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ABSTRACT

High-speed curtain coating is an emerging technology trying to gain commercial 
acceptance by the paper industry as a non-impact coating process. Curtain coating could 
offer enormous economic and process advantages over conventional coating methods, 
due to its non-impact and excellent coverage at reduced coat weights. Due to its contour 
nature, it enables excellent coating coverage, resulting in equal coverage at lower coat 
weights than needed with contact metering coating methods, i.e., rod and blade. Due to 
non-impact and non-contact type of coating operation, curtain coating will operate with 
fewer sheet breaks or the strength requirements of the base sheet can greatly reduced. 
Being a contour coater, there is no film split patterning, and scratching. This results in the 
production of a defect-free coated surface. It is a versatile coating process, in that it 
enables a wide range of coating viscosities and coat weights to be applied with a single 
coater head.

In the current study, process and material parameters were varied through a Taguchi OA 
(first phase) and D-optimal (second phase) design of experiments (DOE), to stabilize a 
pilot curtain coater at high speeds. The statistical DOE, enabled us to recognize 
contribution of variables to the curtain stability and optimized them in a relatively few 
number of trials. The variables studied were curtain height, steam flow rate of a steam 
substitution system, measures of coating rheology, surfactant dosage, coat weight, web 
speed, base sheet roughness and base sheet sizing. Trials were conducted at Mitsubishi 
Heavy Industry’s state of the art coating research center in Hiroshima, Japan.

The role of boundary layer air removal system was found to be critical to the stability of 
the curtain, especially at high speeds. Base sheet roughness, in combination with the 
parameters of the coating formulation, was found to be very important. Coating coverage 
improved with the smoothness of the base sheet and excellent coating coverage was 
possible at low coat weights.

Higher curtain height and shear thinning coating rheology was favored for obtaining 
curtain stability at high speeds. The sizing of the base sheet impacted coverage and 
curtain stability at high speeds due to its impact on the wettability of the base sheet by the 
liquid curtain. The role of surfactants, although good theoretical understanding exists, 
was inconclusive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTRODUCTION

High-speed curtain coating is an emerging technology seeking to gain commercial 
acceptance as a pre-metered and non-impact coating process (1-4). Curtain coating has 
the potential to provide significant economic and process advantages over conventional 
coating methods due to its ability to provide excellent coverage at low coat weights. Due 
to non-impact and non-contact type of coating operation, curtain coating will operate 
with fewer sheet breaks or the strength requirements of the base sheet can greatly 
reduced. Curtain coating can be considered as a wet lamination process, where lamination 
follows the contour of the base sheet, so there is no film split patterning; resulting in a 
defect-free coating surface. Curtain coating is a versatile coating process that enables the 
widest range of coatings and coat weights to be achieved with a single coating head (1-3).

High-speed curtain coating for pigmented coatings is still in its early stages of 
development (1-2). As a result, various phenomenological behaviors are still not very 
well understood. The stability of the curtain (1) and air entrapment at high speeds (1,2) 
are two of the major technical problems limiting the commercial acceptance of the 
curtain coater. To understand the causes for these limitations, an understanding of the 
basic operations of a curtain coater needs to be achieved.

An illustration of a curtain coater is depicted in Figure 1, which shows a side view of a 
slot die curtain coater. As seen from the illustration, the principle of a curtain coating 
operation is the flow of coating through a slot of a die, to produce a liquid curtain across 
the paper machine. Liquid exits the slot, forms a curtain and impinges on the moving 
paper. The moving web comes in contact with the curtain, pulling the curtain in the 
machine direction of the paper machine. Metering is accomplished by controlling the 
thickness of the coating curtain.

Figure 1. Curtain Coating

The curtain coating process can be divided into 3 distinct zones (Figure 2):
1. Curtain formation zone
2. Curtain zone
3. Impingement zone
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The sheet formation zone begins as the coating exits the die. The internal design of the 
die and rheology of the coating are the most important issues governing the performance 
of the coater in this zone. Slot designs are sensitive to coating rheology and velocity. 
Therefore, they should be designed in such a way that enables a fully developed and 
stable flow profile to be achieved in the slot within a very short time. It is also important 
that no flow separation occurs within the slot.

Sialic CoMDcf line

D ynam ic C ontact Line

■Sheet Forming Zor>

Curtain Flow Zone

Im pingem ent Zone

Figure 2. Three different zones in the curtain coating process.

The curtain zone begins with the development of a curtain as the fluid flows from the die. 
In this zone, the formation and stability of the curtain is the result of a complex 
relationship between inertial, viscous, surface, extensional, shearing, and gravitational 
forces (1,2). Thus, the rheology and surface characteristic of the coating plays an 
important role.

The point of contact between the free falling curtain and moving substrate and the 
adjoining spaee are termed the impingement zone. The complex interaction between the 
substrate and the curtain is a developing science. The presence of boundary layer air, 
associated with movement of the rough substrate, further adds to the complexity of these 
interactions.

Now that the basic operation of the curtain coater is understood, the operational 
parameters that control the stability of the curtain can be reviewed. An understanding of 
the physics of curtain formation has existed for decades. In 1961, Brown (5) proposed the 
following principle equations to describe the process, following the initial works of l.G. 
Wells (6). These principle equations are very useful in understanding the fundamental 
principles governing the influence of the interactions between inertial and surface tension 
forces on curtain stability.

By taking the x-axis as the direction of curtain fluid flow, the stress components could be 
defined as:

Xx = -p + 2r\du/d\, 
Yy = -p + 2r|9v/9y,

(la)
(lb)
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Zz = -P S(1c)

Now, if p is defined as, p = -(1/3) ( Xx + Yy + Z%) and W=0 
u » v  (effect of surface tension assumed negligible) then

Yy = constant = -po (2)
If incompressible flow is assumed, 5u/9x = -ôv/ôy and hence

Xx = -po +4ri9u/ôx (3)
Now, put = Q = constant 

Thus, the following equation of the motion (4) is obtained:
Qdu/dx = ô/ôx(tXx) + tpg, (4)
From equations 3 and 4,

5u/9x = (4ri/p)9/5x(l/u 9u/9x) + g/u (5)
and substituting for, u = (4qg/p)'^^ U and x = (4q/p)^^  ̂g X, a rearrangement gives

9/9X (1/U9U/9X) + 1/U - 9U/9X = 0 (6)

Kistlar (7) showed the dependence of curtain stability on Reynolds number, ratio of web 
speed, U, impingement velocity, V, and Weber number (Figures 3-5). From these figures, 
the operational window for coat weight, Reynolds number and U/Y ratios were defined 
for their given system. Triantafillopoulos, et. al., (1) showed the same experimentally

I Puddling20

Air Entrainment15

10

Pulled Film Curtain Break-up
0

lOCO

Figure 3. Influence o f web speed (U) on coat weight development. At a constant speed, 
changing the flow rate varied the coat weight. The data were collected from

pilot trials.

Triantafillopoulos, et. al., (1) compared the coating coverage achieved by a curtain coater 
with that of a metered size press (MSP). As evident from Table 1, the curtain coater 
provided far better coverage over the MSP even at low coating solids. The improved 
coating coverage (or lower coat weight for equivalent print quality) may result in 
significant improvements in the economics of coating operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Heel Formafion

Jpera) one! Window

Air Enlroinmenf

U / V

Figure 4. Proposed operating window for curtain coaters.

Table 1. Comparison of Coating Coverage with MSP and Curtain Coater

Technology Speed Coat weight Solids content Coverage

CURTAIN 1200 5.8 g/m^ 54% 85%
MSP 5.0 g W 63% 60%

7.1 g/m" 64% 75%
8.5 g/m^ 64% 87%

Condition of Curtain Stability

The stability of a curtain has been shown to be related to the Weher number. The Weber 
number is a dimensionless flow parameter, which relates the inertial forces to the surface 
tensional forces of the free flowing curtain. In the past, it was believed that a Weber 
number >2 was required to obtain a stable curtain. However, a more in depth analysis of 
the physics of fluid flow suggests that the same criteria can be met at lower inertial 
forces, or a Weber number >1.5. From Figure 5, we see that the condition to form a liquid 
curtain is.

or.
pV^H > 2a

W= > 2

(7a)

(7b)

pV'H O V - H

Figure 5. Inertial and surface tension forces in curtain formation.

Physical Conditions at the Impingement Zone
When trying to understand the operation of a curtain coater and dynamics of film 
formation, it is important to define the three physical conditions; the heel, strands, and
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pulled film. A schematic of each physical condition is presented in Figure 7 and 
described below.

1 .

2 .

3.

Heel-The heel is formed when the curtain is not completely moved in the 
direction of the web, but flows slightly in the opposite direction,
Strands- Strands occur due to insufficient flow, which causes a well formed 
curtain to break-up and contract into strands,
Pulled fdm-A pulled film happens when the coating fails to impact the substrate 
right below the slot and is pulled forward together with the web.

hee* fo rm a tio n

p u lle d  film

Figure 6. Operating Window for Curtain Coating.

Wilson, et al. (8), performed numerical simulations of the fluid flow in the heel 
(impingement zone). A summary of his observations is provided in Figure 7. These 
results match closely with work performed by Kistlar (7).

6

------- 1

F

Substrate Speed (cm/s) /O

Figure 7. Shape o f impingement zone with flow rate and web speed.

Clarke (9) worked on the development of re-eirculating viscous eddies specifically for 
curtain coating operations. He described in detail, the rheological parameters important 
for the development of flow patterns within the heel. The results of his findings are 
summarized in Figure 8.
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Saddle Po in t

c en ter

air I \ liquid

surface sadcRe

>î ;t
separatrix

Figure 8. Three re-circulation zones in the heel.

Although much work has been done to understand the dynamics of the individual 
parameters of a curtain coating operation, no comprehensive work has been done to 
understand the influence of the process, substrate, and formulation parameters on curtain 
stability. Many parameters interact and produce a synergic effect on curtain operation. 
Developing a complete and comprehensive understanding of curtain parameters and their 
interaction is a prerequisite for stabilizing a curtain coater at high speeds.

OBJECTIVE
The objective of the proposed research was to stabilize a curtain coater at ultra high 
speeds and develop a fundamental understanding of the process. A comprehensive trial 
plan was devised to study the effect of various process, substrate, and coating parameters 
on curtain stability, runnability and coating quality (coverage).

EXPERIMENTAL DESIGN
The study was divided into two phases. In the first phase, a Taguchi OA design of 
experiment (DOE) was employed to quantify the effect of all 8 variables on curtain 
stability. The Taguchi OA was selected because it enables the quantification of the main 
effect of selected variables on the response variables in relatively few experiments. This 
step enabled us to determine the relative importance of process variable in the process. 
The results of Phase 1 was then used to select the 4 most important variables contributing 
to curtain coating stability and quality (coverage). These 4 variables were carried forward 
to Phase II. A partial-factorial DOE, D-optimal, was used in the phase II, A partial 
factorial design was selected to determine the extent of variable interaction and its effect 
on the process. Thus, it allowed for a more close examination of the contribution of the 
selected 4 factors.

The coating studies were performed on a pilot curtain coater at Mitsubishi Heavy 
Industries in Hiroshima, Japan. The coater was 850mm wide and equipped with a high­
speed video camera to capture images of the curtain film during operation. The process 
variables considered were curtain height, steam flow rate of a steam substitution system, 
coating rheology, surfactant dosage, coat weight, web speed, base sheet roughness and 
basesheet sizing.
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INTRODUCTION OF VARIABLES IN CURTAIN COATING

An explanation of the role of each of these variables on the curtain coating process will 
now be discussed to understand the importance.

Curtain Height
A curtain flow field is result of complex interactions between gravitational extensional 
and surface forces, which are influenced by such factors as coating rheology, web-curtain 
speed difference and curtain height. As the coating leaves the applicator nozzle, it falls 
under gravity until the point where it contacts the moving web. The curtain height 
influences the speed of the curtain as follows:

Û  = U"o + 2gH (8)

Here, Uo is the velocity of the curtain as it leaves the applicator lip and H, is the height of 
the curtain from the applicator lip. The Reynolds number is generally low in the die so 
the velocities in the die are very low (of the order of 0.20m/s). Thus, Uo can be neglected 
for all practical purposes and curtain speed can be considered free falling. A stable 
curtain, We>2, can be achieved by changing the velocity of the curtain by adjusting the 
curtain height. The effect of curtain height on curtain stability, at a given surface tension, 
is a dominant factor. Viscous effects, as it exits the slot, affect the velocity of liquid. A 
correction suggested to account for these effects is given below for the above equation as:

2gH = 2g(H-0.5(M/p)"^) (9)
The effect of curtain height is indirectly related to the lip opening. As the lip opening 
changes, the outlet velocity changes, for the same flow rate. Nevertheless, due to the low 
Reynolds number flow within the die, the contribution of the initial exit velocity of the 
curtain to the velocity at any given height is still dominated by gravitational forces. In 
preliminary studies conducted by Mitsubishi, the optimum height for the Mitsubishi 
curtain coater is in the range of 100 to 400 mm. Based on these findings, the curtain 
height was maintained in the 150 to 250 mm range for the current study.

Coating Rheology
The rheological parameters important to the runnability of a curtain coater vary within 
the 3 zones of the curtain coater described earlier (flow distribution through the die, 
curtain forming zone and impingement zone). Since the flow field is extensional, 
extensional rheology parameters are applicable. The coatings applied were typical clay- 
carbonate-latex web offset formulations. Carboxymethylated cellulose, CMC, was used 
as the rheology modifier to alter the shear thinning properties of the coating. The 
viscosity was kept in a narrow range (400-700 cps, Brookfield, # 4 Spindle, 100 rpm) and 
rheology changed from Newtonian to shear thinning by altering the amount of CMC 
applied.

Surface Tension and Surface Age (Surfactant Dosage)
To form a stable curtain at low flow rates, surface tension must be reduced to maintain a 
proper Weber number (Wg>2). Surfactants are used to reduce the surface tension of a 
coating. Low surface tensions favor a stable curtain at low flow rates. A large number of
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surfactants are commercially available that differ substantially in effieieney and 
effectiveness, so the choice of surfactant is critical. As a curtain falls under gravity, the 
surface area of the curtain increases. The surface tension of a curtain will increase, 
depending on the initial surface excess of surfactant. Also, in a dynamic process surface 
age becomes important. The surface age of the process is the time the curtain takes from 
slot exit to impingement on to the substrate. The curtain height dictates the surface age. 
As shown in Figure 9, the surface tension of a curtain will change with curtain height due 
to the change in surface. The height of the curtain dictates the time available for surface 
aging. Change in surface tension with surface age may be the most important property of 
the surfactant. To reduce the surface tension of the coating, an anionic surfactant, 
Niaproof 4, was used. Niaproof was used because it is a highly soluble anionic surfactant 
known to industry to be effective in lowering the surface tension of aqueous coatings.

100 ms..........................  ' I * I   50 mm

150ms................................1............H ..............................  100mm

175ms ............................ — W 'T.T.T..........................  150mm

Figure 9. Surface tension and surface age.

Flow Rate (Coat weight)
The flow rate, along with web speed, determines the achievable coat weight. Curtain 
stability is also related to coat weight through the inertia term in the Weber number. 
Since curtain coaters are contour coaters, complete coverage is possible at much lower 
coat weights than with conventional contact surface coaters. Coat weights between 4-10 
gsm are attainable and sufficient for coverage for most curtain coater applications. In the 
present study, coat weights of 12, 8 and 6 gms/m^ were applied.

Web Speed
Web speed is important for the economic viability of any process. Higher web speeds 
translate into higher production and profitability. Web speed is also an important process 
variable in curtain coating, as it affects the process via many different mechanisms.

In curtain coating, web speed affects the onset of air entrapment, the amount of viscous 
drag, curtain stability, boundary layer air and effects of base sheet-coating interactions.

10
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The most important effect of web speed on the process is the dependence of boundary 
layer air, (BLA), on the substrate speed. Web speed governs the thickness and ease of 
removal o f BLA. As web speed increases, removal of the BLA becomes progressively 
difficult and manifests itself on the process as the onset of air-entrapment in the 
impingement zone. Viscous drag of the curtain is governed by the web-curtain speed 
difference, thus, along with coating rheology, it affects the shape of the impingement 
zone and curtain extension. In addition, as speed increases, the time scale for the wetting 
of the substrate by the coating becomes critical. Wetting is critical in the curtain as it 
affects the process in multiple ways. An acceptable coating viscosity operational range is 
also related to web speed. At low viscosities, a coating may splash in the impingement 
zone. Thus, web speed is an important process parameter and high-speed curtain coating 
puts additional constraints on the process.

Since high-speed curtain operation was the focus of the present study, 3 web speeds were 
used in the first phase of this study (800, 1400 and 1800 MPM).

Surface Sizing

The wetting properties of the paper affect the interaction between the curtain and the 
paper surface. The degree of interaction between the coating and the paper determines the 
amount of viscous drag on the curtain. The faster the coating wets the paper, the higher 
the viscous drag.

The type and amount of sizing agent present in the basepaper controls the wetting 
properties of the basepaper. Viscous drag influences the curvature of the curtain in the 
impingement zone. At higher machine speeds, there is a need to increase the wettability 
of the basesheet to account for the shorter contact time between the coating and basesheet 
at the point of impingement. To control the wettability of the papers, the papers were size 
press treated with an oxidized starch (Oji Inc., oxidized starch) prior to being curtain 
coated. The amount of starch applied was 1 gm/m^ (CIS).

Base sheet Roughness
The roughness of the basesheet (Figure 10) influences the runnability of the curtain 
coater as it affects the efficiency of the BLA removal system and coating coverage. BLA 
is known to disrupt the stability of the curtain at high speeds and create coverage and 
surface defect issues in the dried coating layer. The effect of base sheet roughness and its 
mechanism on curtain coating is largely unknown. Roughness of the basesheet hastens 
the formation of the transition zone causing turbulent air flow to be achieved in a 
relatively short distance. The roughness scale of the moving substrate also affects the 
thickness of the boundary layer. The amplitude and frequency of the substrate roughness 
will affect coverage. The curtain simply follows the contour of the low amplitude 
roughness. However, for a high frequency and high amplitude roughness, the description 
of the film (curtain) becomes complex. High basesheet roughness may create craters, a 
unique problem in curtain coating.

1 1
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In the present study, roughness was reeognized to be of high importance and was 
assigned 3 levels of variance. Relatively high basesheet roughnesses of 7.7 PPS, 5.5 PPS 
and 3.5 PPS were used.

Transition Rough
Zone

Scale of 
Roughness

Figure 10. Scale o f  roughness and BLA thickness.

Boundary Layer Air Removal System
As a rough substrate moves at high speed, it drags air along, forming a boundary layer 
air; BLA. As this boundary layer hits the curtain it leads to air entrapment and curtain 
instability. Air entrapment at the impingement zone is on of the technical challenges in 
high-speed curtain coating. Even a minor entrapment leads to severe defects in coating 
quality. Efficient removal of boundary layer air is one of the pre-requisites for high-speed 
curtain coating. A BLA removal system was proposed (fig. 11) to be used in curtain 
coating to delay the onset of air entrapment.

There are primarily two BLA removal systems currently proposed; in plate-vacuum 
system and steam substitution system. For in plate-vacuum systems, a polymeric plate in 
touch with the moving web followed by a vacuum box does the initial air removal. 
Mitsubishi Heavy Industries (MHl) was the pioneer to employ a novel steam substitution 
system (2), (SSS), to delay the onset of air entrapment at high curtain coating application 
speeds. The SSS (Figure 11) works by employing high velocity air through an ejector (air 
knife) onto the moving web to remove the bulk air being carried by the web towards the 
impingement zone. The incident angle of the air knife is optimized such that the total 
pressure on the downside of the web can be kept the lowest. After removal of the bulk 
air, steam is substituted for the air by mixing saturated steam with the remaining thin film 
of trapped air. The saturated steam, on mixing with the air, looses temperature and 
condenses, creating a mild vacuum in the impingement zone. The vacuum is controlled 
by the steam flow rate. The combined effect of heat and condensation of steam from the 
steam-air mixture attenuates any air current in the down side of SSS, resulting in a more 
stable curtain. Slight vacuum conditions and absence of convection currents also helps to 
stabilize the curtain.

12
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Figure 11. Steam Substitution System.

High temperature disturbs the BLA and immobile air in the micro roughness of the paper. 
As the air jet hits the moving web, a bifurcation of the jet takes place. A majority of the 
air jet goes away from the moving web but a fraction of the jet moves in the direction of 
the web even at the optimized air ejector angle. To minimize the effect of the partial air 
jet that moves with the web, the air pressure in the ejector must be adjusted according to 
the web speed and should be kept as low as possible. In this study, the level of steam in 
the SSS was changed by adjusting the steam flow rates per unit width of the coater and 
the air ejector pressure was changed with web speed according to an algorithm created by 
MHL

CONSIDERATIONS OF CURTAIN STABILITY

A stable curtain is a prerequisite for a good curtain coating. Due to the absence of any 
definitions for curtain stability, curtain stability is difficult to describe and measure. 
Before attempting to measure, curtain instabilities needed first to be defined and a 
method to quantify them established. To accomplish this, videos of the curtain coater 
during operation were captured and analyzed by a group of observers to define the 
various curtain instabilities. Next, the videos were again observed and the severity of the 
instabilities was quantified on a scale of 1 to 5 with 1 indicating a very unstable curtain 
and 5 representing a stable curtain (Figures 12a-12d).

13
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(a) High Frequency Fluctuations (b) Low frequency fluctuations

(c) Back Bending
Figure 12. Curtain instabilities.

(d) Blowing

At high speeds, the curtain fluctuates in the cross direction of the paper machine. These 
fluctuations can be characterized by their sinusoidal frequency and amplitude. At stable 
operation, these fluctuations can have almost the same amplitude but very different 
frequencies. It was determined that the fluctuations originated from the uneven 
performance of the boundary layer air removal system in the cross direction of the 
machine. Upon further study of the problem, an uneven air ejector and steam profile in 
SSS was found. The problem was attributed to the way the SSS was machined. Upon 
remachining and adjustment of the profile, the problem was eliminated.

It was observed that at higher vacuum levels on the upside of the curtain, the curtain 
would bend backwards (c). The back bending seemed to have a positive effect on the 
overall stability of the curtain, as it delayed the onset of air-entrapment. In severe cases of 
unoptimized boundary layer air removal, blowing of the curtain occurred. Blowing was 
characterized by the violent down stream movement of the curtain as shown in Figure 
12d.

Other types of curtain instabilities identified in this study were splashing and burps, 
which are both shown in Figure 13. Both effects were observed to be induced by 
viscosity and surface tension effects respectively. If the viscosity of the coating was low, 
splashing occurred. Operating at a low Weber number (low flow rate or high surface 
tension at a given flow rate) resulted in the presence of intermittent “burps” being 
introduced into the curtain. Both splashing and burps led to coating defects in the dried 
coating layer.

Based on these definitions, a stable curtain was defined as, one that is totally free of any 
of the effects mentioned above, and one that fell in the same plane as the curtain die or 
pulled forward (Figure 14).

14
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Figure 13. Splashing. Figure 14. Straight curtain.

DESIGN OF EXPERIMENT (DOE)
Having defined the criteria used to quantify the stability of the curtain, curtain coating 
trials were performed and videos were recorded. The studies were divided into two 
phases (See Appendix for full DOE). Each study was modeled using Stat-Ease, design of 
experiment modeling software. The first phase was designed to determine the 4 most 
dominant process variables, from 8, affecting the curtain stability. The second 
experimental phase was designed to optimize the performance of the curtain coater by 
further optimizing the 4 dominant variables identified in the first phase. In the second 
phase of the study, coating coverage was chosen as the response variable.

Prior to performing the curtain coater machine trials, rheologieal and surface tension 
studies were performed to set the levels of surfactant and rheology modifier, CMC, to be 
used in the coating formulations. The properties of the basesheet were adjusted by 
coating the paper with a 10% oxidized starch solution (Oji, Inc., Oxidized starch) with a 
metered size press (CIS). The paper was then calendered to adjust the roughness profiles 
and lower the permeability of the paper. Calendering was performed on an off-machine 
super calender at the Mitsubishi pilot plant facility.

The wetting properties of the basesheet were characterized by performing a 60 second 
Cobb test. The Parker Print roughness and permeability o f the basepaper were also 
measured. The properties of the basesheets studied are given in Figure 15.

Base sheet properties

□  cobbGO 

B  roughness 

■  permeability

Base sheet #

Figure 15. Differences in basesheet properties.
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PRELIMINARY RHEOLOGICAL STUDY
A model offset coating formulation appropriate for a LWC heat set web offset 
commercial publication grade was prepared. The amount and type of each component 
used is listed in Table 2.

Table 2. Coating Formulation

Pigments

Coating
Components Commercial name

pph

Clay Ultra White 90 40

GCC Carbitol 90 60

Binders S/B latex JSR 2600 15
CMC Cellogen PR 0.55

Additives Surfactant Niaproof 4 As required
Lubricant Nopcote C-104 0.6

Water retention SPl resin 102 A 0.5

A low molecular weight CMC was used as the rheology modifier and to improve the 
coating surface strength. The amount of CMC added to the coatings was varied by adding 
CMC solutions of different solids to the coating and adjusting the final coating solids 
with dilution water. The solids of the CMC solutions ranged from 0.1 % to 5.0%. The 
interactions between the different coating components; CMC, Clay and latex were 
characterized using several rheologieal test methods. To study the degree of interactions 
between the individual coating components, the rheology of the CMC alone, with clay, 
and with clay and latex were measured separately. The low shear viscosities of the 
coatings were measured using a Brookfield RVT viscometer. The high shear properties of 
the coatings were measured with a Hercules DVT viscometer. Dynamic rheologieal 
measurements were performed using a Haake dynamic stress rheometer using multiple 
geometries. At low levels of CMC addition, couette geometry was used. At higher levels 
of addition, a cone and plate geometry was used.

High shear studies were performed using a Hercules high shear DVIO rheometer, E bob. 
The results of the rheologieal tests are given below. Based on the findings of these tests, 
it was determined that the 0.3 to 0.60 % CMC levels should be used to give a broad range 
of shear thinning and thixotropic properties.

The changes in low shear viscosity of the clay solutions with CMC and latex additions 
are shown in Figure 16. The addition of CMC gradually increased the low shear viscosity 
of the clay and coating (clay and latex). The exponential increase in viscosity with clay 
addition levels above 2.0% is not observed for the coatings. This is probably due to the 
absorption of the CMC onto the clay surface decreasing the concentration of the CMC in 
the bulk solution.
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Effect of CMC Concentration on 
viscosity
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Figure 16. Change in low shear viscosity o f  coating with CMC addition.

The results of the high shear rheologieal studies show an increase in shear resistance and 
thixotropy with increasing levels of CMC addition (Figure 17). At the 0.1-0.2% level of 
CMC addition, the CMC and coatings are almost Newtonian (Figures 18 and 19). 
Comparison of Figures 17 and 18 suggests that the increase in shear resistance in the 
clay/CMC mixtures is most likely due to the hydration of the CMC with water, because 
both figures show a similar increase in thixotropy and shear resistance with CMC 
addition.

Rheology of CMC solutions 
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Figure 17. High shear rheogram o f CMC solutions.
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High shear Viscometer data for Clay+ CMC coating systems
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Figure 18. Influence o f CMC on high shear clay rheology.

Comparison of Figures 19 and 20 show the changes in the viscoelastic properties of the 
coatings with CMC addition. The increase in elastic modulus and critical yield stress 
values with CMC addition indicates that the number and strength of interactions in the 
coating increase as the concentration of the CMC increases. The power law region is 
steeper for the viscous modulus than the elastic modulus. The results correlate well with 
the Hercules high shear rheograms, which show an increase in shear resistance with CMC 
addition. The strength of the clay/CMC interactions appears to be stronger than the 
clay/latex interactions. This is probably due to the partial absorption of the CMC onto the 
clay surfaces.

Effect of CMC Concentration of Elastic modulus of 
Clay+CMC Coating systems
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Effect of CMC on Elastic Modulus (G') of 
Clay+Latex+CMC coating systems
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Figure 19. Contribution o f coating components on the elasticity o f the coatings.
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Effect of CMC on Viscous Modulus (G") of
Clay+Latex+CMC coating systems

100000

10000

100 1000 

Stress (Pa)
10000 100000

- * - 2 .0 %  CMC 
H— 1.0% CMC 

- * - 0 .7 5 %  CMC 
-3 *-0 .5 %  CMC 
-♦ — 0.3%  CMC 

0.2 % CMC 
-X -0 .1  %CMC

Figure 20. Contribution o f coating components on the viscous modulus o f  the coatings.

Based on the findings of the rheologieal studies, it was determined that coatings with a 
broad range of shear thinning, thixotropic and viscoelastic properties could be obtained 
by adjusting the levels of CMC addition from 0.10-2.0%. Since there was no significant 
difference in the high shear rheograms of the different GCC pigment coatings, it was 
decided that the curtain coating application studies would be performed using only one 
pigment. Surface tension measurements were then performed on these coatings to 
determine the best level of surfactant addition for maintaining the stability of the curtain 
at low flow rates. Only one surfactant, Niaproof 4 (Niacet Inc.) was used.

A preliminary study was undertaken to identify the surfactant dosage levels that would 
provide surface tension values of 40, 35 and 30 dynes/cm. Surface tension measurements 
were made using a Wilhelmy plate instrument. The sensitivity of the Wilhelmy 
measurements to viscosity and pigmented dispersions is well known, so due to the high 
solids (54%) of the coatings, the measurements were not very reproducible. Lacking 
precision and accuracy, the measurements were nevertheless helpful in deciding on a few 
appropriate surfactant dosage levels that could be carried forward in the studies. The 
results of these studies are given in Figure 21.

To improve the accuracy and precision of the data, attempts were made to measure the 
surface tension at lower coating solids. However, the coating solids could not be reduced 
too low, as the results would be less representative of the actual formulation. A small 
study was done to determine the highest acceptable coating solids (solids which will give 
less than 5% variation from reading to reading). The standard coating formulation was 
prepared at 54 % with the same surfactant dosage level (0.20 pph) and the surface tension 
measured at gradually decreasing coating solids.
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Effect of Total Coating Solids on Surface Tension
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Figure 21. Change in surface tension with coating solids.

The acceptable range of the standard deviation for the surface tension measurements 
occurred at a maximum coating solids of 45 %. Above this point, large variations 
occurred. All further surface tension measurements were performed at this solids level.
A surface tension profile was generated to identify the dosages that would give the 
desired surface tension. A standard coating was prepared at 45% solids and dosed 
incrementally, with increasing amounts o f surfactant. Figure 22 shows the profile to be 
near linear in the (0.0-1.0 pph) range. Surfactant dosages of 0.02, 0.20 and 0.80 pph gave 
corresponding surface tension values of 40, 35 and 30 dynes/cm, respectively.
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Efficacy of surfactant
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Figure 22. Surface Tension Profile.
Niaproof 4 is a strong anionic surfactant. Anionic surfactants are known to adsorb on to 
the pigment surfaces; so, the surface pressure or surface tension reduction would depend 
strongly on the adsorption-desorption isotherm of the surfactant. The adsorption/de­
sorption isotherm of the surfactant would, in turn, strongly depend on the amount of shear 
encountered during preparation. Therefore, a separate study was performed to determine 
the effect of mixing on surface tension.

Once again surface tension profiles were generated, but this time the coatings were 
prepared using three different shear conditions. The standard coating formulation was 
prepared at 45% solids and an incremental amount of surfactant was added at low shear. 
Low shear was attained by hand mixing with a spatula. Moderate mixing was obtained 
with a laboratory mixer equipped with a propeller blade. High shear was obtained using a 
lab Cowles mixer at 1000 rpm.

The low shear mixing method with the spatula gave lower surface tensions than the high 
shear mixing method (Figure 23). The coatings prepared under low shear mixing were 
also found to be much lower in viscosity. This is because at lower shear, the absorption of 
the anionic surfactants on to the pigment particles is slow, so more surfactant remains in 
the water phase, lowering both the surface tension and viscosity of the coating. At high 
shear, the adsorption rate is much faster so considerably less surfactant is in the water 
phase, resulting in a higher viscosity and surface tension.
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Effect of mixing type on surface tension
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Figure 23. Influence o f  shear on surface tension.
Having determined the level of surfactant and CMC to be applied, the coating 
formulations parameters for the first phase statistical DOE experiments for the pilot 
curtain coater trials were determined. The coatings were prepared and applied on the 
Mitsubishi curtain coater. A diagram of the Mitsubishi curtain coater is shown in Figure 
27.
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FIRST PHASE DOE

A Taguchi Orthogonal Array (OA) was used in the first phase, which allowed for the 
quick screening of variables in relatively few numbers of trials (Table 3). Taguchi OAs 
are interesting statistical tools for researchers as they allow for a large number of 
variables at different levels to be investigated quickly. The model contains only the main 
effects and does not account for parametric interactions. Therefore, large inherent 
statistical error, low overall values, is characteristic of this model, but is useful 
nonetheless for initial screening of factors. When using this array, the level of variables in 
the model should be selected in such a way that it reduces wild variations in the response 
variables. To reduce statistical error, a decent knowledge of the levels of all variables is a 
pre-requisite. This was accomplished by selecting the levels of our variables from the 
prescreening experiments performed. Six of the variables, perceived to be important, 
were assigned 3 levels. The remaining two variables were assigned 2 levels (Table 4).

Table 3. First Phase Statistical Layout

Study Type Factorial Experiments 18
Initial Design Taguchi OA Blocks None
Center Points 0

Model Main effects
Factor Name Units Type Low High

A Nozzle Height mm Categorical 1 2 Levels; 2
B Surface Sizing gm/m^ Categorical 1 2 Levels: 2
C Roughness PPS Categorical 1 3 Levels: 3
D Coating form Categorical 1 3 Levels: 3
E Surfactant pph Categorical 1 3 Levels: 3
F Coat weight gm/m Categorical 1 3 Levels: 3
G Web speed mpm Categorical 1 3 Levels: 3
H SSS Kg/min/m Categorical 1 3 Levels: 3

Table 4. First Phase Variables and Their Levels

Variable Level of the variab e
Low (1) Medium (2) High (3)

Roughness 3.5 PPS 5.5 PPS 7.7 PPS
Sizing 1 gm/m^ (CIS) - None

Coat weight 6 8 12
Coating Formulation* I 11 III

Surfactant Dosage 0.02 pph 0.20 pph 0.80 pph
Web Speed 800 mpm 1400 mpm 1800 mpm

Curtain Height 150 mm - 250 mm
Steam Flow rate 0.20 kg/min/m 0.55 kg/min/m 1.0 kg/min/m

''Coating formulations I, II and III represent different rheologies.
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Table 5 shows the coating formulation parameters used for the first phase coating 
formulations. The levels o f all other additives were kept the same. The lubricant, Nopcote 
C-104, was added at 0.06 pph, resin SPI at 0.5 pph and NaOH at 0.1 pph, to keep coating 
pH between 9-9.5. Surfactant was added at the predetermined levels of 0.02, 0.20 and 0.8 
pph. The low shear viscosities of the coatings are given in Figure 25.

Coating # Clay/Carbonate CMC Latex
pph pph pph

1 30/70 0.5 7
11 40/60 0.4 12
111 40/60 0.45 12

Phase I Coating formulations
BrookField Viscosity

5000

4000Î
 3000

•t 
8
> 1000

2000

6 12 30 60.00 100

-First Formulation 
Second formulation 

- Third formulation

Brookfield Speed (RPM)

Figure 25. Brool^eld viscosities o f  first phase coatings.
Coatings were prepared in a high shear Cowles mixer in a coating kitchen and then 
transferred to a constant temperature tank. The temperature of the coatings for the trials 
was assumed to be constant at 30 °C. Trials were run according to the above-mentioned 
DOE
The coverage of the coated samples was measured using a burnout method. Samples were 
soaked in a 10% solution of 50% Isopropanol and 50% ammonium hydroxide for an 
hour. The samples were then blotted to remove any excess solution and then burned in an 
oven at 100 °F for one hour. The samples were scanned and analyzed using Adobe 
Photoshop. Black and white area pixels of the scanned pictures were recorded using a 
gray threshold and the coverage defined as the ratio of white pixels to total (black 
+white) pixels.

FIRST PHASE RESULTS AND DISCUSSION
Trial conditions and result of first phase are summarized Table 6 (also see Appendix 1). 
The statistical contribution of each formulation, substrate and process parameter studied 
to coverage (response variable) is summarized in Table 7. The coverage values were very
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high for the 3 coat weights applied. Although coverage improved with coat weight, it was 
found to be only weakly dependant. This result was expected, as curtain coating is 
considered to be a true contour coating method. So the results support existing theory and 
demonstrate the potential benefits of curtain coating.

A higher nozzle height resulted in improved curtain stability, thus favored coverage. No 
conclusive explanation can be offered at this time but some of the effects of curtain 
height are well known. Higher curtain height increases curtain velocity and available 
surface age. Both of these phenomena will result in a higher Weber number, increasing 
the curtain stability. In addition, a higher inertial force will delay the onset of air- 
entrapment. It was observed during the trials that at a lower curtain height, the space 
between the steam substitution system and the curtain nozzle was reduced, resulting in a 
build up of pressure behind the curtain, increasing the amount of air entrapped in the 
coating.

As discussed above. Coating I and III are shear thinning (degree of thinning is higher in 
that order), whereas coating II was Newtonian. The shear thinning behavior favored 
better coverage, while the Newtonian rheology resulted in poor coverage. Again, no 
conclusive explanation can be offered at this time, but the results support the reported 
findings Ifom other curtain coating researchers. Extensional rheologieal experiments are 
needed to possibly reach a better conclusion.

The smoother basesheet favored coverage. Again, coverage was very high at all base 
sheet roughnesses. These results again support the concept of a curtain coater being a true 
contour coater. Other researches have shown an optimum lower value of basesheet 
roughness, but as roughness levels are varied in this study, coverage continued to 
improve with basesheet smoothness.

Sizing with hydrophilic starch improved coverage. Surface sizing with starch improved 
the wetability of the basesheet. Improving the wetability delays the onset of air- 
entrapment and resulted in a higher viscous drag on the curtain, increasing the radius of 
curvature of the pulled film on the impingement zone, reducing total pressure. This 
resulted in delayed/less air entrapment.

Very low and high surfactant dosages (high and low corresponding surface tensions) 
resulted in improved coverage. The surface tensions at 0.20 and 0.80 pph surfactant 
dosage were almost the same and much lower than the surface tension at 0.02 pph 
dosage. This result contradicts established concepts of curtain stability and is considered 
in error.

Web speed was the single most dominant process variable. Higher speeds resulted in poor 
coverage. Air-entrapment and poor curtain stability were clearly visible at high speeds. 
At high speeds the curtain was fluttering violently and air-entrapment was severe. It is 
very clear that an efficient boundary layer air removal system is critical at high speeds. It 
must be noted, though, that the boundary layer air removal system was fixed at 
predetermined levels; according to the DOE. A stable curtain could have been realized by 
manipulating the air ejector pressure and steam flow rate of steam substitution system.
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The first phase trials did result in a better understanding of the ejector pressures and 
steam flow rates required to stabilize the curtain at high speeds.

There seems to be an optimum level of steam flow rate, which should be used for each 
condition. Steam flow rates above or below the optimum level led to unstable and 
sometimes violent curtain instabilities.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CD■D
OQ.
C

g
Q .

■D
CD

C/)W
o'3
O
3
CD

8

i3
CD

3.
3"
CD

CD■D
O
Q .
C
a
O
3

■D
O

CD
Q .

■D
CD

C /)
C /)

Table 6. First Phase Result Summary

Run # Roughness Sizing Formulation* Surfactant
Level

Coating
Weight

Coating
Speed

Nozzle
Height

Steam Flow 
rate

Ejector Air 
Flow rate

Actual Coat 
weight Coverage

PPS (urn) g/m^ Parts gW mpm mm kg/min m /̂min g/m̂ %
1 7.20 none I 0.4 6 800 150 0.20 1.0 6.0 65
2 3.74 1 I 0.4 12 1400 150 0.60 1.8 8.8 75
3 5.57 1 1 0.02 6 1800 150 0.75 2.3 4.3 85
4 3.74 1 I 0.2 8 1800 250 0.20 2.3 6.6 50
5 5.57 1 I 0.2 12 800 250 0.55 1.0 9.1 84
6 7.20 none I 0.02 8 1400 250 1.00 1.8 6.9 91
7 7.61 1 11 0.2 12 1400 150 0.20 1.8 9.0 90
8 5.57 1 II 0.02 8 800 150 0.20 1.0 6.7 50
9 3.72 none II 0.02 12 1800 150 1.30 2.3 8.2 87
11 5.57 1 II 0.4 6 1400 250 1.00 1.8 4.4 92
10 7.61 1 11 0.4 8 1800 250 0.75 2.3 5.2 50
12 T72 none II 0.2 6 800 250 0.35 1.0 .4.1 88
13 3.74 1 111 0.4 8 800 150 0.55 1.0 7.8 85
14 5.54 none 111 0.2 8 1400 150 2.00 1.8 7.8 84

15 7.61 1 111 0.2 6 1800 150 1.30 2.3 5.1 95
16 7.61 1 111 0.02 12 800 250 0.35 1.0 9.5 85

17 3.74 1 111 0.02 6 1400 250 0.20 1.8 4.9 60

18 5.54 none 111 0.4 12 1800 250 0.20 2.3 9.6 50

* (I,II,III) are different coating rheologies
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Table 7. First Phase - Overall Statistics

Variable Coverage
Mean Sum of squares % Contribution*

Nozzle Height mm 97.72 3.11

Surface Sizing gm W 7.53 0.24

Roughness PPS 123.00 3.92

Coating formulation 365.41 11.63
Surfactant pph 498.09 15.86

Coat weight gm/m^ 19.90 0.63
Web speed mpm 2016.46 64.20

Steam Flow Kg/min/m 12.97 0.41
*  % Contribution o f  a  variable is contribution it makes in explaining variance in the response variable

Curtain stability was analyzed by studying videos of the trials and assigning a number 
between 1-10, higher the better. The videos were analyzed by assessing the straightness 
of the curtain, the amount of backflow and fluctuations, and the amount of air 
entrainment and splashing that occurred just around the dynamic wetting line. Three 
observers were used and the scores averaged to rate the contribution of the input variables 
to curtain stability. The results are summarized in Tables 8 and 9. The dark colored boxes 
depict the most important variables. These are the variables that were found to have the 
strongest effect on air entrapment and curtain stability.

Table 8. Overall Statistical Summary for Air Entrapment

Variable Air-Entrapment
Mean Sum of squares % Contribution

Nozzle Height mm 0.89 1.75
Surface Sizing gm/m^ 15.34 30.24

Roughness PPS 2.06 4.05
Coating Form 8.76 17.28

Surfactant pph 0.89 1.75
Coat Weight gm/m^ 3.35 6.60
Web Speed mpm 17.60 34.69

SSS Kg/min 1.85 3.64
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Table 9. Summary of Statistical Contribution of Process and Formulation Parameters on 
High Speed Curtain Stability (colored boxes represent strong dependence)

N .H Sizing Roughnes
s C. form’n Surft c w Webspeed SSS

Straightness - t t i  t 4f

Fluctuation - t - t t

Back Flow t - t

Air
Entrainment - - - t 4' t

Splash - - 4' 4r f

Surface sizing, web speed and coating formulation have the greatest impact on air- 
entrapment and curtain stability in that order. Colored boxes represent a stronger effect of 
the parameter on the particular stability phenomena. These results corroborate with the 
current understanding of curtain operation as discussed earlier. Surface sizing with starch 
improves substrate wettability increasing viscous drag. Higher viscous drag results in a 
higher radius of curvature of the curtain in the impingement zone, reducing total pressure 
in the zone. Coating formulation affects the stretchability of curtain in viscous drag. Air 
entrainment is affected by steam substitution, coating formulation and coat weight. 
Comparing the results for coverage and curtain stability, it is clear that curtain stability 
and coverage is not governed by the same variables or by the same extent by a variable. 
The chosen process parameters are interacting strongly.

SECOND PHASE DOE

Phase I resulted in a good understanding of how to utilize the boundary layer air removal 
system (ejector pressure and steam flow rate) to improve the stability of the curtain, but 
stabilizing the curtain at high speeds remained a concern. To address this concern, web 
speed (higher side) was kept as a variable in the next phase of pilot plant trials.
From the results of the first phase study, it was determined that shear thinning rheologies 
clearly favored curtain coater stability at higher speeds. As a result, it was decided that 
rheology would be further explored in the next phase of trials. As the degree of shear 
thinning is also a factor, coating formulations will be formulated to produce coatings of 
different degrees of shear thinning behavior. Since web speed was found to be the single 
most important factor. The effect of web speed needs to be examined more closely. As 
the curtain is very stable at low speeds, only high speeds were considered in the next 
phase of pilot trials. Since it was determined that the boundary layer air removal system 
must be fine tuned to the web speed, it was decided that steam flow rates would remain a 
variable in the next phase.
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Although base sheet smoothness had a positive impact on coverage, high coverage was 
achieved even for high basesheet roughness. As a result, base sheet roughness effects 
would not be further explored. Because curtain coating coverage was almost insensitive 
to the coat weight, this parameter was also not considered further. It was also decided 
that the curtain height would be fixed, as well as the level of surfactant added.

In the second phase, an irregular factorial model, D-optimal, was used (Table 10). This 
model allowed the two-way interactions between variables to be analyzed, which was 
critical in understanding the influence of curtain coating stability on coverage. Three 
variables were assigned 3 levels and one variable was assigned 2 levels. The levels 
assigned were based on the relative importance of each variable determined from the first 
phase of pilot studies.

Table 10. Second Phase Statistical Layout

Study Type Factorial

Initial Design D-optimal
Center Points 0
Design Model 2F1

Response Name
Y1 Coverage
Y2 Air entrapment

Experiments 26

Blocks
No

Blocks

Factor Name Units Type
Low

Actual High Actual
A Roughness PPS Categorical -1 1 Levels: 3
B SSS Kg/min/m Categorical -1 1 Levels: 3
C Formulation Categorical -1 1 Levels: 3
D Speed MPM Categorical -1 0 Levels: 2

The levels of variables and constant parameters are summarized in Table 11 and 12 for 
the second phase. The formulations for the second phase coating trials are given in Table 
12. Lubricant, Nopcote C-104, was added at 0.06 pph, resin SPl at 0.5 pph and 0.1 pph 
NaOH to keep coating pH between 9-9.5. Surfactant was added to achieve the desired 
levels of 0.02, 0.20 and 0.8 pph. The low shear viscosity properties of the coatings are 
shown in Figure 26.

Table 11. Second Phase Variables and Their Levels
Variable Level of the variable

Low (-1) Medium (0) H igh(l)
Roughness 7.2 PPS 6.2 PPS 5.5 PPS
Web Speed 1500 mpm - 1800 mpm
Coating Formulation* 1 11 111
Steam Flow rate 0.80 kg/min 1.2 kg/min 1.6 kg/min

*Coating formulations I, II and III represent different rheologies
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Table 12. Second Phase Fixed Parameters
Sizing None

Coat weight 6 gm sW
Surfactant Dosage 0.20 pph

Curtain Height 250 mm

Table 13. Second Phase Coating Formulations

Coating # Clay/Carbonate CMC Latex
I 40/60 0.55 14
11 40/60 0.55 15
III 40/60 0.5 12

First Formulation 

Second formulation 

Third formulation

Brookfield Speed (rpm)

Figure 26. Brookfield viscosities o f second phase coatings.

SECOND PHASE RESULTS AND DISCUSSION

The results of the second phase pilot trials are summarized in Tables 13 and 14 (also see 
appendix II). As shown, the steam flow rate was the only significant main effect. 
Roughness, in combination with web speed and coating formulation, and steam flow rate 
in combination with web speed were found to be significant. The roughness/formulation 
interaction was the single largest effect (39%) followed by the steam substitution flow 
rate (24%). The next two significant effects are much smaller; roughness-speed (4.7%) 
and web speed-steam flow rate (6%).
The effect of web speed was surprisingly small but can be explained by the better 
manipulation of the boundary layer air removal system. The effect of web speed was 
offset by the dominant contribution of the steam substitution system. In the first phase, 
the web speed was dominant, whereas the contribution of the steam substitution was 
insignificant. Web speed -  steam flow rate was significant in combination with each
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other. This supports the conclusions from the first phase that showed the effect of steam 
substitution to be dominant for curtain stability. Thus, steam substitution is critical for 
realizing a stable curtain and it should be tuned with web speed.
Roughness was not found to be significant by itself, but in combination with the coating 
formulation and web speed it critically impacted the curtain stability. The roughness-web 
speed interaction can be explained by the effect of roughness on boundary layer air 
thickness. Roughness also affects the ease of boundary layer air removal, thus the 
efficiency of the steam substitution system. Its interaction with the coating formulation 
can be explained with current data or any existing theory.
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Table 14. Second Phase Result Summary

Run #
Roughness Steam Flowrate * Formulation WebSpeed Coverage

PPS (nm) Kg/min/m ** MPM %
1 5.5 0 III 1800 90
2 62 -1 III 1800 73
3 6.2 -1 I 1500 67
4 7.2 0 II 1800 89

5 5.5 0 I 1800 55

6 62 0 I 1800 86
7 5.5 0 II 1500 87

8 6.2 0 III 1500 72

9 5.5 -1 III 1500 90

10 7.2 0 III 1800 68

11 6.2 1 II 1500 80

12 7.2 1 II 1800 82

13 7.2 I 1500 95
14 5.5 1 I 1500 89

15 62 1 I 1800 82

16 7.2 II 1500 73

17 6.2 II 1800 68
18 5.5 I 1800 66

19 7.2 III 1800 70

20 6.2 1 III 1800 86

21 7.2 1 III 1500 84
22 5.5 1 II 1800 84

23 5.5 II 1800 72
24 7.2 1 I 1800 90

25 6.2 0 II 1800 78
26 7.2 -1 I 1800 78

* (-1,0,1) are the levels of steam flow rates.

** (I, II, III) are coating rheologies differing in order of shear thinning

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 15. Second Phase - Overall Statistics

Sum o f squares DF Mean SOS % Contribution
Roughness ( A ) 81.74 2 40.87 3.13

S S S ( B ) 660.80 2 330.40 24.24
Formulation ( C ) 2.83 2 1.41 0.26

Speed ( D ) 32.40 1 32.40 3.93
Interaction AB 219.02 4 54.75 3.35
Interaction AC 1024.88 4 256.22 39.37
Interaction AD 5.84 2 2.92 11.36
Interaction BC 164.40 4 41.10 3.20
Interaction BD 209.02 2 104.51 6.43
Interaction CD 115.17 2 57.59 4.73

% Contribution o f  a  variable is contribution it makes in explaining variance in the response variable

CONCLUSIONS
Employing an efficient boundary layer air removal system can alter the operating window 
of a curtain coater. The boundary layer air removal system should be tuned with web 
speed. The role of the boundary layer air removal system is especially critical at high 
speeds. Base sheet roughness, in combination with coating formulation, is the most 
important variable in curtain coating operation. A smooth base sheet improves coverage. 
Very high coating coverage is possible at low coat weights with a curtain coater. Shear 
thinning coating rheology favors curtain coating. The degree of shear thinning is 
important however, considering the extensional flow field in the process, more 
rheological studies are needed to establish the single most important rheological 
parameter to curtain coating. Coat weight improves coverage, but coverage is only a 
weak function of coat weight. Higher curtain height and Base sheet wettability improves 
overall curtain operation stability.
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APPENDIX -I

First Phase Results
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APPENDIX II -  Second Phase Results
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ABSTRACT

Curtain coating is a non-contact metering coating process that offers enormous potential 

as a useful high speed, on maehine, eoating method for the paper industry. Its ability to 

coat through non-impact metering provides excellent eoverage, and to apply a controlled 

coating layer of uniform thickness makes curtain coating very attractive as a new coating 

process. However, to achieve success, curtain stability at commercial speeds must be 

proven achievable on a consistent basis.

Curtain stability is the most important conditions for the satisfactory curtain coating 

operation because a uniform coating layer cannot be obtained without it. To obtain a 

stable curtain a Weber number, We >2 should be met throughout the length of the curtain. 

This criterion can be met at any surface tension, by adjusting flow rate only, but requires 

a very high flow rate at high surface tension, resulting in high coat weights. Thus, to 

operate at low flow rates, and expand the operational usefulness of this process, the 

surface tension of the coating must be reduced.

Today, a large variety of surfactants, which encompass a full spectrum of HLBs, are 

available for use in this application. However, the suitability of their chemieal 

composition and dosage requirements is not clearly understood. Part of the problem in 

determining these requirements is that the measurement of static and dynamic surface 

tension at high coating solids (solids of practical application) is problematic, using 

presently available instrumentation. In the present study, static and dynamic surface 

tensions were measured with surfactants in water and coatings (up to 62% solids) using a 

Wilhelmy plate, maximum bubble and Mach angle measurement method. Dynamic 

surface tension measurements using maximum bubble pressure and Mach angle methods 

did not agree well with each other. With the Mach angle method, surface tensions were 

found to increase in the curtain, as the curtain fell under gravity (increasing surface age), 

while the maximum bubble pressure method showed the surface tension to decrease with 

surface age. It was determined that the extent of change in the surface tension values of 

the coatings depended on the type and dosage of surfactant used. Low HLB soluble 

surfactants (-11-13) were found to be better for obtaining and maintaining a stable 

curtain at high speeds.
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INTRODUCTION

Dynamic and Static Surface Tension Theory

The theoretical relationship between surface tension (static and dynamic) and surfactant 
adsorption is a combination of thermodynamic relations, for ideal solutions, and 
empirical relationships for practical concentrations. A detailed description of these 
relations is available in several textbooks, e.g. Ross and Morrison and Adamson (1,2). 
Based on thermodynamics, for an ideal solution, the variation of the surface tension is 
related to surfactant adsorption by the Gibbs equation.

da = R T r ,  (1)
y'T,Pa(ln(C))

where a  is the surface tension, C is the bulk concentration of the surfactant, T is the 
absolute temperature, R is the universal gas constant and T is the surface excess 
concentration of the surfactant at the interface. At very low concentrations, equation (1) 
reduces to:

71 = a ^ - a  = RTT  (2)

Here, k is called the film pressure. However, this equation is only applicable when the 
surfactant behaves as a two dimensional gas in the surface. At such conditions, the film 
pressure becomes linear in the surfactant concentration. Such behavior is only possible at 
extremely low surfactant concentrations. For more practical surfactant concentrations, in 
the range of industrial applications of surfactants, an empirical equation, posed by Von 
Szyszkowski (3), can be used.

7T = a ^ - a  = RTY^\n{\ + C la )  (3)
Here Tœ is the maximum excess surface concentration and a, is a constant. The constant 
a-term, is an important characteristic of the surfactant, known as the Langmuir constant. 
Combining the Gibbs and Szyszkowski equations, an adsorption isotherm (1) is derived 
for practical surfactant concentrations as follows:

Equation (1) can be rewritten as

da
c7t,P

(4)

Taking the derivative of equation (3),

da

,5 ( 0
Combining equations (4) and (5) yields.

y C + o (5)
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The above equation is the Langmuir adsorption isotherm (4), also referred to as, the 
Langmuir-von Szyszkowski equation. The Langmuir- Szyszkowski equation relates the 
bulk surfactant concentration, to the surface excess concentration at the interface. It is 
applicable at practical surfactant concentrations under both static and local equilibrium 
dynamic conditions. Under dynamic conditions, the concentration gradient driven 
surfactant diffusion process is responsible for restoring equilibrium at the interface. For 
such conditions, the diffusion rate of the surfactant, in the given medium and surface age, 
plays an important role. Surface age is the age of the surface from the time of its 
disturbance. However, the Langmuir- Szyszkowski equation does not relate to these 
dynamic variables, because there is no factor to account for diffusion. Under dynamic 
conditions, surfactant diffusion to and from the interface occurs in an attempt to restore 
the equilibrium surface excess. The diffusion-controlled adsorption (change in surface 
excess with surface age) is described by the Ward and Tordai equation (5).

f  f  j/2
r = 2 Q ”4 fJ (7)

Here D is the diffusion coefficient, Co is the bulk concentration, Q  is the subsurface 
concentration, t is the age of the surface, and t is the auxiliary variable. The Ward and 
Tordai equation is the most rigorous description of the diffusion-controlled adsorption 
proeess. The first term in the Ward and Tordai equation represents the diffusion from the 
bulk phase to the subsurface and the second term represents the diffusion from the 
interface, back to the bulk. Diffusion back to the bulk is appreciable only when the 
system is at or near the point of equilibrium. For small surface ages, the second term can 
be neglected.
Physical Variables in Curtain Coating Affecting Surface Tension
The variables of a curtain coater that affect the dynamic surface tension and stability of 
the curtain are flow rate Q (per unit slot length), slot opening do and curtain height H. 
Neglecting the curtain swell at the slot exit, do, the initial curtain thickness will be the 
same as the slot opening. Thus, both the initial curtain thickness and slot velocity, Uo, 
depend on slot opening. To understand how these quantities influence the dynamic 
surface tension, let us use the following terms to describe and analyze the flow of a 
curtain. In accordance to Figure 1, let H be the height of the curtain from the slot opening 
of a curtain die that has an instantaneous curtain velocity of Vh, curtain thickness of da, 
and surface age of, ta-

Figure 1. Curtain Coating process.
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Using these terms, the conservation of mass says,

Q = U^xda^V„xd„,  (8)

where do is the slot opening, neglecting any curtain swell at the slot exit. From the basic 
equations for free fall of any liquid under gravity, the curtain velocity Vh, at the position 
H and time t are related as follows:

(9) 
(10) 

= + (11)

where g  is the acceleration due to gravity.
Brown (6) reported that at the onset of flow, there will be a transition zone between exit 
of the slot and point of free fall in which the flow field is affected by viscous effects. To 
correct for these viscous effects, a viscosity correction factor (H-0.5(p/p)^^^), has been 
suggested (8,9) to be used for replacement of H in the above equation (7). However, for 
most cases, this viscosity correction can be neglected, as the length of the transition zone 
is very small for most practical applications i.e., it is about 1mm for 10 mPas and 23 mm 
for 1000 mPas.
The time of curtain fall from the slot opening to the position, H, is the effective surface 
age of the curtain at that position. Thus, the surface age of the curtain at position H from 
the slot opening can be calculated from equation (12) and the Weber number. We, at 
position H can be determined from equation (13).

Surface Age = ( , = (12)
g

p d X  PQ K  pQ ,l(u .^*2gH )
' 2 . ( 7 2 . ( 7 2.(7fj

In equation 13, Oh is the local surface tension at position H from the slot opening. From 
equations 8-13, it is clear that increasing the curtain height increases both the surface age 
and Weber number. A higher surface age also results in lower surface tensions. Our 
previous research indicates a positive affect of curtain height on curtain stability (10). A 
graphical representation of the affects of curtain height on curtain properties, derived 
from equations 8-13 is given in Figure 2.
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Figure 2 Effect o f curtain height on curtain properties; Flow rate LO cm^/s, Slot 
opening 600 pm, Viscosity 500 cP, Surface Tension 35 mN/m.

In these calculations, the surface tension is assumed to be constant and the contribution of 
the slot opening (or initial curtain thickness) on curtain velocity is negligible. Curtain 
velocity is of the order of 0.2 m/s at the slot exit whereas it is of the order of 1.0 m/s and 
2.0 m/s at a curtain heights of 50mm and 200mm, respectively. Since the acceleration due 
to gravity (g) has a much stronger contribution to the curtain velocity, for all practical 
purposes the curtain can be considered to be free falling under gravity. The flow rate 
increases the Weber number, but has a minimum contribution on both the curtain velocity 
and surface age. For example, for a curtain height of 50 and 200 mm, the surface ages are 
84 msec and 184 msec, respectively. To obtain the graphical representations above, a 
constant surface tension was used, but in reality, the dynamic surface tension is strongly 
influenced by surface age, surfactant dosage and type of surfactant. As the rate of change 
in area (or new surface creation) is uniformly increasing, the diffusion rate of the 
surfactant to the interface will determine if the surface tension increases or decreases with 
surface age. For this case, the rate of new surface creation per unit slot width w is given

From the Ward and Tordai equation (7), the diffusion rate (D) will be influenced by the 
medium for a given surfactant. Thus, it will also depend on the coating formulation; 
coating solids, type of pigments and binders, and viscosity. As dynamic surface tension is 
critical for achieving curtain stability, its measurement is of critical importance.
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Surface Tension Measurements
Surface tension measurements can be performed either dynamically or statically. A 
description of methods used to measure each and their inherent problems are reviewed 
below.
Static Surface Tension -  Wilhelmy Plate
The Wilhemy plate method^ ' i s  one of the simplest and the oldest methods for 
measuring the static surface tension of a fluid. In this method, a very lightweight plate, 
connected to a lever, is lowered on to the surface of a liquid, to the point where it just 
touches the surface*̂ ” '. At this point, the liquid rises and forms a meniscus around the 
perimeter of the plate. The force exerted by the meniscus on the plate is given by,

F = per cos(0) (15)

where o is the surface tension of the fluid, p the perimeter of the plate edge in contact the 
with liquid and 0 is the contact angle. Although the Wilhemy plate method is a very 
reliable method for determining the surface tension of low viscosity solutions, it is prone 
to various errors at higher viscosities. Viscous affects are of particular importance. At 
high viscosities (>100 mPas), viscous affects become important such that this method is 
no longer reliable. Since most paper coating viscosities are much higher than 100 mPas, it 
is not a reliable test method for this purpose. However, it is still useful as an initial 
screening tool for determining the surfactant efficiency and effectiveness in water.
Dynamic Surface Tension- Maximum Bubble Pressure Method
Another method used to measure the dynamic surface tension of fluids is the maximum 
bubble pressure drop method (12-14) (FigureS). In this method, air is blown though a 
capillary into a liquid, forming bubbles at the tip of the capillary.

Figure 3. Maximum bubble pressure method.
The pressure inside the bubble increases, until the air pressure and surface pressure of the 
liquid meniscus are equal, as governed by the Laplace equation. After this maximum 
pressure is reached, the bubble grows rapidly until it detaches from the capillary, at which 
time the pressure drops. Pressure is displayed in a saw-tooth form with the maximum 
pressure is given by the peak of the saw tooth curve. Once the maximum pressure is 
determined, the surface tension is calculated using the Garret and Ward (12) equation 
(16).

A P -  pgh^<7 = R ( 16)
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Surface age is determined by the time between two successive pressure peaks. By 
adjusting the air pressure, the frequency of bubble formation, inverse of surface age, can 
be adjusted. The interpretation of surface tension at various bubble frequencies is 
complex and is marred by inaccuracies. This is because the time between maximum 
bubble pressure and time of bubble detachment, dead time, is not factored into the surface 
age, resulting in erroneous data. According to Ward and Garret (12), this dead time is 
dependant on the measured surface tension and radius of the capillary.
This method is also very sensitive to viscous effects and particulate contamination, thus 
making it unsuitable for measuring the surface tension of most paper coatings. Coating 
components like pigments and binder can deposit on the capillary walls, reducing its 
effective radius.
Dynamic Surface Tension - Mach Angle Method
As a thin liquid film is disturbed, the shape of its free edges is governed by its Mach 
number, M. A detailed mathematical description of this phenomenon can be found in 
reference 15. The Mach angle can be determined by measuring the angle formed upon the 
disruption of a stable liquid curtain (Figure 4). After experimentally determining the 
Mach angle, the Mach number and surface tension can be calculated from equation 17.

Figure 4. Measurement o f Mach angle.

M
= sin(«) =

W =■

2a  
pdV^

sin^(tr) 2a
1

(17)

(18)

Here, a  is half the Mach angle, p  is the liquid density, a  is the local surface tension, d  is 
the local film thickness and V is the local velocity. A freestanding liquid film can be 
readily created by flow though a die. The Mach angle method is the direct and de facto 
measurement of dynamic surface tension. Since it is free from viscous effects, it can be 
used for any liquid as long as it creates a film. The local velocity and thickness can be 
readily calculated from the basics equations. Precise measurement of flow rate, distance 
of the curtain disturbance from the slot opening, H, and Mach angle, a , is required.

OBJECTIVES
To understand the dynamics of curtain stability and behavior of surfactants, accurate and 
reproducible dynamic surface tension measurement are needed. In the current research.
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the dynamic and static surface tension for a broad range of surfactants (range of HLBs) is 
measured in different media (water, coating colors) at different dosage levels and the 
surface ages of each surfactant are determined. The impact of surfactant chemistry, 
surfactant dosage, and surface age on curtain stability is proposed.
EXPERIMENTAL
The static surface tensions of nine different surfactants (Table 1) were measured in DI 
water at room temperature using a Wilhelmy plate tensiometer. Surfactants were added in 
small increments and aged for 5 minutes at room temperature prior to making the 
measurement. The titration approach, two similar values consecutively, was employed. 
Surfactant addition was done at well over the critical micelle concentration, CMC, of the 
surfactant.
The dynamic surface tension of each surfactant was measured by both maximum bubble 
pressure (Sensadyne) and Mach angle methods. For the maximum bubble drop 
measurements, a temperature calibration was performed with hot and cold water and a 
surface tension calibration performed using distilled water and Methyl di-iodide (50.80 
mN/m). The surfactants were then added to distilled water at room temperature and aged 
for 5 mins. Once aged, the bubble frequency was slowly increased in small increments in 
the range of 0.5 to 25 bubbles/sec and the data collection started when equilibrium was 
reached. After completing the measurement, surfactant was added and the procedure 
repeated.
To determine the Mach angle, a model coating was prepared as given in Table 1. All 
dynamic measurements were performed using a slide curtain coater (slot opening 0.6mm, 
slot width 30 cm, slide angle 45° and slope length 5 mm), located at the MeadWestvaco 
research center in Chillicothe, OH. To prevent inaccuracies, a large master batch of 
coating was prepared without surfactant. Coatings were prepared by adding slurried 
pigments and Carboxymethylcellulose to a Cowles disperser. After dispersing the 
pigments and thickener for 5 minutes, latex and dilution water were added to obtain the 
desired solids (62%, 58% and 54%). From this master batch 2001bs of coating was 
transferred to a supply tank for the curtain coater. Predetermined amounts of surfactants. 
Table 2, were then added directly into the the supply tank, which contained a slow speed 
mixer. The coating was allowed to mix for 10 min. prior to applying it to the curtain 
coater die head. The curtain was disturbed using a 2mm steel rod. The placement of the 
rod was adjusted to four different distances from the exit of the die and measurements 
were taken at eaeh point. The rod distances used were 50mm, 100mm, 150mm and 
200mm. These distances allowed surface ages of 87, 129, 161 and 188 msec., to be 
obtained respectively. Mach angle pictures were taken using a 2MP digital camera from a 
fixed distance (Figure 5). In the cases where the curtain failed to break, the wake angle 
was photographed instead. The Mach angle (or the wake angle) was later measured by 
analyzing the pictures using Adobe Illustrator.
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Figure 5. Measurement o f Mach angle at 50mm, 100mm, 150mm and 200mm.

To assure a constant flow of coating to the curtain die, a low pulsation mono pump was 
used. The rpm of the pump was varied and the volumetric flow rate determined for each 
of the three coating solids, Figure 6.

2.45

2.05

1.65

1.25

0.85

0.45
680180 280 380 480 580

Pump Speed (rpm)

780

Figure 6. Calibration curve for the supply pump.

Using the equation from the best line fit to Equation 19 of the data, the pump RPM and 
Flow rate/unit width (cm^/s) were determined.

Q = -1.0832xl0'Vm ^ + 2 .4 5 3 3 x l0 V m  + .13042 (19)

Three different pump speeds, 300, 400 and 500 rpm, corresponding to 0.86 cm^/s, 1.10 
cm^/s and 1.33 cm^/s, respectively, were used. Some surfactants were studied at 250 and 
350 pump rpm corresponding to 0.74 cm^/s and 0.98 cm^/s. In addition to these 
measurements, a minimum flow rate study was also performed. For this study the rpm of 
the pump was reduced gradually until the curtain broke and the rpm at break was 
recorded.

Table 1. Coating Formulation

Carbonate Clay SBR latex CMC Lubricant

Name Carbitol 90 Ultra white 90 CP 620 NA Cellogen PR Nopcote 104

pph 60 40 12 0.45 0.6
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C 4H 9 —  Ç  —  C 2H 4- - - - - C  —  C H 2C H ( C H 3)2
C 2H 5 S O ^ N a

316 14 Anionic

Tergitol Minfoam 
1X

S econdary  Alcohol 
Ethoxylate

^ ( C 2H 40) x H 645 12.6 Nonionic

Tergitol 15-S-3 S econdary  Alcohol 
Ethoxylate 336 8.3 Nonionic

Tergitol NP9 NonylPhenol Ethoxylate CgHi8— ^ ^ ^ ^ ( O C H a C H a j g O H 616 12.9 Nonionic

Tergitol TMN6, 
90%

S econdary  Alcohol 
Ethoxylate 
(branched)

(C2H4Û)xH
/

0 543 11.7 Nonionic

Dowfax 2A 0 Alkyl Diphenyl Oxide 
Disulfonate

s

A

O a N a  S O a N a

— 0 — ^  ^ — CiaHaa

524
NA Anionic

Dowfax 8390 Alkyl Diphenyl Oxide 
Disulfonate 643

Triton X-100 Octylphenol Ethoxylates CaHw— ^ ^ ( O C H C H ) g - i o O H 606 13.4 Nonionic

Triton GR-7M Sulfosuccinate
^ 0 0

0

^  0

444

NA Anionic

Triton GR-5M Sulfosuccinate 338
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RESULTS AND DISCUSSION 
Static Surface Tension - Wilhelmy Plate

The influence of surfactant type and concentration on static surface tension are shown in 
Figures 7 and 8. The nonionic surfactants were more efficient i.e., they reached the CMC 
(critical micelle concentration) at a very low concentration. They also have a sharp and 
well defined CMC region. The large decrease in surface tension with surfactant dosage 
for the nonionic surfactants in comparison to the anionic surfactants indicates that they 
are more effective in lowering the surface tension of water below 30 dyne/cm than the 
anionic surfactants. Surface tensions below 31-33 dyne/cm were not obtainable with the 
anionic surfactants. The Tergitol TMN6 was found to be the most effective and efficient 
nonionic surfactant. Niaproof 4 was found to be the least efficient of the surfactants 
tested.

40

0.0 0.1 0.2  0 .3  0 .4

Surfactant Concentration (pph)

0.5 0.6

Tergitol Min foam  )K Tergitol TM N 6  

4— Tergitol 15-S -3  — A— Tergitol N P9

Figure 7. Static surface tension o f nonionic surfactants using Wilhelmy plate at room 
temperature.
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0.0 0.1 0.2 0.3 0.4 0 .5 0.6

Surfactant Concentration (pph)

- Niaproof4

- Dow Fax 8390

-D o w F a x -2 A O  

Tergitol G R -5m

•  Triton-GR -  7M

Figure 8. Static surface tension o f anionic surfactants using Wilhelmy plate at room 
temperature.
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From the static surface tension values measured, various constants, inherent to the 
surfactant, were calculated. These values are given in Table 3. The maximum surface 
excess. Too, and Langmuir constant {a) were obtained by iterative curve fitting the data to 
the Von Szyszkowski- Langmuir equation. The area per molecule was calculated directly, 
at the surfactant’s CMC.

Table 3. Results of Static Surface Tension Measurement

S urfac tan t
Maximum
S urface
E xcess

Lamgmuir
C onstan t

A rea per 
m olecule

Minimum
S urface
T ension

CMC

r .x io ^
(Mols/m^)

axlO®
(Mol/dm^)

Â" mN/m ppm

Niaprooof 4 4.27 890 0.99 53 34 NA

Tergitol Minfoam 
1X

NA NA NA NA 29 34

Tergitol NP9 NA NA NA NA 30 NA

Tergitol TMN6, 
90%

1.07 2.55 0.966 64 26 580

DowFax 2 AO 1.91 0.99 0.98 77 34 NA

DowFax 8390 7.39 510 0.97 47 44 NA

Triton X-100 NA NA NA NA 31 130

Triton GR-7M 0.09 4.5 0.99 80 NA 2300

Triton GR-5M 1.499 2.17 0.99 64 26 2300

Dynamic surface tension - Maximum Bubble Pressure Method

The maximum bubble drop measurements showed the surface tension of all the 
surfactants to decrease with surface age, although by varying degree. Surfactant behavior 
showed a marked dependence on HLB. The low HLB surfactants had much lower surface 
tensions and their variation with surface age was also much lower than the high HLB 
surfactants. This is due to the differences in the solubility of surfactants in water. The low 
HLB surfactants have a lower solubility in water. As a result, they have a higher surface 
excess and a broader sub layer. In Figure 9, the dynamic surface tensions of selected 
anionic and nonionic surfactants at 0.10 % concentrations are compared.
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Figure 9. Dynamic surface tension o f selected ionic and nonionic surfactants at O.lOpph 
using maximum bubble pressure method.
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Figure 10. Dynamic surface tension o f nonionic surfactant (Tergitol TMN6) at various 
concentrations using maximum bubble pressure method.
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Figure 11. Dynamic surface tension o f ionic surfactant (Triton GR 5M) at various 
concentrations using maximum bubble pressure method.
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A decrease in surface tension with surface age was found for all the surfactants tested. 
The results show the dependence of dynamic surface tension at any surface age on bulk 
concentration. For simplicity the results for only the Tergitol TMN6 and ionic Tergitol 
GR 5M surfactants are shown (Figures 10 and 11).
The dynamic surface tension measurements revealed a critical surfactant concentration, 
above which surface tension is dependant only on surface age and not on concentration. 
Again, low HLB surfactants are more efficient than high HLB surfactants i.e. they reach 
this critical concentration much faster than higher HLB surfactants. Table 4, shows the 
dynamic critical concentrations of found for the surfactants.

Table 4. Dynamic Critical Concentrations of Surfactants

Niaproof 4 Triton GR 
7M

Triton GR 
5M

Tergitol
TMN6

Tergitol 
IMInfoam IX

Dowfax
8390

Dowfax 
8390 2A0

Anionic Anionic Anionic Nonionic Nonionic Anionic Anionic

pph pph pph pph pph pph pph

0.30 0.20 0.20 0.10 0.15 0.26 0.22

Dynamic surface tension - Mach angle Method 

Niaproof 4

£>

•j

0.02 ppll 0.20 ppll 0.80 ppll

62» 0

?8®o

54»»

Curtain Height (m ini
Niiipioof 4

Figure 12. Dynamic surface tension o f curtain at 50mm, 100mm, 150mm and 200mm 
curtain heights and coating solids o f 62%, 58% and 54%. Surfactant, 
Niaproof 4 is dosed at 0.02 pph, 0.20pph and 0.80pph.
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Surface tension increases with curtain height at all concentrations and coatings solids. 
Surface tension reduces with surfactant concentration, but the extent of reduction is 
higher at higher curtain heights (surface age). At lower curtain heights, the difference in 
surface tensions is very little across surfactant concentrations and coatings solids. Surface 
tension increases for about the same extent in all coating solids, about 15 dn/cm. The 
increase in surface tension with curtain height is higher at lower surfactant concentration, 
whereas it is lower with higher concentrations. This suggests that dynamic surface 
tension is dependant on initial surfactant surface excess and as the curtain surface area 
increases, surface excess decreases, increasing surface tension. Niproof 4 is highly 
soluble and not a very effective surfactant, as suggested by static surface tension 
measurements. As a very soluble surfactant, its initial surface excess is relatively low, 
resulting in rather high surface tension increases. Coatings also have a strong effect. The 
increase in surface tension with curtain height is lower at lower coatings solids.

Tergitol Minfoam IX

0.05 pph 0.10 pph 0.15 pph

•j

■X

XA 620 0

580 0

540 0

C'uitaiii Height ( mmI Tergitol Miufoain IX

Figure 13. Dynamic surface tension o f curtain at 50mm, 100mm, 150mm and 200mm
curtain heights and coating solids o f 62%, 58% and 54%. Surfactant, Tergitol 
Minfoam IX, is dosed at 0.05 pph, 0.10 pph and 0.15 pph.
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Tergitol Minfoam IX is a very effective low HLB surfactant. It has large surface excess 
at the air interface. The surface tension drops with surfactant concentration across curtain 
heights, but increases with curtain height. The extent of surface tension increase is lowers 
with lower coatings solids. This is expected as coating medium has more water with 
reducing coatings solids, low HLB surfactant like Tergitol Minfoam IX will preferably 
migrate to the air interface, increasing surface excess. At 54 % solids there is no 
increasing in surface tension with curtain height at all surfactant concentration. This 
results in increasing Weber number with curtain height and is reflected by very stable 
curtain and low minimum flow rates.

Tergitol 15-S-3

Tergitol 15-S-3 has a low HLB of 8, so is sparingly soluble in water. It is widely used as 
defoamer. Because of its very Low HLB, Tergitol I5-S-3 phase separates in aqueous 
media and is not an effective surfactant.

0.17 pph

62®o

0.03 pph 0.07 pph

o

58® 0

54«o

Cm TO ill lieislit inuu)
T ergito l 15-S-3

Figure 14. Dynamic surface tension o f curtain at 50mm, 100mm, 150mm and 200mm
curtain heights and coating solids o f 62%, 58% and 54%. Surfactant, Tergitol 
15-S-3, is dosed at 0.03 pph, 0.07pph and 0.17pph.

Surface tension drops with concentration across coating solids, but increases with curtain 
height. Surface tension is relatively higher than other more soluble surfaetants. Again the 
extent of surface tension increases is higher for higher coating solids and is very low at
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lower solids. This suggests more efficient phase separation at more aqueous media, 
resulting is higher surface excess at lower coatings solids. At its highest concentrations, 
there is no or little change in surface tension at curtain heights, indicating little or no 
change in surface excess as curtain expands under gravity. Because of its low HLB, this 
surfactant seems to have reached its maximum surface excess within the die itself, the 
coating-steel interface. As the surface tension does not increase with curtain height, the 
Weber number increases, improving curtain stability. The curtain with Tergitol 15-S-3 
surfactant, because of phase separation, produces “burps”, making it unsuitable the 
curtain coating.

Tergitol NP9

Tergitol NP9 is a low HLB, water soluble and effective surfactant as suggested by static 
surface tension measurements in water.

r.
5

c/;

(0.03 ppll) (0.07 ppll) (0.17 pph)

(62°,)

J-,----- ,----- ,----- ------------- ,----- r -

5C 60

45

4C

35

60'

-------------

.

-•

(58°,)

(?4%!

153

Ciutaiii Height (iimi)
Tergitol NP9

Figure 15. Dynamic surface tension o f curtain at 50mm, 100mm, 150mm and 200mm
curtain heights and coating solids o f 62%, 58% and 54%>. Surfactant, Tergitol 
NP9, is dosed at 0.03 pph, 0.07 pph and 0.17 pph.

There is little or no surface tension change with curtain height but it drops with 
concentration. Again, surfactant efficiency improves with lower coatings solids as with 
other low HLB surfactants. Surface tension is especially stable at higher surfactant
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concentration. As Tergitol NP9 has a low HLB, its surface excess at the Coating-steel 
interface is not very different from its surface excess for coating-air interface. In addition, 
because of the low HLB it has a broad sublayer. The combination of a high surface 
excess and a broad sublayer, the surface tension remains stable across curtain heights and 
coatings solids. In addition, Tergitol NP9 is fairly soluble in water, so there are no phase 
separation issues as with Tergitol 15-S-3. It is reflected in stable curtain and low 
minimum flow rates.

Dowfax 8390

Dowfax 8390 is an very efficient anionic surfactant with high HLB.

-j•j

0.05 pph 0.10 pph 0.15 pph

62 ®o Solids

58® 0 Solids

54® o Solids

IJO

Cum tin H eisht (nuns Dowfax 8590

Figure 16. Dynamic surface tension o f curtain at 50mm, 100mm, 150mm and 200mm
curtain heights and coating solids o f 62%, 58% and 54%. Surfactant, Dowfax 
8390, is dosed at 0.05 pph, 0.10 pph and 0.15 pph.

Surface tension increases with curtain height at all concentration by about 7-8 dyn/cm. 
Surfactant efficiency improves lower coatings solids. The extent of surface tension 
increase is higher than for low HLB surfactants. In addition, the almost a symmetric 
increase in the surface tension, as with other anionic surfactants, with curtain height and 
surfactant concentration suggests that the drop in surfactant surface excess from the 
initial is at a constant rate. As Dowfax 8390 is very soluble in water, it has low surface
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excess and a very narrow sub-layer. As curtain surface area increases under gravity, 
surface excess decreases, increasing the surface tension.

Tergitol TMN 6
0.05 pph 0.10 pph

X
■

0.15 pph

Curtain Height (mm l

62«o

5S«o

54«o

Tergitol T.MN6

Figure 17. Dynamic surface tension o f curtain at 50mm, 100mm, 150mm and 200mm
curtain heights and coating solids o f 62%, 58% and 54%. Surfactant, Tergitol 
TMN6, is dosed at 0.05 pph, 0.15 pph and 0.15 pph.

Tergitol TMN is a low HLB, soluble surfactant. It behaves like other low HLB 
surfactants.

/

Tergitol NP9 Dowfax 8390
Figure 18. Comparision o f Weber numbers fo r  nonionic and ionic surfactants 

at the same flow rate
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Curtain Instabilities

The type and dosage of surfactant affects curtain stability. Figure 19 shows non-uniform 
thinning for the curtain as it falls under gravity. The first row is at low flow rate (0.70 
cm2/s) and very high anionic surfactant. The second row is the chessboard (patchy) 
curtain with low HLB surfactant.

y

Figure 19. Uneven thinning o f  the curtain.

Tergitol 15-S-3 is a very low HLB surfactant (8), insoluble in water. In a well-dispersed 
aqueous coating, it forms tiny droplets. These droplets coalese, forming a bigger drop. As 
these droplets expand on curtain falling under gravity, the curtain is intermittently 
broken, forming a “burp” fig 20. A burp will lead to local coat weight changes or skips 
on coated paper, thus is undesirable. Insoluble surfactants may not be used in curtain 
coating.

Figure 20. Curtain instabilities “Burps. ”

Minimum Flow Rates (MFR)

The minimum flow rate that produces a stable curtain is an indirect measure of surfactant 
efficacy. The Weber Number is a better criterion of curtain stability. A minimum flow 
rate merely suggests the flow rate required to achieve a Weber number for the given 
surface tension. There is no evidence in the literature that type of surfactant affects the 
Weber number criteria itself. Figure 21 shows minimum curtain flow rates at various 
coatings solids and surfactant dosages.
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Figure 21. Minimum flowrates at various surfactant dosages and coating
solids - • - 5-"o-*-oS'’o-b-:'4=i

Anionic surfactants (high HLB) have higher MFR than low HLB surfactants. In figure 
21, above 0.30 cm^/s was the minimum flow rate achievable and the curtain did not 
break. The MFR can be misleading, as it may be affected by factors other than surfactant 
efficacy. The flow profile of the curtain can dramatically change with any deviation of 
coating viscosity and flow rate from the design viscosity and flowrate Liu et at (19), 
Figure 22.

#  H i y h  V i s f o s i l y

■  D e s i g n  V i s c o s i t y

■  L o w  V is r o M ly

I n )  F l o w  D i s t r i b u t i o n  n r  d o s i g n o d  f l o w  r a t e

I L o ' . v  F i o s ' . - f r i i e  

I  O e s i q r i  H o w r u  

I  H i g h  F l o w r a t e

(b) F low  D is tr ib u t io n  a t  d e s ig n e d  v isco s ity

Figure 22. Change offlow distribution in slot die by deviation o f designedflow rate and
viscosity.

In addition, figure 23 shows the same phenomena observed. Figure on left is coating 
with high viscosity, higher than the design viscosity of the die, resulting in higher flow 
rate from the entrance side. Figure in the right is the coating with low viscosity, resulting 
in higher flowrate from the opposite side. As flow profiles differ, it will affect how the 
curtain breaks, due to the lack of flowrate (MFR). The above coatings may result in 
different MFRs, even if surfactant efficacy is the same in all cases.
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Figure 23. Change in flow rate profile with viscosity (a) 450 cP (b) 260 cP. 

CONCLUSIONS

Understanding the role of surfactants in curtain stability is critical to realizing the full 
potential of curtain coating. Dynamic surface tensions of paper coatings, pigmented and 
with high viscosity, is hard to measure and difficult to related to dynamic surface tension 
measurement in water. The Mach angle method is a viable method of surface tension 
measurement. De-facto surface tension measurement and complete duplication of the 
process makes the Mach angle method particular effective for curtain coating. Surfactants 
are very effective in lowering dynamic the surface tension of coating. Surface tension 
increases with surface age in curtain coating for all surfactants with varying degree. 
There is a large increase in surface tension of anionic surfactants. Low HLB, 11-13, 
surfactants are more effective in curtain coating than anionic or very low HLB 
surfactants. Very low HLB surfactants may produce “burps” in the curtain. Coating solids 
also afiect dynamic surface tension with lower coating solids promoting curtain stability 
with low HLB surfactants. Minimum flow rate may be a misleading parameter and 
should be compared across surfactants only when the curtain die is designed for those 
flow rates and the coating viscosity is within the range of design viscosity.
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ABSTRACT

Curtain coating is non-contact metered coating process, which offers great potential for 
improved coverage at lower coat weights for the coated paper industry. Absence of shear 
and hydrostatic force leads to differences in coating-basesheet interactions and process 
dynamics currently experienced with other conventional coating processes. These 
differences may lead to surface characteristics of curtain coated papers that are very 
different from conventional coating methods. Due to these differences, printing attributes 
of curtain coated papers are crucial to their acceptance in the marketplace. Due to the 
absence o f shear, pigment alignment is not as strong, as in other conventional coating 
processes. In addition, as there is little hydrostatic pressure, binder migration is minimal, 
so more binder is present at the surface. The increase in binder at the surface improves 
the interaction of the coating layer with the ink resulting in a thicker layer of ink transfer 
to the base sheet in offset printing.

In this study, the calendering response, printability and surface of curtain coated papers 
were compared with blade coated papers at equal coat weights and surface roughness. An 
uncoated, commercial, light weight basesheet was curtain coated at Mitsubishi Heavy 
Industry’s state of the art coating research center in Hiroshima, Japan and blade coated on 
a cylindrical laboratory coater, CLC 6000, at 4.8 and 5.8 gsm (CIS). The samples were 
supercalendered to equal gloss values, and then printed with black ink, using a 
HAMADA sheetfed offset duplicator press. The calendering response, print density and 
print mottle were measured. Surface attributes were compared by SEM and AFM 
measurements.

The calendering response of curtain coated paper was found to be typical of for contour 
coated surfaces. The print densities of the curtain and blade coated papers were found to 
be comparable; although the print densities of the curtain coated papers were slightly 
higher. The print mottle of the curtain coated papers was much higher. A possible 
explanation of observations is; higher micro roughness of curtain coated papers results in 
higher immobilized layer of ink in offset printing, which in turn results in higher but non 
uniform ink transfer. AFM measurements revealed the curtain coated papers to have 
higher amounts of binders on the surface and the pigment alignment to be almost random. 
The higher amount of binder on the surface was contributed to the porous structure of 
coating lattice, which facilitated binder migration to the surface during drying.
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INTRODUCTION

Curtain coating is a non-contact pre-metered coating operation offering great 
potential for the coated paper industry (see Figure 1). Absence of shear and hydrostatic 
force leads to very different coating-basesheet interactions and process dynamics than 
seen in other conventional coating processes.

Dynofnic Contocf Line

Figure 1. Curtain coating operation.

These differences may lead to surface characteristics that are very different from the 
conventional coating process, which may, in turn, lead to substantial differences in their 
printing properties. Due to the absence of shear during metering, pigment alignment is 
not as strong as in other conventional coating processes In addition, as there is little 
hydrostatic pressure, coating and binder penetration into the base sheet is minimal, so 
more binder is expected to be present at the surface. An enhanced amount of binder at the 
surface would influence the interaction of the coating with the fountain solution and ink 
during the offset printing process. This may result in differences in the amount and 
uniformity of ink transfer during printing.

Pigment Alignment

The pigment alignment on a coated surface profoundly influences its optical and 
printing properties; opacity being one of the most important for lightweight coated 
papers. Pigment alignment is strongly influenced by the shear experienced during 
application and metering (Figure 2).

Web Difcclion

Figure 2. Development o f  shear at the impingement zone.
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Curtain coating is a low shear operation. Coating flow in the die is of low shear and low 
Reynolds number; flow in the film formation zone is extensional. As a result, there will 
be little particle alignment in the film formation zone as the curtain is stretched. As the 
curtain impinges on the moving substrate, it is dragged forward. This sudden drag creates 
some shear, which is greatest in the immediate vicinity of the impingement zone. The 
maximum shear in the curtain coating process is available in this zone and is strongly 
dependant on curtain and substrate velocity difference. Therefore, maximum particle 
alignment takes place in this region. The amount of shear can be controlled by the ratio of 
the curtain velocity to web speed This is illustrated in Figure 3.

Shape of the Curtain Coated Surface

Curtain coating can be understood as a lamination process where a wet film is laminated 
on to the surface of a substrate As the curtain wets the basesheet (Figure 3a), there 
are several scenarios that may develop depending on the roughness scale of the basesheet 
(see Figure 3). If the roughness is of low amplitude and low frequency, the curtain will 
follow the contour of the paper (Figure 3b). If the roughness is of high amplitude and 
high Irequency, it will coat on the peaks of the surface and upon drying, the shrinkage of 
the coating will cause the coating to retract to the comers, leaving a crater defect (Figure 
4c). Incomplete contour following is illustrated in Figure 3d.

(c)(a) (b) (c) (d)
Figure 3. Various scenarios on curtain wetting o f substrate (a) initial wetting (b) contour 

(c) classic crater (d) incomplete contour following.

Binder Migration

Binder migration affects gloss, smoothness, mottle and print quality. The amount of 
binder present at the surface, affects the interaction of the coating with fountain solution 
and ink Coating processes affect migration as they apply varying amounts of 
hydrostatic pressure during application and metering. Curtain coaters impart little or no 
hydrostatic pressure, so binder migration is minimal.

Binder migration under drying conditions presents a different scenario. During drying, 
binder follows the path of water vapors and is affected by factors like coating lattice 
compaction (or lack of it), drying rate and orientation of particles. As there is no 
hydrostatic force to facilitate compaction of coating layer in the curtain coating process, 
the resultant coating lattice is porous. In addition, as there is absence of strong shear, high 
aspect ratio pigments (like clays) are almost randomly orientated. A porous coating layer
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and random orientation of pigments facilitates binder migration to the surface in curtain 
coating.

Calendering Response

Calendering is an important operation to improve the smoothness and gloss of paper 
The calendering response determines the properties of the paper surface and is influenced 
by the coating formulation, coating process and the type of calendering itself. Figure 4 
shows the differences in basesheet densification and surface smoothness profiles of super 
and hot-soft nip calendered papers. Due to the higher pressures and roll hardness of 
supercalenders, supercalendered papers are densified more than with hot-soft nip 
calendars, as the surface profiles are flattened. Hot-soft nip calenders utilize heat to 
enable less pressure to be used to improve the surface profiles. The soft roll is 
deformable resulting in a more even pressure profile in the nip and less sheet 
densification of the higher caliper areas of the sheet. Due to these differences, the 
calendering conditions required to obtained a desired smoothness is closely related to the 
calendering response of the coating laye/^'l

S u p erc a len d e r

H ot-soft Nip

Figure 4. Calendering response o f super and hot-soft nip calendaring.

The coating process also affects the calendering response as it strongly influences the 
physical (surface type) and chemical (binder migration) properties of the surface. Tg of 
the coating formulation and bulk of the paper are the coating color and base sheet 
contribution, respectively. Curtain coating is a true contour coating method.
OBJECTIVE

In this study, differences in print quality, pigment alignment, and binder distribution of 
curtain coated papers were compared to blade coated papers after printing on a one color 
sheetfed offset duplicator press.

EXPERIMENTAL

An uncoated light weight commercial base sheet (42 gsm) was curtain (Mitsubishi, 
Hiroshima Japan) and blade coated (CLC 6000, Western Michigan University) at 4.6 and 
5.7 gsm (CIS). The coating applied was a typical offset formulation (see Table 1). The 
coated samples were then supercalendered at 1500 PLI (4 passes). The calendering 
response was measured with a Parker Print Surf (PPS) roughness instrument. The
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samples were then printed with black ink on a one color HAMADA sheetfed offset 
duplicator press. Print density was measured using an X-Rite densitometer. Mottle was 
measured by image analysis using Verity lA software. To understand and explain the 
differences in print quality, AFM and SEM measurements were performed to 
observe the alignment of the pigment and distribution of binder in the coating layer.

Table 1. Coating Formulation

Carbonate Clay SBR latex CMC Lubricant

Name Carbitol 90 Ultra white 90 CP 620 NA Cellogen PR Nopcote 104

pph 60 40 12 0.45 0.6

RESULTS AND DISCUSSION 

Comparison of Surfaces

Figure 5 shows the z direction cut of curtain coated paper. The figure confirms the 
scenarios for curtain coating as discussed in figure 3. At low amplitude and frequency 
roughness variation of paper, the curtain follows the contour of the paper (a). High 
amplitude and frequency roughness scale, the curtain may coat on lower and upper part 
(b) or form a classical crater (c). As discussed in previous session, curtain may also 
partially wet the surface, which on calendaring will show up as surface crack (d).

(a) (b) (c) (d)
Figure 5. Z-direction cut o f curtain coated paper and the surface.

Calendering Response
Figure 6 shows the response of curtain and blade coated papers to calendering. The 
comparison is typical of contour and surface coated papers. The curtain coated, 
calendered paper remains slightly rougher regardless of the number nips experienced. For 
both papers there was a significant drop in roughness after the second pass through the 
nip. Little or no improvement in smoothness was obtained after the S"' pass.
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Figure 6. Calendering response o f curtain and blade (surface) coated papers. 

Surface of Curtain and Blade Coated Paper

Figure 7 shows selected AFM pictures of curtain and blade coated papers. Uncoalesced 
SBR latex particles are visible as classical grape clusters in a uniform phase whereas 
pigments are seen as larger particles of varying shape and size.

■

0.00 1.00 2.00 pm 0.00 1.00 2.00 pm

(a) (b)
Figure 7. Atomic force micrograph (AFM) o f curtain (a) and blade (b) coated papers

showing SBR latex.

It is clear from Figure 7 that much more latex is on the surface of curtain coated paper 
than for the blade coated paper. There is no binder on the surface o f the blade coated 
samples. The only visible SBR latex on the blade coated papers is present in the 
microcontours of the basepaper that do not come in contact with the blade. The binder 
distribution on the curtain coated paper is uniform throughout the surface. Figure 8 shows 
the alignment of the coating pigments in the curtain and blade coated papers. In the blade 
coated paper, not only are the high aspect ratio clay particles aligned (flat) prominently, 
but also overall, the surface is much more compact. For the curtain coated paper, the clay 
particles are observed to be almost random and the coating structure is noticeably more 
open. The orientated (flat) high aspect ratio pigments hinder binder migration during 
drying.
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(a) (b)
Figure 8. Atomic force micrograph curtain (a) and blade (b) coated papers showing

alignment o f  clay particles.

The results show that curtain coating forms a much more open coating lattice, due to the 
random alignment of pigment in the absence of significant shear and hydrostatic pressure. 
The open structure of the coating lattice facilitates binder migration during drying, 
resulting in a much higher concentration of SBR latex on the surface of the curtain coated 
papers than the blade coated papers.

Figure 9 shows SEM pictures of calendered and uncalendered curtain and blade coated 
papers at 700X and 7000X magnifications. A large number of surface pores are visible on 
the curtain coated coating layer (a) and (b). This suggests that the coating lattice is very 
open and there is no compaction of the coating layer as is common in blade and rod 
coated papers. There is some loss of openness of the structure on calendering but the 
structure remains very porous, nonetheless (c) and (d). The blade coated coating layer (e) 
and (f), on the other hand, is almost completely closed with only few surface pores 
visible on the surface. Thus, the blade coated surface is “closed”.
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Figure 9. Scanning electron micrograph (SEM) at 700X and 7000X magnification o f  

Curtain coated-uncalendered (a) and (b), Curtain coated -  calendered (c) and (d) and 
Blade coated calendered (e) and (f) respectively.

This interpretation is consistent with the AFM surface topography shown in Figure 10.
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Figure 10. AFM showing porous layer for curtain coated and a nonporous “closed”
layer o f blade coated paper.

Those differences in surface topography are also reflected in air permeability (PPS 
porosity) and opacity (Figure 11). The permeability, a measure of openness of the surface 
to fluid flow, of the curtain coated layer is an order of magnitude higher than that of the 
blade coated layer for the same coat weight. In addition, opacity, which is strongly 
influenced by factors such as void fraction and pigment alignment, is 3-4 points higher 
for curtain than blade coated layer. This difference in opacity can not be accounted to one 
of the individual factors, void fraction or pigment alignment, but it is believed that lower 
opacity o f blade coated layer is due to higher alignment of clay pigments.

I
£&

O

j Curtain CoatfrO #  C urta in  co a ted

(a) (b)
Figure 11. Statistical comparison ofporosity and opacity o f  blade and curtain coated 

paper (5.8 gm/m2, CIS, Calendered 4 passes, 1500 PLI).

Figure 12 shows Root Mean Square (RMS) roughness of blade and curtain coated papers 
obtained from the AFM measurements a lOpxlOp sample area. Again for same coat 
weight mean RMS roughness for curtain coated layer is 58 nm whereas it is 30 nm for 
blade coated layer. This is consistent with the PPS roughness values, although smaller by 
two orders of magnitude.
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Figure 12. Root Mean Square (RMS) roughness o f  blade and curtain coated papers from 
AFM measurements in a lOpxl Op sample area (in nanometers).

Comparison of Print Quality

The print density of the curtain coated paper was comparable to that of the blade coated 
paper, with the print density of the curtain coated paper being slightly higher. The mean 
print densities were 1.2 and 1.39 for blade coated and curtain coated papers, respectively. 
The print mottle for the curtain coated paper was significantly higher, as seen in Figure 
13. For the curtain coated papers, there was little or no effect of coat weight on print 
quality. Nevertheless, for the blade coated papers, print quality improved with coat 
weight.

(  o n i p i i r i s i u n  O f  P r i m  D c n s i l i e s  
I t h i c k

iB iade Coatod 
I  Curtain coated

<  o n i p t i r i u i i  o f  p r i n t  m o t t l e s

I  B lade co a ted  
I  Curtain Coated

Figure 13. Comparison ofprintability o f  curtain and blade coated papers.

Smith presented an explanation of the effect of basesheet -ink interactions on offset 
printability. High print densities are indicative of a higher thickness immobilized ink 
layer resulting from an open coating lattice and stronger base sheet and ink interaction. 
Due to the greater migration of the binder to the surface as a result of the more open 
coating lattice, the curtain coated papers received a thicker immobilized ink layer 
resulting in higher print densities.

Print mottle is a measure of ink uniformity. Contour coated papers usually have higher 
print mottle due to the incomplete contact of the paper with the ink film on the blanket
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resulting in uneven ink transfer. This was confirmed by our results. The curtain coated 
papers were significantly more mottled than the blade coated papers.

CONCLUSIONS

A curtain coater is a true contour coating operation. As a result, the surface properties 
vary significantly from blade coated (surface coated) papers. The scale of base sheet 
roughness dictates whether the wet film will follow the contour of the base paper or skim 
the surface, resulting in the formation of craters. The coating lattice of the curtain coated 
paper was determined to be much more open and the pigment alignment more random. 
The open coating lattice and random pigment alignment enabled more binder migration 
to occur during drying. The greater migration of binder during drying increased the 
concentration of the binder at the surface, resulting in higher print densities. However, 
the higher roughness of the paper resulted in a less uniform transfer of the ink, resulting 
in more print mottle. The near absence of shear during the curtain coating processes 
reduced the alignment of the pigment particles.
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ABSTRACT

Curtaining coating has been extensively used by the photographic paper industry for a 
number of decades and is an emerging coating technology with great potential for the 
specialty coated paper industry. A curtain coaters is a non-contact metering coating 
method, which provides excellent coverage and a uniform coating layer. The uniform 
thickness o f the coating layer makes curtain coating particularly attractive to specialty 
paper markets. This paper explores the possibility of using a curtain coater for barrier- 
coated grades of paper and board.

Barrier grades of paper and board are produced by applying a functional coating to the 
surface of the substrate. The coating imparts resistance to flow/penetration with certain 
types of permeates. The theoretical coating layer thickness needed to deter or prevent the 
flow of permeate through the basesheet, for a given application, can be readily calculated. 
However, due to limitations of the coating process used and various imperfections in the 
coating layer, the papermaker will always have to apply more coating than the calculated 
amount for safe measure. The required thickness of the coating layer needed to meet the 
shelf-life requirements of the packaged material depends on the number and type of 
imperfections present in the coating layer, i.e., pinholes and microcracks. To compensate 
for these imperfections, as much as 40-60% excess coating may be applied than needed if 
the imperfections did not exist. As barrier coatings are some of the most expensive 
coating formulations, the potential for savings by eliminating coating imperfections can 
be substantial.

Curtain coating is a pre-metered type of coating operation, which enables the application 
of a uniform pinhole free coating layer. The liquid curtain is formed before it comes in 
contact with substrate, so the integrity of the coating layer and coverage is virtually 
guaranteed. Also, coverage is almost independent of coat weights and base sheet 
roughness. In addition, the thickness of the coating layer can be precisely controlled by 
adjusting the flow rate of the curtain and speed of the moving web. The application of a 
defect free coating layer enables barrier properties to be obtained with significantly lower 
coat weight.

This paper discusses the dynamics of permeant flow through a barrier coating layer and 
the effect of coating coverage (or lack of it) on the barrier properties. Based on the 
discussion, we believe that curtain coater is a superior and economically suitable coater 
for barrier specialty papers.
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INTRODUCTION

Barrier paper is produced by coating paper with various types of coatings to impart 
resistance to permeation/penetration of certain types of permeates through it (1-3). Vast 
arrays of harrier coated papers are produced today from pizza boxes to burger wrappers 
to corrugated hoards. Environmental issues, cost pressures and dwindling profitability is 
forcing mills to rethink their coating strategy. Coating technology is one the critical areas 
that lead to radical changes in harrier coating paradigm (4-5). Current coating processes 
have some inherent disadvantages e.g. pinholes, low coverages especially at low coat 
weights, base sheet penetration and saturation and non uniform coating layer (6-8). This 
pushes coat weight demand higher. As harrier coatings are some of the most expensive 
paper coating, any improvement would result in substantial savings.

The theoretical coating layer thickness requirement for harrier applications can he readily 
calculated from the permissible permeate flow rate, shelf life of the product and permeate 
diffusion in the harrier layer. Actual coat weight is always higher to achieve the same 
permeate flow rate. The actual required thickness of the coated layer depends on the 
number of imperfections present in the coating layer due to the coating process (6-7). To 
make up for these process variables, coat weight is generally 40-60% higher than the 
required.

Curtain coating is a pre-metered type of coating operation, as the coating layer is formed 
before it comes in contact with the substrate. Curtain coating can be considered as an 
improved lamination process where a liquid “sheet” and a substrate are merged 
together .As a uniform pinhole free liquid curtain is formed before it comes in contact 
with the substrate, the integrity of the coating lattice and coverage is virtually guaranteed. 
In addition, the thickness of the coating layer can be precisely controlled by adjusting the 
flow rate and substrate speed. As the coating layer is free of any imperfections and 
pinholes, a lower coat weight is required to produce a desired permeate flow rate. As 
barrier coatings are some of the most expensive coatings in the specialty coated grades, 
the potential saving can be substantial.

This paper analyzes the possibility of using the curtain coating process for the barrier 
coating applications. Curtain coating seems to be most suited for the barrier application 
as it delivers uniform, pinhole free coating layer with high coverage at low coat weights. 
Understanding the role of topography of coated layer on the permeation through it is 
central to understanding the effect of coating process on barrier properties. The brief 
discussion on concentration driven flow through the layer is now presented.
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Mass Transport Through a Layer

The mass transport of a permeate through a coating layer of thickness L is 
described by the Darcy’s (10) equation,

Ap

Here Q is the mass of permeate transferred, A is area, P is the permeability coefficient, 
(Ap/L) is the partial pressure (or concentration) gradient across the length of the layer, 
and t is time (Figure 1).

Q

Barrier Layer

Base sheet

.i
L'h;.-

Q

Figure 1. Flow through uniform harrier layer.

In use of the above equation in the barrier application (Q/t) can be treated as the 
permissible flow rate of permeate. Thus, Q depends on the tolerable permeation which in 
turn depends on type of the product, for example, meat, fish, cookies, or vegetables. The 
pressure gradient (Ap/L) is proportional to the concentration gradient of permeate across 
the barrier layer. For gaseous permeates, it is taken as the difference of partial pressures 
across the barrier layer. For the most cases in barrier application (O2, CO2, smell etc.), it 
is taken to be the highest differential across the barrier layer e.g. permeant is assumed to 
be saturated one side and absent on the other side. The partial pressure (or concentration) 
gradient can be altered by changing the thickness L of the barrier layer. Thus, we observe 
that for the barrier coating applications, barrier layer thickness and permeability 
coefficient are the only true variables. Permeability coefficient P can be related to the 
diffusion coefficient D and solubility S of the permeant in the layer as

P ^ D S

The diffusion coefficient relates to the physical characteristics of the layer and the 
permeate, whereas solubility is related to chemical characteristics of the barrier layer and 
the permeate. Physical characteristic of the layer, like density, pore size and lattice 
imperfections in the layer, affect the diffusion rate. These characteristics will, in turn, 
depend on the binder system of the coating, aspect ratio, and size distribution of
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pigments, drying condition and any post coating operation like calendaring. The 
solubility o f the permeate in the layer is related to chemistry of the layer and the 
permeate. This includes any chemical reaction, for example hydration, and interactions of 
surface tension origin. Thus, by closely controlling physical and chemical properties of 
the surface, permeate flow at the surface can be controlled.

Pinholes in the barrier layer or the uncovered areas on the base sheet are the unavoidable 
features of the coated paper and board. They are introduced by various mechanisms such 
as insufficient coat weight, over metering in the coating process, and the type of coating 
process itself. The problem is especially acute when operating the coating process at the 
lower end o f its coat weight window.

Overall permeation through a barrier coated paper is given by.

--Barrier ^ h o le
r

AP.Barter

V ^barrier

A RBasesheet

L basesheet J

As the Pbasesheet» Pbarrier, permeation through a pinhole or uncovered base sheet will have 
a disproportionate contribution to the over all permeation rates. To reduce the probability 
of pinholes in the coated layer, the two-bump strategy is already in place in paper 
industry. In the two-bump approach, the total coat weight is applied in two coatings, thus 
reducing the possibility of pinholes in two layers to coincide, thus eliminating the 
pinhole. Due to this dynamic, two-bump coating provides a more effective barrier than 
when coating is applied in one pass.

As permeation is a concentration driven diffusion process, the path of the diffusion 
through a pinhole is not straight across the thickness of the layer, but is in a solid 
hyperbolic space (Figure 2). This is known as the edge effect. The edge effect is a very 
significant phenomenon in barrier coated paper and board.

Barrier Laver

Location of pinhole 
I =R|

Base sheet

Figure 2. The edge effect.
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Due to the edge effect, the permeation takes place through a much larger area than the 
area of the pinhole. For a pinhole of radius R, an equivalent radius Re can be calculated
as (11),

= ^2RL +
Where L is the thickness of the base sheet. Based on this equation, as L » R , the effect of 
the pinhole on failure of the barrier layer is much greater for a thicker base sheet. Thus, a 
single pinhole can saturate a large area of the base sheet with permeate. This effect is 
observed in heavily wax-coated corrugated boards. If moisture is the permeate, the board 
can get saturated locally due to a single pinhole, resulting in loss of strength properties in 
that localized area, leading to catastrophic failure of the board.

Figure 3. Pinhole size distribution.

On a coated paper and board, for a mean pinhole radius of R and standard deviation 
a (Fig. 3), the permeation decrease factor p can defined as (12)

P = f +
2 [2 - + 1

R
cr + a

Here, f  is the fraction of area covered by pinholes. As can be seen from the above 
equation, a lower pinhole area and base sheet thickness and larger pinhole radius favors 
the decrease factor. The barrier improvement factor (BIF) is defined as the reciprocal of 
permeation decrease factor p.

BIF =
P

In the case of fluid permeation like water or oils, pinholes can give rise to capillarity. 
Capillary transport is much faster, almost instantaneous, than the concentration driven 
diffusion and is governed by the Lucas Washburn equation (13,14)

dL
dt

y.r.cos(6>)
4//.T

Here, dL/dt is rate of penetration, L is the length of liquid penetration, y is the surfaee 
tension of the fluid, p, is the fluid viscosity, and 0 is the contact angle of the liquid with
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the substrate. Capillary transport is especially critical for short life span products such as 
convenient food wrapping papers.

Current Coating Methods

Blade, roll and air-knife coaters are used extensively for the barrier coating applications. 
Blade coaters are surface coaters, giving an extremely uneven surface profile, Fig.4 
Surface coaters will have to fill all the valleys on the paper surface before any effective 
barrier layer ean be achieved. Even after filling the valleys, the effective barrier layer 
thickness is much smaller.

Barrier layer J_
k

Basesheet
r /  v  J

Figure 4. Thickness profile o f  surface coaters.

This increases the coat weight demand substantially. Rod coaters are hybrid coaters 
(surface-contour). Both blade and rod coaters operate under larger hydrostatic pressure 
leading to penetration of coating into the base sheet. From the above discussion, it is clear 
that any coating material which does not contribute to the effective thickness of the 
barrier layer can be considered a loss. Blade and rod coaters have very low coverage at 
the lower end of their coat weight window. This renders them useless for lower end 
barrier applications. Air-knife is a contour coater, but due to low viscosity demand on 
coating color, penetration of coating color into the base sheet can be substantial. This 
further increases the coat weight demand.

Summary of Current Coating Processes

To achieve effective barrier properties, the barrier layer should be of uniform thickness, 
free from pinholes, and provide complete coverage. Pinholes, or insufficiently covered 
base sheet areas, will have a large impact on the barrier properties. A non-uniform 
coating thickness layer, pinholes, and incomplete coverage, increases the coat weight 
demand to achieve the desired permeate transmission rate. Current coating technologies 
result in the application of a non-uniform coating thickness profile that results in poor 
coverage at low coat weights. A coating method that provides a uniform layer thickness 
and good coverage is highly desirable for a barrier coating.

CURTAIN COATING

Curtain coating is a low-impact true contour coater. Curtain coating can be considered as 
a lamination process of a liquid film and a substrate. As the free liquid film is formed 
before it comes in contact with the substrate, film is pinhole free. This leads to virtually 
100% coverage at any coat weight. Previous results have indicated that the coverage
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is almost independent of coat weight. In addition, as a curtain coater is a true contour 
coater, the coating layer thickness is uniform (Fig.6 and 7) and can be easily controlled 
by manipulating flow rate and web speed.

Barrier lavtr

Figure 5. Thickness profile o f  contour coaters.

Figure 6. Z-direction cut o f  curtain coating paper showing coating layer.

Curtain coating is a low impact coating process with little hydrostatic pressure. This leads 
to little or no coating penetration into the base sheet. A uniform coating thickness and no 
penetration of coating color into the base sheet will lead to substantial reduction in coat 
weight demand for the same barrier performance. In addition, excellent coverage at low 
coat weight makes curtain coating especially attractive for short life span products.

CONCLUSIONS

The most effective barrier performance is achieved when the barrier layer is uniform in 
thickness, free of pinholes and coating coverage is complete. Curtain coating is a low 
impact true contour coater, making it an attractive coating process for barrier 
applications. Uniform coating layer, easy and effective control over layer thickness, low 
impact and excellent coverage make curtain coating a good fit for barrier applications.
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