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RELATIVISTIC AND NON-RELATIVISTIC
NUCLEAR CHARGE FORM FACTORS

T s c  M .A .

Western Michigan University, 1989

This thesis presents an examination that the two nuclear 
charge form factors, relativistic and non-relativistic, are 
equivalent approximately in a appreciable range. The relati­
vistic one is contributed by both vector charge density and 
tensor charge density. And the non-relativistic charge form 
factor is contributed by the nuclear densities from experim­
ental electron scattering cross section,these densities are 
fundamental to much of nuclear structure physics.

The Dirac equation is used to calculate the vector charge 
density and tensor density, because the charge density from 
the analysis of the experimental data may be compared with 
proton charge densities obtained from various models of nucl­
ear structure. The standard procedure for calculating charge 
densities from the Schroedinger equation is no longer correct 
if nucleons obey the Dirac equation.

This work only explored the case of a single state 
(ground state) of a single particle.
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CHAPTER I

INTRODUCTION

The impulse approximation for the construction of the nuclear optical potential 

had been very extensively developed within the context of Schroedinger dynamics. The 

leading term  of the optical potential can be approximated as

Vopt(E,q)  = t(E,q)p(q).  (1.1)

Here, t is the nucleon-nucleon scattering matrix, q is the momentum transfer, and p{q) 

is a nuclear form factor. Truncating the multiple scattering series expansion for the 

optical potential at its leading term , Equation (1.1), is called the impulse approximation. 

Nonrelativistically,

p{q) oc J  drexq'Tp(r) (1.2)

where p(r) is the nuclear density. Electron scattering has been used to determine

Fch{q) oc J d f e tq rpch(r). (1.3)

Dirac phenomenology is based on a relativistic form of the impulse aproximation. 

Instead of solving the Schroedinger equation [--jjjyV2 +  Vopt(r)]$ =  one can solve 

the Dirac equation [ - i  f i  +  M  — Vopt}^ = E It has been found that the optical 

potential which is needed in the Dirac equation to describe high energy nucleon-nucleon 

scattering is considerally simpler in form than the one required for the Schroedinger

equation. This encourages us to view the nucleon as a “Dirac particle” (i.e. as one whose

wave function satisfies an appropriate Dirac equation), and to explore the consequences 

of this assumption. The most direct test will be the predicted charge form factors.

The elastic scattering of electrons from nuclei has a long history. One obtains a 

charge form factor from the knowledge of the differential cross section. Prom this form 

factor one determines the charge density. (For heavy nuclei, the Born approximation

1
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is inadequate and one must solve the Dirac equation for the electron to determine the 

charge distribution.) The charge density obtained from the analysis of the experimental 

data may be compared with proton charge densities obtained from various models of 

nuclear structure. The standard procedure for calculating charge densities from the 

Schroedinger equation is n longer correct if nucleons obey the Dirac equation. Instead 

of the charge density as in equation (1.3), there are two densities which contribute to 

the charge form factor.

Fch{q2) = J  drj0{qr)F^{q2)pv {r) + J  drfj i ( q r ) F f t f ) p r ( r ) .  (1.4)

Here py  and px  can be determined from the exact form of the Dirac wave function (see 

Chapter II).

The usual nonrelatistic form factor is given by

Fch{q2) = GpE {q2) J  drj0{qr)pv(r) (1.5)

where GpE{q2) =  F f  + 2 M ^ F p- Equation (1.5) has been used to extract nuclear densities 

from experimental electron scattering cross section and these densities are fundamental 

to much of nuclear structure physics. If equation (1.4) and (1.5) are both correct (over 

some as yet undetermined kinematic range), then one must have

-  J h(qr )pT(r )dr  «  J  j 0(qr)pv (r)dr.  (1.6)

Equation (1.6) was first pointed out by Celenza et al., 1985. These authors did not 

derive it and, indeed, it does not seem to follow from the Dirac equation.

In the present work, equation (1.6) will be examined both analytically and nu­

merically to determine the range of its validity. We conclude that equation (1.6) holts 

surprisingly well for single particle states for q < 1 .8 /m -1 . For medium mass nuclei like 

48Ca, equation (1.6) is approximately valid for q < 1.0/ m -1 .

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER II

DIRAC PARTICLE IN AN INFINITE SCALAR SQUARE WELL

In order to study equation (1.6) of Chapter I, we will solve the Dirac equation for 

a simple potential and form the relevant densities pv  and p t - The equation is

[ a - p  + /3(M + V,)}<$ = E $

with the potential

VM = 0 if r < a
oo if r > a.

The 4 x 4  matries in equation (2.1), have the following forms:

q =

j3 = a 3 =

0 <7
5  0

1 0
0 -1

(2.1)

(2 .2)

(2,3)

(2.4)

So, the equation (2.1) will be

M + V, ] 9  = E 9 t  (2.5)
a p  - M  -  V, '  '

In analogy with the corresponding nonrelativistic result, take the wave function

-  (  f l Y lX ’ ]Li ^ f2 6x
( 2 ' 6 )

Substitute this wave function into (2.5):

(M  + V . ) ^ [ Y lx*Ym + v - P j # - r [ Y lx ’ ]L = E ^ r [ Y lX*]L 

*  - P ~ l Y ' X?Ym +  { ~ M  -  Va ) ^ r V ' * [ Y l X*]ln =

(2.7)

(2 .8)

We know

m (2.9)
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where V is the “other" orbited angular momentum which can couple to |  to give j. For

example if / = 2, j  =  | ,  then /' =  3. So we can now find the following form (Bjorken

and Drell, 1964):

ff ■ ■ f [ Y lx*]Jm =  -cr ■ p j l Y ^ x i ] ^  = [ - i y  -  iKVj^ } [ Y lx*Ym (2.10)

where

- ( / + 1) =  - ( ; ' + | )  if j  = l + k  f2 111
+i = +U + \ )  if J = ; - (2, 11)

Substitute (2.10) and =  - kij into (2.7) and (2.8). We can have the two 

following basic equations:

( E - M -  V , )G =  - F '  + ^ f - F  (2.12)

(E + M  + V,)F  =  G' + ^ G .  • (2.13)

Now we need to solve the wave functions G and F. From (2.10)

G - E ^ V y F ' + -rF J <214>

° '=e - m - vJ- f" + 7f' - £ f 1 <2 ' 1 6 >

where

K = Klj. (2.16)

Substitute (2.14) and (2.15) into (2.13)

F"  +  [E2 ~ { M  + V,)2 -  ^ K ~-1V  = 0- (2-17)

From (2.13)

F  = - — 1— — [G' + -G }  (2.18)
E  + M  + V, r 1 ' J

F'  =  - • - • 1 - A G" +  - G '  -  4 C J . (2.19)E  +  M  +  V, r r 2 1 v '

Substitute (2.18) and (2.19) into (2.12)

G" +  [E2 -  (M  + V,)2 -  ^  *  ^ ]G =  0 (2.20)
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then obtain the equitions (2.17) and (2.20). They are the differential equations of the

wave functions. When j  = I + -

k  =  - ( 1 +  1). (2 .21)

Substitute (2.21) into (2.17) and (2.20)

G" +  [.E2 -  (M  + V,)2 -  ^  *  % G =  0 (2 .22)

F "  +  [.E 2 -  (M  + Vt )2 -  £ ± i K [ ± ? 2 ] f  =  o (2.23)

When r < a V, = 0, let

k2 -  E 2 -  M 2 (2.24)

and

I1 = 1 + 1. (2.25)

So the equations (2.22) and (2.23) will have the following forms:

G"  +  [k2 -  - l -l ..1) ])? =  0 (2.26)

F"  +  [ifc2 -  =  0. (2.27)

Let
G =  rRi  
F  =  r R 2)

G' = rR[  +  R x 
F 1 =  tR 2 +  R 2)

(2.28)

(2.29)

, , G" = r R l{ + 2R'l .
and s p,/ —  p// (2.30)F" = tR% +  2R'2 

Substitute (2.28), (2.29) and (2.30) into (2.26) and (2.27)

R" +  -R!x + [*2 -  =  0 (2-31)r r ‘

R 2 +  -R '2 +  [A:2 -  =  o. (2.32)
T  T i

Let

p =  kr. (2.33)
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So the equations (2.31) and (2.32) will be an instance of Bessel’s equation

/( /+  1)d?R, 2 dRi
■ + [1 -dp2

. | ..... 
P dp

<PR.n 2 dR2 ... 1

to
1

H-----P dp + [ ! - ■

The solutions will be:

p2 ]J£i = 0 (2.34)

l 1̂ *  l ) )R2 =  0. (2.35)

R\  oc jl(p) orni(p)  (2.36)

#2 oc jv{p)orni'{p)  (2.37)

where

jl(p) = (2.38)

= (2-39)

The j  and n are called spherical Bessel functions. The boundary condition requires $  

to be finite at r =  0. So the n/ solutions must be rejected. We have

Ri = Aji(p)  (2.40)

and R 2 = B jv (p ) (2.41)

where A and B are constants. So, from (2.28) and (2.33) we have

G =  rAji(p) = rAj i(kr)  (2.42)

and F  =  rBjii(p) = rBjii(kr).  (2.43)

For the ground state with I =  0, the wave functions will be

G = ^ s i n ( k r )  (2.44)

<>■«>
when r > a V  =  oo. The appropriate boundary condition for this potential is 

Ri(a)  =  0 (This makos the particle current j  =  $ 7 ’$' vanish at r= a). So from the 

boundary condition where r — a

R\  = Ajo(ka) = 0 (2.46)

6
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jo(ka) =  ■^-sin(ka) =  0.
tCQi

So

ka =  717T.

From (2.24):

E* = +  M 2.
n 2 7r2

Now the A and B need to be solved as following:

From (2.13) and V„ = 0, we have

(E  +  M ) F  = G' + - G .
T

Substitute (2.44) and (2.45) into (2.50), then let k = - 1  when (/ =  0)

A =  - £ ( E  + M).
K

From normalization

We have

1 =  f  (G2 + F 2)dr = f  [Arjo(kr)]2dr +  [  [Brji(kr)]2dr 
Jo Jo Jo
A 2 Ta 1 . . ... B 2a._ 2sin2(ka) sm(2fca),

=  + 2 F 1 1 -  - ( 4 ^ + i ^ r i '

Substitute (2.48) into (2.54)

B  =
\ / w ( E  + M )2 + W  

Substitute (2.55) into (2.51)

So, now we have the wave function $  as following

$  =  JV (
kji+i(p)ff • f[Y l X*]L

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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For ground state

\  kj i (p )#  • r [ Y °x 2]?n. )

The scalar density

The vector density

The tensor density

For ground state (/c =  -1 )

G2 F 2
«  =  W  -  W  (2-69)

G2 F 2
PV = Z 2 + Z J -  (2.60)

2 G x F
P T  = r2 • (2-61)

_ . ^  . . , s in 2(fc7’) „2rsin(kr) cos(kr),« __.S t a la r D e n , , , ,  =  A ^ }J1  -  (2.62)

T. J .2s in2(kr) „2tsin(kr) cos(kr),2
VectorDensity  =  (2.63)

TensorDensi ty  =  J .?-) , ■—  r . (2.64)
kv

We will discuss the form factors entering eq(1.6) of Chapter I which arise from these 

densities in the next chapter. The following figures show the wave function of equation 

(2.58) and the relations in ps,pv  and pr  for different a.

8
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Figure 2.1: The wave function of equation(2.58). M  =  938 MeV, p =  ka where k is 
determined by equation(2.48) with n  =  1 and a — Zf m.

0.15

■So.io

0.05

0.00

r(fm)

Figure 2.2: The densities of equation’s (2.62), (2.63) and (2.64). The solid wave is ps,  
dots pv  and dash px  with a =  5fm. hi this figure pv  is indistinguishable from ps-
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CHAPTER III

DIRAC FORM FACTOR

We have discussed the Dirac Equation for a single particle in the ground state of 

an infinite scalar square well in Chapter II. Now we use this wave function in eq(1.6) of 

Chapter I. The necessary Integrations are performed with a Gaussian Algorithm with 

273 points (Stroud and Secrest, 1966). We present below the following ratio of eq(1.6):

R _  J  h( qr ) pT{r)dr 
“ d fc  / k{qr)pv{r)dr

A

3

2

I

0

1 0 0.5 1 1.5 2q

Figure 3.1: The ratio of eq(3.1) with a =  lfm .

We observe from fig 3.1-3.4 that eq(1.6) is satisfied on the average, with the curious 

exception that the asymptotic ratio R is closer to 1.2 than  1.0. We conclude tha t use

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.6

1.4

1 .2

1 .0

0.8

0.6 0 0.5 1 1.5
q

Figure 3.2: Same as figure 3.1 with a =  2fm.
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Figure 3.3: Same as figure 3.1 with a — 3fm.
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0 0.5 1 1.5 2
•3

Figure 3.4: Same as figure 3.1 with a =  5fm.

of eq(1.5) to interpret single particle charge form factor is not seriously in error.

In a typical experiment one is sampling all of the nucleons in the nucleus. For 

example, 48Ca  has 20 electrically charged particles and 48 particles possessing a mag­

netic moment. All 48 particles will contribute to the charge density. We have used 

the computer code HPLUS2.FOR(HARTREE) written by Horowitz and Serot(1981) to 

estimate the relativisitic scalar, vector and tensor densities for this nucleus. The as­

sumed potential is not a simple square well, but a finite well given by solving a set of 

coupled equations for nucleons and mesons. These densities have been commonly used 

for nuclear reaction calculations. Figure 3.5 shows that eq(1.6) holds approximately for 

q < 1 .0 /m -1 . Except again, the ratio R is closer to 1.2 than 1.0. The elastic electron 

scattering form factor has been measured at much higher values of q. We conclude 

that eq(1.5) connot be used to determine a charge form factor from such experiments, 

but rather that eq(1.4) must be used together with other experiments (such as elastic 

hadron scattering) to determine both py  and px  independently.

14
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Figure 3.5: The ratio of eq(6) for 4BCa.
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CHAPTER IV

CONCLUSION

The equation 6 of Chapter I could not be derived analytically in this work. Indeed, 

our numerical work shows that tills equation is only approximately valid. It holds well 

for single particle states for q < 1 .8 /m -1 . When interpreting elastic electron scattering 

experiments at q > 1.0/ m -1 , the analysis will have to take into account the relativistic 

motion of nucleons in nuclei in order to extract useful information about the distribution 

of mass and electric charge at the correspondingly small distances.

Calculations of the scalar density and vector density with the Dirac equation pro­

duced an interesting result that the difference between the two becomes appreciable for 

small radius of the potential field. As attention was focused mostly on vector density 

which contributes to the charge form factor, the above result remains to be explained by 

further work. The Dirac equation was used in the computations because the standard 

procedure with the Schroedinger equation is not valid in this case.

This work explored the case of a single state. For further work, it should be in­

teresting to investigate the multiple state situation. According to my own experience 

with the computations performed, if higher precision is desired, it may be helpful to use 

more points when performing integrations with Gaussian algorithms.

16
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