State-Corporate Crime in Kalamazoo Department of Public Safety: A Case Study of Deviant Activity Between the Police and Computer Vendors

Steven Edward Reifert
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

Part of the Civic and Community Engagement Commons, Criminology Commons, and the Social Control, Law, Crime, and Deviance Commons

Recommended Citation
https://scholarworks.wmich.edu/dissertations/979
STATE-CORPORATE CRIME IN KALAMAZOO DEPARTMENT OF PUBLIC SAFETY: A CASE STUDY OF DEVIANT ACTIVITY BETWEEN THE POLICE AND COMPUTER VENDORS

by

Steven Edward Reifert

A Dissertation
Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Sociology
Dr. Susan M. Carlson, Advisor

Western Michigan University Kalamazoo, Michigan December 2006
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
ACKNOWLEDGMENTS

I would like to begin by thanking my committee members for their work on this project. Thank you to Drs. Susan Carlson, David Hartmann, Ronald Kramer, and Ashlyn Kuersten. I would especially like to thank my chair, Dr. Carlson, for her untiring work and dedication to this study. This work was conducted during trying times for many on the committee and myself, and our combined ability to pull it off is just shy of unbelievable. I would also like to thank Dr. Dawn Rothe for her discussions and conversations about the theoretical aspects of this work coming at a pinnacle point in my efforts.

I would like to thank two other individuals who provided to my efforts. First, for Dr. Paula Brush for the push when I needed it. Your insight and caring about your students is a credit to you and your work. You knew when to push and how to inspire to get the work completed. Second, to Dan Weston, thanks for the opportunity.

Most who embark on such work as this study have significant others to assist and support them along the way. I am no different. I would like to thank my family for their support on this project. The sacrifices and commitment to me finishing did not go unnoticed. For that, I thank my wife Jill and my three children, Josh, Justin, and Amanda for their support and understanding while I worked through the good and the bad.

Steven Edward Reifert
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ii

LIST OF FIGURES ... vii

CHAPTER

I. INTRODUCTION ... 1
 A Case of State-Corporate Crime 8
 The Present Study ... 11
 Overview of Study .. 13

II. REVIEW OF THE LITERATURE ... 15
 The Concept of State-Corporate Crime 15
 Development of an Integrated Theory of State-Corporate Crime 19
 Case Studies of State-Corporate Crime 26
 Summary and Conclusion .. 42

III. METHODS ... 45
 What Is a Case Study? ... 45
 Historical Ethnography .. 46
 The Research Setting ... 50
 Data Collection ... 54
 Data Analysis .. 58
 Points of Contention .. 59
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.</td>
<td>INSTITUTIONAL ENVIRONMENT</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Institutional Contextual Factors</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Development of Computer and Information Technologies</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Wars on Crime, Drugs, and Terrorism</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Violent Crime Control and Law Enforcement Act of 1994</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Benefit of Computers Portrayal</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism (PATRIOT) Act</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Professional Association Involvement</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>New Federalism</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Market Deregulation</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>End of the Cold War</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Catalysts for Action</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Motivation</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Opportunity Structures</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Lack of Controls</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Media as Watchdog</td>
<td>115</td>
</tr>
<tr>
<td>V.</td>
<td>ORGANIZATIONAL ENVIRONMENT</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Historical Synopsis</td>
<td>119</td>
</tr>
</tbody>
</table>
Table of Contents—Continued

CHAPTER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational Theory</td>
<td>123</td>
</tr>
<tr>
<td>DM Data</td>
<td>126</td>
</tr>
<tr>
<td>Intergraph Public Safety</td>
<td>141</td>
</tr>
<tr>
<td>KDPS</td>
<td>146</td>
</tr>
<tr>
<td>Analysis</td>
<td>150</td>
</tr>
<tr>
<td>Motivation</td>
<td>151</td>
</tr>
<tr>
<td>Opportunity Structures</td>
<td>154</td>
</tr>
<tr>
<td>Controls</td>
<td>160</td>
</tr>
<tr>
<td>Conclusion</td>
<td>163</td>
</tr>
<tr>
<td>VI. INTERACTIONAL ENVIRONMENT</td>
<td>167</td>
</tr>
<tr>
<td>General Theories</td>
<td>169</td>
</tr>
<tr>
<td>Dramaturgy</td>
<td>173</td>
</tr>
<tr>
<td>Constructionism</td>
<td>183</td>
</tr>
<tr>
<td>Model Fit</td>
<td>189</td>
</tr>
<tr>
<td>Motivation</td>
<td>189</td>
</tr>
<tr>
<td>Individual Goals and Competitive Individualism</td>
<td>190</td>
</tr>
<tr>
<td>Opportunity Structure</td>
<td>195</td>
</tr>
<tr>
<td>Operationality of Controls</td>
<td>198</td>
</tr>
<tr>
<td>Conclusion</td>
<td>201</td>
</tr>
</tbody>
</table>
Table of Contents—Continued

CHAPTER

VII. CONCLUSION .. 204

State-Corporate Crime at KDPS ... 205

Integrated Model of State-Corporate Crime .. 216

Limitations .. 218

Future Research ... 225

Praxis .. 226

Conclusion .. 230

APPENDICES

A. Human Subjects Institutional Review Board
 Letter of Approval .. 234

B. Tables ... 236

BIBLIOGRAPHY .. 241
LIST OF FIGURES

1. Quarterly Gross Profits Intergraph, Inc. and IPS, Q1 1994–W1 2006 (Michalowski and Kramer 2006) ... 110

CHAPTER I

INTRODUCTION

During the past two decades, the Department of Public Safety in Kalamazoo, Michigan (KDPS), has been involved in automation efforts to support its officers' activities, in response to the insistence of the public and the demands of other governmental agencies. Between 1989 and 2006, the department has purchased, implemented, and attempted to maintain three separate computer systems. These systems were purchased to provide computer-aided dispatching (CAD), records management systems (RMS), and mobile personal computing (MPC). The cost to the taxpayers has been well over $4 million in purchases alone. This figure does not include the untold hundreds of thousands spent on maintenance and upkeep expenses. At the time of this study, KDPS was paying $118,000 annually in maintenance costs to Intergraph Public Safety. In each instance, the systems never performed as vendors had claimed at the time of purchase. Not only have these systems squandered taxpayer dollars, but they also have caused near catastrophic disasters because of their inability to perform at an appropriate level. In essence, on numerous occasions, or at inopportune times, these systems failed to work. The backlash to this activity has been the constant search to find a better system or pour more money into a system that will never reach the functionality promised.

In the fall of 2001, I took over as the supervisor of the dispatch center for KDPS. While working late, a dispatcher received a call of a warehouse fire. The
procedure would be to rely on the CAD system to recommend what fire apparatus responds and send those fire fighting rigs and other fire fighters. In the midst of dispatching the fire apparatus to this dangerous fire, the dispatcher’s computer crashed, locked up, and ceased to function. She yelled out to other dispatchers what happened to her computer and they were able to recover and dispatch the fire rigs. A dangerous situation was avoided, but critical information was lost on that dispatch—information such as when the call came in, how long it took us to send fire-fighting resources, and who were the first units sent.

As the use of computers through the 1980s to 1990s increased, so did the dispatchers’ reliance on the computer to assist them. Dispatchers rely on the computers for key portions of their job, and failure on the part of the computers puts society in harm’s way. The inability of the dispatchers to properly dispatch a fire is a terrible predicament, as would be the dispatcher losing an officer on a foot pursuit or high-speed vehicle pursuit, or even a high-risk traffic stop. Dispatchers use the computers to track officers on the streets. Their inability to properly track an officer in a high-risk situation can be dangerous. Officers can get hurt, or even worse, be shot or have to handle a dangerous situation by themselves, and the dispatcher would not be able to send help because they would not know where they were.

Examples of the potential dangers posed by computer systems failures in dispatch situations occurred in KDPS and in Grand Rapids, Michigan, a large city just to the north of Kalamazoo, Michigan. In the spring of 2000, a KDPS dispatch received a call on a 911 telephone line. The caller indicated her husband was having a heart attack. She was calling from within the City of Kalamazoo; therefore, the 911
call was directed to KDPS. Her husband was at an address in the Township of Kalamazoo, which meant the call should have been forwarded to emergency services in the Township, a separate jurisdiction from KDPS, who supply their own emergency response services. The dispatcher typed in the address where the caller said her husband was, but the new CAD system “defaulted” to an address in the City, indicating it should be KDPS’s call. What occurred was the dispatcher typed the street “Dwillard” into CAD, but since it was not a street in the City, it defaulted to “Dwight” and accepted the dispatch as a medical emergency. The dispatcher dispatched the call, not realizing it should have been transferred to the Township and also used the “Dwight” street address to send emergency help. KDPS units arrived on “Dwight” street and realized there was no emergency at that address. Other dispatchers and the dispatcher who took the call realized the mistake and turned it over to Township emergency response units to handle the rescue. The husband died as a result of the heart attack, and the caller sued the City and CAD vendor, DM Data Inc., stating the delay caused by the dispatcher and computer led to a delay in emergency medical response, which led to the death of her husband. The CAD system was fixed to avoid any default to an address because of this incident. The lawsuit was later settled. The settlement agreement was undisclosed by all parties.

In the fall of 2001, the Grand Rapids Police Department blamed the death of a two-month-old on a failure of their new CAD system. The dispatcher took the call and passed it on for dispatching by another dispatcher while that dispatcher answered another call. Because of their high call volume, they had dispatchers taking telephone calls while others dispatched the proper emergency response units to the
call. In this case, the call was lost and emergency medical responders were delayed, leading to the death of the infant. Failure of the new system purchased by the department was to blame (http://pqasb.pqarchiver.com/grpress/access/94622456.html). Another incident in Grand Rapids involved the wrong fire apparatus being dispatched to an accident on a busy interstate. Both incidents were blamed on the failure of their new CAD system (http://pqasb.pqarchiver.com/grpress/access/94622456.html).

Not only has the public been placed in a precarious situation, unknown to them, but they have been bilked out of hundreds of thousands if not millions of dollars just as at KDPS. Failure of the computer to function properly or partial malfunctions have cost the taxpayers an exorbitant amount of money. The purchase price of a system bought in 1989 from Command Data, Inc., Boulder CO, was slightly over $800,000, a system purchased in 1997 from DM Data, Inc., NJ, cost $1.3 million and the purchase price of a system bought in the fall of 2002 from Intergraph Public Safety, a subsidiary of Intergraph, Inc., Huntsville, AL, was $1.7 million. Annual maintenance costs for the systems through the 1990s ranged from $30,000 in 1990 to almost 67,000 in 1999. The last system is costing over $100,000 in annual maintenance costs. In the system purchased in 1989, company promises made it appear the department had purchased enough hardware for future requirements on storing data. It was quickly discovered that was not the case and additional money was spent to bring more hardware on line. The promise to allow for a “paperless” department, in essence allowing all reports to be done on computers instead of being handwritten, was not attainable because of the lack of memory space.
on the purchased computers, which became a point of contention because the argument to go "paperless" was used to convince the City Commission to spend the money on the project. This expectation or goal was never achieved on that system.

In 1997, KDPS began looking for a new system to replace the 1989 system. Rising maintenance costs and the belief that better systems existed prompted the new project. The contract was awarded to DM Data, but that system was two years in production; the first attempt at bringing CAD live was a dismal failure and was turned off before the end of an eight-hour shift. Six months later, in October 1999, under the looming threat of "Year 2000" fears, the system purchased from DM Data was brought back up. This time the department stayed with it, but the DM Data system was prone to crashing and locking and was operationally difficult to use. The RMS system went live in April of 2000, followed by attempts to bring newly purchased—through federal Community Oriented Policing Services (COPS) grant—mobile personal computers on line in the summer of 2000. The MPCs, purchased through DM Data for $900,000, were Xplore brand tablets. They never worked reliably enough to depend on them and were prone to crashes and other connection failures. It was discovered later that the Xplore brand tablets were not the problem. The tablets were actually reliable, but the DM Data software caused the problems and lack of reliability. The DM Data CAD system was prone to crashes like those illustrated above, and the RMS was a continual battle to maintain by an inadequate staff.

As KDPS struggled with DM Data to fix their product and make it work as it was advertised, in the fall of 2001, KDPS again started looking for a new system. In
2002, a $1.5 million contract was awarded from the City of Kalamazoo to Intergraph Public Safety to provide KDPS a completely new computer system. Believing the shortcomings of previous systems would be rectified by this purchase, KDPS went with an expensive product to ensure they were purchasing a system that would function properly and provide reliable service for dispatching, RMS, and MPC usage. Despite the department’s best efforts, problems were encountered with this system as well. The CAD system immediately had a “bug” in the software that failed to keep the correct time on the PCs. The PCs would get out of synchronization, causing errors to appear on their computer screens. In short, because the times were different on different PC’s, one dispatcher would dispatch a unit stamping it with a time that did not exist on another PC. The company later admitted they knew about it but could not fix it before the product was shipped to KDPS.

The last system was also purchased because Intergraph ensured KDPS, and checking with other agencies it appeared to be so, that the CAD system would never crash. This was an attempt to avoid situations encountered with the DM Data system (warehouse fire). It reportedly would never have a system-wide failure causing the dispatchers to not be able to use the system. Based on client-server architecture, a multiple loop was established between the PCs and server. If one link went down, the other would remain functional. This was put to the test in April of 2005, when the entire CAD system “hung.” For four hours the dispatchers were faced with something Intergraph told KDPS would not happen; they worked without CAD.

The list of problems goes on. Part of the RMS purchased in the Intergraph system was bought to provide Michigan Crime Information Reporting System
(MCIRS) information to the State of Michigan. This is an automated process that captures crime information and tallies a report and sends it to the state. This is a mandated monthly occurrence required by the State of Michigan. It took over two years for the Intergraph system to be able to provide that report. The system was purchased based on a contractual agreement that Intergraph could provide that report in their current software, but that was not the case. It took two years of work to complete the software changes. KDPS's estimated staff costs alone were enormous.

For the past four years I have been employed as the project manager at KDPS as their Information Technologies (IT) manager. For a short period I was actually the City of Kalamazoo's IT manager as they transitioned between directors. I held that position from October 2002 to April 2003. In the course of those years, the department moved to a newly renovated building requiring wiring, design, and implementation of needed technologies for a new building. A computerized 911 answering system was designed and implemented, a consolidated dispatch center was initiated, and the department replaced their computer system, encompassing computer-aided dispatching, records management, and mobile computers in the police cruisers. Additionally, the department's radio communications system was replaced and a new radio tower constructed. Under my guidance the department spent over $8 million in renovations, new equipment, and new systems. I was also involved in the purchase of the Command Data system in 1989 and, to a lesser extent, the DM Data system in 1997. I became fully involved and responsible for the DM Data system in the fall of 2001. Because of this involvement, I am keenly aware
of the tragedies and failures at each turn in KDPS's efforts to automate their department.

A Case of State-Corporate Crime

What occurred to KDPS, and to other local law enforcement agencies as they purchased and implemented integrated computer systems, is an example of state-corporate crime. In the criminological literature, state-corporate crime is defined as illegal or socially injurious actions that result from a mutually reinforcing interaction between (1) policies and/or practices in pursuit of the goals of one or more institutions of political governments and (2) policies and/or practices in pursuit of the goals of one or more institutions of economic production and distribution. (Michalowski and Kramer 2006:34)

In the case of the KDPS purchases and implementation of integrated computer systems during the 1989-2004 period, socially injurious actions and negligence on the part of corporate vendors, the federal government, Michigan state government, and KDPS itself produced three specific social harms.¹

First is the loss, misuse, misdirection, or squandering of money that was used to purchase or sustain these computer systems. More directly, the department purchased systems that did not work and never produced the end product promised, and more money had to be spent to correct the perceived problems, resulting in taxpayers' money being wasted, squandered, or bilked from KDPS. Whether calculated in its entirety, or calculated by each segment of the project, the department

¹ Throughout this dissertation the term computer system refers to an integrated system that combines the use of computer-aided dispatching (CAD), records management system (RMS), and mobile computing in the police cruisers.
experienced a loss at the hands of the vendors, was duped into thinking the systems were appropriate to purchase by the federal government, and was encouraged as well as coerced into purchasing these systems by the state and federal governments. While the loss may not be in the tens of millions of dollars, it nonetheless had dramatic effects on a department facing shrinking budgets. At the local government level, a million dollar project can be devastating to a department or the tax base if squandered or lost. At a time when the average cost of a public safety officer is calculated at $100,000 (salary plus benefits) and fuel costs for vehicles continues to spiral out of control, the loss of even 1% of the $28-30 million dollar budget is devastating.2 While the budget continues to shrink for KDPS, the costs of computerization continue to rise.

A second harm that occurred to KDPS as it struggled with the implementation of computer systems that either failed or did not deliver what the vendors promised was a lack of productivity and the development of a culture of secrecy. Organizations can suffer the loss of productivity as employees struggle to make the system a success. A culture of secrecy can develop (Vaughan 1996) as employees struggle to make the system work, meanwhile disguising or making excuses for why the system is failing or not delivering. Pressure from administrators and questions from City administration, outsiders, and elected officials prompt a

2 Over the last several years, the annual budget for KDPS has decreased from a high of $31 million in 1999 to 2006’s $27 million. This represents over half of the city’s annual budget. KDPS consumes on average 52-54% of the city’s annual budget (city annual reports).
regrouping and cover story to explain the shortcomings of the system. Technical explanations are given to laypeople as a means of covering up why things are not working as promised. Leadership can suffer, while top managers make decisions in hopes of resurrecting dying projects. All of these situations occurred at KDPS.

A third social harm exists when a system interferes, inhibits, or distracts employees from providing their life-saving services. KDPS, and police in general, provide life-saving services to their communities. As previous examples have illustrated, part of that service is the answering of emergency telephone calls and sending emergency responders to the scene. Presently, this function is assisted by the use of computers, specifically CAD systems. Information is tracked via computer as to when a call was taken, what crime or emergency event is occurring, and the address and reportee information. This information is then used to track the officers' progression (arrival, time at the scene, when they left, and how long to write the report) through the call. Included in the Intergraph system was mapping and an Automatic Vehicle Locator (AVL) system which utilizes a satellite Global Positioning System (GPS), which the dispatchers rely on to determine where the officers are so that they can then dispatch the closest available emergency vehicle. This system is also used to dispatch fire calls and emergency medical events. This information is of vital importance. A failure in any part of the CAD system can mean a delay in response, no response, or the wrong units being sent to the call. Incorrect information, wrong assignment of officers, or misdirection or even loss of information can be catastrophic, resulting in life-threatening situations, or even
death, for officers and/or the citizens they serve. In these times, officers simply must be able to rely on their equipment to ensure public safety.

The Present Study

In the present study, I will develop an explanation of the case of state-corporate crime that resulted in the social harms that occurred at the KDPS in its purchase and implementation of integrated computer systems during the 1989-2004 period. Specifically, I will show that the facilitation of the federal government, the mandates of the state of Michigan, and the complicity of computer vendors, whether with knowledge or not, produced social harm to public safety officers and to the public in general, through the loss of tax dollars and the potential danger the public and officers were exposed to by these computer systems not functioning properly.

To develop the explanation for the state-corporate crime that occurred at KDPS, I will use the integrated theory of state-corporate crime initially developed by Kramer and Michalowski (1990) and later elaborated by Kauzlarich and Kramer (1998) as shown in Table 1 (also see Michalowski and Kramer 2006). The integrated theory focuses the attention of the analyst at three levels—the institutional environment, the organization, and interpersonal interaction.

Analysis at the institutional environment level involves identifying the formal relationships between corporate and governmental organizations as specified by law and regulations, as well as history and culture. In addition, it entails examining “catalysts for action” (or inaction), the existence or absence of motivations (e.g., culture of opportunity, economic pressure), opportunity structure (e.g., availability of
legal means, blocked goals/strain, access to resources), and operationality of control (e.g., political pressure, public opinion) in the broader political economy and culture that together make specific actions or negligence more or less likely.

At the organizational level of analysis, the researcher examines factors within each of the culpable governmental and corporate organizations that can account for the state-corporate crime. As in the institutional level of analysis, motivations (e.g., corporate/organizational culture, corporate/organizational goals, managerial pressures), opportunity structures (e.g., instrumental mentality, creation of illegal/harmful means, role specialization), and operationality of control (e.g., culture of compliance, subcultures of resistance, safety and quality control procedures) are examined within the responsible corporate and governmental organizations.

Finally, at the personal interaction level, interpersonal dynamics are identified. Specifically, motivations (e.g., socialization, social meanings, individual goals), opportunity structure (e.g., definitions of the situation, perceptions of attractiveness and availability of illegal/harmful means), and operationality of control (e.g., personal morality, obedience to authority, groupthink, diffusion of responsibility) are analyzed.

Michalowski and Kramer (2006:35) see three advantages to using this multi-level integrated theoretical approach to studying cases of state-corporate crime like that which occurred at KDPS. First, state-corporate criminal behavior may be a product of the relationships between social institutions, not some hidden agreement or covert act on the part of the offenders. Second, focusing on relationships between corporate and governmental actors at various levels provides a more complete
understanding of deviant organizational outcomes, such as the social harms that resulted from the process of computer system purchase and implementation at KDPS, than would viewing corporations and/or governments as closed systems. Lastly, the integrated theory of state-corporate crime provides for a vertical look at the intersection of deviance by the individual, organizational, and institutional political/economic entities. The belief here is that such an approach helps address issues of subject/object relations seen in some of the crime research literature.

Overview of Study

Using the integrated theory of state-corporate crime, I intend to explain what happened to cause the social harms that accompanied the purchase and implementation of computer systems at KDPS during the 1989-2004 period. The study will make a contribution to the state-corporate crime literature by demonstrating the utility of the integrated theory in explaining state-corporate crime that occurred within and to a local government agency. As will be shown in the next chapter, most case studies of state-corporate crime focus on catastrophic events that grab national headlines. Here the focus is on a case that produced (and continues to produce) real, but more subtle, social harms that affect a local government agency and the ordinary citizens it serves. These social harms matter, and explaining how and why they occurred potentially can help prevent such harm from happening in the future.

My study begins in the next chapter with a review of the state-corporate crime literature. This review includes a discussion of the development of the concept
of state-corporate crime, a more in-depth explication of the development of the integrated theory of state-corporate crime, and a critical analysis of published case studies of state-corporate crime. Chapter III lays out the methods used in the present study, including a description of the research setting, data collection, analysis strategy, and limitations of the study. Chapters IV through VI include my analyses of the institutional, organizational, and personal interactional levels involved in this case of state corporate crime, respectively. The final chapter discusses my conclusions based on the research findings and provides policy recommendations at the institutional, organizational, and personal interactional levels designed to prevent state-corporate crime of the type that occurred at KDPS from happening in the future, both in Kalamazoo and in other local law enforcement agencies around the nation.
The purpose of this chapter is to review the theoretical and empirical literature on state-corporate crime. First, I will trace the development of the concept of state-corporate crime. Then I will present the integrated theoretical model of state-corporate crime (Kramer and Michalowski 1990; Kauzlarich and Kramer 1998; Michalowski and Kramer 2006). Next, I will review existing case studies of state-corporate crime. Finally, I will explain why these studies have been important and how they relate to this dissertation.

The Concept of State-Corporate Crime

The shaping of a concept and its precepts and notions is an evolutionary event. So it was with the origins of the concept of state-corporate crime. With its beginnings planted squarely in Sutherland’s (1934) development of the concept of white-collar crime, it too has taken time to develop and evolve. Kramer, Michalowski, and Kauzlarich’s (2002) article, “The Origins and Development of the Concept and Theory of State-Corporate Crime,” provides an in-depth overview of the historical development of the concept. Beginning with a seminal speech by Chambliss (1989), the concept grew from the belief that, not only was there state crime that was causing social harm, but there was also an intersection of deviance, a combination of state crime, individual, and organizational acts. The combination of
all these forces working congruently and at multiple levels provides for a theoretical explanation of state-corporate crime.

In 1990, Ronald Kramer started using the concept of state-corporate crime. His argument was that considerable work had been done on corporate crime and state crime as separate but distinct activities, but little work had been done on the intersection of both types of crime. In other words, Kramer believed that social harm was occurring when there was collusion or interaction between a private enterprise and governmental institutions. When both act together, serious criminality exists producing serious social harm. At that point, Kramer (1990) defined state-corporate crime as:

State-corporate crime is defined as an illegal or socially injurious social action that is the collective product of the interaction between a business corporation and a state agency engaged in a joint endeavor. These crimes involve the active participation of two or more organizations, at least one of which is private and one of which is public. They are the harmful result of an interorganizational relationship between business and government. (P. 1)

Working with Ray Michalowski, Kramer started working on refining and developing the concept of state-corporate crime. In 1990, they presented a paper (Kramer and Michalowski 1990) refining the definition of state-corporate crime and calling for an integrated theoretical model for analysis of state-corporate crime. They noted that the private production and manufacturing in the United States could not have developed or functioned without the support of the government. This support comes in the form of economic, political, and legal protections and controls. There had also been two separate but parallel tracks in criminological work dealing with corporate and state deviance. One focused on organizational deviance in private
corporations or businesses, while the other focused on state crime or state-organized criminality. Kramer and Michalowski suggested that there was an intersection of both. The intersection involves the complicity of both the state and private business. Deviance could be explained by looking at both simultaneously, thus the term *state-corporate crime* could be used to denote both forms of deviance. They refined the definition originally given by Kramer to:

> State-corporate crimes are illegal or socially injurious actions that occur when one or more institutions of political governance pursue a goal in direct cooperation with one or more institutions of economic production and distribution. (Kramer and Michalowski 1990:4)

This definition provided for a broader scope and approach to the study of state-corporate crime, but provided for "direct" cooperation and the pursuit of a goal. Aulette and Michalowski (1993) worked further to refine the concept of state-corporate crime. Using a case study approach to examine a fatal fire at the Imperial Food Products chicken processing plant in Hamlet, North Carolina, they suggested that, rather than specific goals or the attainment of goals, acts of omission should be examined. Essentially, acts of omission/negligence on the part of the government allow for private businesses to act in an illegal manner in pursuit of corporate goals. They found that the failure to follow regulations, which hindered private production, allowed for the fulfillment of other goals and objectives. In essence, the government allowed the private corporation to ignore mandated safety regulations in pursuit of higher profits. This was in support of North Carolina’s goal to be business-oriented and support corporate interests rather than support workplace safety.
Aulette and Michalowski (1993) further refined the definition of state-
corporate crime to include:

State-corporate crimes are illegal or socially injurious actions that result from
a mutually reinforcing interaction between (1) policies and/or practices in
pursuit of the goals of one or more institutions of political governance and (2)
policies and/or practices in pursuit of the goals of one or more institutions of
economic production and distribution. (P. 175)

More importantly, both Aulette and Michalowski, and further work by Kramer and
Michalowski (1993), delineated two forms of state-corporate crime.

State-initiated corporate crime (such as the Challenger explosion) occurs
when corporations, employed by the government, engage in organizational
deviance at the direction of, or with tacit approval of, the government. State-
facilitated corporate crime (such as the Imperial Food Products fire in
Hamlet) occurs when government regulatory institutions fail to restrain
deviant business activities, either because of direct collusion between
businesses and government or because they adhere to shared goals whose
attainment would be hampered by aggressive regulation. (Pp. 271-72)

Nuclear State, At Home and Abroad*, examined the intersection of deviance between
nuclear weapons manufacturers and the proliferation of nuclear weapons by the
United States (see further below). In that book they defined state-corporate crime as
"criminal acts that occur when one or more institutions of political governance
pursue a goal in direct cooperation with one or more institutions of economic
production and distribution" (Kauzlarich and Kramer 1998:10).

Later, Michalowski and Kramer (2006) refined and added to their previous
definitions of state-corporate crime. While the definition of state-corporate crime
used by Kauzlarich and Kramer (1998) seemed adequate for examining the case of
nuclear proliferation, it lacked the nuances of earlier definitions. Absent were
thoughts on social harm, criminal activity, and Michalowski and Aulette's distinction between state facilitation versus state initiation. Thus, Michalowski and Kramer (2006) adopted the earlier definition proposed by Aulette and Michalowski (1993) as the most recent and comprehensive definition of state-corporate crime.

State-corporate crimes are illegal or socially injurious actions that result from a mutually reinforcing interaction between (1) policies and/or practices in pursuit of the goals of one or more institutions of political governance, and (2) policies and/or practices in pursuit of the goals of one or more institutions of economic production and distribution (p. 34).

In their most recent work, State-Corporate Crime: Wrongdoing at the Intersection of Business and Government, Michalowski and Kramer (2006) provide a set of case studies of state-corporate crime, many of which use Kramer and Kauzlarich's (1998) revised integrated theory of state-corporate crime that I discuss next. This discussion is followed by a review of several case studies of state-corporate crime, many of which appear in Michalowski and Kramer (2006).

Development of an Integrated Theory of State-Corporate Crime

While many mainstream and critically-oriented theories of crime have their place in attempting to explain and prevent state-corporate crime, they fall short in their ability to adequately explain offending at the state, corporate, or individual levels. In order to explain the intersections of deviance at multiple levels, Kauzlarich and Kramer (1998), building upon earlier work by Kramer and Michalowski (1990), present an integrated model of state-corporate offending, briefly discussed in Chapter
I (see Table 1 in Appendix B.), that explores motivation, opportunities, and controls at three levels of analysis: the interactional, organizational, and institutional/cultural levels. This model integrates components of several criminological theories that fall short by themselves in addressing the intersections of state-corporate crime. For example, Kauzlarich and Kramer utilize anomie and strain, rational choice, differential association, routine activities, political economy, and organization models (Rothe and Mullins 2006; Rothe 2006).

At the socio-psychological level of analysis, Kauzlarich and Kramer recognize the utility of differential association in efforts to explain group dynamics. At the individual level, a person may be prone to engage in a criminal act if the weight of the favorable definition of an act exceeds the unfavorable definition. They also incorporate sociological models of socialization. At the interactional level, motivation may be affected by one’s socialization within an environment, the social meaning given to their behavior, an individual’s goals and issues of personality, such as amoral behavior, obedience to authority, and interactional behavior within a large organizational context.

At the organizational level, Kauzlarich and Kramer draw heavily from organizational theories that argue crime may be inherently built into the organizational structure and behavior. Organizations are strongly goal-oriented and prone to norms and standards that may induce or sustain criminal behavior in furtherance of these goals. Emphasis is on performance, while governing norms of the organization may be weak or absent (anomie). These goals or performance standards may be blocked internally or externally causing strain (e.g., standard
operating procedures, completion of projects which equates to accounts receivable).

Kauzlarich and Kramer also argue that organizational crime may depend on two other additional factors, availability of illegal means and a social control environment that can foster deviant organizational crime (p. 146). Organizational opportunities may include instrumental rationality, role specialization, and task segregation, while controls include a culture of compliance, rewards structures, safety and quality assurance controls and procedures, plus effective communications processes or systems.

At the institutional/cultural level of analysis, the major interacting social institutions and social structures are examined. In particular, the political and economic institutions and their interrelationships are key indicators/explanatory factors in state-corporate crimes. Kauzlarich and Kramer suggest the primary assumption of that perspective is that the very structure of corporate capitalism provides the impetus toward organizational crime (p. 146), and thus results in crimes of capital (Michalowski 1985). Furthermore the political economy perspectives stress the shaping and/or constraining influences of the broader historical structure of a society as a factor influencing organizational behavior. Analysis at this level includes such factors as the culture of competition, economic pressure, and performance emphasis under the catalyst of motivation. Also needed is the availability of legal and illegal means, blocked goals and access to resources that are included under opportunities. Controls at the structural level are said to include international reactions, political pressures, legal sanctions, and public opinion (Kauzlarich and Kramer 1998; Rothe and Mullins 2006).
Theoretical integration also includes utilizing different perspectives within the overall framework of interest. Not only do we recognize the three levels of analysis (Table 1, Appendix B), each with specific catalysts such as motivation, opportunity, and controls, we also recognize the theoretical history within the integrated model. For example, Kauzlarich and Kramer’s (1998) model utilizes anomie, rational choice, differential association, routine activities, political economy, and organizational models as a means of explaining the nuclear weapons proliferation in the United States. Each theoretical approach was necessary to explain what occurred within the specific historical context as the events unfolded. In other words, the explanation required both an historical basis and the integration of all the theories.

In broad terms, state crime and state-corporate crime scholars identify both internal and external controls on behavior (Ross 2000). External controls lie outside of the specific state apparatus. These often include watchdog type activities of the media and other outside influences that tend to hold the state to the certain norms of society. Internal controls are those established by the state itself and are directed at itself. These include self-regulating controls such as laws, rules, regulations, and standard operating procedures (e.g., contracting and purchasing rules). These rules can be tangible, such as written purchasing guidelines, or symbolic, such as a promise to control crime through the addition of 100,000 officers (Crime Bill, 1994 H.R. 3355; 103 H.R. 3355).

At the macro, or institutional level, broad social forces of competition and goal attainment intersect with the lack of effective controls to produce an
environment where states are able to ignore domestic and/or international laws and regulations as they see fit in order to enact or promote their policy objectives. Any outside controls, such as the media, general population opinion, and/or internal state obstacles, can be ignored or manipulated via hegemonic discourse, symbolic political gestures, or altering policy to immediately appease the public while continuing in a covert, illegitimate direction. Drawing upon anomie and institutional anomie theories (Merton 1938; Messner and Rosenfeld 2007), broader forces of cultural goals of success and competition, when coinciding with blocked goal attainment processes, push political organizations and their agents toward violation of law in accomplishment of their objectives.

Organizations are also influenced by open or blocked opportunity structures. As the state may be affected by anomie, it is more often organizations that are so affected. The same forces that impact the state more strongly impact larger corporations. In a society where increasing corporate profits is the paramount goal, and legal means may be blocked, individual agents, acting on behalf of corporate interests in maximizing profits, can be prone to illegal and/or unethical activity. Blocked legitimate means for increasing profits can be replaced by use of illegitimate means. Additionally, if illegitimate means are seen as easier to use and more profitable, the concept of instrumental rationality “by whatever means necessary” may provide the rationalization for using illegitimate means as opposed to legal ones.

The complexity of organizations, whether governmental or corporate, provides for a host of opportunities for deviant or criminal behavior. Government
agencies or corporations that are heavily laden with bureaucratic layers can maintain levels of secrecy pertaining to resource allocation, operating procedures, utilization of corporate resources, and objectives. External actors may not know who did what within an organization. Even within the organization itself, secrecy between divisions, bureaus, and offices is commonplace. Internal organizational structures of information control often inhibit external actors from obtaining information. Even government agencies under the control of the Freedom of Information Act have the ability to hide their activity within layers of the bureaucracy and keep it from the public eye. Corporations not subject to the Freedom of Information Act are cloaked in a blanket of secrecy. Only information released to stockholders is available for scrutiny, but not the methods used to achieve corporate goals. The inability of external actors to obtain information, coupled with the corporation's ability to avoid detection, can be strong motivators or facilitators of criminal activity (Rothe 2006).

At the micro or interactional level, this integrated approach combines aspects of differential association and social learning theories, as well as core elements of symbolic interactionism. Additionally, social theories such as dramaturgy and social constructionism can be included in analyzing the person-to-person relationships. Social constructionism (Berger and Luckman 1967; Loseke 1999) is used to explain the socially constructed perceptions of what occurred at the interactional level, and even the organizational level. An actor's perception, or socially constructed version of what is happening and/or has occurred, adds to the understanding of the deviant or criminal behavior. Dramaturgy (Goffman 1959, 1974; Manning 1997, 2003) is used to explain the situated means actors use to portray themselves within an interactional
framework. Used successfully by Manning (1997) to explain the social organization of police work and in explaining the impact of technology on police (2003), it is a valuable theory to use in explaining how individuals act differently when confronted with varying situations in social settings. The use of the "front stage" versus the "back stage" (1974) allows actors to put up "fronts" and give different portrayals of themselves in varying interactional settings. These micro-level factors are relevant in understanding state-corporate crimes at all levels. Individual level motivations can be personal, but these motivations are highly malleable within organizational cultures and contexts that encapsulate these actors. Cultural elements, both in the broader socio-cultural sense (singular actors motivated for personal success and advancement), coupled with organization cultures that prescribe goal attainment "through any means necessary," can also socialize an individual into broader ideological beliefs that facilitate violating laws for the sake of the organization and individual benefit. Day-to-day interactions with coworkers provide ample opportunity for the transmission, not only of a criminogenic value system, but also neutralizations and rationalizations that excuse and/or justify such behavior (Kauzlarich and Kramer 1998; Rothe 2006; Rothe and Mullins 2006).

In the following section, I review case studies of state-corporate crime. Many of these studies employ Kauzlarich and Kramer's (1998) integrated theory of state-corporate crime detailed above.
One of the first case studies using the concept of state-corporate crime and an integrated theoretical approach was Kramer’s (1992) work on the space shuttle Challenger disaster. Using what he called an integrated theory of organizational misconduct, he laid out the case for understanding that the Challenger explosion was more than just a failure of the O-rings during the lift off. Kramer (1992) notes the explosion of the shuttle was not an “accident.” While the technical cause of the explosion was the failure of the O-ring seal . . . actions of NASA and MTI concerning the flawed design of the field joint and the safe launching of the shuttle were the actual causes of the disaster. (P. 238)

He further notes the explosion was the collective product of the interaction between a government agency (NASA) and a private business corporation (MTI) and thus can be viewed as an instance of state-corporate crime. This disaster cannot be attributed solely to the actions of one organization. (P. 238)

Kramer goes on to argue that the empirical evidence he disclosed in his study points to the complicity of the state and corporate enterprises involved in deviance at the expense of both taxpayers, and, more importantly, the deaths of the astronauts and the impact on their families. Additionally, Kramer notes that the Challenger disaster case study supports the usage of an integrated theoretical approach to the study of state-corporate crime. Specifically, he argues there is general support for the hypothesis that criminal or deviant behavior at the organizational level results from a coincidence of pressure for goal attainment, availability and perceived attractiveness of illegitimate means, and an absence of effective social control. (P. 239)
External pressure placed on NASA to keep an accelerated, unreasonable launch schedule caused engineers to make unwise, deviant decisions. Combine this with the lack of any effective social controls on NASA from independent agencies or the public, and decisions were made that cost lives. Because of the existing environmental conditions, both at NASA and the other private corporations involved, the eve of the shuttle launch saw the dismissal of grave early warning signs that low atmospheric temperature could cause a rupture in the O-ring seals and an explosion.

Vaughan (1996) conducted a more comprehensive case study of the Challenger disaster published in an exhaustive 575-page book entitled, *The Challenger Launch Decision, Risky Technology, Culture, and Deviance at NASA*. In this epic case study, she explored the various post-launch and pre-launch actions to determine what caused the horrendous explosion that killed the astronauts. Using Merton’s (1957) social structure and anomie theory (SSA) and her own work on organizational deviance (Vaughan 1983, 1992) as her guiding theoretical approach, her conclusions mirrored those of Kramer (1992). Because of the pressure put on both the employees of NASA, Morton Thiokol, Inc. (MTI), and other private companies involved, the normalization of deviance occurred at multiple levels. As Vaughan (1996) states:

> we must wonder about processes that normalize deviance, possibly allowing organizational members honestly to view their actions as normal, rather than deviant. . . . The answer to the question of “good” people and “dirty” work suggested by this research is that culture, structure, and other organizational factors, in combination, may create a worldview that constrains people from acknowledging their work as “dirty.” Thus, rather than contemplating or devising a “deviant” strategy for achieving the organization’s goals and then invoking techniques of neutralization in order to proceed with it or rationalize it afterward, they may never see it as deviant in the first place. (P. 408)
In the Ford Pinto case, it was the design flaw and the organizational pressure placed on Ford employees that allowed a dangerous automobile to be produced even after the company knew of the dangers. Likewise, in the case of the Challenger disaster, good, talented people had their worldview distorted, leading them on the path to disaster. Vaughan (1996) contends that the Challenger disaster is a story of how environmental and organizational forces shape worldviews and allow for seemingly intelligent responsible individuals to miss telltale signs of impending disaster. Furthermore, the launch is not a story of harm done with amoral calculations. . . . It is a story that illustrates how disastrous consequences can emerge from the banality of organizational life . . . a series of seemingly harmless decisions were made that incrementally moved the space agency toward a catastrophic outcome. (P. 410)

While Vaughan did not argue for a theoretical explanation of state-corporate crime, she nonetheless supported the concept. She viewed the disaster as an intersection of organizational deviance normalized through the work culture at both NASA and contracting corporations.

Both Kramer's (1992) and Vaughan's (1996) work were important for several reasons. Kramer's work set the stage for further work on both an integrated theoretical explanation of state-corporate crime, and further established and gave credibility to the concept of state-corporate crime. Vaughan's work took the explanation for the Challenger disaster past the technocratic explanations given for such "accidents." Vaughan delved into the sociological aspects of organizational deviance, and showed through the use of empirical evidence that deviance is normalized through cultural activity as well as through the quest for productivity.
(capitalist production), causing strain among the members to produce at whatever cost.

Aulette and Michalowski (1993) conducted a case study of a tragic fire that occurred in Hamlet, North Carolina, on September 3, 1991, at the Imperial Food Products chicken processing plant. Padlocked fire doors were found to be the immediate cause of death and injury to workers at the processing plant. As fire raged through the plant, workers attempted to escape through the locked fire doors. The company locked these fire doors in an apparent attempt to stop employee theft, but more importantly, it was failure on the part of the federal and state governments to enforce safety standards in the facility that ultimately was responsible for the deaths and smoke inhalation injuries. Failure to stop the hydraulic leak immediately followed by the locked doors created the tragedy. This regulatory failure was facilitated by the State of North Carolina through its refusal to fund and support safety standards. This interwoven complicity allowed for the continuous disregard of safety standards by company managers, thus avoiding the costs of these practices, all in the name of increasing corporate profits. In other words, obeying safety standards and regulations can cost money and thereby reduce profits. Additionally, in this case, the doors were allegedly locked to stop employee theft. Rather than install needed devices to prevent the theft, company managers chose to lock escape routes, which ultimately resulted in the employees' deaths (Aulette and Michalowski 1993).

Again, as in the case of the Challenger disaster, the ultimate cause of the fire was a technical failure found to be a faulty hydraulic line that ruptured near a deep fryer culminating in an explosion and subsequent fire. Aulette and Michalowski
argue that “those who died or were injured in the Hamlet fire, however, were the victims of much more than a simple mechanical breakdown. They were the victims of a series of social decisions made by a broad array of institutions” (Aulette and Michalowski 1993:172).

These decisions were based on three contextual occurrences—the social context, the organizational context, and the control context. The social context involved the historical, social, and political setting in North Carolina at the time of the fire. The organizational setting included the cultural and organizational situations that led to the doors being locked. Last was the control context which Aulette and Michalowski (1993) argue:

A competitive economy dominated by profit-seeking investors, a government committed to offering an attractive profit-making climate and consequently far from aggressive in protecting the health and safety of workers, and workers with very limited ability to shape the safety and health conditions of their work place, all contributed to the fire in Hamlet. (P. 194)

They go further to suggest that it was not simply these two acts, but a complicity between actors that was at fault. They suggest “that state-corporate crime can be understood as the result of an interaction between elements of government and elements of the private-production system” (p. 195). Adding

unlike the prototype offered by Kramer and Michalowski, the events leading to the Hamlet fire were more the consequences of socially injurious omissions on the part of governmental agencies, rather than direct consequences of the pursuit of specific goals, as was the case with governmental actions surrounding the building and launching of the ill-fated Challenger. (P. 194)

In the final analysis, Aulette and Michalowski (1993) argue that

the deaths in Hamlet are clear evidence that laws alone are not sufficient to protect worker safety. They require political will for their effective
enforcement. Without this will, they become more symbolic than real. The Hamlet fire constitutes a clear instance of state-corporate crime precisely because it was the absence of this political will and the omissions on the part of politically constituted agencies that enabled the management of Imperial to continue violating basic safety requirements at the plant in its pursuit of private profit. (P. 205) (emphasis in the original)

Kauzlarich and Kramer (1998) attempt to substantiate that the nuclear buildup experienced by the United States and the rest of the world is a case of state-corporate crime. They found that the Department of Energy and private nuclear weapons contractors had been working in secrecy, unchallenged by regulations or independent review. In their book that examined nuclear proliferation in the United States, Kauzlarich and Kramer (1998) found deviance on the side of the government in its complicity with private nuclear weapons manufacturers in spreading nuclear weapons to further capitalistic goals. Additionally, the federal government initiated such action under the penumbra of imperialism as it sought to maintain the status quo and to expand its political and economic interests.

In their book, Kauzlarich and Kramer (1998) provide further support of an integrated theoretical approach to the study of state-corporate crime. For their study of nuclear weapons proliferation, they used an integrated approach to identify and explain points of deviance located at the intersection of the three levels of analysis and the three catalysts of action discussed earlier. In Figure 1 (p. 149) they proposed an analytical framework as a means of explaining the intersections of deviance. Essentially using several levels to explain what was occurring historically, organizationally, and interactionally. For example, at the intersection of the institutional level of analysis with motivation as a catalyst, they examined the use of
nuclear weapons to maintain the U.S. “Empire.” The motivation for the imperialistic endeavors of the United States was to keep so-called “third world nations” in line so that these countries could provide cheap labor, resources, investments, and markets for U.S. use (p. 152). Nuclear proliferation was also consistent with conservative ideology, and specifically the belief that the use of nuclear weapons, or the threat thereof, was a necessary deterrent to keep third world nations in line with U.S. interests.

Under opportunity structures, Kauzlarich and Kramer (1998) note that after World War II the nuclear proliferation capabilities of the United States were essentially limitless. The United States faced little opposition or structural controls against the proliferation of nuclear weapons and the spread of imperialism and conservative ideology. International responses to the build-up and stockpiling of nuclear weapons by the United States and Soviet Union received scant criticism as the world took sides to reap the benefits of partnering with one of these world powers. The International Court shied away from issues dealing with nuclear proliferation as it too was controlled by one of these powers. Additionally, each power chose whether to concern itself with rulings or pressure placed on them by the international courts or international opinion. Controls from the media or social movements, while widely publicized, had little effect on the spread of nuclear weapons.

Organizationally, Kauzlarich and Kramer (1998) found that the Department of Energy and its predecessors were interested only in production goals. Organizational behavior that supported these goals and objectives was legitimate.
Behavior opposed to, interfering with, or slowing progress in goal attainment was illegitimate. It was the mission of the organization that was tantamount and defined the rules. Pertaining to internal structures and operating procedures, the Department of Energy and its employees were free to work unfettered by regulations and any scrutiny from independent or outside agencies. Cloaked in a cloud of secrecy, the agency was left to achieve its organizational goals without fear of publicity or legal challenges. In sum, at the organizational level motivation came from the mission and the goals to support that mission. This set the stage for the organizational or "corporate culture" within the department; few internal constraints hindered workers whose focus was the mission of the department.

On the social control level, Kauzlarich and Kramer (1998) argue that no program under the federal government's jurisdiction has been clouded in more secrecy than the nuclear weapons program. "Secrecy has been the rule, and only in the last few years have we witnessed any movement on the part of the government to open the program up for public and scholarly scrutiny" (Kauzlarich and Kramer 1998:158).

On an individual or interactional level, employees had no reward structure that would offer those interested in revealing the method of operation within the agency. As is often the case, rationalizations were employed by various actors to make their harmful activities more acceptable to themselves and others. Individuals were socialized into the culture by the continuous emphasis placed on the departmental mission. Material success was emphasized in the growing number of
weapons and the perceived nuclear might of the United States (Kauzlarich and Kramer 1998).

Earlier work on state-corporate crime began to advance the concept that there may be two forms of state-corporate interaction that lead to social harm where the government either initiates the crime, as in the nuclear weapons case, or merely facilitates it by failing to regulate corporate activity, as in the Hamlet fire case. In their study of the crash of Valujet Flight 592, Matthews and Kauzlarich (2000) discovered that, while technical factors were the immediate cause of the crash, it was the complicity of private corporations and governmental institutions that was the primary cause of the disaster, in particular state facilitation via lax regulation and weak safety standards. Specifically, the crash of Flight 592 can be attributed to

the failure of SabreTech and ValuJet employees to follow safety procedures regarding the preparation, identification, and storage of potentially hazardous materials. Indeed, had these workers correctly capped the oxygen generators, flight 592 might have landed safely in Atlanta. (Matthews and Kauzlarich 2000:293)

More specifically, they argue:

As profit-seeking organizations, ValuJet and SabreTech employed a number of questionable techniques to maximize profit. ValuJet’s radical cost-cutting procedures included using older planes in various stages of disrepair, outsourcing all its maintenance, and providing very low wages and benefits to employees. SabreTech was also experiencing a high degree of pressure for capital accumulation at the time directly preceding the crash by agreeing to complete their work on the oxygen generators quickly or incur a loss of $2,500 per day. The other organization involved in the crash, the FAA, was not a direct profit-seeking entity, but one designed to both regulate and facilitate the accumulation of capital for airline companies. The FAA’s refusal (on economic grounds) to institute specific safeguards that could have prevented the catastrophe of flight 592 illustrates the injurious consequences that can result not only from pursuing capital, but also from state encouragement of capital accumulation. (P. 147)
The Valujet accident is an example of state-facilitated state-corporate crime in that three separate agencies, two private corporations (Valujet and Sabretech), coupled with the Federal Aviation Administration (FAA), disregarded or operated in such a manner as to diminish the importance of, or failed to enforce, safety regulations. The crash could have been avoided if the two private corporations had followed established safety regulations and the FAA had enforced such regulations. As Matthews and Kauzlarich (2000) point out, as in other instances of state-facilitated state-corporate crime, the pursuit of profit was critical in the formulation of organizational policy and practice. While organizations that refrain from crime also have a strong interest in profits, there was a very distinct set of organizational relationships which led to the crash of Flight 592. In this context it was characterized by weak social control over the actors and organizations involved, and ample opportunity to shape acceptable risks (Matthews and Kauzlarich 2000).

The latter 1990's and early 2000's saw an increase in the number of studies of state-corporate crime in the criminological literature. On an international level, McMullen (1996) studied toxic steel and its effects on the environment. Harper and Israel (1999) studied economic needs and lax regulatory practices in Papua, New Guinea. Green and Ward (2004) point to several case studies where deviance was explained by and fit the model of state-corporate crime—but not using the same criteria. One was the arming of Saddam Hussein’s Iraqi army by a British arms trader.

The arms trade illustrates examples of state-corporate crime where states and corporations have colluded covertly to breach embargos on repressive states, or trade in weapons or equipment which have devastating consequences for
the civilian populations upon which the arms are employed. (Green and Ward 2004:31)

Shrimp farm exploitation in Honduras and devastation by the lack of regulations in the oil industry in Nigeria are other international case studies of state-corporate crime (Green and Ward 2004).

American criminologists have continued to apply the concept of state-corporate crime to a growing number of areas. For example, Wonders and Danner (2006) examined the strategic role of women in state-corporate crime on a global level. They explored the harms that are widely defined as illegal within the West that are regarded as necessary costs for developing countries to bear if they wish to participate in the New World Order, with many of these harms affecting women more than men. Protections extended to citizens in the West are rapidly eroding as developed countries struggle to maintain economic superiority. Transnational corporations are involved in collusive activity with governments in the developing world that cause social harm, and arguably harm women the most. Wonders and Danner argue that women’s suffering is exacerbated because of state-corporate crime.

In the late 1990’s, the Ford Motor Company’s Explorer sport utility vehicle (SUV) was involved in several fatal accidents involving rollovers or single car crashes where vehicle malfunction was indicated as the cause. The Explorers were prone to catastrophic accidents (usually due to a rollover) where another vehicle was not the cause or proximate cause. What emerged was a case of tire tread separation on Bridgestone-Firestone tires that were standard equipment on Ford Explorers. This
defective tire, coupled with the ease with which the Explorer would roll over, led to numerous deaths and accidents. The media hype about this case was enormous, causing both companies to experience substantial losses. Bridgestone-Firestone is still feeling the ramifications today in multiple civil law suits, while Ford still grapples with the problem that the Explorer is prone to rollovers. Mullins (2006) argues that

widely covered in the media, and the source of scores of still unresolved court cases in the United States and abroad, the tread separation case stands as one of the largest failures of the automobile industry to protect consumer safety and well being to date. (P. 208)

Like other cases of state-corporate crime, the push to meet organizational goals, tied to the making of money, caused Bridgestone-Firestone and Ford Motor Company to ignore warning signs of things gone awry. In this case, the government’s involvement pointed to facilitation rather than initiation. According to Mullins (2006),

as Barnett (1981), Chambliss and Zatz (1993), and Matthews and Kauzlarich (2000) have shown, it is often the state’s obligation, at least under a capitalist economy, to protect, encourage, and assist corporations in capital accumulation. Gold et al. (1975) argue that the primary purpose of the state in a capitalist system is to allow the corporate capitalist economy to flourish. Government becomes constrained by the needs and desires of major corporations. . . . All of these perspectives would predict little-to-no action on behalf of the state in guarding citizen safety. On the other hand, as O’Connor (1973) also noted, the state must protect the perceived legitimacy of both the capitalist system and itself. Thus, in the face of widespread public concerns or panic, it must take, or appear to take, effective action to minimize the source of concern. (P. 225)

In this case, the federal government passed legislation, but in effect it was too little too late, and it had little effect on the manufacturers of the tires or automobiles.
Cruciotti and Matthews (2006) explored the grounding and subsequent oil spill of the Exxon Valdez in 1989. First defined as an accident, they contend that the "accident" was an avoidable consequence of a series of acts and omissions. It was no mere accident but "rather, this disaster is better understood as a form of state-facilitated corporate crime wherein decisions taken by several organizations made the grounding of the Valdez a likely outcome" (Cruciotti and Matthews 2006:231). The catastrophic oil spill that severely damaged the Alaskan ecosystem resulted from a series of overt acts and negligent behavior on the part of the corporation and the federal government. Slow response and the government's lack of intervention caused further problems once the oil leaked from the vessel.

More recent use of the concept of state-corporate crime can be found in the analysis of the Iraq War, as scholars claim that the invasion and subsequent occupation of Iraq is a violation of international law (Kramer and Michalowski 2005; Kramer, Michalowski, and Rothe 2005). Some of these studies dealt more with state crime and the interwoven complicity of the U.S. government, while another study (Rothe 2006) focused on true state-corporate crime involving a government contractor, Halliburton. Halliburton was awarded lucrative government contracts for supplies and services in the Iraq War. Vice President Dick Cheney was formerly the Chief Executive Officer (CEO) of Halliburton. The links between Vice President Cheney and Halliburton show the potential for state-corporate crime embedded in this new policy of war by subcontract. There have been claims that the association between Cheney and Halliburton resulted in no-bid, cost-plus contractual work without competitive pricing or oversight. This is a problem endemic in war
situations, but was exacerbated by the relationship between Vice President Cheney and Halliburton. According to some, the affiliation between Cheney and Halliburton has established war profiteering as an acceptable and systematic practice within the Bush Administration by rewarding “corporations for who they know rather than what they know, and a system in which cronyism is more important than competence” (Rothe 2006:334). Rothe further argues that state-facilitated, state-corporate crime occurred in the dealings with Halliburton. By circumventing established guidelines and awarding contracts to Halliburton without properly following federal contracting guidelines, Halliburton violated numerous laws, and federal purchasing and contracting rules. The complicity goes further as Rothe shows Halliburton’s connection not only with Cheney, but President Bush’s family as well.

Using the analytical framework developed by Kauzlarich and Kramer (1998), Rothe (2006) is able to show that at each level there exists a catalyst that stimulates deviance. At the institutional level, the historical precedence of providing private contractors government contracts in times of war has been around since the United States has been involved in wars. What allows the collusion and corruption is a culture that thrives on circumventing the system. Once a contract is in place, lax governmental regulations and regulators allow for price-fixing and ultimately outlandish profiteering. Additionally, no outside controls are required.

Until measures are taken to provide international regulations for transnational corporations and accountability measures for states utilizing privatization of defense work, no external controls will exist. As currently stands, there is little to no incentive or enforcement mechanisms for the State to adhere to any international
laws; thus, an empowered universal criminal court that is empowered to address states and corporations must be allowed to exist within the international arena” (Rothe 2006:368).

Kramer and Michalowski (2005) argue that the Iraq War is a form of state-corporate crime. Using the integrated theoretical framework, they argue:

Our approach to the invasion of Iraq links these three levels of analysis with the three catalysts for action . . . motivation, opportunity, and social control. Our goal is to highlight the key factors that contributed to or restrained the war on Iraq at each intersection of a catalyst for action and a level of analysis. The underlying theoretical premise guiding this analysis is the proposition that organizational deviance is most likely to occur when pressures for goal attainment and/or faulty operating procedures in corporate and governmental organizations intersect with attractive and available illegitimate means in the absence or neutralization of effective social control. (Pp. 309-10)

The motivation and opportunity for the United States to invade Iraq examined by Kauzlarich and Kramer (1998), in that nation-states have a natural tendency towards imperialism. The U.S. decision to invade Iraq was the product of imperial designs and aggressive desires pursued within the context of opportunities and constraints created by the end of the Cold War, the attacks of September 11, 2001, and a bizarre electoral outcome in November 2000.

These forces intersected in ways that allowed the new Administration to deploy a messianic vision of a “New American Century” in which U.S. style neo-conservative economics and electoral democracy would rule the world, with the United States as the imperial power overseeing the ongoing maintenance of this world order (p. 310).

U.S. history is fraught with evidence of imperialistic intentions. From “Manifest Destiny” to enslavement to expansionist ideals, ranging from Cuba to
Vietnam and now Iraq, the United States has continuously sought to instill and spread its values and beliefs, in pursuit of its economic and political interests. Under the guise of the Cold War (Cuba), to thwarting communism (Korea and Vietnam) to stopping terrorism (Iraq), the United States has used its might to attack and attempt to expand its influence. While this imperialistic approach is defended as necessary to protect its citizens and national interests, other research has pointed out that a central purpose of a capitalist-supported government is the expansion and maintaining of that system (Michalowski and Kramer 2006; Matthews and Kauzlarich 2000). The quest for capital accumulation and other interests have fueled U.S. expansion and invasions of other nations.

Much like the analysis of nuclear weapon proliferation (Kauzlarich and Kramer 1998), the imperialistic expansion in the Middle East opens the door for new ventures and increased capital accumulation. Expansion in a capitalistic system means money and the making of more money.

The fuller explanation resides in the relationship between U.S. economic interests as resident in the structure of corporate capital and the long-standing will to empire these economic interests have forged as a key characteristic of the U.S. political establishment (Michalowski and Kramer 2006:331).

Michalowski and Kramer (2006) broke down the Iraq invasion into three levels of analysis using the integrated analytical framework to explain the motivation to invade, the opportunity structure that existed that allowed the United States to invade, and the lack of obstacles and international reaction under the operationality of control.
Summary and Conclusion

The work on state-corporate crime is rooted in the study of white-collar crime and the belief that seemingly “good” people can be involved in or commit crimes or deviant acts. As Sutherland (1949) notes, these offenders are not afflicted with pathologies and cannot blame socio-economic conditions for their actions. The intersection of private interests (goals equate to money) and government goals, coupled with lowered social or organizational controls to prohibit deviance, can lead to state-corporate crime. As the above case studies have indicated, an integrated theoretical approach best explains the actions of the state, private corporations, and individuals involved in the commission of these socially harmful acts. Additionally, it may not be an intentional act on the part of one person, but rather a culture that allows normalization of deviance. Good people can see bad things coming their way but are unable to react because of obstacles preventing them from seeing what they are doing as wrong.

What the studies reviewed in this chapter have also shown is that the government’s involvement can be active or passive. In the case of the Valujet crash (Matthews and Kauzlarich 2000) and the Hamlet, North Carolina fire at Imperial Foods (Aulette and Michalowski 1993), it was government’s inaction that was the root cause of the tragedy. Failure of federal, state, and local government agencies to fulfill their regulatory duties resulted in death and injury. In essence, it was the state-facilitated actions of the companies involved that led to the death and injury. Economic interests were the motivating catalyst for the harmful actions of each
company. In part, the government’s inaction was due to economic factors, but it was also due to other political goals and interests.

The 1990’s and early 2000’s have seen an increase in studies using the concept of state-corporate crime, and, more importantly, providing support for the integrated theoretical approach to studying state-corporate crime. Each study has taken a catastrophic event, analyzed what occurred, and shown that, while perhaps the actual cause of the incident appeared to be an accident (e.g., failure of an O-Ring, locking of fire doors to prevent theft, or explosion of oxygen generators on an aircraft), when we critically examine each incident we see a series of acts, or path of deviance, that lead up to the catastrophes. Other studies point to state-corporate crime on a more white-collar crime level. For example, the Halliburton (Rothe 2006) case shows instances of white-collar crime (e.g., price fixing, subcontractor collusion), as well as the commission of state-corporate crime in that the government’s involvement facilitated and allowed injurious business practices to continue.

Personal relationships between government figureheads and corporate managers lead to awards of contracts and sole-source awards precluding and excluding fair contracting practices such as competitive bidding. In essence, the Halliburton incident is an excellent example of white-collar crime being perpetuated and exacerbated by an instance of state-corporate crime. The Halliburton incident existed only because of the U.S. invasion of Iraq, which has been shown to be an instance of state-corporate crime.

As the literature on state-corporate crime grew, only extensive catastrophic disasters were studied (i.e., incidents of large-scale deaths, or the loss of millions of
dollars coupled with the loss of human life). In other words, the focus has always been on a sensational event. One question for this dissertation to answer is, can this integrated theory of state-corporate crime (Kauzlarich and Kramer 1998) explain a case that is less sensational, involving a local government agency as a victim and perpetrator of deviance? Can this theory be used to explain a more micro-level incident? My goal is to use the integrated theory to explain what occurred at KDPS, a medium-sized public safety department.

Another goal of this dissertation is theory elaboration. Vaughan (1992) writes about theory elaboration and its usefulness:

Theory elaboration is a method for developing general theories of particular phenomena through qualitative case analysis. By theory, I mean theoretical tools in general (theory, models, and concepts), rather than a more restricted formal meaning (a set of interrelated propositions that are testable and explain some phenomenon). By elaboration, I mean the process of refining a theory, model, or concept in order to specify more carefully the circumstances in which it does or does not offer potential for explanation. (P. 175)

I use the integrated theoretical model of state-corporate crime to examine an area previously untouched. Researchers have shown that the concept of state-corporate crime is appropriate for grand scale events and the integrated theoretical framework is useful for explaining these large-scale state-corporate crimes, but can it be used in making smaller-scale examinations? Is it useful for explaining crime or deviance of individuals, small businesses, and local branches of government?
CHAPTER III

METHODS

The present work is a case study of state-corporate crime at KDPS. I use the integrated state-corporate crime theory (Kramer and Kauzlarich 1998) to explain the actions involved in the purchase, implementation, and maintenance of the department’s computer systems during the 1989-2004 period that led to the social harm and injury detailed in Chapter I. This explanation focuses on the interaction that occurred between the federal, state, and local governments; professional organizations like the International Chiefs of Police; computer vendors that supplied the computer equipment and maintenance services; and KDPS. The first section of this chapter defines a case study. This is followed by a brief discussion of historical ethnography, which is the method I employ. Then I discuss the research setting, followed by my approach to collecting and analyzing the data.

What Is a Case Study?

Stake (1995) defines the case study as “the study of the particularity and complexity of a single case, coming to understand its activity within important circumstances” (p. xi). Yin (1994) adds that a case study is “an empirical inquiry that investigates a contemporary phenomenon within its real-life context, especially when boundaries between phenomenon and context are not clearly evident.” Consistent with these definitions, I examine a single case of state-corporate crime that occurred
at KDPS. The goal of this research is to use the case study method and integrated theoretical approach to explain how and why state-corporate crime occurred at KDPS.

Vaughan's (1996) comprehensive study of the Challenger disaster epitomizes the use of the case study method. She advocates the use of the case study to get at the rich details of the narratives, feelings, concerns, and supporting documentation. Gillham (2000) further notes the case study can be used to “‘get under the skin’ of a group or organization to find out what really happens—the informal reality which can only be perceived from the inside” (p. 11). For these reasons, I have chosen the case study design for this research. It will allow me to focus on one entity, to tell the story, and to get at the deep-rooted inter- and intra-organizational relationships, actions, and omissions that led to the squandering of tax-payers’ money, putting the public and public safety officers in harm’s way, and the death of at least one citizen.

Historical Ethnography

Ethnographic work in the social sciences usually refers to an inductive approach that emphasizes in-depth exploration of a particular social phenomenon rather than the deductive approach of hypothesis testing. It is used to develop an in-depth understanding of the phenomenon being studied rather than developing abstract empirical generalizations. It usually involves the use of unstructured data, or data that cannot be quantified. This method focuses on smaller units of analysis, like a single case or group, and “involves interpretation of the meanings and functions of human actions, the product of which mainly takes the form of verbal descriptions
and explanations, with quantification and statistical analysis playing a subordinate role at most” (Atkinson and Hammersley 1998:111).

The historical ethnography method may involve participant observation. In the present study, I participated in the process and occurrences that led to the social harm at the intersection of state-corporate actions and negligence (Atkinson and Hammersley 1998). I have been deeply involved in selection and implementation of the computer systems purchased and installed at KDPS. This can, of course, have positive and negative effects. The researcher in social science work is required to be, by the very nature of the work, unbiased in his/her approach. The notion that the scientist stands outside and looks in to provide results that are untainted is a widely held tenet within the field of sociology. Recently, opinions have begun to change that belief, allowing for the acceptance of participatory research. Sociologists cannot always "stand outside." We are part of the social we examine, and we have a particular interest in what we are studying. Therefore, we always bring with us some "baggage," as it were, to the research design, data collection, data analysis, and interpretation of the results.

Clandinin and Connelly (1998) write of "personal experience methods" as a means of qualitative analysis.

The social sciences are concerned with humans and their relations with themselves and their environments, and, as such, the social sciences are founded on the study of experience. Experience is, therefore, the starting point and key term for all social science inquiry. (Clandinin and Connelly 1998:153)

Experience is then brought to the forefront by the telling of the story.
In our effort to find a middle ground—a place where we can both say that we are involved in the study of experience and recognize the truths and epistemological values of reductionism and formalism—we have come to the study of narratives and storytelling. We make the assumption that experience is both temporal and storied. . . . Broadly speaking . . . the case is made that when persons note something of their experience, either to themselves or to others, they do so not by the mere recording of experience over time, but in storied form. . . . In effect stories are the closest we can come to experience as we and others tell of our experience. (Clandinin and Connelly 1998:155)

History is also a part of the story and can present obstacles in our research. Tuchman (1998) notes, “Whether done by social scientists or historians, historical work requires a point of view. A point of view necessarily includes an interpretive framework that implicitly contains some notion of the ‘meaning of history’” (Tuchman 1998:225). Social scientists depart from historians in that historians are interested in documenting what occurred. They seek to find out what happened, whereas sociologists attempt to explain what occurred. So, doing historical ethnographies can be a slanted activity where the biases or opinions of the researcher can be brought into one’s work, especially when attempting to explain a specific case or event (Tuchman 1998).

Tuchman (1998) further notes that another difficulty encountered when doing historical work can be the interpretation of who is telling the story. “For the past 20 years, they [historians] have argued about whether what we call history—the story of people and societies across time—concerns perceptions and activities of elites or of ‘ordinary’ folk [social history]” (Tuchman 1998:233). Whose story is it? Does it relate what occurred, or does it provide a one-sided opinion of the researcher? Nonetheless, the story is still important. It represents someone’s perspective of what occurred. More important is the ability of the researcher to substantiate the story with
evidence such as documentation or narratives of the events to support the researcher's interpretation of what occurred and why. Stake (1998) writes of the issue of story telling. Oftentimes the researcher will allow the case to tell its own story. "Case content evolves in the act of writing itself. . . . Case researchers enter the scene expecting, even knowing, that certain events, problems, relationships will be important, yet discover that some actually are of little consequence" (Stake 1998:93). Furthermore, the researcher will decide what is necessary for an understanding of the case. "It may be the case's own story, but it is the researcher's dressing of the case's own story" (Stake 1998:93). Subjective choices and judgment calls must be made based on comprehensive coverage or other issues affecting the study (Stake 1998).

Vaughan (1996) addressed this in her Challenger study and essentially concluded that the best approach was a chronological one supported by a review of documents and follow-up interviews to corroborate the information obtained. The essence of her approach was to try to see how interpretations or opinions varied by different actors in constructing past events. Not all information is captured as well. The information is selectively chosen based on the need of the researcher and direction of the research (Tuchman 1998).

While there are weaknesses to historical ethnographies, the strengths outweigh the weaknesses while pursuing this type of work. Historically, the argument against ethnographic work has been that it lacks the scientific rigor of quantitative methods. In other words, it is not a "scientific" approach to research. It does not follow the natural sciences protocol. On the other hand, positivistic approaches have always been criticized for failing to capture the true nature of social phenomena due
to its sterile, almost benign, approach. There is also the argument of the biases, attitudes, and prejudices of the researcher that could somehow influence the results. This can be the case in all research. The counter arguments to these issues is that we use qualitative, non-positivistic methods, like historical ethnography and participant observation, to get at the richness of human interaction that is not possible through the use of statistical methods. Historical ethnography strives to get at the rich stories and interactions that can provide insight beyond the mathematical equations used in the scientific approach. Researchers must be mindful of these pitfalls and cognizant of the impressions or conclusions they may draw while doing their work. Only through ethnographies can we tell such stories and get at root causes, roots feelings, and root occurrences (Atkinson and Hammersley 1998).

The Research Setting

KDPS is located in Kalamazoo, Michigan, in the southwestern portion of the state. The 2000 Census estimated the population of the city at approximately 80,000 (Citation needed- web page). Historically, this has been the average population since the 1970’s, with a slight increase in the 1970’s followed by a slight decrease in the 1990’s (City of Kalamazoo Annual Reports 1990-2000). During normal business hours, the population of the city increases to 200,000-250,000. The city has two large regional hospitals, a pharmaceutical company, a major university, and other businesses that create a large influx of workers during the day. The city is approximately 27 square miles and is marked by racial, ethnic, and socioeconomic diversity.
KDPS has approximately 270 employees, a decrease from 320 during the 1990's. The department employs approximately 222 sworn public safety officers. Most day and night shifts include about 13 officers working the streets as patrol officers, patrol supervisors, and shift commanders. The others are station personnel that staff the mini-stations to respond with the fire apparatus. KDPS officers are sworn police officers, certified firefighters, and medical first responders. Kalamazoo is the largest city utilizing this concept. Officers patrol the streets in their police uniforms, but if a fire alarm or steady tone heard on their radios occurs, they respond to the scene of the fire and dress in their firefighting turnout gear. They fight the fire, clean up, and go back to patrolling as police officers for the remainder of their shift. Officers presently work 12-hour shifts on a rotating 28-day cycle.

According to BJA (http://www.ojp.usdoj.gov/bjs/) definitions, based on the population of the city and staffing of the department, KDPS is considered a medium-sized department. The city's crime trends mirrored the nation's trends through the 1990's and into the 2000's. This is borne out by a continuous comparison of KDPS crime numbers (Annual Reports 1993-2005, Intergraph Quarterly Reports) with similar crime numbers of medium-sized departments made by the department and city officials (http://www.ojp.usdoj.gov/bjs/).

Like many other departments in the United States, KDPS participated in implementing community policing during the 1990's. KDPS did enjoy the fruits of the Violent Crime Control and Law Enforcement Act of 1994 (Crime Bill) through the grants and from other funding sources made available. It has also experienced the loss of funding of such programs and has drastically cut back on such efforts and
direction mainly due to costs and budget constraints. These cuts were seen both locally, through budget constraints, and federally, through the cancellation of COPS funding.

KDPS, like other law enforcement agencies of its size, has specialty units within the department. They support an undercover Vice Crimes unit, a canine unit, bomb squad, SWAT, and Community Public Safety unit. Despite the fact that the officers are cross-trained to provide three services, the department operates in a manner similar to other police departments and maintains law enforcement and fire certifications just like all departments within the State of Michigan.

One reason why it is important to study the state-corporate crime that occurred in Kalamazoo is the fact that the same types of social harm resulted in other jurisdictions, making it not an isolated case. Even the Federal Bureau of Investigations (FBI) experienced a highly-publicized failure of its computer system. For example, on January 14, 2005, The New York Times headline reported that the "FBI May Scrap Vital Overhaul for Computer System," and The Washington Post's headline from the same day read, "FBI Rejects Its New Case File Software; Database Project Has Cost Nearly $170 Million." In this case, the FBI scrapped a $170 million computer system that was supposed to link all the FBI agents in the world through one central system. They "dumped" their new system and its vendor in the early part of 2005, and in December 2005, a Wall Street Journal headline reported that the "FBI Delays Awarding Contract for Computer System Overhaul—Nervous About Money." While the headlines give a brief description, what occurred was the inability of the contractor to be able to make their software function. The system was
set to link all FBI offices and in theory FBI agents through one central repository for their RMS. After spending the money, the vendor was unable to make the system work. The overall blame was placed on the company’s software, but reports indicate that the project was behind before it got started. After three years of work, the vendor was trying to sue equipment and technology that was old and obsolete.

Other local agencies have experienced these types of debacles and disasters. As noted in Chapter I, Grand Rapids, Michigan, experienced problems in 2001, including a death of a young child. One only needs to look at other headlines to see what is occurring in the rest of the world. In Glasgow, Scotland, The Herald reported, “Revealed the GBP On Computer Police Bungle. The System is Three Years Late” (www.lexis-nexis.com). In this case, the Glasgow police have been attempting to bring an RMS live for the past three years. Because of computer problems (i.e., software, hardware) the system still does not work as promised. The Milwaukee Journal in September 2005 reported, “$7 Million and 6 Months Behind, Still Failing to Deliver” about the Milwaukee’s Police Department’s $7 million replacement computer system. The headline in the Buffalo New York News, October 29, 2005 (www.lexis-nexis.com) read, “Buffalo Police Trying to Work Out Glitches in New Computer System,” or Boston Herald, October 22, 2005, reported, “Computer Revamp Puts Byte on Crime Information Flow, Released with ‘Glitches’” (www.lexis-nexis.com). In each case, the vendors have failed to provide a working system as promised. So it is apparent that this problem not only is occurring in other locations, but has hit larger and more expensive systems.
My argument here is that KDPS is a reasonable place to study this type of state-corporate crime. If anything, the happenstance that it is a public safety department that provides consolidated services makes dependence on an integrated computer system greater and failure of such a system much more dangerous. KDPS personnel dispatch police, fire, and medical emergency cases, and rely heavily on the computer to provide that service. As a result, KDPS is an appropriate place to study this type of state-corporate crime. Clearly, the department is not alone in its experience with life-threatening computer problems that resulted from the interaction between corporate vendors, the federal government, Michigan state government, professional organizations, and the KDPS. It is appropriate to begin with an in-depth look at one case before moving on to generalize across other agencies.

Data Collection

The researcher is the primary gatherer of data in qualitative research. Yin (1994) proposes several principles of data collection in a case study. One is the use of multiple sources of evidence that adds to the depth and richness of the study. These sources include documents, archival records, direct observation, participant observation, and physical artifacts. The multiple sources are used for triangulation purposes. Patton (1987) proposes four types of triangulation—triangulation of data sources, investigator triangulation, theory triangulation, and methodological triangulation. Using these types of principles, one can avoid issues of construct validity, “because the multiple sources of evidence essentially provide multiple measures of the same phenomenon” (Yin 1994:92).
Following these premises, I collected information from the following sources: KDPS annual reports; contracts between vendors and the City of Kalamazoo; federal grant applications for funding of computer-related equipment; federal program solicitations; correspondence in the form of memoranda, electronic mail, and letters; court case files; the provisions of the 1994 Crime Bill and codes of regulations issued pursuant to this law; documents related to the programs established under the Crime Bill and other federal legislation that provided monies for computer technology to local law enforcement agencies; reports filed with the Securities and Exchange Commission by corporate vendors involved in the KDPS case; information from websites of national professional associations; and information gleaned from other sources on private computer vendors. Of particular interest were the Department of Justice (DOJ), National Institute of Justice (NIJ), and Community-Oriented Policing Services (COPS) websites as they exist today, and as they were in the late 1990's. Other websites of interest included the International Association of Chief's of Police (IACP), Association of Public Safety Communications Officers (APCO), National Emergency Number Association (NENA), and other web sites related to computer purchases. The vendors' websites include Intergraph Public Safety (a subsidiary of Intergraph, Inc.), Motorola, and DM Data, Inc. Federal regulations and rules were used to determine the existence of any type of guidance for the purchase or implementation of such systems. Other websites were reviewed but provided little additional insight.

Documentation exists within KDPS from the purchase of its last two computer systems. This information includes requests for proposals (RFPs),
contracts, and other correspondence. Additionally, the department has grant applications and awards since 1994 relating to computer purchases, and, more importantly, the solicitations, indicating the federal government's desire to facilitate computer purchase/implementation.

Data collection focused more narrowly on the three levels of the Catalysts for Action (Table 1, Appendix B). For example, under the "Institutional Environment" level, information included the number of computer vendors supplying software to the police. Under motivation concerning culture of competition, one area examined is the number of vendors that claim they can provide the type of system unique to police/fire work. Are there hundreds of vendors that claim they can provide the service, or only a limited few, raising the possibility of a partial monopoly with more opportunities for increased costs and fewer penalties associated with providing faulty equipment? If there are only a few, there must be economic pressure and organizational goals that direct employees to secure sites like KDPS. Does the culture allow the sale of these systems to "do whatever it takes to secure the contract"? Under the opportunity structures section, information was sought to determine if regulations, guidance, sanctions of rules existed either guiding the sale of the product to the government, or directions to the police to assist them in purchasing or implementing a system. In terms of operationality of control, what were the pressures on the organization to implement these systems? Memoranda provide what the climate in the department was concerning the system. Other examples such as newspaper articles, commission meeting notes, memoranda, or legal proceedings were retrieved and examined.
In the "Organizational Structure" level concerning motivation, corporate culture, operative goals, and managerial pressure can be uncovered and disclosed through office correspondence and electronic mails. What were the directives? Was there pressure from top executives or from the vendors to implement and make payments for the system? Were there friction, obstacles, or roadblocks to completion within the organization, or more narrowly, with the subunits within the larger department? Electronic mail and office correspondence of employees can determine task segregation, constraints, and policies. Vaughan (1996) also used this method to uncover the normalization of deviance that occurred within the private corporations and NASA. Relying on internal memoranda, correspondence, and recollection of encounters through personal interviews, Vaughan was able to show that through a cultural change, deviance can become the norm and poor and tragic decisions can be made.

The control aspects, quality control, communications processes, reward structure, and codes of conduct can be retrieved from available policies and standard operating procedures (SOPs). The culture of compliance, at least from the position of KDPS, can be seen in the interactions through correspondence and recollection of conversations.

At the interactional level involving face-to-face interaction and perceptions of those interactions, much of that information can be relayed from my experience and those who worked on the project both for me and independent of me, such as workers at the city's IT department. Under the structural level, attractiveness of illegal means and perception or description of the situation will be explained through...
personal experience, observation, or narratives of conversations. For example, a portion of some software was sent to the department to use. The company's project manager admitted to me later that she knew the software had "bugs" which caused certain failures leading to the loss of police reports and causing a loss of valuable time as officers had to rewrite their reports. This situation led to numerous events which can be explained at multiple levels of the theoretical framework. Important here was that it was a conversation that led to the disclosure of the company's culpability in knowingly shipping a defective software product.

The final section of the framework is at the lowest level of control aspects of the various projects. When things go wrong, excuses, explanations, diffusion, and neutralization begin to set in. Whether these factors trickle down from the top or get entrenched in the activities of the workers at the bottom, they all contribute to the cultural reaction. Actions, behaviors, and attitudes can change or cause redirection of the project or even inaction on the part of the workers. These activities are best disclosed from internal electronic mails and correspondence for reconstruction of what occurred.

Data Analysis

Yin (1994) proposes two general strategies for qualitative data analysis. The first is to rely on one's theoretical propositions. Following Kauzlarich and Kramer (1998), Kramer and Michalowski (2005), and Michalowski and Kramer (2006), the integrated theoretical approach will guide the research and assist in analyzing all
levels of activity. In keeping with the above-mentioned authors and Vaughan (1992, 1996), the researcher lets the theory loosely guide him/her through the analysis.

Yin's (1994) second strategy involves developing a case description. A descriptive framework should be used upon which to organize the data and provide the analysis in a narrative form to convince the reader. In order to tell the story, I provide a linear progression—from whence it all started—in the development and the requirements for automation within the department. Again, the use of the analytical framework will be the guide for the analysis.

Points of Contention

There are points of contention with the ethnographic, case study type of research method. Specifically, some in the field share a disdain for case study methodology/approach. In a social science field that values positivism, the case study is seen as lacking rigor. Questions of reliability and validity arise, coupled with the overarching idea of generalizability. The tests for both validity and reliability can be addressed through use of data triangulation—i.e., using multiple sources of evidence or documentation. For example, a grant solicitation is found indicating the availability of funding for certain computer equipment. Internal documents and emails are located supporting request for the funding, and employees recall contacting the government about getting the funding. Controversies, issues, or the award of the money can then be corroborated through the contracting and purchasing phase. Multiple “paper trails” exist, supporting the existence of the grant and the solicitation that led to the purchase and implementation of the system. Additionally,
the “chain of evidence” allows for a review of the flow of information and where it was retrieved. “Data source triangulation, for example, is attained if the phenomenon remains the same in other times and places…” (Scholz and Tietje 2002:338).

External validity deals with the idea of generalizing beyond the case itself. The thought is that the results of case studies cannot be generalized beyond the case itself. My interest here is theory elaboration and insight into the actions of those involved in the computer system purchases and implementations. First, can the use of the theoretical framework espoused by Kramer and his colleagues be a useful tool for analyzing state-corporate crime at the local government level? Is criminal activity or deviance occurring at the intersection of the federal government’s involvement with private corporations in encouraging the purchase, implementation, and use of computer systems, thus causing harm at the local governmental level? My intent is not to provide sweeping overarching generalizations to all local law enforcement agencies, but rather to assess the usefulness of the model and focus on the state-corporate crime experienced by KDPS, the city of Kalamazoo, and ordinary citizens.

Reliability of a study deals with ability of another researcher to replicate my findings. Could the research be conducted again resulting in the same findings? Yin (1994) suggests a protocol to document decisions made and steps taken in one’s research. This issue of reliability can be overcome by noting precisely where the information was retrieved. There remain some results that cannot be replicated. In ethnographic participant observation research where we seek to get to the stories and histories of what occurred, we often deal with certain suppositions that cannot be avoided. What the observer saw cannot be replicated, nor can what the observer felt.
Both are important to the story; both bring a richness to what occurred. Qualitative studies are like that; the stories are left to stand by themselves. Tuchman (1998) notes that the stories should be corroborated with other information. Use of several informants is important, along with approaching the information from an inductive or deductive method. Tuchman uses the concept of “stock of knowledge at hand” which I bring to this research. Others can tell the events and occurrences, but I am the one who experienced it. I know where to dig to substantiate the explanations and corroborate the evidence. I know the “paper trails” better than anyone. This “stock of knowledge at hand” brings a certain insight as well as a predetermined outlook, both of which I am aware of and try to be reflexive about when conducting my analysis.
CHAPTER IV

INSTITUTIONAL ENVIRONMENT

There were at least five macro-level historical, political economic, and/or cultural factors that provided the institutional environment conducive to the formation of state-corporate crime that occurred at KDPS. First, the development of computer technology, dating back to the late 1950’s when the “Cold War” began, and the race for space established a relationship between the federal government and private sector computer and information technology companies in the development and marketing of these technologies. Second, the wars on crime, drugs, and terrorism, dating back to the mid-1960s, all provided an emphasis on the use of computer technology by police to control crime, as the military used such technologies in waging its wars, and provided federal monies to police departments for this purpose. Third, the “New Federalism” started by Nixon, continued by Carter, and refined by Reagan, provided for changes in the relationship between the federal government and state/local governments, particularly with regard to disbursement of federal funding and degree of oversight. Fourth, market deregulation provided for fewer federal regulations, allowing for big corporate mergers and

3 The police, for the purposes of this chapter, refers to the social institution of policing and the police profession at-large. It refers to uniformed police serving states, counties, and municipalities. It excludes federal services such as the FBI, ATF, etc.
creation of oligopolistic conditions in the computer and information technology market that allowed vendors to provide defective equipment and software to local law enforcement departments. Finally, the end of the Cold War also sparked new innovations in information technology as there was less emphasis on military applications and a corresponding need to cultivate new markets. All these factors played key roles in providing the catalysts for action (i.e., the motivation, opportunity, and absence of social controls) for federal government agencies, computer technology vendors, law enforcement professional organizations, and local police departments, that in turn caused a chain of events that led to state-corporate crime at KDPS.

This chapter examines this institutional environment that played a key role in providing the necessary conditions and created the motivation, opportunity structures, and (a lack of) controls that existed while KDPS was adopting and implementing computer technology in its department. The history of each of the factors noted above will be discussed briefly along with how each provided the conditions for the actions of federal government agencies, computer vendors, professional organizations, and local police departments. Once the general institutional context has been explicated, I then turn to the specific motivations, opportunities, and controls this institutional context provided for actors like those in the case of KDPS.
Institutional Contextual Factors

Development of Computer and Information Technologies

Edwards' (1996) sociological work on the computer and corresponding discourse describes the historical development of the computer. Edwards sees the development of the computer as linked to particular political/military endeavors. Beginning in World War II with analog devices used to guide cannon rounds, to the "Star Wars" like devices proposed in the 1980's, computer development has been spurred by military needs and desires, and funded by the federal government via contracts to private companies. Emerging from Cold War fears of the Russians attacking the United States, a system known as SAGE attempted to set up a protective radar netting over the United States to warn of attack. This was the first attempt at getting computers to work as a network and provide information on a grand scale. Additional work on computerized guidance systems for ballistic missiles and efforts in aeronautics continued through the 1950's, supplying the Korean War with new technologies. Fueled by a fiery speech by President Truman preaching the imminent attack by the Russians and the overthrow of the world by communists, the military attempted to stay one step ahead of Russian technology and missile proliferation and to build an anti-missile early warning system. Combine this with the advancement of space initiatives and the creation of the National Aeronautical Space Administration (NASA), computers were in demand and research and development (R&D) was paramount.
Technology in the 1960’s was sparked by the race for space and the Vietnam War. As the United States sought to put the first person on the moon, the Vietnam War saw advances in weapon technology, radar enhancement, flight controls, and other communications technologies. “Developed during and after World War II for code breaking, computer technology advanced rapidly in the 1960’s through private enterprise (IBM) and federal programs (mainly from the Department of Defense [DOD] and NASA)” (Wadman and Allison 2004:122). Initiatives such as “Igloo White” during the Vietnam War were among the first instances of high-tech war waging. This operation was focused on the infamous “Ho Chi Min Trail.” Sensors were placed on the trail to detect the presence of humans and vehicles. Monitored in an isolated air conditioned sterile environment, once a sensor indicated the presence of a vehicle or a human, air strikes were ordered, a bombing run ensued, and the source of the activation was removed as bombs rained down from above. A new form of warfare was being waged where the enemy was never seen, but yet theoretically was eliminated based on computer alerts and subsequent elimination by pilots (Edwards 1996).

The computer and information technology market was driven in the 1960’s and 1970’s by the vast amounts of spending by DOD and NASA for R&D, and direct expenditures on the war and for space flight. The 1970’s saw the development of the space shuttle program and yet another clamor for an early warning and defensive space system that would stop incoming intercontinental missiles. A pop culture event sparked the new focus on the ability to shoot down incoming missiles and aircraft before the missiles hit American soil. “Star Wars,” an epic futuristic
film, hit the screens in 1976 and fueled the thought that, through technological countermeasures, we could remove the threat of nuclear missiles and other weapons of mass destruction falling on American soil. Large sums of federal money were poured into R&D to private federal government contractors for this endeavor, dubbed the "Strategic Defense Initiative" (SDI), allowing for society to reap the benefits through faster, smaller, and better computing technology (Edwards 1996).

The private sector was now benefiting from the space flight initiatives of the Apollo program and subsequent space shuttle programs, coupled with the advances in technology from the Vietnam War and looming threat of the Cold War. Federal government contractors like IBM, and others involved in communications such as Motorola and AT&T, all started marketing the advances in technology, which had been developed with federal dollars, to private sector businesses. Computers during this time period started to become faster and smaller. Mainframe computers that once took up an entire room started to shrink, and their processors started to increase in speed and efficiency.

The 1980's saw a profound development in both the use of computers and technological advances. As R&D in the defense and space agencies focused on SDI and the military's push into Artificial Intelligence (AI), the business world was experiencing a boom in the development of smaller "desk top" computers suitable for use in the office environment. Word processing and spreadsheet software brought along the realization that computers were now a necessity in the private sector work environment.
Private industries led the way for computer development in the 1990’s. Silicon Valley, an icon for the development of microprocessors, provided the needed technology and manufacturing to increase computer use throughout the 1990’s. Advances in software came from corporate giants like Microsoft, as well as smaller companies all searching for their niche in the market. The mid-to-late 1990’s witnessed a major increase in the use of the internet. First brought into use by academic researchers motivated by their desire to share information, the business community increasingly saw the internet as an important marketing tool, and as a new market itself. “Dot.Com’s” sprang up and created a new and lucrative market place, both in terms of selling wares and as a means of communication to reach more potential customers.

The historical development of computers and information technology provided not only the technological commodities at issue in the KDPS case, but it also established a specific relationship between the federal government and private sector with respect to the development and deployment of this technology. The federal government contracted with private sector companies for R&D services and manufacturing of computer and information systems technology for use in military and space agency applications. Because the federal government contractors retained patent rights to the technologies, they were able to adapt these technologies for other private and public sector applications, thus creating a lucrative market, while bearing none of the R&D costs. Also, the federal government’s heavy involvement in funding the development of computer and information technologies for use in military engagements and space exploration provided the conditions for its
involvement in further deployment of such technologies in other “wars,” as we will see in the next section.

Wars on Crime, Drugs, and Terrorism

The war on crime, and subsequent war on drugs, saw their beginnings with the creation of then President Johnson’s Crime Commission, and subsequent Law Enforcement Assistance Administration (LEAA). The Crime Commission produced a lengthy report entitled, *The Challenge of Crime in a Free Society*, outlining the shortcomings of law enforcement efforts in the 1960’s, and the technological needs of the police in the nation overall. From this 308-page report came some 200 recommendations, of which 11 specifically dealt with technology issues, and in particular, the technology needs of the police. The Commission found that “crime is a national, as well as a state and local phenomenon” (Seghetti 2002:2). This allowed for the proposal by President Johnson for more aid to the police in the form of grants. From this benchmark action by the President came the flow of federal money to the police. With the passage of the *Omnibus Crime Control and Safe Streets Act* (Safe Streets Act) of 1968, Public Law 90-351, came the release of federal money for the police. Title 1 of the Act established the Law Enforcement Assistance Administration (LEAA) targeting the release of federal money for programs, equipment, and technology.

“The enactment of the Safe Streets Act and the creation of LEAA ushered in a new era of federal assistance to state and local governments for crime control” (Seghetti 2002:2). This effect had a two-prong reaction. Not only did it provide
funding for law enforcement, and in particular the advancement of technologies, but it also expanded the federal government's involvement in local law enforcement. Criticized for mismanagement and other problems, the LEAA was disbanded after twelve years. In its relatively short life, roughly $7.5 billion was disbursed to law enforcement in the form of grants and other in-kind services, such as training and direct supply of equipment (Seghetti 2002).

Important to this work is that this act marks the beginning of the concept of a war on crime. Pepinsky (2006) writes on the notion of the “war on crime” and its importance in terms of political survival for politicians. In the United States, we have always rallied around our leaders in times of war, so it was with the war on crime and the subsequent funding and programs that followed.

In a militarized society, such as the United States, politicians tend to hang onto their jobs by creating public enemies and by appealing for popular unity against threats to public security. Being tough on foreign enemies and tough on crime is a proven path to political success. (Pepinsky 2006:9).

The use of the term war also conjures up the notion of defeating the enemy at any cost and by any means. Work in Potter and Kappeler (1998), Kappeler and Potter (2005), and Bohm and Walker (2006) has shown that law enforcement efforts in these wars bring about policy decisions, practices, and procedures that can be seen as violating rights and contrary to the perceived “good efforts” of law enforcement. Use of tanks and peacekeeper-type vehicles as a means of executing search warrants and other activities aimed at the “war on crime” or “war on drugs” has stretched court workloads to the breaking point. More important, though, it provides for the release of money. In other words, the costs of these wars have allowed for the
transformation of many police agencies to the status they enjoy today because of the funding sources. If it were not for the release of funding under the war of crime, many departments would not have had or acquired the money necessary to automate or purchase computers.

Not only was the concept of the war on crime an important by-product of the Safe Streets Act, but one of the key goals of the Act was to advance the use of technology within the police profession. This Act led the way for computerization for local, state, and federal law enforcement agencies. One outcome of this federal money and the move to modernize the police was the advent of the National Crime Information Center (NCIC), which is administered by the FBI. The NCIC is a centralized index of fugitives, stolen property, and missing persons. Work began on the NCIC in the late 1960's, and it represented the first practical and combined computerization efforts that linked together federal, state, and local police agencies (Seaskate 1998). Additional work on telecommunications followed with the development of “911” as the number dialed for emergencies. From the development of the concept of dialing one number to enhanced E911 systems of today, the benefits of that early money from the Safe Streets Act have had significant effects on all computer development within law enforcement.

Other legislation followed the Safe Streets Act, adding to the funding available for police and the use of computer technology within the profession. The Comprehensive Crime Control Act of 1984 revised federal sentencing and forfeiture procedures. Chapter IV of the Justice Assistance Act of 1984 established the Office of Justice Programs (OJP), which would be the leading grant-making administrative
agency within the Department of Justice (DOJ). Other bills, such as the Crime Control Act of 1990, authorized $900 million in the Edward Byrne Memorial State and Local Law Enforcement Assistance programs. Byrne grants were used to provide training for programs in crime prevention and illegal drug enforcement. In Kalamazoo County, Michigan, Byrne grant money was used for innovative programs such as the “Community Prosecutor Program” and the staffing of a curfew violator center to provide swift action when dealing with juvenile offenders taken off the streets by the police. Byrne money was also used by local law enforcement for computerization efforts and other programs focused on investigative techniques.

Development of the war on drugs also provided further money and impetus for implementation and use of computer technology by local law enforcement agencies. Concerned over the heightened use of illegal drugs in the 1960’s and on into the 1970’s, federal laws were enacted to assist law enforcement in the fight against illegal drug use and trafficking.

The Harrison Act of 1914 was the first law to make narcotics illegal, but the most comprehensive and far-reaching act was Title II, Public Law 91-513, entitled the Comprehensive Drug Abuse Prevention and Control Act of 1970. This law, and its subsequent revisions and amendments, provided for the scheduling of illegal drugs, or what are referred to as dangerous drugs. It set the stage for many state drug laws and subsequent enforcement of these laws. It also established federal punishment guidelines and was the catalyst for the creation of the Drug Enforcement Administration (DEA). It is one of the most far-reaching pieces of legislation concerning illegal drug trafficking. It also established guidelines for prescription

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
drugs and penalties for violations of this section. This led to the development of computer databases that linked pharmacies and law enforcement agencies in efforts to track addictive and harmful prescription drugs.

Other subsequent legislation added to the effects of the 1970 Act. These laws included the *Anti-Drug Abuse Act of 1988*, which established the concept of a drug-free America as a goal. A key provision of that act was the establishment of the Office of National Drug Control Policy (ONDCP) to set priorities, implement a national strategy, and certify federal drug-control budgets. The focus of this bill was on research and the prevention of illegal drug use. Additional bills have added funding available to law enforcement over the years. In 1997, the passage of the *Drug-Free Communities Act* provided funding to fight illegal drug trafficking and also provided funding directly to neighborhoods to fight illegal drug activity (Whitehouse Drug Council 1999).

Funding to fight illegal drugs included the efforts by federal agencies (DEA, FBI, Alcohol Tobacco and Firearms) to automate and share data between law enforcement agencies at various levels. During the 1970’s, 1980’s, and 1990’s, money was provided through the federal government for computer and information systems technologies. The legislation for fighting the war on drugs brought with it additional funding for technology, much like that of the legislation that focused on the war on crime. Again, raising the status of the efforts to stop illegal drug activity to a war status brought with it the public support needed to fund these activities.

The war on drugs, the war on crime, and the war on terrorism have occupied our evening news for decades. On the contemporary scene the “War on …” gets its
beginning in the Johnson Administration with efforts in the Great Society and as a result of his 1967 Crime Commission. Since then, politicians have used the rhetoric to gain support for programs and subsequent funding to fight crime, illicit drugs (both trafficking and illegal use), and domestic terrorism. The notion or concept of "war" allows us to escalate the social problem to epidemic proportions. Elevating something to war status gives it a special status. Crank and Caldero (2000) borrow from an earlier 1931 study by E. J. Hopkins, who notes that police often engage in illegal behavior based on the perceived corruption of a noble cause. They can develop a "war theory of crime control," suggesting that the police are somehow waging a war. In a war, the means justify the ends, so by whatever means available to get the job done. This leads police towards a perceived mandate to accomplish their mission. Feeling this pressure by the public to wage war, causes police to seek results and find solutions at whatever cost. Police will tend to lean towards circumventing existing policies, but more importantly, will circumvent the law to get results. By waging war and attempting to eliminate both crime and drug trafficking, police can feel pressure to take matters into their own hands. Results of these activities can be seen in court decisions where evidence is dismissed or suspects are released without trial. Overzealous police, working towards the noble cause, can use creative, on the edge methods to wage war.

The Harrison Narcotic Act was one of the first laws passed that made narcotics illegal. Since then a debate has ensued over determining the proper institution to enforce such anti-drug laws. The question is posed, is it a law enforcement responsibility or a medical psycho-physiological problem? Should the
issue be addressed in the courts or addressed in the hospitals and clinics? The debate continues to be fueled by sociologists' claims for both sides to handle the problem. It has recently, though, been compounded by politics. Kappeler and Potter (2005) note that the drug problem has been created by politicians, politics, and the subsequent bureaucratic need of law enforcement to attack the problem. "Politicians pander to public fear and frame the drug issues in the starkest, most unyielding terms" (Kappeler and Potter 2005:176). More important is the fact that the war on drugs offers the opportunity for bureaucratic expansion, requiring more money, more personnel, and greater police powers to enforce newly created laws to protect our citizens from the dangers of illicit drugs.

Recent bureaucratic and political rhetoric has created a nexus among crime, drugs, and domestic terrorism. Kappeler and Potter's (2005) work provides an advertisement that captures this link. It depicts a close-up photograph of a female, with carefully applied make-up, emulating what appears to be a woman of wealth. The caption over her face reads, "On Wednesday, I played tennis, went shoe shopping, and helped smuggle a load of AK-47s into Columbia." The bottom of the advertisement reads, "Drug money helps support terror. Buy drugs and you could be supporting it too. Get the facts at the antidrug.com. Get help at the National Treatment Hotline, 800 662-HELP" (174). Government sponsored advertisements like these help create, perpetuate, and sustain the belief that this connection exists. The additional subliminal message here is that to stop drugs is to stop crime, and to stop drugs and crime will ultimately stop domestic terrorism.
Law Enforcement as part of the war on drugs has grown by leaps and bounds, supported by initiatives focused at stopping drug trafficking. Since Reagan made it a priority, efforts have focused on reducing use, stopping the supply, removing the source, preventing border entry, and promoting aggressive enforcement on the streets of America. The fallout has been racial disparities in enforcement and court sentencing, gender disparity, and law enforcement corruption. Billions of dollars have been poured into enforcement, courts, and penal sanctions, appearing to be to no avail (Kappeler and Potter 2005).

Despite the best efforts and the spending of billions of dollars, society seems no closer to ridding itself of illegal drugs, crime, or terrorism. It appears that at every turn we simply were wrong. We cannot fight a war that we do not want to win. The police have no more ability to stop crime than they have to stop the influx of drugs through trafficking or to stop illegal drug use. Furthermore, likening terrorism to drug sales or crime is like stating the Iraqi war was justified based on terrorist activities of that nation-state. (Kramer, Michalowski and Rothe 2005). What the war on drugs and crime did do was add police and federal agents to the streets, assist in professionalizing the police through training and education, increase the use of technology to stop trafficking and other crimes, provide military equipment and training to the police, and create a draconian prison system where “lock ’em up and keep ’em” mentality caused a huge incarceration rate at an enormous economical cost. Even a review of a 2005 publication from the federal government entitled How Goes the “War on Drugs”? : An Assessment of U.S Drug Problems and Policy, could not outline the government’s continued plan in this alleged war. The first chapter
begs the question “Successful at achieving what goals?” (3) Rhetorical in nature, nonetheless, it points to the lack of goals throughout the last two decades. The publication admits that the current goal is one focused at the drug user and efforts to control drug use.

Violent Crime Control and Law Enforcement Act of 1994

Not since the passage of the *Omnibus Crime Control and Safe Streets Act of 1968* and the creation of the Law Enforcement Assistance Administration (LEAA) has law enforcement been impacted more and has been provided with more funding than with the passage of the *Violent Crime Control and Law Enforcement Act of 1994* (Crime Bill). In 1994, then President William J. Clinton signed into law House Resolution 3355, creating Public Law 90-351. The signing of the bill brought millions of dollars to law enforcement agencies. This money was targeted for victims’ rights monies, policing, courts, training, and technology.

While portions of the Crime Bill focused primarily on community policing, certain segments allowed for and encouraged the development of technologies for the police. Under the guise of community policing, the Crime Bill called for technical assistance to trickle down to the states and local governments. One of the key proposals under the law, though, was the deployment of an additional 100,000 police officers working in community policing activities throughout the United States. “From 1995 to 2003, the COPS Office provided more than $6.9 billion to nearly 13,000 state and local law enforcement agencies to hire over 118,000 officers,
deputies, and troopers" (Dunham and Alpert 2005:37). Falling short of this goal, the selling point of the initial bill was this addition of officers on the street.

Title XIV of the bill entitled “Community Policing—Cops on the Beat” aimed to “develop new technologies to assist state and local law enforcement in reorienting the emphasis of their activities from reacting to crime to preventing crime” (Public Law 90-351). This section was to provide technical assistance to local police for technologies and was administered by the U.S. Attorney General’s Office, Office of Justice Programs. The funding was funneled through the USDOJ, and then to the Community Oriented Policing Services (COPS) Office and NIJ. Over the next decade, over $9 billion was spent “to help police agencies implement COPPS—community oriented policing and problem-solving—by adding officers to the beat and providing technical assistance, technology, equipment and training” (Peak and Glensor 2002:24). Title XIV, then, established two key areas. First was the attempt to add 100,000 more officers on the street, under the guise of community-policing activity, and second, it provided for technical assistance and monies for local police to purchase computer equipment.

The release of the money was to begin in the 1995 federal fiscal year with the initial release of the grant money for more officers. Initiatives in the technologies area of the law were slower to develop, as was the establishment of the COPS Office. Once the office was established, it started releasing publications and solicitations to fund research in both the advantages of technology use and the promulgation of the concept of community-policing. The research under COPS was focused on such things as the advantage of in-car computers, the use of CAD to measure officer
activity, and the impact of other computer technology for use in criminal investigations, such as automated fingerprint capturing and other biometric devices. Research in the amount of time spent by officers in a particular area was beginning to be looked at as a means of supporting the community-policing concept. This type of work could be done only with the assistance of computer technology. In essence, the COPS office was established to bring about the growth of community policing and the use of technologies in support of advancing community policing. Grants such as “Advancing Community Policing” were released for technology initiatives. “The COPS Office was charged with aiding in the increased deployment of officers to the streets and promoting community-oriented policing” (Nunn and Quinet 2002:84).

Other local and state community policing projects such as “Integration, Organization and Technology” were funded under this umbrella. Publications from COPS-funded research began to surface around 1997 and continued into the 2000’s. Publications such as “The Evolution and Development of Police Technology,” “Police Department, Information Systems Technology Enhancement Project (ISTEP), a COPS Publication,” and “Policing Smarter Through IT: Lessons in Enterprise Implementation” were available through the COPS internet website and NIJ research publications.

The Crime Bill was a huge boost in financial support for local police to begin their automation efforts. Released by the federal government as a means to control crime under the authority of the Crime Bill and community policing initiatives, monies were provided in the form of grants. Through the COPS Office, solicitations were released that allowed local agencies to compete for these federal dollars. These
dollars were tied to community policing efforts. The Crime Bill became "the statutory basis for creating the COPS office and authorizing it to spend $9 billion on grants to state, local, and other public law enforcement agencies and supporting functions" (Skogan 2004:3).

Money for computer systems was clearly tied to community policing efforts but was to be available at the local level and put towards developing, implementing, or sustaining a community policing presence. The literature began to grow concerning the connection between community policing and technology (see Peak and Glensor 2002; Dunham and Alpert, 2001, 2005; Roberg, Crank and Kuykendall 2000; Skogan 2004). Chu (2001) noted that IT supports the concept and precepts of community policing, and in fact, the use of computers supports the individual officer’s efforts. For example, the use of the internet to post crime information, the use of computers for presentations, and the use of computers in police cruisers supports the individual officer’s efforts in community policing. It only strengthens the ability of officers to gather information and provide that information to their constituents.

Pattavina (2005) sums up this connection:

[The Crime Bill] formalized federal IT development aid to local jurisdictions at an unprecedented level. Under the MORE (Making Officer Redeployment Effective) program, the OCOPS delivered more than $1.3 billion to nearly 4,500 police departments for the acquisition and implementation of IT systems. The principle behind this commitment was the notion that improved information systems would work as force multipliers by reducing the time burdens imposed on police officers by data-gathering requirements. Participating departments were required to commit to increased street time for police officers to secure MORE funding. Initially, the OCOPS reserved the right to withdraw funding, or to require reimbursement for funds disbursed, if departments were unable to live up to their commitments. This
condition was later relaxed, but the principle that more effective use of IT enhances police performance was well established and accepted. (Pattavina 2005:7)

The belief put forth by the COPS office, and through the release of money for IT efforts, was that crime analysis was a useful tool for the officer and departments, and that computers would somehow save the officer valuable time to be redirected towards community policing efforts. Thus, the "carrot-and-the-stick" analogy began to grow. In order to receive federal money for computers, one must agree, at least in principle and on paper, to the expansion of community policing efforts within the department. A federal agenda, then, was cast by the passage of the Crime Bill and the release of funding through the COPS office.

COMPSTAT was also used as a precept to computerization. Supported by COPS under the guise of crime analysis, COMPSTAT was touted as a management tool and, more important, as a means to reduce crime. Through the use of crime analysis and detailed computer generated reports, commanders were held accountable for crime in their precincts/areas and subsequently responsible for lowering those crime rates. This concept expanded through the late 1990's and early 2000's. Heralded for crime reduction in New York City through the 1990's (Bratton and Knobler 1998; Pattavina 2005; Dunham and Alpert 2001, 2005), it nonetheless has come with great skepticism as well (see Willis, Mastrofski, and Weisburd 2006). One criticism was that this type of technique leads to "cooking the books" type of practices. When holding one accountable for activities reported to police, one only has to change what is reported to the police to alter the numbers and alter the perception that crime is on the rise. Inaccurate recording of numbers, not taking a
report, or changing an offense to a non-criminal incident are all practices that have been used to “adjust” numbers to fit the desires. Criticisms notwithstanding, the concept still generated the desire within the police profession to computerize in order to generate needed information and to allocate resources to stop or deal with crime problems.

From the COPS office came publications like “Police Department Information Systems Technology Enhancement Project (ISTEP),” “Policing Smarter Through IT: Lessons in Enterprise Implementation,” “Making Officer Redeployment Effective (MORE): Using Technology to Keep America’s Communities Safe,” coupled with evaluation pieces such as “National Evaluation of the COPS Program: Title I of the 1994 Crime Act” or “Using COPS Resources” and “Relations Between Known Crime and Police Spending in Large United States Cities.” The ISTEP (U.S. Department of Justice 1999) publication attempted to build the case that IT was directly related to community policing, and by following an information usage pattern, it would become obvious to the police that in order to properly function as a community-oriented police department, IT was needed to assist. Additionally, the document points out that “A long-run ISTEP objective is to provide police departments with specific recommendations concerning the products that are appropriate and suitable for particular needs” (U.S. Department of Justice 1999:17).

Manning (1997, 2003) never believed that the community policing effort was anything more that an attempt by local police to get federal money. Calling community policing a “rhetorical giant” (1997, 2003), he admitted that the Crime
Bill provided important funding for automation efforts. Reflecting on the evolution of IT for the police and its funding sources, Manning (2003) pointed out that at each stage, the advances were unplanned, politically driven, and centered around an imagined efficient force that in fact was traditionally organized, committed to a professional model of practice, and (while emphasizing crime control) devoted primarily to the appearance of service via demand management and reactive patrol. (P. 129)

Manning supported my contention that the COPS period was nothing more than the local police’s attempt to get federal funding to support their local IT efforts. In fact, he noted that there exists a pattern of unplanned politically driven activity supporting this belief.

Pattavina (2005) pointed out that when implementing IT projects, there exists a vast array of competency; a lack of standardization; differences in philosophical outlooks; a gap between researcher theory and practitioner experiences; and a lack of standardized equipment, processes, and training. Disparate systems exist throughout the profession and throughout the nation, creating problems in IT projects. Vast numbers of vendors in the field of police computer equipment (CAD, RMS, MPC) lead to confusion on the part of the police as to who can provide for their needs and whom they can best deal with.

Vendors seek to sell only the most expensive version of their products and are not in the business of advising police and other criminal justice agencies as to what the most cost-effective and beneficial package would be. “To some extent, there is a severe need for an ‘honest broker,’ that is, an agency that would advise police agencies and assist them in selecting those products that would truly meet their particular needs” (Pattavina 2005:140).
Benefit of Computers Portrayal

Not only did the release of the federal funding instill a belief that computerization was necessary, but the profession was bombarded by NIJ, extant literature, and professional periodicals with the benefits of computerization. Nunn and Quinet (2002) provided a glimpse of what the profession faces when considering computerization:

Journalistic profiles of technology use in police agencies evoke cinematic Robocop imagery. Vendors offer anecdotes of improved performance, convincing employees of agencies to seek the newest information technologies (IT). Periodicals such as Government Technology, Government Computing, and Law Enforcement Technology regale readers with narratives describing the miraculous enhancements made possible by local area networks, wireless systems personal digital assistants, data mining, mobile digital terminals, cellular digital packet data (CDPD) systems, and the like. (Pp. 81-82)

For example, Washington Technology published articles such as “High-Tech Crime Fighters, Law Enforcement Officials Add IT to Their Arsenals” (Washington Technology 1998). Police Chief magazine and Law Enforcement Technology magazine continue to publish articles on the benefits of computerization. Articles focused on all realms of the computer system, from the benefits of computerized CAD to RMS and mobile systems, started surfacing in the mid-1990’s and continue to be published today.

Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism (Patriot) Act

While the institutional level activity of the 1990’s set the stage for computer development, other events propelled the police into computerization and
modernization of their communication and computerization capabilities. The events of September 11, 2001, created a call for better communications and sharing of data between law enforcement agencies at all levels. Legislators rushed to create legislation that would allow for funding for better communications, but also changed the law pertaining to how U.S. law enforcement officials could collect, retain, and analyze information on U.S. citizens. A practice limited by intelligence oversight legislation passed as a result of the Chicago convention unrest in 1968 and the realization that the FBI was keeping files on citizens that were not immediately involved in criminal or counterespionage activity. In other words, the federal government was keeping information in files with the belief that somehow the person was subversive towards the government.4

The PATRIOT Act added two important facets for local law enforcement. One was to strengthen the ability for local law enforcement, with the help of federal agencies, to increase its ability to conduct wiretaps, since locals appeared to be stymied in their ability to conduct wiretapping. It also brought with it further funding for the advancement of technologies for the police. This act, coupled with the establishment of the Department of Homeland Security, poured money into local

4 I do not have the ability to go into lengths concerning the intell-oversight legislation or the backlash from the concerns of the activity at the convention or the McCarthy era and impact upon learning the FBI was keeping innocuous files on citizens not involved in criminal activity. New technological advances somehow made these practices safer and more sterile from misuse, which was the apparent perception by the legislators. This, along with the fervor of the events surrounding 9/11, led to the passage of a bill that reduced the rights of the citizens of the U.S.
emergency responders and their departments for the purposes of inter­
communications and interconnectivity between all emergency responders.

As part of the war on terrorism, the PATRIOT Act has provided for another
catalyst in the development and perpetuation of computerization in law enforcement.
The PATRIOT Act and the Homeland Security Department began in earnest to
attempt to tie together the communications of all law enforcement agencies in the
U.S. The impact of this bill and the development of a federal department has yet to
be measured. Most attention is paid to the Act because of the controversy
surrounding its loosening of collection of intelligence on U.S. citizens and the ease
with which wiretaps may now be used. Both appear to be another catalyst for further
money for the police to purchase large computer systems, thereby opening the door
for computer vendors to sell their product and take advantage of the police as they
have in the past.

As with the development of the computer, the institutional factors in the war
on crime, drugs, and terrorism allowed for the establishment of bases of funding for
the legitimation of the actions of the police. The creation of a “war” status allowed
for an attack by the police on illegal “drug trafficking” and “crime” problems.
Couple this with the creation of the war on terrorism on a developing domestic front,
and the police were placed in a position to demand the tools they deemed necessary
to fight these wars. These tools were seen both in the area of computerization and in
the area of weaponry (see Kraska 2004) and other equipment. The need to attack a
problem on a war-like plane catapulted the perceived needs of the police to
computerize the profession, and thereby provided them with the perceived tools
necessary to get the job done. Bratton and Knobler (1998) writes of the need for computerization as he attacked the crime problem in New York City. The COMPSTAT model required newer, better, and faster computer systems to keep up with management’s demand for accurate data. As we will see in the next chapter, the chief at KDPS believed in this model of COMPSTAT and wanted to automate the department to use Bratton and Knobler’s model of management and the directing of resources to control crime problems.

Professional Association Involvement

Following the release of COPS’ office publications and the covering of computerization in professional periodicals, an increase of coverage concerning the benefits of computerization and the police was surfacing among the professional associations. The Police Executive Research Forum (PERF) published “Information Management and Crime Analysis: Practitioners’ Recipes for Success” in 1997. Annual PERF conferences continue to discuss the benefits and potential failures of computerization in the profession (PERF Conference Agendas 2002).

In 1999, the preeminent professional police association, the IACP, convened a special committee on police computerization. Dubbed the Law Enforcement Information Technology Standards Council (LEITSC), its members comprised representatives from the IACP Technology Division, National Sheriff’s Association, National Organization of Black Law Enforcement Executives, and PERF. In 2002, they presented to DOJ and the Bureau of Justice Assistance (BJA) IT Initiatives section, a strategic plan. The “Strategic Plan FY 2003” was presented as a building-
block document spelling out the need for standards in the law enforcement community concerning computerization. Essentially the plan provided for the promotion of IT standards, providing advice on technical aspects of IT standards and justice IT initiatives, as well as sharing practical experiences.

Important in this document is the connection between this council, the federal justice departments, and the IT industry. The publication indicated that in order for this council to accomplish the above initiatives, it needed to do the following:

A. *Influence and facilitate the development of IT Standards* for justice communities to enable information sharing and interoperability.

B. *Educate and encourage the law enforcement community* to adopt established standards, as well as involve industry in the process.

C. *Act as conduit to collaborative justice IT initiatives*, to identify, promote and collect standards specifically pertaining to enforcement communities [their emphasis]. (Violent Crime Control Act of 1994, 1)

It goes on to indicate that federal funding was received for this LEITSC endeavor and justice department members as well as industry representatives would be included for the creation of standards.

This was another institutional catalyst that propelled the police profession into the quest for computerization and large computer systems. Specifically, the internet web site discusses systems such as CAD, RMS and MPCs. It perpetuates the notion that the police must have these systems in order to function as a modern day department. The fact that these preeminent associations belong to this consortium lends credence to the fact that police must have these large complicated computer systems. Backed by the federal government with grant funding, the notion is that it must be an appropriate activity, otherwise the federal government would not fund it.
New Federalism

The concept of a new federalism comes from the changes that occurred within the Nixon and Reagan administrations, which first started to gain attention in the Eisenhower era. Reshaping of the outlook on the federal government began with the presidencies of Franklin Delano Roosevelt and Lyndon Johnson. Both began to nationalize policy innovations, change public expectations of federal government services, and alter political incentives for politicians. They essentially expanded both the beliefs of the constituency and the services provided to them. We, the citizens, began to believe the federal government was the answer to our woes and, in fact, federal programs (Great Society, War on Poverty, New City, and other depression era programs) were the avenues to a better life. Monies were poured into programs to rejuvenate the economy, and to both create and expand social assistance programs. Eisinger and Gormeley (1988) argued that “federal involvement in the domestic policy concerns that so greatly fueled federal expansion in the 1960s and early 1970s began to contract in the eighties leading to a transformation in the system of intergovernmental relations . . .” (p. 3)

The new federalism, and in particular that of the Reagan Administration, was to do the opposite. According to Conlan (1998), “Reagan attempted to do much the same in reverse” (p. 111). Tax cuts and increased defense spending cooled the rhetoric for federal programs and changed the form in which federal money was released to the state governments and federal bureaus. Under the guise that social programs were inefficient and ineffective, the new federalist approach sought to
eliminate the federal government’s involvement and funding in social programs (Conlan 1998; Eisinger and Gormley 1988).

Controlling programs through the use of the “purse strings,” Reagan, with the Director of the Office of Management and Budget (OMB) David Stockman, began this trek with reforms in the 1981 budget, whereby they consolidated some eighty categorical grants into seven block grants, coupled with the elimination of General Revenue Sharing. Followed in 1982 by a sweeping plan for restructuring the federal, state, and local responsibilities, the change in grant structure and responsibility was to place more responsibility on state and local governments. Programs that had been more closely monitored and controlled by the federal governments were to be turned over to the states and then trickle down to local governments. These changes were seen as a broader political and ideological goal of Reagan’s against public sector activism and the modern welfare state. They, nonetheless, changed for decades the method, means, and direction of receiving federal monetary support (Conlan 1998; Eisinger and Gormley 1988; Wibbels 2005).

Not only did the method change, but the money spent in these areas decreased drastically. Spending for federal grants-in-aid for state and local governments was reduced 4.4% from 1980 to 1981, and 12.4% from 1981 to 1982. Slight increases were experienced from 1983 to 1985, with decreases of 7% and 6%

5 Increases here are often assumed to have covered Reagan’s initiative for the war on drugs. Assistance for local law enforcement was provided through the states as a means to target and fight against illicit drug trafficking in the United States.
for 1986 and 1987 (Eisinger and Gormley 1998). These decreases represented huge
cuts in social assistance programs.

Important here is the change in which federal money was to be provided to
local governments. Under a very narrow and specific approach, federal money in
categorical grants was doled out for specific reasons and priorities. Under the new
federalist system, money was funneled down through the states in the form of block
grants. This removed many of the stipulations, guidance, and regulations previously
encountered when asking for or spending federal money.

An interesting phenomenon occurred to the police profession though, as new
federalism again began to surface with the 104th Congress (1995-1997). The first
Republican-led House and Senate for decades believed they held a “Contract with
America” and Speaker of the House Newt Gingrich believed there was a mandate for
reform. Under the constraint of the Graham-Rudman-Hollings bill calling for a
balanced budget, Congress again tightened the belts of social programs and
reinvigorated the Reagan notion of better government is less government. The twist
to this is that in 1994, the Crime Bill was passed, calling for billions of dollars to be
spent in crime control. It appears that the only areas that conservative ideologically
based governments in the U.S. will support are issues of crime, punishment, and anti-
drug initiatives (Conlan 1998; Eisinger and Gormley 1988; Manning 2003).

Market Deregulation

Not only did the U.S. experience a new federalism approach to federal
funding and grants, but it was also experiencing a deregulation phenomenon at the
hands of the conservative-based ideological politicians and the public in general. Tired of the recession and stagflation of the 1970’s and early 1980s, regulation at the federal level was being blamed for the inability to pull the country out of the trenches. Despite the fact that the rest of the world was experiencing the same economic conditions, the conservative-based arm of the government, led then by President Reagan, was moving swiftly to deregulate some of the major modes of transportation and communications in the U.S. These deregulating efforts would provide the catalysts for other monopolistic endeavors (Himmelberg 1994; Eisner, Worsham, and Ringquist 2000; Stiglitz 2003; Kahn 2004).

As Himmelberg (1994) notes, the enthusiasm for deregulation often starts with discontent for big business. Developing out of the belief that big business in the U.S. was tied to a “military-industrial complex” (p. xv) based on the actions surrounding the Vietnam War, growing support to break these ties was connected to the belief that the government existed at the “behest of big business” (p. xv). Stigler’s (1971) “Theory of Economic Regulation” notes that regulations are designed and operated for the benefit of the regulated parties. The creation of barriers by these large firms is the most important factor in the regulatory process. They seek and demand control of the entry of competitors, and the government’s reaction is to provide the protection based on the perceived belief—controlled by the business—that to have competition would create economic, or in the case of communications, disastrous effects. Under a utilitarian notion of the greatest good for all, large firms seek protection against competition and control of the market through the government’s efforts. Eisner et al. (2000) refer to it as cartel.
management. The ideological left demanded deregulation as a means of getting out of supporting these large firms that derive huge profits from wars like the Vietnam War.

The left ideological movement was not the only party interested in deregulation. “Partisans of the New Left neither initiated nor acted as the only force demanding deregulation. Deregulation, the returning of industry to the marketplace, appealed to many conservatives and to many people who had no strong ideological bent” (Himmelberg 1994:xv). What occurred was the repulsion of the notion of government involved market regulation. The thinking was that government should not be involved in the economics of industry. What followed was a reformatory movement that dismantled regulation for transportation, airlines, communications, and other industries. As Himmelberg (1994) states, “These now were to be subject to the vicissitudes of the marketplace” (p. xvi) and “a central feature of the decade’s politics” (Eisner et al. 2000:41).

The 1980s saw a vicious attack on deregulation in efforts at stymieing monopolies held in communications, airlines, trucking, and the automobile industry. As noted above, the conservative-based projection was to allow for the market to control the industries, removing the influence of big government. The trucking industry saw deregulation under Carter, while the airlines and communications were attacked under Reagan’s term by then Vice President George Bush. “By the nineties,

6 Insightful here would be a reminder of Rothe’s (2006) work on Haliburton and Vice President Cheney’s involvement and the collusion and support for big business in the Iraqi War. The saga continues thirty years after the end of the Vietnam War.
it had become an article of faith with many Republicans, and quite a few Democrats as well, that the market, by itself, could handle almost any problem—that government, by definition, made things worse” (Stiglitz 2003:102).

The belief was that the competitive nature of the market would not allow for the creation of monopolies because no one in the market would dare set high prices for fear of competitors undercutting their prices. This was not the case. In fact, all theories that free market competition would thwart the creation of monopolies were wrong. By the 1990s, the airlines had created a hub-and-spoke type of monopolistic system where large airlines controlled certain airports. For instance, TWA dominated St. Louis; Northwest, Minneapolis; and American, Dallas/Fort Worth. “Not surprisingly, the airlines often used this monopoly power to raise prices and increase profits” (Stiglitz 2003:103).

The banking and financial institutions provided another glowing example that deregulation created monopolistic endeavors. Stiglitz (2003) notes that the banking and S&L debacles of the 1980’s, 1990’s, and even 2000’s (Enron et al.) should indicate the potential pitfalls and failures of deregulation and that “this experience should have taught us, for instance, that deregulation is difficult to do well. And that when it is not done well, the mistake can be extremely costly” (Stiglitz 2003:103).7

What transpired with deregulation was the creation of opportunities for oligopolistic endeavors. Stiglitz (2003) stated the ignoring of anti-trust policies

7 The S&L debacle shows what can go awry when deregulation fails. The S&L cases may have been examined by many not only for the failure of deregulation but from a criminogenic perspective as well.
created the opportunities for some of the largest cases of collusion in big business history. The 1990's was replete with examples of collusive price-fixing, bid-rigging, and conspiracy cases by large corporations. Archer Daniels Midland (ADM) was fined a record $100 million for price fixing, while other large corporations were fined for similar activities. Microsoft had created their empire by forcing out competition and leveraging their dominance over the computer industry. So what appeared to be sound theoretical basis for deregulation, in fact, opened the door for the creation of new monopolies and further criminal behavior at a cost to consumers (Stiglitz 2004; Eisner et al. 2000).

At the institutional level, these deregulatory actions set the stage for decreased involvement of government intervention, thereby allowing for the computer companies to operate without controls and essentially creating and controlling pricing for their products on their own. Pricing was set by the industry, not by the consumer. Prices for software were controlled by one vendor, while prices for the hardware were controlled by another vendor having ties to the software vendor. Collusive price fixing was involved when the vendors added additional costs when handling products from one vendor to another. As an institutional condition affecting the computer system debacle at KDPS, deregulation allowed computer vendors to operate at will, controlled only by their close competitor with whom they were often closely associated and which, in the past, allowed one vendor to receive a contract and then the other vendor to get the next contract.
End of the Cold War

The late 1980's and early 1990's also saw another shift in direction at the institutional level involving computers. That was the crumbling of the giant U.S.S.R. With the removal of the Berlin Wall and the growing move for independence, coupled with a move towards a capitalist economy, the end of the Cold War signaled the end of the SDI initiative. The United States found itself without a major war, a major target, and an SDI program that never met its goals. NASA also saw a major obstacle in that the space shuttle Challenger explosion saw America's confidence in a social institution deflated (Vaughan 1996; Kramer 1992).

Companies formally focused on DOD and NASA contracts were forced to seek out new areas for R&D, coupled with the development of other market segments. Several areas impacted the use of computers by the police in this regard. Communications and the use of mainframe computers created a new market for vendors in public safety and, in particular, the police. Computerization of analog communications systems in both telecommunications and voice communications began to change. Again, Motorola and other vendors (AT&T, Bell Corp. etc.), saw an increase in a certain market segment and focused on those segments for developing additional client bases. These client bases were the police (Edwards 1996; Wadman and Allison 2004; Alcorn 2003).

The end of the Cold War provided another catalytic event that propelled the police profession into the computerization era. This event allowed for the expansion of market segments based on the dwindling need of the military. As the enemy
changed, so did the direction of the vendors. They began to focus on other professions. Benefits such as faster, smaller, and more efficient mainframes along with ruggedized laptop computers were just some examples of the types of computer equipment being sold to the police. These were a direct result of the change in the market resulting from the end of the Cold War and movement to other markets.

Analysis

In the early 1990’s, authors started writing about the impact of computers on police (see Manning 1992). It was clear by then that the profession was following in the path of the social movement of computerization. By the mid 1990’s and into the 2000’s, computers and their various uses were firmly entrenched in society and within the police profession and were being used by an ever-increasing number of police departments (Chu 2001; Manning 2003; Pattavina 2005). The police continued to enjoy the advances developed for the military in mobile computing. Ruggedized computers, developed for military use in tanks and other vehicles that endure combat situations, allowed for more robust MPCs. Computers that could withstand extreme temperatures, operating twenty-four hours a day, 365 days a year, were brought into production and made possible for the police by the technological advances of the military and space programs. The development of computers for the police profession was propelled by the social movement within the United States for better, faster, more reliable computers. As one would expect, the profession was merely trying to keep up with the movement around them.
The Crime Bill also fueled the expansion and use of computers within the profession. As noted above, the Crime Bill's main focus was on community-based policing. Emphasis was placed on getting 100,000 more police officers on the streets as community police officers. The Crime Bill added more though. Title XIV of the Crime Bill entitled "Cops on the Beat" advocated the following:

(4) Develop new technologies to assist State and Local Law Enforcement agencies in reorienting the emphasis of their activities from reacting to crime to preventing crime . . .
(8) Develop and establish new administrative and managerial systems to facilitate the adoption of community-oriented policing as an organization-wide philosophy . . .

Subsection "E" provided for further technical assistance calling upon the U.S. Attorney General to provide assistance as needed. Specifically it provided:

(E) TECHNICAL ASSISTANCE-
(1) The Attorney General may provide technical assistance to State and units of local government, and to other public and private entities, in furtherance of the purposes of this part.
(2) The technical assistance provided by the Attorney General may include the development of a flexible model that will define for States and units of local government, and other public and private entities definitions and strategies associated with community or problem-oriented policing and methodologies for its implementation.
(3) The technical assistance provided by the Attorney General may include the establishment and operation of training centers or facilities, either directly or by contracting or cooperative arrangements. The functions of the centers may include instruction and seminars for police executives, manager, trainers, and supervisors concerning community or problem-oriented policing and improvements in police-community interaction and cooperation that further the purposes of this part. (105)

Other provisions called for direct application for grant funding from local governments to the U.S. Attorney's office through OJP.
Several factors arose out of this legislation that are key to explaining what occurred to the police with computer purchases. First and foremost was the release of huge amounts of money targeted not only at putting officers on the streets, but also for technical advances through the advancement of the community-policing model/effect and what some called a movement towards a community-policing paradigm (Peak and Glensor 2002). Second was the ability of local governments to apply for, and receive, direct federal funding towards these ends. Third was the development of new technologies focused on crime prevention, advancing community policing, and attempting to save officers’ time on the street. This would thereby allow more time with the community they were serving. This was an apparent attempt to give rise to Trojanowicz, Kappeler, and Gaines’ (2002) work on getting the police back in touch with the community.

The money released through the COPS office and NIJ was substantial. Over the next decade, over $9 billion was spent “to help police agencies implement COPPS—community oriented policing and problem-solving—by adding officers to the beat and providing technical assistance, technology, equipment and training” (Peak and Glensor 2002:24). The appeal of this money drove police executives to apply for and receive money for developing their computer systems. The COPS office was established to bring about a growth of community policing and the advancement of technologies in support of the community policing initiative. Grants such as “Advancing Community Policing” were released for technology initiatives. “The COPS Office was charged with aiding in the increased deployment of officers to the streets and promoting community-oriented policing” (Nunn and Quinet...
2002:84). Other projects such as “Integration, Organization and Technology” were funded under this umbrella and were divvied out to local and state agencies for their use.

Publications from COPS money research began to surface around 1997 and continued through the 2000’s. These publications became available on the much visited COPS internet web page by those interested in receiving grant funding.

In essence, what was dangled in front of the local police profession’s proverbial noses was that to receive federal funding under the Crime Bill, the department needed to be pro-community policing oriented, requesting funds for that endeavor, and if they needed money for technology, it must be used in support of community policing efforts. The ISTEP (U.S. Department of Justice 1999) publication was a 165-page publication on how to implement community policing, followed by some vague instructions on how to implement computer systems for the benefit of community policing activity. Essentially this publication was a “high-level” look at community policing’s potential through information systems. The publication indicated how important IT was to community policing. For example, “Technology acquisition, implementation and integration are the essential ingredients for program success” (U.S. Department of Justice 1999:161).

Several key institutional level issues begin to surface in the ISTEP publication, one of which was the problem with vendors in developing and implementing a computer system. The COPS office began to realize there was a lack of experience within the profession and that most police agencies were relying on the vendors for advice. As indicated in the ISTEP publication,
Most agencies built their information systems on the advice and counsel of the vendors selling them equipment and systems. Internal technical expertise for assessing needs and matching equipment and systems to those needs was essentially nonexistent. (U.S. Department of Justice 1999:158)

As will be discussed later, this is exactly what occurred to KDPS as they ventured into their system with DM Data. KDPS relied on the vendor for information and project management and leadership and had no internal expertise to guide them.

The ISTEP publication also supported the notion that what the vendors were doing was a problem but was, to them, normal business practices.

What seems clear from the reported experience of departments that are seeking to fill these needs is that the approaches taken should not be defined and driven by vendors. Any company marketing hardware and software must place the development and dissemination of its own products as its primary objective. That is normal and appropriate. (U.S. Department of Justice 1999:17)

Clearly this document supports the notion of a capitalist market, in that vendors are free to sell their products at whatever cost and by whatever means. Buyer beware is the anthem and means of approach.

Additionally, the federal government realized the dangers of venturing into a project like this, both financially and technologically. Realization is given to the fact that these systems are expensive and "the costs are substantial" (U.S. Department of Justice 1999:163).

More importantly, once on a path in technology acquisition and use, departments may find that their "sunken costs" prohibit them from changing course as both their needs and technology change. (U.S. Department of Justice 1999:163)

Accordingly, these systems are expensive and take years to fully develop, implement, and structure. Systems of this magnitude also need external support, and
normal city and county administrative structures often place over such programs
managers who are not familiar with police operations or needs. This can lead the
vendors to take advantage of the police. The publication also indicated that

In virtually every site studied, concerns were raised about how much vendors
direct and control the process of defining and implementing technology.
Absent an internal capacity for better understanding organizational needs and
refining RFPs for vendors, police departments can indeed be in a dependent
and at times awkward position with respect to technology purchases and use.
Often those who may be charged with technology oversight in the city or
county governmental system in which the police department is imbedded
may themselves have little understanding of the dynamics and needs of police
departments and their constituents. (U.S. Department of Justice 1999:163)

Sunken costs; outdated technology due to the time span in which it takes to purchase,
implement, and maintain these types of systems; dangers in dealing with and being
driven by the vendors; and lack of technical support within both the department and
local governmental body were all realized as problems.

Another 1998 publication, sponsored and funded by NIJ (Seaskate Report
1998), indicated problems with the purchase and implementation of computers by
local departments. This report blamed fragmentation by the local police for a major
problem with computer systems and computer vendors. Because of this
fragmentation, the market for supplying police agencies with computers is expensive
to develop. In essence, R&D is a product of the vendors, not the police, and is
thereby passed on in terms of costs when vendors sell their products to the police.
This report also points out the lack of technical knowledge and ability of the staff at
police agencies, and the lack of any guidelines because of this fragmentation. More
important is the realization that in 1998,
fragmentation means no one has authority to establish standards for law enforcement technology and equipment. The police on their own have developed no national organization for this purpose. Criminal Justice has no national regulatory agency. (Seaskate 1998:7)

Again, we see the acknowledgment of the lack of regulations, guidance, or real federal input for the purchase, implementation, and maintaining complex computer systems. Similar to the previously examined publications, this report provided another “high-level” attempt at helping muddle through these systems. It addresses such issues as establishing needs, R&D, and other non-specific details (Seaskate 1998).

Federal grants under the Crime Bill, while noted above, were being released directly to local governmental agencies, but provided little, if any, guidance for technological implementation. For example, a 1998 COPS MORE (Making Officer Redeployment Effective) grant solicitation provided for the release of money for technology, equipment, and support resources for their equation of “TECHNOLOGY/EQUIPMENT/CIVILIANS = OFFICER TIME SAVED AND DEVOTED TO COMMUNITY POLICING” (1). Further, “grants awarded under COPS MORE 98 must support community policing. Only technology, equipment and support resources (civilians) that increase officer presence in the community will be considered for funding” (1). The only stipulation for these funds was that they be used only to purchase technology, equipment, and hiring of support personnel. It could not be used to hire officers and must be used towards a community policing initiative (4). Additionally it could not supplant funds from the local entity. Use of the money must be beyond the budgetary capabilities of the local government. The
solicitation goes further to suggest the types of systems the money could be spent for. The strings attached to this money concerned the ability to demonstrate potential time savings on officer deployment on the street. No guidance was provided for the purchasing, implementation, or maintaining of the technology purchased under this Crime Bill funding.

Part of the grant called “Assurances” alludes to 28 C.F.R. Part 23 as a guide for purchasing systems under this grant. 28 C.F.R. Part 23 refers to Intelligence Oversight and the capturing of information on non-criminal related information of citizens of the U.S. Essentially, it prohibits the collection of information on matters not criminal, and the use of equipment to that end.

A review of the various solicitations for release of monies through the COPS office called for the purchase of technology and equipment, but provided no guidance, rules, or regulations for purchasing or implementing these type of systems. Money was also being funneled to local law enforcement in the form of Local Law Enforcement Block Grants (LLEBG). This money was provided to local law enforcement with little guidance regarding expenditure or stipulations on what to spend the money. This money was not to be used to replace local operating funds, but rather used to purchase equipment. Nationally, items like bulletproof vests, new handguns, and other non-lethal weaponry were purchased with this money. Also, a great number of police agencies used this money to purchase and implement computer systems. In the early 1990’s, the formula for receiving these funds was based on population and crime rate. By 2002, the formula was based on the number of UCR Part One crimes reported to the FBI and consisted of two stages. The two
stages involved allocation to the states first, and local governments second, based on Part One crimes reported compared to similar cities reporting to the FBI. Program funds under LLEBG could be used for hiring officers, paying overtime for extra police activities (saturation patrols, hot-spot policing, etc.), and procuring technology and equipment. Again, little if any guidance/regulations was stipulated, but instead they indicated that no tanks, aircraft, real estate, yachts or armored vehicles could be purchased with this money (Program Brief, U.S. Department of Justice 2003).

As noted from the Seaskate Report (1998), no effort had been made to protect police agencies, in general, from the vendors that sell computer systems. In that report there was a call for some sort of regulatory agency on a national level. In 2002, a consortium of professional associations came together to form a protective body pertaining to purchasing, implementing, and maintaining computer systems. The consortium mentioned above formed LEITSC in an attempt to provide standards upon which police and criminal justice agencies could rely. These standards, and other literature, were posted on their internet web page and are accessible to the public. In 2003, they published their Strategic Plan and also produced several standard guidelines for CAD and RMS. The Strategic Plan was a "high-level" view of intended work on providing the profession guidelines for purchasing and implementing a computer system. The CAD and RMS standards were very rudimentary in that they avoided any specific language and, more importantly, lacked any information on how to deal with vendors or problems when they arise through a faulty RFP or purchasing system. For the layperson, they may seem adequate and a good place to start, or a good reference point, but for someone who
has been involved in these types of projects, they were very superfluous and shied away from conflict with any of the vendors.

Of interest for the theoretical basis of state-corporate crime, is for the first time we see the involvement of a professional association. It was funded by NIJ, backed by professional associations, and made up of groups from various agencies and vendors.\(^8\) Top executives, realizing problems existed in dealing with computer vendors, banded together in hopes of setting standards for an otherwise unregulated endeavor by the police profession. The result was a sterile, benign, and ineffective standard that appears to be bureaucratic "eyewash" used to justify the existence of the federally funded consortium. Additionally, the standards remain in the draft stage, even though the project was funded by a 2003 grant (BJA #2003-MU-BX-0068, U.S. Department of Justice 2003).

One other association, the Association for Public Safety Communications Officers (APCO), provides a source of reference for computer automation. An international association, it provides conferences, training, seminars, and a current internet web page pertaining to computerization and communications. Known primarily for its involvement in communications and setting standards in that area, it also provides guidance in the form of vendor listings, consultant listings, and vendors' internet web pages and contact information. Vendors and consultants heavily sponsor APCO's internet web page. The page does provide listings of

\(^8\) One member of the consortium is a retired CEO of Tiburon. Tiburon is considered a top-tier vendor in the public safety computer systems industry and is a competitor to most of the vendors LEITSC is trying to guard against.
specific computer vendors in order to send RFP's to them and request current
information in reference to their products. APCO historically has not set out to
provide guidance on computerization, but instead has focused on RF frequency
distribution and other RF concerns.

Catalysts for Action

Motivation

The motivation for computer vendors to pursue local police departments as a
potential market was provided by several factors. The various crime and drug bills,
such as the 1994 Crime Bill and subsequent supporting amendments coupled with
the 1970 Controlled Substance Act, provided the catalysts and motivators for a war­
like attack on crime and drug problems. This also, in turn, provided the potential for
tremendous profits to be made, along with the new federalism which made these
monies available with no federal oversight or accountability. In addition, the end of
the Cold War and concomitant decline in military and NASA contracts provided
further impetus for computer vendors to cultivate new markets for their products.
Hence, local police departments became "suitable targets" for the state-corporate
crime that ensued at KDPS.

Local police departments were motivated to pursue adoption of computer and
information systems via the monies provided by the various crime and drug bills, and
through the solicitation of their applications for grants under these laws by the
agencies created to administer these programs. This motivation was further
reinforced by professional law enforcement organizations with the help and
encouragement of federal funding agencies.

The federal government was motivated to facilitate state-corporate crime like
that which occurred at KDPS due to its historical role in the development and
deployment of computer technology and information systems in other wars and the
race for space.

Using the Kauzlarich and Kramer (1998) Catalysts for Action (Table 1,
Appendix B), the above factors enter into a causal chain of events that set the stage
for state-corporate crime between computer vendors and the police profession. The
motivation and catalysts for movement within the profession towards
computerization is seen on several fronts. The movement towards “high-tech”
gadgetry, coupled with the advances in technology from the space industry and
military, provided for a swift movement in the computer industry. The 1980’s and
1990’s was a boon for the industry and a boost more specifically for the computer
industry. From the police profession standpoint, it was only natural for them to
attempt to stay current and utilize the myriad of different computing devices. This
included hardware and software advances together with faster and seemingly more
reliable systems. These advances were seen in the form of personal desktop
computers as well as mainframe computers. Advances in technology allowed the
police to move into the mobile computing age, using MDTs followed by MPCs,
advanced by broadband RF connections that allow for internet access even in police
cruisers.
The police profession was motivated as well by the release of money through the Crime Bill. As long as the police, at least in principle and *prima facie*, supported the belief in community policing, the bill provided a large pool of money for the police and the advancement of technology within the profession.

Reagan's streamlining of the categorical grants to block grants was also a propelling motivator. As the strings loosened around the money and lump sums in the form of LLEBG monies were sent to police agencies, advances on many fronts were experienced. Suddenly, federal money for bulletproof vests, non-lethal weaponry, and computer systems technology was available at the local level. The states in essence were bypassed during the distribution of the funds. Gone were the days where funds needed to trickle down through the states, so administrative costs could be skimmed prior to proportioning out the money.

The economic climate continued to grow through the 1990's as well. This allowed for large operating budgets and the chance for police agencies to borrow money for these large computer systems. As Clinton balanced the budget and turned money back towards certain social programs, local governments began to gain stability in their budgets, which allowed for funding of large projects such as computer and technology initiatives.

The professional associations also added to the motivation of the police to automate. More importantly, their internet web site promoted the use of large computer systems. Standards for CAD and RMS were the prime focal points of the internet web site. The IACP and National Sheriff's Association are two of the most important to the police profession. Many use their literature internet web pages and
other information as cornerstone guidance in how to manage their police departments. If the associations support large computer projects, then it must be an appropriate action for all police departments.

Opportunity Structures

The opportunity structure that allowed computer technology companies to reap tremendous profits at the expense of taxpayers was provided by two institutional factors—the drug and crime bills, and the relationship that was established between the federal government and private government contractors in the development of computer and information technologies. The crime and drug bills provided the money, while the historical development of these technologies left the marketing of such in the hands of private companies.

The institutional/cultural conditions also provided opportunities for the computer vendors. As the IT field expanded, so did the market opportunities for the vendors. These opportunities arose in the police profession. As the economy continued to improve throughout the 1990's, the market allowed for expansion of larger corporations and the birth of smaller companies trying to capitalize on the rise of interest in computers. Low interest money was available for investments, and companies started to focus on the police as a viable market. DM Data was a privately owned company, not reporting earnings to stockholders; it nonetheless experienced dramatic growth in the 1990's. Anecdotal emails indicated that most users thought the company grew beyond its capacity to support its current client base.
Intergraph is a publicly traded company and as such reports earnings and losses to its stockholders. Of interest here is the expansion and growth the company experienced through the 1990's and into the early 2000's. In 1997, Intergraph, Inc. formed IPS, a subsidiary company focused only on public safety and those needs. Immediately, this portion of the company began to show profits. Figure 1 represents the quarterly profits of Intergraph, Inc. and IPS. A review of corporate and subsidiary components of Intergraph, IPS, disclosed a definite relationship to the release of federal funding, and in particular the release of the Crime Bill. Note the drop in profits before and during 1995, and then notice the spike in profits following the release of Crime Bill monies. Intergraph, Inc. also purchased a smaller company involved in the transportation industry, adding to a growing portion of their software development.

![Graph](image)

Figure 1. Quarterly Gross Profits Intergraph, Inc. and IPS, Q1 1994–W1 2006 (Michalowski and Kramer 2006).
Not only do annual reports indicate growth through the favorable economic times of the 1990's, but also a closer review indicates that at each passage of a bill, such as the Crime Bill, Intergraph, Inc.'s and in particular IPS's revenues grew. As Figure 2 indicates, subsequent to the passage and after the monies had been released, IPS experienced an increase in profit. An increase is observed with the passage of the 1990 *Crime Control Act*, the Crime Bill, and the PATRIOT Act of 2001. These graphs are most telling as they indicate a clear nexus to the passage of federal legislation and their profit increases.

![Intergraph Corporation Net Asset Value, 1986-2006](image)

Figure 2. Intergraph, Inc. Monthly Net Asset Value, July 1986–July 2006.
Other factors affected the opportunity for vendors as well. As crime began to drop in the mid-1990’s, issues like community policing and New York’s COMPSTAT program began to take hold and be held in esteem as if they were the reason crime was dropping (Bratton and Knobler 1998). Money flowed from the community policing efforts, increasing the vendor’s ability to land multiple lucrative contracts. As COMPSTAT was touted to the rest of the profession, the realization was that the agency must have computers to generate the crime numbers and crime analysis capabilities similar to that of New York City. Since COMPSTAT could be viewed as a community-based program, vendors started to sell their products as a means to conduct or initiate COMPSTAT programs.

Professional associations such as APCO and IACP, together with professional periodicals, provide other catalysts for vendors as they continue to cover computerization and the benefits departments can reap from CAD, RMS, and mobile computing. Both the IACP and APCO internet web pages provide a list of vendors’ names and means by which to contact them. While this may be seen only as a helpful means of providing a listing of known vendors, it also provides an implication of support from the associations. Vendors go to great lengths to be listed on these associations’ internet web pages. While provisos may indicate the association does not support them, nonetheless the appearance is that they can be trusted since they are listed on the internet web pages.
Lack of Controls

Lack of controls to prevent state corporate crime like that which occurred at KDPS can be attributed to two institutional factors. First, the new federalism which mandated that states be given federal money with few strings attached, can account for the lack of federal oversight and regulation of monies disbursed under the various drug and crime bills. In addition, market deregulation caused the control, usually provided by free competition, to be undercut by corporate mergers that resulted in oligopolistic conditions. This in turn allowed corporate vendors to deliver defective computer and information systems to local police departments, resulting in squandering of taxpayer dollars and, in some cases, deaths of citizens.

As noted above, several federal publications have indicated that while they support the development of IT initiatives for the police, especially when supporting a community policing movement. There were and are, nonetheless, no controls offered at the institutional level for vendor state-corporate crime.

Manning (2003) supported the fact that despite the best efforts to move the police towards a community-based profession, it still remains a reactive force driven by demands rather than focusing on problem-oriented solutions. Several factors contribute to this, but one, as alluded to in Seaskate Report (1998) report, is the fragmentation of the profession and the autonomous air under which they choose to operate. As Kauzlarich and Kramer (1998) told of the unchecked, unfettered activities of the Department of Energy, in some respects the police operate in that fashion—holding only to the local purse strings, but yet controlling under the
potential threat of rising crime. In essence, "give us the money or crime will rise" attitude pervades the profession, a political game that is played out all too often at the local and state levels.

A review of the federal solicitations and previously mentioned publications related to the development of IT within the profession disclosed no regulatory body within the profession or at the federal level. The closest the profession has come to providing guidelines or standards is the LEITSC internet web site and accompanying publications. These are only guides and are at such a level as to be of little help or assistance to the lay police officer assigned to carry out the task of automating a department. Both standard guidelines (CAD and RMS) provided flow charts, diagrams about how information should flow, and other comments related to how the information should pass through a system. As a previous project manager, I realize that on a large-scale system such as the DM Data and IPS systems, the information provided is of little use when discussing issues such as contract negotiations, milestones, deadlines, and payment schedules with vendors.

Federal solicitation guidelines refer to such things as purchasing requirements, lobbyist restrictions, equal employment amongst contractors and other issues pertaining to the award of the money, and how draws of the money are obtained. Even after award, nothing is provided in terms of regulations, rules, or guidelines from the federal government for the spending of this money on IT equipment. The requirements were to be in the form of an analysis as to whether more effort on community policing was generated from the use of the technology. To date, KDPS's 98 COPS MORE grant remains open. The department has been unable
to determine whether using MPCs saved time, or if efforts were redirected towards community policing specifically. When consulted about how to provide an answer to close the grant or how to find time saved by officers, I advised them to respond to the COPS Office that we were unable to determine any time savings or redirected efforts towards community policing as a result of the purchased computer equipment, essentially knowing there will be no retribution by the federal government for not answering the requirements of the grant.

Media as Watchdog

One institution that has failed to shed any light on the fact that millions of dollars have been poured into computer systems by federal, state, and local police is the media. Scant attention has been given to the automation of the police profession. Any attention has always provided a positive spin. Particularly in the 1990’s, comments from the media were favorable for the automation of the police. Most reports focused on the automation of 911 systems, mapping and tracking of police cruisers with the arrival of GPS, and the ability to map and track cellular telephone locations (Manning 1992; Chu 2001; Nunn and Quinet 2002; Pattavina 2005).

Washington Technology (1998) offers a synopsis of the media portrayal of police use of computers. “High-Tech Crime Fighters, Law Enforcement Add IT to Their Arsenals” provides a summary of the development of the computer for the police, predicting that the market for in-car computers will reach $217 million by 2002, and that CAD and RMS continue to become more sophisticated, receiving a boost in the 1980’s and 1990’s through advancing technology. Bob Scott, Executive
Marketing Manager for Intergraph Federal Systems indicated a push in the late 1990's towards smaller markets: “We are starting to push down now into more midsize and small communities” (Washington Technology 1998:1). Other favorable comments for the use of computers by the police were provided throughout the article. Articles like these bombarded the profession in the mid to late 1990’s.

Local coverage that provided for the ever-advancing technology in the local police agencies, also has focused on the positive and has been controlled by the police themselves (Manning 2003). Police can put their own spin on issues, particularly issues they believe they want, need, or desire. Computer systems are one of those items. As Manning (2003) notes, “Media coverage may produce changes in police practices” (p. 101) and may lead to sweeping changes in both how police view their mandate and how the public views the police. For instance, the beating of Rodney King by the Los Angeles Police Department and subsequent trials and riots changed the entire profession in one night. The point here is that the police have been creating allies of the public to automate and computerize the profession. Standing behind the pretext of better, faster, and safer communities, police contend that computerization in the form of CAD, RMS, and MPCs makes them better, faster, and more responsive to the needs of the citizens they serve. In essence, the police have manipulated the public through the media to their advantage, in order to acquire computers.

Interestingly, the national news media has not captured or focused in on the fleecing of either federal or local programs. Clearly the media has either missed what is occurring with IT projects or has failed to focus energy on such stories. Little has
been written about the difficulties encountered by automation efforts, which has been primarily due to the controlling of the stories by the profession.

The fact that we are spending massive amounts of tax dollars on these projects and they are not working is a dark secret in the profession. This adds to the complicity of state-facilitated activity. Certainly no one at the national level wants to admit there are problems. Even though publications released from COPS and DOJ reveal potential problems and the controlling of the industry by the vendors, they do not attempt to control the activities with rules, regulations, operating procedures, or guidelines specific enough to protect the profession. As we will see in the next chapter, the cloak of secrecy and the "dark secret" prevail at the organizational level. The media is not enlightened at the local level, administrators fail to admit failure, and the cost of these projects continues to rise with the vendors controlling the process.

Table 2 in Appendix B depicts the institutional level of analysis under the Catalysts for Action. Following the flow of Table 1, we can see causal factors under motivation, opportunity structures, and controls. These historical instances set the stage for the organizational occurrences between the vendors and KDPS and what will be exemplified in the next chapter.
CHAPTER V

ORGANIZATIONAL ENVIRONMENT

While it is clear from the previous chapter that the institutional environment set the stage for potential state-corporate crime, what will be discussed in this chapter is that most social harms that were created between the computer vendors and KDPS took place at the organizational level. Three organizations will be discussed in this chapter, two private corporations and KDPS. The two private corporations are those involved in the sale of computer systems to KDPS, namely DM Data and IPS. What will be discussed in this chapter concerns the organizational activity both internally within each agency, plus the interaction between KDPS and each of the private corporations.9

The first part of the chapter will discuss organizational theory as it relates to deviant and criminal activity. Several salient theories will be discussed as they relate to explaining what occurred between the private companies and KDPS. This will be followed by a brief historical summary of what occurred between the vendors and KDPS from the mid-1990’s through 2006. Next, I will utilize the catalysts for action (Table 1, Appendix B) and that framework to explain what occurred and how the

9 As a side note, while I will attempt to discuss and analyze each organization separately, there will be times when I must discuss what happened in one organization simultaneously to what was occurring in the other organization. Virtually one reaction caused another reaction within one organization, which caused another reaction in the other. I will try to keep them separate, but “spillover” in my discussion may occur.
state corporate crime went unnoticed, was ignored, or was exacerbated. Table 3 in Appendix B provides the explanatory intersections in the Kauzlarich and Kramer (1998), Kramer, Michalowski and Kauzlarich (2002), and Michalowski and Kramer (2006) model between the vendors and KDPS, and how it was the intersection and multiple causations that created a situation in which computer systems were bought and paid for, failed to perform, or, even after due diligence, another system was purchased and it too was plagued with performance issues.

Historical Synopsis

KDPS entered the automation realm in the early 1980's with its own custom-designed version of CAD, followed by an in-house designed RMS. These systems were designed, implemented, and maintained by City IT staff. They used a mainframe Burroughs brand computer with terminals available throughout headquarters. Computing was reserved for headquarters MIS purposes, and police reports were hand written. With the advent of the personal computer, circa 1983, KDPS added several Apple IIe computers to track the daily activity of officers on the streets. Officers on patrol would compile a daily activity report (DAR) accounting for every minute of their time. Each DAR had to add up to 720 minutes, or it would be sent back for correction. On the DAR were such things as bar checks, number of arrests, time spent on calls (which did not necessarily mirror those times on CAD), number of traffic stops, and number of citations issued along with the number of reports written in the 720 minutes. The point here is that in the 1980’s the KDPS
chief recognized the need for management information and the importance of tracking officer activities for future use in political battles.

In the late 1980's, the department saw the need for a new mainframe and new packaged "turnkey solution" computer system. The department wanted to replace the in-house system, which was cumbersome and designed on a COBOL language platform, making it all but impossible to retrieve information from it if you were not a computer programmer. KDPS purchased software from Command Data Systems, which sold their product using a Digital Equipment Company (DEC) VAX mainframe. As part of this system, KDPS installed Mobile Data Terminals (MDTs) in their police cruisers allowing for dispatching and the querying of license plate and offender information from the cruisers. Additionally, through the early-to-mid 1990's, KDPS started to automate the transmission of their crime information to the State of Michigan. The report, known as the Michigan Crime Reporting System (MICRS), is a monthly requirement from the state, which allows them to report to the FBI the state-compiled UCR information. This was an expensive endeavor in that KDPS had to pay Command Data (later bought by several companies and ending up being owned by Tiburon, Inc.) to customize the RMS side to send this information. MICRS is substantially different than simply reporting UCR or NIBRS information to the FBI and calls for customization of the reporting fields to the state.

In the late 1990's, KDPS again began looking for another computer system. This desire was fueled by the looming Y2K phenomenon (which never occurred) and the fact that Tiburon advised the department's present system was not Y2K compatible, but they could bring it into compliance for $700,000. Rather than spend
the money on an upgrade and replace the aging VAX mainframe, KDPS administration decided to search for another system. KDPS purchased a product called CPLIMS from DM Data, Inc. in 1997. This system would replace the aging VAX system with an IBM RISC 6000 mainframe, running the Informix database. It would also replace the aging MDTs with MPCs in the cruisers. The initial price was approximately $472,000, but grew significantly as KDPS brought the system on line. The cost increases were due to upgrades on the RISC, and additional software not included in the first contract. Initial documents from KDPS to City Hall indicated that this system would be designed to last ten or more years.

In 2001, KDPS again decided to replace their entire computer system, due to the lack of performance from the DM Data system coupled with a battle with the company over costs of an upgrade on the system. In the fall of 2002, KDPS signed a contract with IPS for $1.5 million for a total replacement system. The architecture for this system would be a “client-server” system whereby PCs are connected to servers in a separate room and the servers act as quasi-mainframes. The technological advantage of a system like this is that if a server were to fail, theoretically, the PC at the desk would continue to function and synchronize with the server once the server was brought back on-line. This type of platform was very appealing based on the previous experience with frequent crashes of the standalone mainframes. IPS sold the CAD system as “never failing” because of this type of client-server platform. CAD went live in June of 2003, followed with RMS in October 2003, and MPCs in the spring of 2004. KDPS utilized the previously purchased MPCs from the DM Data contract since they saw little use and it was
viewed as a cost savings and adequate for what the officers did in the cruisers. However, attempts to use the RF system of the DM Data vintage MPCs was quickly found to be inadequate and it was replaced with a high-band private network using Sprint, Inc. PCMCIA modem cards in the MPCs. KDPS was able to dismantle an aging RF 800 MHz system and convert to a maintenance-free system using cell phone towers and broad-band capabilities. Officers had immediate access to the internet, and report writing in the cruisers was a viable option.

A final note on the IPS system is that, since KDPS’s first attempt at a commercially purchased computer system, there had been a desire to go to a “paperless” system. In other words, KDPS wanted their officers to stop hand writing reports. All reports were to be completed on the computer. In 1988, the then Deputy Chief Edward Edwardson touted the potential for this in the Command Data system when he asked for funding from the City Commission. This potential, under the Command Data system, never reached fruition because of lack of storage on the mainframe, and a deep-seated resistance from within the KDPS. Attempts at paperless reporting were again tried under the DM Data system, but the overall system was never stable enough to try this. Under the IPS system, the administrative mandate was a paperless reporting system. When the RMS system went live in October 2003, the department finally realized the paperless potential and has stopped hand writing virtually all reports.

This is but a brief synopsis of the computer purchases made by KDPS. It nonetheless sets the stage for further explanation to follow. At each turn, KDPS, based on my involvement and knowledge, believed they were doing the appropriate
thing by purchasing another system. The last system, where I was the project manager, was not the least expensive, but was the most supported by its customers, which are other departments, coupled with the appeal of client-server architecture.

Organizational Theory

At the organizational level there are several theories that can be used to explain state corporate crime. The most popular of these theories are rational choice and blocked-opportunity models (Michalowski and Kramer 2006; Coleman 1989; Gross 1978). Additional theoretical approaches can also be found in the expansion of the blocked opportunity model in institutional anomie, defective organizational internal structural approaches, and political economic concepts.

Rational choice theory is a mainstream criminological theory that follows a utilitarian philosophical approach in that some sort of rational decision-making is occurring that allows for the opportunity to break the law. In essence, the offender has weighed the costs as opposed to benefits of offending and believed the penalties of the offense did not offset the benefits received from the deviant act. Paternoster and Simpson (1996) refer to this as a subjective expected utility theory. They contend that a decision to offend is a balance between costs and benefits, and the rewards are based on the perceived outcomes of the offender/decision maker. Several assumptions need to be made here, one of which is that the decision maker is at least minimally rational, that the offender is guided by expected consequences of his or her behavior and decisions. Another assumption is that the critical agent in the theory is the individual.
More important is the notion that the individual can act on behalf of the organization and commit corporate crime. These offenders though are "affected by the characteristics and imperatives of their business organization" (Paternoster and Simpson 1996:553). Moreover, this means that the individuals are concerned with the perceived risks of their decisions for themselves, for the firm or organization, and the presence or absence of inducements or restrictions within the context with which they are operating.

Blocked-opportunity models of organizational deviance follow Merton (1957) and Cloward and Ohlin's (1960) earlier work. "This approach argues that organizations break the law because they are blocked in some fashion from having access to legitimate means to achieve organizational goals" (Michalowski and Kramer 2006:37). As Vaughan (1996) argued, this deviance, or attempt to circumvent these blocked goals, can then be normalized. The routinization of activity, and the push for goal attainment coupled with the potential for missed deadlines and missed earnings can lead to the normalization of criminal or deviant activity. As Gross (1978) puts it:

> Given a situation of uncertainty in attaining goals, and one in which the organization is judged (directly, or indirectly by sales or other indicators) by its success in goal attainment or performance, one can predict that the organization will, if it must, engage in criminal behavior to attain those goals. (P. 57)

Internal defective standard operating procedures (SOPs) can also be a source of blocked opportunities. Defects in SOPs can lead to internal organizational access to legitimate means or goal attainment. Hopkins (1978) argued that corporate crime
can be an outcome of defective SOPs, frustrating workers and turning them towards illegitimate means to achieve organizational goals.

Political economic criminological theories have also been used to explain organizational crime (Barnett 1981; Box 1983; Chambliss 1989; Currie 1997; Messerschmidt 1986; Michalowski 1985; Young 1981). In a capitalist economy, corporations pursue goals of profit; they seek out their share of the market subject to constraints imposed by that market and the state. According to Barnett (1981), “When management chooses to pursue corporate goals through circumvention of market constraints in a manner prohibited by the state” (p. 5), corporate crime can occur. For others, the core concept of political economic crime—profit maximization and private accumulation—can explain corporate crime (Currie 1997; Young 1981; Quinney 1975). Currie (1997) notes “all other principles of social organization become subordinated to the over-arching one of private gain . . . cultural value—even personal identity—become increasingly eroded or obliterated” (p. 37).

Michalowski and Kramer (2006) point out there can be limitations to the use of a political economic approach in explaining deviance, in that it is not unique to a capitalist society. Socialist societies have also operated under a capital accumulation system. This notwithstanding though,

If a political-economic analysis is focused on the dynamics of the accumulation process under different forms of economic organization, rather than only its manifestations under capitalism, a political-economic perspective can be a useful guide for examining how the intersection of political and economic organizations can generate deviant outcomes. (Michalowski and Kramer 2006:38)
While each theoretical approach can provide explanations for organizational deviance, an integrated approach can best describe the intersections of activity in and around an organization. In this study, an integrated approach is useful because of the various dynamics involved between a governmental organization, a non-profit, and two private corporations within the context of a capitalist market. This does not imply that a non-profit organization does not have goals like the private companies, but those goals are different and employees are driven by different motivations and constraints.

Each of these theories is consistent with the catalysts for action using the various schema, motivation, structure, and controls, as a means of explaining what occurred at the organizational level. As the chapter progresses, I will analyze organizational activity in one of the three agencies as it went through computer automation efforts. The next section deals with DM Data and the activity surrounding the purchase, implementation, and final dismissal of that product and company. The following section deals with IPS and the transition to a newer, more expensive, and what is believed to be, a more robust stable system. The final section deals with the internal organizational setting within KDPS. At each step, what is revealed is the social harms and criminal activity that occurred at the intersection of involvement between the private vendors and one government agency.

DM Data

The DM Data system was doomed from the beginning. Brought into the organization under the city’s “Reduce the Costs of Government Services” campaign,
the initial purchase was plagued by short cuts, under cuts, and promises made by DM Data that were never kept. The project was led by a KDPS captain whose admitted purpose of being involved was to get promoted to a chief’s position, and who saw it as a way to show he could bring in a project under budget and still provide the automated services required by the department. DM Data saw it as a way to add to their customer base, take on the largest consolidated public safety department in the United States as a customer, and make money off the initial contract and subsequent maintenance agreements (personal communication with DM Data sales representative). Expanding the customer base meant more money, and taking on KDPS meant they would have a “show case” location in a medium-sized public safety department.

An agreement to purchase the DM Data system was signed on February 26, 1997, and the Kalamazoo City Commission approved the funds on March 31, 1997. The initial purchase cost was $472,706 (Agreement for System Purchase 1997). The costs quickly rose, however, to $1,101,934, by June of 2000, according to a ledger kept by the KDPS Accounts Receivable Administrative Assistant. This is important as the events unfold, because we will see that KDPS poured money into the project in an attempt to make it work.

Work on the project began in June of 1997. Several setbacks immediately occurred, which were organizational issues for both DM Data and KDPS. The initial captain who convinced everyone to purchase the DM Data product retired. After signing of the agreements and contracts, it was discovered that a project manager from both DM Data and KDPS were cut from the project as a means to trim costs.
DM Data at the time had separate specialists in CAD, RMS, and MPCs. This required conversations with different people, none of whom understood where KDPS was in terms of project implementation. Additionally, the City’s IT department took back all IT personnel from outlying departments and put them at City Hall under the direction of the IT Director. KDPS lost its only IT professional in that move. This left one dispatcher who was working in KDPS’s Computer Services, and one police officer who had worked in computer services for many years to complete the project. A third person was added, another dispatcher, to assist midway through the project. The officer later retired, leaving only the two dispatchers and a crime analyst.

The implementation portion of the project plodded along through the rest of 1997 and 1998. During that time frame, hardware was shipped, tables were configured, and the software was customized for use by KDPS. Both parties were satisfied with the progress of the implementation phase, but KDPS raised concerns over the coming Y2K problem and the fact that the present Tiburon system was no longer going to function. A April 1999 date was set to attempt to switch over to CAD.

On April 5, 1999, the DM Data CAD system was turned on in the dispatch center of KDPS. On April 13th it was shut down because of numerous problems the dispatchers were having utilizing the program. Even though they had previously been trained on its use, it did not function properly or reliably enough to continue

10 In actuality, the Tiburon system continued to function well into 2003. KDPS staff shut it down after headquarters was moved to a new location. No system performance issues were noted at Y2K and it was still functioning and providing query information just prior to being turned off.
using it. On April 14, 1999, the supervisor of dispatch and the jail, Lt. Robert Gay, sent a congenial letter to the president of DM Data, Douglas Dorfman, indicating the difficulties and the fact that KDPS could no longer use the system until modifications were made. In this letter, Gay identified 15 serious problems with the CAD software and operation of the system. Dorfman responded back in an email assuring all items would be corrected. Of significance in this letter was the item identified as "Problem #1" requiring "Police and Fire Environments Must Be Combined" (Lt. Gay letter, April 14, 1999). In essence, KDPS operates by dispatching both police and fire units to a fire because the police are also firefighters and must be dispatched simultaneously to the fire with the fire apparatus. KDPS is unique in this requirement, and DM Data was advised of this at contract signing. The DM Data product required dispatchers to use one screen to dispatch police, switch to another screen to dispatch fire rigs, and then switch back and forth during an event to track all the units. This single screen dispatching ability was a requirement and part of the contract with DM Data. DM Data assured KDPS it would be accomplished before implementation but was not. Again, it was identified on April 14 as the number one problem. In response, Dorfman wrote an email message dated Friday, April 16, 1999, that stated two key enhancements were required that would be done by June. These two enhancements included:

- CAD CCT Enhance to allow concurrent taking of a call and dispatching of fire and up to three PSO units from one screen
- CAD PD allow option to auto restack without question
- Fire rig status must be shown on one screen.
This issue was never resolved with DM Data, and it remained a two-screen dispatching schema until it was shut down in June of 2003. Work continued on the CAD systems through the summer and early fall of 1999. Some issues were resolved and others were not. Meanwhile, additional dispatcher training was conducted to ease the pressure and stress of the change on the KDPS personnel.

In October 1999, the CAD system was again brought up and this time left on for the dispatchers to use. While problems were encountered throughout the remainder of 1999, many were attributed to the lack of knowledge on the system, resistance to change, and working out the “bugs” that accompany a new product. However, problems persisted with individual stations crashing or CAD locking up, taking the entire CAD system down, and requiring a reboot of the system. Single stations would often have to shut down and reboot to bring the system back up.

In the spring of 2000, under the advice and request of DM Data, KDPS purchased an upgrade to the RISC 6000, along with an upgrade on the Informix database in use. These purchases were made through DM Data. RMS implementation followed this purchase. The RMS platform was much more stable and not plagued with the issues encountered by the CAD system.

As the same time as the implementation of RMS and the attempts to stabilize CAD, KDPS sought and received a COPS MORE grant of $548,946 for mobile

11 This is partly because of the lack of complexity involved in an RMS system. A RMS is simply a flat or relational database with a graphical user interface. It does not require the tracking or real time information or the interconnection of GPS or mapping systems. The CAD is infinitely more complex, but more critical to the operations of public safety.
computing equipment. KDPS was awarded the money in March of 2000 and purchased mobile computers and the accompanying software through DM Data. KDPS selected, again with the advice and support of DM Data, XPlore brand computer tablets. These tablets were to be mounted in the police cruisers and would use an existing 800 MHz RF system already in place from the use of MDTs. Additionally, in-car modems were purchased through DM Data from DataRadio. Both the modems and tablets functioned properly in a stand-alone mode. In other words, on their own they worked as sold, but with the DM Data software they never functioned at a reliable performance rate. Implementation of the mobiles started in late fall of 2000 and on into 2001.

By the summer of 2001, KDPS had spent $1.5 million dollars with or through DM Data. This was less $124,000 that was still owed for the mobiles. This money was being withheld pending full functionality of the mobile computers, a situation that would never occur. The overall system, though, was anything but acceptable. CAD was still not working properly. Status monitors had been installed in attempts to alleviate locked up terminals and PCs. The status monitors were to show precise locations of the officers on calls and would/should update when changed by the dispatchers, or changed by the officers in their cruisers through the use of the mobiles. The status monitors, which were simply terminals tied directly to the RISC, were plagued with delays and slow changes and failed to properly acknowledge changes in the officer's status. The RMS seemed to be stable, but little attention was given to this side of the system, as KDPS staff members were preoccupied with problems in CAD and the mobiles.
By September 2001, Gay had left and been replaced by Lt. Robert Oliphant. Lt. Oliphant took over the dispatch center in January of 2001. Important to note here and discussed in more detail later was the fact that no one person was clearly in charge of KDPS’s automation efforts. The two dispatchers, working at maximum capacity, worked for the captain of Service Division, while Lt. Oliphant worked for the Captain of Operations. Lt. Oliphant had little input into the day-to-day say-so of what the two computer service people did. Lt. Oliphant attempted to deal with CAD issues because it impacted the dispatchers, but he had little input into how much or what time was spent on fixing CAD. By September 2001, KDPS had already experienced the first social harm mentioned in the introduction, and that was failure to dispatch emergency service to the citizen suffering from a heart attack that led to his death. I was about to experience the second catastrophe.

On September 11, 2001 (something telling here), I took over as the supervisor of the dispatch center. I was a sergeant at the time, later promoted to lieutenant, but assumed the supervisory role over the dispatchers and the products they used. By October 16, 2001, through observations, I noted that full implementation of the system was not progressing and the system was not functioning properly. I sent an introductory letter to Dorfman outlining who I was, and that I was put in charge of the system. Below are excerpts from that letter:

It is unfortunate that my first contact with you is under a dark cloud. Our system still does not work Throughout the weekend our system would either lock up on them (dispatchers), or, as I confirmed later, would kick them out of the system completely causing them to have to re-log into CPLIMS and start again. On 10/15/01, one of my dispatchers was attempting to send out a fire alarm and in the midst of dispatching the appropriate companies and crews, the system locked up.
In the last year our department has undergone significant change in administration and management philosophy. We believe we are the best at what we do. Your system detracts from that image because it has not met our needs and continues not to operate correctly even though we went “live” with the system in the fall of 1999. The basic CAD system does not provide for sustainable service and the MPC’s crash or lock on a routine basis.

My charge is to get it working. I hope that means working with DM Data on a successful project and seeing it through resolution. Let me add that on another charge I have is a consolidated communications center for Kalamazoo County. We are at the point in that project that we are having site visits from other agencies. I cross my fingers every time someone enters that CPLIMS doesn’t crash, lock up, or kick the dispatcher out of the system while we are demonstrating our capabilities.

... Chief Daniel Weston has directed me to contact our legal staff with regards to the performance of CPLIMS and the response of DM Data. Two factors play into this directive. The first being the failure to adequately supply the product we purchased. CPLIMS is not working. Secondly, the safety and well being of the citizens of Kalamazoo, Michigan. I have been instructed to seek other vendors that can provide a product to meet or exceed our needs.

These above steps can be obviated by the correction to the system. We have been assured on several occasions that a “fix” was on the way or put in place with no results. (email dated October 16, 2001)

This email was followed by several days of silence from DM Data, followed by several subsequent telephone calls. DM Data’s response was to send a programmer to KDPS in December 2001. DM Data assured KDPS they were working on the problems remotely, but little satisfaction was observed, so pressure was put on them to send a programmer (email correspondence October and November 2001).

Later correspondence between KDPS and DM Data indicate a battle over whether issues were fixed or not. Subsequent emails read like this:

October 24, 2001:
- Not able to review the MPC message- fixed
- Call Review- fixed
- Page down not working consistently- could not replicate
CAD-NI gives system lock up- fixed
Call taking- Displays only fire calls- fixed
During call taking system locked up- fixed
CAD Statue update is slow- fixed . . .

October 25, 2001
Extra character was displaying “NO CALLS FOR SERVICE FOR THIS
STATION”- fixed
From police dispatch side- pressed F5 for Fire screen and received
inf5:readmode error.- fixed

There was further correspondence between myself and DM Data employees on
November 30, 2001 and December 4, 2001, indicating KDPS was still having
problems with CAD and the MPCs. DM Data responded that great strides had been
made in fixing the system, and Dorfman believed DM Data was on the way to fixing
all problems, because the night before KDPS dispatchers had only one Informix
error. I countered MPCs were still not working, and dispatch hardly took any calls
the night in question as it was November and cold, slowing calls-for-service.

In mid-December 2001, DM Data sent Raja to KDPS to fix the problems.
Raja personally promised me that he would take CAD down for only 2 to 3 hours.12
Raja was to upgrade the Informix database and fix any lingering problems not fixed
by the upgrade. Additionally, he intended to demonstrate DM Data’s new graphical
user interface (GUI) version of CPLIMS. This upgraded CPLIMS product was to
finally provide KDPS with a version able to dispatch police and fire units on the
same screen. In sum, CAD was down for over eight hours and when brought back

12 When the CAD system would crash or be down for some time, dispatchers would
revert to green cards. By December 2001, each station had a stack of cards available
because the system crashed often. This put dispatchers under tremendous stress and
pressure beyond their normal day-to-day stressors.
into operation, had as many if not more errors as there were prior to the upgrade. Additionally, a demonstration of the new product crashed and locked up. It provided nothing new and did not replace the need for dispatchers to switch screens to dispatch police and fire. In essence, this attempt was a disaster, and in fact, my response back through the department was, for the first time, that this system will never work and the staff at DM Data were not capable of making it work. A subsequent telephone call to DM Data made by me on the morning after Raja’s visit was trite and to the point. I called the visit an absolute disaster and noted that KDPS was better off the day before his visit. Clearly the two organizations had reached an impasse. DM Data was attempting to blame the way we used their system, and we were blaming them for their product not working.

On January 10, 2002, I sent Dorfman an email indicating our continued problems. This email was in partial response to an email Dorfman sent to Racine, Wisconsin, another DM Data user, dismissing the problems at KDPS. That email has somehow gotten lost, but I remember the content of it and the reasons for the terse response in the email.

From: Reifert
To: Dorfman

I am in receipt of a communiqué between you and Lt. Bender at Racine WI. Surely you must realize we all communicate with regards to the operation and performance of your system.

... I sent out a survey to my officers yesterday to capture 12 hours of MPC usage and how they were working. Out of twenty laptops in service, even though we have 45, one worked. Everyone else had an error or the computer locked up so they had to shut it down. This is after your staff responded and "fixed" Kalamazoo.
Our "consoles went down" last night... You wrote (to Racine) "Raja offered to restart Informix in order to rapidly clear the issue." Again acting like we caused the problem. The problem is caused by your program and the integration to Informix.

The email continued with my hounding DM Data for the product not working, and Dorfman questioning my qualifications as a project manager. This was one of the last emails sent to me by Dorfman. Thereafter, communications came to almost a halt with DM Data. The programmers and KDPS computer services staff did, however, continue to talk.

Not only had KDPS been monitoring the MPC usage, but the dispatcher group leaders, a quasi-supervisory position within the dispatch center, were required to complete a DAR for their shift. Between October 2001 and February 2001, over sixty-five DARs indicated problems with the CAD system. Comments included such things as:

CPLIMS is still extremely slow and tonight, though we were very quiet, the status monitor was still delayed 10-15 seconds.

Computer locked up at about 1600 hrs. no one was able to do anything for about 15 minutes. Page down not working. Status monitors again were slow in updating. About 1100 red side (police) and fire side were unable to put a unit busy without being kicked out.

CPLIMS continues to be a problem with slow status monitors freezing up etc. It seems that if we are slow it can keep up but any time it gets busy CPLIMS either slows down or stops.

At least two Informix errors... CPLIMS continues to be slow, locks up so we have to have Info (administrative channel) put in a test dispatch to clear it. If 2 (sic) dispatchers are trying to do the same thing (unknowingly) a red box

13 Because of union constraints, the group leader position, held by senior dispatchers, could not be considered a supervisor but was charged with leading the shift and providing information and problems to the shift commanders.
pops up and then throws you out to the main menu. These are all problems that have been occurring for years, and were supposedly fixed. The fixes seem to last a day or two and revert back to the old way.

In February of 2002, the Group Leader asked me if they could stop documenting problems with CPLIMS because it was “old hat” and got them nowhere.

Shortly after the December 2001 trip to Kalamazoo, Raja resigned and went to work for IBM in New Jersey. He told KDPS staff that he was being docked pay by Dorfman and his brother, Sam Ramasamy, Vice President in charge of Engineering, DM Data, until he could get KDPS fixed and running smoothly. Shortly after that the programmer in charge of MPCs with DM Data resigned.

On March 4, 2002, Ramasamy sent me an email indicating, “I am very happy to inform you that the problem you were experiencing with Informix has been resolved. . . . I am getting a lot of pressure from the management to get the payment. We sent an invoice a while ago . . .” By this time most communications has ceased as KDPS staff, including myself, had given up on trying to work with DM Data. The payment he was alluding to was a $124,000 payment being withheld by KDPS for the MPCs. DM Data was notified that no payment would be forthcoming until the MPCs were working.

On March 28, 2002, Dorfman sent the captain of KDPS Service Division an email outlining a proposal for payment and resolution of problems at KDPS. This email was sent after a lengthy conference call demanded by me since nothing was getting fixed since the March 4th email. In this email were comments such as:

I am extremely confident that we are capable of maintaining a stable system in Kalamazoo. It is unfortunate that it has taken as long as it has to gain out current momentum.
We have to have the MPC bill paid on or before April 18 (Thursday).

A bill will be sent out tomorrow for you (sic) license and support for 6/1/02-5/31/03 in the amount of $58,386.43.

Proposal

In order to leave you with assurance that we will continue to aggressively work to meet your expectations, I offer the following proposal:

Until the Informix locks/errors cease for a period of 120 days, Kalamazoo will receive License and support at no charge (in monthly blocks). This means, if we have our last Informix issues on April 20, Kalamazoo will not be liable for paying license and support until September 1st.

Also, any major MPC problems proven to be caused by our software within the same 120 day period would also reset the clock.

In exchange for the above consideration, Kalamazoo must render payment, in full, for the MPC software and the funds must be received by DM Data no later than Thursday, April 18.

KDPS’s comment on this was absolutely not. No payment until the MPCs started working.\(^{14}\)

On April 23, 2002, Captain Martin received an email from Dorfman. Excerpts are as follows:

Due to a number of reasons (Kalamazoo being one of the key reasons), Sam Ramasamy has been removed as our Vice President of Engineering . . .

Our new development management team . . . is in our new facility at DM Data India.

As soon as they complete a work plan, I’ll forward same to you.

\(^{14}\) By now consideration to take the MPCs out of the cruisers was foremost in my mind and those of other staff members. The cost to maintain the tablets in the cruisers was outweighing their usefulness, as the officers were routinely not even turning them on when they came on duty.
Also, please be informed that DM Data Corporation has been acquired by Prolease Corporation on April 9. http://www.prolease.com/041202.htm. This acquisition fundamentally changes the paradigms of our operation. Significant resources (capital and people) have already been availed to us. Also, we now have to act almost like a public company. We now have to answer to another authority that demands successful performance.

What had been hinted to in telephone conversations was revealed in this email. DM Data had been sold, and the pressure to pay the outstanding invoice was an attempt to balance DM Data's accounts prior to the sale. Shortly afterwards, KDPS was notified that the President of Prolease, Warren Talbot, would be stepping in for Dorfman, who had been relegated to consultant status within the company.

On May 2, 2003, a catastrophic event for KDPS occurred in the dispatch center. As the dispatchers began to log off and sign back on, they were greeted with a message on their screen that said, "License Expired contact DM Data for Assistance." It seemed that the software from DM Data had an embedded code which stopped it from working if KDPS had not paid their maintenance fees.\(^{15}\) This code was hidden from both the users and the system administrators. Essentially the dispatch center's computers were being systematically shut down by the DM Data software. KDPS was able to keep one work station working throughout the day based on the ability to quickly diagnose the problem. KDPS quickly sought and was granted an immediate injunction from the Circuit Court in Kalamazoo, Michigan.

\(^{15}\) No one in KDPS knew of this fact. Apparently, despite the fact that KDPS purchased the software and thought they owned the software, it would shut down if KDPS or other users did not pay the agreed upon maintenance costs. In this case, it was over $58,000. KDPS in essence was being held hostage by not paying the maintenance costs. Previous conversations had led KDPS to believe the system would not shut down.
The injunction called for DM Data to produce the code to restart the computers in the dispatch center. The injunction would be in effect until both parties could reach a resolution. KDPS staff were able to get the system back running once the judge signed the injunction. The license renewal software was received from DM Data later that night, but was viewed with skepticism by KDPS computer service personnel who thought it would actually take the system down instead of reviving it. The codes sent by DM Data were never used. Computer programmers from KDPS devised a "work-around" for the license issue and shutdown of the CAD computers.

Organizationally, DM Data has been bought several more times and is presently owned by Archonix, Inc. KDPS personnel stayed on the user group email listing and received limited information from time-to-time pertaining to the CPLIMS system. As of this writing, the court injunction and potential lawsuit between DM Data and the City of Kalamazoo remains open. No permanent resolution has been achieved; however, it appears neither party is anxious to resurrect this part of their histories. The last conversation between the City Attorney's Office in Kalamazoo and myself indicated the best course of action was to issue lie. By not bringing it up before the courts, it would probably just die after a short time period. In June of 2003, KDPS walked away from the $1.5 million they had paid DM Data for a new system. The hardware was given to City Hall, and the last contact with DM Data was in May of 2004.

This, then, is a short synopsis of what occurred between KDPS and DM Data. The above description pinpoints the important issues confronting both organizations. The relationship was cordial, congenial, and almost friendly at the start. Both
agencies were starting/treading new ground and were eager to make things work. KPDS was patient in the efforts of DM Data to correct the problems, and DM Data seemed to be genuinely trying to rectify the problems encountered by KDPS. KDPS poured money into the project as DM Data convinced them that new hardware, upgraded software, and training would “fix it all.” KDPS was so taken in by DM Data that they decided to partner with them in their venture into MPCs. KDPS sought special funding to put another $528,000 (MPCs) into the project. Still by 2002, it was apparent the system would never work and relations soured deeply when KDPS (I, on behalf of) attempted to pressure DM Data into fixing the system. The emergency restraining order was of course the “last straw,” but KDPS was already well on their way to purchasing another system.

Intergraph Public Safety

In the spring of 2002, KDPS started actively pursuing another computer vendor to replace DM Data. Those dynamics will be covered in the next section. In this section, I will cover the contact with IPS, the initial problems encountered, the subsequent path to complete implementation, and the ongoing problems encountered with IPS.

IPS staff provided a demonstration of their products to KDPS in the spring of 2002. In the summer of 2002, KDPS released an RFP for bids from vendors to replace the DM Data system. IPS responded and subsequent negotiations landed an agreement between IPS and KDPS. In October of 2002, letters of intent were signed, and in November the city commission approved the signing of an agreement and
expenditure of funds to purchase a new system from IPS. The initial contract purchase was slightly over $1.5 million and included replacement of PCs in the dispatch center, including monitors, and the purchase of five servers to facilitate a client-server architecture for the system. A review of emails disclosed work was to begin immediately, as KDPS was fearful of the DM Data system collapsing around them.

An initial kick-off meeting was held between KDPS and IPS the first week of December 2002. In that meeting a scheduled rollout was planned with CAD being rolled out in May of 2003, RMS in October of 2003, and MPCs later in 2003 and into 2004. IPS had assigned the project management aspects to Tim Kick, and I was the project manager for KDPS. The two agencies began working towards their goals and deadlines (emails between Tim Kick and Steve Reifert, November-December 2003).

KDPS had been given a deadline to produce a usable digital map for IPS to convert for its system. The deadline was the first week of February 2003. KDPS met that deadline, and then communications between Kick and myself slowed. In March 2003, an IPS sales representative visited KDPS to introduce himself as KDPS’s new accounts representative. We discussed our deadlines, and he showed alarm that things were not progressing much faster in order to meet the summer deadline for CAD cutover. Kick sent hardware to KDPS, but that was his last email

16 The map is a digitally created map of the City of Kalamazoo. The industry standard for most digital maps is created using ESRI software, but IPS has their own mapping software, so all maps created by KDPS had to be converted to IPS mapping software.
KDPS received (email dated April 21, 2003). Verification of hardware shipment and other necessary correspondence for installation by IPS would not be received until after a new project manager was assigned. Shortly thereafter, he resigned from IPS. KDPS soon learned its project had seen little attention as Kick was out “job hunting” according to IPS management (telephone conversations between IPS management and Steve Reifert, April and May 2003).

IPS rebounded with the assignment of a project manager named Tracey Moyer. She was a fifteen-year employee with the company, and would end up seeing the project through to completion. IPS realized it could not meet the May 2003 deadline, but pledged to a June CAD cutover. On June 13, 2003, KDPS brought the IPS CAD product live. This cutover included training and customization to fit KDPS’s specific needs. Allowing for a transition period, the CAD system seemed to be working properly. Later in the summer, however, KDPS experienced their first unexplained problem with CAD. Dispatchers were receiving errors on their status monitors. The error would show as “EXT” which meant there was an external error. This caused the units to be out of synchronization with each other and the inability of one dispatcher to dispatch certain units. The initial calls to IPS Help Desk provided no relief. Moyer became involved as well as other IPS staff. This problem lingered for months. Dispatchers constantly complained of the problem. Initially the “EXT” problem was isolated to the times on the PCs in the dispatch center being out of synchronization with the other PCs and the servers. Further blame was put on the operating systems of the PCs that were running under the new Windows XP operating platform. It was then blamed on a “netclock” installed in the server room.
to synchronize the 911 telephone system and the IPS computer system. KDPS staff and IPS staff worked on the problem vigorously, but it still lingered as a source of problems with CAD. It was an unresolved issue that was causing complaints from the dispatchers. IPS claimed to believe it was a unique problem with KDPS, and they could not explain what was occurring. A subsequent check by KDPS computer staff revealed that IPS had received other complaints of this nature from other police departments and were working on the problem at IPS headquarters; however, IPS had not disclosed this fact to KDPS. KDPS staff members, myself included, identified this as the first time IPS had intentionally withheld information from KDPS on a general problem with its CAD system.

In October 2003, KDPS went live with RMS. Cutover was uneventful with KDPS welcoming the change from the DM Data product. Two major problems soon surfaced with the IPS RMS product, I/LEADS. The first was a problem with the spell check system in the narrative portion of the product, and the second was the inability to produce MICR information/reports. The spell check issue was fixed in July of 2006, and the MICRs reporting was finally completed in the spring of 2006.

17 KDPS still maintained the VAX system until cutover to IPS RMS. KDPS was running the Command Data VAX, DM Data CPLIMS and IPS RMS simultaneous for months. The fear was that if one went down, KDPS could revert back to a fallback system.

18 MICRS is the Michigan Crime Information Reporting System that is Michigan’s response to reporting UCR, information to the FBI. It is an automated computerized reporting system that requires, by law, Michigan police agencies to report crime information electronically to the State of Michigan. Michigan, through the Michigan State Police, then reports that information to the FBI for UCR data.
The spell check issue revolved around the narrative portion of the police report produced on the RMS. With the purchase of the IPS system, KDPS was to go paperless with their police reports. Officers were to type their reports on a PC, or eventually on their MPCs. If printed reports were needed (i.e., by the court, prosecutor's office, or the City Attorney's office) they would be printed at a later date. The first episode of the spell check failure was noticed several days after bringing the system on line. The officers would type their narratives, hit a spell check button on the screen, and their narrative would disappear. The officers would have to start over and retype the narrative portion of their report. Several trouble reports were sent to IPS in reference to this (emails between Reifert and Moyer). At first, IPS denied knowing what caused this, but later Moyer confided that they knew of the potential for the loss of the narrative with the spell check button, but withheld the information because they did not want to miss a deadline.

The MICRS issue was more complicated and stemmed from the requirements of the State of Michigan and FBI's UCR mandates. In the contract signed by IPS and KDPS, it called for, and was agreed upon by IPS, the provision of electronic reporting of MICR data from KDPS to the State of Michigan. IPS admitted, by August 2004, they did not have the capability to produce this report, and they would have to customize the I/LEADS section to produce the report on a monthly basis. It was not until August of 2005 that KDPS was able to send this report error free to the State. KDPS did not send any information in 2003; it sent information in 2004 but it was only 85% correct (an acceptable percentage to the State) and was finally able to send final data in 2005.
Another problem was encountered in April 2005. KDPS experienced what IPS and IT staff said could not occur. On a Saturday morning, the entire CAD system locked up. In March of 2005, the KDPS dispatch center became a consolidated dispatching center with three agencies using the IPS CAD system. Kalamazoo Township Police dispatchers, as well as the Kalamazoo County Sheriff's Department dispatchers, were all co-located with KDSP dispatchers in the center. Thus, a CAD failure took down the emergency response system for the entire county. It took over three hours to bring the system back up. No explanation was ever given by IPS, and the only follow-up from the company was whether it was working or not.

While the problems encountered with ISP seem less significant, they nonetheless, took considerable staff time to correct and increased the resistance of both officers and dispatchers to the system. As I will cover in the next section, coming off a debacle like the DM Data system, officers and dispatchers alike were extremely skeptical. In a culture resistant to change (Banks 2004; Crank and Caldero 2002; Manning 1997, 2003; Dunham and Alpert 2005), officers were virtually looking for reasons for the IPS system to fail.

KDPS

KDPS was not new to automation efforts, having begun its trek in the early 1980's. What perhaps contributed to the problems with its transition to the DM Data product were the conditions within the organization when KDPS first started negotiating for a new system. The City of Kalamazoo had a tumultuous 1990's in terms of city managers, and in the mid-1990s, one of the five managers the city had
during the 1990's believed it was his charge to "reduce the cost of government spending," a program he developed and attempted to use to make sweeping changes. The fervor for reducing expenditures trickled down to all managers in the city. When KDPS was confronted with the perceived need to replace their computer system, one of the driving forces was the overall cost. At $472,000, even in 1997, an entire computer system was seen as a bargain. Tiburon, Inc., which owned the rights to the Command Data system KDPS was replacing, was quoting KDPS $700,000 for an upgrade. So, it is apparent that if the total system could be replaced for almost half the cost of an upgrade, the city would be getting its money's worth. One way or another, KDPS needed to upgrade or replace its existing system and the cheaper way would be the wisest and most in line with the culture of reducing government spending.

Another situation that plagued the DM Data project was the lack of leadership and technological knowledge within the department that was necessary to take the project to fruition. City IT staff had been pulled back into City Hall, leaving no formally trained computer specialists in the department. Those remaining included a dispatcher who was learning as she went, and a retired officer who had returned because he was knowledgeable in the use of computers and was a programmer on the first system KDPS developed. Another dispatcher was added to the group as well as a crime analyst (civilian position) who was familiar more with a DEC/VAX platform than RISC 6000. The retired officer left around 2000, leaving the two dispatchers and the analyst to fend for themselves.
The two lieutenants that filled in as supervisors of dispatch did not have the computer staff working for them. The dispatchers working as computer service personnel worked for the Service Division Captain. Neither lieutenant had a great deal of technical knowledge, and neither (both admitted to me later) had any interest in the computers or automation efforts of KDPS. Both told me later they despised working with DM Data, and found themselves alone trying to figure out the problems with little assistance from city IT. By 2001, the city IT staff and the computer services people in KDPS had alienated each other so that neither group communicated with the other, causing still another problem in the DM Data project.

In 2001, when I took over as the dispatch supervisor, I had three problems that needed to be attended to. The first was the DM Data product that did not work. The second was personnel issues that needed to be addressed. KDPS had two dispatchers without any computer training, trying to push a project through to fruition with no city IT assistance. City IT would not talk with them, and they would not talk with city IT. Each, of course, blamed the other for the division. Thirdly, the computer services were isolated from the computer users and the associated problems. The supervisor attempting to get things “fixed” did not have the people working for them, causing problems in direction and supervision, etc.

Two additional organizational factors that influenced IT, and computer projects also exacerbated the above problems. The city was about to move KDPS headquarters to a newly renovated building at the expense of some $12-16 million. All networking and desktop PCs would need to be moved and redesigned to suit the
new headquarters. Additionally, the chief of KDPS wanted a consolidated dispatch center at the new KDPS center whereby KDPS, Kalamazoo Township Police, and Kalamazoo County Sheriff's dispatchers would all work at this central location. Plans were needed to move the headquarters, design a networking system for the new building, and accommodate the addition of new dispatch consoles in the new center.

One decision made by the management of KDPS (emails between Chief Weston, Captain Martin, and Sergeant (at the time) Reifert 2001-2002) was to replace the two dispatchers with trained computer specialists. In other words, academically/technically trained computer specialists who could maintain and implement a new computer system would replace the dispatchers who had performed these tasks. This attempt came with some backlash as the unions fought over work that was theirs, and blamed the city for not training the dispatchers as computer specialists. In the fall of 2002, the crime analyst and one of the dispatchers retired. The other dispatcher was sent back to dispatching after a deal with the union. In the winter of 2002-2003, one trained computer professional was hired by KDPS. That employee was still working at KDPS at the time of this writing. This professional was able to bring the DM Data platform under control. Informix errors stopped, and

19 These new requirements included fiber optics, Cat V wiring, and the attempt to avoid service disruption when the headquarters moved because of the 911 system and other computer users.
the platform was much more stable. It still locked up on dispatchers, but problems were significantly reduced.\footnote{20}{The IT professional was able to utilize her talent to transform an unstable system to a somewhat controlled usable platform. She still insisted on replacing the older system, but was nonetheless able to get the DM Data system under control. KDPS administration quickly realized the benefits of having academically trained, knowledgeable personnel from outside the department working on the system.}

Organizationally, the issue with the new IPS CAD system created the air of "this won’t work either," as both IPS and KDPS computer staff struggled to get control of the "EXT" errors. KDPS went months before it found out from other users (e.g., Lakeview, Colorado) that the "external" error being received on the dispatch consoles were known to IPS, and in reality numerous "help tickets" were assigned at the IPS Help Desk for repair of the problem. The problem was repaired the first part of 2004 with a two-prong approach. A new program designed by KDPS staff to synchronize the PCs was developed, and IPS created a "fix" to avoid the errors. On an organizational level, this, coupled with the spell check error, was viewed as a serious leadership issue at KDPS along with the purchase of another faulty system.

Analysis

As Michalowski and Kramer (2006) and Kramer, Michalowski and Kauzlarich (2002) note, it is the societal arrangements that shape the goals and means of economic institutions and the constraints they face. These arrangements, structure, dynamics, and cultural meanings direct control and shape the direction and means of production. As Michalowski (1985) pointed out, in a capitalist society the
ways and means of production are not only based on a competitive arrangement, but the government also plays a role in ensuring the stabilization and perpetuation of this means of production. As Chapter IV indicated, the controls, or lack of controls, in a capitalist economy provides for guidance of the market. These controls both provided the impetus for growth, development, expansion, and sustenance of the economy, but also open doors for criminogenic activity. At the organizational level the internal structure of specific economic political units with the external political-economic environment on one hand, and with the way in which the work-related thoughts and actions of individuals who occupy positions in those units are conditioned by the requirements of the positions they hold and by the procedures of the organization. (Michalowski and Kramer 2006:39-40)

The following is an analysis using the catalysts for action framework. Remember this will identify the key factors that facilitated or inhibited organizational deviance. It is the intersections of these factors that led to the overall social harm. There was no single event that led to the harms inflicted on society by the events which unfolded at KDPS. It is also important to remember that this analysis is based on “the proposition that criminal or deviant behavior at the organizational level results from a coincidence of pressure for goal attainment, availability and perceived attractiveness of illegitimate means, and an absence of effective social control” (Michalowski and Kramer 2006:40).

Motivation

At the motivational level, we can see the actions of both IPS and DM Data are based on a capitalist competitive culture where the quest for money is the ultimate goal. Both companies operate in a relatively small market. While there are
hundreds of police departments in the United States (BJA), most cannot afford a computer system that costs millions of dollars. This squeezes the market even smaller, with a potential client base consisting of medium-to-large departments.

At the corporate cultural level, each company sought out and competed with other companies for KDPS's business. DM Data, in efforts to increase its client base, dramatically undercut many others to get KDPS as a client (personal interview with company sales representative Jim McCullough). DM Data undercut other bidders by coming in extremely low on its bid. For example, Tiburon quoted an upgrade at over $700,000, while DM Data came in at just over $400,000 for a completely new system. DM Data was willing to undercut the other vendors based on knowledge that continuous maintenance contracts would add millions of dollars to the existing contract. For example, DM Data set up its license so that if a client did not pay the maintenance fee, the system would shut down as happened at KDPS, which led to the court injunction between DM Data and the City of Kalamazoo. Agencies using the DM Data product were held hostage to pay the maintenance fees or face shutdown of the entire system.

IPS was no different in their approach. IPS readily admitted it wanted KDPS business since it is the largest operating consolidated police, fire, and emergency service operation in the United States, and it sought to do whatever it took to get KDPS as a client. Other factors also entered into the equation with IPS. It was

21 This was confirmed by other vendors who bid in 1997 for the KDPS contract. New World, Inc., was particularly upset by the undercutting DM Data committed to get the contract. In fact, New World warned in 1997 that KDPS would have difficulties with DM Data as a result.
seeking to expand its client base to the state of Michigan, as it had lost its only Michigan-based client, Troy, Michigan, to a consortium approach several years before. IPS originally bid $2.1 millions dollars, but during negotiations came down to $1.5 million. Based on its 1997 split from the Intergraph Corp., Inc., IPS was striving to increase its client/customer base numbers. Intergraph, Inc. realized there existed a separate potential use for its mapping product, but in a different, more concise way. It started purchasing other smaller companies to acquire their software, and thereby expanded into a larger market, increasing the potential for acquiring federally funded contracts under the Crime Bill and Patriot Act.

Project management is also affected by corporate pressure, goal attainment, and a culture of competition and quest for money. Project managers are tied to deadlines, cutover dates, and project fruition. So these deadlines are tied to financial gains as well as financial losses. For example, IPS project management would receive a bonus for making deadlines and a penalty for not making deadlines. This provided for motivation to ship software even when the company knew about the defects. For example, IPS shipped the CAD system with the known “bug” causing the external errors. Another example was the shipping of the RMS product with the known “bug” causing the narrative to be lost when the officers used the spell check button to correct their reports. In both cases, Moyer told me that IPS believed these problems were of little concern for the overall implementation of the project. In other words, IPS believed the problems were not significant enough to miss deadlines. Missed deadlines meant missed bonuses for the IPS project manager, and missed
payments to the company (personal communications between Reifert and Moyer 2004-2005).

KDPS faced economic pressure as it moved away from the Command Data system onto the DM Data system. Under the City of Kalamazoo’s “reduce the cost of government service” agenda, KDPS was pressured from city administrative officials to bring in a system that cost significantly less than that proposed by Tiburon, Inc., owner of the Command Data system. To achieve this goal, KDPS administrators sought out and purchased a system that initially came in at $300,000 less than the cost proposed ($700,000) for an upgrade to the Tiburon system. The Service Division captain was commended for his ability to bring this project in at such a low cost. He left before he saw what became of the project, but was willing to cut corners to achieve organizational goals. Within KDPS, there was no one in a subordinate position who was willing to stand up and tell the captain he was wrong for attempting to purchase a system at such low cost.

Opportunity Structures

Under opportunity structures, most of the catalysts for action (see Table 1, Appendix B) existed between the three organizations. Not one catalyst was responsible, but, as noted previously, it is the intersection of several that can be used to explain what occurred.

Instrumental rationality existed when both of the private organizations dealt with KDPS. At this level, the agent is seen to seek out the course of action that will achieve the desired goal. Whether this path is one of reason or is fueled by selfish
ends, it nonetheless places goal achievement above all else. Organizations can act in this manner as well. The interaction with DM Data is the best example here, when their representatives used emails and memos to indicate that they had fixed many problems even though the problems had not been fixed. Six emails were located, along with several memoranda, where Dorfman, Ramasamy, or other technicians indicated problems had been fixed, when in reality they had not. On several occasions they would send emails to people higher in the echelon of command in an apparent attempt to circumvent those standing in the way of getting their money. For instance, Dorfman stopped sending me any correspondence after I indicated on the phone KDPS's displeasure with Raja's December 2001 trip where he took CAD down for eight hours. Several correspondences that he sent to Captain Martin advised the problems had been fixed. In the April memorandum, he said that the problems were fixed, and he requested the rest of the money. That very day, KDPS staff members met to discuss a course of action because nothing had been fixed. By then, KDPS had decided to drop the DM Data project for another vendor.

Additionally, Dorfman and Ramasamy would call the KDPS computer services technicians in efforts to get them on their side and attempt to divide and conquer by splitting the forces within KDPS. This ploy did not work, however, as KDPS staff members had come to the realization that the DM Data product would not work.

IPS staff personnel also practices instrumental rationality, as when they attempted to meet the goal of completing projects on time for the sake of bonuses and getting contracts by any means. One example of this was IPS's claim that
could provide the MICRS reporting required by KDPS and agreed upon in the initial contract. Two and a half years later, that part of the project was completed. The expectations of KDPS were that the product was capable of MICRS reporting off the shelf, and there would be no lag time in implementation. Instead, KDPS failed to report crime information in 2003 and for most of 2004. The 2005 report was not complete, and only in 2006 was the department able to fully provide the necessary MICRS report.

Defective SOPs on the part of IPS also led to difficulties when the project between KDPS and IPS first started. As previously mentioned, the first project manager for IPS essentially failed to provide any service to KDPS, and what he did do was not timely and put the project behind for months. Had IPS had some sort of procedure in place to monitor their off-site project managers, the project would have been on time and the questions of whether the right vendor was selected and whether KDPS leadership was capable of ever getting a working system would have been avoided.

Additionally, like most police agencies, KDPS had no SOPs for a project like this. Essentially, SOPs at KDPS were written after-the-fact in response to some needed security issue for wrongful use of part of the system. Little if any information or documentation was sought on a project of this type. Managers and administrators were essentially flying-by-the-seat-of-their-pants.

Normalization of deviance was a big factor for both DM Data and IPS. DM Data's constant claims that the system was fixed were taken as if it (DM Data) believed things were satisfactory, and only a few within KDPS (namely, me) were
concerned with the operations. Conversations with the computer service people at KDPS were often pleasant at the individual/technician level. In other words, the computer staff from KDPS and the programmers from DM Data were on a friendly basis. They had been working closely for three years and knew each other by their first names and even details of each other’s families.22 The message very quickly from DM Data was that, if they could get me out of the way, everything would be fine. DM Data would also solicit other customers to contact us to see if they could help. One loyal DM Data user called me from an Eastern seaboard town, claiming that he could fix our problems because his system ran perfectly. The offer was refused, but he claimed to be trying to work on DM Data’s behalf in order to help them get our issues resolved. This was also borne out by DM Data’s later refusal to contact or talk with me, instead choosing to go “over my head” to talk with my superiors.

IPS normalized their actions as well. To Moyer and other IPS staff members, the time synchronization issue, the spell check problem, the delays in the projects due to the project manager, the MICRS issue, and the insistence to stay on track and on time were a glossing over of the problem. Moyer’s explanation of the spell check problem was that IPS did not think it was a “big enough issue” to stop the implementation process. When asked why she did not tell us about the problem, she

22 This is based on telephone conversations and personal emails I witnessed myself. At one point after Raja’s visit, one of the computer technicians at KDPS heard that Ramasamy was withholding Raja’s pay until KDPS was fixed. She started to become very emotional, as if she was going to cry. She later learned that Raja was Ramasammy’s brother, which made her feel worse.
said they thought it would be fixed shortly, and they could ship the fix quickly enough to avoid problems. The MCIRS failure was both a defective SOP and a normalization of deviance. Nothing stopped the contract negotiator from promising MCIRS reporting while at the table, and nothing stopped IPS from shipping the product when it was not functional. They promised for months, and eventually years, that they were near a fix, but the problem was very "complex" involving multitude of code and other programming. They also reminded KDPS they had other clients, and they had other priorities. This, of course did not stop a vice president from promising KDPS it would get fixed at as soon as possible. In fact, they promised they would put one person on the project to get it complete.\(^2\)\(^3\)

Michalowski and Kramer (2002, Table 1, Appendix B) note in their catalysts for action under Opportunity Structure that computers and technologies can themselves be a catalytic factor. This was the case for KDPS. In 2001, when I took over the computer projects, the two people working in the computer services section had not had formal training. Neither had any terminal degrees in computer science, and their training was usually that provided by the vendors. Both took several courses conducted by DM Data and courses at the local community college. Neither had any formal training in networks or database management. Essentially, KDPS had two people who liked working with computers at the helm of a multi-million dollar system. Organizationally, KDPS management and administration knew that neither could handle the present system, and neither could handle the purchasing and

\(^2\)\(^3\) This information was gleaned from numerous telephone calls and emails between myself, KDPS's Chief and IPS project managers.
implementation of a new system. Additionally, management and administration readily admitted to their own weakness in implementation, operation, and purchasing computer systems. As others have noted (Manning 2003; Nunn 2001) the police professionals lack the knowledge and skills to operate in the computer system domain. Lack of knowledge on the part of KDPS personnel was a serious problem in the DM Data system project. Both in management and leadership, KDPS failed to properly manage that system.

When I hired computer professionals in late 2002 and early 2003, the errors experienced by dispatchers and other users of the DM Data system were drastically reduced, and in some instances ceased. The platform stabilized, the errors slowed, and CAD and RMS seemed to operate more reliably and faster. The mobile product still would not work, but that was a programming issue the professionals could not resolve. One other example that points to the need of professionals happened the day KDPS filed for the injunction to keep DM Data going until KDPS could transition to the IPS system. According to one computer technician at KDPS, the code sent by DM Data to keep the system going would have actually caused irreparable damage to the system. The code was wrong and could have had catastrophic consequences. KDPS never found out as the code was circumvented, but a review of what DM Data sent as a “fix” showed problems would have been experienced if it had been implemented.

The personnel issue involving the computer technicians also fits the model as an internal constraint for KDPS. These were dispatchers turned computer technicians. They did not have the skills needed to implement a system or sustain a
system. Their only recourse to what was happening with DM Data was to support the DM Data programmers. That is how the project grew from $400,000 to $1.5 million. Money was thrown at the project based on the advice of DM Data. No one at KDPS had the knowledge or ability to question what was occurring. Throwing money at it in hopes of fixing the problems seemed like a logical route. City IT staff took a "hands off" approach, as feelings between the two staffs were tense (to be discussed in the next chapter). KDPS administration moved to replace the two dispatchers, but that too was problematic from an interactional standpoint.

Controls

The overarching factor noted under catalysts for action in terms of operationality of control was that throughout both projects there were no controls. No factor stood out more than the lack of controls facing any of the organizations involved. Reviewing emails, correspondence, legal documents, and other communiqué disclosed a clear void in any control mechanisms concerning the vendors' actions. Likewise, KDPS had no structure, no policies or controls concerning working with the vendors other than contractual language, which concerns the initial purchase, and in the case of DM Data, nothing after that. KDPS did provide some contractual safeguards in their contract with IPS for payment structuring based on performance standards. Percentage payments were paid based on performance standards for implementation. Payment to IPS was actually held up by KDPS for the failed performance of the MICRS reporting. In the end, IPS
received all its money with no penalties for delays or failed performance (spell check, crashing, delay in implementation, etc.).

There were, however, several catalysts that added to this condition. A culture of compliance existed with KDPS, whereby the fact that the computer did not work or function properly perpetuated throughout the organization. Several authors have previously noted this condition (Chu 2001; Palmiotto 2005; Manning 2003; Edwards 1996; Nunn 2001) where the culture accepts the fact that technology does not always work as reported, and oftentimes does not work at all. Not only were KPDS personnel used to the computers not working, they were use to hearing the rhetoric indicating that a solution for them not working was “right around the corner.” This cultural acceptance was especially true with the DM Data product, but also added immensely to the “nay-saying” that occurred when the IPS system was purchased and then implemented. The spell check issue was a debacle that supported the notion that the IPS system would not work. Additionally, the CAD system had difficulty integrating the map of the streets of Kalamazoo. This was not part of IPS’s problems or issues but was based on inaccurate and incomplete digital maps of the Kalamazoo County area. These maps were the responsibility of KDPS to provide. The problem was that within the Kalamazoo County area, digital maps were often incomplete and inaccurate. Dispatchers knew nothing of the digital map problems and chalked it up to the system not living up to the promises made. In the end, a more complete and accurate map was developed, but the damage was done and the skepticism remained.

The communication process added to the lack of controls and perpetuation of the problems between the agencies. In both instances, DM Data and IPS were in
different parts of the country, so little if any face-to-face communication occurred. At first with DM Data, email was just emerging as a reliable form of communications for KDPS, so contact was via telephone. Later, and in particular with IPS, emails were the preferred method of communication. Both forms of communication are impersonal and less confrontational. All the emotions that go into a face-to-face conversation (anger, frustration, displeasure, etc.) are avoided. I will talk more about this in the next chapter, but this too led to a lack of control. This worked well for the vendors because they could escape the confrontation. They could avoid the anger and other emotions by keeping their distance and communicating via electronic means.

All these led to the fact that there were no apparent controls over the vendors. As noted in the previous chapter, the institutional environment was a catalyst that allowed the computer vendors to cause social harm. At the control level, the organizational setting of KPDS and the reward structures of the vendors perpetuated the social harms of the vendors. At the organizational level, the reward structures of the vendors were based on making money. Contract award, deadlines, implementation schedules, purchases of more software and hardware through the vendor, and maintenance contracts all meant more money and were all tied to that quest. DM Data was a privately held company. All the money made went to the owner and his employees. At IPS, which is a publicly held company, the incentive structure rewarded performance based on bonuses. This money went directly to the employee and was an incentive to do a good job, but was also a catalyst for deviance. Examples of this are seen in IPS’s deception on the MICRS reporting, the failure to
tell KDPS about the spell check and time synchronization, and the catastrophic failure of a CAD system that “couldn’t go down.”

Further perpetuating the social harms by the vendors was the denial that anything happened as a result of their actions. IPS paid no penalties for failure to provide a timely MICRS report. They faced no penalty for the CAD malfunction, or other smaller delays in implementation. Even with a court injunction, DM Data faced no real penalties. In the end, at the advice of the City Attorney’s Office of Kalamazoo, a decision to let the court injunction lay and “it will just go away,” added more credence to the notion that nothing really happens to the vendors. IPS received all its payments plus extra purchases and an annual maintenance agreement of over $100,000 a year.²⁴ DM Data received all but $124,000 payment in for the MPCs that never worked. While a substantial amount of money for a small company, one must also realize the initial contract was for $472,000 and grew to over $1.5 million. KDPS just walked away. There were lawsuits to recover the losses, no further discussions; instead, communications just stopped.

Conclusion

Like the Challenger disaster, the Ford Pinto case, the Valujet crash, the Imperial Chicken Factory fire, no one would say “stop.” No one would step up and say, “Stop the process.” At each level, warning signs were evident. DM Data’s

²⁴ The IPS system’s initial cost was approximately $1.5 million. That was financed for ten years, which is what KDPS believes it needs to run the system before looking for another one. Annual maintenance costs put the total expenditure at somewhere closer to $2.5 million.
failure to bring a system up after two years should have indicated there were some
deep-seated problems. The answer was to pour money into the project to keep it
going. Lack of knowledge and technological savvy led to this problem. Still, no one
at KDPS said stop. Even after years of attempts to stabilize a failing system, some
were still willing to pour money into the ailing DM Data system.

The police profession is up against an entrenched corporate culture and
reward structure that feeds off the weaknesses of the profession. When police
agencies like KDPS25 attempt to turn their untrained dispatchers into computer
systems personnel, weaknesses develop that can in turn be exploited. For example,
DM Data convinced KDPS that newer hardware and newer software were the answer
to the functional problems of their system. So, KDPS purchased both through DM
Data. DM Data convinced KDPS, when KDPS was purchasing MPCs, that in order
for the system to work, KDPS should buy the computers, software, and RF system
through DM Data. Rather than deviate, KDPS purchased the MPC system from DM
Data. At each turn, DM Data made money as they sold additional equipment and
software to KDPS. DM Data had so much control over the MPC project that the
mobile computer supplier, XPlore, was told not to talk to KDPS personnel unless it
had first gone through DM Data (personal communications between XPlore
employee Jamal and myself).

25 In attempts to keep this work in some manageable form, I did not expand this
study outside of KDPS. However, during the course of my work as project manager,
I was contacted by numerous police agencies that had done what KDPS had in terms
of making dispatchers their computer systems people. Like KDPS, they learned that
in order to make a system functional and even close to performing at top end,
academically trained and competent computer specialists were needed.
Many of the same factors were incorporated into IPS actions and work structure. My conversations would have to occur with my counterpart at IPS. I could not talk with other project people unless talking to the IPS project manager (Moyer) first. This insulated the other employees from what was occurring in the project and the possible leaking of price or cost information. This was particularly evident while attempting to bring the MICRS reporting online. Messages from Moyer indicated it was progressing, we were within days, and were very close. In actuality, the programmer admitted later to KDPS systems personnel that he had on occasion been pulled away for other projects, further delaying KDPS and further delaying the process.

As with the other case studies previously noted, no one would say stop. The process continued to the point of injurious actions. The most injurious of all the actions was the loss of life and the confusion created by CAD crashing on key dispatches, such as the warehouse fire. Second was the loss of money and time spent on these projects. While I can address the dollar figures involved in purchasing and sustaining a system, no one in KDPS ever calculated the loss of time and energy spent by employees. To a certain extent, the employees should be working on the project, and that is an expected cost. On the other hand, significant overtime expenses were experienced by KDPS, and thus the city, through both implementation projects. I initially attempted to calculate the overtime expenses experienced through the DM Data project but stopped when administrators realized we would never recover those losses.
The organizational level was obviously where the most harm occurred in this interaction between vendors and KDPS. The catalysts for action reveals the intersections of deviance that caused the bilking of the taxpayers out of millions of dollars. The integrated theoretical approach better explains what occurred within each organization. It was the intersection and interplay that caused the social harms, not just one action, but also the culmination of numerous actions that inflicted the damage.
CHAPTER VI

INTERACTIONAL ENVIRONMENT

As Kauzlarich and Matthews (2006) have indicated, the interactional or face-to-face environment is one of the most difficult to examine or explain. Assumptions about behavior and motivation must be based on overt actions. No one took the time during either of these projects to observe and explain behaviors exhibited by participating members. Until now, no one took the time to piece the puzzle together to add the dimension of personal interaction. Everyone understood the seriousness of system failure, but what of the behavior of those involved? To what degree did actions of those involved add to the debacle and social harms involved in the purchase, implementation, and maintenance of the two computer systems at KDPS?

Social-psychological theories and, in particular, differential association theory have been used to explain criminal actions at the individual level. Calling upon Sutherland's (1934, 1945) earlier work that the individual learning process is what leads to deviant activity, others researchers (Clinard 1946; Cressey 1953; Lane 1954; Geis 1967; Albanese 1982; Kramer 1982) have used it to further explain white-collar and corporate crime, including state-corporate crime (for example, see Michalowski and Kramer 2006). What is interesting is that previous work (see Chapter II), in the realm of individual culpability and individual interactions has paid little attention to the micro level of interactions. As I noted earlier, this work brings the notion of state-corporate crime down to a micro-level of analysis. My point is
that until now we have relied on differential association as the major means of explaining the face-to-face encounters that led to deviant activity. I contend, though, there are several other micro-level theories that can be used to explain the behavior of the individuals involved in the present case from IPS, DM Data and KDPS. Using an integrated approach, each theory lends credibility and micro-level explanation for the actions of those involved. As Chapters IV and V have shown, it is the intersection of actions and the conditional institutional and organizational factors that led to the social harms encountered at KDPS.

This chapter covers the third category in Table 1 (Appendix B) of the catalysts for action. It deals with the face-to-face interaction of those involved from all three organizations. It covers the motivation, the opportunity structure, and controls of the individuals involved. It is a micro-level examination of what occurred between the actors as each computer system was purchased, implemented, and maintained. What follows is an explanation of the individual behavior using four sociological theories that utilize a micro-level approach to social interaction, namely, differential association, strain theory, dramaturgy, and social constructionism. Each theoretical outlook provides insight in explaining the action of the individuals involved. This will be followed by accounts of actions that fit the Kauzlarich and Kramer (1998), Kramer, Michalowski and Kauzlarich (2002), and Michalowski and Kramer (2006) catalysts for action in Table 1. As with the previous chapters, the interactional environment will be outlined in Table 4 (Appendix B) and then discussed at length.
General Theories

Differential association theory of criminal behavior traces its roots back to Sutherland’s work (1934, 1940, 1945) and espouses the notion that criminal behavior is a learned phenomenon. This behavior is learned through interaction within personal groups and is associated with learning specialized skills and detailed knowledge of criminal behavior. Support for such a theoretical explanation exists and helps illuminate the actions of individuals at DM Data and IPS.

Differential association theory does play a role in explaining some behavior of the individual agents employed by the computer vendors. Not one account representative I met from any of the companies had started working at that particular company. They had all started with a different vendor, but their work was still related to CAD, RMS, or mobile computing. This was shown when KDPS released the RFP for the system IPS was awarded. Part of the bid process was a demonstration. Each company assigned a sales representative or accounts representative to our project. Each representative admitted to working for another company involved in selling systems to the police. Each had moved to another company for more money, or the company they started with had gone out of business. It appeared that each had learned the language of the computer system they sold, and each had apparently learned how to sell or negotiate contracts with the police for these systems. On several occasions, the salespersons would represent themselves as former police officers or having had some involvement with law
enforcement, as a means of strengthening their negotiating position as if to say, “It has to work or I wouldn’t sell it to the police.”

It appears a culture of sales people developed within the selling of the computer systems. Even within both vendor organizations there were members who had started at another company and went to work for IPS or DM Data. None of the accounts representatives from IPS had originally started at IPS. Each had started with another company selling computer systems and most were systems to police agencies. Following what others have shown some learned behavior that is kept from others is developed at the sales level and perpetuated through the industry. Manipulation, cunning, or other tactics, appear to be taken from company to company by a cadre of sales people, eager to make money from the government, and in this case the police.

Others have attempted a “general theory” of crime, focusing on the individual as the responsible actor. For example, Hirschi and Gottfredson (1987, 1989) argue that it is a lack of self-control and the pursuit of self-interest that push individuals into crime and criminal behavior. Weak ties to social institutions, weak or no socialization, and the need to achieve immediate gratification forces individuals into crime and can be used to explain behavior in white-collar crime cases.

Agnew (2005) also argues for a “general theory” of crime, indicating that there are several factors that lead to criminal behavior. Again connected to social institutions, Agnew argues it is irritability/low self-control, poor parenting practices coupled with no/bad marriages, subsequently tied to a negative school experience(s), limited education, peer delinquency and then lack of opportunities brought on by
unemployment or low-paying jobs. Agnew's "general theory" work is merely a culmination of his other work related to strain theory (1985, 1992). Strain theory relates to the failure to achieve socially positive goals, or the blocking of such goals for certain individuals. These blocked goals, coupled with poor child rearing and positive interactions within the family, can lead to criminal behavior.

Kauzlarich and Kramer (1998) and other authors (see Michalowski and Kramer 2006) have questioned the relevance of a general theory of crime for studying or explaining organizational deviance (see Friedrichs 1996; Reed and Yeager 1996; Steffensmeier 1989). None of the above conditions describes or remotely relates to the type of individuals involved in the computer systems projects. For KDPS, the employees and actors are police professionals who certainly do not see their actions as criminal. They did not lack adequate childhood socialization or access to social institutions and opportunities as they learned their profession. Likewise, the employees of IPS and DM Data would certainly deny any of the above conditions existed for them. These criminological theories simply do not explain the individual criminogenic actions of those involved in this case. General theories are important to consider, as I move into the more specific theories that actually explain what is occurring at the interactional level.

Benson's (2003) work provides for some insight into why these theories do not explain the actions of those involved in the KDPS case. Benson interviewed a sample of 30 convicted white-collar offenders, and then reviewed the police files. First and foremost, the offenders interviewed denied any criminal intent in their actions, and several denied that what they did constituted a crime at all. Ten
offenders Benson interviewed were involved in some sort of fraud or false statements, much akin to what transpired with KDPS and the computer vendors. These offenders almost completely denied doing anything “criminal,” but may have admitted that a fraud or false statement had occurred, but they were not culpable.

“Seven of the ten claimed that they, personally, were innocent of any crime, although each admitted that fraud had occurred” (Benson 2003:129). Each proposed a “scapegoat” theory where they blamed another for their actions, or blamed prosecutors for conducting a “witch hunt” where they were made the scapegoat for the actions because prosecutors had to get someone. This perspective plays an important role in explaining the actions of those in the KDPS case.

In the case of the computer vendors, most DM Data and IPS employees certainly would consider themselves law-abiding citizens just trying to make a living and reap the profits and benefits of selling their computer systems. Project managers and engineers were just trying to achieve organizational goals by meeting deadlines and releasing products, and to them there was no criminal intent in their actions. In essence, the individual actions of those involved would not have been seen as a criminal act or harmful in anyway. For example, IPS was interested in securing KDPS as a customer. One thing that stood in the way was the MICR report. Rather than admit they could not provide the report and that it would take substantial work to do so, in contract negotiations they said they could provide the report. The conversation was matter-of-fact, and went something like this:

Steve Reifert: We’ve got to have MICR reporting. It’s required by law and necessary to provide monthly reports to the State of Michigan.
IPS Negotiator Taylor Edge: We can do that easy. It’s just a NIBRS based report right?

S.R.: Yes, but customized for Michigan.

T.E.: We’ve done it before for Troy, Michigan, and I’m sure we can do it for you.

While this represents some paraphrasing, nonetheless, it captures the essence of the face-to-face interaction, and the end result was that IPS lied. There was no hesitation on their part, but as was described in the previous chapter, it was far more difficult to provide the report than they indicated.

Dramaturgy

While differential association theory and Benson’s work provide some insight into the behaviors of the key players in the KDPS case, Goffman’s (1959, 1974) dramaturgical perspective offers a more in-depth understanding of the interactions between representatives from KDPS and the two computer vendors. I turn to that work to further explain the interactional encounters of the agents involved in the case.

Manning (1977, 1997, 2003) has utilized this dramaturgical perspective when studying police and their social organization, and explaining the “front stage” and “back stage” performances of the police in various settings. Additionally, the settings are “framed” (Goffman 1974) to further explain the dynamics of the setting and performance of the agents.

Dramaturgy is best seen as a perspective, or way of seeing, using a theatrical metaphor to explore how the communication of messages to an audience conveys information and creates impressions that shape social interaction...
It implies an audience to which such performances are directed, who must frame messages, judge the credibility of the performances (its equivocality), and determine its communicative "core"...and depends on some notion of "information"...because information is the core of what is controlled, given, and given off in performances. (Manning 2003:4)

The focus of dramaturgy lies in symbolic action. It involves the representation of a context to another individual. What is represented is what is critical along with how it is represented. For example, Manning's work with police officers (1977, 1997) disclosed several "stages" where officers acted a particular way based on their audience. In other words, the officers acted one way while in uniform and in front of citizens, acted differently when not in front of citizens and with their peers, and acted yet another way when out of uniform and away from the "stage." It represents what message is trying to be portrayed and how the symbolic meaning of that message is, or may be received. For instance, a physician/patient discussion would be far different than a physician/physician conversation, or perhaps a conversation between a physician and a family member. Front stage and back stage performances take place routinely with differing performances based on our audience.

This symbolic action is reflective and reflexive. Reflection has to do with the resulting behavior, and sets the “stage” for a review of the past and an imagined future response or action. “Social interaction is a communicative dance usually based on trust and reciprocity” (Manning 2003:5). This dance requires or obligates the sustenance of the performance, for without the performance or the playing out of each frame, we have no finality, no conclusion, no interaction upon which to interpret the other(s) actions (Goffman 1974; Manning 2003).
The question remains, though, how to understand these performances within a framework. Manning notes:

At times, we consider ourselves as entertainers, players, and part of our own unfolding drama, but the metaphor of drama is not only about individual consciousness; it is about the structure of relations and the structure and dance of images. It "captures" our times, defines them, and perhaps reflects them, but we are also captured by the imagery of our times . . . we develop secondary observation schemes that make our "raw observations" more understandable—we frame them and thus make them understandable we in the short run. (Manning 2003:5-6)

Through interpretive use, reflection, and the recollection of similar events, we proceed through performances, interpreting meanings through the portrayal of the symbols both in the meaning of the words spoken, as well as how they are spoken. The meanings, though, can only be interpreted through social reality, an intersubjective creation, dependent upon interpretation, interaction, communicated meaning and the notion of previously experienced analogous actions.26

Not only can we set ourselves up for misinterpretation of the "other's" actions, theatrical stages allow for deceptive messages to be sent rather easily. Goffman (1974) explains the ease of fabricating frames, and in turn our inability to easily accept and frame responses based on the actions, words, or symbols portrayed. Manning (2003) points out that semiotics allows for an "easy fit" of deceptive practices and dramaturgical explanations (see also Manning and Cullum-Swan 1992). Interpretation is what allows for ease of lying or deception. Whether intentional or not, we yearn for the truth of the matter, realistic or not, and will tend

26 For the constructing of reality, see Schutz's (1967), Berger and Luckmann (1967), Spector and Kitsuse (1977), and others on the social construction of reality.
towards a positive acceptance of what is being said or acted out. This is what is key
though, because humans can tend to be misleading (stages), but yet we need, crave,
and desire the acceptance of, or notion of, “truth.” Semiotics is well suited for
modern life and owes much to theatrical presentations and phenomenological
creations. Since semiotics relies on an often unexplicated context, and this
(appearing to be real) is the fundamental tool of modern politics and business, it is
necessary to frame situations drawing on distinctive notions of reality and to mark
them off from each other (Manning 2003).

While a dramaturgical theoretical approach is not a theory one would
normally use to study deviance, it can provide for explanations of why certain actors
or agents behave or send certain signals the way they do. Manning (2003) admits it is
not the theory for explaining all social phenomena; it is useful in close-up well-
focused observational studies. He provides for five conditions where the use of
dramaturgy is a useful tool. One is “the secret, unknown, the corrupt and deviant,
often concealed ‘backstage,’ and not captured in official records, nor admitted in
standard survey research interviews” (Manning 2003:253). So, a dramaturgical
approach can bring insight into the actions of the agents involved both from the
vendors’ standpoint, but the inner workings of KDPS as well.

Examples of the dramaturgical performances in the two projects are many.
Just a few are chosen to exemplify how the performances added to the occurrence of
what went wrong. One of the issues that surrounded the transition from the DM Data
system to the IPS system was the use of dispatchers as computer systems technicians
within KDPS. The theatrical nature of the event was that management/administration
within the department had decided to replace the dispatchers with academically and
technologically trained computer professionals. This was prompted by me, but was
supported by the chief and communicated to the City’s administration and IT
Department. The dynamics of the situation was compounded by the fact that the two
dispatchers worked for a captain outside my chain-of-command. As previously noted
in Chapter V, this created some strange dynamics in the face-to-face interaction with
these two employees, and the captain and myself. Additionally, stages were set for
the interaction between the two dispatchers and the employees of DM Data as well.
The two dispatchers were naturally concerned/offended that the administration
would replace them with other employees, and insisted on a chance to implement the
new IPS system. What ensued were various stages set by both myself, the captain,
the chief and the dispatchers which later included the latter’s union representatives.

The dispatchers were in a position where they were left out of discussions
concerning the purchase of a new system. They had heard and believed the
administration was replacing them, but no one would confirm that to them and they
felt they should be the ones to lead the department in implementing the new system,
since they had struggled through working with the DM Data system. Their
reactions, and how they approached conversations, were focused on rallying support
within the organization, both within their peer groups, as well as from mid-managers
and the administration. Both struggled between keeping the DM Data system going,

27 Based on personal conversations between the dispatchers and myself.
and figuring out how to deal with myself and other managers as they began to realize they were being replaced.

In this situation, it was decided that the administration would reassign the dispatchers back to dispatching, and would hire at least one, if not two, professionally trained computer systems people. My performances involved the setting of three stages of interaction involving the dispatchers, the administration/management, and their supervisor, the Captain of the Service Division. No one would tell them that they were being replaced due to their lack of knowledge and perceived inability to bring the previous system on line. Instead, most avoided any conversation related to that topic. I attempted to balance conversations and interactions with the dispatchers, fully aware that I was also involved in the replacement of them with computer professionals coupled with the need to maintain the DM Data system, which the two presently were charged with working on and keeping it going. On one hand, I had to convince the administration any computer system, either DM Data or a new system, could not be maintained unless the two were replaced, and on the other, I had to convince the two to stay motivated to keep the system “alive.” The captain was caught between loyalty to his two employees and the personal relationship he had with them, with the knowledge that I was right about replacing them and that he should support such replacement in the transition to another system.

In one meeting involving the dispatchers, two union representatives, chief, the captain, and myself, the dispatchers and union demanded to know if and why they were being replaced. Still, members of management would not tell them that
they thought they could not do the job, but rather focused on dispatch and the need to get them back into their positions, and the department's desire to go to a new system. The union maintained the work was there, and demanded the administration demonstrate the dispatchers' inability to maintain the current system or bring on a new system. While the interaction did not involve outright lies, one of the dispatchers claimed that a previously retired captain told her she would bring on the next system. The administration decided not to get involved with negotiating or allowing the two to stay on in any part of the transition to the IPS system.

In conference calls involving the dispatchers and myself, where DM Data was involved, the dispatchers remained dedicated to the department and the replacement of the system, but their beliefs that they could maintain the DM Data system dwindled as the department proceeded to replace the system and transfer them back to the dispatch center. My point here is that performances both by myself and the dispatchers were involved as we proceeded through a tense time. They were angry that the department would replace them without consulting them, and I believed that they needed to be replaced as well as the DM Data system. For instance, they had an office separate from mine, and when I would enter their work area unannounced they would stop talking, or quickly ask a question or redirect the

28 The union contended that the department administration could not simply transfer them back as dispatchers because the system administrative duties were the work of the union and the city would be taking their work away. They never contended the two dispatchers were the most qualified but only that it was union work. In the end, the union reached a deal where one position would remain in the union and the other would be administrative or exempt from union membership. One dispatcher retired rather than go back to dispatching. The other remains as a dispatcher at the time of publication.
conversation. Little conversations ensued between myself and the dispatchers concerning their move. Most if not all conversations centered around the work with DM Data.

Another face-to-face interactional issue was with one of the hired computer technicians and myself. The first computer technician KDPS hired was a strong-willed person who had a desire to run things herself and who believed that her way was the best way, regardless of the opinions of others, or the desired direction or policies set down by the chief. In this case it was important, at least in my opinion, to handle the relationship with her in a guarded fashion. On the one hand, she was extremely talented, and administrators and managers at KDPS felt fortunate to have hired her away from the private sector. On the other hand, her previous employment, coupled with no experience with government, or in particular police operations, funding, and budgeting experience made it difficult to sway her in the direction of department priorities. Essentially, she lacked the understanding of the priorities of the officers on the street, and the use of the computer system to support the officers. Stages were set when I would have to interact with her, as opposed to interacting with others in KDPS. For example, discussions pertaining to police arrest, use of force, traffic stops, etc. were topics for the officers, not for the computer technician.

More important were the interactions between project team members with the vendors and KDPS personnel. In the case of both vendors’ employees, whether project managers or computer programmers, each had a front stage and back stage (Goffman 1959). The front stage was what was seen and communicated, and thereby interpreted by KDPS employees. The back stage involved the inner workings of each
of their organizations. More importantly, as previously noted, much of, if not most of, the actions of the vendors on a personal level was tied to money and the making of money. Whether it was the contract negotiator promising the ability to create a working MICR report, or the push of the project manager to bring in the RMS on time for the acquisition of bonuses, each had a front they put up for KDPS, and a back stage where the reality of their promises and claims actually lay. On the DM Data side, the constant claim that the system was working, and “we are well on our way to having all problems fixed” (Dorfman, DM Data), is a front stage presented to KDPS. Later revealed by his own employees, Dorfman was just trying to appease KDPS and receive the money owed on the system. He had no intentions, nor did he think it possible, to ever “fix” KDPS’s system.

As stages were set by each vendor, and its employees, so too were my stages dealing with the vendors’ employees. With DM Data, my front stage was one of frustration, anger, and contempt, and I conveyed an attitude that “we’ll stop at nothing to get it fixed.” In a “center stage,” in front of KDPS employees, I was concerned that the system would crash and dispatchers would be left with no system and would be dispatching using cards to track officers. In a back stage, my front to the administration was that DM Data would never work and we needed to do whatever it took to migrate to another system. Meanwhile, taking over as IT director for the city, I had another stage to occupy. As a manager, not a computer person, I had to put the front up that I understood everything the IT employees were doing. While in most cases I understood, many were technically beyond my understanding,
and I had to work hard to learn, or put up the front, that I knew what they were doing.

Additionally, there was another front I used with the chief. The chief, a very demanding manager, was a supporter of the computerization, technological modernization of police work, using computer technology to increase the efficiency of this department. His quest, like mine, was to find and implement a computer system that worked. Both of us worked diligently to achieve an allusive goal. The chief always believed he needed to push and rarely allowed for a “settling down period” to work out the bugs (spell check, project manager debacle, and MICRS reporting), thereby creating tension at every level, particularly my level as project manager. In my performances, I believed I always needed to provide some sort of answer, whether I knew the answer or not. This created frustration, as the answer was not always clear cut. In the socially created world of the police, they believe that using computers is a simple task that requires opening the box and starting it up. It should, by all accounts, work. Even beyond the deviance of the vendors, such systems do not work that way. While I was never deceptive in my remarks to the chief, the burden placed on me forced me to push things through when perhaps we should have waited.

Through these dramaturgical performances, face-to-face interaction was a staged, almost routine affair where fronts and performances were enacted to cover or conceal motives and actions. Managers staged actions to attain their sought-after goals. Vendors played out scenes in order be awarded a contract, keep a job until
another could be found, meet deadlines to achieve organizational goals, implement systems that did not work to receive payments, and the drama continued throughout.

These performances allowed for the deviant activity that occurred at the face-to-face level. Dramaturgical performances allow for ease of lying and deception. At issue is the social need for the acceptance of these performances as truthful. The social-psychological need for the acceptance of face-to-face encounters, generally, overshadows the notion of dishonesty or deception on the part of the performer. In essence, the agent needs the communication to be the truth, and accepts what is being communicated as truthful. This allows for the communicator to provide potential untruthful and deceptive communications, almost knowing that the message will be taken as truth.

Constructionism

The importance of signs, symbols, semiotics, and a dramaturgical approach is seen at the micro-interactional level, but requires that the audience is able to see or hear the actions of those involved. How has the introduction of electronic messaging influenced this process? Electronic mail allows for rapid communication in written form. In Grodin and Lindlof's (1996) book, Constructing the Self in a Mediated World, they beg the question of whether mediated communication affects our lives and relationships. Using an example of a romance via internet (electronic mail and Instant Messaging), they question what effect this electronic means of communication has on the forming of relationships. In their example, both parties are exaggerating and staging an imaginary situation that is different than their normal
day-to-day activities. The use of electronic communication allows them to portray a different persona, which in turn can lead to calculated misleading and deceptive practices.

Sarbin and Kitsuse (1994) agree with the notion of drama as a version of face-to-face interaction, but further relate that it is narrative stories, influenced in multiple ways, that form our contextual ontological construction of reality. Constructionism is grounded in contextual ontologies. "It would be appropriate to look upon social constructionism as an epistemology and contextualism as the coordinate ontology" (Sarbin and Kitsuse 1994:8). The creation of the story vis-à-vis the creation of reality are communicated and remembered as narratives, and constructionist/contextual analysis is best reported as the narrative. So, the narratives observed or reported in electronic mail conjure the creation or the sustaining of reality. Furthermore, ordinary people "convey their constructions of the social world through narratives to fellow members, to professional analysts, and even to self" (Sarbin and Kitsuse 1994:8). These narratives follow well-developed plots with reified constructions acquired through experience and authority but conveyed through the stories of everyday learned life (Sarbin and Kitsuse 1994).

Narratives are also shaped and formed by the creator, and then later by the receiver. Constructionism, like dramaturgy, acknowledges different perspectives and interpretations of social phenomena. "The logic of constructionism fosters the introduction of multiple perspectives to counter the positivist presupposition of a uniform and objective social reality" (Sarbin and Kitsuse 1994:9). This acceptance allows for the credibility of multiple political views and research agendas. Examples
include Schepple's (1994) work on multiple views in court proceedings, and the work in Potter and Kappeler's (1998) anthology on *Constructing Crime*, or Gergen and Thatchenkery's (2004) work on organizational science as a constructed phenomenon. For this research, the creation of multiple meanings of similar events and the creation of meaning via electronic messages is important in helping to understand the dynamics of interaction at the micro level of involvement as the key players created reality based on email messages, and created narratives of what occurred.

Two other works are worth noting here. Harding's (2003) work, on *The Social Construction of Management, Texts and Identities*, provides insightful information on the creation of the concept of "management" through the eyes of management texts. She utilizes a historical review of the management textbook literature to explain why managers behave the way they do and why. Perhaps more important, they react and interpret information in the work setting. Furthering the notion of created realities she notes:

> Meaning and understanding are not naturally intrinsic to the world but have to be constructed, and the "omniscient, rational subject" of modernism is denied. Organizations, rather than being seen as structures having their own, objective existence, are interpreted as representations for subjects who/which attempt to appropriate and master the system as a field of knowledge. Organizations thus are not structures but processes. (Harding 2003:55)

There is much research on the notion of multiple meanings and conceptualization of meanings. Multiple meanings and construction of what occurred is an accepted phenomenon in the social construction literature. See Bohm and Walker's (2006) anthology on demystifying crime, and Kappeler and Potter's (2005) work on the *Mythology of Crime*. This is an extremely short list; the criminological literature is replete with other examples.
Borrowing from Jameson (1991), she notes capitalism permeates our every existence, brought about by a culture of simulacrum coupled with the weakening of histories and the post-modern mutations accompanying a globalized economic world, and forms a feedback loop that combines the economic with the cultural. Events become pseudo-events and the post-modern creeps into our everyday lifeworld (Habermas 1987; Harding 2003).

Gergen (1991) calls it "social saturation" in his work on the creation of reality, which is closely related to this research. Gergen (2001) argues that technologies in fact bring us into communication with each other in a communicative connection, directly symbolically, and/or vicariously with more people with more experiences, richer backgrounds, and an ever-increasing range of interdependence. According to Gergen (1991, 2003; Gergen and Thatchenkery 2004), technology provides for an even richer understanding and expansion of created reality, but as in the constructionist perspective, the realities are created and are as diversified as the individuals using the technology.

In sum, the constructionist perspective argues that reality is created by the agent. An acting, feeling agent interprets signals as they are received and checks that reality with previous experiences to draw inferences and conclusions on the symbols being received. In particular, the electronic messages being sent between agents involved in the two computer projects at KDPS were accepted, interpreted, and reacted to based on the construction of each individual's knowledge and interpretation. Responses are then gauged by that interpretation. The
communications, then, run the risk of sending incorrect or misinterpreted messages, and the creation of a reality that resulted in unintentional consequences.

During the timeframe where KDPS utilized the DM Data system and acquired and started using the IPS system, the use of emails increased dramatically. At every level and virtually throughout every business and governmental organization, email is the mode of communication. Rather than pick up telephone, emails are sent as the primary means of communications, as it was at the end of the use of the DM Data system and throughout the IPS system implementation and use. The importance here is the lack of face-to-face interaction among key players. As previously noted above, what is lacking is the signs and symbols we receive when communicating face-to-face. What is left is the interpretations of the email messages by the receiver.

One of the most deceptive email exchanges involved those by the first IPS project manager, Tim Kick. A review of his email messages disclosed the notion that the project was on schedule, and he was working hard to make deadlines. KDPS later learned, of course, this was not true. He was doing little on the KDPS project but was instead readying himself to transition to another job. Other email messages where deception was involved were those used by Dorfman where he indicated they were very close to fixing the KDPS system. Initial readers of Dorfman's email messages were taken in by the sincerity of them, and they believed that perhaps DM Data was able to fix the system. This is the constructed interpretation that allows us, without knowing the motives that were behind Dorfman's message, to accept an email at face value. Without a constructed knowledge of what was occurring behind the scenes
(stages), one would be willing to accept his email messages as progress. Instead, what was built behind the scene was a perpetuation of lies about fixing any problems, or completing the project. Dorfman attempted this several times by sending out messages to others at KDPS in attempts to avoid communicating with me. At each turn, though, the message was turned over to me for a response. KDPS was attempting to put up a united front (stage) in an attempt to pressure DM Data, specifically Dorfman, to put more resources into fixing the problems.

The point here is that email messages make it easier to lie. The study of kinesetics allows for interpretation of signals and signs as lies. In essence, body language coupled with verbal utterances allows others to detect deception by an individual. In our constructed reality, we learn early on how to make assumptions about the communicated act, as to whether it may or may not be truthful. Part of this is the interpretation of face-to-face encounters, and the interpretation of the actions outside of the spoken word. Communications beyond face-to-face interaction allow for ease of deception.

Our created realities can often interfere with or allow for the acceptance of a situation as honest and forthright, and "as it should be." But it can also lead to the creation of situations that differ by the perspective of each agent. Or, one agent can intentionally create a situation to take advantage of the other agent to, in essence, create a false reality of the situation, and thereby allow for actions to take place for the advantage of the other. Essentially, our created situations, and thereby created reactions to those perceived situations, create the reaction that led to state-corporate crime. This sets the stage for deceptive email messages and other forms of
communication to mislead and steer the direction of the project for the benefit of the vendors.

Model Fit

Whether it is learned behavior, theatrical performances, or a created reality, the actions of the vendors and members of KDPS can be explained by the catalysts for action framework. The lack of controls and motivation to make money were the overarching activities that were seen at the interactional level. KDPS's internal activity at the interactional level added to the chaotic events that created and sustained the damage being perpetrated by the vendors. At times, situational events made it appear that this situation was out of the control of members of KDPS. This was partly created from the definitions of the situation (Table 1), the acceptance of the way things were, as if they were acceptable practices, and a new experience as "taken for granted" necessary activity.

Motivation

Focusing on two particular aspects of the catalysts for action, namely, individual goals and competitive individualism, can explain the motivational aspects of what occurred in the computer system projects. Both motivational factors were highly visible in both projects. These aspects were borne out by individuals in all three organizations and were exhibited by many involved. As noted above, though, socialization into the computer vendors' organizations was also apparent, but not discussed between the vendor employees and KDPS employees. What was telling
about the socialization aspect was how each sales representative said things that were similar in nature. For instance, when sales people were somehow involved in law enforcement before joining the sales ranks, they would emphasize that point while demonstrating their product or talking about their product. Again, the perceived inference was that, "I was a cop before, so, I wouldn’t mislead or lie to you."

Individual Goals and Competitive Individualism

For IPS there were three people who exemplified the goals and competitive spirit that acted as catalysts for IPS getting the contract and "running" the project through to completion. The first was the sales representative that KDPS employees met early on. That person had a strong drive and determination for IPS receiving the contract with KDPS. While he was not annoying in his persistence, he was driven to "get an account in Michigan." When this salesperson worked with the accounts person from IPS in attempts to negotiate a contract with KDPS, they used a variety of techniques to sway those involved. It was clear they were willing to cut their bid prices, establish a payment schedule,\(^{30}\) and work with KDPS in whatever fashion to get the contract awarded to them.

Both were very attentive until they were awarded the contract, after which they delegated responsibilities of implementation to the project managers. As noted,

\(^{30}\) KDPS demanded a payment schedule where payment was made incrementally, based on performance stages. No lump sum payments were to be made and only the purchasing and project managers from the City could authorize payment once a performance platform was met. No such agreement was requested from DM Data. The notion was no payment if the system did not perform.
the first project manager from IPS, Tim Kick, had other goals related to obtaining other employment. He set the stage for his departure at the expense of KDPS, and perhaps other police agencies, as he told me we were not his only project. Kick clearly had individual goals not related to the project, but rather selfish goals to acquire other employment. This, of course, derailed the progress of the KDPS project and set things back, causing a reaction to the events by both IPS and KDPS in efforts to get the project back on track.

An interesting exchange of email messages between sales representative, Michael Feeney, and myself follows. Feeney is introducing the name of the person with whom we are going to negotiate the contract, and his superior. This was followed by a telephone conversation I had with Feeney concerning honesty, and how to move through the negotiating process:

September 16, 2002, 9:57 p.m.
Feeney: . . . Taylor is sensitive to your tight schedule. By the way, he is a straight shooter. Honest . . .

September 17, 2002, 7:59 a.m.
Reifert: The straight shooter and being honest is very important to me. Nobody’s perfect and I understand that so just be honest and tell me when we have a problem or it can’t be done. I can deal with anything as long as we’re on the same page . . .

To my knowledge that is how the relationship proceeded with Feeney, and later Taylor Edge. While they were both extremely competitive individuals with their own goals, they both seemed to operate with an air of forthrightness.

The second project manager, Moyer, indicated she had been directed to get the project back on track and meet established deadlines that had been agreed upon by KDPS and IPS when Kick left. She attended to details with “bull dog” like
determination and was able to get the project back on track. She was focused on
deadlines as IPS organizational goals and personal goals, both with a sense of pride,
but also clearly tied to monetary gains and meeting the payment schedule that was
prescribed and agreed upon by both organizations. Moyer had both goals as well as a
competitive sense to achieve her deadlines. Moyer was able to mobilize resources
within IPS to meet the deadlines but also made sure that I did the same within KDPS.
On the one hand, Moyer was forthright and straightforward on her approach to
project completion. On the other hand, with regards to the CAD difficulty (net-clock
and time synchronization) and the spell check issue, she failed to disclose the
problems and normalized the problems saying IPS was working on the issues, and
she did not think they would impact the project or the system.

Moyer was also quick to follow up on additional purchases beyond the scope
of the contract. These additional purchases were in the form of license add-ons31 and
hardware or other modules of their software. I initially believed it was her
determination that drove it, but I later learned that add-ons to the contract were added
to her overall compensation and bonuses received for the project. In essence, she
benefited every time a functional aspect of the system was added. To her credit, she
did not attempt to force any product, additional functionality, or licensing on KDPS.
She just followed up with dogged determination once the request was made. As

31 License costs were based on the number of users on the system at anyone time.
CAD licenses cost $15,000 a piece. The initial purchase was four licenses, but when
the Township Police and County Deputy dispatchers were added to the system, the
cost went up. Moyer would remind me that we could put additional users on the
system until we paid the additional licensing costs.
previously noted, she was also persistent on her deadlines and any "cut-over" schedules.

While the personal interactional atmosphere with the employees of IPS was much more congenial than DM Data employees, it was clear that on occasion they held information in abeyance and knew of difficulties in their system's performance, but yet they still shipped them for use.

DM Data personnel had individual goals as they entered into the project with KDPS. Foremost was Dorfman's admission that he wanted KPDS, the largest public safety department in the United States as a customer. This appeared to be a goal from both an individual company owner standpoint, but also from a competitive businessperson angle as well. Essentially, he believed it was "bragging rights" to have KDPS as a customer, and apparently was willing to sell KDPS an entire system for less than a half a million dollars. Initially seen by KDPS as a "great deal," it was quickly discovered that the hidden costs would take the contract beyond the $2 million mark.

At the interactional level, the employees of DM Data genuinely seemed to be sincere about project completion. Certainly the programmers who interacted with the computer/dispatchers and me appeared to be working diligently to complete the project with KDPS and to KDPS' satisfaction. More of an individual goal than a competitive spirit, the programmers seemed to be concerned with the outcome, but also appeared to be hampered by DM Data management. DM Data programmers never talked to me about their managers, and only talked sparingly with the
computer technology people about their managers, and the demands placed on them to complete their work.

The final individual goal of both Dorfman and his management staff was their attempt to collect any final payments owed to them by KDPS. Outright lies, "end-around" maneuvers, and manipulation of employees were used in attempts to achieve this goal. Several members of DM Data, Dorfman, Barrett and Ramisamy made many attempts to collect the money. They sent e-mail messages that were clearly lies, and attempted to convince the computer technicians (dispatchers) that they could fix the system if only KDPS paid them their money. By then the personal contact, such as telephone calls, had stopped and been replaced by e-mail messages.

KDPS personnel also had its own individual goals. Two overarching goals tended to drive the chief, some city IT people, and myself through the IPS project. These goals included purchasing a system that worked, and getting that system at a reasonable price. The former required work on checking out the vendors with other customers, watching, analyzing and questioning demonstrations with the vendors, and discussion amongst members of KDPS involved in the purchase of the IPS system. It was the individual goals of the management team that were able to bring the project from initiation to implementation.

These motivational factors set the stage for the opportunity structures within the face-to-face encounters of the members of each organization. These conditions, or behavioral factors, allowed for the opportunity structures to develop and flourish, consequently allowing for the state-corporate crime at the interactional level.
Opportunity Structure

The opportunity structure created by the computer project was dictated by the definition of the situation at KDPS. At each turn of events the actions were based on the perceived needs at KDPS. Based on those perceived needs, a condition was created that allowed the computer vendors to take advantage of KDPS. Both the dramaturgical setting and the social construction of each member's reality played into the creation of the situation, and this, coupled with the learning environment of the vendors, led to the creation of an opportunity of for state-corporate crime by the employees of the vendors.

The captain at KDPS, in the late 1990's, believed that the purchase of a new system, at the lowest possible cost was necessary to replace a system that was, as reported by the computer vendor, not "Y2K" compliant. Failure to replace the aging system would therefore create problems with the coming of the new millennium. A climate was created that forced him to believe and act in such a way as to seek out the least expensive computer system. His definition of the was that he would look good in the eyes of his superiors if he could bring in a new system under the proposed $700,000 for the upgrade to the old Tiburon system. Thus, a situation was created where the captain wanted to buy a less expensive system, that lacked the reliability and proven track record of the old system, and did not assign a project manager, with required skills and cutting necessary training. This further contributed to the problems encountered in the computer purchase and implementation.
The opportunity for the vendors to take advantage of this situation, created by KDPS, led to the creation of the events that followed. The captain could not foresee, however, the events that would follow, and that his actions would lead to the debacle that ensued. The captain had three stages of performances occurring during his purchase of the DM Data system. The first was with the vendors, and his attempt to bring in a system at an extremely low price. On this stage, the assurances of money, the behind the scenes agreements with Dorfman and cajoling that occurred set the stage for his interaction with DM Data (Dorfman) employees. With city administrators, closely involved and interested in the DM Data purchase, the captain’s performances involved the assurance that the system would work, that it was “top notch” for the money, and the ability of his staff to bring the project to completion under the budget constraints. At the staff level of interaction, he made assurances that DM Data was a good product, was reliable, and would function at the needed level, coupled with the “front” that he had researched DM Data, found it was a solvent, stable company capable of providing service for years to come. He also made “back stage” (Goffman 1959) assertions to his staff that a project manager and some of the training he cut was not necessary and that he had been assured by DM Data staff that the cuts would not impact the success of the overall project.

A similar situational aspect existed with the IPS project and involved the creation of events by KDPS administration and myself, partly due to the problems encountered with the DM Data product and the requirement to move quickly from that system to another system. As previously noted, when KDPS intentionally withheld money from DM Data, the software licensing expired, and the CAD system
began to shutdown. This led to a court injunction to supply codes to turn it back on. The codes DM Data sent were questionable as far as reliability, and certainly questionable concerning the potential for causing a sudden "crashing" of the system. These conditions, coupled with the anguish suffered by the dispatchers using the DM Data product, led to the feeling that a new system was needed and needed fast. The belief was that, whatever system was brought in, it needed to be brought in quickly for fear of the DM Data system might permanently crash, leaving the department without a working CAD system.

My reality, then, was to bring a system in quickly, but one that was reliable and functional. Cost was not necessarily an issue, as IPS was not the low bidder on the project, but researching the company and viewing their product pointed to the ability of IPS to provide what was needed in a timely fashion. This created an anxiety that was played out on various stages of performance. On the one hand, the portrayal of purchasing a reliable and functional system had to be played out for both the administration and staff of KDPS, as well as city staff, which included IT personnel from the city. This led to the assurance that it was a "good" system, but the concern for the overall outcome when trying to bring a project of this magnitude to completion while being concerned with training, implementation, testing, and user satisfaction. In essence, the situation dictated to rush it through for fear of the DM

32 The term *research* is used to describe a "background check" on IPS. This check included financial stability, functionality of the system, and customer satisfaction. IPS seemed to meet all three requirements.
Data system dying, keeping in mind the pitfalls in trying to rush a project of this magnitude.

This situation set the stage for instances of state-corporate crime on the part of IPS. For example, relying on Tim Kick to push the project through, while I was concerned with the DM Data system and hiring new employees, coupled with the inability to test CAD for the time synchronization issue prior to use caused the project to move too fast without any safeguards or quality assurance testing. The inability to test for the spell check and other issues prior to use were all pitfalls that could have been avoided with more time, training, and testing before going live with the various components of the system. Rather than take extra time, the pressure of the situation dictated implementation of the system before the potential problems could be identified. This also allowed IPS personnel to implement the system with the problems they knew about in part due to their knowledge of the problems encountered with the DM Data product. They were well aware of the potential for disaster if the DM Data product went down. They knew we were relying on their product, and KDPS wanted it “live” as soon as possible.

Operationality of Controls

Table 1 (Michalowski and Kramer 2006) shows catalysts under control mechanisms, and the research has found each of the mechanisms under “controls” contributed to the problems at KDPS. Personal morality is always an issue as you approach your work. From telling lies to “cutting corners,” certain situations lend themselves to the human propensity to take the easy road. Techniques of
neutralization and rationalization exist as individuals work through problems that arise. Obedience to authority exists and permeates organizations like KDPS that are founded on a paramilitary structure, set up on an authoritarian, chain-of-command where orders must be followed. This structure stifles creativity and "thinking outside the box." It allows for the "not my fault" attitude to permeate projects like the two computer systems where employees easily deflect blame by claiming to have been "ordered" to, to have just followed policy, or by stating "that's how the boss wanted it." This obedience to authority allows for the diffusion of responsibility. Deflecting blame is commonplace, ranging from blaming the vendors for their product not working, to blaming the administration for picking a product that does not function. Blame deflection infiltrates and affects the attitudes of workers on an individual level. Those close to the project diffuse authority by blaming lack of knowledge, inept workers, poor product selection, and so on.

Personal morality is a difficult concept to evaluate and can only be determined by actions, since rarely will an individual talk to others about their own personal morality issues. Most telling about personal morality in the two projects are the actions of some of the vendors' employees. Dorfman and his employees had no difficulty in lying to KDPS staff and administration. Email messages detailing quick fixes and saying that "we're very close to fixing all of Kalamazoo's problems," were clearly lies told to receive payment. A purchase of DM Data by an another corporation was tied to the 2002 pay-off requests and demands, so the motivation to lie was tied to financial gain for DM Data. The license expiration issue with DM Data was also indicative of the overall morality of the company. Apparently, just
because KDPS paid for their product, it did not actually own it, because if the license expired it became useless. This issue was not disclosed to KDPS.

Morality issues were also evident among IPS employees. The actions of Tim Kick attest to his moral character. Letting the KDPS project slow to glacial speed and leaving without notice speak to his general outlook on his employment and employer. Moyer’s failure to disclose knowledge of the spell check issue and time synchronization problem speaks to her lack of morality and perhaps misplaced loyalty to IPS. Claims by IPS to be able to produce a MICRS report were also telling of the moral characters of the employees when it took several years to produce the report.

Of most interest, and related to Vaughan’s work (1996), is the rationalization or neutralization of the actions of individuals involved. From the lies as a normal course of business for the vendors, to the rationalization for a rushed, completed project, both paths provided for the normalization of deviance throughout both projects. Based on a review of the DM Data project at KDPS and follow-up with other DM Data users, the lying, cheating, and stealing that went on with that company was business as usual. DM Data not only bilked KDPS, but there were many other users that were left without a functioning CAD system. Plantation Florida Police Department entered into a contract with DM Data in early 2001 for $4 million. They paid the money up front, and DM Data walked away from their project and did not repay any of the money. A police department taking over 80,000 calls-for-service a year was left with nothing but paper cards to run their dispatch system.
If rationalization and neutralization of activity is commonplace, then no controls over the vendors, their employees, or those they offer services to existed. Additionally, there were no sanctions, no penalties, or discipline for problems encountered during either project. Both parties decided to walk away. For IPS, nothing happened and KDPS continues to pay the $120,000 for annual maintenance. The captain who selected DM Data retired, never to see the project through completion, and never looking back. Those who inherited the project, the two dispatchers, did what they could, but were not held responsible for the project or what became of it. From KDPS's apparent stance, the responsibility for the problems did not fall on any one person, and therefore no one could be held responsible.

As Vaughan (1996) notes, "Normalization of deviance is common to organizations and individuals alike, resulting in mistakes, mishap, and misconduct, too often with disastrous consequences" (p. 75). So too was the normalization of deviance in the two computer projects at KDPS. It is the environmental contingencies and the organizational structures of each agency, coupled with the culture of routines, information flow, and assumptions of the actions of others, that lead to the neutralization and normalization of activity (Vaughan 1996).

Conclusion

The interactional environment is perhaps the most difficult to examine. The individual motivation or intent of an agent is the most difficult to measure. The actions of agents, though, are telling in as much as they suggest the motivation for their behavior. Perhaps the actions are better measures of morals and standards than
what can be gleaned from personal interviews or surveys. The actions do speak louder than words, particularly when attempting to measure deviance; the actions are what counts, not the excuses made for their actions, but what actually transpired.

As with the other previous environments, the interactional context fits the framework under the catalysts for action (Table 1). What was discovered, like other studies of state-corporate crime, the interactional aspects supported what occurred on an organizational level. The individual seeking of monetary gain perpetuated the learned organizational behavior. This, coupled with moral turpitude, allowed for the normalization and rationalization of the agents’ actions. Behavior performed by each agent was further supported by the lack of penalties for their actions. Nothing happened when they lied; nothing happened when they cut corners to meet deadlines; nothing happened when continuous lies were told in email messages. Failure for anyone to intervene from the government’s side, further allowed for and, in fact, supported their actions.

Socially constructed situations also created an environment that allowed the vendors to seek out weaknesses and exploit them. The perceived need to purchase a system at a low cost and bring it in “under budget” created an environment of potential state-corporate criminal activity, and further perpetuating these actions was the departure of the person who purchased the system. The hidden costs soon surfaced after he left, leaving KDPS to fend for itself.

Project pressures define a situation as well. The pressure to bring a new system on before the old one crashed, coupled with the cultural resistance of the organization to new equipment that “won’t work anyways” and looming deadlines
that accompany any project, create the motivation to take advantage of the situation. The lack of time to adequately test the equipment prior to implementation creates such weaknesses. These weaknesses can be taken advantage of as well by the vendors failing to disclose problems prior to shipping the product, and the normalization of the activity as the problem is being fixed. As Vaughan (1996) discovered in her study, the structure and culture of each organization led to the deviant activity of the individual. A culture that supports “hiding the truth” to achieve organizational goals perpetuates the conniving and deceptive practices of the individual agent in furtherance of the organization. But, if that organization rewards such behavior with bonuses and promotions, the behavior is reinforced as the individual attempts to receive the rewards.
CHAPTER VII

CONCLUSION

Vaughan (1996) noted that the cause of the *Challenger* disaster was not merely a technical failure, but rather deeply rooted issues in the economic and political environment, both internal and external to NASA and the private corporations involved. In the case studies reviewed in Chapter II, we saw that the disasters and social harms were created, not by a single event, but rather the intersection of multiple causes. Institutional conditions coupled with organizational dynamics led to the events that occurred in each instance. These events were also tied to the interactional, face-to-face encounters and maneuvers between individual actors that led to conditions resulting in social harms.

What the present study has shown is that the social harms surrounding what occurred at KDPS and their automation efforts cannot be attributed to a single event or a single individual. Rather, it was the deep-rooted institutional environment, organizational conditions, and interactional factors that led to the social harms. Multiple circumstances at multiple levels created a situation that allowed companies to take advantage of the police by providing faulty products or failing to provide a functional product they promised, resulting in loss of life and costing taxpayers millions of dollars.

The purpose of this final chapter is to discuss the results of this study. Using the analytical framework and reviewing the results of each chapter, I will bring
together the findings that point to state-corporate crime and culpability by a multitude of people and other contributing factors. I will also discuss the issue of generalizability and show how what happened at KDPS is not unique and is happening in other law enforcement agencies around the nation. I will conclude with suggestions of how state-corporate crime theory may be used in other studies and implications of my study for what methods might be used to uncover state-corporate crime.

State-Corporate Crime at KDPS

Kauzlarich and Matthews (2006) point out that in the state-corporate crime literature there has been an incremental development of the theory of state-corporate crime. The theory grew out of several incidents that occurred in the late 1980’s. The first attempt at explaining the intersection of deviance by state and corporate actors focused on the *Challenger* disaster (Kramer 1990). Kramer believed there was an intersection, a complicity, between state and corporate agents that resulted in the loss of life. This disastrous incident could have been avoided had it not been for a catalyst of, what turned out to be, non-stoppable events on the side of both corporate employees (e.g., Morton-Thiokol) and state agents (e.g., NASA). Subsequent work by Kramer and others began to give wings to the fledgling theory by proposing the use of an integrated theoretical approach, and examining each incident from multiple levels—institutional, organizational, and interactional. The original authors were also struggling with legitimation of the theory as an acceptable approach to studying crime in this manner, and an additional praxis approach to exposing these social
harm for what they were. What followed through the 1990’s and into the 2000’s were empirical case studies of macro-level disasters, both national and international in scope.

Michalowski and Kramer’s (2006) anthology demonstrates that the theory has advanced on multiple levels, and a deeper understanding of the incidents has been provided, as the use of the theory has increased. The theory has been used to expose the fleecing of the U.S. taxpayers in incidents like the Haliburton scandal, the expenses of the Iraqi War, the Enron case, and others. The theory has been used to explain various events at the macro level in terms of social harms and in terms of social and economic marginalization (see Wonders and Danner 2006, and Robyn 2006).

What my study accomplished, though, was not only expansion of the use of the theory, but demonstrating its usefulness as a micro-level approach to studying state-corporate crime. What I was able to uncover was that rooted deep in the intersection of the federal government’s involvement with computers was a facilitation of events caused by ignorance and lack of controls. The institutional level of occurrences led KDPS on the path of financial loss, even though the federal government published articles in the 1990’s in which they acknowledged the police should be wary of computer vendors (ISTEP, U.S. Department of Justice 1999). On

33 I am not lessening the loss of human life here. My point here is, coupled with the tragic and senseless loss of human life, there lies beneath the surface the costs of wars such as these. Years after the Vietnam War was over, the fleecing that took place continues to be uncovered, complicity between government contractors and politicians who were reaping the benefits at the cost of the country.
the one hand, the federal government encouraged the perpetuation of computerization by the police, while on the other hand, they warned of the dangers of dealing with the computer vendors. It also failed to provide any guidance or corrective actions for potential problems. Instead, what occurred was the release of more and more funding for computerization. This increase in funding was provided by the Crime Bill and subsequent supporting bills in the 1990’s and into the 2000’s by the USA PATRIOT Act, which established the Office of Homeland Security.

At the institutional level, a multitude of events led to the social harms encountered at KDPS. The development of the computer through the 1980’s and into the 1990’s provided the desire and motivation for police departments to computerize. The development of the computer was a positive event that led to the management of information by police executives. At this level, though, the motivation to computerize is immense, as evidenced by the KDPS chief’s desires in the 1980’s to automate in order to acquire management information to better allocate the resources of the department. The New Federalism of the 1980’s provided for easy funding of computer systems like those purchased by KDPS. Market deregulation provided for oligopolistic conditions in the industry, leaving vendors free to set their prices at whatever point they chose. While some would argue the free market entails competitive pricing, what was seen were prices so close that choosing a vendor to implement a system had to be based on criteria other than price. In addition, this choice had to be made without full knowledge of product functionality. Oligopolistic market conditions meant that problems like those encountered with IPS were
unforeseen. Also, detailed and elaborate pre-market testing often was not conducted in the interest of rushing the product to market and reducing production costs.

Money under the Crime Bill was released via block grants with few, if any, controls or accountability, a method established under New Federalism. There was the motivation for computer development and faster, smaller systems. Moreover, the federal government pushed the police into adopting a new paradigm, namely, community policing. The carrot-and-stick analogy fits nicely here as millions of dollars were dangled under the noses of police executives and administrators. In essence, the message was clear: if a police department wanted the federal money, it must adopt community policing, even if in name only. To receive the federal money, all local police departments had to do was apply and they could address community policing issues later. KDPS used the argument of freeing up officers' time as a reason to put MPCs in its police cruisers. The freeing of time would allow for officers to be more involved in community policing activities. Subsequent release of money under the USA PATRIOT Act was provided to establish interagency communication of intelligence information and implement other technologies in the

34 This argument flies in the face of those issues proposed by Trojanowicz, Kappeler, and Gaines (2002) and other authors of the late 1980's and early 1990's. In fact, what many argued was that a chasm had been created by the officers' inability, or lack of desire, to get out of the car. Officers respond from call to call, never getting out of their "rolling fortresses" to get to know citizens, or even worse, to get to know what the citizens feel are the crime problems in their neighborhoods. In essence, the police were out of touch with the citizens due to the way in which they approached their jobs and the lack of any requirement to get out of their cars.
aftermath of September 11, 2001 (9/11). The RF systems of today are all based on computer technology, furthering the need for computerization.

What all these events led to was facilitation of state-corporate crime that occurred at KDPS. The federal government was involved in the state-facilitation of computerization for the police. These actions provided the catalyst for the events that occurred at KDPS. The federal government’s continued release of money and support for computerization forced police in general, and KDPS in particular, to continually seek out funding and attempt to modernize their equipment to keep pace with private industry, develop policing strategies, and adopt community policing that was the wave of the future. The federal government continued to fund these projects at an alarming rate, even though it knew there were problems when local police departments dealt with vendors. Under the guise of governmental deregulation, the federal government failed to provide any sort of controls over the vendors’ practices and their products. This allowed vendors to exploit the police as a vulnerable market.

As Aulette and Michalowski (1993) showed in the Imperial Food Products case, and Matthews and Kauzlarich (2000) found in their Valujet case study, the lack of governmental controls in the form of regulations, or the failure to enforce regulations already in place, were major contributing factors for the subsequent deaths caused by the fire in the Imperial Food Products processing plant, and the lack of controls by the FAA contributed to the crash of Valujet 592. Likewise, the social harms in the KDPS case were created by the lack of federal guidance, regulations, and oversight of police department computer projects at the same time when the federal government pushed these departments to adopt community policing. The
facilitation of actions by the inaction or intentional actions of the state that result in social harms is a key factor in state-corporate crime theory. It was state facilitation, rather than state initiation, that occurred in the KDPS case.

One issue uncovered in this study that had not previously been found in studies of state-corporate crime was the involvement of professional associations. Key international police associations were involved in motivating the police to buy computer systems. Linked to the federal government and private corporations, the associations attempted to set up guidelines and regulations to assist police in computerization efforts. Instead, what was produced were toothless "standards," developed essentially to provide the absolute basics in database design. These organizations provide(d) nothing in terms of how to deal with vendors, nor specifics with regards to negotiating a contract. These are the areas where the police need assistance, rather than advice on database design concerning how many characters to have in a name field. The efforts of the LEITSC consortium were found to be the outcome of a political battle, with the end result being a watered down set of "standards" that were benign enough to not offend vendors, federal government agencies, or the police profession.

While the institutional level environment set the stage for state-corporate crime at KDPS, it was the organizational level interactions where the drama resulting in social harms was played out. Outright lies and the over-emphasis on the attainment of corporate goals allowed the corporate organizations to lie, cheat, and steal at the expense of KDPS and Kalamazoo taxpayers. DM Data undercut the competition in an oligopolistic market to get the contract with KDPS, knowing full
well they would make up the money with other add-ons and maintenance contracts. Additionally, company representatives persuaded KDPS administrators to pour money into newer hardware and software, all purchased through them, thus adding to their profits as they piled additional costs on top of the initial hardware costs. And then, when KDPS decided to no longer deal with DM Data and to move on to another vendor, it learned that the licensing scheme of the DM Data software causes the system to shut down if the maintenance fees are not paid. Still, a court injunction did not faze DM Data, as it sent corrective software to KDPS which, according to computer technicians, was a possible “disaster waiting to happen,” and should not be used. KDPS never found out what the “fix-it” software would have done to the system.

The contention that institutional controls meant nothing to Dorfman and DM Data is evident by his email message in which he stated, “... we now have to act almost like a public company. We now have to answer to another authority that demands successful performance.” This is a clear sign that Dorfman knew his product was sub-standard, and DM Data could not fix it. Some in KDPS wanted to believe that the acquisition of DM Data by a publicly traded corporation could provide the catalyst for the company to fix the DM Data product to the satisfaction of KDPS. However, Dorfman essentially vanished after the Prolease acquisition of DM Data. There are still police agencies trying to locate him. For example, the police department in Plantation, Florida, would like to get some of its money back for a defective system it purchased.
IPS provided examples of organizational deviance as well. Failure of the first project manager, lying about knowledge of product defects, and failure to provide software their agents stated it could, led to a path of deception for the achievement of corporate goals, bonuses, and acquiring of a $1.5 million contract.

KDPS was not without fault as they attempted to bring on-line a complex computer system with dispatchers who had little formal training in computer systems or programming. The problems with the DM Data system created fear, anxiety, and pressure to move to a new system at KDPS. This rush for a replacement system allowed for implementation without fully testing every aspect of the CAD and RMS systems. Two years later, IPS fixed the spell-check problem, and three years later it fixed the MICRS problem.

At the interactional level of face-to-face encounters, dramaturgical stages were used to facilitate the lies and cover up actions of the individuals involved. These front and back stages allowed agents to interact with each other at various levels. The IPS project manager, Moyer, would have to act differently with me than she would with other IPS employees, and she would act differently dealing with my subordinates, like the computer technicians of KDPS.

I acted differently when dealing with city employees and KDPS employees. Stages were used to deal with the dispatchers as we sought to replace them with trained computer professionals. Stages were used when dealing with city IT staff when I lacked complete technological knowledge about the problems encountered during implementation of the system and in orchestrating a move into a new building.
Dorfman attempted to use stages and deal with various agents both within his agency and within KDPS. On one level, he tried to deal with me, and at the same time tried to convince the computer technicians (dispatchers) that his staff could fix the problems with the KDPS system. Dorfman also attempted to circumvent interacting with me by dealing with my superiors and had telephone conversations where he insinuated I was lacking the knowledge and ability to lead the project.

During the trying times of implementation, the spell-check problem, time synchronization issue, and the learning curve with a new system, the chief at KDPS would utilize dramaturgical stages to deal with subordinates, managers, and myself. The MICRS issue was one where fronts were used to convince the department that the IPS system would get it fixed, while on the back stages we were discussing the ramifications of not reporting crime information as mandated by Michigan law.

The creation of different realities was also a contributing factor to the problems at the interactional level. The social construction of phenomena surrounding the computer projects caused difficulty when different agents interpreted the events related to the projects based on their own perceptions of reality. The creation of a sense of urgency surrounded my perception of the entire project. Operating under the pressure of a court injunction and the potential for catastrophic failure of the DM Data system, coupled with moving into a new building and consolidating a dispatch center, created the perpetual atmosphere of urgency and an additional quest for perfection in the new system. Not only did KDPS need to replace the system, but from a leadership standpoint, it also needed to be done correctly, and
214

the IPS system must work flawlessly in order to overcome the stigma attached to the DM Data system.

The newly hired computer technicians at KDPS were thrust into a position that was unfamiliar to them, and this created tension and anxiety as they grappled with a constructed reality, or definition of the situation, foreign to them. Their own perceptions of reality were based on previous experience in the private sector or non-police work. Suddenly, they were dealing with a culture where computers were expected to work flawlessly, all the time, and without encountering difficulties or problems with operations, despite the fact that the computers needed to work twenty-four hours a day, seven days a week, 365 days a year. MPCs are never shut down unless they are receiving maintenance or being serviced. Otherwise, the expectation is that they remain running despite weather factors and the multiple users that pound on them each day.

In sum, a key finding in the present study is that it was not one single event at the institutional, organizational, or interactional levels that created or caused the social harms experienced at KDPS, but rather the intersection of actions of many that created the problems. In this study, the federal government facilitated the social harms that occurred in the KDPS case. The U.S. Department of Justice so desperately wanted the police profession to move towards a community-policing model of operation that millions of dollars were released to local police departments with no controls. At each release of federal funding, the computer vendors capitalized by descending upon police departments in efforts to profit from the federal funding. Vendor sales employees learned the trade as they moved from...
company to company to sell computers to the police. They learned how to sell and
deal with the police, and this knowledge was passed on from company to company
as these employees “made the circuit.” Within the corporations, a culture of deviant
behavior and normalization of activity was created as vendor employees competed
for bonuses and other rewards for project completion, deadline realization, and the
signing of contracts worth millions of dollars. Stages were used to orchestrate and
manipulate the projects and acquisition of contracts, as vendors sought to tap into the
millions released by the federal government.

Lack of controls, at both the federal and organization levels, existed as KDPS
attempted to implement complex, large computer systems without adequately trained
professionals to accomplish the task. The lack of SOPs, together with the lack of any
federal, state, or local government guidelines or regulations, allowed vendors to
operate without fear of reprimand or penalty as they implemented systems that were
plagued with functionality problems, and, in some cases, ones that did not function at
all.

One important note in the explanation of the state-corporate crime that
occurred at KDPS was the divergence from the normal perceived victimization in
these types of social harms. As Kauzlarich and Matthews (2006) point out, “as with
the victimology of traditional street crime, the least powerful are almost always the
most likely to be victimized by state-corporate crime” (p. 375), but this is not the
case with this work. The police are never thought of as being the least powerful. In
fact, the literature on critical criminology places them squarely in the position of
dominance, hegemony, and the apparatus of the powerful to accomplish hidden
agendas against the marginalized. What we see within the present study is the taking advantage of a powerful institutional base within society. This study begs the question, if corporations can take advantage of the police, who else is suffering social harms similar to those committed against the police?

Integrated Model of State-Corporate Crime

The use of the integrated model developed by Kauzlarich, Kramer and Smith (1992) and further elaborated upon in Kauzlarich and Kramer (1998), Kramer, Michalowski, and Kauzlarich (2002), and Michalowski and Kramer (2006) was a useful framework in helping to explain the deviance and social harms that occurred at KDPS. Only through examining the multiple levels of the events that unfolded can one get at the true underlying causes of the problems. As disclosed in previous case studies, the institutional level defined the parameters within which the actions that occurred at the organizational and interactional levels took place. The activity that happened at each level was closely related to the activity occurring at the other levels.

This study demonstrates the value of using the integrated model to examine and explain an event at the local government level that has not attracted media attention. Previous work focused on major events involving billions of dollars and loss of many lives, analyzing the multiple levels that caused the tragic events. The present study has demonstrated the applicability of the model in examining events out of the public eye. It is doubtful that KDPS will make national news headlines because of the loss of money and failure of its computer systems, but, nonetheless, it
remains an important local event since the department, the city, and the community taxpayers lost millions of dollars on several computer systems, and there was the loss of at least one life.

Kauzlarich and Matthews (2006) called for further work in state-corporate crime and the elaboration of the integrated model to focus more on the interactional level. The present study has done that as well. Going beyond the typical approach to explaining interactional encounters with differential-association theory, this work incorporates other important sociological theories to explain deviance at the face-to-face level. While some criminologists have used a constructionist approach in explaining crime (see Potter and Kappeler 1998; Kraska 2004), few, if any, authors have utilized a dramaturgical approach in the explanation of criminal or deviant behavior. The ability to utilize both in an integrated approach to explaining the occurrences at the interactional level adds to the importance of not only this work, but the use of the framework as an established means of explaining state-corporate crime. Both theories were additions to the integrated model and provided for further explanations of how the face-to-face encounters unfolded and perpetuated the deviance.

The use of the model also exemplified how important the exercise of social control is in a capitalistic society. On all three levels, the lack of any type of controls by the federal government, the three organizations, and within interactional situations proved to be the definitive catalyst that allowed for the social harms to occur. The federal government's failure to provide regulations, laws, guidelines, or some form of constraints on the vendors facilitated the actions at the organizational
level. In turn, the failure of KDPS to have established guidelines further fueled and facilitated the deviance of the agents of the two corporations. IPS failed to supervise its employees closely while they were running their projects, resulting in one of their employees spending his time "job hunting" instead of working on the KDPS project.

It is hard to believe that the computer fiascos at KDPS have escaped the attention of the media. While I will address the issue of generalizability in the next section, and the events similar to what occurred at KDPS in other police departments, only rarely has attention been paid to such events in the local media (see below for a few exceptions). How was it that the local press in Kalamazoo never learned of the economic costs and loss of life associated with the failure of two computer systems at KDPS? Why hasn't the media stepped up and fulfilled their watchdog responsibilities by uncovering the losses experienced at KDPS?

Limitations

Case studies can be both descriptive and explanatory in nature, depending upon the research question the researcher is attempting to answer. In the present study, the case study method was used for both explanatory and descriptive purposes. The question arises as to what can be learned from the study of a single case. Stake (1998) stated it can be used to study the particular or uniqueness of a situation, to explain issues, and to tell a story. Vaughan (1992) argued that it can be used to elaborate and develop theory. In the present study, my goal was to address all of these issues.
Two important questions arise in using the case study method. The first is the generalizability of the events that occurred to KDPS to other police departments. Have other police departments suffered in similar ways at the hands of computer vendors? Did the institutional conditions created by the federal government lead to the creation of social harms in other jurisdictions? The second important issue has to do with my personal involvement in the case and the possible biases this might introduce into my interpretation of the events that occurred at KDPS. Am I able to tell the story in a sound, scientifically responsible manner? Are my observations valid and reliable given my closeness to the events as they unfolded?

Can the events that happened at KDPS be generalized to other law enforcement agencies? A review of some newspaper headlines shows that the problems with computer vendors that KDPS encountered are not unique.

On January 14, 2005, the *New York Times* reported that “FBI May Scrap Vital Overhaul for Computer System” (January 14, 2005). Likewise on the same day, the *Washington Post* proclaimed, “FBI Rejects Its New Case File Software; Database Project Has Cost Nearly $170 Million” (January 14, 2005). These headlines refer to the fact that in 2005, the FBI scrapped a $170 computer system that was supposed to link all the FBI agents in the world together through one central system. They also dropped the computer system’s vendor. The story behind these headlines bears some resemblance to problems encountered by KDPS.

The FBI contracted with Science Applications International Corp (SAIC) to develop the Virtual Case File (VCF) program, which was supposed to be a networked case file tracking system. This system was to replace the paper system the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FBI was using and would allow agents to go “paperless” in terms of filing reports.

Months before it was to go on-line, software tests revealed hundreds of error reports. Problems in the system were blamed on poor conceptualization and muddled execution of the project. Initial blame was placed on the FBI, but the problems were not due to the FBI alone. An open-ended contract with few controls allowed SAIC to collect millions of dollars as the project grew larger and more complex, even though the FBI realized that the SAIC software would never work properly. An unreleased audit report completed in 2005 obtained by the Washington Post disclosed “the system delivered by SAIC was so incomplete and unusable that it left the FBI with little choice but to scuttle the effort altogether” (Washington Post, August 19, 2006).

The FBI story has all the elements of state-corporate crime—an institutional environment that was ripe for exploitation by computer vendors, an organizational environment lacking the expertise to implement a $171 million computer system, and interactional aspects that allowed for the project to continue even though it was doomed.

This media attention and state-corporate crime was not unique to the FBI. The problems other local police departments have had in implementing computer systems have also made headlines. In Glasgow, Scotland, The Herald reported, “Revealed the GBP on Computer Police Bungle. The System is Three Years Late.” The Milwaukee Journal in September 2005 reported, “$7 Million and 6 Months Behind, Still Failing to Deliver” about the Milwaukee’s Police Department’s $7 million computer system replacement. On October 29, 2005, the News proclaimed “Buffalo Police Trying to Work Out Glitches in New Computer System.” Finally, on
October 22, 2005, the *Boston Herald* declared “Computer Revamp Puts Byte on Crime Information Flow, Released with ‘Glitches.’”

Newspaper headlines reveal only the tip of the iceberg. In *Chief Information Officer (CIO) Business Technology Leadership*, a periodical published for public sector IT managers, an article in its May 15, 2006 edition revealed, “Federal IT Flunks Out.” This article details “patterns of failure” in eight major federal computer projects that are either dead, grossly over budget, incomplete, or grossly behind schedule plus being over budget. For example, the Department of the Interior spent $63 million on a $120 million project to consolidate its financial system. That project failed and is being considered for another start date. The FAA has spent $11.4 billion on an $8.3 billion budgeted project to upgrade air traffic control computers. In all, there were sixteen projects reviewed in the article—four were on schedule while the other twelve are 1–13 years behind schedule. The FAA is reassessing their practices and investments. The Department of Homeland Security budgeted $229 million to upgrade eight legacy financial systems. After spending $18 million, they realized the project was a failure and terminated it. The project is scheduled to be resurrected at an undisclosed date. The rest of the projects do not get any better. Millions of taxpayer dollars have been spent on federal-level computer projects over the last several years for systems that have not been completed, are grossly over budget, and are doomed to fail.

I know of two other examples that have not been publicized but are just as damaging, and they both involve DM Data. Plantation (Florida) Police Department (PPD) invested approximately $5.5 million with DM Data in March–April of 2002.
They contracted with DM Data for CAD, RMS, and MPCs, but never received any services before DM Data walked away from the contract. The company that purchased DM Data, Prolease, Inc., did not purchase the rights to PPD’s contract. PPD was left with no computer system and were having to run dispatch using paper cards to track calls-for-service. The last time I heard from the IT people at PPD was in 2005, and they had an open lawsuit against DM Data. They were trying to find Dorfman, who was allegedly hiding in a small town in Minnesota (personal communication with the Deputy Chief of PPD and members of PPD’s IT staff).

The other department, an east coast city that does not want to be identified until it finds another computer system, was a DM Data user and was actually testing the IPS product when I talked to the project manager. She shared many similar horror stories pertaining to her dealings with DM Data. She stated the department was going to sue DM Data for failing to provide a functional system, but gave up when the company had been sold several times and no one could locate Dorfman. The project manager stated they struggled for years trying to cope with the deficiencies of the DM Data product, were looking for another system, but did not have adequate funding (personal communication 2005).

Clearly, KDPS is not alone in computer project implementation difficulties, nor in its problems in dealing with vendors. If the FBI enters into a project and loses $171 million because of an inept vendor and inadequate project management, how can we take smaller police agencies to the task for having similar problems? While this study cannot state with certainty that state-corporate crime occurs in other...
agencies, a review of available literature does point to a “pattern of failure” beyond
the KDPS case.

The second limitation of the present study is my involvement with the
computer systems projects as a KDPS employee and its potential impact on the
research findings. I was not an impartial participant in the computer implementation
process. I was actively and passionately involved in what took place—active in terms
of project management, and passionate in terms of desperately wanting both
computer systems to work flawlessly. Some would argue that this close involvement
may bias my perception of what took place and may cause me to be less than
objective in assessing the role of the vendors in the production of social harm.

Stake (1998) writes of the notion of knowledge transfer, in that knowledge
from the researcher can be transferred to the reader. Moreover, it is about
transferring the story or telling the story. No one was in a better position than I to tell
the story. As a scholar of political economy, criminology, policing, and sociological
theory, I bring an important interpretation that those in KDPS, or those outside of
KDPS, cannot bring. My interpretation is based on my academic training and my
direct participation in the case. I was the only trained sociologist/criminologist
involved in the project. I brought a unique perspective to the story-telling, and to the
explanation of state-corporate crime that occurred at KDPS.

Feminist field research methods indicate that standpoint knowledge is an
inevitable part of research. In addition, writing about positionality and
representation, they share the notion that being the “insider” often brings important
insights to the study. This approach
encompasses feminist and postmodern challenges to the legacy of Western, predominantly male, scholarship. These challenges make problematic the relationship between the researcher and the subject of research, or the knower and the known. In this problematic, the identity of the researcher, defined by social, historical, and political position, is understood to profoundly influence the production of knowledge—the researcher's interpretation or representation of the subject of study. Knowledge is always, at some level, defined by the positionality of the scholar. (Scott and Shah 1993:93)

There is nothing reported in the present study that cannot be verified by reviewing email messages, other correspondence, or official documents. The only information that cannot be reviewed is the telephone calls and personal conversations I had with other individuals. Since these make up such a small part of the story, the removal of this information would change little in this study. The notions of triangulation, comparison, and other methodological precepts have been closely followed and adhered to in this study.

My involvement, in fact, is a necessary part of the story and key to the sociological/criminological importance of this work. The insider story, in this matter, is paramount to the results of this study being disclosed as a warning to other police departments. A conversation took place between myself and one of the computer technicians at KDPS, who at the time of this research, was still working at KDPS, and had worked for me for several years. He is a former federal employee, who has friends working in the federal government in IT positions. They report that the "story" behind the FBI’s debacle goes much deeper than a failure of the contractor. The three levels of the catalysts for action were apparently present in that situation. Essentially, the deviance and maneuvering between organization and individuals was
the similar to that reported here. The point is, however, that there is always more to
tell, always more to learn from the “insider” on issues such as these.

Future Research

This research sets the stage for future work in both explicating what was
found here, along with further elaboration of the theory of state-corporate crime. As
Kauzlarich and Matthews (2006) have pointed out, most work in state-corporate
crime has been focused at the institutional and organizational levels, and thus more
work needs to be done at the interactional level of analysis. The present study, for the
first time, actually focused on the interactional aspects of the theory, and the
relationships between the individuals involved as they were impacted by the other
institutional and organizational factors. This level should be examined in even more
depth in future research. In-depth interviews with the agents involved in the KDPS
case would, and could, add further richness to the story. In addition, I drew some
subjective conclusions with respect to the actions of those involved at the
organizational level, specifically pertaining to the deviant actions of vendor
representatives as being motivated by bonuses and getting contract awards.
However, both of the IPS sales representatives, Mike Feeney and Taylor Edge, told
me about the importance of “landing KDPS” as a customer. So, this is not mere
supposition. Conversations with Moyer were more guarded on her part. She was
methodical, detail-oriented, and “closed-mouthed” concerning the operations of IPS,
and specifically about her pay incentives. Her actions, however, indicated clearly
that she was driven by organizational goals, which were her goals. The importance of
the deadlines and implementation of "go-live" dates were extremely important and apparent during our conversations. Thus, conducting systematic in-depth interviews with key participants in this case would further enrich and offer evidence for conclusions drawn in this study.

The issues of external validity raised in the present study could be addressed in future work by conducting a survey with a representative sample of police departments around the nation. Using a survey, one could ascertain how widespread the state-corporate crime identified in this study has been, and whether the institutional, organizational, and interactional factors were similar in producing social harms like those in the KDPS case. For example, top executives could be surveyed to determine the extent to which certain institutional-level conditions influenced them to push automation in their departments. Was it the justice department's campaign for community policing, COMPSTAT, or simply the availability of federal money that pushed them to adopt computer information systems? Or was it the support of the professional associations for computerization of the profession that led them to believe that it was an important endeavor? A survey instrument could be designed to capture this information.

Praxis

One important aspect of this work that has not been touched upon as yet is the impact of the social harm that resulted from state-corporate crime at KDPS, and the importance of getting this word out to prevent similar social harm from happening elsewhere. Somehow the wall between academe and the police profession
must be broken down to allow for the creation of safeguards to stop this type of state-corporate crime activity. While I have used the theory from the academic side to provide explanations of the social harms that occurred in the KDPS case, it is my professional voice that needs to be used to prevent the fleecing of police and taxpayers, and deaths that can potentially occur when CAD systems fail. In particular, the deceptive practices of computer vendors must be exposed and stopped. Whether this takes the form of educating the police profession as to the problems that may be encountered with computer vendors as found in this study, or adoption of guidelines, regulations, SOPs, or laws, or both, something needs to be done. As the Seaskate Report (1998) acknowledges, the police profession is a fragmented group of independently operated agencies, all with the same focus, but with many different levels of expertise, knowledge, funding, and constraints which impact their ability to implement and maintain large computer systems.

How might one do this? A review of the popular periodicals of the profession—e.g., Law Enforcement, Law Enforcement Technology, Law and Order, Government Technology, The Police Chief, The FBI Bulletin, Mission Control—points to the benefits of computerization. While adoption of computer information systems by police departments has many benefits, the difficulties with implementation of such systems must be communicated. Implementation of these systems is complex, and the actions of the vendors are motivated by making money, not the satisfaction of the department. As the Washington Post pointed out in the FBI story,
SAIC reaped more than $100 million as the project became bigger and more complicated, even though its software never worked properly. The company continued to meet the bureau’s requests, accepting payments despite clear signs that the FBI’s approach to the project was badly flawed, according to people who were involved in the project or later reviewed it for the government. (Washington Post, August 19, 2006)

The goals of the vendors, as individuals, have nothing to do with the adequacy and functionality of the systems the police are buying.

As noted above, I do not understand the lack of the watchdog activity on the part of the media. How is it they are not disclosing the fleecing of taxpayers and loss of life that happened as a result of state-corporate crime at KDPS? There is yet another botched computer project involving the Kalamazoo County government that has not been exposed in the local media. In this instance, with good intentions in mind, county government officials (IT, the prosecutor, and law enforcement) set about computerizing and attempting to connect all the criminal justice databases in the county together, so information may be shared among all the county criminal justice agencies. An admirable goal, but the system was plagued with problems similar to those experienced by KDPS, and a project has never been completed.

Kalamazoo County paid Motorola, Inc. millions of dollars for a planned connection between disparate computer systems. Demonstrations indicated the potential for an end product that connected the systems, and the appearance that Motorola could complete the project. It was not to be. Motorola was never able to produce the end product, and both parties walked away from the project before completion. Motorola could simply not make it work. Crashing databases, broken promises, and the slow realization that the project would not work characterized the
project. Deadlines were missed, the court system's databases were impacted negatively during testing, and the county continued to pour money into the project in hopes of resurrecting and completing the implementation. The project never reached the implementation phase. As of this writing, Motorola, the provider of the computerized telephone system used by KDPS, is going back on promises it made for the use of their computerized system.

Vendor representatives' explanations for these problems, supported by their programmers, is that these systems are so complex that problems are bound to occur, and they are not the result of deviance, but rather due to the complexity and requirements for customization by their customers. I use a simplistic analogy when retorting these claims. To me, there is nothing more complex than a big screen television set, or a large plasma screen television. If I were to spend over a thousand dollars on such a device, and brought it home, and it did not work, I would return it for replacement. I purchased a complex piece of technology that did not function as purchased. The answer is to return it and get another one, or go to another supplier. The suppliers of big screen televisions have learned this, and therefore do not ship their product without it working properly, knowing it must satisfy the customer. Why is the situation different with computer vendors when police departments are their customers? Why do the police accept a piece of complex technology that does not work instead of holding computer vendors accountable?

What is important now is that the results of this study are made known to those in the policing field. The profession must know what is occurring and that they are also part of the problem, and part of the solution. It is time to correct the wrongs,
stop wasting taxpayers' money, and stop placing the public in harm’s way when CAD systems do not work. This will not be an easy task, as bad news does not sell. The first step is the publication of results of this research in scholarly journals, followed up with professional periodicals, along with contacting the popular media. Somehow, the media needs to get involved because Kalamazoo is not the only city suffering the loss of millions of dollars at the hands of computer vendors, as well as the potential for the loss of lives.

Conclusion

This study started with a casual conversation about the problems encountered at KDPS with computer systems, and my experiences through the implementation phase of the IPS contract. The more we discussed it, the more we believed that it was a case of state-corporate crime. As the proposal came together and the project became serious, there were two particular goals that I wanted to accomplish. The first was to use the Kauzlarich and Kramer (1998), Kramer, Michalowski, and Kauzlarich (2002), and Michalowski and Kramer (2006) framework to not only explain what occurred, but elaborate and expand the use of the theory beyond the common macro-level approach. Not only was this accomplished, but a close review reveals that the theory, as well as the integrated approach examining multiple catalysts at multiple levels, provided for a deeper understanding of what occurred and how multiple levels of examination prove invaluable. As criminology students, we are taught criminogenic theories singularly. On the other hand, police professionals know intuitively that there are many issues at hand that cause crime or
lead to criminal behavior. The theoretical approach used in the present study combines the ability to explain what occurred using multiple theories, multiple intersections, and multiple levels.

This study also incorporates micro-level interactional theories that have not been used in the explanation of agents' interactions in previous work on state-corporate crime. Not only that, a review of the literature disclosed no previous use of a dramaturgical approach for the explanation of state-corporate crime at the interactional level. My experience as the project manager led to the playing out of many dramas and the use of stages as a means of interacting and playing out complex situations. This also occurred at many levels, from the employees to the supervisor/managers, to the top executives at all three agencies.

One final situation that played out during the implementation phase of the IPS system occurred that lends support to a dramaturgical analysis. After the IPS servers were installed, one of the KDPS computer technicians discovered a strange batch file running on several of the city servers, which included the five IPS servers. Subsequent investigation disclosed one of the city IT system administrators had installed a batch file program on over 183 city computers, including most of the city's servers and the IPS servers. This program would run at 5:10 p.m. on all computers and would use the unused portion of the processor on the computer. For instance, if the user was still at work, after 5:00 p.m. was key here, using 20% of the

35 I am not using this term in the slang sense, but rather as Goffman (1959, 1974) and Manning (1977, 1997, 2003) use it to explain the face-to-face encounters clouded in the use of front and back stage performances.
processor on the computer, this batch file would use the other 80% when it started to run and not free the 80% up until the process was over. I asked the individual, who was working for me while I was interim IT director, what could cause the slow down of computers at 5:10 p.m., because many of the employees working late experienced a slow down on their computers between 5:10 and 5:15, affecting email and even word processing. He denied knowing anything about it. We later found out he was running a program searching for extraterrestrial radio signals with a program called SETI-At-Home, a program from the University of California–Berkley, that searched for radio waves of signals sent from outer space. This program intrigued him because it allowed for the “clustering” of computers to search the radio waves. The internet web page kept track of the activities of each user. He apparently was ranked number two or three in the country for “clustering” computers and searching the radio waves. His employment was subsequently terminated. The point is he continued to use fronts and stages to keep people from discovering what he was doing, even though he was questioned about it. Another employee, who was disciplined for his role in the matter, knew of the program and what the other employee was doing, but believed the other employee when he said it was not causing any problems on the city-wide system. While this incident was not a contributing factor in the problems we encountered with the computer vendors, nor directly related to system implementation, it is an example of the use of dramaturgy to explain deviant abhorrent behavior.

The second reason I wanted to conduct this study was to reveal the social harms that occur when police departments adopt computer information systems
under current institutional, organizational, and interactional conditions. The results of this study suggest that police administrators must do more to protect their departments and the citizens they serve against the self-serving actions of computer vendors, and ensure they have staff members who have the technical training and knowledge to deal with computer vendors and implement these complex computer systems. Secondly, the federal government needs to establish some sort of safeguards to avoid waste of taxpayers' money and even the loss of citizens' lives. If the federal government is going to continue to support and encourage these endeavors, it must put protective measures in place to avoid these losses and other harms that are occurring. Third, there must be some movement, either by the police profession or by the media, to expose these social harms to the public. There must be an outcry to rally the public in some form of social movement to send the message to computer vendors that this sort of behavior and taking advantage of the police departments must stop. Finally, if the high-tech, large screen TV doesn't work, take it back. The same logic should prevail in dealings with computer vendors, programmers, and sales representatives. If the computer system doesn't work, send it back for a full refund.
Appendix A

Human Subjects Institutional Review Board
Letter of Approval
Date: June 16, 2006

To: Susan Carlson, Principal Investigator
 Steven Reifert, Student Investigator for dissertation

From: Amy Naugle, Ph.D., Chair

Re: Approval not needed for protocol 06-06-14

This letter will serve as confirmation that your project “A Case Study of State-Corporate Crime in the Kalamazoo Department of Public Safety” has been reviewed by the Human Subjects Institutional Review Board (HSIRB). Based on that review, the HSIRB has determined that approval is not required for you to conduct this project because you are not gathering information about individuals. Thank you for your concerns about protecting the rights and welfare of human subjects.

A copy of your protocol and a copy of this letter will be maintained in the HSIRB files.
Appendix B

Tables

236
Table 1
An Integrated Theoretical Model of State-Corporate Crime

<table>
<thead>
<tr>
<th>LEVELS OF ANALYSIS</th>
<th>CATALYSTS FOR ACTION</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>Opportunity</td>
<td>Control</td>
</tr>
<tr>
<td>Institutional Environment</td>
<td>Culture of competition</td>
<td>Availability of legal means</td>
</tr>
<tr>
<td></td>
<td>Economic pressure</td>
<td>Obstacles and constraints</td>
</tr>
<tr>
<td></td>
<td>Organizational goals</td>
<td>Blocked goals/strain</td>
</tr>
<tr>
<td></td>
<td>Performance emphasis</td>
<td>Availability of illegal means</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Access to resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational</td>
<td>Corporate culture</td>
<td>Instrumental rationality</td>
</tr>
<tr>
<td></td>
<td>Operative goals</td>
<td>Internal constraints</td>
</tr>
<tr>
<td></td>
<td>Subunit goals</td>
<td>Defective SOPs</td>
</tr>
<tr>
<td></td>
<td>Managerial pressure</td>
<td>Creation of illegal means</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Role specialization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Task segregation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer, telecommunication, and networking technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normalization of deviance</td>
</tr>
<tr>
<td>Interactional</td>
<td>Socialization</td>
<td>Definitions of situations</td>
</tr>
<tr>
<td></td>
<td>Social meaning</td>
<td>Perceptions of availability & attractiveness</td>
</tr>
<tr>
<td></td>
<td>Individual goals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competitive individualism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material success emphasis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2

Institutional Environment

<table>
<thead>
<tr>
<th>Institutional Environment</th>
<th>Motivation</th>
<th>Opportunity Structure</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advances in Technology</td>
<td>Expansion of IT through the 1980s & 1990s</td>
<td>No federal guidelines or controls</td>
</tr>
<tr>
<td></td>
<td>Brought on by the Space Industry and Military</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Federalism and move from Categorical Grants to Block Grants</td>
<td>Release of Crime Bill & Patriot Act monies</td>
<td>No Watch</td>
</tr>
<tr>
<td></td>
<td>Violent Crime Control Bill of 1994</td>
<td>Professional Associations</td>
<td>Dog Activity</td>
</tr>
<tr>
<td></td>
<td>Balanced budget and period of economic growth and stability through the 1990s</td>
<td>Started supporting and touting the benefits of IT systems</td>
<td>by the media</td>
</tr>
<tr>
<td></td>
<td>President William Clinton's social programs brought money back to local governments to spend on technology</td>
<td></td>
<td>No Institutional/Cultural/Social Controls</td>
</tr>
</tbody>
</table>
Table 3
Organizational Catalyst for Action

<table>
<thead>
<tr>
<th>Organizational Environment</th>
<th>Motivation</th>
<th>Opportunity Structure</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive Corporate</td>
<td>Need for new customers</td>
<td>Instrumental rationality- selfish goal attainment for the money</td>
<td>No controls existed at the organizational level.</td>
</tr>
<tr>
<td>Culture- Small Market</td>
<td></td>
<td>MICRS report- can do –could not</td>
<td></td>
</tr>
<tr>
<td>Goal Attainment- Bonuses</td>
<td>tied to deadlines</td>
<td>Defective SOPs- Lack of control over employee actions</td>
<td>Culture of compliance- KDPS personnel were use to the fact that computers did not work</td>
</tr>
<tr>
<td>Managerial Pressure-</td>
<td>“Reduce the Costs of Government Services”</td>
<td>Normalization of deviance- DM Data claims things were fixed</td>
<td>Communications- blocked by the use of emails</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPS shipped products with known Defects</td>
<td>Reward structure for vendors based on money</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computers and technologies- created problems by lack of knowledge by KDPS</td>
<td>No penalty for vendor actions- rewarded for persistence as KDPS always paid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal constraints- dispatchers as computer technicians</td>
<td></td>
</tr>
<tr>
<td>Interactional Environment</td>
<td>Motivation</td>
<td>Opportunity Structure</td>
<td>Controls</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Individual Goals- tied to bonuses and retribution for not meeting deadlines</td>
<td>Definition of situation- replacing several systems, urgency to replace, pressure to implement a functional system</td>
<td>Lack of skilled KDPS computer technicians</td>
<td>Personal Morality- lies, knowledge of defective equipment “job hunting” while on the job</td>
</tr>
<tr>
<td>Individual Competitiveness</td>
<td></td>
<td></td>
<td>Neutralization of actions</td>
</tr>
</tbody>
</table>

Rationalization of behavior
Obedience to Authority
Culture of Deception
BIBLIOGRAPHY

Intergraph Quarterly Reports. (http://www.sec.gov)

Kalamazoo Department of Public Safety Annual Report to the City of Kalamazoo. (2001).

