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RANK BASED PROCEDURES FOR ORDERED ALTERNATIVE MODELS

Yuanyuan Shao, Ph.D.

Western Michigan University, 2015

The ordered alternatives in a one-way layout with k ordered treatment levels

are appropriate for many applications, especially in psychology and medicine. There is

extensive literature in this area, and many parametric and nonparametric approaches

have been introduced. Abelson-Tukey (AT) test is a frequently used parametric method.

Its coefficients provide an ideal way of combining means for the purpose of detecting

a monotonic relationship between the independent and dependent variables. The AT

method, though, is not robust. Furthermore, our initial empirical studies show that

it is not more powerful than the Jonckheere-Terpstra (JT) and the Hettmansperger-

Norton (HN) nonparametric tests at normal errors for moderate sample sizes. Theses

nonparametric tests, unlike the AT test, are not easily extended to general linear and

mixed models.

We have developed a rank-based procedure which has the same optimal effi-

cacy properties as the HN procedure for the ordered and umbrella alternative problems,

including the unknown peak problem. It is a rank-based procedure and is easily ex-

tended to linear, mixed and covariance models. The procedure can utilize general score

functions.



c©2015 Yuanyuan Shao



ACKNOWLEDGMENTS

I would like to give my deepest thanks to my advisor Dr. Joseph W. McKean

for his guidance and patience. I would also express my gratitude to the committee

members, Dr. Jung-Chao Wang, Dr. Jeff Terpstra, and Dr. Bradley E. Huitema.

I would also like to thank my husband, Qiang. This dissertation could not be

done without his encourgement and support.

Yuanyuan Shao

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

LIST OF TABLES vi

LIST OF FIGURES viii

CHAPTER 1

1 INTRODUCTION 1

1.1 Overview of k-sample Location Problem . . . . . . . . . . . . . . . . . . 2

1.1.1 Basic One-way Notation . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Details on Some Existing Methods . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Distribution-free Nonparametric Tests . . . . . . . . . . . . . . . 4

1.2.2 Parametric-based Test . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 MOTIVATION 12

2.1 Initial Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Empirical α Levels . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Empirical Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Robust Abelson-Tukey (RAT) Test . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Rank-based Estimator . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 General Rank Scores . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 The RAT Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



3 NEW METHODS 33

3.1 Robust Abelson-Tukey with HN Weights (RAThn) Test . . . . . . . . . 34

3.1.1 The RAThn Test Statistic . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Consistency and Asymptotic Power . . . . . . . . . . . . . . . . . 36

3.2 Robust Shao-McKean (RSM) Test . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 The RSM Test Statistic . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Consistency and Asymptotic Power . . . . . . . . . . . . . . . . . 46

3.3 The RSM with Least Square Estimates (RSMLS) Test . . . . . . . . . . 48

3.3.1 The RSMLS Test Statistic . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Consistency and Asymptotic Power . . . . . . . . . . . . . . . . . 50

3.4 Comparisons of New Methods . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 With N(0, 1) Underlying Distribution . . . . . . . . . . . . . . . 53

3.5.2 With CN(0.25, 100) Underlying Distribution . . . . . . . . . . . 54

3.5.3 With SCN(0.25, 1, 100) Underlying Distribution . . . . . . . . 55

3.5.4 With GF (1, .1) Underlying Distribution . . . . . . . . . . . . . . 57

3.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 MIXED MODELS WITH RANDOM BLOCK EFFECT 62

4.1 Simple Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 The Page Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 New Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Abelson Tukey Test with Randomized Blocks(ATb) . . . . . . . 66

4.3.2 Joint Rank Estimator . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Nonparametric Methods . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 UNKNOWN PEAK 77

5.1 The Hettmansperger and Norton Method . . . . . . . . . . . . . . . . . 77

5.2 New Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 RAThn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

iv



5.2.2 RSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.3 RSMls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 ONE-WAY LAYOUT WITH COVARIATES 86

6.1 The Covariance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 The AT Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 The RAThn Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.1 With Normal Underlying Distribution . . . . . . . . . . . . . . . 90

6.4.2 With CN(0.25, 100) Underlying Distribution . . . . . . . . . . . 90

6.4.3 With SCN(0.25, 1, 100) Underlying Distribution . . . . . . . . 92

7 CONCLUSIONS AND FUTURE WORK 94

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

v



LIST OF TABLES

1 Example: Number of parts produced . . . . . . . . . . . . . . . . . . . . 10

2 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Initial simulation on empirical αs. . . . . . . . . . . . . . . . . . . . . . 13

4 Initial simulation on empirical power under the Normal distribution. . . 15

5 Initial simulation on the empirical power under SCN distribution. . . . 19

6 Empirical αs at nominal levels. . . . . . . . . . . . . . . . . . . . . . . . 29

7 Empirical power at nominal levels. . . . . . . . . . . . . . . . . . . . . . 29

8 Empirical power levels under the Normal distribution. . . . . . . . . . . 30

9 Empirical power levels under the SCN distribution. . . . . . . . . . . . 31

10 Empirical power under a Normal distribution for all methods. . . . . . 53

11 Empirical power under CN(0.25, 100) with Wilcoxon scores. . . . . . . . 54

12 Empirical power under CN(0.25, 100) with bent4 scores. . . . . . . . . . 55

13 Empirical power under SCN(0.25, 1, 100) with Wilcoxon scores. . . . . . 56

14 Empirical power under SCN(0.25, 1, 100) with bent1 scores. . . . . . . . 57

15 Empirical power under GF (1, 0.1) with Wilcoxon scores. . . . . . . . . . 58

16 Empirical power under GF (1, 0.1) with logGF scores. . . . . . . . . . . . 59

17 Empirical power under GF (1, 0.1) with bent1 scores. . . . . . . . . . . . 59

18 Test results-new methods . . . . . . . . . . . . . . . . . . . . . . . . . . 61

19 Empirical αs and power(10x3). . . . . . . . . . . . . . . . . . . . . . . . 73

20 Empirical αs and power (10x4). . . . . . . . . . . . . . . . . . . . . . . . 74

21 Empirical αs and power (10x7). . . . . . . . . . . . . . . . . . . . . . . . 75

22 Empirical αs and power (15x7). . . . . . . . . . . . . . . . . . . . . . . . 76

23 Unknown peaks estimation (clear peak N(µi, 1)). . . . . . . . . . . . . . 81

24 Unknown peaks estimation (flat peak under N(µi, 1)) . . . . . . . . . . 82

vi



25 Unknown peaks estimation (clear peak CN(0.25, µi, 100).) . . . . . . . . 83

26 Unknown peaks estimation (flat peak CN(0.25, µi, 100)) . . . . . . . . . 84

27 Empirical α and power under Normal distribution. . . . . . . . . . . . . 90

28 Empirical α and power under CN(0.25, 100) distribution with Wilcoxon

scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

29 Empirical α and power under CN(0.25, 100) distribution with bent4 scores. 92

30 Empirical α and power under SCN distribution with Wilcoxon scores. . 92

31 Empirical α and power under SCN distribution with bent1 scores. . . . 93

vii



LIST OF FIGURES

1 Boxplot of example data . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Plot of the initial study on power curves under a Normal distribution. . 15

3 Plot of the initial study on power curves under t(10). . . . . . . . . . . . 16

4 Plot of the initial study on power curves under t(8). . . . . . . . . . . . . 16

5 Plot of the initial study on power curves under t(5). . . . . . . . . . . . . 17

6 Plot of the initial study on power curves under t(3). . . . . . . . . . . . . 17

7 Plot of the initial study on power curves under t(2). . . . . . . . . . . . . 18

8 Plot of the initial study on power curves under t(1). . . . . . . . . . . . . 18

9 Plot of the initial study on power curves under SCN distribution. . . . 19

10 Plots of score functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 Plot of power curves under a Normal distribution. . . . . . . . . . . . . 30

12 Plot of power curves under the SCN distribution . . . . . . . . . . . . . 31

13 Plot of power curves under a Normal distribution for all methods. . . . 53

14 Plot of power curves under CN distribution with Wilcoxon scores. . . . 54

15 Plot of power curves under CN distribution with bent4 scores. . . . . . 55

16 Plot of power curves under SCN distribution with Wilcoxon scores. . . 56

17 Plot of power curves under SCN distribution with bent1 scores. . . . . 57

18 Plot of power curves under GF distribution with Wilcoxon scores. . . . 58

19 Plot of power curves under GF distribution with logGF scores. . . . . . 59

20 Plot of power curves under GF distribution with bent1 scores. . . . . . 60

21 Plots of clear peak data with different peaks. . . . . . . . . . . . . . . . 80

22 Plots of flat peak data with different peaks. . . . . . . . . . . . . . . . . 80

23 Plot of power curves under Normal distribution. . . . . . . . . . . . . . 90

24 Plot of power curves under CN distribution (Wilcoxon scores). . . . . . 91

viii



25 Plot of power curves under CN distribution (bent4 scores). . . . . . . . 91

26 Plot of power curves under SCN distribution (Wilcoxon scores). . . . . 92

27 Plot of power curves under SCN distribution (bent1 scores). . . . . . . 93

ix



CHAPTER 1

INTRODUCTION

This research is on nonparametric methods of testing for k-sample location prob-

lem with ordered alternatives. The null hypothesis of interest is that there are no differ-

ences in locations (or no treatment effects), under which all k samples can be treated as

a sample from one population. The alternatives considered here correspond to a trend

in the locations. For example, consider a randomized group experiment with five levels

of the independent variable, where the treatments are doses of a drug (say, 10, 20, 30,

40 and 50 mg). With increasing dose level, or concentration the performance of the

treatment tends to improve. This is the alternative of interest.

In some cases, the researchers form the research hypothesis as either an increas-

ing or decreasing trend based on the preliminary information they have obtained, and

such a hypothesis is known as the ordered alternative hypothesis. To test such a hy-

pothesis, several test procedures are available. When the alternative is that at least two

of the k underlying distributions have different centers, the well-known test procedure is

the Kruskal and Wallis (Kruskal and Wallis, 1952). When the alternative is that at least

one strict inequality follows for all centers, Terpstra (1952) and Jonckheere (1954) were

the first, and independently suggesting the same test. Abelson and Tukey (Abelson and

Tukey, 1963), Puri (Puri, 1965), Odeh (Odeh, 1971), Archambault et al. (Archambault

et al., 1977), Hettmansperger and Norton (Hettmansperger and Norton, 1987), Büning

(Büning, 1999), and McKean et al.(McKean et al., 2001) have also developed methods

for these hypotheses.
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When the treatment effect has a monotonic increasing trend and changes in

direction after reaching a peak, it is called an umbrella trend test. Mack and Wolfe

(Mack and Wolfe, 1981), Hettmansperger and Norton (Hettmansperger and Norton,

1987), Shi (Shi, 1988), Chen and Wolfe (Chen and Wolfe, 1990), Chen (Chen, 1991),

Pan (Pan, 1996), Terpstra and Magel (Terpstra and Magel, 2003), Kössler (Kössler,

2006) and Alvo (Alvo, 2008) discuss nonparametric tests for umbrella alternatives.

In chapter 2, Monte Carlo simulation results of an initial study of the α levels

and powers of some of these existing methods are discussed as motivation for this study.

In chapter 3, two new distribution-free tests and a parametric-bsed test are proposed,

and their properties are developed. A simulation study involving these new procedures,

comparing them with those mentioned in chapter 2, is then discussed. In chapter 4, new

methods of unknown peak problems are proposed. In chapter 5, new methods for mixed

models with random block effects are proposed and simulation results are discussed.

1.1 Overview of k-sample Location Problem

1.1.1 Basic One-way Notation

Let Y1j , Y2j , . . . , Ynjj , j = 1, . . . , k represent a random sample of the response

of the jth group with sample size nj having common cumulative distribution function

(cdf) Fj(y), where Fj(y) = F (y − θj), where F is an absolutely continuous distribution

function. Assume that θj (j = 1, . . . , k) is a location parameter for the population. In

the following, we assume that F is twice continuously differentiable on (−∞, ∞). There

are n =
∑k

j=1 nj observations in all. All responses are assumed to be independent of

one another. Hence our full model design is the same as the one-way analysis of variance

design, that is, the response Yij follows the linear model,

Yij = θj + εij , j = 1, . . . , k, i = 1, . . . , nj , (1.1)

Yij is the ith observation on response variable for the jth treatment level; θj is the jth

location parameter; εij are independent and identically distributed (iid) with continuous

distribution function F (x) and probability density function f(x). The null hypothesis
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of interest is that there is no differences in locations among k populations, or there is

no difference in treatment effects, and we write it as

H0 : θ1 = θ2 = · · · = θk. (1.2)

Under the null hypothesis all k samples can be treated as one sample from a

single population.

1.1.2 Hypotheses

In this thesis we are interested in several alternatives which are given by the

following.

Ordered Alternatives

According to the natural labeling of the treatments, the appropriate alternatives

could be set as increasing (or decreasing) treatment effects. The monotone alternative

hypotheses are of the form:

H1 : θ1 ≤ θ2 ≤ · · · ≤ θk, (with at least one strict inequality), (1.3)

or,

H2 : θ1 ≥ θ2 ≥ · · · ≥ θk, (with at least one strict inequality). (1.4)

Both sets of these alternatives are called ordered alternatives.

Umbrella Alternatives

In some experiments, the performance of the treatment might tend to increase

with increasing levels, but after some point higher levels tend to diminish the perfor-

mance. This is called an umbrella pattern and can be written as:

H3 : θ1 ≤ θ2 ≤ · · · ≤ θp ≥ θp+1 ≥ · · · ≥ θk. (1.5)

3



This is an umbrella alternative with peak p, where p ∈ {1, 2, . . . , k}. Thus the ordered

alternatives 1.3 are special umbrella alternatives with peak at k.

1.2 Details on Some Existing Methods

Several methods have been proposed for ordered alternatives, including the

Terpstra-Jonckheere test which was proposed by Terpstra (1952) and Jonckheere (1954);

the Abelson-Tukey test which was proposed by Abelson and Tukey (1963); the Hettmansperger

and Norton procedure (1987); and the bootstrap based Spearman approach which was

proposed by McKean, Naranjo and Huitema (2001).

These tests are classified into nonparametric (distribution free) and parametric

tests.

We next describe these tests.

1.2.1 Distribution-free Nonparametric Tests

Jonckheere-Terpstra(JT) Test

Jonckheere (Jonckheere, 1954) and Terpstra (Terpstra, 1952) were the first to

consider ordered alternative rank tests. They independently proposed the following

procedure.

The Jonckheere-Terpstra statistic, J is

J =
v−1∑
u=1

k∑
v=2

Uuv,

where

Uuv =

nu∑
i=1

nv∑
j=1

φ(Yiu, Yjv), 1 ≤ u < v ≤ k,

and φ(a, b) = 1 if a < b, 0 otherwise. Note that Uuv is the Mann-Whitney statistic (Mann

and Whitney, 1947) for testing the difference between populations u and v. It can be

shown that the JT statistics can be described asymptotically as a linear combination of

Chernoff and Savage (Chernoff and Savage, 1958) statistics.

For a specified level of significance α, the decision rule is,

4



Reject H0 (1.2) in favor of HA (1.3)

if J ≥ jα; otherwise do not reject,

where the constant jα is chosen to make the type I error probability equal to α.

Under H0, J is distribution-free. Although some tables for the null distribution

exist, usually the asymptotic test is used. Under H0 the expected value and variance of

J are

E0(J) =
n2 −

∑k
j=1 n

2
j

4

var0(J) =
n2(2n+ 3)−

∑k
j=1 n

2
j (2nj + 3)

72
.

The standardized version of J is

J∗ =
J − E0(J)√

var0(J)
=

J −
[
n2−

∑k
j=1 n

2
j

4

]
[
n2(2n+3)−

∑k
j=1 n

2
j (2nj+3)

72

]1/2
.

When H0 is true and as min(n1, n2, . . . , nk) tends to infinity, J∗ has an asymptotic

N(0, 1) distribution (Hollander and Wolfe, 1999).

Thus, the asymptotic test is,

Reject H0 (1.2) in favor of HA (1.3)

if J∗ ≥ zα; otherwise do not reject

The Spearman (SP) Test

The Spearman correlation coefficient (Spearman, 1904) (rs) is well known in

psychology. For the ordered alternative problems, the Spearman rho (ρs) statistic is used

to test the correlation between the ordered levels of the treatment and the dependent

variable (Yijs). If the null hypothesis (1.2) is true, then the population Spearman

correlation ρs = 0; if the ordered alternative hypothesis (1.3 or 1.4) is true, then ρs 6= 0

5



(McKean et al., 2001). The Spearman rank correlation coefficient is defined by

rs =
12
∑n

i=1

[
(Ri − n+1

2 )(Si − n+1
2 )
]

n(n2 − 1)

= 1−
6
∑n

i=1D
2
i

n(n2 − 1)
,

where Ri denotes the rank of Xi among all X; Si denotes the rank of Yi among all Y ;

and Di = Si −Ri, for i = 1, . . . , n.

Under H0, the expected value and variance of rs are

E0(rs) = 0,

and

var0(rs) =
1

n− 1
,

respectively. The standardized version of rs is

r∗s =
rs

{var0(rs)}1/2
= (n− 1)1/2rs.

When H0 is true, r∗s has an asymptotic N(0, 1) distribution (Hollander and

Wolfe, 1999).

The asymptotic test is

Reject H0 (1.2) in favor of HA (1.3)

if r∗s ≥ zα; otherwise do not reject.

The Bootstrap Spearman Test (BSP)

This procedure uses bootstrap methodology to independently sample n obser-

vations with replacement from the observed data Y , and randomly assign these obser-

vations in k groups. The Spearman correlation coefficient is then computed for this

bootstrap sample. After sampling B (# of bootstraps, which should be large, 10,000

or more) times, the proportion of the sampled Spearman correlation coefficient that are

equal to or greater than the observed Spearman correlation coefficient is the observed

one-tailed p value (McKean et al., 2001). The statistic used in the bootstrap Spearman
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test (BPS) is

R̄n =

k∑
i=1

iR̄in.

This is Spearman’s rho statistic (Tyron and Hettmansperger, 1973; Kendall and Stuart,

1961), where R̄in is the average of the ranks of the items in the ith sample. And R̄n can

be written as

R̄n =
1

n

v−1∑
u=1

k∑
v=2

(v − u)Uuv +
k(n+ 1)(k + 1)

4
.

The BPS procedure provides:

1. A test for ordered alternatives to the null hypothesis of equal population medians,

2. A point estimate of the magnitude of monotonic association between the ordered

treatment levels and the dependent variable,

3. A confidence interval for the measure of the magnitude of association.

Note that the confidence interval is obtained from a second bootstrap which is resampled

within each of the original samples.

Hettmansperger and Norton (HN) Test

The Hettmansperger and Norton (HN) test is based on a linear combination of

two-sample Chernoff-Savage type statistics computed from k(k− 1)/2 pairs of samples.

The optimal weights are obtained so as to maximize the Pitman efficacy such that this

procedure regarded the tests based on linear contrasts and derived the most efficient

rank test for a given pattern, as discussed below (Hettmansperger and Norton, 1987).

The test statistic is

V ∗ =

(
12

n+ 1

)1/2 V(∑
a2
j/λj

)1/2
,

where V =
∑

j ajR̄j , R̄j = 1
nj

∑
j Rij , Rij is the rank of Yij in the combined samples,

λj =
nj

n .

The Pitman efficacy of the test is maximized by aj = λj(cj − c̄w), where cj

is a set of constants, which specifies the pattern of the alternative, c̄w =
∑
λjcj , and
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∑
j aj = 0. Often cj = j is used, which is optimal under the alternative of an increasing

trend and equally spaced means.

If H0 : θ1 = · · · = θk is true,

E0(V ) = 0

Var0(V ) = [(n+ 1)/12]
∑

λi(cj − c̄w)2,

(Hettmansperger and Norton, 1987). The asymptotic test is

Reject H0 (1.2) in favor of HA (1.3)

if V ∗ ≥ zα; otherwise do not reject.

They also provided statistics that are based on pairwise ranking and are equivalent in

a Pitman efficacy sense to V ∗. The statistic is

U∗ =
∑∑

i<j

(dj − di)Wij ,

where dj = λj(cj− c̄w), Wij = n−1
i n−1

j Uij . Under the null hypothesis H0 : θ1 = · · · = θk,

E0(U∗) = 1/2
∑∑

i<j(dj − di) and

var0(U∗) =
1

12

∑∑
i<j

(dj − di)2

ninj
+ k

∑∑
i<j

(
dj
nj
− di
ni

)(dj − di)

 .

The asymptotic test is

Reject H0 (1.2) in favor of HA (1.3)

if (U∗ − E0(U∗))var−1/2(U∗) ≥ zα; otherwise do not reject.

1.2.2 Parametric-based Test

Abelson-Tukey (AT) Test

This is a frequently used parametric method. The contrast coefficients provide

an ideal way of combing means for the purpose of detecting a monotonic relationship

8



between the independent and dependent variables (Abelson and Tukey, 1963). The hj

were selected in an attempt to maximize the minimum correlation between hj and the

unknown Xj (dose for the jth group), considering all possibilities under the monotonicity

assumption.

The test statistic is defined as

t =

∑k
j=1 hj Ȳj√

MSE

[∑k
j=1

h2
j

nj

] ,

where

1. hj is the Abelson-Tukey maximin contrast coefficient associated with treatment j,

hj =
√

(j − 1)[1− (j − 1)/k]−
√
j(1− j/k);

2. Ȳj is the jth sample mean;

3. MSE is the within-group mean square from the ANOVA (one-way least squares

(LS) fit) on Y;

4. nj is the sample size associated with the jth treatment; and

5. t is the test statistic.

The AT test selects the hjs so that the minimum value of the correlation coefficient is

compatible with the restrictions on Xjs are maximized, where
∑
hj = 0, and provides

a standardized effect size measure for the maxmin contrast. If we write θ = α +Xβ,

then the problem is the same as to detect β. Thus, we can use the linear model to test

any contrasts of the θs. It’s easy to extend the test to a single covariate, or multiple

covariates and mixed effects cases, and the test will stay same.

However, the AT test is based on a least squares fit, thus, its result is not robust

when the underlying distribution of the errors is far from normal distribution (either

skewed or heavy tailed). This motivates us to propose a new method, using a rank-based

fit and having all the advantages of the AT test.
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1.3 Examples

Hundal (1969) described a study on the effects of knowledge of performance on

workers whose job was a repetitive task. It was thought that with increased degree

of knowledge of performance, the output would be increased. Eighteen male workers

were selected and randomly divided into three groups: A (control group), B (treatment

group) and C (treatment group). Workers in group A received no information about

their performance. Workers in group B received some information about their perfor-

mance. Workers in group C received detailed information about their performance. The

responses indicated were the number of parts each worker processed in the experimental

period. Note that to show the robustness of nonparametric tests, the third value in

group B has been changed from 54 to 74.

Table 1: Example: Number of parts produced
group A group B group C

40 38 48

35 40 40

38 74 45

43 44 43

44 40 46

41 42 44

Let µi denote the mean output of group i, then the alternative hypothesis is

HA : µA ≤ µB ≤ µC with at least one strict inequality. Figure 1 shows the boxplot of

three groups of data. There is an outlier in group B. The test statistics and p values of

all mentioned methods are provided in Table 2. The AT test result is affected by the

outlier. All methods reject the null hypothesis except the AT test with a p-value 0.1989.

Table 2: Test results
methond test statistic p-value

JT 78 0.0251

SP 2.2046 0.0212

BSP 0.4827 0.0220

HN 1.9737 0.0242

AT 0.8703 0.1989
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Figure 1: Boxplot of example data
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CHAPTER 2

MOTIVATION

A Monte Carlo simulation method was conducted to compare the performance

of the JT, SP, HN and AT procedures. The intent of the study is to compare these

methods over a wide range of tail weights for the random error distributions. The

normal distribution and Student t-distribution with degrees of freedom 10, 8, 5, 3, 2, and

1 (Cauchy) were selected. This is a range from light to very heavy tailed distributions. A

skewed contaminated normal distribution was also used which is a mixing of a standard

normal distribution with a normal distribution with mean 1 and variance 100, and with

the contamination rate at 0.25. The procedures are location and scale equivariant, so

standard (convenient) forms of the distributions are used. For this initial investigation

we set k = 5 and used group sample sizes of 5, so there were 25 subjects.

A situation consists of a design, a hypothesis and an error distribution. For each

situation we ran 10,000 simulations.

Initial study results are shown in section one. A new method, Robust Abelson-

Tukey (RAT) test, is proposed in section two. All the simulation results are discussed

in section three.

2.1 Initial Study Results

In the first part, the empirical α levels are obtained by repeating this process

10,000 times under the null hypothesis, and computing the proportions of all the p-

values, which are less than or equal to the chosen alpha level (.05 and .1) on each
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procedure.

In the second part, the empirical power values are obtained by repeating the

process, similar as in section one, but under the specified alternative hypothesis, 10,000

times. Suppose the center of each group is equally spaced, thus the only difference is an

estimate of spacing between the centers being added to the data set of each group.

2.1.1 Empirical α Levels

Table 3 shows the simulation results of the empirical αs at norminal levels 10%

and 5% under different population distributions.

Since SP, JT and HN are distribution free, this null simulation is not needed.

The AT, though, is not distribution free; therefore, the investigation of its validity

over these situations is of interest. We also included the distribution-free procedures

as a confirmation, to check the αs on the simulation and to identify the liberal and

conservative tests by power.

As the underlying distribution changed from standard normal distribution to

heavy tailed t-distribution with 1 degree of freedom, the empirical α for all tests are

stable except the AT test. Both αs (.1217 and .0425) under t(1) are out of the 95%

confidence intervals (.0941, .1059) and (.0457, .0543).

Table 3: Initial simulation on empirical αs.

N(0, 1) t(10) t(5) t(2) t(1)

Meth. 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

JT .0982 .0469 .1049 .0501 .1047 .0490 .1093 .0521 .1017 .0489
SP .0937 .0486 .1004 .0518 .0993 .0494 .1030 .0542 .0966 .0492
AT .0961 .0473 .1001 .0501 .1004 .0507 .1095 .0534 .1217 .0425
HN .0973 .0486 .1038 .0518 .1034 .0494 .1070 .0542 .1014 .0492

2.1.2 Empirical Powers

For each simulation, n values (Z) were generated from a specific distribution,

and nj of them (Zj) were randomly assigned to level j of the treatment. Suppose

the center of the adjacent group is equally spaced by d. To specify the d value, the

noncentrality parameter (δ) needs to first be found.

As in the null case, we set k = 5, ni = 5, n = 25 and α = 0.05. To determine d
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select p0 = 0.15. By solving the power expression

p0 = P {F (δ, k − 1, n− k) ≥ F (1− α, k − 1, n− k)} ,

we obtain the noncentrality parameter δ which is approximately 2.11.

Let X be the one-way ANOVA cell mean design matrix,

X(n×k) =



1n1 0 . . . 0

0 1n2 . . . 0

...
...

. . .
...

0 0 . . . 1nk


,

and A be the matrix which consider group 1 as the reference group,

A(k−1×k) =



1 −1 0 . . . 0

1 0 −1 . . . 0

...
...

. . .
...

...

1 0 0 . . . −1


,

and

β = µ = (µ1 . . . µk)
′

= (µ1 µ1 + d . . . µ1 + (k − 1) d)
′
.

We know that

δ =
1

σ2
(Aµ)

′
[
A
(
X
′
X
)−1

A
′
]−1

(Aµ) .

When ni = nj , after simplifying

δ =
ni
kσ2

k−1∑
i=1

k∑
j=i+1

(µi − µj)2

=
ni
kσ2

[
(k − 1)12 + (k − 2)22 + (k − 3)32 + · · ·+ 1(k − 1)2

]
d2,

and setting σ2 = 1 and µ1 = 0, we obtain d =
√

2.11/50.

Under the null hypothesis, all data are generated from the same distribution.

While under the alternative hypothesis, all data are generated from the same distribution
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and then shifted in location. For example, the data for the jth group is

yj = Zj + bj , and Y = (y1 y2 . . . yk)
′ ,

where the bjs represents the shifts of group j from group 1, and the values of bjs are 0,

d, 2d, 3d, 4d . . . respectively, for j = 1, . . . , k.

Table 4 and Figure 2 show the empirical power and power curves when the errors

have a normal distribution. For all tests, there is no significant difference among the

empirical powers. Note that even though the errors are normally distributed, the AT

test does not dominate the JT and HN tests.

Table 4: Initial simulation on empirical power under the Normal distribution.

Meth. Empirical power

0 2.11 8.44

JT .0982 .5488 .9313

SP .0937 .5428 .9283

AT .0961 .5404 .9305

HN .0973 .5492 .9313

Figure 2: Plot of the initial study on power curves under a Normal distribution.
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Figure 3: Plot of the initial study on power curves under t(10).

Figure 4: Plot of the initial study on power curves under t(8).
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Figure 5: Plot of the initial study on power curves under t(5).

Figure 6: Plot of the initial study on power curves under t(3).
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Figure 7: Plot of the initial study on power curves under t(2).

Figure 8: Plot of the initial study on power curves under t(1).
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Figures 3 to 8 show the empirical power curves under the t distributions with

degrees of freedom 10, 8, 5, 3, 2, 1, respectively. As the tails of the distribution get

heavier, the AT test becomes more and more instable. All distribution free tests are

stable. Figure 8 shows that with t(1) error distribution, the JT test is more stable than

the HN and SP tests, but there is no significant difference among them.

Table 5: Initial simulation on the empirical power under SCN distribution.

Meth. Empirical power

0 2.11 8.44 18.99 33.76 52.75

SP .0995 .3227 .5920 .7783 .8660 .9149

JT .1051 .3324 .6107 .8034 .8959 .9424

AT .0952 .1517 .2126 .2893 .3715 .4536

HN .1034 .3292 .6013 .7830 .8702 .9176

Figure 9: Plot of the initial study on power curves under SCN distribution.

Table 5 and Figure 9 show the empirical power curves under the skewed contam-

inated normal distribution SCN(.25, 100, 1); the power of AT is quite low compared

to other procedures. Statistically speaking, consider the standard two-sample, paired
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data, confidence interval for a difference in proportions. By using

p̂1 − p̂2 ± Zα/2
√

[p̂1 + p̂2 − (p̂1 − p̂2)2]/n,

where n is the number of simulations, 10,000. This gives a confidence interval of the

proportion difference at level α, to compare the methods. For our study, we used the last

column empirical powers in table 5 with the JT, HN and SP tests having significantly

higher power than the AT test with 95% confidence intervals (.4677, .5099), (.4429,

.4851) and (.4402, .4824), respectively. The JT test does not have significantly higher

power than the HN test with a 95% confidence interval (-.0019, .0515) and slightly higher

power than the SP test with (.0008, .0542). The HN and SP tests are similar to each

other with a 95% confidence interval (-.0238, .0292).

Based on all simulation results, the AT test is not as robust as other nonpara-

metric approaches when the underlying error distribution has heavy tails. The first

motivation of this thesis is to robustify the AT approach.

2.2 Robust Abelson-Tukey (RAT) Test

2.2.1 Rank-based Estimator

A general linear model is of the form

Y = α+Xβ + e, (2.1)

where Y is the n× 1 vector of responses, X is the n× (k − 1) design matrix, and e is

the n × 1 vector of error terms. The least squares estimator minimizes the Euclidean

distance between Y and Ŷ , the predicted value of Y . For the robust Abelson-Tukey

RAT procedure, a rank-based estimator, a different measure of distance based on the

dispersion function of Jaeckel (Jaeckel, 1972; Jureckova, 1971) is used to substitute the

LS estimator. The only assumption on the distribution of the errors required is that it

is continuous.

As discussed in chapter 3 of Hettmansperger and McKean, the rank-based esti-
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mator of β is defined as

β̂ = Argmin ‖Y −Xβ‖ϕ ,

where ‖·‖ϕ is a pseudo-norm defined as

‖u‖ϕ =

n∑
i=1

a(R(ui))ui,

where R(ui) denotes the rank of ui, a(t) are scores such that a(1) ≤ · · · ≤ a(n) and

a(i) = ϕ

(
i

n+ 1

)
,

where ϕ is a non-decreasing, square-integrable score function defined on the interval

(0, 1). Assume without loss of generality that it is standardized, so that

∫
ϕ(u)du = 0 and

∫
ϕ2(u)du = 1.

Kloke and McKean (2012) have developed a R package, Rfit, for rank-based (R)

estimation and inference for linear models; see also (Kloke and McKean, 2014). In Rfit

the default option is to use Wilcoxon (linear) scores. Furthermore, Rfit also includes a

variaty of score functions, and user-defined score functions (Kloke and McKean, 2012)

are easily added. The rank-based fit depends on a selection of score functions, which we

discuss next.

2.2.2 General Rank Scores

To obtain efficient statistics, the density is assumed to have finite Fisher infor-

mation. The Fisher information is given by I(f) =
∫ 1

0 ϕ
2
f (u)du, where

ϕf (u) = −
f
′
(
F−1 (u)

)
f
(
F−1 (u)

) (2.2)

is the optimal score function.

When the errors come from different distributions, appropriate scores are rec-

ommended. Generally used scores include the following.

1. Wilcoxon scores are recommended when the errors come from a moderate tailed
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distribution, and it is generated by the linear function ϕR(u) =
√

12(u − 1/2).

Wilcoxon scores are optimal if the error distribution is logistic. In Rfit, Wilcoxon

scores can be set by scores=wscores.

2. Normal scores are recommended when the errors come from a light-moderated

tailed distribution. Normal scores are optimal for normal error distribution. In

Rfit, normal scores can be set by scores=nscores.

3. There are four types of scores in the family of bent (Winsorized Wilcoxons) scores.

They are optimal for error distribution with a logistic center and tails of exponen-

tial order(McKean et al., 1989).

(a) Bent1 scores are recommended when the errors come from a highly right

skewed distribution, and the score function is defined in terms of 3 parame-

ters. In Rfit, they can be set by scores=bentscores1.

ϕ(u) =


(s3−s2)u

s1
if u < s1

s3 else

(b) Bent2 scores are recommended when the errors come from a light tailed dis-

tribution, and the score function is defined in terms of 5 parameters. In Rfit,

they can be set by scores=bentscores2.

ϕ(u) =



(s5−s3)u
s1

if u < s1

(s4−s5)(u−s2)
1−s2 + s5 if u > s2

s5 else

(c) Bent3 scores are recommended when the errors come from a highly left skewed

distribution, and the score function is defined in terms of 3 parameters. In

Rfit, they can be set by scores=bentscores3.

ϕ(u) =


s2 if u < s1

(s3−s2)(u−s1)
1−s1 + s2 else
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(d) Bent4 scores are recommended when the errors come from a moderately heavy

tailed distribution, and the score function is defined in terms of 4 parameters.

In Rfit, they can be set by scores=bentscores4.

ϕ(u) =


s3 if u < s1

s4 if u > s2

(s4−s3)(u−s1)
s2−s1 + s3 else

Plots of all these score functions are showed in Figure 10.

An appropriate bent score function for skewed distribution with a right heavy tail is as

follows (Kloke and McKean, 2012):

ϕ(u) =


4u− 1.5 if u ≤ 0.5

0.5 if u > 0.5

Figure 10: Plots of score functions.
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As shown in HM, the influence function of the rank-based estimation is bounded

in the Y-space provided the score functions are bounded. Hence, all these score functions

lead to robust fits in Y-space except for the normal scores fit. The normal scores

estimator, however, is technically robust, since it has an unbounded influence function,

but a positive breakdown point (Huber, 1981). The Wilcoxon procedures in linear

models have the same efficiency properties as the Wilcoxon-Mann-Whitney procedures

in location models. In particular, if the errors have a normal distribution this efficiency

is 0.95. Generally, for distributions with heavier tails than normal, this efficiency is too

large. For these reasons, the Wilcoxon scores are often used in practice. In this thesis,

we often use Wilcoxon scores, but we also make use of other scores, especially the bent

scores. For most of our discussion, the full model design is a one-way design. So there is

no need for high breakdown estimates. A weighted version of the Wilcoxon can attain

50% breakdown in the X-space at the expense of a loss in efficiency (Chang et al., 1999).

2.2.3 The RAT Test

Let

∆ = h
′
θ,

where θ represents a k × 1 vector of the location parameters of k treatment levels; h is

a k× 1 vector of the AT maximin contrast coefficients. When θ̂ = ȳ, where ȳ is a k× 1

vector of the average of each treatment level, then the test statistic of the AT can be

written as:

t =
h
′
ȳ√

Var(h
′
ȳ)
.

Now, a rank-based estimator of ∆ is obtained by using the rank-based linear model. Let

W be a n× k matrix which denotes the appropriate incidence matrix of 0s and 1s, and
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note that the vector 1n is in the column space of W , then

Y = Wθ + e

= WEE−1θ + e

= Xβ + e

=

[
1 X1

] α
β1

+ e

= α1 +X1β1 + e,

where,

W (n×k) =



1n1 0 . . . 0

0 1n2 . . . 0

...
...

. . .
...

0 0 . . . 1nk


(2.3)

E(k×k) =



1 0 0 . . . 0

1 1 0 . . . 0

1 0 1 . . . 0

...
...

...
. . .

...

1 0 0 . . . 1


(2.4)

X1(n×(k−1)) =



0 0 . . . 0

1n2 0 . . . 0

0 1n3 . . . 0

...
...

. . .
...

0 0 . . . 1nk


(2.5)
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and WE = X, E−1θ = β. Thus, the rank-based estimator of ∆ is

∆̂ = h
′
θ̂

= h
′
Eβ̂

= h
′
[
1 E1

]
β̂

=

[
0 h

′
E1

]
β̂

= h
′
E1β̂1.

Under the assumption that the errors are iid with continuous probability density function

f(t), it can be shown that the estimate β̂1 is consistent and asymptotically normal

(Hettmansperger and McKean, 2011). The result can be summarized as follows:

β̂1∼̇N(β1, τ
2
ϕ(X

′
cXc)

−1), (2.6)

where Xc is centered X1, Xc = (I − 1
n11

′
)X1; where I is a n× n identity matrix and

1
′

= (1, . . . , 1)1×n; τϕ is a scale parameter which depends on f , and the score function

ϕ and is given by

τ−1
ϕ =

∫
ϕ(u)ϕf (u)du,

ϕf (u) = −f
′
(F−1(u))

f(F−1(u))
.

Thus, the asymptotic distribution of ∆̂ is

∆̂∼̇N(h
′
E1β1, τ

2
ϕh
′
E1(X

′
cXc)

−1E
′
1h). (2.7)

We denote this asymptotic variance by Var(∆̂).

Theorem 2.1. If H0 : θ1 = · · · = θk is true, then E(∆̂) = 0, as n→∞

RAT =
∆̂√

Var(∆̂)

D−→ Z ∼ N(0, 1).

For a level α test based on RAT for the hypothesis (1.3), suppose H1 is true,

then ∆ = h
′
θ > 0.
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Since

1

n
X
′
cXc =O(1)

n(X
′
cXc)

−1 =O(1),

and

(X
′
cXc)

−1 =
1

n
O(1),

therefore h
′
E1(X

′
cXc)

−1E
′
1h→ 0 as n→∞.

When n is sufficiently large, then we have

0 < zα

√
Var(∆̂) < ∆− ε.

Hence,

P∆[RAT ≥ zα] = P∆[∆̂ ≥ zα
√

Var(∆̂)]

≥ P∆[∆̂ ≥ ∆− ε]

≥ P∆[
∣∣∣∆̂−∆

∣∣∣ ≤ ε]→ 1,

thus the RAT test is consistent.

For a sequence of local alternatives Hn : θj = θ0 + n−1/2cjθ
∗, where θ∗ > 0,

j = 1, 2, . . . , k. Let c be a vector of cj , a set of constants, which specifies the pattern of

the alternative. Suppose Hn is true, and F has a density f with
∫
f2(x)dx <∞, and

suppose θ̂n is the rank based estimate of θ under Hn, and θ̂0 is the rank based estimate

of θ under H0 thus,

θ̂n = θ̂0 + n−1/2θ∗c

when Hn is true,

E(∆̂) = E(h
′
θ̂0 + n−1/2θ∗h

′
c) = n−1/2θ∗h

′
c
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Var(∆̂) = Var(h
′
θ̂0) = τ2

ϕh
′
E1(X

′
cXc)

−1E
′
1h.

The asymptotic power of the test based on RAT is given by

P∆n [RAT ≥ Zα] = P∆n [∆̂ ≥ Zα
√

Var(∆̂)]

= P∆n [
∆̂− n−1/2θ∗h

′
c√

Var(∆̂)
≥ Zα −

n−1/2θ∗h
′
c√

Var(∆̂)
]

= 1− Φ(Zα − θ∗cϕ0),

where cϕ0 is the Pitman efficacy of the RAT test. This can be written as

cϕ0 = n−1/2h
′
c/

√
Var(∆̂) = n−1/2

∑
hjcj

τϕ(
∑ h2

j

nj
)1/2

.

To obtain the asymptotic relative efficiency, an algebra form representing Var(∆̂) is

given by

Var(∆̂) = τ2
ϕ

k∑
j=1

h2
j

nj
,

since

h
′
E1 = [h2 h3 . . . hk],

and

(X
′
cXc)

−1
(k−1)×(k−1) =



1
n2

+ 1
n1

1
n1

. . . 1
n1

1
n1

1
n3

+ 1
n1

. . . 1
n1

...
...

. . .
...

1
n1

1
n1

. . . 1
nk

+ 1
n1



h
′
E1(X

′
cXc)

−1(h
′
E1)

′
=

(
h2
n2
− h1

n1

h3
n3
− h1

n1
. . . hk

nk
− h1

n1

)


h2

h3

. . .

hk


=

k∑
j=1

h2
j

nj
.
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2.3 Simulation Results

In the previous sections it has been shown that the RAT test can use different

score functions for different underlying distributions. The 10,000 simulation results in

Table 6 show that RAT with Wilcoxon scores performs well, except that under t(1) it

appears to be conservative. Because the t(1) distribution is symmetrical with heavy

tails, the bent4 score would be more appropriate. We set s1 = 0.15, s2 = 0.85, s3 = −1,

s4 = 1. For the bent4 score, the empirical levels of the corresponding RAT test, 0.0927

and 0.0487, were at nominal 10% and 5% levels respectively. Note that the RAT with

the bent4 scores have empirical levels close to the nominal α under the t(1) distribution.

Again, note the distribution freeness of the JT, SP and HN tests.

Table 6: Empirical αs at nominal levels.

N(0, 1) t(10) t(5) t(2) t(1)

Meth. 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

SP .0989 .0517 .1001 .0457 .1039 .0520 .1012 .0518 .0989 .0480
JT .1036 .0509 .1016 .0461 .1079 .0503 .1046 .0522 .1024 .0477
AT .1013 .0495 .0994 .0479 .1038 .0512 .1065 .0504 .1191 .0414
RAT .1026 .0512 .0982 .0504 .1010 .0493 .0921 .0469 .0729 .0355
RATb4 .1168 .0638 .1128 .0613 .1124 .0625 .1078 .0591 .0927 .0487
HN .1038 .0517 .1034 .0457 .1078 .0520 .1050 .0518 .1023 .0480

Table 7 shows the empirical powers of all five methods with different underlying

distributions. The JT and HN tests have the highest empirical power at each simulation.

Their empirical powers are not significantly different.

Table 7: Empirical power at nominal levels.

N(0, 1) t(10) t(5) t(2) t(1)

Meth. 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

SP .5433 .3966 .5108 .3629 .4638 .3344 .3948 .2598 .3094 .1896
JT .5519 .3909 .5218 .3583 .4728 .3287 .4048 .2525 .3173 .1926
AT .5401 .3943 .4957 .3453 .4356 .3000 .2925 .1770 .1841 .0832
RAT .5168 .3640 .4844 .3332 .4384 .3020 .3521 .2174 .2196 .1205
RATb4 .5248 .3803 .4963 .3538 .4525 .3204 .3726 .2450 .2444 .1448
HN .5516 .3966 .5184 .3629 .4715 .3344 .4027 .2598 .3163 .1896

Table 8 and Figure 11 show the empirical power of five methods under normal

distribution. There is no significant difference.

Table 9 and Figure 12 show the empirical power of all five methods under the skewed

contaminated normal distribution (SCN(.25, 100, 1)) . If we use the last column of
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the empirical power of table 9 to compute a 95% confidence interval of the proportion

difference, we find the RAT method has higher power than AT methods under the skewed

contaminated normal distribution with (.3135, .3603), and especially in the RAT with

bent1 score method, with (.3402, .3872).

Table 8: Empirical power levels under the Normal distribution.

Meth. Empirical power

0 2.11 8.44 18.99

SP .1006 .5433 .9341 .9980

JT .1030 .5519 .9356 .9978

AT .1012 .5401 .9354 .9978

RAT .1050 .5168 .9143 .9964

RATb1 .1174 .5248 .9060 .9951

HN .1035 .5516 .9374 .9980

In figure 12, the power curve of the RAT method is below the JT, HN, and SP

methods, but the power curve of the RAT with bent1 score method crosses the curves

of the HN and SP methods, and falls right below the JT curve. There are significant

differences between RAT and AT, and between RATb1 and AT. The RAT and RATb1

tests are more powerful than the AT test. The 95% confidence interval of RATb1 and

JT shows there is no significant difference between them with (-.0397, .0149).

Figure 11: Plot of power curves under a Normal distribution.
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Table 9: Empirical power levels under the SCN distribution.

Meth. Empirical power

0 2.11 8.44 18.99 33.76 52.75 75.96 103.39

SP .1079 .3233 .5953 .7763 .8657 .9150 .9395 .9548

JT .1109 .3317 .6151 .8011 .8994 .9420 .9660 .9791

AT .1045 .1531 .2123 .2886 .3717 .4540 .5299 .6030

RAT .0714 .1780 .3671 .5867 .7566 .8603 .9132 .9399

RATb1 .0910 .2708 .5394 .7575 .8729 .9285 .9584 .9667

HN .1112 .3314 .6035 .7818 .8719 .9179 .9416 .9563

Figure 12: Plot of power curves under the SCN distribution

Based on all the simulation results, we can conclude that the RAT test is robust,

it allows any scores, and it did better than the AT test. Under the skewed contami-

nated normal distribution (SCN(.25, 1, 100)) the RAT with bent1 scores test does not

outperform the JT test.

Terpstra (1952) and Jonckheere (1954) proposed the test based on pairwise

Mann-Whitney-Wilcoxon statistics, while RAT only uses partial shifts based on the

number of groups (k) as even or odd. Such as when k = 5, there are 10 Uijs in the JT

statistic, while only 2 ∆ijs exist in the RAT statistic.
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In the JT statistic:

J =
∑∑

i<j

Uij

= U12 + U13 + U14 + U15 + U23 + U24 + U25 + U34 + U35 + U45.

In the RAT statistic:

∆ = c
′
θ

= −0.89θ1 − 0.2θ2 + 0.2θ4 + 0.89θ5

= 0.89(θ5 − θ1) + 0.2(θ4 − θ2)

= 0.89∆51 + 0.2∆42.

Thus, JT uses more information than RAT, and the pairwise statistics provide more

direct information on the sources of statistical significance. In light of this, we consider

the Hettmansperger-Norton optimal weights to be a better choice.
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CHAPTER 3

NEW METHODS

Recall that in this k-sample location problem, the response Yij follows the linear

model,

Yij = θj + εij , j = 1, . . . , k, i = 1, . . . , nj .

Yij is the ith observation on response variable for the jth treatment level; θj is the jth

location parameter; εij are independent and identically distributed (iid) with cdf F (x)

and pdf f(x). The null hypothesis of interest is that there is no differences in locations

among k populations, or, there is no difference in treatment effects (i.e. 1.2), and the

alternative hypotheses of interest follow a pattern (i.e. (1.3), (1.4) or (1.5)).

In this chapter, three new methods, the robust Abelson-Tukey with HN weights

(RAThn) test, the Robust Shao-McKean (RSM) test and the RSM with least square

estimates (RSMLS) test, are presented. All three methods have the same weights, the

HN weights, and the same form of a test statistic, but have different estimates of the

shifts.

The test statistics used in this chapter have the form:

T =

k−1∑
i=1

k∑
j=i+1

(aj − ai)∆̂ji, (3.1)

where aj = λj(cj − c̄w), cj specifics the pattern of the alternative, and c̄w =
∑
λjcj ,

λj =
nj

n and
∑k

j=1 aj = 0. ∆̂ji is an estimate which measures the shift from group j to

group i.
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The robust Abelson-Tukey with HN weights (RAThn) test uses the rank-based

regression estimate; the Robust Shao-McKean (RSM) test uses a pseudo-median esti-

mate, the Hodges-Lehmann estimate; the RSM with least square estimates (RSMLS)

test uses the least square estimate to estimate the shift ∆̂ji.

3.1 Robust Abelson-Tukey with HN Weights (RAThn) Test

Recall in section 2.2 that a rank-based estimate of β (the shifts of other groups

from the first group) is defined as

β̂ = Argmin ‖Y −Xβ‖ϕ ,

and under the assumption that the errors are iid with continuous probability density

function, the estimate β̂ is consistent and asymptotically normal, which is shown as 2.6.

Even though it does not give the rank-based estimates of the pairwise shifts directly,

but the following lemma shows that the test statistic can be represented as a linear

combination of the shifts of all groups from the first group, ∆̂i1, i = 1, 2, . . . k.

Lemma 1. Suppose ∆ji = ∆j1 −∆i1, where
∑k

j=1 aj = 0 and ∆11 = 0. Then

k−1∑
i=1

k∑
j=i+1

(aj − ai)∆ji = k
k∑
i=1

ai∆i1.

Proof:

k−1∑
i=1

k∑
j=i+1

(aj − ai)∆ji =

k−1∑
i=1

k∑
j=i+1

(aj − ai)(∆j1 −∆i1)

=

k−1∑
i=1

k∑
j=i+1

aj∆j1 −
k−1∑
i=1

k∑
j=i+1

ai∆j1

−
k−1∑
i=1

k∑
j=i+1

aj∆i1 +

k−1∑
i=1

k∑
j=i+1

ai∆i1
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=
k∑
i=1

(i− 1)ai∆i1 +
k−1∑
i=1

(k − i)ai∆i1

−
k∑
i=2

∑
j<i

aj∆i1 −
k−1∑
i=1

∑
j>i

aj∆i1

=

k−1∑
i=1

(i− 1)ai∆i1 + (k − 1)ak∆k1 +

k−1∑
i=1

(k − i)ai∆i1 −
k∑
i=1

∑
j 6=i

aj∆i1

=

k−1∑
i=1

(k − i+ i− 1)ai∆i1 + (k − 1)ak∆k1 −
k∑
i=1

∆i1

∑
j 6=i

aj

=

k−1∑
i=1

(k − 1)ai∆i1 + (k − 1)ak∆k1 +

k∑
i=1

∆i1ai

= (k − 1)
k∑
i=1

ai∆i1 +
k∑
i=1

∆i1ai

= k
k∑
i=1

ai∆i1

= k
k∑
i=2

ai∆i1.

(
∑k

j=1 aj = 0⇒
∑

j 6=i aj = −ai).

3.1.1 The RAThn Test Statistic

The RAThn test statistic is

T = ka
′
β̂1, (3.2)

where β̂1 is a vector of the estimates of the shifts from group i to group 1, a =

(a2, a3, . . . ak)
′, where

∑k
i=1 ai = 0. Based on ( 2.6) the asymptotically distribution

of T is

T ∼̇N(ka
′
β1, k

2τ2
ϕa
′
(X

′
cXc)

−1a). (3.3)

Theorem 3.1. If H0 : θ1 = · · · = θk is true, then E(T ) = 0. and V ar(T ) =

35



k2τ̂2
ϕa
′
(X

′
cXc)

−1a. Then as n→∞, where n =
∑k

i=1 ni,

T ∗ =
ka
′
β̂1√

Var(T )

D−→ Z ∼ N(0, 1).

The asymptotic test is

Reject H0 (1.2) in favor of HA (1.3)

if T ∗ ≥ zα; otherwise do not reject.

3.1.2 Consistency and Asymptotic Power

Suppose H1 is true, then T = ka
′
β1 > 0.

Since

1

n
X
′
cXc =O(1)

n(X
′
cXc)

−1 =O(1),

and

(X
′
cXc)

−1 =
1

n
O(1),

thus, a
′
(X

′
cXc)

−1a→ 0 as n→∞.

If n is sufficiently large, then we have

0 < zα
√

Var(T ) < ka
′
β1 − ε.

Hence,

P [T ∗ ≥ zα] = P
[
T ≥ zα

√
Var(T )

]
≥ P

[
ka
′
β̂1 ≥ ka

′
β1 − ε

]
≥ P

[∣∣∣β̂1 − β1

∣∣∣ ≤ ε]→ 1.

Thus, RAThn is a consistent test.

Under a sequence of alternatives Hn : θj = θ0 + θcjn
−1/2, where θ > 0, j =
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1, . . . , k, and F has a density f with
∫
f2(x)dx <∞,

∆i1 = (ci − c1)θn−1/2.

Let D denote the vector of ∆i1s, and C denote the vector of ci − c1, so

Dn = Cθn−1/2.

When Hn is true,

E(T ) = ka
′
Cθn−1/2

Var(T ) = k2τ2
ϕa
′
(X

′
cXc)

−1a.

The asymptotic power of the test based on T is given by

PDn [T ∗ ≥ Zα] = PDn [T ≥ Zα
√

Var(T )]

= PDn [
T − ka′Dn√

Var(T )
≥ Zα −

ka
′
Dn√

V ar(T )
]

= 1− Φ(Zα − θcϕ1),

where cϕ1 is the Pitman efficacy of the RAThn test, and it can be written as

cϕ1 = a
′
C
kn−1/2√
k2τ2

ϕ

(a
′
(X

′
cXc)

−1a)−1/2

=
1√
nτϕ

a
′
C(a

′
(X

′
cXc)

−1a)−1/2

=

∑k
i=1 aici

τϕ(
∑k

i=1
a2
i
λi

)1/2
.

3.2 Robust Shao-McKean (RSM) Test

Hettmansperger-Norton (1987) used a linear combination of pairwise compar-

isons based on the MWW statistic Uij =
∑ni

m=1

∑nj

l=1 φ (Ymi, Ylj), (1 ≤ i < j ≤ k),

where φ (a, b) = 1, if a < b, 0 otherwise. Our effect-size test is based on a linear
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combination of the estimates ∆̂ij .

Suppose that Yij is distributed with continuous cdf F (y − θj) for j = 1, . . . , k

and i = 1, . . . , nj and the observations are mutually independent. We want to test

H0 : θ1 = · · · = θk versus HA : θj = θ0 + θcj , (θ > 0; j = 1, . . . , k), where c1, . . . , ck

is a given set of constants that specifies the pattern of the alternative. The experiment

may specify the pattern and spacings based on previous studies and/or theoretical for-

mulations. Equally spaced constants are recommended unless there are indications to

the contrary.

3.2.1 The RSM Test Statistic

For any pattern with a known peak, the RSM test statistic is

RSM =

k−1∑
i=1

k∑
j=i+1

(aj − ai)∆̂ij =
∑∑

i<j

aij∆̂ij . (3.4)

The Hodges-Lehmann estimate of shift for ∆ij is

∆̂ij = med
{
Ylj − Yl′ i

}
, 1 ≤ l ≤ nj , 1 ≤ l′ ≤ ni. (3.5)

Under the null hypothesis E(RSM) = 0, and

V ar(RSM) =
∑
i<j

∑
i′<j′

aijai′j′Cov(∆̂ij , ∆̂i′j′ ). (3.6)

From (HM2.5.30), (HM2.5.20) and (HM2.5.5) we have the asymptotic representation

√
nij∆̂ij =

τϕ
√
nijλ

ij
i λ

ij
j

Tϕ(0) + op(1), (3.7)

where

Tϕ(0) =

nij∑
i′=1

(bi′ − b̄ij)ϕ
[
F (Zi′ )

]
, (3.8)
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where nij = ni + nj , bi′ = 1 if ni + 1 ≤ i
′ ≤ nij ; bi′ = 0 otherwise, λiji = ni/nij ,

b̄ij =
∑
bi/nij = nj/nij , (1− b̄ij) = ni/nij and

Zi′ = ∆ijbi′ + ei′ , 1 ≤ i
′ ≤ nij ,

and where e1, . . . enij are iid with distribution function F (x). And

∫ 1

0
ϕ(u)du = 0, and

∫ 1

0
ϕ2(u)du = 1. (3.9)

Thus,

Cov(∆̂ij , ∆̂i′j′ ) =
τ2
ϕ

nijni′j′λ
ij
i λ

ij
j λ

i′j′

i′
λi
′j′

j′

nij∑
m=1

n
i
′
j
′∑

l=1

(bijm − b̄ij)(b
i
′
j
′

l − b̄i′j′ )

cov(ϕ(F (Zijm)), ϕ(F (Zi
′
j
′

l )))

= κ

ni∑
m=1

n
i
′∑

l=1

(bijm − b̄ij)(b
i
′
j
′

l − b̄i′j′ )cov(ϕ(F (Zijm)), ϕ(F (Zi
′
j
′

l )))

+κ

ni∑
m=1

n
i
′
j
′∑

l=i′+1

(bijm − b̄ij)(b
i
′
j
′

l − b̄i′j′ )cov(ϕ(F (Zijm)), ϕ(F (Zi
′
j
′

l )))

+κ

nij∑
m=ni+1

n
i
′∑

l=1

(bijm − b̄ij)(b
i
′
j
′

l − b̄i′j′ )cov(ϕ(F (Zijm)), ϕ(F (Zi
′
j
′

l )))

+κ

nij∑
m=ni+1

n
i
′
j
′∑

l=n
i
′+1

(bijm − b̄ij)(b
i
′
j
′

l − b̄i′j′ )cov(ϕ(F (Zijm)), ϕ(F (Zi
′
j
′

l ))),

where κ =
τ2
ϕ

nijni
′
j
′ λ

ij
i λ

ij
j λ

i
′
j
′

i
′ λi

′
j
′

j
′

.

• cov(∆̂ij , ∆̂i′j′ ) = 0, if there are no ties among i, j, i
′
, j
′
;

• if i = i
′
, cov(∆̂ij , ∆̂i′j′ ) = κ

∑ni
m=1

∑n
i
′

l=1(bijm − b̄ij)(bi
′
j
′

l − b̄i′j′ ) =
τ2
ϕ

ni
;

• if j = j
′
, cov(∆̂ij , ∆̂i′j′ ) = κ

∑nij

m=ni+1

∑n
i
′
j
′

l=i′+1
(bijm − b̄ij)(bi

′
j
′

l − b̄i′j′ ) =
τ2
ϕ

nj
;

• if i = j
′
, cov(∆̂ij , ∆̂i′j′ ) = κ

∑ni
m=1

∑n
i
′
j
′

l=i′+1
(bijm − b̄ij)(bi

′
j
′

l − b̄i′j′ ) = − τ2
ϕ

ni
;

• if j = i
′
, cov(∆̂ij , ∆̂i′j′ ) = κ

∑nij

m=ni+1

∑n
i
′

l=1(bijm − b̄ij)(bi
′
j
′

l − b̄i′j′ ) = − τ2
ϕ

nj
;
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Also, the asymptotic variance of ∆̂ij is

AV (∆̂ij) =
τ2
ϕ

n2
ijλ

2
iλ

2
j

nij∑
i′=1

(bi′ − b̄ij)
2V ar

[
ϕ(F (Zi′ ))

]
=

τ2
ϕ

n2
ijλ

2
iλ

2
j

nij∑
i
′
=1

(bi′ − b̄ij)
2

=
τ2
ϕn

2
ij

n2
in

2
j

[
ni(0− b̄ij)2 + nj(1− b̄ij)2

]
=

τ2
ϕn

2
ij

n2
in

2
j

[
nin

2
j

n2
ij

+
n2
inj
n2
ij

]

=
τ2
ϕ

n2
in

2
j

ninj(ni + nj)

=
τ2
ϕ

ninj
nij

= τ2
ϕ(

1

ni
+

1

nj
).

From (3.4) we have

RSM =
∑∑

i<j

(ai − aj)∆̂ij .

If we let

RSM =
∑∑

i<j

vij

Therefore,

V ar(RSM) =
∑∑

i<j

V ar(vij) +
∑∑

i<j

[

j−1∑
i′=1,i′ 6=i

Cov(vij , vi′j)

+

k∑
j′=i+1,j′ 6=j

Cov(vij , vij′ ) +

k∑
i′=j+1,i′ 6=i

Cov(vij , vji′ )

+

i−1∑
j′=1,j′ 6=j

Cov(vij , vj′ i)]
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continuously,

V ar(RSM) =
∑∑

i<j

(aj − ai)2τ2
ϕ(

1

ni
+

1

nj
)

+
∑∑

i<j

[

j−1∑
i′=1,i′ 6=i

(aj − ai)(aj − ai′ )
τ2
ϕ

nj

+
k∑

j′=i+1,j′ 6=j

(aj − ai)(aj′ − ai)
τ2
ϕ

ni

−
k∑

i′=j+1,i′ 6=i

(aj − ai)(ai′ − aj)
τ2
ϕ

nj

−
i−1∑

j′=1,j′ 6=j

(aj − ai)(ai − aj′ )
τ2
ϕ

ni
]

= τ2
ϕ

∑∑
i<j

(aj − ai)2(
1

ni
+

1

nj
)

+τ2
ϕ

∑∑
i<j

(aj − ai)[
k∑

i′=1,i′ 6=i,j

(aj − ai′ )
1

nj

+

k∑
j′=1,j′ 6=i,j

(aj′ − ai)
1

ni
].
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Since
∑k

i′=1,i′ 6=i,j aj = (k−2)aj , and
∑k

i′=1,i′ 6=i,j ai′ = −(ai+aj), (
∑
ai = 0), V ar(RSM)

simplifies to

V ar(RSM) = τ2
ϕ

∑∑
i<j

(aj − ai)2(
1

ni
+

1

nj
)

+τ2
ϕ

∑∑
i<j

(aj − ai)[
1

nj
[(k − 2)aj + ai + aj ]−

1

ni
[(k − 2)ai + ai + aj ]]

= τ2
ϕ

∑∑
i<j

(aj − ai)2(
1

ni
+

1

nj
)

+τ2
ϕ

∑∑
i<j

(aj − ai)[k(
aj
nj
− ai
ni

)− (aj − ai)(
1

ni
+

1

nj
)]

= τ2
ϕ

∑∑
i<j

(aj − ai)2(
1

ni
+

1

nj
)

+kτ2
ϕ

∑∑
i<j

(aj − ai)(
aj
nj
− ai
ni

)− τ2
ϕ

∑∑
i<j

(aj − ai)2(
1

ni
+

1

nj
)

= kτ2
ϕ

∑∑
i<j

(aj − ai)(
aj
nj
− ai
ni

)

= kτ2
ϕ

j−1∑
i=1

k∑
j=2

(
a2
j

nj
− aj
nj
ai − aj

ai
ni

+
a2
i

ni
)

= kτ2
ϕ

k∑
j=2

[
(j − 1)

a2
j

nj
− aj
nj

j−1∑
i=1

ai − aj
j−1∑
i=1

ai
ni

+

j−1∑
i=1

a2
i

ni

]

k∑
j=2

aj
nj

j−1∑
i=1

ai =
k−1∑
j=2

aj
nj

j−1∑
i=1

ai +
ak
nk

k−1∑
i=1

ai

=
k−1∑
j=2

aj
nj

j−1∑
i=1

ai −
a2
k

nk

k∑
j=2

aj

j−1∑
i=1

ai
ni

=
k−1∑
j=1

aj
nj

k∑
i=j+1

ai

=
a1

n1

k∑
i=2

ai +

k−1∑
j=2

aj
nj

k∑
i=j+1

ai

= −a
2
1

n1
+

k−1∑
j=2

aj
nj

k∑
i=j+1

ai
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k−1∑
j=2

aj
nj

j−1∑
i=1

ai −
a2
k

nk
− a2

1

n1
+

k−1∑
j=2

aj
nj

k∑
i=j+1

ai = −
a2
k

nk
− a2

1

n1
+

k−1∑
j=2

aj
nj

j−1∑
i=1

ai +

k∑
i=j+1

ai


= −

a2
k

nk
− a2

1

n1
−
k−1∑
j=2

a2
j

nj

= −
k∑
j=1

a2
j

nj
.

Thus,

V ar(RSM) = kτ2
ϕ

 k∑
j=2

(j − 1)
a2
j

nj
+

k∑
j=1

a2
j

nj
+

k∑
j=2

j−1∑
i=1

a2
i

ni


= kτ2

ϕ

 k∑
j=1

(j − 1)
a2
j

nj
+

k∑
j=1

a2
j

nj
+
k−1∑
j=1

(k − j)
a2
j

nj


= kτ2

ϕ

 k∑
j=1

(j − 1)
a2
j

nj
+

k∑
j=1

a2
j

nj
+

k∑
j=1

(k − j)
a2
j

nj


= k2τ2

ϕ

k∑
j=1

a2
j

nj
.

For asymptotic theory, consider the asymptotic representation of ∆̂ij ; i.e.

√
nij∆̂ij =

τϕ
√
nijλ

ij
i λ

ij
j

nij∑
m=1

(cm − c̄ij)ϕ [F (Zm)] + op(1)

=
τϕ

√
nijλ

ij
i λ

ij
j

{ nij∑
m=1

cmϕ [F (Zm)]− c̄ij
nij∑
m=1

ϕ [F (Zm)]

}
+ op(1)

=
τϕ

√
nijλ

ij
i λ

ij
j

{ nij∑
m=ni+1

ϕ [F (Zm)]− nj
nij

nij∑
m=1

ϕ [F (Zm)]

}
+ op(1)

=
τϕ

√
nijλ

ij
i λ

ij
j

{
ni
nij

nij∑
m=ni+1

ϕ [F (Zm)]− nj
nij

ni∑
m=1

ϕ [F (Zm)]

}
+ op(1)

=
τϕ

√
nijλ

ij
i λ

ij
j

{
λiji

nij∑
m=ni+1

ϕ [F (Zm)]− λijj
ni∑
m=1

ϕ [F (Zm)]

}
+ op(1)

=
τϕ√
nij

{
1

λijj

nij∑
m=ni+1

ϕ [F (Zm)]− 1

λiji

ni∑
m=1

ϕ [F (Zm)]

}
+ op(1),
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so,

∆̂ij =
τϕ
nij

{
1

λijj

nij∑
m=ni+1

ϕ [F (Zm)]− 1

λiji

ni∑
m=1

ϕ [F (Zm)]

}
+ op(

1
√
nij

)

= τϕ

{
1

nj

nij∑
m=ni+1

ϕ [F (Zm)]− 1

ni

ni∑
m=1

ϕ [F (Zm)]

}
+ op(

1
√
nij

)

= τϕ

{
1

nj

nij∑
m=ni+1

ϕ [F (Zm)]− 1

ni

ni∑
m=1

ϕ [F (Zm)]

}
+ op(

1√
n

).

If D∆ is p× 1 vector of ∆̂ijs, p =
(
k
2

)
; R is n× 1 vector of random variables ϕ[F (Zni

m )],

i = 1, . . . , k and m = 1, . . . , ni, then we can write

D∆ = τϕLR+ op(
1√
n

),

where L is a p× n matrix given by

L =



− 1
n1 n1

1
n2 n2

0n3 0n4 . . . 0nk−1
0nk

− 1
n1 n1

0n2
1
n2 n3

0n4 . . . 0nk−1
0nk

...
...

...
. . .

...
...

...

0n1 0n2 0n3 0n4 . . . − 1
nk−1 nk−1

1
nk nk


.

Thus, the asymptotic var-cov matrix of D∆ is

ΣD∆
= τ2

ϕLV ar(R)L
′

= τ2
ϕLL

′
,

where ΣR = In.

Note that

RSM =

k−1∑
i=1

k∑
j=i+1

(aj − ai)∆̂ij =
∑∑

i<j

aij∆̂ij = A
′
D∆

= τϕA
′
LR+ op(

1√
n

),
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where A is p× 1 vector of aijs. Proof: Note from above derivations, we have

A
′
L(A

′
L)
′

= k2
k∑
j=1

a2
j

nj
,

which is non-negative.

A
′
L1×n = k

[
a1

n1 n1

a2

n2 n2
. . . ak

nk nk

]
.

Since
nj

n → λj ∈ (0, 1) as n → ∞, nj and n have the same order, i.e. O(nj) = O(n).

Thus, as n→∞, every ai
ni
→ 0, i = 1, . . . , n . Therefore,

max1≤i≤n

∣∣∣A′Li∣∣∣→ 0, as n→∞.

Based on Corollary A.1.1 (Hettmansperger & McKean (2011), Page 447), under H0

RSM = τ̂ϕA
′
LR

D−→ N(0, σ2
RSM ),

where σ2
RSM = k2τ̂2

ϕ

∑k
j=1

a2
j

nj
.

When H0 : θ1 = · · · = θk is true, then E(RSM) = 0. Hence, under H0,

RSM∗ =
1

k

√∑k
j=1

a2
j

nj

A
′
LR

D−→ Z ∼ N(0, 1). (3.10)

The asymptotic test is

Reject H0 (1.2) in favor of HA (1.3)

if RSM∗ ≥ zα; otherwise do not reject.

Theorem 3.2. If H0 : θ1 = · · · = θk is true, then E(RSM) = 0. and V ar(RSM) =

k2τ2
ϕ

∑k
j=1

a2
j

nj
. Then as n→∞, where n =

∑k
i=1 ni,

RSM∗ =
1

k

√∑k
j=1

a2
j

nj

A
′
LR

D−→ Z ∼ N(0, 1).
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3.2.2 Consistency and Asymptotic Power

The null asymptotic distribution of RSM was established in the last section.

Thus, a level α test based on RSM for the hypothesis (1.3) coulde be considered.

The RSM can be expressed as A
′
D∆. When H1 is true, there is a D which is

a vector of the pairwise shifts and ∆ij > 0. Since O(nj) = O(n), for ε > 0 and for large

n, σ2
RSM = k2τ2

ϕ

∑k
j=1

a2
j

nj
→ 0, and 0 < zασRSM < A

′
D− ε, then the power of the RSM

test at fixed alternatives,

PD(RSM ≥ zασRSM ) ≥ PD(A
′
D∆ ≥ A

′
D − ε) ≥ PD(

∣∣∣A′D∆ −A
′
D
∣∣∣ ≤ ε)→ 1.

Thus, RSM is a consistent test.

For a sequence of local alternatives Hn : θj = θ0+θcjn
−1/2, (θ > 0, j = 1, . . . , k).

Under Hn, and F has a density f with
∫
f2(x)dx <∞,

∆ij = (cj − ci)θn−1/2

Dn = Cθn−1/2,

where C is p× 1 vector of (cj − ci)′s.

Suppose D∆0 is the MWW estimate of D under H0, and D∆n is the MWW estimate

of D under Hn. Since D∆ is translation equivariant, thus,

D∆n = D∆0 +Dn,

and

Var(D∆n) = Var(D∆0).

Thus, when Hn is true,

E(RSM) = E(A
′
D∆n) = A

′
(0 +Dn) = A

′
Dn

Var(RSM) = σ2
RSM .

46



The asymptotic power of the test based on RSM is given by

PDn [RSM∗ ≥ Zα] = PDn [RSM ≥ ZασRSM ]

= PDn [
RSM −A′Dn

σRSM
≥ Zα −A

′
Dn/σRSM ]

= 1− Φ(Zα − θcϕ2),

where cϕ2 is the Pitman efficacy of the test. We can write cϕ2 as

cϕ2 = A
′
C/

√
kτ2
ϕ

∑∑
i<j

(aj − ai)(
aj
λj
− ai
λi

)

=
k1/2

∑k
i=1 aici

τϕ[
∑∑

i<j (aj − ai)( ajλj −
ai
λi

)]1/2

=
k1/2

∑k
i=1 aici

τϕ[k
∑k

i=1
a2
i
λi

]1/2

=

∑k
i=1 aici

[
∑k

i=1
a2
i
λi

]1/2
(12)1/2

∫
f2(x)dx.

Since

∑∑
i<j

(aj − ai)(
aj
λj
− ai
λi

) =
∑∑

i<j

(
a2
i

λi
+
a2
j

λj
− aiaj(

1

λi
+

1

λj
))

= (k − 1)
k∑
i=1

a2
i

λi
−

k∑
i=1

ai
λi

(−ai)

=
k∑
i=1

a2
i

λi
.

Theorem 3.3. If Hn : θj = θ0 + θcjn
−1/2, (θ > 0, j = 1, . . . , k), and F has a density f

with
∫
f2(x)dx <∞, then as n→∞

RSM∗
D−→ Z ∼ N(θcϕ, 1).
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On the other hand, the Pitman efficacy of the Hettmansperger-Norton test is

e =

∑k
i=1 ai(ci − c̄w)

[
∑k

i=1
a2
i
λi

]1/2
(12)1/2

∫
f2(x)dx

=

∑k
i=1 ai(ci − c̄w)

[
∑k

i=1
a2
i
λi

]1/2
(12)1/2

∫
f2(x)dx

=

∑k
i=1 aici −

∑k
i=1 aic̄w

[
∑k

i=1
a2
i
λi

]1/2
(12)1/2

∫
f2(x)dx

=

∑k
i=1 aici

[
∑k

i=1
a2
i
λi

]1/2
(12)1/2

∫
f2(x)dx = cϕ2.

Therefore, the efficiency of RSM relative to Hettmansperger-Norton is c2
ϕ2/e

2 = 1, which

means that RSM and HN have the same asymptotic local power (Noether, 1955).

3.3 The RSM with Least Square Estimates (RSMLS) Test

The RSMLS test uses the least square estimates ∆̃ij = Ȳj − Ȳi to estimate the

shifts ∆ij . This is our extension of the AT test.

3.3.1 The RSMLS Test Statistic

The RSMLS test statistic is

RSMLS =
k−1∑
i=1

k∑
j=i+1

(aj − ai)∆̃ij =
∑∑

i<j

aij∆̃ij = A
′
D̃,

where the LS estimate of ∆ij = µYj − µYi is ∆̃ij = Ȳj − Ȳi.

Cov(∆̃ij , ∆̃i′j′ ) = Cov(Ȳj − Ȳi, Ȳj′ − Ȳi′ )

= Cov(Ȳj , Ȳj′ )− Cov(Ȳj , Ȳi′ )− Cov(Ȳi, Ȳj′ ) + Cov(Ȳi, Ȳi′ )

= I(j = j
′
)
σ2
j

nj
− I(j = i

′
)
σ2
j

nj
− I(i = j

′
)
σ2
i

ni
+ I(i = i

′
)
σ2
i

ni
.
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Let σ2 be the common variance of all Y’s, then

Cov(∆̃ij , ∆̃i′j′ ) = σ2[
I(j = j

′
)

nj
− I(j = i

′
)

nj
− I(i = j

′
)

ni
+
I(i = i

′
)

ni
],

Since ni, i = 1, . . . , k has the same order as n, thus as n→∞

√
ni(Ȳi − µYi)

D−→ N(0, σ2),

and ∆̃ij is approximately N(∆, σ2(1/ni + 1/nj)).

Let V be a k × 1 vector

V =


√
n1((Ȳ1 − µY1))

...

√
nk((Ȳk − µYk))

 ,

and if L is a p× k matrix,

L =



− 1√
n1

1√
n2

0 0 . . . 0 0

− 1√
n1

0 1√
n3

0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . − 1√
nk−1

1√
nk


,

and D is a p× 1 vector

D =



µY2 − µY1

µY3 − µY1

...

µYk − µYk−1


,

then D̃ = LV +D and RSMLS = A
′
LV +A

′
D, where A is p× 1 vector of a′ijs.

Hence,

A
′
L(A

′
L)
′

= k2
k∑
j=1

a2
j

nj

which is non-negative.
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Since

A
′
L1×k = k

[
a1√
n1

a2√
n2

. . . ak√
nk

]
and since nj and n have the same order, as n → ∞, every ai/

√
ni → 0, i = 1, . . . , k.

Thus,

max1≤i≤n

∣∣∣A′Li∣∣∣→ 0, as n→∞.

Based on Corollary A.1.1 (HM Page 447)

RSMLS = A
′
LV +A

′
D

D−→ N(A
′
D, σ2

RSMLS
),

where σ2
RSMLS

= k2σ2
∑k

j=1

a2
j

nj
.

When H0 : θ1 = · · · = θk is true, then E(RSMLS) = 0. Hence, under H0,

RSM∗LS =
1

kσ

√∑k
j=1

a2
j

nj

(A
′
LV +A

′
D)

D−→ Z ∼ N(0, 1). (3.11)

The asymptotic test is

Reject H0 (1.2) in favor of HA (1.3)

if RSM∗LS ≥ zα; otherwise do not reject.

3.3.2 Consistency and Asymptotic Power

For a level α test based on RSMLS for the hypothesis (1.3), if H1 is true, all

elements in D are greater than 0. Since O(nj) = O(n), σ2
RSMLS

= k2σ2
∑k

j=1

a2
j

nj
→ 0

as n→∞. If n is sufficiently large, we have

0 < zασRSMLS
< A

′
D − ε.

Hence,

PD [RSM∗LS ≥ zα] = PD

[
A
′
D̃ ≥ zασRSMLS

]
≥ PD

[
A
′
D̃ ≥ A′D − ε

]
≥ PD

[∣∣∣A′D̃ −A′D∣∣∣ ≤ ε]→ 1,
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thus the RSMLS test is consistent.

Under Hn : θj = θ0 + θcjn
−1/2, (θ > 0, j = 1, . . . , k), F has a density f with∫

f2(x)dx <∞, so that

∆ij = (cj − ci)θn−1/2

Dn = Cθn−1/2,

where C is p× 1 vector of (cj − ci)′s. Thus under Hn, RSMLS
D−→ N(A

′
Dn, σ

2
RSMLS

).

The asymptotic power of the test based on RSMLS is given by

PDn [RSM∗LS ≥ Zα] = PDn [RSMLS ≥ ZασRSMLS
]

= PDn [
RSMLS −A

′
Dn

σRSMLS

≥ Zα −A
′
Dn/σRSMLS

]

= 1− Φ(Zα − θcLS),

where cLS is the Pitman efficacy of the test, and

cLS = A
′
C/

√
kσ2

∑∑
i<j

(aj − ai)(
aj
λj
− ai
λi

)

=
k1/2

∑k
i=1 aici

σ[
∑∑

i<j (aj − ai)( ajλj −
ai
λi

)]1/2

=
k1/2

∑k
i=1 aici

σ[k
∑k

i=1
a2
i
λi

]1/2

=

∑k
i=1 aici

σ[
∑k

i=1
a2
i
λi

]1/2
.

3.4 Comparisons of New Methods

In previous sections we showed that for a fixed alternative, the RAT test, the

RAThn test, the RSM test and the RSMLS test are all consistent. Thus, the power

of these tests tends to one as the sample size increases. In this section, we compare

all these methods by using the asymptotic relative efficiency (ARE). Recall that the
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Pitman efficacies of four new methods are:

cRAT =

∑
hjcj

√
nτϕ(

∑ h2
j

nj
)1/2

cRAThn =

∑
ajcj

√
nτϕ(

∑ a2
j

nj
)1/2

cRSM =

∑
ajcj

√
nτϕ(

∑ a2
j

nj
)1/2

cRSMls =

∑
ajcj

√
nσ(

∑ a2
j

nj
)1/2

.

It’s obvious that ARE(RAThn, RSM)=1 and ARE(RAThn, RSMls)=σ2/τ2
ϕ. Also ARE(RSM,

RSMls)=ARE(RAThn, RSMls). The ARE of the RAT and RAThn tests is

ARE(RAT,RAThn) =
(
∑
hjcj)

2

nτ2
ϕ

∑ h2
j

nj

/
(
∑
ajcj)

2

nτ2
ϕ

∑ a2
j

nj

=
(
∑
hjcj)

2
∑ a2

j

nj∑ h2
j

nj
(
∑
ajcj)2

,

And for all sample sizes are 5, ARE(RAT,RAThn)=0.9423. Thus, in the following

simulation results the RAT test is about 94% efficient as the RAThn test.

3.5 Simulation Results

Ten thousand simulations were run with data which was generated from a nor-

mal, right skewed contaminated normal distribution and a log-F distribution to get the

empirical powers of all methods, respectively. Eight types of the test, JT (Jonckheere,

1954) and (Terpstra, 1952), SP (McKean et al., 2001), AT (Abelson and Tukey, 1963),

HN (Hettmansperger and Norton, 1987), RAT, RAThn (RAThnT is RAThn with t test,

RAThnN is RAThn with z test), RSM (RSMT is RSM with t test, RSMN is RSM with

z test) and RSMls (RSMlsT is RSMls with t test and RSMlsN is RSMls with N test),

were compared in this section.

Four simulations with different situations were run: when errors follow a normal

distribution N(0, 1), when errors follow a symmetric heavy tailed contaminated nor-

mal distribution CN(0.25, 100), when errors follow a highly right skewed distribution,

skewed contaminated normal distribution SCN(0.25, 1, 100), and when errors follow
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a heavier-tailed and positively skewed GF (1, 0.1) distribution. New methods were run

with Wilcoxon scores under a normal distribution. For the remaining three distributions,

new methods were run with Wilcoxon scores, and optimal scores.

3.5.1 With N(0, 1) Underlying Distribution

Table 10 an Figure 13 show the empirical power for all methods with normal

errors. The z test of RSMls (RSMlsN) dominates all other methods, and there is no

significant difference among JT, SP, HN, RAThnT, RAThnN, RSMT and RSMN. The

RAThn test outperforms the RAT test.

Table 10: Empirical power under a Normal distribution for all methods.

Method Empirical Power
0 2.11 8.44 18.99

JT .1007 .5447 .9261 .9972
SP .0963 .5374 .9255 .9972
AT .0985 .5365 .9264 .9968
HN .0994 .5455 .9278 .9973
RAT .0976 .5141 .9052 .9945
RAThnT .1007 .5314 .9163 .9960
RAThnN .1074 .5478 .9230 .9969
RSMT .1003 .5286 .9180 .9963
RSMN .1069 .5459 .9250 .9973
RSMlsT .1007 .5536 .9365 .9982
RSMlsN .1083 .5714 .9412 .9984

Figure 13: Plot of power curves under a Normal distribution for all methods.
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3.5.2 With CN(0.25, 100) Underlying Distribution

We ran a CN(0.25, 100) distribution with both Wilcoxon scores and bent4

(.25,.75,-1,1) scores. Table 12 and Figure 15 show that the RAT test and the RAThn

test both have higher power than the JT test when using bent4 scores.

Table 11: Empirical power under CN(0.25, 100) with Wilcoxon scores.

Method Empirical Power
0 2.11 8.44 18.99 33.76 52.75 75.96 103.39 135.04

JT .1109 .3452 .6233 .8332 .9150 .9579 .9784 .9888 .9946
SP .1067 .3357 .6052 .8097 .8914 .9371 .9616 .9752 .9851
AT .1037 .1729 .2622 .3845 .4886 .5887 .6736 .7626 .8283
HN .1073 .3149 .5753 .7796 .8586 .9149 .9393 .9620 .9722
RAT .0730 .2176 .4594 .7091 .8426 .9233 .9588 .9741 .9849
RAThnT .0763 .2291 .4728 .7245 .8522 .9275 .9599 .9757 .9867
RAThnN .0840 .2437 .4927 .7383 .8615 .9275 .9619 .9777 .9875
RSMT .0986 .2551 .4831 .7171 .8356 .9097 .9444 .9654 .9814
RSMN .1054 .2681 .5030 .7302 .8440 .9145 .9478 .9675 .9819
RSMlsT .1053 .1697 .2582 .3705 .4666 .5731 .6523 .7473 .8041
RSMlsN .1135 .1801 .2709 .3859 .4826 .5897 .6644 .7603 .8144

Figure 14: Plot of power curves under CN distribution with Wilcoxon scores.
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Table 12: Empirical power under CN(0.25, 100) with bent4 scores.

Method Empirical Power
0 2.11 8.44 18.99 33.76 52.75 75.96 103.39 135.04

JT .1014 .3421 .6341 .8283 .9225 .9638 .9801 .9882 .9916
SP .0969 .3321 .6187 .8046 .8987 .9442 .9632 .9747 .9803
AT .1010 .1831 .2724 .3790 .4939 .5917 .6872 .7584 .8146
HN .0977 .3201 .5846 .7732 .8661 .9192 .9453 .9606 .9664
RAT .1069 .3327 .6302 .8372 .9384 .9733 .9839 .9898 .9918
RAThnT .1128 .3474 .6492 .8488 .9394 .9723 .9833 .9896 .9918
RAThnN .1208 .3621 .6644 .8585 .9429 .9736 .9835 .9901 .9918
RSMT .1640 .3864 .6354 .8100 .9026 .9471 .9681 .9790 .9864
RSMN .1718 .3981 .6488 .8177 .9060 .9493 .9649 .9798 .9868
RSMlsT .0989 .1763 .2676 .3738 .4757 .5686 .6681 .7387 .8023
RSMlsN .1077 .1878 .2797 .3910 .4900 .5821 .6818 .7534 .8123

Figure 15: Plot of power curves under CN distribution with bent4 scores.

3.5.3 With SCN(0.25, 1, 100) Underlying Distribution

Table 13 and Figure 16 show that under SCN(0.25,1,100) RAT, RAThn and

RSM with Wilcoxon scores outperform AT and RSMls. Among RAT, RAThn and

RSM, the z test RAThn (RAThnN) has the highest power.
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Table 13: Empirical power under SCN(0.25, 1, 100) with Wilcoxon scores.

Method Empirical Power
0 2.11 8.44 18.99 33.76 52.75 75.96 103.39

JT .1005 .3297 .6139 .8144 .8976 .9431 .9693 .9789
SP .0968 .3195 .5938 .7887 .8697 .9145 .9409 .9555
AT .0967 .1519 .2170 .2866 .3737 .4543 .5351 .6127
HN .1004 .3263 .6015 .7945 .8738 .9184 .9431 .9569
RAT .0686 .1758 .3722 .5963 .7562 .8564 .9158 .9406
RAThnT .0768 .1967 .3942 .6161 .7666 .8591 .9140 .9322
RAThnN .0814 .2056 .4130 .6320 .7816 .8676 .9192 .9354
RSMT .0864 .2106 .4010 .6150 .7610 .8509 .9084 .9303
RSMN .0916 .2233 .4187 .6304 .7742 .8592 .9134 .9332
RSMlsT .1000 .1562 .2295 .2998 .3831 .4641 .5501 .6224
RSMlsN .1084 .1684 .2414 .3136 .3971 .4794 .5653 .6378

Figure 16: Plot of power curves under SCN distribution with Wilcoxon scores.

Table 14 and Figure 17 show the empirical powers of RAT, RAThn and RSM

wiht bent1 scores under SCN(0.25,1,100). The RAThn has the highest power of all

methods, and has no significant difference with JT.
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Table 14: Empirical power under SCN(0.25, 1, 100) with bent1 scores.

Method Empirical Power
0 2.11 8.44 18.99 33.76 52.75 75.96 103.39 135.04 170.91

JT .1043 .3310 .6148 .8018 .9005 .9413 .9632 .9759 .9834 .9893
SP .1005 .3222 .5989 .7757 .8703 .9146 .9368 .9558 .9624 .9718
AT .1002 .1555 .2167 .2848 .3656 .4539 .5283 .6078 .6773 .7346
HN .1057 .3282 .6079 .7817 .8747 .9167 .9385 .9572 .9632 .9736
RAT .0909 .2599 .5345 .7496 .8777 .9291 .9514 .9686 .9742 .9798
RAThnT .0973 .2781 .5564 .7633 .8816 .9288 .9505 .9686 .9743 .9820
RAThnN .1028 .2910 .5718 .7729 .8847 .9327 .9524 .9696 .9755 .9827
RSMT .1431 .3151 .5614 .7412 .8470 .8997 .9279 .9488 .9571 .9681
RSMN .1507 .3276 .5742 .7504 .8543 .9035 .9308 .9504 .9577 .9687
RSMlsT .1016 .1563 .2275 .2962 .3742 .4662 .5441 .6224 .6857 .7527
RSMlsN .1101 .1677 .2383 .3100 .3882 .4819 .5608 .6364 .7008 .7654

Figure 17: Plot of power curves under SCN distribution with bent1 scores.

3.5.4 With GF (1, .1) Underlying Distribution

If the error distribution is contained in the log-F class, e has a GF (2m1, 2m2)

distribution. If (m1,m2) = (1, 1), then the e has a logistic distribution. Kalbfleisch

and Prentice (Kalbfleisch and Prentice, 1980) discussed the class for m1, m2 ≥ 1,

Hettmansperger and McKean (Hettmansperger and McKean, 2011) extended the class
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to m1, m2 > 0 for heavier-tailed error distributions. Errors in this section were gener-

ated from a heavy-tailed and positively skewed distribution GF (1, .1). Wilcoxon scores,

logGF(1,.1) scores and bent1(.25,-2,1) scores were used in the simulation. In this sec-

tion, only JT, RAT and RAThn were compared.

Table 15 and Figure 18 show the level and power of JT, RAT, RAThnT and RAThnN

with Wilcoxon scores. The power of JT is slightly higher than RAT, RAThnT and

RAThnN.

Table 15: Empirical power under GF (1, 0.1) with Wilcoxon scores.

Method Empirical Power
0 2.11 8.44 18.99 33.76 52.75 75.96 103.39 135.04

JT .1076 .1463 .2064 .2551 .3249 .3969 .4774 .5464 .6186
RAT .1025 .1338 .1783 .2186 .2726 .3420 .4033 .4807 .5512
RAThnT .1033 .1365 .1848 .2260 .2872 .3581 .4213 .4963 .5636
RAThnN .1103 .1444 .1956 .2373 .3020 .3704 .4388 .5142 .5814

Figure 18: Plot of power curves under GF distribution with Wilcoxon scores.

Table 16 and Figure 19 show the level and power of JT, RAT, RAThnT and

RAThnN with loghGF scores. The powers of RAT, RAThnT and RAThnN are higher
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than JT, but the empirical α levels are liberial.

Table 16: Empirical power under GF (1, 0.1) with logGF scores.

Method Empirical Power
0 2.11 8.44 18.99 33.76 52.75 75.96 103.39 135.04

JT .1046 .1471 .2004 .2596 .3259 .3956 .4692 .5402 .6166
RAT .1316 .1897 .2678 .3552 .4520 .5566 .6475 .7359 .8078
RAThnT .1365 .1947 .2775 .3687 .4703 .5731 .6627 .7501 .8189
RAThnN .1440 .2060 .2910 .3824 .4837 .5868 .6768 .7633 .8289

Figure 19: Plot of power curves under GF distribution with logGF scores.

Table 17 and Figure 20 show the level and power of JT, RAT, RAThnT and

RAThnN with bent1 scores. The power of RAT, RAThnT and RAThnN are higher than

JT. RAThnN has the highest power.

Table 17: Empirical power under GF (1, 0.1) with bent1 scores.

Method Empirical Power
0 2.11 8.44 18.99 33.76 52.75 75.96 103.39 135.04

JT .1053 .1478 .2054 .2555 .3274 .4012 .4637 .5497 .6194
RAT .0961 .1504 .2104 .2844 .3811 .4790 .5817 .6770 .7593
RAThnT .1006 .1590 .2215 .2928 .3990 .4914 .5990 .6977 .7718
RAThnN .1063 .1682 .2324 .3060 .4160 .5099 .6139 .7144 .7862
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Figure 20: Plot of power curves under GF distribution with bent1 scores.

In conclusion, for the parametric-based methods, the RSMLS test is better than

the AT test; for the nonparametric-based methods, if the errors follow a right skewed

distribution, there is no significant difference among the JT test, the RAT test, the

RAThn test and the RSM test, if the errors follow a right skewed and heavy-tailed

distribution, the RAT test and the RAThn test are better than the JT test.

3.6 Example

For the example in chapter 1, the new methods test results are given in the

following table. RAThn and RSM return robust results, with both p-values less than

0.05. The RSMls result is affected by the outlier, and the p-value is 0.1989, thus it fails

to reject the null hypothesis.
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Table 18: Test results-new methods
method test statistic p-value

RAThn 1.8174 0.0446

RSM 1.8932 0.0389

RSMls 0.8703 0.1989
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CHAPTER 4

MIXED MODELS WITH RANDOM BLOCK EFFECT

In the previous chapters we discussed the methods for an ordered alternative

in a one-way linear model. In this chapter we will extend the methods for ordered

alternative to a mixed model with two factors. The one factor represents the fixed

effect, i.e., the groups, while the second factor is a random block effect. In this case,

the observations within each block are dependent random variables. In such designs,

the treatment effects have an ordering, such as a increasing intensity of drugs. All the

hypothesized ordering information is lost if a Chi-square test or a Friedman test is used.

Not considering the order of the hypothesis will cause the loss of efficiency. Page (1963)

proposed a test which is based on the weighted rank sums where the ranks are the joint

ranking of the observations within blocks. Hettmansperger (1975) proposed a multiple

comparison procedure which extended the test statistic of Page and provided the point

and interval estimates of the cell location parameters. For more discussion see Hollander

(1967), Barlow et al. (1972) and Hollander and Wolfe (1999).

LS estimators and joint-rank estimators are used in the new methods. The

method with Abelson-Tukey weights and LS estimators is called Abelson Tukey test

with randomized blocks (ATb). The method with Abelson-Tukey weights and joint-

rank estimators is called JrRAT. If this method contains the block effects in the design

matrix, it is called JrRATb. The method with Hettmansperger-Norton weights and

joint-rank estimators is called JrRAThn. If this method contains the block effects in the

design matrix, it is called JrRAThnb.
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Linear mixed-effects model function lme was used to get the LS estimates. The

estimates of the fixed effects based on the joint ranks (JR) of all residuals in a linear

model, with the block correlated continuous error distributions for general score func-

tions is our rank-based fitting procedure. This is the rank-based analog of the traditional

LS randomized block design fit. For computation we use the package JRFit (Kloke and

McKean, 2014) and (Kloke et al., 2009).

4.1 Simple Mixed Models

Suppose there are k groups and m blocks, where block i has ni observations;

Within block i, let Yi, Xi and ei denote the ni×1 vector of responses, the ni×p design

matrix, and the ni × 1 vector of errors, respectively. Let 1ni denote the vector of ni

ones. Then the simple mixed model could be written as

Yi = α1ni +Xiβ + 1nibi + εi, i = 1, . . . ,m, (4.1)

where β is the k−1×1 vector of regression coefficients and α is the intercept parameter.

The components of εi are independent and identically distributed and bi is a continuous

random variable which is independent of εi. Define ei = 1nibi + εi. Assume that the

random effects b1, . . . , bm are independent and identically distributed.

Note that we can also write the model as

yij = θj + bi + εij ,

where θj is the mean (or median) for group j. As in the previous chapters, we are

interested in ordered alternatives, so we began with ordered alternatives of the form

HA : θ1 ≤ · · · ≤ θk, (with at least one strict inequality). (4.2)
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4.2 The Page Test

The usual distribution-free test for ordered alternatives is a randomized complete

block design known as the Page test. To compute the Page statistic, we first order the

k observations within each block. Let rij denote the rank of yij in the joint ranking of

the observations in the ith block and set

Rj =

m∑
i=1

rij . (4.3)

Then the Page statistic L is the weighted rank sums and given by

L =
k∑
j=1

jRj . (4.4)

Notice that this is a Spearman type test statistic.

To test H0 ( 1.2) versus the ordered alternative H1 ( 1.3) at the α level of significance,

the decision rule of Page’s test is

Reject H0 if L ≥ lα; otherwise do not reject.

The test statistic is distribution free under H0. Based on distribution of L under H0,

approimate values of lα are given in Table A.23 of Hollander & Wolfe (1999). Under H0

the expected value and the variance of L are

E0(L) =
nk(k + 1)2

4

var0(L) =
nk2(k + 1)(k2 − 1)

144
.

The standardized version of L is

L∗ =
L− E0(L)√
var0(L)

.

When H0 is true, and as n tends to infinity, L∗ has an asymptotic N(0, 1). Hence, the

asymptotic test is

Reject H0 if L∗ ≥ zα; otherwise do not reject.
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4.3 New Methods

In this section two main types of methods, parametric and nonparametric meth-

ods, are introduced. The parametric method is based on the Abelson Tukey test, uti-

lizing LS estimators. We label it the ATb test (Abelson Tukey test with randomized

blocks). The robust methods are based on the joint-rank estimators of β in model 4.1;

see (Kloke et al., 2009).

The general form of the test statistic of the new method is

T ∗ =
w
′
θ̂√

w′var(θ̂)w
, (4.5)

wherew
′
is a k×1 vector of weights (the Abelson Tukey weights and the Hettmansperger-

Norton weights are used in this chapter), and θ̂ is the JR estimation of θ, the k × 1

vector of group centers.

To estimate θ̂ we need to fit the linear mixed model

Y = Xβ + 1nb+ ε. (4.6)

where Y = (Y
′
1, . . . ,Y

′
m)
′

, X = (X
′
1, . . . ,X

′
m)
′
, b = (b1, . . . , bm) and ε = (ε1, . . . , εm).

Let β̂ denote an estimation of θ based on a fitting procedure.

Let

θ̂ = Eβ̂ (4.7)

where

Ek×k =



1 0 0 . . . 0

1 1 0 . . . 0

1 0 1 . . . 0

...
...

...
. . .

...

1 0 0 . . . 1


. (4.8)
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Then a test statistic of the hypothesis ( 4.2) is given by

T ∗ =
w
′
Eβ̂√

w′EΣβ̂E
′
w
, (4.9)

where β̂ is the estimate of fixed effects, and Σβ̂ is the variance-covariance matrix of the

fixed effects.

Based on different weights or different estimators of β, the following methods are gen-

erated.

4.3.1 Abelson Tukey Test with Randomized Blocks(ATb)

ATb uses the Abelson-Tukey weights (c) where the estimates of β are computed

using the lme (Linear Mixed-Effects Models)function in the nlme (Linear and Nonlin-

ear Mixed Effects Models) package. The manual on lme states that “this function fits

a linear mixed-effects model in the formulation described in Laird and Ware (1982) but

allowing for nested random effects. The within-group errors are allowed to be correlated

and/or have unequal variances.” To compute the estimates and the variance-covariance

matrix of β̂LS , the model was fitted by default method, restricted maximum likeli-

hood (REML), which in effect corrects the maximum-likelihood estimator for degrees of

freedom. The test statistic is

T ∗ =
c
′
Eβ̂LS√

c′EΣβ̂LS
E
′
c
. (4.10)

For testing H0 ( 1.2) versus the ordered alternative H1 ( 1.3), large values of T ∗

lead to the conclusion H1. At the α level of significance, the decision rule is

Reject H0 if T ∗ ≥ tα,n−(k+m−1); otherwise do not reject.

Then two ways were used to compute the p-value

1. t test with df = n− k −m− 1

• n: # of observations

• m: # of blocks
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• k: # of treatment groups

• 1: # of additional parameters estimated in variance-covariance of β̂

2. t test with df = n− (k +m− 1) [only differs by 2].

4.3.2 Joint Rank Estimator

Joint rank estimators are R estimators based on the joint ranks of all the resid-

uals for fitting linear models with independently distributed errors. Kloke, McKean,

and Rashid (2009) extended those estimators to estimating the fixed effects in a linear

model with cluster correlated continuous error distributions for general score functions.

They called it the JR estimator for joint ranking. For model 4.1, they showed that the

asymptotic variance-covariance matrix of β̂ϕ is

τ2
ϕ(X

′
X)−1

m∑
i=1

X
′
iΣϕ,iXi(X

′
X)−1,Σϕ,i = (1− ρϕ)Ini + ρϕJni , (4.11)

where ρϕ = cov {ϕ[F (e11)], ϕ[F (e12)]} = E {ϕ[F (e11)], ϕ[F (e12)]}.

Let M =
∑m

i=1

(
ni
2

)
− (k − 1). A simple moment estimator of ρϕ is

ρ̂ϕ = M−1
m∑
i=1

∑
l>j

a [R(êil)] a [R(êij)]. (4.12)

Thus an estimate of the asymptotic covariance matrix of the JR estimators is easy to get

when plugging in the estimate of τϕ and the estimate of ρϕ (4.11) (Kloke et al., 2009).

Kloke and McKean (Kloke and McKean, 2014) have developed an R package

jrfit, which returns the rank-based estimation and inference for mixed models. Like

the Rfit package, jrfit provides variaty of score functions, and the default option is

Wilcoxon scores. For our computation, we used version 0.03. This package can be

found at https://www.biostat.wisc.edu/ kloke/.

4.3.3 Nonparametric Methods

In the following two subsections, all new methods are based on the joint-rank

estimates of β and the variance-covariance matrix of β. Two types of the design matrixes

are performed in later simulation studies.
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1. The design matrix is only composed of the group effect.

X1,n×(k−1) =



0 0 . . . 0

1n2 0 . . . 0

0 1n3 . . . 0

...
...

. . .
...

0 0 . . . 1nk


. (4.13)

The centered design matrix based on X1, we denote as D1.

2. The random blocks effects are also contained in the (k + m − 1) × (k + m − 1)

design matrix given by

E2 =



1 0 0 . . . 0 0 . . . 0

1 1 0 . . . 0 0 . . . 0

...
...

...
. . .

...
...

. . .
...

1 0 0 . . . 1 0 . . . 0

0 . . . . . . . . . 0 1 . . . 0

...
...

...
...

...
...

. . .
...

0 0 0 . . . 0 0 . . . 1



. (4.14)

Let

X2,n×(k+m−1) =



0 0 . . . 0 B

1n2 0 . . . 0 B

0 1n3 . . . 0 B

...
...

. . .
...

...

0 0 . . . 1nk
B


(4.15)
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where B is

Bnj×(m−1) =



0 0 0 . . . 0

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


, (4.16)

with j = 1, . . . , k. Denote by D2, the centered design matrix obtained from X2.

In the following methods, two procedures are used to estimate the variance-

covariance matrix of β̂; these are sandwich estimation and compound symmetry struc-

ture. The sandwich estimation procedure yields asymptotically consistent covariance

matrix estimates. In the compound symmetry structure, all the variances are equal

and all the covariances are equal. In the jrfit function the default variance-covariance

matrix is the sandwich estimation.

The following two methods use the Abelson-Tukey weights c along with the

joint-rank estimates of β. The test statistic with the different design matrix will be

slightly changed:

1. JrRAT

The JrRAT method uses design matrix D1, and the test statistic is

T ∗1 =
c
′
Eβ̂√

c′EΣβ̂E
′
c
. (4.17)

2. JrRATb

The JrRATb method uses design matrix D2, and the test statistic is

T ∗2 =
c
′
E2β̂b√

c′E2Σβ̂b
E
′
2c
. (4.18)

The subscript b here is for fitting fixed and blocks.

The following two methods use the Hettmansperger-Norton weights along with

the joint-rank estimates of β1. Note that β = (α,β
′
1)
′
.
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3. JrRAThn

The JrRAThn method uses design matrix D1, and the test statistic is

T ∗3 =
ka
′
β̂1

k
√
a′Σβ̂1

a
. (4.19)

4. JrRAThnb

The JrRAThnb method uses design matrix D2, and the test statistic is

T ∗4 =
ka
′
β̂1b

k
√
a′Σβ̂1b

a
. (4.20)

Where Σβ̂1
= Σβ̂[2:k,2:k]. For both types of the design matrixes, the test statis-

tic formulas are the same, but with different estimates for βs and the variance

covariance matrices.

Asymptotic theory for these test statistics under the null hypothesis and local

alternatives follows as in chapter 3, which uses the asymptotic theory derived in Kloke

et al. (2009).

For testing H0 (1.2) versus the ordered alternative H1 (1.3), large values of T ∗

lead to the conclusion H1. For each procedure, at the α level of significance, three tests

were compired in the simulation study:

1. Reject H0 if T ∗ ≥ Zα; otherwise do not reject.

2. Reject H0 if T ∗ ≥ tα,n−k−m−1; otherwise do not reject.

3. Reject H0 if T ∗ ≥ tα,n−(k+m−1); otherwise do not reject.

4.4 Simulation Studies

In this section, 10,000 simulations were run with four different data sets. These

have different block sizes (m) or treatment groups (k). The m random block effects

were randomly generated from N(0, σ2
b ); the n = m × k random errors were randomly

generated from N(0, σ2
ε ). The data set is composed of both the random effects and the

random errors, and within each block they have the same block effect. The variance
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components σ2
b and σ2

ε were set to 4 and 1, respectively. The first three data sets have

the same block size, 10, but with different treament groups 3, 4 and 7. The fourth data

set consists of 15 blocks and 7 treatment groups. Simulation studies on all methods that

were mentioned in previous sections will be summarized.

For the simulation studies, the joint-rank estimate of β and the variance-covariance

matrix of β with model ( 4.6) were computed by using the R package jrfit (version

0.03).

Table 19 summarizes the empirical alphas and the power of this study with 10

blocks and 3 treatment groups. For both types of design matrix (D1 & D2), JrRAT and

JrRAThn return exactly the same results for the two types of variance covariance matrix,

respectively. Additionally they are not very good on compound symmetry structure but

good on sandwich structure. For the first type of design matrix, the methods with a

compound symmetry structure variance covariance matrix are slightly liberal. For the

second type of design matrix, both methods with both variance covariance matrix work

well except the z test. The ATb method works well on both degrees of freedom, and

it can significantly outperform the Page method with an empirical power of .4504 and

.4531. This is in contrast to .4166 at level .10. JrRATb and JrRAThnb both outperform

the Page test. The ATb method has the highest power among all appropriate methods.

Table 20 summarizes the empirical alphas and the power of this study with 10

blocks and 4 treatment groups. For the first type design matrix (D1), the methods

with both compound symmetry structure and sandwich variance covariance matrix are

liberal. For the second type design matrix (D2), z test works well with compound

symmetry structure variance covariance matrix; additionally the t tests work well with

the sandwich variance covariance matrix. The ATb method works well on both degrees

of freedom, and it outperforms the Page method with a power of .4817 and .4828, as

opposed to .4417 at level .10. JrRATb and JrRAThnb both outperform the Page test.

The ATb method has the highest power among all appropriate methods.

Table 21 summarizes the empirical alphas and the power of this study with 10

blocks and 7 treatment groups. For the first type of design matrix (D1), the methods

with both compound symmetry structure and sandwich variance covariance matrix are
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liberal. For the second type of design matrix (D2), the t test works well with the com-

pound symmetry structure variance covariance matrix; all tests with sandwich variance

covariance matrix are liberal. The ATb method works well on both degrees of freedom,

and it outperforms the Page method with a power of .5650 and .5653, as contrasted

with a power of .5382 at level .10. JrRATb and JrRAThnb both outperform the Page

test. The JrRAThnb method has the highest power among all appropriate methods.

Table 22 summarizes the empirical alphas and the power of this study with 15

blocks and 7 treatment groups. For the first type of design matrix (D1), the methods

with both compound symmetry structure and sandwich variance covariance matrix are

liberal. For the second type of design matrix (D2), all tests work well with sandwich

variance covariance matrix; all tests with compound symmetry structure variance co-

variance matrix are liberal. The ATb method works well on both degrees of freedom,

and it does better than the Page method with a power of .5502 and .5503, as contrasted

with a power of .5318 at level .10. The JrRAThnb test outperforms the Page test, and

the JrRAThnb method has the highest power among all appropriate methods.

In conclusion, the JrRAThnb test outperforms the Page test among all cases.

Among all nonparametric methods the JrRAThnb is the best. The ATb test is a good

least square based test.
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Table 19: Empirical αs and power(10x3).

Method test Var-Cov Df Empirical α Power

10% 5% 10% 5%

Z .2035 .1524 .5696 .4784
JrRAT T cs 16 .1957 .1413 .5555 .4570

T 18 .1969 .1425 .5573 .4592

Z .0963 .0533 .3981 .2740
JrRAT T sand 16 .0904 .0468 .3778 .2462

T 18 .0908 .0476 .3799 .2489

Page .1143 .0502 .4166 .2475

Z .1018 .0569 .4176 .2876
JrRATb T cs 16 .0933 .0485 .3999 .2570

T 18 .0943 .0493 .4019 .2610

Z .1127 .0664 .4342 .3084
JrRATb T sand 16 .1044 .0575 .4149 .2795

T 18 .1050 .0585 .4180 .2830

ATb T 16 .1017 .0513 .4504 .3102
ATb T 18 .1031 .0523 .4531 .3147

Z .2035 .1524 .5696 .4784
JrRAThn T cs 16 .1957 .1413 .5555 .4570

T 18 .1969 .1425 .5573 .4592

Z .0963 .0533 .3981 .2740
JrRAThn T sand 16 .0904 .0468 .3778 .2462

T 18 .0908 .0476 .3799 .2489

Z .1018 .0569 .4176 .2876
JrRAThnb T cs 16 .0933 .0485 .3999 .2570

T 18 .0943 .0493 .4019 .2610

Z .1127 .0664 .4342 .3084
JrRAThnb T sand 16 .1044 .0575 .4149 .2795

T 18 .1050 .0585 .4180 .2830
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Table 20: Empirical αs and power (10x4).

Method test Var-Cov Df Empirical α Power

10% 5% 10% 5%

Z .1724 .1181 .5624 .4502
JrRAT T cs 25 .1665 .1114 .5510 .4335

T 27 .1669 .1119 .5522 .4348

Z .0893 .0476 .3963 .2685
JrRAT T sand 25 .0842 .0422 .3827 .2488

T 27 .0845 .0428 .3835 .2502

Page .1064 .0456 .4417 .2757

Z .0993 .0505 .4416 .3139
JrRATb T cs 25 .0945 .0438 .4277 .2898

T 27 .0949 .0441 .4283 .2915

Z .1089 .0614 .4570 .3326
JrRATb T sand 25 .1034 .0551 .4441 .3108

T 27 .1040 .0553 .4448 .3126

ATb T 25 .1038 .0505 .4817 .3385
ATb T 27 .1044 .0511 .4828 .3399

Z .1737 .1196 .5694 .4590
JrRAThn T cs 25 .1678 .1123 .5590 .4390

T 27 .1679 .1127 .5600 .4402

Z .0896 .0473 .3994 .2737
JrRAThn T sand 25 .0842 .0417 .3850 .2538

T 27 .0847 .0422 .3858 .2552

Z .1001 .0515 .4493 .3225
JrRAThnb T cs 25 .0943 .0452 .4373 .2990

T 27 .0947 .0458 .4376 .3008

Z .1098 .0621 .4623 .3396
JrRAThnb T sand 25 .1039 .0561 .4482 .3198

T 27 .1045 .0565 .4488 .3207
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Table 21: Empirical αs and power (10x7).

Method test Var-Cov Df Empirical α Power

10% 5% 10% 5%

Z .1406 .0883 .5961 .4760
JrRAT T cs 52 .1384 .0852 .5907 .4659

T 54 .1385 .0853 .5908 .4663

Z .0451 .0189 .3190 .1854
JrRAT T sand 52 .0435 .0176 .3107 .1784

T 54 .0436 .0178 .3108 .1785

Page .1038 .0542 .5382 .3988

Z .1040 .0523 .5426 .3965
JrRATb T cs 52 .1014 .0493 .5353 .3858

T 54 .1014 .0496 .5356 .3859

Z .1131 .0653 .5487 .4146
JrRATb T sand 52 .1094 .0613 .5432 .4053

T 54 .1094 .0615 .5433 .4059

ATb T 52 .1026 .0519 .5650 .4151
ATb T 54 .1026 .0519 .5653 .4153

Z .1455 .0921 .6263 .5075
JrRAThn T cs 52 .1423 .0888 .6220 .4976

T 54 .1423 .0889 .6221 .4982

Z .0449 .0192 .3413 .2018
JrRAThn T sand 52 .0437 .0174 .3342 .1935

T 54 .0437 .0175 .3345 .1935

Z .1045 .0558 .5687 .4263
JrRAThnb T cs 52 .1009 .0540 .5620 .4155

T 54 .1009 .0540 .5624 .4158

Z .1159 .0681 .5778 .4429
JrRAThnb T sand 52 .1137 .0647 .5717 .4333

T 54 .1137 .0647 .5719 .4336
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Table 22: Empirical αs and power (15x7).

Method test Var-Cov Df Empirical α Power

10% 5% 10% 5%

Z .1221 .0703 .5667 .4426
JrRAT T cs 82 .1206 .0684 .5620 .4357

T 84 .1206 .0684 .5620 .4357

Z .0659 .0301 .4156 .2724
JrRAT T sand 82 .0646 .0293 .4111 .2667

T 84 .0646 .0293 .4115 .2670

Page .1009 .0494 .5318 .3846

Z .0918 .0460 .5204 .3730
JrRATb T cs 82 .0901 .0439 .5165 .3666

T 84 .0902 .0439 .5165 .3668

Z .1020 .0575 .5262 .3929
JrRATb T sand 82 .0999 .0549 .5232 .3867

T 84 .1001 .0549 .5232 .3867

ATb T 82 .0968 .0450 .5502 .4048
ATb T 84 .0968 .0451 .5503 .4049

Z .1285 .0716 .5962 .4747
JrRAThn T cs 82 .1267 .0694 .5920 .4681

T 84 .1268 .0694 .5921 .4683

Z .0674 .0301 .4450 .2940
JrRAThn T sand 82 .0654 .0287 .4401 .2870

T 84 .0655 .0287 .4402 .2872

Z .0924 .0475 .5481 .4096
JrRAThnb T cs 82 .0915 .0455 .5438 .4035

T 84 .0915 .0455 .5440 .4035

Z .1021 .0550 .5558 .4180
JrRAThnb T sand 82 .1005 .0536 .5513 .4101

T 84 .1005 .0536 .5513 .4101
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CHAPTER 5

UNKNOWN PEAK

Consider a dose-response design. In some cases, with increasing dose level, the

treatment effect tends to improve, but after some point, advancing dose level tends

to mean diminishing performance. The alternative with such a particular pattern of

increasing group locations followed by decreasing group locations is called an umbrella

alternative. The change point (peak) may be known, but generally it is not known.

In such cases the estimate of the peak is of interest. Mack and Wolfe (1981) used a

standardized two-sample Mann-Whitney statistic computed between the ith group and

the remaining k−1 groups combined to estimate the peak. Hettmansperger and Norton

(1987) used the index at where the maximum test statistic occurs to estimate the peak,

where the maximum is taken over for all p possible patterns of c1, . . . , ck.

Using the methods first introduced in chapter 3, we now explore three methods

of estimating the peak. We first describe the methods and then report on the results of

a simulation study.

5.1 The Hettmansperger and Norton Method

When the peak is unknown, there are k possible umbrella alternatives, HA :

θ1 ≤ · · · ≤ θt ≥ θt+1 ≥ · · · ≥ θk. With equally spaced c1, . . . , ck, where cj = j, for

j = 1, . . . , t and cj = 2t − j for j = t + 1, . . . , k, there are p possible sets of coefficients

c1, . . . , ck. Recall in chapter one that the standardized Hettmansperger and Norton test
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statistic is

V ∗ = (
12

n+ 1
)1/2 V

(
∑
a2
j/λj)

1/2
,

where V =
∑

j ajR̄j , R̄j = 1
nj

∑
j Rij , Rij is the value of Yij in the combined samples

Y11, . . . , Yknk
, λj =

nj

n , and
∑

j aj = 0.

5.2 New Methods

We take equally spaced c1, . . . , ck, where cj = j, for j = 1, . . . , t and cj = 2t− j

for j = t+ 1, . . . , k. For a given test statistic Tt, we use the index of maxT ∗t to estimate

the peak, where the maximum is taken over all possible patterns of c1, . . . , ck and t =

1, 2, . . . , p. We next present three such tests.

5.2.1 RAThn

Recall in chapter 3 that the test statistic of the RAThn is based on the rank-

based estimates of the shifts of each group from group 1. Here we use T ∗, ( 6.1), to

carry out the test. Thus the T ∗t can be writen as

T ∗t =
ka
′
β̂1√

k2τ2
ϕa
′(X

′
cXc)−1a

, (5.1)

where a is a vector of the HN weights (ajs), and aj = λj(cj −
∑
λjcj), j = 1, . . . , k.

5.2.2 RSM

Recall in chapter 3 the RSM test statistic is based on the MWW estimates of

the pairwise shifts. We use the standardized RSM as the T ∗. Then the T ∗t can be writen

as

T ∗t =

∑k−1
i=1

∑k
j=i+1 (aj − ai)∆̂ij√

kτ2
ϕ

∑∑
i<j (aj − ai)( ajnj

− ai
ni

)
. (5.2)

The MWW (or HL) estimate of shift for ∆ij is ∆̂ij = med
{
Ylj − Yl′ i

}
, 1 ≤ l ≤ nj ,

1 ≤ l′ ≤ ni.
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5.2.3 RSMls

Recall in chapter 3 the RSMLS uses the LS estimates of the pairwise shifts. We

use the standardized RSMLS as the T ∗. Then the T ∗t can be writen as

T ∗t =

∑k−1
i=1

∑k
j=i+1 (aj − ai)∆̂ij√

kσ2
ϕ

∑∑
i<j (aj − ai)( ajnj

− ai
ni

)
, (5.3)

where the LS estimate of ∆ = µYj − µYi is ∆̂ij = Ȳj − Ȳi.

5.3 Simulation Studies

We consider the situation where the number of groups k is 10 and the sample

size in each group is 16. Two types of data, a set with a clear peak and a set with a flat

peak, were generated both from a normal distribution, and a symmetric heavy tailed

contaminated normal distribution.

Initially each group is generated from a normal distribution N(µi, σ), for i =

1, 2, . . . , 10. We set σ = 1. The values of µi from the clear peak data set were chosen

from 1, 2, . . . , 8, 9, 10. For the flat peak data set, the centers of the groups close to

the peak should have no significant difference. We set the µis closed to the peak with

a 0.5 unit difference from each other. Thus, the µis from the flat peak data set were

chosen from 2, 3, . . . , 8, 9, 9.5, 10, and the order of the µi depends on where the peak

is located.

Secondly, each group is generated from a contaminated normal distribution

CN(ε, µi, σ
2). We set ε = 0.25 and σ2 = 100. Thus data is generated from mixed

N(µi, 1) and N(µi, 100). The values of µi are choosen at the same way as the nor-

mal distribution case. That is, the values of µi from clear peak data set were chosen

from 1, 2, . . . , 8, 9, 10, and the µis from the flat peak data set were chosen from

2, 3, . . . , 8, 9, 9.5, 10.

We consider all ten situations for the peak; i.e., the peak in the ith group for

i. If the peak is located at the 1st group, there is a gradual decrease in the locations

of the 10 groups, and the value of µi for the respective groups, one through ten, are

10, 9, . . . , 1 for the clear peak data set, and are 10, 9.5, 9, . . . , 2 for the flat peak
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data set. If the peak is located at the 10th group, there is a gradual increase in the

locations of the 10 groups, so the value of µi are 1, 2, . . . , 10 for the clear peak data

set and are 2, 3, . . . , 9, 9.5, 10 for the flat peak data set.

Figure 21: Plots of clear peak data with different peaks.

Figure 22: Plots of flat peak data with different peaks.
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If the peak is located at the ith group, for i = 2, . . . , 9, the value of µi is 10.

The value of µi−1 and µi+1 is 9 for the clear peak data set, and is 9.5 for the flat peak

data set. The value of µi−2 and µi+2 is 8 for the clear peak data set, and is 9 for the flat

peak data set, ..., values are symmetrical on both sides of the peak, and so on. Figure

21 gives sample box plots from the clear peak data set; and figure 22 gives sample box

plots from the flat peak data set. All of them are generated from N(µi, 1).

Table 23: Unknown peaks estimation (clear peak N(µi, 1)).

Real Method # of estimates
Peak 1 2 3 4 5 6 7 8 9 10

1 HN 9999 1
RAThn 9998 2
RSM 9998 2
RSMls 9998 2

2 HN 31 9969
RAThn 6 9994
RSM 6 9994
RSMls 4 9996

3 HN 7 9993
RAThn 10000
RSM 1 9999
RSMls 10000

4 HN 10000
RAThn 10000
RSM 10000
RSMls 10000

5 HN 10000
RAThn 10000
RSM 10000
RSMls 10000

6 HN 10000
RAThn 10000
RSM 10000
RSMls 10000

7 HN 10000
RAThn 10000
RSM 10000
RSMls 10000

8 HN 9996 4
RAThn 9999 1
RSM 9999 1
RSMls 10000

9 HN 9960 40
RAThn 9991 9
RSM 9990 10
RSMls 9994 6

10 HN 10000
RAThn 1 9999
RSM 1 9999
RSMls 2 9998
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Ten thousand simulations were run for each situation under N(µi, 1). In Table

23, for clear peak data, new methods work slightly better than HN. In Table 24, the flat

peak simulations, the HN test has an average success rate of 0.9736; the RAThn test

has a success rate of 0.9528; the RSM test has an average success rate of 0.9529, and

the RSMls test has an average success rate of 0.9548.

Table 24: Unknown peaks estimation (flat peak under N(µi, 1))

Real Method # of estimates
Peak 1 2 3 4 5 6 7 8 9 10

1 HN 9075 925
RAThn 7851 2149
RSM 7847 2153
RSMls 7896 2104

2 HN 106 9877 17
RAThn 9 9871 120
RSM 9 9870 121
RSMls 9 9889 102

3 HN 255 9745
RAThn 40 9960
RSM 40 9960
RSMls 30 9970

4 HN 30 9970
RAThn 21 9979
RSM 21 9979
RSMls 15 9985

5 HN 10000
RAThn 1 9999
RSM 10000
RSMls 1 9999

6 HN 10000
RAThn 9997 3
RSM 9997 3
RSMls 9998 2

7 HN 9972 28
RAThn 9979 21
RSM 9979 21
RSMls 9984 16

8 HN 9747 253
RAThn 9952 48
RSM 9954 46
RSMls 9962 38

9 HN 9 9877 114
RAThn 112 9879 9
RSM 116 9876 8
RSMls 100 9893 7

10 HN 900 9100
RAThn 2191 7809
RSM 2177 7823
RSMls 2095 7905
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For the flat peak situation, however, from the peak at the 2nd group to the peak

at the 9th group, the average success rate of HN is 0.9899; of RAThn is 0.9952; of RSM

is 0.9952, and the average success rate of RSMls is 0.9960. Both Table 23 and Table 24

show that the closer the peak is to the center, the more accurate the estimate will be.

The closer the peak is to the two sides, the higher the error rate will be.

Table 25: Unknown peaks estimation (clear peak CN(0.25, µi, 100).)

Real Method # of estimates
Peak 1 2 3 4 5 6 7 8 9 10

1 HN 8419 1557 24
RAThn 9794 206
RSM 9779 221
RSMls 7675 2030 292 3

2 HN 1655 7940 405
RAThn 318 9631 51
RSM 341 9600 59
RSMls 2490 5779 1679 52

3 HN 16 818 9068 98
RAThn 3 115 9873 9
RSM 4 124 9856 16
RSMls 501 1583 6688 1221 7

4 HN 296 9648 56
RAThn 1 51 9945 3
RSM 1 64 9932 3
RSMls 97 192 1528 7170 1008 5

5 HN 88 9877 35
RAThn 18 9980 2
RSM 23 9974 3
RSMls 19 15 66 1321 7532 1021 21 2 1 2

6 HN 37 9862 101
RAThn 4 9976 20
RSM 6 9971 23
RSMls 3 1 1 27 1051 7522 1299 56 24 16

7 HN 52 9660 288
RAThn 2 9951 47
RSM 5 9935 60
RSMls 8 990 7234 1512 148 108

8 HN 118 9018 847 17
RAThn 11 9851 134 4
RSM 15 9832 148 5
RSMls 4 1248 6528 1676 544

9 HN 388 8009 1603
RAThn 48 9654 298
RSM 50 9632 318
RSMls 45 1647 5894 2414

10 HN 24 1610 8366
RAThn 190 9810
RSM 200 9800
RSMls 3 305 2083 7609
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Ten thousand simulations are run for each situation under CN(0.25, µi, 100).

For the clear peak simulations, in Table 25, the HN test has an average success rate

of 0.8987; the RAThn has an average success rate of 0.9847; the RSM has an average

success rate of 0.9831 and the RSMls test has an average success rate of 0.6963. Thus,

both the RAThn and the RSM test work better than the HN test.

Table 26: Unknown peaks estimation (flat peak CN(0.25, µi, 100))

Real Method # of estimates
Peak 1 2 3 4 5 6 7 8 9 10

1 HN 6556 3292 152
RAThn 6785 3208 7
RSM 6781 3209 10
RSMls 5508 3451 1009 32

2 HN 1713 7048 1239
RAThn 365 8789 846
RSM 387 8747 866
RSMls 2568 4351 2836 243 2

3 HN 113 1637 7942 308
RAThn 17 532 9379 72
RSM 22 554 9342 82
RSMls 1029 1943 5100 1892 36

4 HN 7 905 8956 132
RAThn 3 1 487 9485 24
RSM 3 1 514 9453 29
RSMls 299 462 2131 5714 1360 32 2

5 HN 329 9570 101
RAThn 184 9792 24
RSM 207 9764 29
RSMls 75 52 262 1924 6110 1437 111 14 9 6

6 HN 131 9562 307
RAThn 33 9794 173
RSM 34 9777 189
RSMls 10 3 5 90 1418 6163 1936 254 68 53

7 HN 120 8967 903 9 1
RAThn 16 9514 469 1
RSM 21 9484 492 3
RSMls 1 3 26 1386 5789 2057 490 248

8 HN 262 7994 1631 113
RAThn 77 9386 522 15
RSM 86 9346 550 1894
RSMls 1 37 1876 5098 1894 1094

9 HN 2 1275 7023 1700
RAThn 1 923 8688 388
RSM 942 8656 401
RSMls 1 251 2954 4320 2474

10 HN 151 3211 6638
RAThn 9 3065 6926
RSM 10 3096 6894
RSMls 21 1006 3391 5582
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In Table 26, for the flat peak situation, the HN test has an average success rate

of 0.8026; the RAThn test has an average success rate of 0.8854; the RSM test has an

average success rate of 0.8824 and the RSMls test has an average success rate of 0.5374.

In conclusion, under normal distribution, there is no significant difference among

all four tests. Under contaminated normal distribution, the RAThn test is the best

among all four tests.
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CHAPTER 6

ONE-WAY LAYOUT WITH COVARIATES

To reduce large error term variances, researchers may have some covariate mea-

surements along with the treatment measurements. The new method RAThn is based

on a rank-based full model, thus it is easy to extend to an ANCOVA model. The full

ANCOVA model is fit and the same linear combination of treatments is used as in

chapter (3.1). Thus the test automatically adjust for the covariates. In particular, the

RAThn test remains consistant.

For the model, we also assume that the slopes for the different groups are ho-

mogeneous. If this is not true then the ordering of the treatment effects may depend

on the location in the covariate space. For heteroscedastic slopes, a point in covariate

space may be selected and an ordering could be tested at that point. This generalizes the

rank-based picked-point-analyses developed in Watcharotone and McKean et al. (2015).

An investigation of such a procedure may be done in the future, but, for now,

it is beyond the scope of this thesis.

Clearly, tests of homogeneous slopes may be conducted as an initial test. We

would recommend the rank-based drop in dispersion test as discussed in Schrader and

McKean (1977) and, more recently, in chapter 4 of Kloke and McKean (2014).

Based on the results of this test, one may or may not proceed with an ordering

procedure. Such an adaptive procedure may be investigated in the future.
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6.1 The Covariance Model

Let Yij (i = 1, . . . , nj , j = 1, . . . , k) be the ith response fot the jth treatment.

Let Y be a n × 1 vector of Yij , where n =
∑
nj , let θ be a k × 1 vector of θj , and let

Xcov be a n × p matrix of covariates, where p is the number of covariates. Then the

covariance model is written as

Y = Wθ +Xcovγ + e, (6.1)

where W is a n× k matrix in which the ith column has ones corresponding to the ith

sample and zeros otherwise, γ is a p× 1 vector of the slop parameters and e is a n× 1

vector of random errors which are assumed to be iid from a continuous distribution.

Then,

E(Yij) = θj + x
′
ijγ.

For two treatment groups j and j
′
, if the covariates are the same, we have

E(Yij)− E(Yij′ ) = θj − θj′ .

6.2 The AT Test

The AT procedure test statistic for covariates case is presented as

T =

∑k
i=1 hiȳi√

MS(
∑k

i=1
h2
i
ni

+ d
′
Wx

−1d)
,

where his are the maxmin contrast coefficients, ȳis are the adjusted group means, MS is

the mean square residual within groups from the multiple ANCOVA,Wx is the deviation

(i.e., centered) score within group sum of products matrix for the covariates, d is the

weighted sample covariate means (see (Huitema, 2011), for details of this test statistic).
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6.3 The RAThn Test

As in chapters 3 and 4, the RAThn test for the covariates model is also based on

the rank-based model. The estimate of β1 is obtained from fitting the following model

Y = Wθ +Xcovγ + e

=

[
1 X1 Xcov

]
α

β1

γ

+ e

= Xβ + e.

The RAThn test statistic is

T = ka
′
β̂1, (6.2)

where a = (a2, a3, . . . ak)
′ and

∑k
i=1 ai = 0.

The var-cov matrix of β is

Σβ =

 κn −τ2
ϕX̄

′
(X
′
X)−1

−τ2
ϕX̄

′
(X
′
X)−1 τ2

ϕ(X
′
X)−1

 , (6.3)

where κn = n−1τ2
s + τ2

ϕX̄
′
(X
′
X)−1X̄ and τs = (2f(θe))

−1.

Let

H =

[
0(k−1)×1 Ik−1 0(k−1)×p

]
. (6.4)

Thus,

var(T ) = k2τ̂2
ϕa
′
H(X∗

′
c X

∗
c)
−1H

′
a, (6.5)

where

X∗ =

[
X1 Xcov

]
.

Based on (2.6) the asymptotically distribution of T is

T ∼̇N(ka
′
β1, k

2τ2
ϕa
′
H(X∗

′
c X

∗
c)
−1H

′
a). (6.6)
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We next state the null asymptotic distribution of T :

Theorem 6.1. If H0 : θ1 = · · · = θk is true, then E(T ) = 0, and V ar(T ) =

k2τ̂2
ϕa
′
H(X∗

′
c X

∗
c)
−1H

′
a. Then as n→∞, where n =

∑k
i=1 ni,

T ∗ =
ka
′
β̂1√

k2τ̂2
ϕa
′H(X∗

′
c X

∗
c)
−1H

′
a

D−→ Z ∼ N(0, 1).

The asymptotic test is

Reject H0 (1.2) in favor of HA (1.3)

if T ∗ ≥ zα; otherwise do not reject.

6.4 Simulation Studies

Ten thousand simulations were run to compare the empirical αs and the empir-

ical power of methods mentioned in previous sections. We set k = 5, p = 3, nj = 15.

Three covariates were generated from a multi-variate normal distribution MVN(µ,Σ),

where µ
′

= (0 0 0) and

Σ =


1 0.4 0.3

0.4 1 0.3

0.3 0.3 1

 .
By solving the power expression

p0 = P {F (δ, k − 1, n− k − p) ≥ F (1− α, k − 1, n− k − p)} ,

we obtain the noncentrality parameter δ which is approximately 1.81.

Using the same method as in chapter 2, when setting σ2 = 1 and µ1 = 0, we obtained

d =
√

1.81/150.

UnderH0 the response observations are generated fromNormal(0, 1), CN(0.25, 100)

and SCN(0.25, , 1, 100) distributions, respectively. The optimal score functions, Wilcoxon

scores, bent4 (0.25,0.75,-1,1) and bent1 (0.75,-2,1) are used for the corresponding dis-

tribution.
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6.4.1 With Normal Underlying Distribution

Table 27 and Figure 23 show the simulation results of the AT, RAThnT and

RAThnN tests under normally distributed errors. There are no significant differences

among all three tests.

Table 27: Empirical α and power under Normal distribution.

Method Empirical Power
0 0.60 2.41 5.43

AT .0971 .4960 .8973 .9939
RAThnT .0979 .4948 .8954 .9934
RAThnN .0997 .4996 .8971 .9935

Figure 23: Plot of power curves under Normal distribution.

6.4.2 With CN(0.25, 100) Underlying Distribution

Tables 28 and 29 and Figures 24 and 25 all show the simulation results of the

AT, RAThnT and RAThnN tests under contaminated normally distributed errors. The

scores used for the RAThn procedures are Wilcoxon scores and bent4 (.25,.75,-1,1)

scores. Both RAThnT and RAThnN have higher power than the AT test.
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Table 28: Empirical α and power under CN(0.25, 100) distribution with Wilcoxon
scores.

Method Empirical Power
0 0.60 2.41 5.43 9.65 15.08

AT .1019 .1604 .2306 .3187 .4057 .5101
RAThnT .0854 .2730 .5405 .7905 .9254 .9762
RAThnN .0872 .2764 .5451 .7947 .9272 .9766

Figure 24: Plot of power curves under CN distribution (Wilcoxon scores).

Figure 25: Plot of power curves under CN distribution (bent4 scores).
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Table 29: Empirical α and power under CN(0.25, 100) distribution with bent4 scores.

Method Empirical Power
0 0.60 2.41 5.43 9.65 15.08

AT .0999 .1564 .2289 .3166 .4143 .5097
RAThnT .1041 .3519 .6635 .8828 .9753 .9945
RAThnN .1067 .3574 .6676 .8854 .9761 .9945

6.4.3 With SCN(0.25, 1, 100) Underlying Distribution

Tables 30 and 31 and Figures 26 and 27 all show the simulation results of the

AT, RAThnT and RAThnN tests under skewed contaminated normal distribution. The

scores used for the RAThn procedures are Wilcoxon scores and bent1 (.75,-2,1) scores.

Both RAThnT and RAThnN have higher power than the AT test.

Table 30: Empirical α and power under SCN distribution with Wilcoxon scores.

Method Empirical Power
0 0.60 2.41 5.43 9.65 15.08

AT .1017 .1588 .2280 .3155 .4215 .5207
RAThnT .0888 .2732 .5486 .7925 .9232 .9754
RAThnN .0899 .2789 .5538 .7972 .9253 .9763

Figure 26: Plot of power curves under SCN distribution (Wilcoxon scores).
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Table 31: Empirical α and power under SCN distribution with bent1 scores.

Method Empirical Power
0 0.60 2.41 5.43 9.65 15.08

AT .1030 .1396 .1907 .2499 .3084 .3862
RAThnT .0779 .2310 .4864 .7340 .8847 .9586
RAThnN .0799 .2359 .4908 .7383 .8875 .9594

Figure 27: Plot of power curves under SCN distribution (bent1 scores).

When errors follow a normal distribution, the RAThn test works as well as the

AT test. When errors follow a contaminated normal distribution or a skewed contami-

nated normal distribution, the RAThn test outperforms the AT test.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the thesis, and outlines the directions for future work.

7.1 Conclusions

Our investigation consisted of a large simulation study with the number of simu-

lations 10,000, the number of groups set at 5 and with group sizes 5. Error distributions

included the normal, Student t with degrees of freedom 10, 8, 5, 3, 2 and 1, and a skewed

contaminated normal with mean 1, variance 100 and contaminateion rate 0.25. Besides

the Abelson-Tukey (AT), for comparison purposes our study included the robust (well-

known) nonparametric procedures: the Jonckheere-Terpstra (JT), the Spearman (SP),

and the Hettmansperger-Norton (HN). These robust tests performed much better for

the heavy-tailed error distributions. The JT test is even as efficient as AT on normal

errors. The AT test, however, is easily extended to general linear and mixed models.

For a general linear model of the form

Y = α+Xβ + e,

where Y is the n× 1 vector of responses, X is the n× (k − 1) design matrix, and e is

the n × 1 vector of error terms. The least squares estimator minimizes the Euclidean

distance between Y and Ŷ , the predicted value of Y . A rank-based estimator is a

different measure of distance which is based on the dispersion function of Jaeckel. The

only assumption on the distribution of the errors required is that it is continuous.
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Our initial investigation of the Abelson-Tukey (AT) procedure, showed that the

AT test is not robust for error distribuiton with heavy tails. Thus, the goal of this

study is to robustify the AT test. We have developed rank-based procedures for ordered

alternative models. These procedures, as the AT procedure, are model based and easily

extended to mixed model and ANCOVA cases. Several procedures are proposed and

tested in this thesis, i.e. the RAT test, the RAThn test, the RSM test and the RSMls

test. The RAT and RAThn tests are rank-based procedures, the estimates of the shifts

in location are obtained from a rank-based regression model as the AT’s estimates are

obtained from a least squares (LS) fit. Thus, these tests are easily extended to mixed

model and ANCOVA cases. The difference of these two tests are the weights. The RAT

test uses the AT weights as the AT test. The RAThn test uses the HN weights as the

HN test. The RSM test uses the HN weights and the Hodges-Lehmann estimates of the

shifts. The RSMls test uses the HN weights and the least square estimates of the shifts.

Asymptotic variance of four test statistics were derived in the thesis. They are

τ2
ϕ

∑k
j=1

h2
j

nj
, k2τ2

ϕ

∑k
j=1

a2
j

nj
, k2τ̂2

ϕ

∑k
j=1

a2
j

nj
, k2σ2
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nj
of the RAT test, the RAThn

test, the RSM test and the RSMls, respectively. Asymptotic distributions of all test

statistics were proposed. The asymptotic power of these tests were also proposed. All

four tests are consistent. We showed that the Pitman efficacy of the RAT, RAThn, RSM

and RSMls tests are n−1/2
∑
hjcj

τϕ(
∑
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, respectively. When the number of groups and group size both are 5,

ARE(RAT, RAThn)= 0.9423. Thus, under this case, the RAT test is as 94.23% efficient

as the RAThn test. The RAThn and the RSM tests have the same Pitman efficacy as

the HN test, thus, they have the same asymptotic local power. Thus, asymptotically

they are equivalent.

To investigate their small sample properties, simulation studies were obtained

on general linear models, mixed models, unknown peak and covariance models, respec-

tively. Normal distribution and some heavy tailed and/or skewed distributions, i.e.

contaminated normal distribution, skewed contaminated normal distribution and GF

distribution, are used as the error distributions to do the simulations. Ten thousand

simulations are run for each situation.
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For general linear models, simulations were run with different situations: when

errors follow a normal distribution N(0, 1), when errors follow a symmetric heavy tailed

contaminated normal distribution CN(0.25, 100), when errors follow a highly right

skewed distribution, skewed contaminated normal distribution SCN(0.25, 100. 1), and

when errors follow a heavier tailed and positively skewed GF (1, 0.1) distribution. We

set number of groups 5 and group sizes 5. Under the normal distribution, the RAT,

RAThn and RSM tests were run with Wilcoxon scores. For the remaining distributions,

they were run with Wilcoxon scores and optimal scores. Under the normal distribution,

the RSMls test dominates all other methods. Under the CN(0.25, 100) distribution,

the RAT and RAThn tests both have higher power than the JT test when using bent4

scores. Under the SCN(0.25, 100. 1) distribution, the RAThn test has higher power

than all other methods except the JT test, and has no significant difference with the JT

test when using bent1 scores. Under the GF (1, 0.1) distribution, the RAT and RAThn

tests have significantly higher power than the JT test with logGF and bent1 scores.

For mixed models, two new methods were generated from the RAT and RAThn

tests, but using the JRFit package (Kloke and McKean, 2014) to obtain the estimates

of the shifts. Thus, they were called JrRAT and JrRAThn. Two types of the design

matrixes, only composed of the group effects or composed of the group effects and the

block effects, were used in this chapter. They were called JrRAT, JrRAThn, JrRATb and

JrRAThnb, respectively. Two types of the variance-covariance matrixes, the sandwich

estimation and the compound symmetry structure, were used in the simulation. Four

types of the data sets , 10 blocks with 3, 4 and 7 treatment groups and 15 blocks with

7 groups, were used in the simulation. Ten thousand simulations were run to compare

the new methods with the Page test, the standard nonparametric test in this situation.

The variance components σ2
b and σ2

ε were set to 4 and 1, respectively. The simulation

results show that the JrRAThnb test outperforms the Page test in all cases.

For unknown peak problems, three new methods, the RAThn, RSM and RSMls

tests, were compared with the HN test. Two types of data, a set with a clear peak and

a set with a flat peak, were generated both from a normal distribution, and a symmetric

heavy tailed contaminated normal distribution. The number of groups and the group
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size were set as 10 and 16, respectively. All simulation results show that the closer the

peak is to the two sides, the higher the error rate will be. And except for the flat peak,

under the normal distribution case, the RAThn and RSM tests have higher average

success rate than the HN test to estimate the peak.

For covariance models, ten thousand simulations under each case were run to

compare the RAThn and the AT tests. We set 5 groups, 3 covariates and 15 observa-

tions in each group. Under H0 the response observations were generated from N(0, 1),

CN(0.25, 100) and SCN(0.25, 100. 1), respectively. The simulation results show that

when errors follow a normal distribution, the RAThn test works as well as the AT test;

when errors follow a contaminated normal distribution or a skewed contaminated normal

distribution, the RAThn test outperforms the AT test.

All simulation results show that the RAThn test works well, especially when

errors follow a heavy-tailed and/or heavy-tailed skewed distributions.

7.2 Future Work

Although the research presented in this thesis have showed the effectiveness of

the RAThn test, it could be further developed in the following three ways.

The RAThn test has an advantage that different optimal score functions cor-

respond to different underlying distributions can be used. Thus, the power of the test

can be optimized. The choose of the optimal score functions, however, depends on the

underlying error distribution which is unknown in practice. Thus, adding an adaptive

procedure will be very useful. Such as the Hogg’s adaptive procedure which is discussed

in the Hogg, McKean and Craig (2013). We are planning future studies of such schemes.

Another future work of this study is adding an adaptive procedure to detect

the homogeneity slopes of the covariance model to decide whether or not to proceed to

an ordering procedure. We would recommend the rank-based drop in dispersion test

as discussed in Schrader and McKean (1977), and, more recently, in chapter 4 of Kloke

and McKean (2014).

The third future work of this study is investigating a procedure for the het-

eroscedastic slopes. We would recommend the rank-based picked-point-analyses devel-
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oped in Watcharotone and McKean etc. (2015).
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