-Hill Inc.

Mauro, C. A., & Smith, D. E. (1982). The performance of two-stage group screening
in factor screening experiments. Technometrics. 24(4), 325-330.

Meketon, M. S. (1987). Optimization in simulation: A survey of recent results. In H. J.
Highland (Ed.), Proceedings of the 1987 Winter Simulation Conference (pp. 58-
67). Atlanta, GA: IEEE.

Microsoft Press. (1990). Micosoft Windows: Guide to programming. Redmond, WA:
Author.

Montgomery, D. C. (1984). Design and analysis of experiments (2nd ed). New York:
McGraw-Hill Inc.

Myers, R. H. (1976). Response surface methodology. Blacksburg, VA: Author.

Myers, R. H., Khuri, A. I., & Carter, W. H. (1989). Response surface methodology:
1966-1988. Technometrics. 31(2), 137-157.

O'Keefe, R. M. (1986). Simulation and expert systems - a taxonomy and some
examples. Simulation. 46(1), 10-16.

O'Keefe, R. M., & Roach, John W. (1987). Artificial intelligence approaches to
simulation. Journal of Operational Research Society. 38(81. 713-722.

Park, K. S. (1989). Stochastic (Q,r) inventory model with customer reneging.
Computers & Industrial Engineering. 16(41. 545-551.

Paul, R. J. (1991). Recent developments in simulation modeling. Journal of
Operational Research Society. 42(31. 217-226.

Paul, R. J., & Chew, S. E. (1987). Simulation modeling using an interactive
simulation program generator. Journal of Operational Research Society. 38(81.
735-752.

Raczynski, S. (1990). Graphical description and a program generator for
queuing models. Simulation. 55. 147-152.

Sabuncuoglu, I., & Hommertzheim, D. L. (1989). Expert simulation systems-recent
developments and applications in flexible manufacturing systems. Computers &
Industrial Engineering. 16(41. 575-585.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

Safizadeh, M. H. (1990). Optimization in simulation: Current issues and the future
outlook. Naval Reserach Logistics. 37. 807-825.

SAS Institute. ('1985'). SAS User's guide: Statistics. Cary, NC: Author.

Shannon, R. E., Mayer, R., & Adelsberger, H. H. (1985). Expert systems and
simulation. Simulation. 44(6), 275-284.

Shearn, D. C. S. (1990). PASSIM-A Pascal discrete event simulation program
generator. Simulation. 55. 31 -38.

Smith, D. E. (1973a). An empirical investigation of optimum-seeking in the computer
simulation stiution. Operations Research. 21(2), 475-497.

Smith, D. E. (1973b). Requirements of an "optimizer" for computer simulations. Naval
Research Logistics. 20. 475-497.

Smith, D. E. (1976). Automatic optimum-seeking program for digital simulation.
Simulation. 27. 27-31.

Suri, R., & Leung, Y. T. (1989). Single run optimization of discrete event
simulations-an emprical study using the M/M/1 queue. IEE Transactions. 21(1).
35-49.

Suri, R., & Zazanis, M. A. (1988). Perturbation analysis gives strongly consistent
sensitivity estimates for the M /G/l queue. Management Science. 24(1), 39-64.

Ulgen, O. M„ & Thomasma, T. (1989). Computer simulation modeling in the hands of
decision-makers. In E. A. Nachal (Ed.), Proceedings of the 1989 Winter
Simulation Conference (pp. 89-94). W ashington, DC: IEEE.

Ulgen, O. M., Thomasma, T., & Mao, Y. (1989), Object-oriented toolkits for
simulation program generators. In E. A. Nachal (Ed.), Proceedings of the 1989
W inter Simulation Conference (pp. 593-600). W ashington, DC: IEEE.

Wilson, J. R. (1987). Future directions in response surface methodology for
simulation. In A. Thesen (Ed.), Proceedings of the 1987 W inter Simulation
Conference (pp. 378-381). Atlanta, GA: IEEE.

Zeigler, B. P. (1987). Hierarchical, modular discrete-event modelling in an object-
oriented environment. Simulation. 49(5), 219-230.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	An Integrated Simulation Model Development Environment for Slam II Using Object-Oriented Paradigm
	Recommended Citation

	tmp.1497536106.pdf.lsC0V

