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NONLINEAR REGRESSION BASED ON RANKS

Asheber Abebe. Ph.D.

Western Michigan University. 2002

This study presents robust methods for estimating parameters of nonlinear 

regression models. The proposed methods obtain estimates by minimizing rank- 

based dispersions instead of the Euclidean norm. We focus on the Wilcoxon 

and generalized signed-rank dispersion functions. Asymptotic properties of the 

estimators are established under mild regularity conditions similar to those used 

in least squares and least absolute deviations estimation. The study also shows 

that by considering the generalized signed-rank dispersion we obtain a class of 

estimators that encompasses most of the existing popular nonlinear regression 

estimators. As in linear models, these rank-based procedures provide estimators 

that are highly efficient. This fact is further confirmed for finite samples via 

a simulation study. Examples illustrating the robustness of the procedure are 

presented.
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CHAPTER I

INTRODUCTION

1.1 Models and Estimation

One of the most important tasks of any scientific analysis is building models 

to represent the relationship between the variables involved in the analysis. Often 

this relationship involves a response variable depending on a set of parameters 

in a systematic way. Most writings in the statistical literature assume that the 

systematic relationship is linear in the particular parameters and build models 

accordingly. Many interesting problems, however, are nonlinear in nature.

In this study we investigate nonlinear models where the model under con­

sideration is suggested by the underlying mechanism which generates the data. 

Thus we learn of the true form of the model from the process that generates it. 

As mechanisms in real life are rarely deterministic, the model may depend on 

an unknown set of parameters, random or deterministic predictors, and random 

quantities which are unobservable. In other words, given the same inputs, the 

mechanism is unable to produce exactly the same output sequence in repeated 

runs.

Our interest lies in estimating the parameters upon which the model de­

pends. Naturally, we want our estimator to behave consistently like the true value

1
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of the parameter as more information about the underlying process becomes avail­

able. We further need the ability to predict the behavior of the model with some 

degree of certainty. Thus besides consistency, we need the asymptotic distribu­

tion of our estimator. We also want it to perform reasonably well, given the same 

amount of information, as compared to other competing estimators and to resist 

the influence of aberrant observations.

1.1.1 Linear Regression Based on Ranks

Linear regression based on ranks was first proposed by Jureckova (1971) 

and Jaeckel (1972). McKean and Schrader (1980) showed that these R estimates 

are based on minimizing a norm based on a score function. Hence, the geometry' 

of these estimates is similar to that of least squares (LS) in the sense that one 

norm has been substituted for another. Unlike the Euclidean norm, the norm 

associated with R estimates leads to highly efficient, robust estimates. Chang 

et. al. (1999) extended these estimates to a class of high breakdown, bounded 

influence estimates.

These R estimates and the associated norm depend on the score function 

chosen. The two most popular score functions are the sign score function (L i) and 

the Wilcoxon score function (linear score function). In simple location models, sign 

scores result in medians as the location estimates, while the Wilcoxon score func­

tion results in Hodges-Lehmann estimates; see the monograph by Hettmansperger
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and McKean (1998) for a recent discussion. For normal errors, the sign and 

Wilcoxon estimates have asymptotic relative efficiencies (ARE’s) (relative to LS) 

of 64% and 95%, respectively. Further, these efficiencies carry over to the linear 

model. The high efficiency of the Wilcoxon procedures relative to LS makes them 

attractive alternatives to LS procedures.

Another appealing estimation based on ranks involves the generalized signed- 

rank class of estimates. Just like the usual R estimates, this class uses an ob­

jective function which depends on the choice of a score function, . If is 

monotone then the obective function is a norm and the geometry of the resulting 

robust analysis, (estimation, testing, and confidence procedures), is similar to that 

of the geometry of the traditional least squares (LS) analysis: see McKean and 

Schrader (1980). Generally this robust analysis is highly efficient relative to the LS 

analysis. Once again, for the simple location model, if Wilcoxon scores, -p+{u) =  u. 

are used then this estimate is the famous Hodges-Lehmann estimate while if sign 

scores are used, <p+(u) =  1, it is the sample median. If the monotonicity of <̂+ 

is relaxed then high breakdown estimates can be obtained; see Hossjer (1994). 

Thus the signed-rank family of robust estimates for the linear model contain es­

timates which range from highly efficient to those with high breakdown and they 

generalize traditional nonparametric procedures in the simple location problem.
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1.1.2 Nonlinear Regression

Consider the following general nonlinear model,

Vi =  fi(Oo) +  £i- *’ = 1 ,... ? rc , (1-1)

where each /, are known real valued functions defined on a compact space 0  and 

£t are random errors assumed to be independent and identically distributed.

In most cases, the dependence of /  on i is borrowed from independent 

variables. In such cases we write

yi =  / ( X i , 0 o) +=i -  i =  L . . . . n .  (1.2)

where x, 6 X  C 3?17, 0 € 0  and /  : X  x 0  —> 3?. The dimensions of © and X  

are not necessarily the same except in the situation when /(x t, 0q) = x.JOo. the 

linear model.

We start by giving a definition of our estimation criterion, the dispersion 

function. Let the residual vector, r(0). be the n x 1 vector whose ith element is 

V i - i m .

Definition 1.1.1. A dispersion function is a function D(-) of r(0) satisfying

£>(ar(0) +  6l) =  |a|D(r(0)) ,

where a, b £ 3? and 1 is the n x 1 vector of ones.

The estimate of 0q is the argument which minimizes the dispersion func­

tion. In most instances the dispersion function is a measure of distance between
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the vectors (t/i, • • • , yn)T and (/i(0). • • • , f n{0))T- For instance, the LS dispersion 

function is the Euclidean distance of the vector of residuals from the origin of 5Rn. 

Hereafter vve shall write D(0) for D(r(6)) for notational convenience.

When 0  is a subspace of the Euclidean space. 5?p. the compactness as­

sumption is equivalent to assuming that 0  is closed and bounded. In practical 

situations this is almost always true due to constraints imposed by the underly­

ing mechanism. The compactness of the parameter space ensures the existence 

of minimizers of continuous dispersion functions as shown by Jennrich (1969). 

We also note that if 0  is a separable, completely regular topological space, the 

results continue to hold as discussed in Richardson and Bhattacharyya (1986). 

By the Stone-Cech Theorem, every completely regular space is a dense subspace 

of a compact Hausdorff space so that every continuous function defined on the 

original space has a continuous extension defined on the compact Hausdorff space 

(see Willard (1970)). Thus there is no loss of generality in assuming that the 

parameter space is compact.

A more restrictive assumption is to assume that 0  is a discrete subspace 

of 3?p. Of course, this is a stronger assumption than the compactness of 0 .  This 

path was taken by Wu (1981), who was able to give stronger results than the ones 

given by Jennrich (1969) in the analysis of the LS estimator of 00-

Let f(0) denote the n x l  vector with fi(0)  as its zth element. Further, let
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y  denote the n x  1 vector of responses. Whenever c, have mean zero, the surface

5 (0 )  = {f(0) : 0 € 0 }  C W1 ,

is known as the expectation surface (St. Laurent and Cook (1993)). Note that 

if the dimension of 0  is p < n. 5  is a p-dimensional surface in 3?n. Since 5  is 

generally curved, most minimization problems we deal with 5  will not involve a 

dispersion function that is convex. Our goal is to determine a neighborhood in 

which 5  acts like a hyperplane so that we can achieve local convexity. If 5  is 

a topological n-manifold with boundary, the existence of local Euclidean spaces 

is immediate. Generally, if the surface 5  is smooth enough, the tangent plane 

at point (0.5(0)) gives a good local linear approximation of 5. Note that when 

© C 3?p and f(0) =  X0 for some known n x p design matrix. X, the expectation 

surface is a bounded p-dimensional hyperplane in 3?”.

The existence of suboptimal minima of dispersion functions is related to 

the shape of the expectation surface. 5, and the distance of the response vector 

y  = (</!,••• ,yn)T from S  as discussed in Pronzato and Walter (2001). The 

tangent approximation will not be good if the intrinsic curvature of 5  is high. 

This is just the ratio of the size of the quadratic term to the size of the linear 

term in a quadratic Taylor series approximation of f(0).

Another related concept is the concept of identifiability. In linear regres­

sion, 0 is not identifiable if X TX does not have full rank. In nonlinear regression 

non-identifiability occurs when two distinct points in © correspond to one point
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Figure 1. Expectation Surface of sin((7i)°)

in S. The geometric interpretation of this is that the space S  folds as much as 

to intersect itself. In such a case the point of intersection will not be identified. 

As discussed in Seber and Wild (1989), the usual indicator of non-identifiabilitv 

in nonlinear regression is the singularity of (Vf)T(Vf), where V f  is the n x p 

Jacobian matrix of f. In our analysis we will give measure-theoretic definitions of 

identifiability and require that f  is identifiable.

As the following example shows, non-identifiability could occur in quite 

trivial cases. Consider the model fi{6) =  sin((7«)°), for i = 1,2 where 6 € [—1,1]. 

The expectation surface is actually a one dimensional curve in the two dimensional
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space. Since sin(7fl) — sin(14fl) = 0 has two solutions in [—1.1], there will be no 

way of identifying which particular value of 6 is mapped to the particular point 

in the expectaion surface at the roots. Figure 1 gives the expectation surface.

There has been considerable work on LS estimation of 00. The asymptotic 

properties and conditions needed for the numerical stability of the LS estimation 

procedure were investigated in Jennrich (1969). Manilvaud (1970) and Wu (1981) 

have further investigated large sample properties of the LS estimator. LS estima­

tion in nonlinear models is a direct extension of its estimation in linear models. 

The same norm (Euclidean) is minimized to obtain the LS estimate of 0O: that is. 

the geometry stays the same in moving from linear to nonlinear models.

Oberhofer (1982) gives sufficient conditions for the consistency of Li esti­

mates of nonlinear regression parameters. We will strengthen the result by fol­

lowing an entirely different approach. The asymptotic normality of L\ estimators 

was given by Wang (1995) under smoothness and differentiability assumptions. 

Even though the Li estimate is robust against outliers, it lacks efficiency as com­

pared to LS estimates. Just as in the linear model its ARE is 64% relative to LS. 

Discussion and references concerning nonlinear estimation based on Lp norm may 

be found in Gonin and Money (1985).

Another approach, taken by Stromberg (1995), is to minimize the median of 

the square of the residuals to obtain the estimate of 60. This method, known as the 

least median of squares (LMS), was originally proposed by Rousseeuw (1984). As
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Hettmansperger and Sheather (1992) show, in the linear model this method gives 

estimates that are unstable. This problem persists when we move to nonlinear 

models.

Based on geometry. R estimates can naturally be extended to nonlinear 

models. As in the case of LS estimates, the same norm can be used to obtain 

R estimates for nonlinear models as for linear models. Thus the linear model 

interpretation of the estimates carries over to nonlinear models.

1.2 A Motivating Example

The example we consider is a nonlinear model defined on the unit interval 

(0,1)- This example discloses the degeneracy of the LS estimator in the presence 

of aberrant observations and emphasizes the need for robust estimators.

Consider a model generated using n =  100 (x. y) pairs satisfying

y = exp x.

where x is a random sample taken from a uniform(0,1) distribution. Then the 

(x, y) values were rounded to three significant digits. The model we are fitting is 

a hybrid exponential model given by

y =  0o + exp(,/?!•£) +  e,

where e are random errors attributed to rounding. We expect these errors to have 

a random scatter since they are obtained by a symmetric rounding process. Note 

that the true values of the coefficients are /30 = 0 and j3x =  1.
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As seen in Figure 2, panel (a), (b) LS gives a good fit to the data with 

random scatter for the residuals. Now suppose an outlier is introduced in the 

response space by displacing one of the points by -0.15 in the vertical direction. 

The effect of this outlier on the fit is not visibly apparent in Figure 2 (c). but the 

residual plot for LS in panel (d) shows its poor fit.

Table 1

LS Estimates for the Hybrid Exponential Model

■w.
do dl RSS

Original 1.874 x 10"° 9.999 x 10-1 3.590 x 10"°
With outlier -2.373 x 10-;J 1.001 x 10° 2.218 x 10"2

The estimates of 30 and along with the residual sum of squares (RSS) 

are given in Table 1. Also note the large increase in the RSS due to the outllier 

introduced. This is visibly apparent from the change in the vertical scale of the 

residual plot.

This example illustrates that, quite generally. LS gives estimates that are 

very sensitive to points that deviate from the form of the model.
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(a) Scatter plot and LS fit: original (b) LS residual p lo t: original
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(d) LS residual p lo t: outlier
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Figure 2. LS Analysis of the Hybrid Exponential Model
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CHAPTER II

SOME ASYMPTOTIC RESULTS

Let (fi. T. P) be a probability space. We shall write h(0) instead of h(0){u) where 

jj 6 fi and 0 6 0  when there is no confusion regarding the stochastic nature of 

the function h (i.e. h{0) is P-measurable). In the remainder of this study we let 

A° represent the interior of the space A and dA represent the boundary of A. The 

set subtraction of B  from A is denoted by A \  B.

2.1 Consistency

Lemma 2.1.1 is a generalization of the results of Oberhofer (1982) and 

Bhattaeharyva et. al. (1992). where it is used in establishing the consistency of 

L\ estimators of nonlinear regression parameters.

Lemma 2.1.1. Let {T„ : n > 1} be a real valued sequence of functions defined on 

f ix ©  where 0  is a compact space. Let 0O € 0 °  and 0* be an arbitrary compact 

subset o f®  \  {0q }. If

(i) r„ is uniformly continuous on 0  for each uj € fi, uniformly in n.

(ii) there exist a sequence of real valued functions f i n  defined on 0  such that for

each u) € fi, Tn(0) — p.n{0) —> 0 in probability for all 0 G 0  as n —> oc, and

12
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(iii) there exist a 3 =  3(&‘) > 0 and a nQ = no(0*) such that for all n > no,

inf un(9) > 3 . 
8e&’

then

lim P[ inf r„(0) > 0] =  1 .
n—roc 8e& -

Proof. Let 9m be an arbitrary point in 0*. Since by (iii) of the theorem we have 

a 3 > 0 and a n0 such that

inf ti„(0) > 3 .
0€ @ *

whenever n > no, (ii) implies that

lim P [r„ (0* ) > J / 2] = l .  (2.1)
n —foe L J

Because Tn is uniformly continuous in 0 on 0 .  uniformly in n. there exist an open 

set K ’ and a n* > n0 such that for 6* € K ’ and for all 9 € A *. |r„(0) — r„(0*)| < 

3 /4  for n > n’. Hence, by (2.1). with high probability.

r„(0) > 3 /4 .

for all 9 € K* and sufficiently large n. So, infk - r„(9) > 3/4 with high probabil­

ity. i.e..

lim P[infr„(0) > d/4] = 1 . (2.2)
n —*oc h'~

This is true for all 8* in 0*. Since 0* is compact, this produces a finite subcover 

of such sets (A'j. • • • . K j)  covering 0*. Therefore, K '  in (2.2) can be replaced by 

0*. □

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



14

In the discussions of Battacharyya et. al. (1992) and Oberhofer (1982) 

the function p. is assumed to be the expectation of T„ and independent of n. 

Lemma 2.1.1 requires the existence of a function, pn so that the stochastic function 

r„  -  fin converges pointwise to 0 and it makes no assumption concerning the 

existence of the expectation of Tn.

The above lemma plays a very important role in establishing the consis­

tency of minimizers of dispersion functions. If Dn{0) is a dispersion function, (i) 

- (iii) of Lemma 2.1.1 for r„(0) =  Dn{0) -  Dn(0o) establish the weak consistency 

of the minimizer of Dn as the following lemma of Wu (1981) shows. The proof is 

similar to the proof of Lemma 1 of Wu (1981).

Lem m a 2.1.2. Assume

a.s. (or in probability). Then. 0n —> 0q a.s. (or in probability) as n —> oc.

Proof. We prove the a.s. convergence. Convergence in probability follows in 

a similar manner. Note that if 0n —> 0O a.s. is not true, then there exists 

0 ’ C 0  \  {0q } such that

0n = Argmin Dn(0)

exists. Suppose, for any arbitrary compact subset 0* of 0  \  {0o}.

lim inf inf \Dn(0) — Dn(0o)| > 0 ,
n  k/v> f l r O  *  ̂ •*n-+ oc fle©
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which implies that

P \ lim inf inf \Dn(0) — Z}„(0o)l < 0
L n —>oc fl€© *

> 0

The result follows by taking the contrapositive of the implication. □

Lemma 2.1.2 is very general in that it only requires the existence of the 

limit infimum of the process as opposed to the limit which we have assumed in 

Lemma 2.1.1. When the limit exists and is finite, the result of Lemma 2.1.1 is 

equivalent to the sufficient condition given in Lemma 2.1.2 via an application of 

the Dominated Continuity of Measure Theorem (see. for example. Fristedt and 

Gray (1997)).

2.2 Asymptotic Distance Between Minimizers

The following result concerns the asymptotic distance between minimizers 

of dispersion functions. A version of the result was used by Jaeckel (1972). The 

version given here is the one found in Hjort and Pollard (1993) generalized to 

metric spaces.

Assume that (0 ,p) is a compact metric space. Let An be a real valued 

convex random function defined on f i x 0  and let Bn be an approximation of An 

in some compact subspace, 0 .  of 0 .  For u  € we assume that the minimizer. 

3n(u>), of Bn is unique on 0 ; however, we make no assumption as to the uniqueness 

of the minimizer, a n(o;), of An. Furthermore, let Cn(r]) = {0 G 0  : p(0. 3n ) < n}-
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Lemma 2.2.1. For 0 6 0  and q > 0.

where

P[p{an.3 n) > q] < P [± n(v) > *«(»?)] •

A„(i7) = sup 1-4,,(0) -  Bn{9)|
eecn(ij)

and

hn{q)=  inf Bn(0) -  Bn(3n) .
0€dCn(r,)

Proof. Let 0 be an arbitrary point outside of Cn{q) and 0* be any point on dCn{q). 

By the convexity of An.

This implies

- J L - j { A n(0) -  An(3n)} 

> An(0') ~ An(3n) 

= {B n(0') -  Bn(3n)} -  {An(0') -  Bn(0') + An(3n) -  Bn(3n)}

> inf {B n(0) -  Bn(3n)} ~  sup |.4n(0 ) -£ „ (0 ) |
ee dC nl i )  eeCnin)

= hn(q) -  2An(r/) .

So. if A„(7y) < j hn{q), then An(0) > An{3n) for all 0 outside Cn(q). Thus the 

minimizer of An, q „. has to be inside the ball Cn(Tl)- O

Definition 2.2.1. Two estimators. an and bn, are said to be asymptotically  

equivalent if and only if y/n(an -  6„) —>• 0 in probability.
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To show the asymptotic equivalence of the two minimizers. a n and 3n, 

we may apply Theorem 2.2.1 with tj =  8/y/n. 8 > 0. Sufficient conditions are 

hn{8/y/n) is stochastically bounded above zero and -!„(£ /y/n) converges to zero 

in probability as n —* oc.

This just says the minimizer of Bn is unique in a shrinking ball as n —> 

oc. The process .4n is allowed to have a flat bottom as in most rank dispersion 

functions. In most cases. An is taken to be the local convex approximation of 

Bn via a Taylor series expansion. As we shall see in the chapters to follow, this 

particular technique is instrumental in establishing the asymptotic normality of 

our estimators.

2.3 Conditions for Normality

Noethers condition is one of the sufficient conditions for asymptotic nor­

mality of an estimator. It is given by

£ > * ; ) *  “ >• 0  
j = i

as n —> oc. where x, are p x 1 vectors, i =  1 .-•• . n. The result of this section 

gives sufficient conditions needed for Noether's condition. The following lemma 

along with a proof can be found in Wu (1981).

Lemma 2.3.1. Let Xj, i =  1. • • • . n. b ep x  1 vectors such that there exist an f  oc 

and lim^oc a „_ i/a n =  1 with a " 1 x7x j  converging to a positive definite

max x (
K t < n  v

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



18

matrix E. Then
n

max
K i < n

x T ( 5 > x [ ) x ,  -  0

as n —> oc.

Define X to be the n x p matrix with the ith row given by x j\ Now 

Hn = X(XTX )-1Xr  is the projection matrix onto the column space of X. An­

other condition often used in proving asymptotic normality (known as Huber's 

condition) is

where hun is the zth diagonal entry of Hn. The following lemma given by Hettmansperger 

and McKean (1998) shows that Huber's condition is sufficient for Noether's con­

dition.

Lemma 2.3.2.

In our study we will deal with linear combinations of functions of order 

statistics (LCFOS), and therefore it is important to investigate their large sample 

properties. Strong laws of large numbers for LCFOS are given by Wellner (1977). 

Helmers (1977), and Sen (1978). A result that includes all the aforementioned 

works is given by van Zwet (1980). We shall discuss the work of van Zwet (1980) 

here.

lim max hiin = 0 .
n-+ oc I< :< n

n

max x
K i < n

2.4 Linear Combinations of Functions of Order Statistics

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



19

The following definition can be found in Doob (1994). A parallel definition 

for random variables is given in Pollard (2002).

Definition 2.4.1. If /  is a measurable function from a measure space into 9?. the 

essential supremum of / .  denoted by ess sup. is the supremum of constants c 

for which { / > c} is nonempty.

Following Doob (1994) we denote by LP. 1 < p < oc. the space of mea­

surable functions h : (0.1) —> 9? for which \h\p is integrable for 1 < p < oc and 

the space of essentially bounded measurable functions for p =  oc. The Lp norm 

of h is ||/i||p =  { /  |/i|p}1/p for 1 < p < oc and \\h\\x  = ess sup |/i| for p =  oc. All 

integrals are with respect to Lebesgue measure on (0.1).

Let £(i),__ £(„) be order statistics from a sample of n i.i.d. uniform(0.1)

random variables. Let : (0.1) —> 9?. n = 1.2 be Lebesgue measurable

functions and let g : (0.1) —» 9? be a Borel measurable function. Define gn(t) =

#(£([n/! l̂))-

The following lemma along with a proof can be found in %'an Zwet (1980).

Lemma 2.4.1. Let 1 < p < oc. l /p +  1 / q  = 1. and suppose that Jn € Lp for n = 

1.2. —  g 6 Lq, and there exists a function J  6 Lp such that lim ^oc /q Jn =  Jq J  

for a / l i e  (0.1). If either

(i) 1 < P <  oo and sup„ ||./n||p <  oc, or

(ii) p =  1 and {Jn : n =  1 .2 ,...}  is uniformly integrable,
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then f  Jngn f  Jg.

This lemma is used in Chapter IV to show the strong consistency of the 

generalized signed-rank estimator. The idea used will be the probability integral 

transform which says that the distribution function has a uniform distibution on 

the interval (0.1). Thus order statistics from any distribution may be written in 

terms of order statistics from a uniform (0.1) distribution.

We now give a geometric interpretation of Lemma 2.4.1. Consider the type 

of convergence of ./„ 6 Lp to ./ € Lp given by lim^oo f  Jngn =  f  Jg for g G Lq. 

As discussed in van Zwet (1980). (i) and (ii) of Lemma 2.4.1 are the necessary and 

sufficient conditions needed for the set {</„. n =  1.2. • • •} C Lp to be sequentially 

relatively compact. A set is said to be sequentially relatively compact if every 

sequence in the set has a subsequence that converges. Thus proving the conver­

gence of a sequence can be done by proving its sequential relative compactness 

and that every convergent subsequence has the same limit point (see Fristedt and 

Gray (1997)).
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CHAPTER III

WILCOXON ESTIMATION

3.1 Definition and Existence

Consider the nonlinear model (1.1) and let y  =  (y i , . . . .  yn)T and f [0) = 

. - -. fn{Q))T- Given a norm || • || on n-space, a natural estimator of 0 is 

a value 0 which minimizes the distance between the response vector y and f (0): 

that is,

0 = Argmin ||y — f(0)|| . (3.1)
dee

If the norm is the Euclidean norm then 0 is the LS estimate.

In this chapter, we consider the Wilcoxon norm given by,

l|u||w =  (2n(n +  l))-1 ^  |u* -  uj\ . (3.2)
‘< j

where u is a point in 5Rra. The quantity given in (3.2) may be represented as a 

linear function of the order statistics of u (see, for example. Hettmansperger and 

McKean (1998) page 73) as,
n

| |u | |h '  =  n~l ^ 2 a w<n(i)u(i) , (3.3)
t=i

where an-,„(i) = tpiv{i/(n +  1)) where <fw{u) is the Wilcoxon (linear) score func­

tion given by <pw{u) = u — 1/2. This representation is the one considered by

Jaeckel (1972) in estimating linear regression parameters.

21
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Technically the function (3.2) is a pseudo-norm: that is. it satisfies all the 

properties of a norm except, the property

||u ||ir = 0 O  u = 0 .

is replaced by

||u||ir =  0 <=>• ux =  u-2 = ■ ■ ■ = un .

We define the Wilcoxon estimator of 0O, denoted hereafter by 0\v,n. as

0w.n =  Argmin ||y -  f(0)||vr - (3.4)
flee

It will be convenient to use the notation. Dn{y.0) =  ||y  — f(0)||w- When there 

is no confusion we will drop the y from the notation.

The following lemma can be found on page 270 of Prakasa Rao (1987). 

The proof is credited to Landers (1968) and Strasser (1973).

Lem m a 3.1.1. Let (T-^4.) be a measure space and (0 .p )  be a locally compact 

space with countable base. Let D be a nonnegative function on y  x 0  such that

(i) D (y.0) is continuous in 0 for all y € y .

(ii) D (y,0) is A-measurable for all 0 6 0 .  and

(iii) for all y  6 y  and for all S > 0, there exists a compact set Cy,d' C 0  such 

that

•m{{D(y,0)\OtCy,6} > 6 .
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Then there exists a measurable map h : y  —► © such that

D(y,h(y))  =  inf D{y.0) .

As the next theorem shows, the following assumption suffices for the exis­

tence of the Wilcoxon nonlinear estimate:

A l: For all i. fi{0) is defined and continuous for all 0 6 0 .

T heorem  3.1.1. Under Model (1.1) and Assumption Al. 0\y,n exists.

Proof. Because 0  is compact it is a locally compact space with with a countable 

base. Parts (i) and (ii) of Lemma 3.1.1 follow trivially since under Al. by Theo­

rem 1 of Jaeckel (1972), Dn(0) is continuous in 0. Part (iii) of Lemma 3.1.1 follows 

from the fact that Dn{0) is a nonnegative (again by Theorem 1 of Jaeckel (1972)). 

continuous function since for any S > 0 we can define Cyj  to be

Another popular score besides the Wilcoxon. is the sign score function 

given by y?s(u) =  sgn(u — (1/2)). The norm associated with this score function is

(3.3) but with the sign scores as,n{i) =  p s i i / in  +  I))- Let 0s denote the estimate 

based on this norm. Its existence follows in the same way as the existence of the 

Wilcoxon. In order to see the relationship between 0S and the L[ estimate of 0.

± 0€© W - o | }

The existence of 0w.n follows from Lemma 3.1.1. □
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denote the L i norm by,
n

M U. • (3-5)
t=i

Let 0 ix denote the estimate based on this norm. The following lemma is the 

nonlinear analogue of Theorem 3.8.1 of Hettmanpserger and McKean (1998).

Lemma 3.1.2. I f  0  is a compact subset o fW .  then

f (0Ll) = f(0s ) + med{yi -  fi(0s )} l  . 

where. 1 is a vector of n ones.

Proof. Since 0  G 3?p. we may write it as 9  =  (6\. - • • .9p)T . Let F(0) be the n x p 

matrix with i j th  element fi{0j). Let E = {F(0) : 0  G 0 }  and Z[ =  {[1 F(0)] :

0 } .  Any two vectors, v  G -  and v c G —i. are related as v  =  a l  + v c where 

a G 3?. We have

l[y -  v | |Ll =  (|y -  a l  -  v c||tl > |(y -  med{y -  v c} l  -  v c(|tl .

with the last inequality due to the fact that the sample median minimizes the 

L\ distance between a vector and the space spanned by 1. This implies, for any 

v  G E.

Ily -  v | | i ,  > ||y -  med{y -  v c} l  -  v e||£l = ||y -  v c||5 . (3.6)

since sgn(y, -  med{y — v c} -  yri) = sgn(/?(y, — V d )  — (n + 1)/2) and the sign scores 

sum to 0. Using the same argument we can show that

fly -  med{y -  f(05)}l -  f(g5)||£l =  ||y -  f(gs )||s  . (3.7)
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Putting (3.6) and (3.7) together completes the proof. □

Oberhofer (1982) obtained asymptotic theory for the Li estimate 0 In

Chapter IV we will strengthen the results of Oberhofer (1982) using a generalized

signed-rank dispersion function. Using Lemma 3.1.2, the asymptotic theory for

the signed estimator Os can easily be derived.

As in the linear case, the ARE of the L\ estimate, relative to LS at normal

errors, is low. 63%. In the next two sections, we derive the asymptotic theory
>■«*

(consistency and asymptotic normality) of the Wilcoxon nonlinear estimator 0w.n- 

As in the linear model situation, we show that the Wilcoxon nonlinear estimate 

has an ARE of 95%, relative to LS at normal errors. Thus the Wilcoxon estimate 

provides a highly efficient, nonlinear estimate of 0Q.

3.2 Consistency

Before we establish the consistency of 0\v,n we introduce some helpful 

notation. Let 0  and 0 * be points in 0 .  We denote the residuals at 0  by 

ei(0) — \ji — f i (0)  for 1 < i < n. For 1 <  i . j  <  n , we define W i j ( 0 , 0m) = 

\ei(0) — ej(0)\ -  |e,-(0*) — ej(0*)\ .  Further, let

h; (0 ,0*)  =  M 0 1 - f i ( 0 ) ,

hij(0,O*) =  h;(0,0*) -  /i* (M ’), and
n

A„(e, e-) = n~' 5 > - ( 9 , 0 - ) } 2 .
i= l
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Let G denote the distribution function of Si — Sj.

We need the following assumptions:

A2: d0 e 0°.

A3: Iim^oo n~lA„(0.0o) =  0 for all 0 e  ©.

A4: G(0) = 1/2.

A5: There exist rj > 0 and n0 such that for all n > n 0 and all 0 6 0 ' .  where 0* 

is a closed subset of 0  \  {0o}-

inf n~2 V " \hij(0. 0o)ix flee- ' 1 J
i < j

min {G(|/z,j(0,0o)|/2) -  1/2 . 1/2 -  G (- |M * -0 o )l/2 )}  > rj .

Assumption A3 is the same as Oberhofers (1982) assumption A4. .Jen- 

nrich (1969) assumes that An(d,0*) converges uniformly to a continuous function 

A (0 .0*) for all 0. 0* in 0  and A (0 .0O) = 0 if and only if 0 = 0O. This of course 

implies A3. Wu (1981) assumes that nA„(0.0') diverges as n approaches infin­

ity. This is weaker than Jennrich's assumption and A3 since it does not restrict 

A „(0 .0o) to converge at the rate of n. Assuming the existence of the dot product 

in light of Lemma 2.1.2, one can easily observe that Wu’s condition is suf­

ficient for the consistency of the LS estimator. This, however, is not true in our 

case as An only comes into play as part of an upper bound on Dn(0). Discussion 

on Assumption A5 follows Theorem 3.2.1.
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Now let 0* be a closed subset of 0  not containing 0q. The weak consis­

tency of 0w,n will then follow if for all such 0* and every 0  € 0 ’ ,

lim P( inf [Dn(0) -  D„(0O)] > 0)
n-y  oo 9 6 0 '

=  1 . (3-8)

Lemma 3.2.1. Under A3.

{Dn(0) -  Dn{0o)} -  E{D n(0) -  Dn(00)} -»• 0 .

in probability.

> 5  = 0 .

Proof. The statement of the lemma can be written as.

lim p (  [2n(n + I)]-1 V [U 'u ((9.0„) -  £ ( 1 ^ ( 0 .0O))]
n —foe V

X *<J

for all S > 0. Now applying Markovs inequality followed by Minkowski’s, trian­

gular and Jensens inequalities (see Petrov (1995)) we get.

p (][2n (n  + I)]"1 5^[H-y(0.®0) -  £ (H « (M o ))] | > *)
' i <j  '

< [2Sn(n + l) ] - l£ | ^ [W  o (0 ,0 o) -  E(W tj(0,00))]|
i <j

< [25n(n + l)]-1 X  E |I ^ ( 0 .0O) -  E(\Vtj(0 ,0O))]|
‘< j

< [2Sn(n + I)]"1 X  { E W j i O M l  +  \E(WtJ(0.0o))\}
i<j

< [5n(n + I)]"1 X  E\Wij{9,0O)I • (3.9)
«< j
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But.

111^(0.00)1 = W e ^ - e j m - l e . - c j W  

< iM 0 -* o ) |

<\h:(e.0o)\ + \h-(9.0o)\.

This implies that,

[ f a ( n + i r , Z E i"w ® -fl°>i < «o) i
i < j  i= l

which goes to zero as n —>■ oc by A3. This combined with (3.9) completes the 

proof. □

Lemma 3.2.2. Under A4-

E{Dn(0) -  Dn(00)} > [2n(n + l) ] - l ^ | ^ ( 0 . 0 o)|x

min{C(|M<Mo)l/2) -  1/2 . 1/2 -  G (-|A y (9.«o)l/2)> .

Proof. Note that.

Dn(0) -  Dn(0o) =  [2n(n + 1)]-L £  {\{£i -  £j) + ^ ( 0 , 0Q)\ -  |£t -  5,1} .
i < j

It is easy to show that if T  is a random variable with distribution function Ft 

and Ft {0) =  1/2, then for any constant k ,

E ( \T + k \ - \T \ ) = 2 I ( k < 0 )  [  *{\k\—x}dFr(x)+2I(k > 0) [ °  {\k\+x}dFT(x) .
JO J-k

(3.10)
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Applying this we obtain,

[2n(n + I)]"1 Y ,  £{l(fi -  £,) +  -  k. -  £jl}
i < J

—htJ(o,e0)
= [n(n +  l)]-1 ^ 2  /  {|/iy(0.0o)| -  x}dG(x)

( i . j )€A J o
ro

+ [n(n + l)]_I /  { \ h i j { 0 . 0O)| + x}dG{x) .
{ij )€B J - h^ e  o )

where A and B are a partition of the set {{i.j) : i < j}  given by A = {{i.j) : i < 

j  and hij {0.9,) < 0} and B  = {{i.j) : i < j  and /iy(0,0O) > 0}. Restricting the 

ranges of integration and applying A4 as in Oberhofer (1982) we get.

[2n(n +  I ) ] '1 Y  -  ‘j) +  o)l -  ki -  Sj\}
i < 3

> [2n(n +  l)]-1 £  |/io- (0 ,0 o ) |{ G (-M * 0 o ) /2 ) - l /2 }

+  [2n(n + l)]_l £  I M 0 .0 o ) l{ l /2 - G ( - M 0 .0 o)/2)}
(«J)€B

> [2n(n +  I)]-1 Y  \hij{0, ®o)| x
‘< j

min{G(|/iy(0,0,)/2\) -  1/2. 1/2 -  G (- |M * * o ) /2 |)}  .

□

We now state and prove the main theorem of this section.

T heorem  3.2.1. Under A1-A5, 0w,n is weakly consistent for 6,.

Proof. Let

r„(0) =  Dn{0) -  Dn{00) ,
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and

^ n(e) = E { r n(9,0o) } .

For any O' € 0* C 0 . where 0* is a closed set not containing O0, under A5 and 

Lemma 3.2.2. there exist a 6 = i3{®') > 0 and a n0 =  no(©*)- such that for all

n > no,

inf Hn{0) > 3 . (3.11)
0 *

Because

it is uniformly continuous in 0  on 0. uniformly in n.  Moreover, by Lemma 3.2.1.

we have r„(0) — //„(#) -> 0 in probability for all 0 € 0 . Thus by Lemma 2.1.1

we have that

lim Pf inf Tn(0) > 0] =  1 .n-> oc flee* J

The result follows from Lemma 2.1.2. □

Assumption A5 is similar to that assumed in Oberhofer (1982). As the

following lemma shows assumption A5 is an identifiabilitv assumption. We will

give the following definition of identifiabilitv of measurable functions. A similar 

definition can be found in Seber and Wild (1989).

Definition 3.2.1. Let f  be A-measurable. where A is a cr-finite measure. The pa­

rameters of the nonlinear regression problem y =  f (0) + e  are said to be unidenti- 

fiable if there exist two distinct points 0\ and Oo such that A( f (6?[ ) # f ( 0 2)}=O.
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Lemma 3.2.3. If for each 0, f(0) is a real measurable function on a measure 

space ( lo , T , A), where A is a a-finite measure, then a necessary condition for A5 

to hold is,

A {f(0)^f(0„)}>O ,

for any 0 ^  60.

Proof. Assume that there exists 0 € & distinct from 0q such that f(0) =  f(#o) 

A-a.e. For such 0, |h,_,(0.0O)| = 0 A-a.e. implying that A5 fails to hold. □

If /  is a known function as in (1.2) that depends on a set of random 

predictors, in addition to the parameters, then we obtain a natural extension of 

this. The following corollary gives the result.

Corollary 3.2.1. Let (Q. T . P) be the underlying probability space and fi{0) =  

/(* ,*)■  Assume z, are n independent identically distributed m dimensional ran­

dom vectors with range Z  C 5?m. Then a necessary condition for A5 is that for 

all Zi € Z,

P ( f(z i(u j) .0 )= f(z l(uj),0o) ) < l .  

for 0 ^ 0 O and each uj € Q.

Proof. Obvious. □

The following lemma gives sufficient conditions for A5 to hold.

Lemma 3.2.4. If
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A5.1: £i — £j have density g continuous at 0 with g(0) > 0. and 

A5.2: There exist rj > 0 and n0 such that for all n > n0 and all 0 € ©*

inf_ n~2{hij(O,00)}2 > rj.

then A5 is true.

Proof. Since G(0) =  1/2. applying a first order Taylor series expansion of G about 

0. vve have

»-» g  !&«(•.0b)| x min - 1 / 2 . 1  j
= n- 2^ { / iy(e,e„)}2S(i)/2 ,

i < J

where t € ( — \hij(0. flo)|/2, \hij(0.0<f)\/2). Since g is continous there is an interval 

(—6,5) over which g > 0 for some 5 > 0. Moreover, since hij is continuous and 

0* is arbitrary, the interval (—\hij(0,0Q) |/2, \hij(0,0o)\/2) can be made a subset 

of (—J, (J). The result follows from A5.2. □

For most practical purposes A5.1 and A5.2 are easier to verify than A5. As 

discussed in the remark immediately following the definition of assumption A5.

A5.2 is a double-indexed version of Jennrich’s (1969) assumption on An(0.0o)-

3.3 Asymptotic Normality

In this section we will investigate the asymptotic distribution of 0w,n- The 

theory for the asymptotic normality uses tangent planes. A ’manifold-type’ prop­
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erty of the expectation surface, S. is furnished by the consistency of 0w,n in the 

locality of 0O. Hence the asymptotic theory of linear models plays a very impor­

tant role in showing the asymptotic normality of 0w,n- Details concerning the 

asymptotic properties of rank estimators of linear model parameters can be found 

in Hettmansperger and McKean (1998).

In addition to Al - A5. we will assume that the following conditions are 

satisfied.

N l:  For i =  1, n. f t{0) is continuously differentiable at 0Q with respect to 0.

N2: The sequence of matrices

n

1 = 1

converges to a positive definite matrix E(0o) where V fi{0) is the p x 1 

derivative vector of /,(#) with respect to 0.

N3: The error density g has a finite Fisher information.

For i = 1. . . . .  n, let

e-(0) =  yi -  fi(e0) -  {Vfr(e<,)}T(e - e0) .

Note that e*(0) are the error terms of the linear regression,

y * = x ‘r 0o + £ , .  (3.12)
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where y’ = yi —fi(0o) + {^ fi(0a )}T0o and x* =  V /,(0O). Define the corresponding 

Wilcoxon dispersion function as,

D-„(6) = I2n(n + I)]-1 £  |e?(«) -  ej(0)| . (3.13)
‘ < J

Furthermore, let,

0n = ArgminD*n(0) . (3.14)
060

Under assumption N2. we apply Lemma 2.3.1 to obtain Noether’s condtion.

-1
{V/,(0 o ) } ^ 0 .  (3.15)

as n —>• oc. The following theorem uses this condition to establish the asymp­

totic normality of 0n. A rigorous derivation of the result may be found in 

Hettmansperger and McKean (1998).

Theorem  3.3.1. Under model (3.12) and assumptions N2, N3 we have.

-  0o) ^  Xp(0, Tpl{0o)) 1 (3.16)

where

• =  f  (G(«) -  1/2)(-g'(t)/g(t))dC(t) . (3.17)

and £(0o) is given in assumption N2.

Proof. The result follows from Corollary 3.5.6 of Hettmansperger and McKean (1998) 

via (3.15). □
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Let V /0 be the n x p matrix with the ith row given by {V/,(#o) }r . The 

projection operator onto the tangent plane at 0q of the expectation surface. S .  is 

given by

p . = v / o ( v / r v / 0) - lv / 5 ' .

Assume

H I: limn-̂ oo maxl<t<„p,m =  0, where piin is the ith diagonal entry of Pn.

The following corollary of Theorem 3.3.1 shows that HI may be used to 

prove the asymptotic normality of 0n whenever it is convenient.

Corollary 3.3.1. Under model (3.12) and assumptions HI. N3 we have,

M O n - 0 o) ^  Np(O ,r ^ (0 o)) ,

where

r ; 1 = J (G(f) -  l /2 )(—(/(t)/g(t))dG(t) , (3.18)

and E(0o) given in assumption N2.

Proof. The proof follows by Lemma 2.3.2 and Theorem 3.3.1. □

The approach we follow to prove the asymptotic normality is via Slut­

sky’s Theorem (see Serfling (1980)). Recall that Lemma 2.2.1 gives a probabilis­

tic bound on the asymptotic distance between the minimizers of .4n. a convex 

process with a possibly flat bottom, and Bn, a process whose minimizer is asymp­

totically unique in a neighborhood which shrinks at the rate of l/y/n. In light
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of Lemma 3.2.2 and the consistency of 0\v>n, we have a neighborhood where the 

minimum of Dn is unique as n —> oc. Moreover, the process D* is convex as 

shown in Theorem 1 of Jaeckel (1972). Thus, Dn and £>* may be treated as Bn 

and .4„, respectively, in Lemma 2.2.1.

The following lemma in addition to (3.16) gives the main result of this 

section which is given in Theorem 3.3.2 below.

Lemma 3.3.1. Under A l - A5, N l  - N3.

\fn{Q\v,n — 0n) —* 0 .

Proof. Let p be any metric on ©. For S > 0. define Mn(6) = {0 E 0  : p{0w.n-. 0) <

S/y/n}. By Lemma 2.2.1, sufficient conditions for

'fn(0iv.n — 0 n) — > 0 .

are

sup |Dn(0) — D’ (0)| A  0 . and (3.19)
oexus)

inf {Dn(0) -  Dn(Ow.n)\ > 3 > 0 . 0eo\in(S)
(3.20)

for all S > 0 and sufficiently large n.

To verify (3.19) notice that

|£>„(«) -  D;(fl)| < !2n(n + I ) ] '1 ^  |e,(9) -  e,(6) -  e'(0) + ej{0)\
i<j
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But. for 1 < i  < n.

|e,-(0) -  e m \  <  \MOo) ~ M O )I + |{V /t(0o)}r (0 -  * o ) l  

<  \MOo) ~  MOw.n) I +  I MO) ~  MOw.n)  I 

+  \ { V MO o ) } T(0 -  0 W„)\ +  \ { V M O o ) } T( dw,n -  0o)\.

Moreover, since ft are uniformly continuous on 0  and Ow.n is weakly consistent 

for 0q .

\ M O o ) - M O n - . n ) \ +  sup \M0)  -  MOiv.n)\  A o . (3.21)
0€am<h

VVe also have ||V /t(0o)|| < oc by XI and the compactness of 0 .  This gives us.

sup |{V/,(0o)}r (0 -6 » -.n ) |+  sup \ { V M O 0) } T(On-.n-Oo)\  A o .  (3.22)
0 e M n{6)

The expressions in (3.21) and (3.22) establish (3.19).
a

Proceeding to show (3.20) notice that by the definition of 0\v.n and conti­

nuity of Dn{0) in 0 we have,

inf {Dn(0Q) -  D„(0n.-.n)} > 0 a.s. (3.23)
eed.Un(6)

We also have,

inf {Dn( 0 ) - D n(00)}> inf E{D n(0) -  Dn(0o)}
e e d \ r „ ( S ) L 9 e d M n(S)

+ inf [Dn(0) -  Dn(00) -  E {D n{0) -  Dn(0o)}} . 
e e a \ U S )  1 J

But by Lemma 3.2.2 and assumption A5, there exist rj > 0 and rc0 such 

that for all n > n0,

M  E { D „ ( 6 ) - D M » > n .
0 E o A f n (d)
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Also by Lemma 3.2.1.

inf [Dn{0) -  Dn(80) ~  E{Dn(0) -  A .(0O)}] ^  0. 
flea  a i n(6) 1

Thus for sufficiently large n we have.

inf {Dn(0) -  Dn(0Q)} > q. (3.24)
flea  a U(S)

The expressions (3.23) and (3.24) give (3.20). The proof is complete. □

T heorem  3.3.2. Under AI - A5 and NI - N3.

^ ( 0 w . n - 9 o) ^ N p(O .tJE(0o) ) .

where r,P is as given in (3.18).

Proof. Follows immediately from Lemma 3.3.1 via an application of Slutsky's 

Theorem. □

As a simple corollary, a useful asymptotic representation of the Wilcoxon 

estimate is obtained. By (3.16), it follows, as in Hettmansperger and McK- 

ean (1998), that,

V^(0n - 0 Q) = rv,(n_lX*r X*)_ln_I/2X*r {G(y* - X*0O) -  1/2} + o p(l) , (3.25)

where X* is the n x p  matrix with the ith row given by { V / , ( 0 o ) } T  and y* is 

an n x 1 vector with the zth component .(/,• — / t ( 0 o )  + {V/,(0o ) } r # o -  Now apply­

ing Lemma 3.3.1 we have the same asymptotic representation for the Wilcoxon 

estimate, i.e..

v^(6w,„-0o) = r ¥3(n - lX*rX*)-1n - I/2X*r {G(y*-X*0o) - l / 2 } + o p(l) - (3.26)
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Based on (3.26). we can obtain the influence function of the Wilcoxon 

estimate. Assume /, depends on a set of predictors z, 6  2  C 3?m as f t(9) = 

f{zi, 9). Assume also that /  is a continuous function of 0 for each z € Z  and is a 

measurable function of z for each 9 6 © with respect to a er-finite measure. Under 

these assumptions, the representation above gives us the local influence function 

of the Wilcoxon estimate at the point (z0.yo) .

IF(z0, </0: 9\i\n) =  7>{S(0„)}-l{Gfoo) -  l/2 } V /(zo,0 o) •

Note that the influence function is unbounded if the tangent plane of <5 at 0O 

in unbounded. This phenomenon corresponds to the existence of high leverage 

points in linear regression. The analysis in Chapter V gives a possible remedy for 

this problem by considering a weighted form of the Wilcoxon norm. This parallels 

GR estimation in linear models given by Naranjo and Hettmansperger (1994).

3.4 Estimation Algorithm 

  >•*«*.
There are several ways of estimating 9\v,n ■ The algorithm we use is based on 

the representation given in (3.26) which will play an important role in establishing 

a numerical procedure to estimate 9\v.n- Let .

h„(9) = 9 + rv,({X-(fl)}r {X -(0)})"‘{X-(e)}T{ G (y - (e ) -{ X ’(0)}0) - 1/ 2} .

(3.27)

where X*(0) is the n x p matrix with the zth row given by {V/i(0)}T and y*(9) 

is an n x 1 vector with the ith component y, — fi{9) +  {V fi(0)}T0. Thus hn may
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be written as a sum of its argument and a remainder term as hn(0) = 0 + Rn(0)- 

The estimation will be exact if Rn = 0.

The Gauss-Newton iteration step is then given by.

(3-28)

for k =  1 .2 ..... where 0m  is an initial estimate. This A:-step estimate has the 

same asymptotic property as 0\v,n as shown in the following theorem.

T heorem  3.4.1. If the initial estimate is such that \/n(0\yn — 0q) is bounded in 

probability, then

\/n(0w .n  ~  ®vr.n) 0 .

for any k > 1.

Proof. Applying Theorem 4.2 of McKean and Hettmansperger (1978). under the 

condition of the theorem, we have.

'/n(0\v.n -  On) 0 .

for any k > 1. Lemma 3.3.1 completes the proof. □

Since 0n satisfies.

X*r {G(y* — X*0O) _  1/2} =  0 .

Lemma 3.3.1 and the representation in (3.25) give.

hn(0w.n) = 0w.n + op(n~1'2). (3.29)
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Thus 0\v.n is a fixed point of the mapping h„(0) when n is sufficiently large. 

As shown in Jennrich (1969), this is one of the two sufficient conditions for the 

asymptotic numerical stability of a Gauss-Xewton type procedure. The second 

sufficient condition is that there exists a neighborhood .V^flo) of #o such that.

3h„(0)
do1

< c < 1 .

for 0 G yg(Oo)- when n is sufficiently large. Assuming the second derivatives 

V'2fi{0) are continuous in 0 on 0  we have ad  > 0  such that.

dh„(0) dhn(0Q)
< 1/4 .

d0T d0T

for 0 € Ns{0q) and large n. What remains to show is that ||dhn(0o)/d0r || < k < 

3/4 for large n. But we can show that \\dh.n{0Q)/d0T\\ goes to 0 in probability, 

which, of course, implies that \\d)xn(0Q)/d0T\\ < 1/2 for sufficiently large n. Thus 

we have proven the following numerical stability theorem.

T heorem  3.4.2. In addition to A1-A5 and N1-N3. assume that the second deriva­

tives v V .(0 ) are continuous in 0 on 0 .  Then there exist numbers 6 > 0 and hq 

such that the Gauss-Newton iteration given by (3.28) converges to 0\v.n for any 

starting value in the spherical neighborhood Ms(6o) of 0o with radius S.

At each Gauss-Xewton step we fit a linear regression model with no in­

tercept parameter. This follows the projection technique of Dixon and McK- 

ean (1996). Suppose we need to estimate 0* of the model

y* = X*0* +  e (3.30)
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but vve fit the model

y* =  l a ,  +  X*0* + e . (3.31)

where the true Qi is 0. Let y* =  l a f  +  X*0*[ be the Wilcoxon fitted value. Dixon 

and McKean (1996) show that the Wilcoxon fitted value based on (3.30) is the 

LS projection of yj onto the space spanned by the columns of X*. Thus

0m = (X ^ X T 'X * 7*??.

Therefore, every step of the Gauss-Xewton iteration involves attaching a column 

of ones to the design matrix, fitting (3.31). and projecting onto the right space.

The stopping rule utilized looks at the difference between two consecutive 

estimates. For e > 0. * — 0h;„|| < e implies that ||ftn(0ir!n)ll < e by the

continuity and asymptotic linearity (see Jureckova (1969)) of Rn. Since 0\v.n is a
.—-(Jt) ^

fixed point for sufficiently large n. it follows that 0u-n is close to 0\\\n. Therefore 

we fit tangent linear models recursively until the convergence criterion is met. 

The linear models may be fit using the Robust General Linear Model (RGLM) 

package of Kapenga et. al. (1995). An alternative approach of obtaining R esti­

mates of linear regression coefficients is using iteratively reweighted least square 

estimates as discussed in Sievers and Abebe (2002). The latter approach gives the 

investigator the flexibility of using any statistical package that fits linear models 

via LS to obtain R estimates of regression coefficients.
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CHAPTER IV

GENERALIZED SIGNED-RANK ESTIMATION

4.1 Definition and Existence

Consider the following general regression model (model (1.2))

y{ = / f a ,  9 0) + £i, 1 < i < n ,  (4.1)

where d0 € © is a vector of parameters. Xj € X  is a vector of independent 

variables, and /  is a real-valued function defined on 0  x X.

We shall assume that 0  is compact, 0Q is an interior point of 0 ,  and 

/(x . 0 ) is defined and continuous for all 0 G 0  and is measurable for each x G X.

We define the estimator of 0o to be any vector 0 minimizing

O 'ty .O ) = (4.2)
t= l

where Zi(0) =  y /(x*. 0) and |z(0)|(i) is the zth ordered value among |zi(0)| , . . . .  \zn{0)\. 

The function p : 3?+ —v 3?+ is Borel measurable, continuous, and strictly increas­

ing. The numbers an(i) are scores generated as an(i) =  ip+(i/(n -I-1)), for some 

score function (p+ : (0.1) —> 3f+.

This estimator will be denoted by 0p>n.

The general dispersion function D£ contains infinitely many possible dis­

persion functions depending on the functions <p+ and p examples of which are

43
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the Li and LS dispersion functions. By truncating the ends of the score gener­

ating function, <p+, we obtain high breakdown estimates which are very helpful 

when the data contain outliers. This chapter develops asymptotic and robustness 

properties of

Theorem  4.1.1. Under model (4.1), 0P,„ exists.

Proof. Because Dp(y.0) is continuous in 0. Lemma 3.1.1 implies the existence of 

a minimizer of Dp{y, 0 ). □

In this chapter we use the notation introduced in Section 2.4. Recall that 

we denote by Lp, 1 < p < oo. the space of measurable functions h : (0,1) —> 5? 

for which \h\p is integrable for 1 < p < oo and the space of essentially bounded 

measurable functions for p =  oc. The Lp norm of h is

11% =
{ /  \h\p}xlp if 1 < p < oc . and

(4.3)

ess sup |/i| if p =  oo .

All integrals are with respect to Lebesgue measure on (0,1). The range of inte­

gration will be assumed to be (0,1) unless specified otherwise.

4.2 Strong Consistency

Let (fi, T , P) be a probability space. For i =  1 , . . . ,  n, assume that x* and 

£i = Vi — /(x,-; 0q) are independent random variables (carried by (fi, F, P)) with
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distributions H  and G. respectively. We shall write x. e and |c(0)| for X[. and 

|r i (0) | respectively.

We will assume

S I: P (/(x :0 ) = /(x :0 o)) < 1 for any 0 do-

S2: for 1 < p.q < oc with 1/p + l/q  =  1 we have £[p(|c(0)|)]? < oc and 

||v+||p < oc: and.

S3: G has a density g with a unique mode at 0.

As shown in Corollary 3.2.1. Assumption Si is the condition needed for 

0O to be identified. The linear version of Si was given by Hossjer (1994) as 

PHO’xl =  0) < 1 under the assumption that 0q = 0. As we will see in Section 4.3. 

other works on nonlinear regression assume conditions which are stronger than 

SI.

If z{0) follow a distribution Go- then S2 puts p o G g 1 and ^  in conjugate 

spaces when p € (1. oc). Holder's inequality ensures that the product i r +){p°Ggl ) 

is integrable. Furthermore, if p is a convex function, an application of Minkowski's 

inequality yields

{ E W W W } 1*  <  { £ M k l ) ] n l / ,  +  {E[/>(l/(x:0) - / ( x : 0„)|)l<}Irt.

Thus separate conditions on c and /  may be sufficient for E[p{\z{0)\)\q < oc.
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Condition S3 admits a wide variety of error distributions examples of which 

are the normal, double exponential and Cauchy distributions with location param­

eter equal to 0. This replaces the 0 median assumption of Chapter III which was 

one of the conditions needed for the consistency of the Wilcoxon estimator. There 

is also no symmetry assumption placed on the error distribution.

We will now give some preliminary results needed for showing the con­

sistency of 0pn. For our purposes let Jn{t) — yV(i/{n + l)) /((l-_l)/„.i/„j(f) for 

i = 1 n where I_\ is the indicator of the set A. Notice that Jn is a step func­

tion and thus the uniform integrabilty condition in assumption (ii) of Lemma 2.4.1 

becomes

lim sup — \<f~(i/(n + 1))| =  0 .
<»->oc „  n

where Aa = {j ■ \^+{ j /(n + l))l > a}- This condition is satisfied if we have 

convergence in L l of ./„ (see Theorem VI. 18 of Doob (1994)). To this end. we will 

marginally violate assumption (ii) of Lemma 2.4.1 and assume that

s u p ||. / J p =  s u p { - y ' |^ ( z 7 ( n  +  l))|p|  P <oc . (4.4)
n n *• n  Jt=l

for 1 < p < oc. Notice also that

where [6] stands for the greatest integer less than or equal to b. Taking the limit 

as n -> oc we obtain that l i m J n =  for all t € (0. 1) provided that

>p+ has at most a finite number of discontinuities. Thus if satisfies (4.4) and
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g € Lq all the conditions of Lemma 2.4.1 hold. The following corollary is a special 

case of this result.

Corollary 4.2.1. Let   \Vn be a random sample from a distribution F with

support on 5R+. Let p : —► 5R+ be a continuous Borel measurable function.

Suppose, for I < p.q < oc with l/p  + l/q  =  1. E[p{W)]q < oc and ||<,?+!|p < oc.

Then

r ,  =  n - ' ^ v ' ( i / ( i ,  +  l M V , ) ^  /(v -+) (/j o F - ‘) < = c .
1=1 J

Proof. Let g = po  F ~ l. Because E[p(\Y)\q < oc. a simple change of variable 

shows that g 6 Lq. Following the arguments preceding the corollary, and applying 

Lemma 2.4.1. gives the desired result. □

Lemma 4.2.1. Under assumptions Si - S3

Dpn(y.0) ^ 4  p(0). (4.5)

where p.: 0  —>■ 5R is a function satisfying

inf p{0) > p{0o) a.s. (4.6)
see*

for any 0 * a closed subset of 0  not containing Oq.

Proof. The expression (4.5) follows from Corollary 4.2.1 which also furnishes the 

function

,£(«) =  y V )  ( p o C j V o Q
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where Gg  is the distribution function of |z(0)|.

To establish (4.6) we follow a similar strategy as in Hossjer (1994). Under 

Si and S3 for any s > 0. for 0 ^  O0,

Ge(s) = P(\e -  { /(x ;0 ) -  /(x:0„)}| < s)

=  £ x { ^ ( k  -  { / ( x :0 )  “  / ( x : 0 o ) } |  <  -s|x)}

< E x { P M  < s ) } = G g 0(s)

Since p is a continuous function depending on 0 only through p o G^1 and since 

p is a strictly increasing function, it follows that p(0) > p{0o) whenever 0 ^  0Q. 

Thus for any 0 € 0*. we have a p.* € 3? such that p{0) > pm > p(00). Therefore 

it must be true that inf^©- p(0) > p{0o) a.s. □

The following theorem gives the strong consistency of 0Pi„.

Theorem 4.2.1. Under Si - S3. 0P,„ -^4 90.

Proof. By Lemma 2.1.2, to establish the consistency of 0p,n- it is sufficient to show 

that

lim inf inf (Dp{y.0) -  Dp{y.90)) > 0 a.s. . (4.7)
n-y oc fle©*

for any 0* a closed subset of 0  not containing 9q. But

lim inf inf (Dp(y. 0) — Dp{y, 0Q)) > lim inf inf .4„(0)+
n —>oc 8 g 0 - n —yoo <?€©*

inf B(0,9O) +  lim infCn(0o) , (4.8)
n-y  oo

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



where

An(0) =D£( y . 0 ) - p { 0 ) .

B(0 .0o) =n(0) — p(0o) .and 

Cn(0o) =MOo) ~ Dpn(y.00) .

As a result of Corollary 4.2.1. lim in f,,.^  inf^©- .4„(0) and lim inf,,-^  Cn{0o) 

are 0 a.s. Due to Lemma 4.2.1 we have inffl6©- B(0.0q) > 0 a.s. Therefore the 

statement given in (4.7) holds. The proof is complete. □

4.3 Some Corollaries

Next some special cases of interest are considered. We consider the L\. 

least squares, signed-rank Wilcoxon, and their trimmed variations. We also look 

at a case where the score function is the inverse of a Gaussian distribution. All 

these cases involve a convex p and hence Minkowski's inequality may be used to 

supply assumption S2. Trimming is implemented by "chopping-off" the ends of 

the score generating function. (see Hossjer (1994)). The proofs follow from 

Theorem 4.2.1 in a straightforward manner.

4.3.1 Least Squares, Least Trimmed Squares

The LS estimate of 0Q is the value of 0 E ® that minimizes $3"=i{zi(0)}2- 

In this subsection we provide sufficient conditions for the strong consistency of 

the LS estimator via the objective function given in (4.2). We will also consider
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the least trimmed sum of squares (LTS) estimator which minimizes the sum of 

the first [771], 7 € (1 /2 .1). ordered squared residuals. The value of 7 is usually 

taken such that [7n] =  [n/2] +  1 (see Rousseeuw (1983)) to provide estimators 

with high breakdown point.

Let Ia(ui) be a function such that Ia{uj) = 1 if w G A and =  0

otherwise. Let ^ { u )  — I{a.j){a) for 0 < a < 3 < 1 and p(w) =  iv2 for w > 0. 

In the case where a = 0 and 3 = 1 the dispersion function given by (4.2) is 

the least squares dispersion function. If there exist twro positive real numbers. 

0 < Ci < c-2 < 1. such that ci < a < 3 < c2. then the dispersion function becomes 

the least trimmed squares dispersion. The following corollary gives the sufficient 

conditions for the strong consistency of the least squares estimator.

Corollary 4.3.1. I f

B l: P(f(x:0)  =  /(x :0o)) < 1 for any 0 #  0o-

B2: E (£2) < oc and ^ ([/(x :^ )  — /(x :0 o)]2) < 30 f or ® G and

B3: G has a density g with a unique mode at 0,

then the least squares (least trimmed squares) estimator is strongly consistent for 

00 -

Proof. Assumption Bl is equivalent to Si and assumption B3 is equivalent to S3. 

We need to show that B2 implies S2. Let 9 = 1  and p = oc so Lq and Lp are
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conjugate spaces. This implies that E[p(\z(0)\)]q =  < oc by B2 and

Minkowski’s inequality. What remains to show is that M o c  is bounded. But 

||v?+||oo = ess SUP W+\ =  sup{c : {|v?+| > c} 7̂  0}. From the definition of y;+ it 

follows that ||9 +||oc = sup{c : {/(Q.^)(u) > c} ^  0} =  1. □

Jennrich (1969) establishes the strong consistency of the least squares es­

timator under some assumptions. His assumptions in the notation of this paper 

are

J l:  £([/(x: 0) — /(x ; 0o)]2) =  0 if and only if 0 = 0q,

J2: E(e2) < oc and E([f(x.:0) — /(x :0 o)]2) < for all 0 € ©. and 

J3: E{s) = 0.

Assumptions B2 and J2 are identical. B3 and J3, while not generally com­

parable, are identical in most practical situations where a symmetric, unimodal 

error density is assumed. As the next proposition shows. Bl is weaker than .11 in 

the sense that whenever J l  is true Bl is also true.

Proposition 4.3.1. B l  is weaker than J l  in the sense that J l  => Bl.

Proof. Assume that Bl fails to hold, that is there exists a point 0' ^  0O in © such 

that P(f{x:0') =  /(x;0o)) =  1- This implies that E ([/(x ;0 /) -  /(x ;0 o)]2) =  0- 

Thus J l  fails. Therefore, J l  implies Bl. □

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



52

4.3.2 L i, Trimmed Absolute Deviations

The Li estimator corresponds to the case where tp+ =  1 and p(w) = w for 

w > 0. A situation similar to the least trimmed squares estimator holds for the 

trimmed absolute deviations estimator. The sufficient conditions for the strong 

consistency of the L\ and trimmed absolute deviations estimators are given in the 

following corollary.

C oro llary  4.3.2. If

C l: P (/(x ; 0) =  / ( x ;0 o)) < 1 for any 0 ±  0O,

C2: £7(|cf) < oo and E (\f(x;0) — /(x:0o)|) < oo for all 0 € ©. and 

C3: G has a density g with a unique mode at 0.

then the L\ (trimmed absolute deviations) estimator is strongly consistent for 0o. 

Proof. The proof is similar to the proof of Corollary 4.3.1. □

We next compare the result in Corollary 4.3.2 with the one given by Ober- 

hofer (1982). Although his conditions were sufficient to give the strong consistency 

of the L\ estimator via Lemma 2.1.1, Oberhofer proves weak consistency by im­

posing the following conditions.
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O l: If 0* is a closed set not containing 0q, then there exist numbers e > 0 and 

n0 such that for all n > n0

for all such 0 * where li(0) =  /(x*; 0 ) — /(x;: 0O)- 

0 2 : iT(|£|) < oc and f?([/(x: 0) — /(x : 0o)]2) < sc for all 0 E 0 . and 

0 3 : G(0) =  1/2.

Once again C3 and 03  are not comparable. 02 is stronger than C2. Fol­

lowing similar contrapositive arguments as in Proposition 4.3.1. we can easily 

show that 01 is also stronger than Cl. For a detailed discussion of this and 

sufficient conditions for 01. the reader is referred to Oberhofer (1982). One can 

immediately observe that the identifiability of 0O is a neccesary condition for 01 .

4.3.3 Signed-Rank

The signed-rank norm is given by

This norm was considered by Hossjer (1994) to provide an estimator with a pos­

itive breakdown in the linear model. Here we give a nonlinear analogue of that 

result.

n

inf n - ' T  |/,(«)| min{G(|(, W I/2) -  1/2. 1/2 -  G ( - |« f l ) | / 2)} > * .
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Set p +(u) =  u for 0 < u < 1 and p(w) = w for w > 0. The following 

corollary gives the sufficient conditions for the strong consistency of the signed- 

rank Wilcoxon estimator. The proof is analogous to the proof of Corollary 4.3.2.

Corollary 4.3.3. If

D l: P (/(x :0 ) =  f ( x : 0 Q)) < 1 for any 0 ^  0q,

D2: for some r > 1, £ ( |e |r) < oo and E(\f(x; 0) — f(x:  0o)D < °° f or a^  ^ @- 

and

D3: G has a density g with a unique mode at 0,

then the signed-rank estimator is strongly consistent for 0q.

Proof. Dl and D3 are equivalent to Si and S3, respectively. To show that S2 is 

true whenever D2 is true, let q = r > 1. We need to show that H^llp < sc for 

any p € (1, oo), which is obvious since is the identity function. □

4.3.4 Normal Scores

The frequently used normal scores are generated by

ip+{u) =

for u € (0,1) where <£ represents the standard normal distribution function. We 

will refer to the value in 0  minimizing (4.2) with such <p+ and p(w) =  w as the
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normal scores estimator. These scores were first proposed by Fraser (1957). The 

following corollary shows that conditions Dl - D3 given above are sufficient for 

consistency of the normal scores estimator.

Corollary 4.3.4. Under Dl - D3. the normal scores estimator is strongly consis­

tent.

Proof. In light of the proof of Corollary 4.3.3. we need only show that ||<̂ +||p < oc 

for any p 6 (1, oc) and <p+(u) = $ - 1((ti+ l)/2). Let 2A: be the smallest even integer 

greater than or equal to p. Via a change of varable we can see that ||<p+||p =  E[TP] 

where T  is a random variable that follows the standard normal distribution. Using 

the moment generating function one can easily show that (see Lehmann (1997)).

i b i i ;  < £(T2ti =  § * £ .

This quantity is finite for any A: < oc. □

4.4 Breakdown Point

One of the virtues of the estimators discussed in this paper is that they 

allow for trimming. This in turn provides us with estimates that are robust when 

one or more of the model assumptions are violated. In this section we will consider 

the breakdown point of our estimator as a measure of its robustness.

Let Z  =  {(xi, ;vi),..., (x„, ?/„)} denote the sample data points. Let Z m be 

the set of all data sets obtained by replacing any m points in Z  by arbitrary
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points. The finite sample breakdown point of an estimator 0 is defined as (see 

Donoho and Huber (1983))

BDn(9 ,Z )=  min : sup \0(Zm) - 0 ( Z ) | = o o } ? (4.9)
l < m < n  f l  Z m€ Z m

where 0{Z) is the estimate obtained based on the sample Z. In nonlinear re­

gression. however, this definition of the breakdown point fails since BD* is not 

invariant to nonlinear reparameterizations. For a discussion of this see Stromberg 

and Ruppert (1992). We will adopt the definition of breakdown point for nonlin­

ear models given by Stromberg and Ruppert (1992). The definition proceeds by 

defining finite sample upper and lower breakdown points. BD+ and BD_. which 

depend on the regression model. / .  For any x  (z X .  the upper and lower break­

down points are defined as

BD+(/,0 ,Z ,x ) =

m i n 0< m < n  { f  ■ supzm€2m f ( x .0 ( Z m)) =  sup9 /(x ,0 )}

if supg f(x ,0 )  > / ( x ,0 ),

1 otherwise.

(4.10)
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and

BD_(/, 0, Z, x) =  <

min0<m<n { f  ■ infZn,e2m /(x .0 (Z m)) =  info /(x ,0 )}  

if inf# / (x, 0 ) < / ( x .0 ),

1 otherwise .

(4.11)

Let

B D (/.0 .Z .x) = min{BD+(/, 0, Z, x), BD_(/, 0 ,Z .x )}  .

The finite sample breakdown point is now defined as

BD(/, 0, Z) =  inf {BD(/, 0, Z, x)} . (4.12)

The finite sample upper and lower breakdown points are defined analogously by 

replacing BD by BD+ and BD_. respectively, in the above definition. Stromberg 

and Ruppert (1992) also show that BD = BD* in the case of a linear regression (i.e. 

/(x , 0) =  x'0) and BD =  n_l for nonlinear least squares regression as expected. 

Assume the scores an(i) are nonnegative and

k =  max{/ : an(i) > 0} ,

where k > [n /2] +  1. This is equivalent to

supjn : tp+(u) > 0} € (1/ 2, 1] .

This forces at least the first half of the ordered absolute residuals to contribute to 

the dispersion function. In light of this, the dispersion function may be written
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The following theorem is a version of Theorem 3 of Stromberg and Ruppert (1992). 

VVe impose the same conditions but give the result in terms of k. The results given 

are for upper breakdown. Analogues for lower breakdown are straight forward. In 

the following, #(-4) denotes the cardinality of the set A.

T heorem  4.4.1. Assume for some fixed x

(i) supfl f { x , 0) = oc, and

(ii) there exist rt C { i : 1 < i < n} where #(Tfc) = 2 n — [n/2] — k such that

lim ( inf { in f / ( x , .  0 )}} = oc .
Af-voo 1 {0:f (x,O)>M} i e r k 1

Then

B D + u ,e „ ,z )  > n ~ k + l .n

Proof. Let m  =  n -  k and let r,(0) be the residuals when the data come from 

Z m, the space with m points contaminated and zfiO) be the residuals from the 

original data. Let 0PrTl(Zm) be the minimizer of the objective function (4.2) when 

the data come from Z m. The set {p(|r(0)|(i)) : i =  1,2, • • • , k} contains at least 

k — m elements of {p(|2(0)|(i)) : i =  1, • • • ,«}- But since k — m + # (r^) > n +  1, 

{/9(|r(0 )|(i)) : i =  1, 2, • • • , k} must also contain at least one element of {p(|2i(0 )|) :
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i €E rk}. Thus, by (ii) of the theorem.

lim |  iuf |y 'a n ( i > ( | r ( 0 ) |(i))} l = oc .
A/-VOO {8iHxjB)>M} J J

This means that f ( x ,0 PnTl(Z m)) remains bounded below some finite M. Since 

supfl /(x , 0) =  oo. perturbing m points does not cause upper breakdown. Thus.

m + 1 n — k + 1
BD+(/, 0p,n.Z) > n n

□

The same expression can be obtained for lower breakdown by multiplying 

the quantities y and f{x ,0 )  by - 1. Thus the finite sample breakdown point is at 

least equal to the proportion of residuals trimmed out of the dispersion function. 

It could be significantly higher depending on the choice of p. The lower bound is 

attained if the objective function is the LS objective function.

The following is an immediate corollary' which gives the breakdown point

of

C orollary 4.4.1. Let a  =  supfu : <*3+(u) > 0} be such that 1/2 < a < 1. The 

breakdown point of 0p n is at least 1 — a.

Proof. In Theorem 4.4.1 above, take k = [on]. Then,

n — k + 1 n — fan] +  1
urn -------------= hm------ —̂   =  1 — a .lim

n-*oo n  n-+oo TL

□
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CHAPTER V

WEIGHTED WILCOXON ESTIMATION

5.1 Definition and Existence 

Consider the general regression model given in (1.1).

Ui =  fi(0o) + £«, for 1 < i < n ,

where 80 6 0°. Throughout this chapter we will assume that 0  is a compact 

subspace of 5RP.

We define the weighted Wilcoxon dispersion function by

(5.1)
. V-/J  iKj

—.(0)
where Zi(0) = yi — fi(0). i =  1 n, 0n is an initial estimator, and (% are

weight functions. We will denote the minimizer by 0v.n-

The dispersion function given in (5.1) is a generalization of Dn considered 

in Chapter III. When all the weights are equal to unity, D™ reduces to Dn. Thus 

the results of Chapter III are special cases of the results of this chapter for the 

case where iny =  1 for all 1 < i < j  < n.

Estimation based on the weighted Wilcoxon dispersion function was in­

troduced by Sievers (1983) who assumed the weights, Wij, to be non-stochastic.

60
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Naranjo and Hettmansperger (1994) further developed the weighted Wilcoxon and 

used it to obtain the so-called generalized R (GR) estimates of regression coef­

ficients in the linear model. By using Mallows weights they were able to obtain 

estimators with a bounded influence function.

The weighted Wilcoxon dispersion function (5.1) in its present form was 

given by Chang et. al. (1999). They considered the linear model, /,(0o) = x j 0 o. 

and obtained estimates of 0q that have high breakdown point and at the same 

time possess high efficiency. They also show that if the initial estimator. 0n, has 

high breakdown, then the estimate obtained by minimizing (5.1) will have high 

breakdown as well.

The following theorem gives the existence of the minimizer of (5.1).

Theorem  5.1.1. Under model (1.1), ij for 1 < i < j  < n. Wij(-) are continuous. 

5R+ valued functions, then 0\ \n exists.

Proof. The proof follows immediately from Lemma 3.1.1 since D“ is a continuous 

nonnegative function. □

5.2 Consistency

The consistency of 0y,n will be shown under regularity conditions that are 

analogous to the ones used in Chapter III. Generally, these conditions reduce to 

the conditions of Chapter III when the weights are unity. The one difference is that 

A5 is replaced by a weighted version of its sufficient conditions. The intermediate
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steps are incorporated in our proofs.

Once again consistency is established by appealing to Lemma 2.1.1 and 

Lemma 2.1.2. our general results. The notation of Chapter III will be assumed 

throughout this chapter.

The following assumptions will be needed.

W C l: For 1 < i , j  < n, Wij are nonegative, continuous functions with Wij(0Q) < 

M  < oc. ujij(0o) > 0, and gradients Vwl3 bounded uniformly in i and 

j  on 0 °.

W C2: limn-voo n~lA„(0.0O) = 0 for all 0 € 0 .

WC3: 0n —> 0q in probability.

The condition ■ Wij(0o) > 0 in WCl says that there is at least one

that is strictly positive. WCl also imposes a boundedness condition on the weight

functions and the slope of the tangent lines at any point in 0 ° . Since the weight

functions are 5R+-vaIued, and continuous, they map a compact region to a closed

and bounded subset of 3?+. In practice the investigator needs to make sure that

the weight functions are not capable of giving excessively large weights since the

dispersion function will be inflated and the estimator will break down eventhough

we may have a perfectly good data set.
- (0)

The consistency of 0n given in WC3 is satisfied by taking any of the 

estimators discussed in Chapter III and Chapter IV. As mentioned above, since
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2(°)the weighted VVilcoxon estimator borrows its robustness properties from 0n , it 

will be wise to use any of the trimmed estimators given in Chapter IV' rather than 

the VVilcoxon estimator which has an unbounded influence function and hence 

0 breakdown. A common choice is the LTS estimator (see Hettmansperger and 

McKean (1998)).

In Lemma 3.2.1. it was shown that Dn(0) -  Dn(0o) minus its expectation 

converges (pointwise) to zero in probability. VVe anticipate a similar type of con­

vergence for the process D“ given the weight functions and the initial estimator.

0„ \  behave in a favorable manner. As the following lemma shows WCl and WC3
—(0 )

are the conditions needed on Wij and 0n to get the desired type of convergence. 

Lemma 5.2.1. Under assumptions WCl - WC3,

Proof. Let Tij =  |(£, -  Sj) + htJ(0 .0O)| -  |e, -  Sj|, 1 < i , j  < n. We may write

For an arbitrary' 6 > 0, applying Markov's. Minkowski’s and Jensen’s inequalities, 

respectively, we have
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«<j
1

-  6

1< -  
”  d

1< -  
“  d

( j )  -  £ ( » « ( S l0|)T«)| >  i )

( 2) ]  E \ E

Y  E l w . j ^ T , ,  -  E(wij(a{°>)Tii )\
Kj

(j)! ' + |£(<oiJ(§i°, )T'y)|)
' “ ' - I  t < J

2 

-  6
i < J

Now consider f%(0„ ). Expanding it about Oq using a Taylor Series approxima­

tion we get

<%(«!!” ) =  «'«(»«) +  [Vi%('M|T(«L‘” -  «„) , (5.2)

- (0)
where 4> € 0 ° . with ||0  -  0O|| < \\0n -  0o||- Thus applying WCl, we have 

-1
E £ K ( » ! ° ’) r y
i < j

IA 1 ̂
 

On 
fc

- 
1 ̂

1 
1

0̂ 
^

9

+ i

E ^ i

1 -I
|ry |)

><j

= hn + hn , say.
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Consider / ln.

/  m =

<

2 M
~T~

2 M  
6

2 Af

E\Ti[©]"£L  X 7  1 < J

[G)]"SL X 7 J i</

( 2 ) 1  ' { E ^ f s . s o ) !
-I Y i<j i<j '

1 = 1

v 1=1 '

1/2

Hence, by WC2, I Xn goes to 0.

Considering /2n, since [Vwy(0)]r ( ^ ' — 90) is op(l), to prove I>n ► 0 as n —► oo, 

it suffices to show that

i<j
is bounded.

But since 127,1 < \hlj(0. #o)|, following the arguments above, we have

— I

i<j

□as n —> oc. The proof is complete.

In addition to WCl - WC3 above, assume the following.

WC4: Ei — Ej have a common distribution G which satisfies G(0) =  1/2 and has 

density g continuous at 0 with g(0) > 0.
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W C5: For 1 < i . j  < n, and 0* a closed subset of 0  \  {0o}? there exist a rj > 0 

and a n0 such that for all n > no we have

— i/ n )
inf 

see- ( o i l  5 Z «□))* > >7
' • - ■ ' - I  i<j

Assumption WC4 is a combination of assumptions A4 and A5.1 in Chap­

ter III. YVCo is a weighted version of A5.2. An alternative is to assume Wij(0o) are 

all bounded above zero in addition to A5.2. Even though most practical problems 

dictate that t%(0 0) > 0 for all i . j ,  this imposes a much stronger assumption than 

YVCl and WC5 combined and hence will not be used here.

The lemma below is helpful when proving the convergence of a stochastic 

function via an application of a first order Taylor expansion.

Lem m a 5.2.2. Let T be an absolutely bounded random variable and v  6 5Rm 

be a non-stochastic vector with its components satisfying |u;| <  v* < oc for i = 

l .--- . m. Let wn = wo +  vTzn. where wo is a positive constant and z n is a

PWn-valued random variable with z n —¥ 0. Suppose there exists a no such that z n 

satisfies l̂ ml < *̂ < sc for i =  1. • • • . m whenever n > no. Then

E[wnT] = w0E[T] +o( l )  .

Proof We need to show that £ ’[vr znT] —> 0. Since \T\ < T * <  oc and |u,| < v* 

we have
m

E[vrznT] < |£ [vr znr] | < r v ^ E M  .
i=  I
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VLet e > 0. Following Williams (1991), since \zni \~^0 for i =  1 ,••• ,m. we may

choose rii such that

P(\zni\ > e/2) < ^  .

whenever n > «[.

Then, for n > max(n0,n[) and all i.

EWzmW = E[\znt\I(\znt\ > e/2)] +  E[\zni\I(\zni\ < e/2)} 

< z'P ( \znt\> e /2 )  + e/2 

< e .

The proof is complete. □

The following is a weighted version of Lemma 3.2.2.

Lem ma 5.2.3. Under WC4 and WC5, there exists a £ > 0 and a n0 such that

for all n > no,

inf E(DZ(0) -  D”(0O)) > £ •

Proof. Let Ty =  [|(£, -  £,■) +  hij{0,0o)\ -  |c, -  £,|]. One can easily observe that

\Tij\ < |hij{0, 0q)| < oo. for all 1 <  i < j  < n. Thus, since

d ;(9)  -  D“ (e0) = , ' " ' 1
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by the Lemma 5.2.2 and (3.10). we have

E{D”{ 0 ) - D ”{0 0) ) = 2

+  2

IYn\l  r~ >
( 9 ) E  «M»o) /  ( |M * .0o)|-*)dC(a

0 1  Y  m A h )  f  ( lM » -* o )l+*)<«;(*)
. \ _/ J  ( i . j ) e S  J —ht](8.0 o)

+  0 ( 1) .

where .4 and £  are a partition of {(Lj) : i < j } according to .4 = {{i.j) : i < 

j  and hij(0.8o) < 0} and B =  {{i.j) : i < j  and hij{0.9 o) > 0}.

Restricting the ranges of integration and applying WC4 we get

E{D”{0)-DZ{00)) >

+ (2 ) ]  ' E

+  0 ( 1)

1
E  wij(Oo)\{hij{O.0o)\x

min

Taylor expanding G about 0 and applying WC4 we get

E{D”{ 9 ) - D “{0 0) ) > - ( 9)  E u;,J^ o )(^ j(^ ® o ))25(0 •
. \  -  /  J i K j

for all 9 € 0* and t € (—\hij{0. 9q)\/2. \hij{9.90)\/2). Now since g is continuous 

at 0 and <?(0) > 0, there is a symmetric neighborhood (—C- 0 -  C > Or over which 

g* = inf{#(f) : t 6 (—CC)} > 0. Since 0 * is arbitrary', its boundary may be
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chosen as close to 0O as desired. Thus, using WC5,

in f E ( D : ( 8 )  -  D ” («o)) >  =  f  >  0 .

The proof is complete. □

The following theorem gives the consistency of 0 \M. The proof is similar 

to the proof of Theorem 3.2.1.

Theorem  5.2.1. Under WCl - WC5, 0\\n is weakly consistent for 0O.

Proof. The proof follows from Lemma 5.2.1 and Lemma 5.2.3 employing the same 

steps as the proof of Theorem 3.2.1. □

5.3 Asymptotic Normality

In this section we obtain the distributional properties of 0\\n. This will 

follow a strategy similar to the one employed Chapter III.

We will start by defining

emi(0) = Vi ~  fi(0  o )  + {V/t(0o)}r (0 -  Oo) fo r i  < i < n .  (5.3)

where V/, are the gradients as defined in Chapter III.

Let

yi =  (Xj*)7®!) +  ~i i

be as defined in (3.12). The quantities represented by e’ (0) reduce to 5, when 

0 = 0o
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Define the associated weighted VVilcoxon dispersion function with deter­

ministic weights as

T„(0) =
Kj

Denote the minimizer of Tn by 0n.

Notice that this is an estimator of a vector of linear regression coefficients. 

Tn corresponds to the dispersion function given by Sievers (1983). To prove the 

asymptotic normality of 0 r,„. we first show the svmptotic equivalence of 0\\n and 

0n and then show the asymptotic normality of 0n.

Assume the following.

W N 1: The true errors. £,. are independent, identically distributed with

£[|ci|] < oc .

W N 2: For 1 ^  i ^  n and 1 ^  j  ^  p. V f tj are continuous in 0 on 0 °.

The lemma given below shows that under these assumptions, in addition 

to WC1-WC3. the estimators 0\-n and 0n are asymptotically equivalent.

Lem m a 5.3.1. Under WC1-WC5, WNl. and WN2

Vn{6v,n — Qn) 0 ,

in probability.
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Proof. Consider

m w - T . m  = ( 2)1  E  {®«(SL01) C») | -toy (ff.) K  (®)-e; (0 )1}
i < j

(0 )
For some <j) 6 0 ° , with \\<f> — 0q|| < ||0n — ^o||, by (5.2) we have

\Dwn{ 9 ) - T n{9)\ = ( 2 )  E  "M0o){i--,(<>) -  -,(«)! -  k;(«) -  e-(»)i}
' “ ' J  i<j

+ £ [ v t% (<«i7’(g ;r -  0o)i-,(0) -  b W  1
K j

(2)1  E k 'j(0o)|{^(0 ) -  < (»)}  -  ( ‘, ( 0 ) -
. \ - / J  iKj

( 2 ) 1 '  E  -  0o)| • i-<(0 ) -  ‘,<0 )i
- \  /  J

=  Cin(0) + C2n{0) , say.

Consider Cln(0). By WCl and the triangular inequality we have

-1

(5.5

ClB(0) < M (a ) !  {Ei-<(0) -<(0)i+Ei">w - e,'wi}
. \ - / J  t  iKj  i Kj  )

2 M
n £ > ( 0 ) - « 0 )i

t=i

By the definition of e* we have

,(0) -  e'(0) = [V/i(0„)]T(0 -  0o) •

This implies that

2 M
C,„(0) < —  ̂ | [ V / j ( f lo ) f(0 -0o ) l

1=1
2 M

max |V /O(0O)| ] T  Idi ~  e*i\n
1 < j < P  j = i
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Since by WN2. Vf t] are 5?-valued, continuous functions defined on a compact 

space we have a number K  < oc such that | V/*_, | < K. Now taking the supremum 

of Cl„(0) over a shrinking ball centered at 0Vn and radius 6 / sfn we get

2M K
SU p C{rl(0) < — { sup 110 -  §i-„ii+ j r  i(Slv.)> -  «oji}

n ^ i\e-0v.n\\< ^  j =i  J

'2AIK f  6 n 11

Taking the limit as n —► oc and applying WC3, we have

sup Cin{0) —>• 0 . (5.6)

Now consider C2„(0). 

C2n(0) < ( ” )  K k ^ „  \ $ n ) k  -  B0k\^ 2  “  ZA 9)\
r<t-<p” k=l [<j

Kd"  ̂*=l J

Y ,  l ( e . - = - ; )  +  M *  ® o ) l }
l < j  >

i $ \  -  « » i } { f  E  m  +  [ ( 2 ) ]  1 E  i m « . < w i }  •

max
l < k < p

HO) v
where by WCl. /v* < oc. Thus, since by WC3 0n —> 0o, to show that

sup C2n{0 ) —> 0 , 
ll»-5v.nll<^t

we need only show that the quantity

I t .  n  + i|SSsup < { [ ( 2 ) ]  E i m » - « o ) i } ,
1 = 1  v  L  \  /  J  t < j  J
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remains bounded as n —> oc. Using WN1 and applying the Weak Law of Large 

Numbers we have,

- - t l e t l  ^  2E[\e i \] < oc. (5.7)
1=1

For 1 < i < n. let

Lt = 2  sup \ f t (0)| .  
flee

and L*j =  max(L,, Lj) for 1 < i . j  < n. Using the triangular inequality, for 

1 < i < j  < n. we have

sup |Ay(0 , 0o ) |<  sup |/,-(0 ) - / i ( 0o)| +  sup |/ j ( 0 ) -  f j ( 6 0 )\ 
\}O-0v.n \ \ < j z  l l « - « v . » i i < ^ r  l l ® - « v . » l l < ^ -

<  sup | / i ( 0 )  -  f i ( 0 V . n )  I +  | / i ( 0 V . n )  ~  /i(0o)|
ll®-®V.nll<̂ r

+  sup | / ,  (0) -  7 j ( 0 V . n ) |  +  | / j ( 0 l ' . n )  -  7 ,  (00) I -
i l ® - « v . » i l < 7 s

p

< L - J  sup | | » S o i l )
M I® -« V .n l l< 7 S  fc=l J

Since L*j < oc, an application of WC3 gives

sup |hij(0.0O)| —> 0

which implies that

sup (  f o )  5 Z |h i,(0 ,0 o)|} A  0 . (5.8)
- f l v - . n | | < ^  I L w J  iKj JI n ­

putting (5.7) and (5.8) together, we get

sup C2n(0 ) —»■ 0 (5.9)
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Expressions (5.6). (5.9), and (5.5) give

vsup \D™(9) — r„(0)| -> 0 . (5.10)
l l « - 3 v . » l l < £

Xow consider the distance D%{6) — D™(9yM)). We have 

.inf [£>“•(») -  £>"(«,■.„)] > (£>"(flo) -  £>“ (§v'„)]

+  .in f  . [£>»(») -  £>:(<>„)]
\\0-9v.n\\-^

Because 9\\n is the minimizer of the continuous dispersion function D%(9). we get

[DZ(90)-D % (dv.n) } > 0 .

An application of Lemma 5.2.1 and Lemma 5.2.3 yields

.inf . [£C(0) -  D :(0„)] > .inf E[D%(9) -  £-(«„)]

+ Jn f  . {D"(0) -  D”(90) -  E[D*(9) -  DZ(90)}}

> £ > 0 .

whenever n is sufficiently large. This implies that

inf [£>•(*) -  DZ(9y.n)} > e > 0 . (5.11)
7S

Expressions (5.10) and (5.11) via an application of Lemma 2.2.1 give the 

desired result. □

Let 7 =  f  h2e where hs is the density of £V Define

n

--M0o) =  £  WijiBoKVfijiBo) -  V /Jfc(0o)). 1 < k < p, 1 < * < n .
j'= i
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Let .4„ be the n x p matrix with the (/. A:)th element equal to .4,* and let Vn = 

-4^.4n. Let Fc =  (/„ — n~l ./„)V /  be the centered n x p  design matrix and let V /fc 

be the average of the kth column of V /. Here /„ is the n x n identity matrix 

while is the n x n matrix of ones.

The following assumptions are given by Sievers (1983).

SN1: For 1 < i . j  < n. u.'tJ(-) are symmetric.

SN2: For each k =  1.  p.

EL, -■&(».) _  „
maxi<,-<„ -4 ^ .(0 O)

SN3: For each k = 1 p.

E , < > y ( » o ) ( V / J t ( 0 „ )  -  V / , t ( » 0 ) ) ] 2

EL, •■£«>„)

SN4: For each k = 1__ , p ,

n - '/2 m !n .\V U (» a) - V f t (9„)\ -K ).
I < z < n

SN5: There is a positive definite matrix E(0o) such that

n~lFc(0o)t Fc(0q) -> E ( « 0 ) .

SN6: There is a positive definite matrix V'(0O) such that

n 3Vn(0Q) —► V (00).
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SN7: For k = 1 . . . . .p .  2(n(n -  I ))"1 )(V/,-*(0o) -  V /*(0O))]2 is

bounded as n —>■ oc.

SN8: Let the p x p  matrix Cn(0 o) be defined with the (A:./)th element 

£  iOij(tfo)(V/jt (9o) -  V/,t(flo))(V/,,(0„) -  V /U(fl„)).
‘ < J

There is a nonsingular matrix C  with n~2Cn(0o) —>■ C(0q)- 

The following theorem along with a proof can be found in Sievers (1983). 

Theorem 5.3.1. Under (3.12), WC4, SN1-SN8.

M e n -  O0) A  .vp(0 , ( r / r 2 ) c - l(0o)v (0o)C-l(0o) ) .

We now give the main result of this section. Its proof is a direct application 

of Slutsky’s Theorem.

Theorem 5.3.2. Under model (1.1), WC1-WC5. WNl. WN2, SN1-SN8.

M B v.n ~ 0 o )  A  ^ ( O ^ t V ^ J C - 1̂ ) ! ' ^ ) ^ 1̂ ) )  •

Proof. The proof is an immediate consequence of Lemma 5.3.1 and Theorem 5.3.1.

□

Before concluding the present section, we present a proof of the asymptotic 

normality of 0 y n which does not require the existence of ATdcil), an assumption 

which will not hold for some common probability distributions like the Cauchy 

distribution. This relaxation comes at a cost of making stronger assumptions
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~(0)
about the initial estimator. 0Vn, than just convergence in probability. The ap­

proach we follow starts out by showing the asymptotic equivalence of 0 \M and the 

estimator suggested by Chang et. al. (1999). Once the equivalence is established, 

the assumptions needed will be exactly those given by Chang et. al. (1999) in our 

notation.

one considered by Chang et. al. (1999) as a high breakdown estimator of linear 

regression coefficients. The following lemma shows that under the same regularity
~ (̂o)

conditions considered in Lemma 5.3.1. except the existence of £’(|ci|). 0 n and 9Vn 

are asymptotically equivalent.

Lemma 5.3.2. Under WC1-WC5 and WN2

\/n{0\\n. — 0n)  0  .

in probability.

Proof. By Lemma 2.2.1 and the inequality given in (5.11), we only need to show, 

for 5 > 0.

Define

- i
s„(») =

where e* are as given in (5.3).

Let 9n denote a point in 0  that minimizes Sn. This estimator is the

sup !£>:(«) -  S„(0)| A  0 .
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Let

K  = lVAf(flo)| -
l < K n  
I < j < P

By VVX2. K  < oc. Following the combinatorial approach given in the proof of 

Lemma 5.3.1. one can show that

|D‘ (8) -  S„(»)I < —  T  \e, -  #0,1.
" tr

where M  < oc is given in WCl. After an application of the triangular and 

Cauchy-Schwarz inequalities we get

sup |£ £ (« ) -  S„(0)| < 4= + £  -  ®0j l }  •
l l « - « V . » l l < ^ -  J  =  I *

Because 0 \M is weakly consistent for 60. this implies

sup J D “ (0 )-S „ (0 ) | A O .

The proof is complete. □

Prior to stating the assumptions needed for the asymptotic normality of 

0„. we introduce some helpful notation. Let y* =  y* -  /*(0o) + {V/,(0o)}T^o- 

x,- = Vfi{00). and X ‘ be the n x p matrix with x* as its ith row. Define

—(0)
Bi^t) = ek -(O /(0  < y'i -

Bijt 0)
^  — —(0) , '

E[Wij{0vJ \

Cn{0V.n) =  -  X * )( X ’ - X ' ) r  .

‘ < J  

1 ^
Vi = -  -  *.: )£[i»ii(*S)U (»; -  i/,') -  w  -» ;» !» ;]  ■

" . . .
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where B denotes the derivative of B. Further let .4„ be the symmetric n x n
—(0 )

matrix with off-diagonal elements a,_, =  ~lijiVij(0Vn) and diagonal elements a,, =

£**« yikWkffi-l)-

We need the following assumptions.

.) -—'(0) -p
C N 1: There exists a p x p  matrix C = C{60) such that n~-Cn{0Vn) —► C.

CN2: There exists a p x p  matrix I-'* such that n_l 5Z”=l Lr, —> V*.

CN3: y/n(0y^n -  0O) A  .Vp(0. E) where E is positive definite.

The following is essentially Theorem 2 of Chang et. al. (1999).

Theorem  5.3.3. Under WC1-WC5. CN1-CN3. WN2. and N1-N3 of Chapter III. 

y /t(d n -0 o )  ^  Np{0.(l/A )C -lV C ~ l) .

The result given below is a trivial consequence of Lemma 5.3.2 and Theo­

rem 5.3.3.

Theorem  5.3.4. Under model (1.1). WC1-WC5. CN1-CN3, WN2. and N1-N3 

of Chapter III,

M o ^ n - o 0) ^  /vp(o,(i/4)c-lr*c-1) .

The reader is cautioned that CNl - CN3 rely heavily on the distributional 

properties of the initial estimator and it might be difficult to establish CN3 with­

out assuming WNl or even E (sf) < oo. For example, if we intend to use the
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LS estimator as an initial estimator, it is more economical to use Theorem 5.3.2 

rather than Theorem 5.3.4 since it is assumed that ^ ( tf )  < oc in LS asymp­

totics. Wang (1995) imposes the same assumption in establishing the asymptotic 

normality of the nonlinear L i estimator.
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CHAPTER VI

NUMERICAL EXAMPLES AND A SIMULATION STUDY

6.1 Numerical Examples

Although our focus was in developing the asymptotic theory of rank re­

gression for nonlinear models, we consider a few examples that demonstrate the 

robustness and efficiency properties of the rank estimators in comparison to the 

least squares(LS) estimator in practical situations. Since most data contain con­

tamination. due to either the faulty nature of the mechanism which produces the 

data or human error in handling the data, the use of procedures such as the ones 

developed in this study becomes one of the ways of making sensible inference.

In Chapter I we have seen that the LS estimate is very sensitive to outlying 

observations. In this chapter we consider more examples depicting this fact and 

providing one possible remedy. For illustration purposes we will focus on the 

VVilcoxon estimator given in Chapter III and show that it is a robust alternative 

to LS. All our estimates are computed using the package RGLM of Kapenga et. 

al. (1995).

Example 6.1.1 (Chwirut's data). These data are taken from the ultrasonic block 

reference study by Chwirut (1979). The response variable is ultrasonic response

and the predictor variable is metal distance. The study involved 214 observations.

81
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The model under consideration is.

/ ,(« )  =  / ( * * » „ * ,« , )  ■  e' 7 l~ y £ ^- i =  1----- ,214 .
02 4- 03o:

Both the Wilcoxon and LS were fitted to the data. Figure 3 displays the 

results. In the case of the original data, both models performed very similarly. 

For robustness considerations, we introduced a gross outlier in the response space. 

The models were fitted once again. From the plot of the fitted models and residual 

plots, it is clear that the VVilcoxon model performs dramatically better than its 

LS counterpart. The LS fit follows the ” Archemedian lever” principle; that is. put 

a point far enough out in the response space and the LS fit will go right through 

it. This is, however, not true in the case of the VVilcoxon estimator which stayed 

unchanged.

Example 6.1.2 (Lanczos' data). In this example we consider a generated data set 

given in Lanczos (1956). Twenty four observations were generated to 5-digits 

of accuracy using f{x) = 0.0951 exp(-x) + 0.8607exp(—3x) +  1.5576exp(—5a:). 

Naturally the model we consider is,

fi{8) = di exp(-9 2Xi) +  03 exp(-04ar,) + 05 exp(-06Xi), i =  1........ 24.

Just as in Example 6.1.1 we fitted both models with and without an outlier 

present. This time the outlier introduced does not deviate much from the form of 

the model as can be seen in Figure 4. The effect of the outlier is clearly seen in 

the LS residual plot which developed a wave-like pattern. LS followed the outlier;
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but since the estimation is done under smoothness and shape restrictions imposed 

by the model, points in the neighborhood of the outlier will also be affected to 

some degree. This produces the wave in the residual plot.

It is well known (see for example Hettmansperger and McKean (1998)) that 

the ARE of the VVilcoxon estimator relative to the LS estimator is about 95.5% 

when the errors are normally distributed with mean 0 and variance 1. When the 

distribution of the errors has a heavier tail than the tails of the standard normal 

distribution the value of the ARE rises substantially. A natural question to ask is 

'’Does this phenomenon hold in nonlinear models?” . The answer is affirmative.

We start by defining

where 77 > 0. to be the contaminated normal distribution. In this case the con­

taminating distribution is also normal but with a variance different from 1.

Taking the ratio of the asymptotic variances of the LS estimator and the 

VVilcoxon estimator and applying simple algebra shows that the asymptotic rel­

ative efficiency of the Wilcoxon estimator relative to the LS estimator when the 

errors come from the C N ( 7 , 77) distribution is given by,

6.2 A Simulation Study

C N ( 7, n) =  ( i  -  7 ) W(o, i) +  7 .v(o.  n ), ■ o <  7 <  1 •

ARE(7 , 77) =  12 [
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(a) Wilcoxon Residual vs. Predictor

(d) Wilcoxon Residual vs. Predictor: Outlier(c) LS and Wilcoxon Fits : Original Data

Wilcoxon

(f) LS and Wilcoxon Fits : Outlier(e) LS Residual vs. Predictor: Outlier

Wilcoxon

Figure 4. Analysis of Lanczos' data
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It is easy to see that ARE(0. q) =  ARE(I,t/) =  ARE(7,1) = 3 /7r. Furthermore, 

ARE(7 , 77) is increasing in both its arguments. So, either an increase in con­

tamination or an increase in the variance increases the ARE. Thus if the error 

distribution is standard normal then the Wilcoxon estimator is about 95.5% as 

efficient as the LS estimator.

In order to investigate the efficiency of the Wilcoxon estimator relative to 

the LS estimator, vve consider the function,

fi(9) = exp(xj0), i = 1 ,. . . ,  n .

This functional form is then used to generate a vector of response by fixing 6 = 

log(2) and adding random errors as.

iji = exp(x, log(2)) +  £„ n  =  1,  - .  • ,  n ,

where Xi are uniformly distributed over the interval (0.5) and c, are sampled from, 

CiV(7 , 77).

We performed 1000 repetitions at n =  20 and obtained LS and Wilcoxon 

fits using the algorithm given by Sievers and Abebe (2002). The finite sample 

relative efficiency (RE) is then taken to be the ratio of the bootstrap variance 

of the LS fit to that of the Wilcoxon fit. The estimated values of the relative 

efficiency are given in Table 2. One can observe that the estimated values of RE 

are in a close proximity of the true ARE values.
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Table 2

Estimated relative efficiencies of VVilcoxon relative to LS

RE (77 =  3) ARE (7,77 =  3) RE(t/ =  10) ARE(7,77 =  10)
7 = 0.00 0.957 0.955 0.960 0.955

II o o
 

1—
> 1.019 1.009 1.826 1.836

7 = 0.05 1.193 1.196 4.796 4.769
7 = 0.10 1.363 1.373 7.399 7.280
7 = 0.15 1.479 1.497 8.695 8.757
7 = 0.20 1.558 1.575 9.193 9.430
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CHAPTER VII

CONCLUSIONS

7.1 Concluding Remarks 

The study considered the general regression model.

iji =  f i { 6 o) + Ei. i =  1 . . . . .  n .

where each / t are known real valued functions defined on a compact space 0  and 

are random errors assumed to be independent and identically distributed. In 

some cases, instead of several functions /*, we only have one function /  taking 

several inputs. In such a case the model is represented by

\ji =  /(X i.0o) +£i. / = 1,-----n .

where x, € X  C are the independent variables. Estimation is done by min­

imizing some distance between y and the expectation surface <S(0), the space 

traced by / ( 0 ) when 0  varies over 0 . The most prominent problem encountered 

when minimizing these distances is that there may be suboptimal minima, the 

abundance of which depends on the curvature of the space S  and the length of 

the shortest distance of y from S. Most of the popular distances will be nonconvex 

due to the nonlinear nature of / .

88
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The main purpose of the study was to establish the asymptotic theory 

of some estimators of 0O obtained by minimizing rank-based dispersion functions. 

Besides making our proofs economical, the compactness of the parameter space. 0 .  

is needed to ensure the existence of the estimators. Furthermore some smoothness 

and identifiabilitv conditions need to be imposed on the space S  to be able to 

obtain the asymptotic properties of the estimators.

In Chapter II, we developed some tools to aid in developing the asymptotic 

theory of rank estimators in nonlinear models. We gave a result on convergence of 

probability measures on compact spaces that was used in proving the consistency 

of our estimators. We also developed an asymptotic bound on the distance be­

tween two minimizers in terms of the distance between the functions minimized in 

the spirit of Hjort and Pollard (1993) and extending the work of Jaeckel (1972). In 

our setting, these two results give us the probabilistic tools needed for developing 

the asymptotic theory of estimators.

In Chapter III, we considered the Wilcoxon estimator which is defined as 

any value of 0 which minimizes

Y . ito -  u rn  -  fe, -  />(«)][ •
i<j

The existence, consistency, and asymptotic normality of the Wilcoxon estimator 

were obtained under some regularity conditions on the error distribution and /  

similar to those assumed in and least squares estimation procedures. The 

influence function, although bounded in the response space, was shown to be
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unbounded if the tangent plane at 0Q of the expectation surface is unbounded.

In Chapter IV, we studied the generalized signed-rank dispersion function 

given by
n

1 = 1

where |2(0)|(i) is the ith ordered value among [yi — fi{0)\, ■ ■ ■ , \yn — fn{0)I and p 

is an increasing function defined on 9?+. The scores, an. are usually picked using a 

score generating function, which has at most a finite number of discontinuities. 

One can easily come up with a number of dispersion functions by changing 

and p. Examples are least squares and Li dispersion functions including their 

trimmed variations. The conditions for the strong consistency of the minimizer 

of the generalized signed-rank dispersion were obtained by placing p and in 

conjugate spaces. In most cases, these conditions were found to be weaker than 

those commonly used in practice. One can obtain high breakdown estimates by 

trimming the score generating function to zero the influence of large residuals. 

The breakdown point of the generalized signed-rank estimator is shown to be at 

least equal to the amount trimmed off the top of <p+ .

In Chapter V, we generalized the results of Chapter III by considering a 

weighted Wilcoxon dispersion given by

E  (§!■“’)i[ » -  /.(«)] -  bn -  /j(«)ii <
i<j

—(0 )
where Wij are weight functions and 0n is an initial estimator that is weakly 

consistent. The asymptotic properties of the weighted Wilcoxon estimator were
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obtained under conditions equivalent to those used in Chapter III in addition to 

smoothness and boundedness conditions on u/y. As in linear models (see Chang 

et. al. (1999)), the weighted Wilcoxon could potentially produce high breakdown 

nonlinear regression estimators. This conjecture needs further investigation.

The examples given in Chapter VI demonstrate the ability of rank-based 

estimators to extract valuable information from the data in the presence of outliers 

when the least squares method fails to do so. This is further testimony that 

rank-based estimates provide a robust alternative to least squares and need to 

be included in our data analysis protocols. Besides its robustness properties, 

our simulation study shows evidence that the Wilcoxon estimator of nonlinear 

regression coefficients is a highly efficient estimator in comparison to the least 

squares estimator.

7.2 Future Research Directions

We will start by considering higher generalizations of the nonlinear model 

considered in (1.1) by allowing stochastic dependence among the /j.

Let (fi. T , {Ft). P) be a filtered probability space. Let 0  be a compact 

subset of 3?p. Consider the general stochastic regression model

Vt =  f t { 0 ) + £ u  (~-l)

where yt are ^-measurable, {e£} is a martingale difference sequence with respect
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to the increasing sequence of sub-cr-fields {J-t } such that

su p E (^ |J i_ i) < oc (7.2)
t

and f t{0) is a ^measurable real valued function of 6 6 0 .

In addition to the usual regression models, the model given in (7.1) includes 

several interesting models such as linear and nonlinear time series models. An 

example is the nonlinear ARMA(p. q) model given by

Ut =  h{St-q , z t-h y t-p . lit-1) + (~-3)

where h is a real-valued function defined on ?̂p+<,. The function /  in (7.1) may 

also depend on covariates in addition to past y's. An example of such model is 

the nonlinear autoregressive model with exogenous inputs (NARX) given by (see 

Lai (1994)),

yt =  f{yt-l-.----yn-p,Xn-dT---Xn-d-q\0) + c t . (7.4)

where d > 1 is the delay and x t is the zth stage input.

Denote by 0q the unknown true value of 0 satisfying E(yt \̂ Ft- i)  =

Lai and Wei (1982) have given sufficient conditions for the strong consistency 

of the least squares estimator in the case where /  is a stochastic linear model. 

Lai (1994) gave the consistency of the least squares estimator of nonlinear stochas­

tic regression coefficients under identifiability and differentiability (smoothness) 

conditions imposed on / .  These conditions allowed him to place /  in a suitably 

chosen Hilbert space where martingale results can be used to establish the con-
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sistency. Recently, by using a theorem of Andrews (1987). Skouras (2000) was 

able to show the strong consistency of the LS estimator under an assumption of 

Lipschitz continuity of /  in place of Lai's differentiability assumption.

Define the Wilcoxon estimator as any value of 0 € 0  which minimizes

D t {0)  =  ^ 2  W j j K s f c  -  f t{0)\  -  [ y s  -  / , ( # ) ]  |  - (7.5)
S < t

Denote this value by &t -

Terpstra et. al. (2000) considered autoregressive linear models and used 

(7.5) to obtain highly efficient estimators of the model coefficients. So our first 

future research direction is to establish the asymptotic properties of 0 r  under some 

regularity conditions on Wij and / .  Again the approach taken by Andrews (1987) 

of showing pointwise convergence and imposing a Lipschitz-smoothness condition 

to obtain uniform laws of large numbers seems to be a promising way to prove 

the consistency of Or-

Finally, consider a linear model where the response variable is observed 

only when it is above a certain threshold. Without loss of generality assume that 

this threshold is 0 and write the model as

Ui =  max(xF0 +  0) , i =  1, • ■ • . n .

General R estimates for such models were obtained by Lai and Ying (1991). Under 

the assumption that the true errors are symmetric, Powell (1984) showed that the
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L\_ estimator is the minimizer of

n

^ 2 \y i  -m ax(xf0.O)| .
i=i

which is the L\ dispersion function corresponding to the nonlinear regression prob­

lem xji = max(xf 0.0) -I- £j. Similar symmetry conditions on the errors can be 

imposed to obtain the dispersion function of the signed-rank estimation proce­

dure. One may wish to investigate the asymptotic properties of the signed-rank 

estimator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

Andrews. D. W. K. (1987). '’Consistency in Nonlinear Econometric Models: A 

Generic Uniform Law of Large Numbers". Econometrica. 55(6). 1465-1471.

Bhattacharyya. B. B.. Otsuka. Y.. &: Richardson. G. D. (1992). '’Strong Consis­

tency in Nonlinear Regression with Multiplicative Error". Communications 

in Statistics. Theory and Methods. 21 (10). 2825-2831.

Chang. YV. H.. McKean. J. YV\. Naranjo. J. D.. & Sheather. S. J. (1999). "High- 

Breakdown Rank Regression". Journal of the American Statistical Associa­

tion, 5^(445). 205-219.

Chwirut. D. J. (1979). "Recent Improvements to the ASTM-Type Ultrasonic 

Reference Block System". Research Report NBSIR 79-1742. National Bureau 

of Standards. YY'ashington. DC.

Dixon. S. L. &: McKean. J. W. (1996). Rank-based analysis of the heteroscedastic 

linear model. Journal of the American Statistical Association. 91 (434). 699- 

712.

Donoho, D. Huber, P. J. (1983). "The Notion of Breakdown Point". In A 

Festschrift for Erich L. Lehmann (pp. 157-184). Belmont, CA: Wadsworth.

Doob. J. L. (1994). Measure Theory. New York: Springer-Verlag.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fraser. D. A. S. (1957). Nonparametric Methods in Statistics. New York: John 

Wiley k  Sons Inc.

Fristedt. B. k  Gray. L. (1997). .4 Modem Approach to Probability Theory. Boston. 

MA: Birkhauser Boston Inc.

Gonin. R. k  Money. A. H. (1985). "Nonlinear Lp-Norm Estimation. I. On the 

Choice of the Exponent, p. where the Errors are Additive". Communications 

in Statistics. A. Theory and Methods. 14 (4). 827-840.

Helmers. R. (1977). *’A Strong Law of Large Numbers for Linear Combinations 

of Order Statistics". Technical Report SW 50/77. Mathematisch Centrum. 

Amsterdam.

Hettmansperger. T. P. k  McKean. J. W. (1998). Robust Nonparametric Statistical 

Methods. London: Edward Arnold.

Hettmansperger. T. P. k  Sheather. S. J. (1992). "A Cautionary Note on the 

Method of Least Median Squares". The American Statistician. Jd(2). 79- 

83.

Hjort, N. k  Pollard. D. (1993). " Asymptotics for Minimizers of Convex Processes". 

Technical Report 93may-l. Yale University. Department of Statistics.

Hossjer. O. (1994). "Rank-Based Estimates in the Linear Model with High Break­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



down Point” . Journal of the American Statistical Association, 89 {425). 149— 

158.

Jaeckel. L. A. (1972). '’Estimating Regression Coefficients by Minimizing the 

Dispersion of the Residuals” . The Annals of Mathematical Statistics. 43. 

1449-1458.

Jennrich. R. I. (1969). "Asymptotic Properties of Non-Linear Least Squares Es­

timators” . The Annals of Mathematical Statistics. 40. 633-643.

Jureckova, J. (1969). '’Asymptotic Linearity of a Rank Statistic in Regression 

Parameter”. The Annals of Mathematical Statistics. 40. 1889-1900.

Jureckova, J. (1971). ’’Nonparametric Estimate of Regression Coefficients”. The 

Annals of Mathematical Statistics. 42, 1328-1338.

Kapenga, J.. McKean. J. W.. k  Vidmar. T. J. (1995). ”RGLM: Users Manual”. 

Technical Report 90. Western Michigan University, Department of Mathe­

matics and Statistics.

Lai, T. L. (1994). '’Asymptotic Properties of Nonlinear Least Squares Estimates in 

Stochastic Regression Models” . The Annals of Statistics, 22(A), 1917-1930.

Lai, T. L. & Wei, C. Z. (1982). ’’Least Squares Estimates in Stochastic Re­

gression Models with Applications to Identification and Control of Dynamic 

Systems” . The Annals of Statistics, 10(1), 154-166.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9 8

Lai, T. L. k  Ying, Z. (1991). "Rank Regression Methods for Left-Truncated and 

Right-Censored Data". The Annals of Statistics. 13(2). 531-556.

Lanczos, C. (1956). Applied Analysis. Englewood Cliffs, N. J.: Prentice Hall Inc.

Landers, D. (1968). Existing Und Konsistenz von Maximum Likelihood Schatzem.

PhD thesis. University of Cologne.

Lehmann. E. L. (1997). Theory of Point Estimation. New York: Springer-Verlag. 

Reprint of the 1983 original.

Malinvaud. E. (1970). "The Consistency of Nonlinear Regressions”. The Annals 

of Mathematical Statistics. 4L 956-969.

McKean, J. W. k  Hettmansperger. T. P. (1978). ”A Robust Analysis of the 

General Linear Model Based on one Step R-Estimates”. Biometrika. 55(3). 

571-579.

McKean. J. W. k  Schrader. R. M. (1980). ”The Geometry of Robust Proce­

dures in Linear Models”. Journal of the Royal Statistical Society. Series B. 

Methodological. 4%{3). 366-371.

Naranjo, J. D. k  Hettmansperger, T. P. (1994). ”Bounded Influence Rank Re­

gression”. Journal of the Royal Statistical Society. Series B. Methodological,

55(1), 209-220.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

Oberhofer. W. (1982). ”The Consistency of Nonlinear Regression Minimizing the 

L[-Norm". The Annals of Statistics, 10(1), 316-319.

Petrov. V. V. (1995). Limit Theorems of Probability Theory. New York: The 

Clarendon Press Oxford University Press. Sequences of independent random 

variables. Oxford Science Publications.

Pollard. D. (2002). .4 User's Guide to Measure Theoretic Probability. Cambridge: 

Cambridge University Press.

Powell, J. L. (1984). "Least Absolute Deviations Estimation for the Censored 

Regression Model”. Journal of Econometrics. 25(3). 303-325.

Prakasa Rao. B. L. S. (1987). Asymptotic Theory of Statistical Inference. New 

York: John Wiley k  Sons Inc.

Pronzato. L. k  Walter. E. (2001). ''Estimating Suboptimal Local Minimizers in 

Nonlinear Parameter Estimation”. Technometrics. 43(4). 434-442.

Richardson, G. D. k  Bhattacharyya. B. B. (1986). ''Consistent Estimators in 

Nonlinear Regression for a Noncompact Parameter Space”. The Annals of 

Statistics, 1 4 (A), 1591-1596.

Rousseeuw, P. J. (1983). ”Regression Techniques with High Breakdown Point” .

The Institute of Mathematical Statistics Bulletin, (12), 155.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rousseeuw. P. J. (1984). "Least Median of Squares Regression”. Journal of the 

American Statistical Association. 75(388). 871-880.

Seber. G. A. F. k  Wild, C. J. (1989). Nonlinear Regression. New York: John 

Wiley & Sons Inc.

Sen. P. K. (1978). "An Invariance Principle for Linear Combinations of Order 

Statistics”. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. J2(4). 327- 

340.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New 

York: John Wiley k  Sons Inc. Wiley Series in Probability and Mathematical 

Statistics.

Sievers. G. L. (1983). ”A Weighted Dispersion Function for Estimation in Linear 

Models”. Communications in Statistics. A. Theory and Methods. 12(10). 

1161-1179.

Sievers. G. L. k  Abebe. A. (2002). ”Rank Estimation of Regression Coefficients 

Using Iterated Reweighted Least Squares”. Submitted.

Skouras. K. (2000). ” Strong Consistency in Nonlinear Stochastic Regression Mod­

els”. The Annals of Statistics. 22(3). 871-879.

St. Laurent. R. T. k  Cook, R. D. (1993). ” Leverage, Local Influence and Curvature 

in Nonlinear Regression” . Biometrika, 25(1), 99-106.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Strasser, H. (1973). "On Bayes Estimates’'. Journal of Multivariate Analysis. 3. 

293-310.

Stromberg, A. J. (1995). "Consistency of the Least Median of Squares Estimator in 

Nonlinear Regression"’. Communications in Statistics. Theory and Methods. 

24(8). 1971-1984.

Stromberg. A. J. k  Ruppert. D. (1992). "Breakdown in Nonlinear Regression". 

Journal of the American Statistical Association, 87(420), 991-997.

Terpstra. J. T.. McKean, J. W.. k  Naranjo. J. D. (2000). Highly Efficient 

Weighted Wilcoxon Estimates for Autoregression” . Statistics. 55(1), 45- 

80.

van Zwet, W. R. (1980). ”A Strong Law for Linear Functions of Order Statistics” . 

The Annals of Probability, 8(5). 986-990.

Wang, J. D. (1995). ’’Asymptotic Normality of Z^-Estimators in Nonlinear Re­

gression”. Journal of Multivariate Analysis. 54(2), 227-238.

Wellner, J. A. (1977). ”A Glivenko-Cantelli Theorem and Strong Laws of Large 

Numbers for Functions of Order Statistics”. The Annals of Statististics. 

5(3), 473-480.

Willard, S. (1970). General Topology. Addison-Wesley Publishing Co., Reading, 

Mass.-London-Don Mills, Ont.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

Williams. D. (1991). Probability with Martingales. Cambridge: Cambridge Uni­

versity Press.

Wu. C.-F. (1981). "Asymptotic Theory of Nonlinear Least Squares Estimation".

The Annals of Statistics. 5(3). 501-513.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Nonlinear Regression Based on Ranks
	Recommended Citation

	tmp.1454961140.pdf.IRJh2

