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RECOIL CORRECTED CONTINUUM SHELL MODEL FORM FACTOR 
CALCULATIONS FOR 4He(e,e')4He(0+)

Jiang Yu, M. A.

Western Michigan University, 1988

Charge form factor calculations for the electroexcitation of the 

4He, 0+ state have been performed within the context of the recoil 

corrected continuum shell model. A pure Os4 ground state 

structure is assumed and full internal coordinate recoil corrections 

are made. The result is compared with available data. It is 

demonstrated that the 0+ state may be described in a lp - lh  shell 

model context. Inclusion of nsOs' 1 ground state correlations is 

suggested for further reseach.
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CHAPTER I

INTRODUCTION 

Electron Scattering

Two fundamental reasons have made electron scattering an 

important and powerful tool in studying nuclear structure. For 

the first, in contrast to the situation with strongly interacting 

projectiles, where the scattering mechanism cannot be clearly 

separated from structure effects in the target, the interaction 

between the electron and the target nucleons in electron 

scattering is completely known. Also, the electron interaction with 

the electromagnetic charge and current density of the nucleus is 

relatively weak, of order c< =1/137, so that one can immediately 

relate the cross section to the transition matrix elements of the 

local charge and current density operators and thus directly to the 

structure of the target itself. Though the same considerations also 

apply to processes involving real photons, the second reason 

offers electrons the other great advantage which real photons do 

not have. That is, for a fixed energy loss w of the electron, one 

can vary the three-momentum transferred to the nucleus, q, w ith  

the only restriction that the four momentum transfer be 

space-like, i.e.,

q^2 = q 2 - w2 > 0 (1.1)

for electrons. For a given energy transfer in the case of real

1
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photons, there is only a single possible momentum transfer,

q^2 = q 2 - w2 = 0, (1.2)

since the mass of a real photon is zero. Thus with electrons, one

can study the complete q 2 behavior o f the transition matrix 

elements and map out the Fourier transforms of the transition 

charge and current densities. Therefore, one knows the spatial 

distribution of the transition change and current densities

themselves, and this is certainly a source of tremendously rich

and unique information on the structure of nuclei.

Five regions can be identified in the electron scattering 

spectrum illustrated in figure 1 (DeForest & Walecka, 1966). Here 

the ordinate stands for double differential cross section of electron 

scattering, which is a function of the other two variables, w the 

energy loss,

w = Er  E2 , (1.3)

and q the three-momentum transfer,

q2 = q 2 . (1.4)

Figure 1 is really a "theorist's" spectrum for a fixed 0, th e  

scattering angle.

The first region is related to elastic scattering, the situation 

where (except for nuclear recoil) w = 0. The electrons are 

scattered from the nucleus, leaving the nucleus in its ground state. 

Many experiments on elastic scattering have been carried out, and 

the best information so far on nuclear size comes from elastic 

electron scattering. The next region of the spectrum, w > 0, 

corresponds to inelastic scattering. One can see spikes
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coresponding to the excitation of nuclear levels. In this region, 

since w > 0, the electrons leave the nucleus with lower energy 

than that of the incident electrons, leading the nucleus to its 

excited states. Therefore the electro-excitation provides a fairly 

sensitive test for theories which attempt to describe such levels 

and can also help to give other nuclear structure information.

2M

Figure 1. A Typical D ouble Differential Electron Scattering Cross Section.

The third region is giant resonance region characterized by 

collective motion. The fourth region of the spectrum is a broad 

peak which is referred to as the quasi-elastic peak. It corresponds 

to direct collisions with the individual nucleons in the nucleus and 

occurs at w = q2/2M *, with the total width given roughly by 

q-kF/M* + q2/2M* > W > -q-kF /M* + q2/2M *.

Here, M* is an effective mass for the nucleon and takes the
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binding energy into account, and kp is the Fermi momentum 

(k F „ 250 MeV). One can hopefully obtain information about 

two-particle correlations from this region. Last, the fifth region 

belongs to meson production, which starts at w = m T . Meson 

production gives different information on nuclear structure and 

nucleon structure.

Figure 2 indicates the general electron scattering process 

through a single photon exchange. The in itial and final 

four-momenta of the target are Pp and P'p and of the electron are 

k ip and k 2p •

^ANYTHING

< / ' Figure 2<. The General Electron Scattering Process in Lowest Order in <x . 

For the process, the double differential cross section in the 

laboratory frame (neglecting the mass of the electron) can be 

written as (DeForest & Walecka, 1966):

(dV /dA 2dE2) = (4Z2*2/qii4)(E22/MT){ cos2(e/2)-[W 2(q|12> q. P)

+ 2W1(qp2> q. P)-tan2(0/2)] }. (1.5)

qp2 = 4E1E 2sin2(0/2) . (1.6)

MT2 = -Pp2. (L 7 )

where W 1>2(qp2,q . p) are two form factors and can be separated 

experimentally by doing experiments at fixed qp2 and q- P, then
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varying the angle 0.

W i,2(qp2,q- P) can be related to the structure of the nucleus. 

Briefly, one writes the interaction of the electron with the nucleus 

as

HiOO = - ejp(x)Apext(x)» (1.8)

w here

V * )  = iV'OOyV'OO (1.9)

for the point-like electron. The external potential is due to the

nucleus and is related to the nuclear current by

O  Apext(x) = - epJpCx) = - ep< fl Jp(x) I i>. (1.10)
A

Matrix elements of the interaction, Hj(x), can be put in terms of 

the nuclear current by the Fourier transform

q^2 J  exp{-iq.x}.Apext(x)d4x = ep J* exp{-iq.x}.Jp(x)d4x = ep Jp(q). 

The customary multipole expansion of the nuclear current Jp(q) 

leads to

(d<r/d/L) = { (8TT^2E 2/qp4 .E 1)/[l + (E2 - ElCos0)/E’] }

• { VL(0 )1 .[  I <Jt ll Mjcoul(q) II Jj>  I 2 / (21, + 1)1
U —O

+VT( B ) #  [( I <J£ II ^ ( q )  II Ji > I 2 /  (2JS + 1))

+ ( I < Jf II TJmag(ci) II Jj > I 2 /  (2Jj + 1))] } ,

(1.11)

w here

Vl (6) = 2(qp4/q4)E lE 2-cos2(e/2), (1.12)

VT(0) = (2E1E 2/q2).sin2 (0/2) •[ (Ei+E2)2 - 2E1E 2-cos2 (0/2) ].

(1.13)

Therefore the electron scattering problem reduces to calculation of 

conventional multipole operators between initial and final nuclear
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states.

Inelastic electron scattering is considered very important

and useful in nuclear structure studies, especially on the structure 

of nuclear excitations. Since the nucleus is led to its higher energy 

levels while electrons are scattered from it with energy loss, W > 

0, the cross section can give information on form factors and 

therefore the structure of the excited states. Also, one can

theoretically predict the energy levels of a nucleus and the form

factors by using nuclear structure models, and then compare the 

theoretical results with experimental data for the same system in 

order to examine whether the models adequately describe that 

system.

The Recoil Corrected Continuum Shell Model

Since a detailed knowledge of nuclear forces within a

nucleus as a many-body system is unknown, the method of 

nuclear models has been used to investigate the structure of 

nuclei. This method consists of constructing a physical system, the 

model, with which we can perform  calculations and whose 

properties resemble a nucleus. The physics of the model are 

studied and it is hoped that any properties thus discovered will 

also be properties of the nucleus. Then the structure of the model 

will stand for the structure of the nucleus. No single model can 

account for all the known facts about nuclei. So far, several models 

have successfully approached different aspects of the physics of 

nuclei. One of the models is the shell model, which has explained
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not only the main features of the shell structure phenomena, but 

also more detailed properties such as the spins, magnetic 

moments, and level spectra of many nuclei.

The shell model is based on the experimental evidence that 

some certain numbers of neutrons or protons such as,

2, 8, 20, 28, 50, 82, 126, 

lead to particular stability of nuclei (for examples of the 

experiments, see the article by Flowers in 1952). These numbers 

are called magic numbers, and the phenomena have been 

interpreted as an indication that neutrons and protons within the 

nucleus are arranged into shells within the nucleus, like electrons 

in atoms. Each shell is limited to a certain maximum number of 

nucleon of a given sort. When a shell is filled, the resulting 

configuration is particularly stable and therefore of low energy. 

The shell model is built up under the following two assumptions:

1. The "central" potential is really an average potential, and 

the addition of an extra nucleon modifies this potential far more 

than the addition of an extra electron modifies the central 

potential in the atomic case.

2. Because of the Coulomb repulsion of the protons, the 

numbers of neutrons and protons in a nucleus are not even 

approximately the same in all but the lightest nuclides. It is 

therefore most unlikely that a nuclide with a closed shell number 

of neutrons can also have a closed shell number of protons and 

conversely. The stability characteristics of closed shells will 

therefore be less marked than in the atomic case.
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For general consideration, a non-relativistic system of A 

nucleons is characterized by a Hamiltonian H = H (1, A). The

numbers 1, — , A stand for the space, spin and isospin coordinates 

of the A nucleons. H can be decomposed into two parts,

H = H0 + B, (1.14)

where H0 is a shell-model Hamiltonian, a sum of single particle 

operators

H0 = 4 i ho(i) = 11 (i) +v0 (i)] • (1.15)
Here t(i) is the kinetic energy operator, while v0(i) is the shell 

model potential. The residual interaction B is a sum over one- and 

two-body potentials. To describe a scattering problem, v0(i) must 

be a potential of finite depth. In the usual bound-state 

calculations, v0(i) is chosen to be a potential of infinite depth, 

usually a harmonic oscillator potential.

In the conventional shell model, the basic ansatz is an

expansion of the wave function in term s of products of

single-particle functions. This ansatz is very flexible and is also 

very convenient for such operations as the calculation of matrix

elements and the proper treatment of the Pauli principle. But

because of the presence of unbound states, the conventional shell 

model cannot be applied to the nuclear reactions involving one 

particle in the continuum. The separability of the c.m. coordinate 

can be conveniently imposed in the model only if harmonic 

oscillator expansion functions are employed, but this leads to an 

infinite number of discrete bound states, and no continuous set of 

eigenstates. To solve this problem, Fano (1961) introduced
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originally and many researchers developed the continuum shell 

model. One continuum shell model employs R-matrix techniques 

(Lane & Tomas, 1958; Land & Robson, 1966, 1969; Philpott & 

George, 1974) so that the physical content of the model, for which 

the interaction region is of relatively small extent, can be 

expressed within a finite basis of oscillator functions. This enables 

the c.m. coordinate to be completely elim inated from the 

problem s.

The continuum shell model has been applied to a wide 

variety of nuclear problems including all those involving a particle 

in the continuum. However, when the conventional continuum 

shell model is applied to light nuclei, the calculations contain 

errors of unknown m agnitude which are a ttributable to 

unphysical excitation of the c. m. coordinate. Philpott then 

introduced the recoil corrected continuum shell model (RCCSM) in 

1977, with an application to elastic scattering of a nucleon from a 

closed-shell target nucleus. In the RCCSM, the effects of the target 

nucleus recoil are considered. In 1979 Halderson and Philpott 

(Halderson & Philpott, 1979) extended the RCCSM to the lp -lh  

states of light systems of four nucleons, and excellent agreement 

was obtained between the calculated and observed cross sections 

and polarization variables. Figure 3 shows the observed (Fiarman 

& Meyerhoff, 1973) and calculated positions of bound states and 

resonances below Ep(c.m.) = 10 MeV with and without the recoil 

correction.

The RCCSM calculation reproduce the first three excited
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states very well. The importance of the c.m. corrections was made 

amply evident by a  com parison with the corresponding 

uncorrected results.

10

>4>
5  -10
EU

*20

-3 0

—  r o*
—  = j :  o £ l :

^ 0 -  i -  W w n .................

.2*
■ 0 *

■0*

0-
0 -  L 2*

COM*)

. 2 '
■0-
•0*

■10*)
■Cl")
- 2*

-— c*

T = 0  T s I

Center ol Moss 
Corrected

T =0  T s|

Uncorrected

T--0 T*l 

E*o.

Figure 3. Observed and RCCSM  Calculated Positions of Bound  
States and Resonances Below Ep(c.m.) =  10 MeV.

The First Excited State of 4He Structure Investigation

The first excited state of 4He is a 0+ state or the breathing 

mode of the nucleus. Figure 4 shows (a) the double-differential 

cross section of the break-up continuum with its peak at an 

incident energy E0 = 320 Mev and a scattering angle 0 = 44.96°;
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Figure 4 . (a) Double-Differential Cross Section o f  The Break-Up Continuum
With The Quasi-Bound-State Peak at an Incident Energy 
E0 = 320 MeV and a Scattering Angle 0 = 44.96°.

(b) Spectrum After Subtracting The Continuum Contribution.
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(b) the spectrum after subtracting the continuum contribution 

(Kobschall et al., 1983).

The 0+ state has been of interest for some time because 

inelastic electron scattering experiments (Kobschall et al., 1983; 

Frosch, Rand, Yearian, Crannell & Suelzle, 1968; Watcher, 1970) 

have shown that it accounts for a very small percentage of the 

energy weighted sum rule. The shell-model calculations which 

assum a IsOs-1 (J = 0, T = 0) configuration have been 

demonstrated to over-predict the strength by a factor of 20 (Lui & 

Zamick, 1986). The inclusion of higher order shell model 

configurations can only reduce this factor to between 5 and 10. 

The exact nature of the 0+ state is therefore considered to be 

somewhat puzzling and this has led to speculations that the shell 

model is inappropriate for describing this light system.

Two other types of calculations have been performed for 

this state. One is a resonating group calculation with a central 

interaction and bound state approximation (Furutani, Horiuchi, & 

Tamagaki, 1978). The resulting form factor was approximately 

three times larger than that observed. The other is a calculation 

employing hyperspherical harm onics (Sarny al & M ukherjee,
i

1987). Here good agreement with the experiment form factor was 

obtained. Since the calculated state turned out to be a pure 

hyperradial excitation, the authors concluded that it was a 

collective excitation of the ground state.

The RCCSM in the lp - lh  approximations has been very 

successful in describing low energy nucleon scattering phenomena
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for the four-nucleon system s (H alderson & Philpott, 1979). 

Previous attempts to describe inelastic scattering of pions and 

electrons in the context of the recoil corrected continuum shell 

model have considered only the coordinate r '4 in figure 5 ( Blilie 

et al., 1986), because the wave function for the coordinate3  3 is 

readily available. However, one sees that if the coordinate r '4 is 

excited, the coordinates r'j, r'2, and r '3 will also move slightly with 

respect to the center of mass. This constitutes a target recoil or 

center of mass correction which was omitted from previous work.

1

c.m.

Figure 5. Internal Coordinates W ithin 4 He System .

Therefore, it is expected that lp - lh  RCCSM with full center of 

mass correction may provide an adequate description of the 4H e  

0+ state in a shell model context even for this light system.

In this work, the charge form factor of the 0+ state of 4He is 

calculated with RCCSM wave functions and with consideration of 

all the coordinate corrections. The result is compared with that 

obtained from experiments. It is found to be possible to describe 

the 0+ state in a lp -lh  shell model context and a further work to 

improve the calculation is suggested.

Inelastic scattering cross section of 0+- 0 + states in Bom
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approximation has a particularly simple form ((qp2/2M T2)2 « 1 ,  m 

= 0). from equation ( 1.11) one has

do7dn.= { 4Tro^/[l+2E1sin2(0/2)/M T] }

• {[ l<Yf IIM0c°ul(q)|| Y ^ l2] } ^ ^ ) ,  (1.16)

w here

CTm =oc2cos2(0/2)/4E 12sin4(0/2). (1.17)

The form factor is defined as

F(q2) = (d^/d-n.)/4ttZ2<rM. (1.18)
A.

The matrix elements l<Yfll M0coul(q) IIY^I is calculated here by the 

recoil corrected continuum shell model.
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CHAPTER E

DERIVATION OF CHARGE FORM FACTORS FOR 4He

The recoil corrected continuum shell model employs the 

translationally invariant Hamiltonian

T  + V = ( 2m )-^FP2 - Tc.m. +^jV ij , (2.1)

where the two-body interaction is the Coulomb potential plus the 

g-matrix interaction, M3Y (Bertsch, Borysowicz, McManus & Love, 

1977), which includes noncentral forces. The basis consists of 

one-particle excitations in the harmonic oscillator wave functions 

for the internal coordinate 3 in figure 6 Proper boundary 

conditions are imposed by R-matrix techniques at a matching 

radius of ac = 7.2 fm. A smooth joining to Coulomb functions is 

accomplished by allowing particle excitations up to 2n + 1 = 14, 

where n begins at zero. The core states of 3H and 3He are taken as 

pure Os3. The oscillator constant, v0 = mw/h, is chosen as 0.36 

fm '2 to reproduce the mean-squared-radius of 3H .

The great advantage of the RCCSM was its ability to provide 

matrix elements of translationally invariant operators in the 

internal coordinates by calculating matrix elements in normal 

shell model coordinates, rj, with a fixed origin. This was very 

convenient for operators such as the two-body interaction, the 

kinetic energy, and transition operators for which a long 

wave-length approximation could be made. However, at high

15
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momentum transfer, q, operators such as j i(q r ’i) = ji(qlrj-R I) do 

not lend themselves to a simple decomposition in terms of the 

shell model coordinates, rj. Therefore the m atrix element of 

interest for the present problem,

M0 = < Yf II Y0 (r'i) j0 (qr'j) II Yj > (2.2)

must be done explicitly in the relative coordinates.

Cross sections for excitation of states above particle emission 

threshold are given by the expression (Halderson, Philpott, Carr, 

and Petrovich, 1981)

d ^ /d A  dE = (1/2tt h 2 )^ (p c/K c). (dtrc , jB/d.n-), (2.3)

where p is the nucleon reduced mass, Kc is the nucleon asymptotic 

relative momentum in the channel c, and do“c ,jB/d./L is a fictitious 

Bom cross section, calculated for nucleon wave functions with flux 

V c in channel c. The index c stands for « J J 1 with Jc and j coupled to 

JB, where Jc is the angular momentum of 3H or 3He, 1 and j are the 

nucleon orbital and total angular momentum, and (X distinquishes 

between 3H and 3He.

The form factor is calculated by equation (1.16) and (1.18).

The Mott cross section, CTM is given by (1.17).

To calculate the reduced matrix elements in equation (1.16),

one needs the wave functions of the initial and final states. The

ground state of 4He here is still approximated by a pure Os4,

Yi = ao I Os4 > I s = 0 > , (2.4)

where a0 = 1, but all coordinates are considered. The final is a 

linear combination of states of the form

Yf = Ar  {[0n/23(Ji)-nlj ( J 3)lh ffO s(R)) . (2.5)
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where Ar = [2( 1+d)]*1/2 (1- Pj] ), and 3  i is the internal coordinates.

,c j q ,

Figure 6. Coordinate Transformation Within ^He System .

Consider the initial state Y* first, it can be decomposed into 

space and spin parts:

Yj — Yispace . XiSpin. (2.6)

For Yispace, it is taken as

Y i s p a c e  = ( v0/TT)3exp{(-v0/2) ( r :2 + r22 + r32 + r42) }

o r

Y^pace = ( v0/rr)3exp {(-v0/2)(4R 2 + r^2 + r2'2 + r3'2 + r4’2)) .

(2.7)

To convert Yispacc into the internal coordinates 3 ; ,  one uses the 

transfo rm ation

Ti'2 =_?32/16 + J? 22/9 + J512/4 + ."53\52/6 - ^ 3*3i/4 - 3 ^ - l i /3  

r2'2 = 5 32/16 + .? 22/9 + J?12/4 + ;? 3- l2/6 + ? 3-ti/4  + l 2- ?i/3

r3‘2 = J 32/16 + 4 _ V /9  --?3;?2/3

r4’2 = 9_l32/16 .

Since

r j '2 + r2’2 + r3'2 + r4'2 = 3 ^ 32/4 + 2 i 22/3 + ^ i 2/2 (2.8)

Then
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Y i s p a c e  = ( v0/rr)3exp {-(v0/2)(4R 2 + 3 ^ 2 /4  + 2 | 22/3 + ^ / 2 )  }

= (4v0/tt)3'4 ex p {-(l/2 )(4v0)R 2}

•(3v0/4tr)3/4 e x p {- ( 1 / 2 ) ( 3 v 0 / 4 ) ^ 3 2 }

'(2 v 0/3 t t )3/4 e x p { -( l/2 )(2 v 0/3 ) J 22} 

-{v 0/ 2 tt) ^ x V { - ( U 2 ) ( v 0/ 2 ) ^ }

=  Os4V0(R)Os3Vo/4^3)Os2Vo/3a 2)OsVo/2Cil).

(2.9)

Since both neutron and proton are spin 1/2 particles, which 

have only two eigen-functions X +(l/2) and X_(l/2), the function 

X i s p i n  is antisymmetric between neutrons or between protons. 

Therefore it has the form

X = 2-i/2(X+<1)X_(2) - X.(DX+(2)) (2.10)

for neutrons and protons. So, Xispin is written as 

XiSpin = [ 2-U2(X+a)X_<2) - X.(DX+(2))]p

• [ 2-i/2(X+ a)X_<2) - X.(DX+(2))]n . (2.11)

For final state Yf, one of the nucleons is excited so that Yf 

now is expressed as a linear combination of lp -lh  states,

Yf = Yfspace • Xfgpjjj (2.12)

w here

Yfspace = At O « (R )Y C I3)Os2V/3(| 2)O sV /2(|1) . (2.13)

Here, - t f i S  3) is the final spatial wave function of excited nucleon.

To determine the normalization of this lp - lh  state, it is the 

best to choose LS coupling for Yfspace. Refering on s to figure 7, one 

has all the core orbital numbers zero and total spin [2*1 © 2-1]0 ® 

2 -1(2 -1), while the excited neutron or proton's numbers are 1, S 

—1/2, j. Here
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0 Sl/23ms = Os( li)O sCi2)[ 2-1/2 Q ^ i l)X.(2).X.(l)X+(2))]porn. Xms n or p 

an d
i, -L 0

Y f  =  A 4  ( - l ) l /2 + i - J f  J L ( - l ) H l / 2 + l / 2 + J f  §■} {  ±  ^  ^  }

• { nlIC?3)[l/2 ,l/2 ]H J,)O s(R ) } (2.15) 

where s = (2s +1)1/2, -SL is the summation over s = 0 and 1,

[1/2, 1/2]° = p -i^ X + W X .^ -X .tD X + C 2))^

• [2 - i/2 (X + ( l )X .(2 ) -X .(D X + (2))n], (2 .1 6 )

and

[1/2, 1/2]s=1ms=0 = [2-i/2(X+(DX.(2).x.(DX+(2))p]

• [2-i/2(X+(1)X.(2)+x.(D X +(2))n]. (2.17)

S  =  1 /2

Figure 7. Spin Coupling For The Core o f 4H e (0 + ).

The state Yf becomes 

Ac {nlrU 3)(l/2 ,l/2 )o (l)} O s(R )

= [2(l+d)]-!«{(l - P34)

*lAii(3v/4 ;.53)Os(2v/3 ; 3 2)Os(v/2 ; .l l )IS=0>)O s(R)

= [2(i+d)]-i/2cYb i e 3>os(?2) o s( j , )

+ ^ 4 ,(4 ry 3 )O s(3 r’4/2 + r’3/2)O s@1))IS=0>O<i(R) (2.18)

Let D * f n i ( l3)O s(? 2)Os @ ,) (2.19)

E «•&  i(4 r 'j/3 )O s(3 r '4/2 + r’3y2)Os(? 1) (2.20)

th en

< Yf I Yf > = 1 = [2(l+d)]-i{l+l+2<DIE>} (2.21)
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and

d = <DIE>

=J^.l*03)O «Q 2)O s@ l)

• 'f » i ( 4 r '3/3)O s (3 r '4 /2 + r '3/2 )O sCJ1)d 3 1d J 2dJ3 

=Jfy> i* (4 rV 3)O s(3 r '3/2 + r '4/2 )

Tfe i(4 r’3/3 )O s (3 r ’4/2 + r l'3/2)diS 2d J 3 

i*C53) 0 sC?2)'?̂ q i("-53/3 + 8 £ 2/9 )O s(53 +£2/3)d_U2d£3

(2 .22)

Let

y = ^ 3 ,
X = 8 J 2/9 - J 3/3 ,

th en

_^3 = y .

J  2 = 9(X + y/3)/8 ,

and

J = 3 & ! ,3 3)i» ( x, y) = I i s  I 1 = 9 / 8 .

therefore

<DIE> = (9/8)3J f y /  (y)Os(3y/8+9x/8)

• '^m(x)Os[y+(3y/8+9x/8)/3]dxdy  

= (9/8)3p^nl*(y)O s(3 y /8 + 9 x /8 )

* ^ ni(x )O s(9y/8+3x/8)dxdy

= (9/8)3(2v/37T )3̂ nr(y )exp {-(v /3 )(3y /8+ 9x /8 )2}  

•'Vni(x )exP ( -(v /3 )(9y /8+ 3x /8 )2} dxdy 

= (9 /8 )3(2v/3rf )3/2J V /n r (y )ex p {-(3 v /6 4 )(y + 3 x )2}

•‘V'ni(x ) exP {-(3v /64)(3y+ x)2} dxdy 

Let z = -x, dz = IJIdx, then
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<DIE> = (9/8)3(2v/3Tr)3/2jn/,nl* (y )exp {-(3v /64)(4y2+ 4z2-12yz)}

• ‘V'ni(x)dzdy
= (9/8)3 (2v/3»T )3̂ p?/;n1*(y)exp { -(9 v /3 2 )(y 2+ z2-2y*z)

+v( y2+ z2)/4}T^nl(x)dzdy 

= (-1)1(9/8)3(2v/3tt ) ^ j V nr(y )e x p { -(9 v /3 2 )(y -2 )2}

• exp{3v(y2+ z2) /3 2 } ^ nl(z)dzdy

(2.23)

Expansion of exp{-r(a-b)} is:

exp{-r(a-b)) = ^si(i)-1(21+l)exp{-r(a2+b2)ji(i2rab)
v

• Ci(OaYa)C!(ObX b) 

where, Clm = [4tr/(21+l)]Ylm .

Then

exp{-r(a-b)} = .21 (i)-J(21+1 )exp {-r(a2+b2)j!(i2rab)

• [4tT /(21+1)] ^lm ^lm .

T herefore

exp{-9v(y-z)2/32} = Z f l  (i^M-TT- exp{-9v(y2+z2) /3 2 }

• ji(i9vyz/16)Y lm*(z)Ylm(y) . (2.24)

Substituting equation (2.24) into equation (2.23), one has 

<DIE> = (-l)1(9/8)3(2v/37r)3/2(4Tr)jR„i(y) i '1

• exp{-15v(y2+z2)/32}ji(9 ivyz/16)R nl(z)z2y2dzdy .

(2.25)

Once the norm of the excited state is determined one can 

calculate matrix elements of operators connecting to the ground 

state. For reduced matrix elements of operators not a function of 

spin, one may discard the s = 1 component of the excited state. We 

tak e
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t  i
W l =  (-l)'-1/2+j j { ±  yf  i  }AE(iU'cS3)[ l/2 ,l/2 ]« (I t) 0 1!(R))

= (. 1)1-l/2+j+l/2+l+j(j/21/21) Ac {nlr ( J  3) [ l /2 , l /2 ] ° ( J fM f)Os(R )

= -a/2i/21)[2(l+d)]-l«  {'V-ol( i 3)O s( | 2)O s( l i )

+ ^ i1(3 r '3/4)O s(3 rV 2+ r'3 /2 )O sa 1) ) IS=0>Os(R).

Here, j  = (2j + 1)1/2.

The charge form factor must now be calculated as the 

transition matrix element between the initial and final states. The 

matrix elements have the form < Yf I Ok I Y* > = < D+E I Ok I 0 >, 

w here

Ok = O iK rV oO  + 0 2k(r ’2,oO + 0 3k( r '3,£ )  + 0 4k( r '4,/3) , (2.26)

0( ~ proton ,

~  neutron ,

and for Coulomb form factor here, O^Cr’i.rj) = ct jk(q r ’i)YkQ(r'j). 

Since Yf and I 0 > are antisymmetric in exchanging the neutrons or 

exchanging the protons, then

< Yf I 0 !+ 0 2 I 0 > = 2< Yf I 0 > ,

and

< Yf l 0 3+ 0 4 I 0 > = 2< Yf l 0 4 l 0 >  .

First look at (with v — >  3v0/4 for the state

<  DI 0 4l 0 > Ci3) 0 s( i2) 0 s<51) 0 s(R )0 4k(3^3/4)

• 0 s( | 3) 0 s(?2) 0 sa I) 0 !(R )d:ild J 2d l3dR 

^ V ^ W O J s W O ^ d J j  (2.27)

Second look at

< E I 0„  I 0 > -pi/w* (-Jj/3+8..l2/9)O s( i 3+ J 2/3)

• 0 4k( 3 j3/4)O s(? 3)O s(J2) d l 2d53 . (2.28)

Again
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y = ^ 3 ,

X = 8 i 2/9 - ! 3/3 ,

th en

J 3 = y .

J 2 = 9(x + y/3)/8 ,

and
1 0  1

J =Pfj2,?3)/<?(*, y) = l ^ s  | 1 = 9/8

T herefore

< E I 0 4 I 0 > _ ( 9 /8 ) 3 ^ *  (x)Os[y+(3y/8+9x/8)/3]

• 0 4k(3 y /4 )O s(3 y /4 )O s(3 y /8 + 9 x /8 )d x d y  

= (9/8)3j^nl*(x)Os(9y/8+3x/8)

• 0 4k(3y/4)O s(3y /4 )O s(3y/8+9x/8)dxdy 

= (9/8)3]^nl*(x)(2v/37T)3/2

•exp{-(3v/64)(4y2+4x2- 1 2 y x ) }

• 0 4k(3y /4 )O s(3y/4)dxdy 

= (9/8)3jfynl*(x)(2v/37r )3/2

• exp{-(18v/64)(y2+x2+ 2 y x ) }

• exp{(3v/32)(y2+x2) }

• 0 4k(3y /4 )O s(3y/4)dxdy

= (9/8)3J'Yn1’*(x)(2v/3tt )3/2ex p {-(9v /32)(y+ x)2}

• exp{(3v/32)(y2+x2) 0 4k(3y/4)O s(3y/4)dxdy 

= (-l)H9/8)3(2v/3tr)3/2(4Tr)jRnl(x) i*1 •

• exp{-3v(y2+ x2)/16}

• jj(9 iv y x /1 6 )0 4(3y/4)O s(3y /4 )x2y2dxdy

(2.29)

w here
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0 4k(3y/4) = 0 (3 y /4 )Y lm(y) . (2.30)

T herefo re

< Yf ! 0 4k I 0 > = < Ymj I 0 ^ 1  0 >

= -(j/2 i/21)[2 ( l+ d ) ] - i /2 

{jRBl3v/4 tl3 )04(5S 3 /4 )O se 3)i3MiS3
+ (- l ) 1(9 /8 )3(2v/3Tr)3/2(4Tt)JRnl(x) i-i 

• exp[-3v(y2+ x 2)/16 j1(9ivyx/16)

' 0 4(3 y /4 )O s(3 y /4 )x 2y 2 d x d y } .

(2.31)

< DI 0 4 1 0 > ~

T herefo re

< D I O^r*!) I 0 > = < D I (M r '3) I 0 >

< e  i Oji o > -f{p34['f»i'a3)oss 2)os(i1)osc?i)])
O i( r '1)O s( i 3)O s@2)O sCSi)dJ1« 2d ?3

< E I O J 0 > = < E I O i(r '4) I 0 > = ( in fact ) < D I O ^ r^ )  I 0 > . 

T herefore

< D+E I Ojl 0 > = 2< D I O ^r'g) I 0 > _

|^ i * ( 4 r ' 4/ 3 )O s(3r ' 3/2 + r '4/ 2 )

0 1( r '3)O s(4r ' 4/3)O s(3r ' 3/2+ r '4/2)tU 2d53
(2.32)

Let

J  3 = 4^ 4/3 ,

3 2  = 3 rl3/2 + r '4/2 ,

th e n

<9- = I ( f e .  4-/3> 1 = 2 .
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T herefore

< D+E I OJ 0 > = 2< D I O ^ )  I 0 >

~ 8 j<T/i l * (4 r,4/3)(2v/3Tr)3/2

• exp{-v (3 r'3 /2+ r'4 /2 )2 /3}01( r ’3)Os(4 r’4/3)dr’3dr'4  

= 8 jfy nl*(4r V 3)(2 v/3tt >3/2

• exp{-v(3 r’3+r’4)2/6 } 0 1( r ’3)Os(4 rV 3 )d r '3dr'4

= 8 (2v/3TT)3/2jVill*(4Tr)i-1 exp{-v(9r’32+ r'42)2/6}ji(ivr’3 r ’4)

• Ylm*(r‘3)Ylm*(r’4 )0 1(r '3 )0 s(4 rV 3 )d r’3dr'4

= 327t(2v/3tt)3/2 h J1 Rnl(4 r ,4/3 )exp{-v (9 r,32+ r’42)2/6}

• ( - l ) i j 1( i v r I3 r ’4 ) 0 ( r ' 3 ) O s ( 4 r * 4 / 3 ) r ’ 3 2 r ’4 2 d r ' 3 d r , 4  .

(2.33)

Therefore

< Yf l Oi I 0 > = -2(j/2i/2l)[2(l+d)]-i/2

{ 32tt(2v/3it)3/2 i*iJ*Rnl( 4 r ,4/3 )

• exp[-v(9r,32+r,42)2/63(-l)ij1 

•(ivr’3 r ,4 )0 ( r ’3)Os(4r*4/3)r’32r’42d r '3 d r t4}.

(2.34)

And

< YfkQl O1+O2+O3+O4 10 >

= -2(j/2 i/2I)[2(l+d)]-l«  • { jR n,3» « g 3) 0 4(3.S3/4)0sCI3XJ32dJ3 

+4ir(2v/3tr)3«(-l)i- [(9 /8 )3 fR nl(x) i-1 

• exp{-15v(y2+ x2)/32}j1(9 iv y x /1 6 )0 4(y)O s(3y/4)x2y2dxdy 

+ 16j,Rnl( 4 r '4/3)exp{-v(9r'32+r,42)2/6} r 1

• j i ( i v r ,3 r ' 4 ) 0 ( r ' 3 ) O s ( 4 r ' 4 / 3 ) r ’3 2 r - 4 2 d r * 3 d r ' 4 ] } .

=-2(j/2 V2!) [2(l+d)]*1/2{ ME( 1 )+ME(2)+ME(3)} (2.35)

w here
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ME(1) = jR ni3v/4(i3)04(3j3/4)Os( l3 ) i32di3 , (2.36)

ME(2) = 4ir(2v/3TT)3/2(-l)1(9 /8 )3

• J r ^ x) i-1exp{-15v(y2+x2)/32}

• j i(9 iv y x /1 6 )0 4( y ) 0 s(3y/4)x2y2dxdy ,

(2.37)

ME(3) = 4fr(2v/3TT)3/2(-l)1 -16

•J,Rnl(4r’4/3)exp[-v(9r'32+ r'42)2/ 6]

• Hj^ivr^ r'4)0 (r ,3)O s(4r ,4/3)r'32r'42dr,3dr,4 .

(2.38)

and

d = <DIE>

= (-1)1(9 /8 )3(2v/3tt)3/2(4Tr)J*Rnl(y) H exp{-15v(y2+z2)/32}

* ji(9 ivyz/16)R nl(z)z2y2dzdy .

(2.39)

Equation (2.35) is the transition matrix element between the 

initial and final states of the nucleus. Here, if the all coordinates 

had not been considered, equations (2.37) and (2.38) would not 

have appeared in (2.35).
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CHAPTER ffl

THE CALCULATION AND THE RESULTS

As mentioned in Chapter II, the calculation of charge form 

factor has been deduced as determing the transition matrix 

elements between the initial and final states by equation (2.33), 

o r

< Y^qI O j +O2+O3+O4 10 >

= -2(j/2i/2l)[2 (l+ d )]-i/2 • {fR ni3v/4(^3)04(2-i3/4)Os(^3)i32d?3

+47T(2v/3tt)3/2(-1)1 • [(9 /8)3J ,R nl(x) i-1 exp{-15v(y2+x2)/32}

* ji(9 iv y x /1 6 )0 4(y)O s(3y/4)x2y2dxdy

+16 f  Rnl( 4 r V 3 ) e x p { - v ( 9 r ’32+ r’42)2/ 6 } H

ji(ivr’3 r ,4)0 ( r l3)O s(4 r ,4/ 3)r ,32r ,42d r ,3d r ,4] } 

= -2(j/2i/2l)[2(l+d)]-1/2 { ME(l) + ME(2) + ME(3) } ,

(3.1)

where ME(1) is given by equation (2.36), ME(2) is by (2.37), ME(3) 

is by (2.38), and d = <DIE> is by (2.39). In the calculating,

0 4(3J 3/4) = j0(3B3q/4)/(4ir)-i/2,

Os(53) = R0S(3/4)(l3)/(4Tr)'1/2»
0 4(3y/4) = j0(3yq/4)/(4 tt )-U \

Os3/4(y) = R0s(3/4)(y)/(4vT)'1/2,

0 ( r 3 l ) = j0(r31<l)/(4»r ) '1/2,

Os3/4(4r41/3) = R0S(3/4)(4r4V3)-(4Tr)-1/2.

All the calculations are done by computer. First of all, the

27
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evaluation of d = < Dl E > is carried out. In actual calculating of the 

present problem, 1 = 0, n = 1, ... , 7, 

ji(9ivyz/16) = j 0(9ivyz/16)

= (16/i9vyz) • sin(i9xyz/16)

= (16/i9vyz) • (exp{-9vyz/16} - exp{9vyz/16})/2i,

= -(8/9vxz) • (exp{-9vyz/16} - exp{9vyz/16})

(3.2)

while v0 -  mv/h = 0.36fm*2, and q ranges from 0.0 to 3.0 fm-1. 

The two-dimensional integrals are evaluated by Simpson's rule in 

each dimension. The integration over y and z from 0.0 to 8.0 fm, 

0.0 to 10.0 fm, and 0.0 to 12.0 fm are performed respectively, 

with total 170 integral subintervals. Since the integral value of 

<DIE> does not change significantly from an upper limit of 10.0 fm  

to one of 12.0 fm, the actual computing is then carried out by 

setting the up limit of 12.0 fm for both y and z.

Second, ME(1), ME(2) and ME(3) are computed for n = 1,2, 3,

4, 5, 6, 7, respectively. Figure 8 shows the results of ME(1). Here 

one can see that for values of q < 2 fin-1, one need only consider

particle excitations with n 5. The results of ME(3) are shown in
7'
figures 9, 10, and 11. ME(3) along with ME(2) are the terms

contributing to the target recoil correction. As one can see in the
7
/figure 9 to 11, strength of ME(3) contribution for n = 2 drops to 

very weak, and for n 3, ME(3) becomes negligible. Therefore 

convergence in n is very fast for ME(3). Similar results are 

obtained for ME(2).

Next, the equation (3.1) is taken into equations (1.13) and
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(1.15) for computing form factors as a function of q and Ep. The 

excitation energy range of interest is Ep = 0.0 -  1.20 MeV. 

Coefficients in the expansion I p t  = -SlauY f(n) are taken from the 

work of Halderson. and Philpott, 1976; and are a function of the 

excitation energy. The n = 0 terms are eliminated from the final 

wave function to maintain orthogonality with the Os4 ground state.

The reason for choosing Ep = 0.0 -  1.20 MeV is for 

convenience sake of comparing the final result with experimental 

data (Frosch, Rand, Yearian, Crannell & Suelzle, 1965; Walcher, 

1970; Kobschall et al. 1983). There, the data was integrated from 

around 19.8 to about 21.0 MeV. (See figure 4.)

Figure 12 shows the form factors as a function of q and Ep. 

Here one sees that part of the resonance appears to be cut away, 

and the resonance is placed at a slightly higher location (19.8 + 0.7 

= 20.5 MeV) than that of observed. The begining of the resonance 

cut coincides with the opening of the neutron threshold. With no 

Coulomb barrier the s-wave neutron escapes easily and produces 

a very broad resonance. This asymmetric shape was predicted 

from the work of Crone and Wemtz (1967). The latter is caused 

by the slightly higher location prediction of the M3Y interaction 

for the 0+ resonance, and the neutron threshold is calculated to be 

0.69 MeV instead of 0.76 MeV as observed experimentally.

Lastly, figure 13 shows two calculated form factors F(q2) 

with the form factor extracted from experiments (Frosch, Rand, 

Yearian, Crannell & Suelzle, 1965; Walcher, 1970; Kobschall et al., 

1983).
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Curve A is the form factor with no ^finite proton size 

correction. It is obtained by integrating F(q) in figure 12 over the 

energy region, Ep = 0.0 -  1.1 MeV. This may include an error, since 

some of the 0+ might have been assumed to be background in the 

experimental papers. This effect would be difficult to estimate 

since the different experimental papers showed different shapes 

and ranges for the background. The experimental form factors in 

figure 13, which are marked as "o", ”+", and "x", are from Frosch, 

Rand, Yearian, Crannell & Suelzle(1965), W alcher(1970) and 

Kobschall et al.(1983). The original data, which are attached in 

appendices, are differential cross sections d 0~ /d-/i_ , The form 

factors are obtained by equation (1.18). As one can see, curve A is 

too large and the shape is not quite correct.

If curve A is multiplied by the finite proton size correction 

factor,

1/(1 + 0.0533q2)4,

the final RCCSM 0+ form factor (curve B) is then produced. As one 

can see now in figure 13, the calculated recoil corrected 

continuum  shell model form factors, with all coordinate 

consideration and assuming a pure Os4 ground state and 

discarding Os4 components in the excited state, agree with 

experiment very well. The shape is correct, so is the strength of 

the form factor.
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CHAPTER IV

CONCLUSION AND A SUGGESTION FOR FURTHER RESEARCH

The major task of this paper was to calculate the electro­

excitation charge form factors of 4He, 0+ state within the context 

of the recoil corrected continuum shell model. Inelastic electron 

scattering experiments (Kobschall et al., 1983; Watcher, 1970; 

Forsch, Rand, Yearian, Crannell & Suelzle, 1965) have shown that 

the 0+ state accounts for a very small percentage of the energy 

weighted sum rule and previous shell-model calculations, which 

assume a lsOs*1 (J = 0, J =0) configuration, over-predicted the 

strength by a factor of 20 (Lui & Zamick, 1986). This has led to 

speculations that the shell model is inappropriate for describing 

this light system. The present calculation, employed the recoil 

corrected continuum  shell model with full target internal 

coordinate considerations, showed that the shell model does 

describe the 4He system. The crucial ingredients of the recoil 

corrected continuum shell model were a realistic interaction, 

translationally invariant wave functions and proper boundary 

conditions. Also, the full center of mass correction to the form 

factor was taken into account.

The result was then compared with the experimental data. 

Excellent agreement between the calculated and experimental 

form factors was achieved.
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However, one must remember that it is not correct to treat 

the 4He ground state as a pure Os4. Halderson and Philpott 

(Halderson & Philpott, 1979) have included nsOs-1 correlations as 

a correction into the ground state wave function for the 4He(V , 

p ) 3H reaction in 1979. Figure 14 shows their calculated cross 

section while comparing with experiment for the reaction. T he

2.0

Co

•  0.8
</)inO

£  0.4

2 0  2 2  2 4  2 6  2 8  3 0  32 34
£  x (M ev )

Figure 14. Cross Section For The 4 He( J , p)3H Reaction. Curve I is for 
a pure O s i / 2 » ^ e ground state; curve II is an estimate of 
including ground state correlations; curve in is the 
uncoirected cross section.

ground state correlations did a good job in correcting the ground 

state structure here. So for future research, it is suggested that the 

ground state correlations nsOs-1 should be taken into account in 

calculating 4He(e, e')4H e ( 0 +) form factors.
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APPENDICES A

Experimental Data From Kobschall et al., 1983
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Table 1

Differential cross sections o f the quasi-bound state in 4 H e

q2

(to-2)

E0

(MeV)

6

(deg)

d'r/dA-

(10-6fm 2/sr)

0.843 319.95 34.28 4.96±1.42

1.124 319.95 39.89 3.05±0.62

1.332 179.94 86.70 0.39±0.13

1.368 229.94 64.63 0.93±0.27

1.405 319.95 44.96 1.74±0.40

1.641 229.94 71.98 0.51±0.11

1.687 319.95 49.65 1.35±0.33

2.220 179.94 128.29 0.07±0.04

2.279 229.94 88.59 0.17±0.04

2.342 319.95 59.70 0,46±0.07
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APPENDICES B

Experimental Data From Walcher, 1970
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Table 2

Results for the 20.5 MeV level of the (X particle

Eo

(MeV)

e

(deg)

q2

(for2)

dcr/d-n-

(10'33Cm^/ster)

198 45 0.52 22 ±5

200 60 0.90 15 ±3

198 75 1.29 4.8±1.2

200 90 1.75 2.4±0.6
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APPENDICES C

Experimental Data From Frosch, Rand, Yearian, 
Crannell & Suelzle, 1965
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Table 3

Results for the 20 MeV level of the ex particle

E0

(MeV)

6

(deg)

q2

(fin’2)

dxr/dA.

(nb/sr)

149.3 45.0 0.286 80.6 ±38.3

149.3 86.3 0.890 12.5 ±  5.0

169.2 39.7 0.295 106 ±45

199.1 45.0 0.526 67.8 ±21.0

199.1 60.0 0.890 48.6 ±14.5

199.1 75.0 1.30 15.1 ±  5.0

199.1 90.0 1.74 7.75± 2.60

298.8 38.0 0.890 94.6 ±27.8

298.8 54.6 1.74 31.5 ±  9.3

398.4 39.7 1.74 47.0 ±13.8

398.4 45.0 2.20 30.7 ±  9.0

398.4 50.0 2.66

+11-HH

398.4 60.0 3.67 4.90± 1.96
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