6-1988

An Investigation of a Soil Gas Sampling Technique and Its Applicability for Detecting Gaseous PCE and TCA Over an Unconfined Granular Aquifer

Timothy J. Mayotte

Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

Part of the Geology Commons, and the Hydrology Commons

Recommended Citation
https://scholarworks.wmich.edu/masters_theses/1201

This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
AN INVESTIGATION OF A SOIL GAS SAMPLING TECHNIQUE
AND ITS APPLICABILITY FOR DETECTING GASEOUS PCE
AND TCA OVER AN UNCONFINED GRANULAR AQUIFER

by

Timothy J. Mayotte

A Thesis
Submitted to the
Faculty of The Graduate College
in partial fulfillment of the
requirements for the
Degree of Master of Science
Department of Geology

Western Michigan University
Kalamazoo, Michigan
June 1988
AN INVESTIGATION OF A SOIL GAS SAMPLING TECHNIQUE AND ITS APPLICABILITY FOR DETECTING GASEOUS PCE AND TCA OVER AN UNCONFINED GRANULAR AQUIFER

Timothy J. Mayotte, M.S.
Western Michigan University, 1988

A soil gas sampling and analytical technique was investigated to evaluate its ability and versatility for detecting chlorinated hydrocarbons in unconfined aquifers. The technique was used successfully to delineate plumes of perchloroethene (PCE), and 1,1,1-trichloroethane (TCA) contamination present in the vadose zone, and at the water table of an unconfined sand and gravel aquifer. Soil gas samples were obtained by concentrating PCE and TCA vapors diffusing from these sources onto a sorbent material. The samples were analyzed by gas chromatography. The data from the analysis of these samples were used to provide an initial estimate of the source areas, and the areal extent of the groundwater plumes beneath the study area. These estimates were confirmed with water quality data. High degrees of correlation were proven to exist between the soil gas and water quality data obtained during this study.
ACKNOWLEDGEMENTS

I would like to thank all of those people who lended technical and clerical assistance and were instrumental in completing this study. I would especially like to thank my parents, Bernard and Jean Mayotte. Over the years they have sacrificed much of their personal interests and have given invaluable support while I have worked to complete my educational goals.

Finally, I want to thank my wife Kathleen for all the support and encouragement she has given me while I have worked on this study. Kath has also, willingly, sacrificed many of her own interests and has been my constant source of strength over these past few years. It is to her that I dedicate this study.

Timothy J. Mayotte
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

University Microfilms International
300 N. Zeeb Road
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
An investigation of a soil gas sampling technique and its applicability for detecting gaseous PCE and TCA over an unconfined granular aquifer

Mayotte, Timothy Joseph, M.S.
Western Michigan University, 1988

Copyright ©1988 by Mayotte, Timothy Joseph. All rights reserved.
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark ✓.

1. Glossy photographs or pages _____
2. Colored illustrations, paper or print _____
3. Photographs with dark background ✓
4. Illustrations are poor copy _____
5. Pages with black marks, not original copy ✓
6. Print shows through as there is text on both sides of page _____
7. Indistinct, broken or small print on several pages ✓
8. Print exceeds margin requirements _____
9. Tightly bound copy with print lost in spine ______
10. Computer printout pages with indistinct print _____
11. Page(s) _________ lacking when material received, and not available from school or author.
12. Page(s) _________ seem to be missing in numbering only as text follows.
13. Two pages numbered ______. Text follows.
14. Curling and wrinkled pages _____
15. Dissertation contains pages with print at a slant, filmed as received ✓
16. Other ________________________________

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS..ii
LIST OF TABLES..vi
LIST OF FIGURES..vii

CHAPTER

I. INTRODUCTION..1
 Previous Studies.......................................1
 The Problem..3
 Objectives..4

II. CONTAMINANT TRANSPORT THEORY: LITERATURE REVIEW........6
 Infiltration Into an Unconfined Aquifer............7
 Transport in the Saturated Zone....................11
 Transport in the Capillary Fringe..................16
 Vapor Transport in the Vadose Zone.................16

III. DESCRIPTION OF STUDY AREA..........................26
 History...26
 Geography and Demography..........................30
 Climatology..34
 Soils..36
 Surface Waters.....................................38
 Geology...38
 Hydrogeology.......................................44
 Target Compounds..................................47

iii
Table of Contents--Continued

CHAPTER

IV. DATA ACQUISITION ... 49
 Soil Gas Sampling ... 49
 Soil Gas Sample Analysis 69
 Troubleshooting ... 89
 Temporary Well Sampling 96
 Temporary Well Sample Analysis 103

V. RESULTS AND DISCUSSION 104
 Soil Gas Sampling Results 104
 Temporary Well Sampling Results 115
 Discussion of the Results 123
 Statistical Analysis 129

VI. CONCLUSIONS AND RECOMMENDATIONS 135
 Conclusions .. 135
 Recommendations .. 138

APPENDICES

A. Boring Logs .. 141
B. Soil Gas Sample Logs 161
C. Calibration of Air Sampling Pumps 245
D. Packing and Conditioning of Sample Trap Tubes 247
E. Water Quality Sample Analysis Methodology 249
F. Statistical Calculations 253
Table of Contents—Continued

CHAPTER

BIBLIOGRAPHY...257
LIST OF TABLES

1. Physical and Chemical Properties of PCE, TCA, Water and Moist Air.................................48
2. Soil Gas Sampling Equipment...53
3. Gas Chromatographic Programming...79
4. Sample with Visually Identifiable PCE and TCA Chromatographic Responses................85
5. Summary of Interference in Soil Gas Samples.................92
6. Temporary Well Sampling Equipment..99
7. Analytical Results of Supplementary Data.................................106
8. Soil Gas Sampling Results...107
9. Temporary Well Sampling Results...116
10. Concentrations of, and Ratios between, PCE and TCA in the Soil Gas and Shallow Groundwater at Corresponding Locations.................................134
LIST OF FIGURES

1. Contaminant Transport Processes 24
2. Location of Study Area 27
3. Study Area and Boundaries 31
4. Rozema Garage Site Schematic 33
5. Soil Types Across the Study Area 37
6. Surface Waters ... 39
7. Locations of Geologic Cross-Sections 41
8. Geologic Cross Section A-A’ 42
9. Geologic Cross Section B-B’ 43
10. Geologic Cross Section C-C’ 43
11. Groundwater Contours 45
12. Soil Gas Sampling Locations 50
13. Decontamination of Soil Gas Probe 54
14. Decontamination of Probe Points 54
15. Teflon Joints and Soil Gas Probe Points 55
16. Threading PE Tubing into Soil Gas Probe 56
17. Soil Gas Probe Point and PE Tubing Connection 57
18. Connecting Soil Gas Probe and Probe Point 58
19. Drilling Pilot Hole .. 60
20. Tenax Filled Trap Tube 62
21. Soil Gas Probe and SKC Pump in Place 63
22. Soil Gas Sample Log Sheet 65
List of Figures—Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>SKC Air Sampling Pump</td>
<td>66</td>
</tr>
<tr>
<td>24</td>
<td>NUS Chain of Custody Forms</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>Purging Soil Gas Standard Mixture into Trap Tube</td>
<td>70</td>
</tr>
<tr>
<td>26</td>
<td>Soil Gas Calibration Curve for PCE and TCA, January, 1987</td>
<td>74</td>
</tr>
<tr>
<td>27</td>
<td>Soil Gas Calibration Curve for PCE, June and July, 1987</td>
<td>75</td>
</tr>
<tr>
<td>28</td>
<td>Soil Gas Calibration Curve for TCA, June and July, 1987</td>
<td>76</td>
</tr>
<tr>
<td>29</td>
<td>Soil Gas Standard Chromatogram</td>
<td>77</td>
</tr>
<tr>
<td>30</td>
<td>Inserting Trap Tube into LSC-2 Unit</td>
<td>78</td>
</tr>
<tr>
<td>31</td>
<td>Soil Gas Sample Chromatogram</td>
<td>81</td>
</tr>
<tr>
<td>32</td>
<td>Chromatogram of "Clean" Preanalysis Run</td>
<td>82</td>
</tr>
<tr>
<td>33</td>
<td>Chromatogram of "Dirty" Preanalysis Run</td>
<td>84</td>
</tr>
<tr>
<td>34</td>
<td>Chromatogram Showing Unknown or Interference Compounds</td>
<td>90</td>
</tr>
<tr>
<td>35</td>
<td>Temporary Well Locations</td>
<td>98</td>
</tr>
<tr>
<td>36</td>
<td>Temporary Well Sample Log Sheet</td>
<td>102</td>
</tr>
<tr>
<td>37</td>
<td>Supplementary Data Locations</td>
<td>105</td>
</tr>
<tr>
<td>38</td>
<td>Isoconcentration Contours of PCE in the Soil Gas</td>
<td>112</td>
</tr>
<tr>
<td>39</td>
<td>Isoconcentration Contours of TCA in the Soil Gas</td>
<td>113</td>
</tr>
<tr>
<td>40</td>
<td>Isoconcentration Contours of PCE in the Groundwater</td>
<td>118</td>
</tr>
<tr>
<td>41</td>
<td>Isoconcentration Contours of TCA in the Groundwater</td>
<td>119</td>
</tr>
</tbody>
</table>
List of Figures—Continued

42. Correlation of PCE in the Soil Gas and Groundwater..............................131

43. Correlation of TCA in the Soil Gas and Groundwater..............................132
CHAPTER I

INTRODUCTION

The detection and delineation of plumes of chlorinated hydrocarbons in the groundwater of unconfined aquifers is, often, an expensive, time consuming endeavor. In the past, the discovery, and definition of the areal extent of these plumes has been accomplished through the installation and sampling of borings and monitoring wells. Although samples acquired by these means are the best way to quantitatively measure contaminants in the groundwater, such sample acquisition and analysis is expensive and may require weeks to accomplish. In cases where little is known of the groundwater flow conditions or contaminant distributions, many borings or wells may be required to adequately define the extent of plumes. The detection and delineation of chlorinated hydrocarbon (CH) plumes by monitoring the vadose zone air (soil gas) over these plumes is an inexpensive and rapid alternative.

Previous Studies

Soil gas composition data have been acquired and used extensively over the past few years to help locate
sources and delineate groundwater plumes of chlorinated hydrocarbons. These data have often been used to aid in the design of monitoring well networks over these plumes.

Lappala and Thompson (1983) discussed the theory behind, and applications related to, the detection of groundwater contamination by shallow soil gas sampling in the vadose zone of unconfined granular aquifers. Marrin and Thompson (1984) presented case histories where soil gas data were used successfully to map plumes of trichlorethene and 1,1,1-trichloroethane in granular water table aquifers. Marrin (1985) showed how soil gas data were also useful for determining the sources for, and delineation of, groundwaters contaminated with methane, benzene, toluene and total hydrocarbons. Marrin (1986) investigated how soil gas data could be interpreted to distinguish between dichloroethene, perchloroethene, and 1,1,1-trichloroethane contamination in the vadose zone as opposed to in the groundwater. Mills (1986) described the use of a static soil vapor collector to identify trichloroethene and perchloroethene contamination in the groundwater.

A summary of various soil gas sampling and analytical techniques, that have been used successfully to detect petroleum and chlorinated hydrocarbon vapors emanating from plumes of these contaminants in unconfined sand and gravel aquifers, was compiled by Eklund.
May, 1985. In this report the uses of soil cores, surface and downhole flux chambers, accumulator devices and ground probe testing as soil gas sampling methods were discussed. A brief review of the various techniques available for the analysis of soil gas samples was provided as well.

The Problem

A soil gas sampling technique, which utilizes a ground probe, and concentrates soil gas constituents onto a sorbent medium, has been used extensively by the NUS Corporation to aid in identifying sources of chlorinated hydrocarbon contamination in water table aquifers. The data from previous soil gas surveys performed with the NUS technique have been used successfully for this purpose. However, the versatility of the technique for not only detecting source "hot spots" but also for delineating plumes of contamination has been in question. At no site has there been a sufficient amount of soil gas and corresponding water quality data available to evaluate the ability of the technique for accomplishing plume delineation. Therefore, a study was needed that would have a data base sufficient to evaluate the use of soil gas data obtained by the NUS method for defining plumes, as well as sources, of chlorinated hydrocarbons in unconfined granular aquifers.
Objectives

The objectives of this study are to evaluate the ability and versatility of this soil gas sampling and analysis technique for detecting vapors diffusing from chlorinated hydrocarbon contamination in the vadose zone and in the groundwater of an unconfined granular aquifer.

The manner in which soil vapors are sampled using this technique entails drawing a specified volume of soil vapor through a stainless steel sampling probe installed at depths of up to 5 feet below the ground surface, into a small stainless steel tube packed with sorbent material. One liter of soil gas is drawn through the tube and the chlorinated hydrocarbon vapors are adsorbed onto Tenax (60/80 mesh) packed in the tube. The steel tube is then inserted directly into a liquid sample concentrating device and the sample is analyzed by purge and trap gas chromatography.

To achieve these objectives, the technique has been utilized over a plume of known groundwater contamination. Water quality data, most of which were obtained at the same locations and same approximate times as the soil gas samples, were used for verification of, and correlation with, the soil gas data. Sampling was done during both the summer and winter.

The study area, located in west-central Michigan, is underlain by an unconfined sand and gravel aquifer.
with a depth to water table of approximately 8 to 10 feet below ground level. The aquifer is contaminated with the chlorinated hydrocarbons PCE and TCA. The contamination is known to have originated at a former truck servicing facility for a hazardous waste hauling company.

A Remedial Investigation (RI) of this facility has been carried out, for the Michigan Department of Natural Resources (MDNR), by NUS. During the investigation, soil gas, temporary well, soil and monitoring well sampling data were acquired. Many of these data have been used to serve as, or supplement the data base for this study.

The soil gas data obtained for this study were used successfully to define the PCE and TCA sources and to delineate the contaminant plumes present at the water table. High correlations were found to exist between the soil gas and corresponding water quality data.
CHAPTER II

CONTAMINANT TRANSPORT THEORY: LITERATURE REVIEW

The presence of chlorinated hydrocarbons (CH) in the vadose zone, or at the water table of unconfined granular aquifers may be verified by detecting the vapors of these compounds in the soil gas above, and around the contaminated zones.

In order for CH's in the groundwater to be detected in the vadose zone, these compounds must move upward from the water table, through the capillary fringe and then to the point at which a soil gas sample is taken (Lappala and Thompson, 1984).

Many factors control the migration and fate of CH's in the vadose zone and in the groundwater of unconfined granular aquifers. These factors determine how a plume of CH will be distributed at the water table and, consequently, how the CH vapors will be dispersed above the plume. This will, of course, determine the extent to which a groundwater contaminant plume may be delineated using soil gas sampling data.

The situation that has been described is when gases volatilize from dissolved CH’s (solute) at the water table. However, gases can also emanate from non-
dissolved CH liquid (raw product) retained in the vadose zone above the water table. In this section, the mechanisms that control the movement of CH plumes in unconfined granular aquifers, and the migration of CH gases above these plumes will be discussed. In doing this, the theoretical migration behavior of a spill or leak of CH’s occurring above this type of aquifer will be described. Thus, consideration will also be given to the migration of CH liquids, solutes and vapors in the vadose zone.

The prediction or evaluation of the migration process of a given CH fluid in granular deposits is based upon several physical and chemical characteristics of that substance. These characteristics include the viscosity, surface tension, density, solubility, volatility and the vapor density of the substance (Schwille, 1984). In the following sections of this Chapter a description of the role each characteristic plays in the migration process will be presented.

Infiltration Into An Unconfined Aquifer

When a spill or point-source leak of a CH liquid takes place over a granular aquifer the liquid will migrate downward in the vadose zone under the influence of gravity. The velocity at which the migration occurs is dependent upon the fluid viscosity of the substance.
The more viscous the fluid, the slower it will migrate. The depths to which the compound will migrate will depend on the volume of the CH fluid that has been spilled or is leaking, and the retention capacity of the porous medium. If the volume of the substance is large enough such that the residual saturation of the liquid has been exceeded, and the porous media is homogeneous, then flow will continue to the water table (Schwille, 1984). Soil containing lenses or zones of deposits having lower permeabilities and higher water retention capacities than the surrounding materials may restrict the depth of penetration of this flow. A lateral component of flow may result as the migrating CH fluid encounters these local heterogeneities in the porous media. Consequently, a broadening of the fluid body may result (Schwille, 1984).

Theoretically, the fluid body may even become perched above semi-impermeable deposits in the vadose zone.

If the volume of CH fluid that has been spilled or leaked is small, such that the retention capacity of the soil material has not been exceeded above the water table, then the fluid will be retained under residual saturation. This can occur as the fluid is held in the soil matrix under capillary retention, capillary entrapment (Bear, 1979; de Marsily, 1986), or by
adsorption of the CH liquid to the soil particles (Schwarzenbach and Giger, 1985). The degree to which capillarity will occur will be governed by the surface tension of the fluid and by the porosity of the material (Schwille, 1984). Substances having high surface tensions are more easily retained in a porous medium than substances with low surface tensions.

For spills of CH fluid that have penetrated the full extent of the vadose zone and have infiltrated the groundwater, the density of the substances comprising the fluid will dictate the position in the aquifer to which each substance will migrate (Zachara, 1986). The density of the substance relative to the density of water will control whether the substance will sink through the aquifer or float on top of the water table. Most chlorinated hydrocarbons are denser than water and will sink through the aquifer as a result. Both PCE and TCA have densities greater than water; thus, we will consider such behavior only.

The migration of the CH fluid, because it is immiscible with water, is slowed slightly as it reaches the water table. This occurs because water must be displaced from its path of migration (Schwille, 1984). The continued flow of the CH fluid through the saturated thickness of the aquifer is determined by the same factors that control migration in the vadose zone. If
the retention capacity of the saturated zone is exceeded the CH fluid will sink to the base of the aquifer. The CH fluid will then spread out over this semi-impermeable zone much like pancake batter over a fry pan (Schwille, 1984; Cherry, 1987). Much CH fluid is retained throughout the saturated zone behind the migrating fluid front. As in the vadose zone, the fluid is in a state of residual saturation. The CH fluid is held in the pores of the aquifer material under the effects of capillarity. Some of the CH fluid may also be adsorbed into the matrix of the aquifer by the phenomena of solid-liquid partitioning as discussed by Schwarzenbach and Giger (1985). For a large spill, the amount of CH fluid under residual saturation on the lee side of the fluid front may be quite significant. For a transient leak of CH fluid, the flux of material into the vadose zone and the underlying aquifer could also result in a significant distribution of CH fluid in residual saturation along the path of the fluid's migration.

These CH fluid bodies in residual saturation are pervious to the flow of water, both in the vadose zone and the saturated zone. When infiltrating water or groundwater flows through the immiscible CH fluid it will dissolve some of that fluid (Zachara, 1986).

The solubility of the components of the fluid will determine the concentration of the solution zone formed
on the downgradient side of the CH fluid bodies (Schwille, 1984). A plume of dissolved constituents is formed throughout the entire thickness of the saturated zone as a result of this phenomena (Cherry, 1987; de Marsily, 1986; Schwille, 1984). Dissolved constituents may also be transported vertically through the vadose zone by this process. Schwille describes the plume of dissolved CH constituents as a hydrous solution having a density only slightly higher than water. As a result, there is no significant tendency for the plume to sink within the aquifer.

Transport in the Saturated Zone

The transport of the dissolved CH (solute) plume will be governed primarily by the processes of advection, hydrodynamic dispersion and chemical reaction (Mackay, Freyberg and Roberts, 1986). Sorption processes, although important to the rate of migration of the CH solute plume, do not directly control the shape or spreading of the plume during transport. Consequently, the effects of sorption on the migrating solute plume will not be discussed further.

Advection represents the movement of a solute with the bulk fluid as given by the seepage velocity in the pore space (Bedient, Borden and Leib, 1985). The rate of transport of the solute is equal to the average linear...
the groundwater as determined by
\[\bar{v} = v/n \]
where \(v \) is the seepage velocity, or darcy velocity, and \(n \) is the porosity of the aquifer material (Freeze and Cherry, 1979).

Advection is usually the dominant solute transport mechanism in the saturated zone. In relatively coarse grained aquifers that are not affected by significant recharge or groundwater extraction, such transport is predominantly horizontal (Lappala and Thompson, 1983).

Hydrodynamic dispersion (\(D_h \)) is a combination of the processes of mechanical dispersion (\(D_i \)) and molecular diffusion (\(D^* \)) and can be expressed by
\[D_h = D_i + D^* \]

Mechanical dispersion is a mixing phenomenon due mainly to heterogeneities in the aquifer medium that cause variations in flow velocities and flow paths (Bear, 1979). As a result, CH solutes flowing in granular aquifers can be spread out in directions parallel, and transverse to the direction of mean groundwater flow.

On a microscopic scale, mechanical dispersion is caused by frictional drag along pore walls much like the laminar flow of water through a conduit. Flow through a pore is much quicker down the axis of the pore as friction causes flow along the pore walls to be slowed (Bear, 1979; de Marsily, 1986). Also, flow is spread
out, or dispersed as streamlines fluctuate in space with respect to the mean direction of flow due to the shape of the interconnected pore space (Bear, 1979). Variations in pore size can create differential flow velocities as water flowing in smaller pores is impeded by encountering a greater surface area of solid as compared to larger pores (de Marsily, 1986).

On a macroscopic scale, a stratification or other features of large scale heterogeneities such as lenses or interlayered deposits, broken or fractured zones, etc. also introduce a heterogeneity into the flow field, which, through the same mechanisms described above, causes the solute body to mix and spread out in all directions of space (de Marsily, 1986). Groundwater flow streamlines will tend to follow paths of least resistance and, thus, will migrate around zones of low permeability and follow more permeable zones of the aquifer in the path of flow (Freeze and Cherry, 1979).

The result of the micro and macro scale dispersion processes is the spreading of a CH solute plume increasing with distance from the source (Anderson, 1984). This spreading will occur in the direction of mean groundwater flow (longitudinally), and perpendicular to this flow direction (transversely). Longitudinal mechanical dispersion \(D_l \) and transverse mechanical dispersion \(D_t \) are given by:
respectively. Here \(\alpha_l \) and \(\alpha_t \) are characteristic properties of the aquifer materials known as the dynamic dispersivities (Freeze and Cherry, 1979). These dispersivities are a measure of the mechanical dispersion property of the aquifer material in the longitudinal direction (\(\alpha_l \)) and the transverse direction (\(\alpha_t \)) and are defined as a characteristic length describing the ability of the aquifer material to disperse solutes (Walton, 1984). The more heterogeneous and anisotropic the aquifer material the greater the values of the dispersivities. Typically, transverse dispersivity values are smaller than longitudinal dispersivity values by a factor of 5-20 (Freeze and Cherry, 1979). Longitudinal dispersivity values for relatively homogeneous sandy materials range from 0.1 meters to 21 meters (Walton, 1984).

Molecular diffusion is the phenomenon linked to molecular agitation whereby solute particles are transferred from zones of high concentration to zones of low concentration under their own kinetic energy (Bear, 1979; de Marsily, 1986). This process can occur in moving or non-moving fluids and is given by Fick’s first law

\[
Q_d = -n_e D^* dc/dx
\]
Where \(Q_d \) is the diffusive flux of the solute in the porous media, \(n_e \) is the effective porosity of the aquifer material, \(D^* \) is the effective diffusion coefficient of the diffusing fluid and \(-dc/dx \) is the concentration gradient of the fluid front (Sudicky, Gillham and Frind, 1985). The effective diffusion coefficient is related to the molecular diffusion coefficient, \(D_m \), of the solute in a free solution by

\[
D^* = D_m \tau
\]

where \(\tau \) is the tortuosity of the medium (Bear, 1972).

The tortuosity is the ratio of the length of the actual flow path the solute will follow through the aquifer to the length of the aquifer. The molecular diffusion coefficient is dependent on the solute concentration and temperature.

The process of molecular diffusion in groundwater systems is slow. The significance of the diffusion process on solute migration is low relative to mechanical dispersion in coarse granular aquifers with relatively quick groundwater velocities. However, in fine grained materials like silts and clays with low groundwater velocities, molecular diffusion may be the dominant solute transport mechanism (Gillham and Cherry, 1982). Yet, even in these situations, the rate of transport is low.
Transport in the Capillary Fringe

The transport of a CH solute plume in the capillary fringe or tension saturated zone may occur by the processes of transverse hydrodynamic dispersion (Lappala and Thompson, 1983). However, the fluctuations of the elevation of the water table probably have a greater ability for distributing solute above, and throughout the capillary fringe than those mechanisms (Lappala and Thompson, 1983). As the water table rises it may transport solute, which was present at or close to the water table, into, or above the capillary fringe. As the water table recedes it leaves behind contaminated water retained in the vadose zone and throughout the capillary fringe. This retention is enhanced by hysteresis and the relationship between pressure head and water content, as described by Hillel (1982).

Vapor Transport in the Vadose Zone

Up to now the processes which are responsible for distributing CH fluid bodies and solutes throughout the vadose and saturated zones have been described. As a result, it is understood how CH fluid bodies and solute plumes can be distributed such that the fluid body or plume is in direct contact with the air phase of the vadose zone. It is therefore known where the interface exists upon which the volatilization, or gas-liquid
partitioning, of the CH constituents may occur (Lapalla and Thompson, 1983). Hence, this interface is the source for CH gases in the vadose zone and its dimensions will most likely determine where these gases can be detected.

The partitioning of CH fluid bodies and solutes between the liquid phase and the gas phase is the process of volatilization. The volatilization phenomenon is based upon Henry's law, which states that for ideal gases and solutions the vapor phase concentration of a chemical (C_g) above a solution is proportional to its concentration in the solution, C_l (Mabey et al., 1982). This can be written as

$$C_g = K_H C_l$$

wherein K_H, the proportionality constant, is known as Henry's constant. This constant is a measure of a chemical's tendency to partition between the gas and liquid phases at equilibrium (Jury, Spencer and Farmer, 1983). In other words, the larger the value of K_H for a given compound, the greater the tendency for that compound to volatilize from the liquid phase into the gas phase. Consequently, more of the compound's vapor is liberated into, and transported upward through the vadose zone. The Henry's constant for a chemical can be determined by

$$K_H = C_g / C_l$$

where C_g is the saturated vapor density, or vapor
pressure, and C_i is the solubility of the chemical. This relationship holds true only if C_i and C^* data are for the pure material at the same temperature and the same phase (solid or liquid) (Mabey et al., 1982).

The vapor density of many CH's may be higher than that of air. These vapors will tend to accumulate along the top of the capillary fringe over the plume (Schwille, 1984).

The migration of CH vapors through the vadose zone of granular aquifers can occur by two different mechanisms: convection and gaseous diffusion (Baver, Gardner and Gardner, 1940). Convection, or mass flow, is the process whereby masses of air, or gases are driven by the force of a gradient of total gas pressure resulting in movement of the masses from zones of high pressure to zones of low pressure. Gaseous diffusion, on the other hand, is controlled by a gradient of partial pressure (or concentration) of the gaseous constituents which cause the gas molecules of an evenly distributed constituent to migrate from zones of high concentrations to zones of low concentrations even while the gas as a whole may remain isobaric and stationary (Hillel, 1982). It is believed that gaseous diffusion is the dominant process of vapor migration in the vadose zone (Evans, 1965).

Convective vapor flow is controlled by a number of
different factors. These factors include: temperature variations within the vadose zone, and between the vadose zone and the atmosphere, barometric pressure changes in the atmosphere, wind action over the ground surface, water infiltration through the vadose zone, water table fluctuations and the compaction or consolidation of the soil by heavy machinery (Baver et al., 1940; Hillel, 1982).

Temperature variations within the vadose zone, and between the vadose zone and the atmosphere may cause soil vapors to migrate. Vapor movement tends to take place from warm to cold parts of the soil. Since during the daytime the soil surface is warmer, and during the night colder than deeper layers, vapor movement tends to be downward during the day and upward during the night (Hillel, 1980). However, it has been shown that temperature differences within the vadose zone, and between the vadose zone and the atmosphere contribute approximately less than 1/800 and 1/240 of normal soil aeration, respectively (Rommel, 1922).

Barometric pressure increases in the atmosphere may, correspondingly, cause a decrease in the soil gas volume. Conversely, a decrease in barometric pressure should produce an expansion of the volume of soil gas. As a result, barometric pressure increases may cause atmospheric air to infiltrate the soil pores, and a
decrease in barometric pressure may result in soil vapors being liberated into the atmosphere (Baver et al., 1940). This process has also been determined to be of minor consequence in soil aeration. Laboratory experiments have shown that the penetration of atmospheric air within a permeable soil column 10 feet deep would only amount to about 0.12 to 0.22 inches, depending on the magnitude of barometric pressure change (Buckingham, 1904).

Wind gusts over the surface of a soil mass can cause suction effects at shallow depths in the soil profile. As a result, a pressure gradient may be increased near the surface of the soil (Baver et al., 1940). The effect of wind action on soils is limited to the first meter or two below the land surface (Weeks, Earp and Thompson, 1982). Rommell estimated that wind action is responsible for no more than 1/1000 of normal aeration.

Water infiltrating a soil mass after rainfalls or snowmelts may cause soil vapors to be displaced from the pores in the soil (Baver et al., 1940). The infiltrating water may also entrap or envelope soil gases for short periods of time. Water retained in the soil after infiltration can cause differential impedences to the mass flow of soil vapors. It is estimated that gas displacement due to the infiltration of water in a soil accounts for approximately 1/12 to 1/16 of normal aeration (Rommell, 1922).
and, as a result, the expulsion of soil vapors from these pores (Hillel, 1982). As with water retention, over-consolidated soils may act as a barrier to soil vapor movement due to the porosity decrease.

As with the diffusion of CH solutes in the groundwater, gaseous diffusion is a molecular transfer of the solute through the porous media. In gaseous diffusion, this molecular transfer is, however, of gases through the vadose zone as opposed to the saturated zone. The diffusive transfer of the CH solute molecules is driven by a concentration gradient that exists between the solute gas front and the ambient soil vapor. This process can be described by Fick's first law:

\[q_d = -D_s \frac{dc}{dx} , \]

where \(q_d \) is the diffusive flux of gases across a unit area per unit time, \(D_s \) is the diffusion coefficient of the solute vapor in the porous media and \(-dc/dx \) is the concentration gradient outward from the solute front (Hillel, 1982).

Due to the tortuous path that a diffusing gas must follow, the coefficient of diffusion for a given solute vapor in a porous media must be smaller than that in ambient air (Penman, 1940).

Gaseous diffusion in soils is directly proportional to the area available through which the gas flux can occur (Marshall, 1959). This area is, of course,
to the area available through which the gas flux can occur (Marshall, 1959). This area is, of course, dependent upon the effective porosity within the soil. The more reduced the porosity of a soil volume is, the slower diffusion will occur through it. This is due in part to the reduction in area through which the gas may migrate, and to the increase in the tortuous path that the diffusing gas molecules must follow in the soil (Troeh et al., 1982).

The diminution of pore size in a porous media increases its water retention capacity; water is more readily retained in soils of low permeability (silty clays, silty sands, clayey sands, etc.) by capillary processes. Correspondingly, this water retention will entail a reduction in the cross-sectional area available for gaseous diffusion through the porous solid (Schearer, 1966). The water filled pores act as solid interfaces in this situation. Even water adhered to soil grains can decrease pore diameters and, consequently, the total pore area available for gas flux (Karimi, Farmer and Cliath, 1987).

Based upon the above explanations, it must be necessary to describe the solute diffusion coefficient in the porous media as a function of the total porosity (P_t), the air filled porosity (P_a) of the medium, and the solute vapor diffusion coefficient in air (D_0).
Millington and Quirk (1961) expressed this relationship as:

$$D_s = D_o \left(\frac{P_{o}^{10/3}}{P_t^2} \right).$$

Gas phase diffusion coefficients for solutes are 10^4 to 10^5 times as large as liquid phase diffusion coefficients (Weeks et al., 1982).

The air diffusion coefficient, D_o, for most chlorinated hydrocarbons can be estimated by

$$D_o = 10^{-3} \sqrt{M_r (T^{1.75}) / [P(V_{a}^{1/3} + V_{c}^{1/3})^2]}$$

where T is the temperature, P is the ambient pressure, V_a is the molar volume of air, V_c is the molar volume of contaminant in gaseous phase and where

$$M_r = \frac{(M_{WA} + M_{WC})}{(M_{WA} - M_{WC})}.$$

Here, M_{WA} is the molecular weight of air and M_{WC} is the molecular weight of the contaminant (Marrin and Thompson, 1984).

One can see how the heterogeneities in a soil body can cause the flux of contaminant vapors through the vadose zone to be non-uniform. The migration of gases can be impeded, channeled or spread out as the vapors encounter zones of material with contrasting bulk densities, air filled porosities, and water contents throughout the vadose zone.

The mechanisms by which the geometry of the CH vapor distribution throughout the vadose zone of an unconfined granular aquifer is controlled in the
situation of a spill or leak of a CH fluid has now been sufficiently explained. Figure 1 schematically describes these processes.

Figure 1. Contaminant Transport Processes.
The distribution of CH vapors over a plume should, theoretically, envelope the extent of the plume in plan view. The vapors from the plume will be diffused above and, to a lesser extent, lateral to it. The concentrations of the vapors above the plume should reflect the distribution of the dissolved CH concentrations in the plume.

Theory holds that if a concentration gradient exists throughout the vadose zone where the concentration of a contaminant vapor is zero at the ground surface, and is given by its vapor pressure at the source (i.e., solute retained in caillary fringe, fluid retained in vadose zone), then the withdrawal and subsequent chemical analysis, of the soil vapors at a specific depth in the vadose zone should reveal a concentration of that contaminant vapor representative of the gradient at that depth. If the withdrawal entails pumping of the soil gas at a specific depth and concentrating it over time, then this should reflect a space/time averaged concentration for that depth. However, if the sampling procedure is consistent over an areal extent over a solute plume, then correlations between the gas concentration and the source concentration should be valid. The ratio between the concentration of a CH vapor in the soil gas and the dissolved constituents in the groundwater (water table) at the same location should be relatively consistent.
CHAPTER III

DESCRIPTION OF STUDY AREA

The plume of groundwater contamination which serves as the focal point for this study lies beneath the Georgetown Industrial Park located just west of the City of Jenison in Georgetown Township, Ottawa County, Michigan (Figure 2).

The source of this contamination was the site of the Rozema Industrial Waste Inc. truck servicing facility (Rozema’s Garage). The Rozema Garage site is now home to a small domestic transport company located at 6680 Wilshere Drive (Figure 2).

History

The Rozema Industrial Waste Inc. was a hauler of wastes produced primarily in the metal works and plating industries. Rozema trucks hauled large amounts of metal plating sludge and, to a lesser extent, industrial solvents and degreasing products. The Rozema Garage site was used primarily as a truck parking and servicing facility.

During a winter thaw in February, 1976, a tanker trailer containing treated metal hydroxide waste tipped
Figure 2. Location of Study Area.
over on the site spilling a portion of its contents. MDNR officials ordered Gerald Rozema, owner of the facility, to clean up the spill and dispose of the tanker and affected soils at a nearby landfill. Mr. Rozema informed the MDNR that he would comply with the order; however, these disposal activities were not supervised by State officials.

Approximately one year after the spill occurred, it was discovered that the spilled wastes had infiltrated the groundwater beneath the site. Water samples obtained from domestic wells near the site indicated that elevated concentrations of chromium, zinc, copper and nickel were present in the groundwater.

At this time, Mr. Rozema was ordered by the MDNR to install a small groundwater purging system and three monitoring wells around the site. This system, which was used to mitigate the migration of contaminants in the groundwater beneath the site, was in operation, intermittently, from late 1977 to late 1979. The monitoring wells were used to monitor the effectiveness of the purging system.

In October of 1979 an open dumpster containing liquid wastes, presumed to be metal hydroxide wastes, was discovered on the site. Tainted soil was visible around the dumpster. The dumpster and soil were removed from the site.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
In December of 1979, the Michigan Department of Public Health (MDPH) requested that the monitoring wells on site, and a domestic well next to the site be sampled and that the samples be analyzed for volatile organic compounds. The analysis of these samples revealed that concentrations of 1,1,1-trichloroethane (TCA), tetrachloroethene (PCE) and trichloroethene were present in the groundwater.

Early in 1980 it was revealed that the tanker which had tipped over in 1976 had not been moved from the site, but was buried on the site instead. It was also discovered that the buried tanker was used to store industrial wastes. The wastes included solvents and degreasing products. It is believed that the contents of the buried tanker leaked into the surrounding soils and into the groundwater beneath the site. The tanker has since been removed from the site.

During the period of time the site was owned by Rozema Industrial Waste, there had been numerous unofficial reports of semi-tankers being drained onto the ground at the site.

Since 1984, the Rozema Garage Site has been on the list of sites requiring Remedial Investigations under the Michigan Environmental Response Act, Act Number 307 of the Public Acts of 1982.

In March of 1986, the NUS Corporation was contacted
by the MDNR to develop a Work Plan for the Rozema Garage site. Since that time, NUS has initiated a Remedial Investigation (RI) of the site. All of the work performed during this RI has been carried out by the NUS Michigan Regional Office where the author is currently employed.

To date, the field activities that have been performed by NUS for the Rozema RI include soil gas, temporary well, and soil sampling and monitoring well installation and sampling. Many of the data acquired during these field activities have been used for this study as well.

Geography and Demography

The Rozema Garage Site is located between the cities of Jenison and Hudsonville in the eastern portion of Ottawa County, Michigan (Figure 2). The area of this study includes, but is not limited to, the Rozema Garage Site. As shown in Figure 3, the study area extends southeast from the Rozema property.

The study area is located in the lower Grand River basin. The lower part of the Grand River basin in this area is generally flat to gently rolling. Elevations across the study area range from 650 feet to 620 feet
Figure 3. Study Area and Boundaries.
above mean sea level (USGS Datum). The topography slopes gently towards the southeast over the area (Figure 3).

The immediate area of this study is occupied primarily by light industrial facilities and domestic residences. However, the area is generally rural with farmland dominating the landscape of the region. The study area is bordered to the north by a large gravel pit and to the south by a small farming operation.

Industries in the study area include a diesel repair shop located south of the Rozema Garage site, a truck trailer painting operation and a construction company located to the west and north of the site, respectively. The east side of the Rozema property is occupied by an open field. Other industries in the immediate vicinity include a small transport company and a transfer station for a disposal company.

A schematic of the Rozema site is provided in Figure 4. In the center of the property is a prefabricated building. The building is used as office space and for truck servicing work by the transport company that now owns the property. Truck traffic on the property is generally concentrated around the perimeter of the building (Figure 4). Parking of trucks, trailers and light vehicles is confined to the area along the fence surrounding the site. At the
Figure 4. Rozema Garage Site Schematic.
northeast corner of the property is a concrete pad used specifically for parking tractor trailers. Along the southern edge of the property are two diesel fuel pumps. The underground fuel storage tank is located between the pumps and the southern fence line. The location where the tanker had been buried on site is also shown in Figure 4; it is identified by the cross-hatched zone on the north edge of the building.

Climatology

Ottawa County experiences rapid short-term weather changes due to the constant succession of cyclonic (lows) and anticyclonic (highs) fronts associated with the prevailing westerly winds.

The climate of Ottawa County is primarily continental, and is marked by the occurrence of distinct seasons. The county is bordered on the west by Lake Michigan. The lake has a modifying effect on the climate throughout the county. In general, areas with continental climates experience warm summers and cold winters. However, the lag of Lake Michigan surface temperatures behind land temperatures results in cooler summers and milder winters than the central regions of the state.

In the summer season the average daily maximum temperature is 76.7 Deg. F. The winter average daily
minimum temperature is 22.32 Deg. F. The average temperature during the periods of soil gas sampling for this study, which were conducted in January, and June and July, 1987, were 21.0 Deg. F and 79.6 Deg. F, respectively.

More than half the annual precipitation, an average of 57 percent, falls during the six month period of April through September. September is the wettest month of the year with an average total precipitation of 3.29 inches. February is the month of the lightest precipitation with an average total of 1.78 inches. No precipitation occurred during the period of soil gas sampling performed in the summer of 1987.

The average seasonal snowfall for Ottawa County is 66 inches. Average seasonal totals are probably higher in the western portion of the county due to the effect of Lake Michigan. Snowfall was common during the soil gas sampling carried out in January, 1987, with accumulations of several inches during some days.

The average total evaporation recorded (Class A pan) between the first of April and the end of October is 36.51 inches. This is more than twice the average total rainfall for the same six month period. The deficit is made up from water stored in the soils, most of which accumulates from the rains of winter and early spring.

Information on climatology was obtained in part from
The soils in the vicinity of the study area are predominantly loamy sands and sandy loams as classified by the U.S. Department of Agriculture Soil Conservation Service (Figure 5). The following soil types are found in the area around the Rozema Garage site: Bayer loamy sand, Gelford sandy loam, Wasepi sandy loam and Adrian muck. The Bayer loamy sand is a well-drained soil that occurs on outwash plains and sandy moraines. The Gelford sandy loam is a poorly drained soil commonly occurring in depressions on outwash plains, lake plains and glacial drainage ways. The Wasepi sandy loam is a somewhat poorly drained soil typically found on outwash plains and low terraces. The Adrian muck occupies bottom lands and shallow depressions on sandy plains of the uplands. This soil is characterized by layering of organic and sandy material. The organic material often contains wood fragments.

A typical soil profile in the study area is loamy sands and gravels to a depth of 42 inches over a sand substratum. In low lying areas the upper 12 to 42 inches of soil consists of sandy organic materials.

Domestic well logs from the area, and information from boring logs obtained during the field investigation
Figure 5. Soil Types Across the Study Area.
of this study indicate that approximately 15 to 29 feet of fine to medium sand overlies sandy clays and silts.

Surface Waters

There are no natural bodies of water or streams present in the immediate vicinity of the study area. There is a man-made pond formed in a gravel pit, and a small drainage network, both of which are located east of the study area (Figure 6). The pond is known to be dewatered periodically during the year. However, it is unknown to what extent the pond or drainage effect the groundwater flow in the area, if at all.

Geology

Ottawa County is located over the western flank of the Michigan structural basin. Specifically, the county overlies the bevelled and truncated edges of the Coldwater Shale, the Marshall Sandstone and the Michigan Formation. The Michigan Formation subcrops beneath the study area. Shales and gypsum are the predominant lithologies of the Michigan Formation in this area.

Overlying the Michigan Formation is a mass of glacial drift deposited during the Wisconsin period of the Pleistocene glaciation. The surficial deposits in the study area and vicinity are mapped as glacial outwash and post-glacial alluvium. These deposits have
Figure 6. Surface Waters.
been described as pale brown to pale reddish brown, fine to coarse sand alternating with layers of fine gravel to cobbles (NUS, 1988). The gravel and cobbles consist of a mixed lithology of igneous, sedimentary and metamorphic rock fragments. In the immediate area of study these deposits occur as fluvial terraces along present and abandoned drainageways.

Well log information in the study area indicates that the glacial drift ranges from as little as 20 feet thick to as much as 100 feet thick over the Michigan Formation.

The geologic materials encountered and sampled during the temporary well sampling phase of this study include sand and gravel deposits overlying what is believed to be a horizontally extensive sandy clay to sandy silt unit. Figure 7 identifies the locations of cross sections of the surficial geology of the study area. Figures 8 through 10 depict the geologic cross sections developed from boring log information acquired during the temporary well point drilling and monitoring well installation work conducted by NUS and the author.

The coarse grained deposits under the study area consist mainly of brown and gray-brown, uniform fine and medium sand. Within the uniform sands, lenses or zones of fine to coarse sand with fine gravel were sampled and described. Locally, silt is present in the uniform sand
Figure 7. Locations of Geologic Cross Section.
Boring Locations for Temporary Wells (03) and Monitoring Wells (RZ-MW-03)

Cross-Section Locations

NOTE:
Elevations are based on M.G.M.D. (1929).

TBM#1 - Hydrant bolt on flange of hydrant N side
Port Sheldon St. 620' E. of 28th Ave.
12.55 above ground Elec 526.32.

TBM#2 - Hydrant bolt on flange of hydrant N side
Port Sheldon St. 1000' E. of 28th Ave.
12.5' above ground Elec 627.50.

TBM#3 - North of Michigan Consolidated Gas Co.
Across NE corner Port Sheldon St. &
Wildrose Drive Elec 625.70.
Figure 8: Geologic Cross Section A-A'.

Legend:
- Fine to medium sand, occasional gravel
- Silty fine to medium sand, occasional gravel, occasional clay
- gravelly fine sand
- Medium to coarse sand
- Sandy silt to sandy clay
- Fine sand, little medium sand, occasional silt

Elevation (feet above m.s.l.)

Scale in feet

Water table
Figure 9. Geologic Cross Section B-B'.

Figure 10. Geologic Cross Section C-C'.

LEGEND

- SANDY SILT TO SANDY CLAY
- SILTY FINE TO MEDIUM SAND
- SILTY FINE TO MEDIUM SAND, OCCASIONAL GRAVEL, OCCASIONAL CLAY
- GRAVELLY MEDIUM SAND
- FINE TO MEDIUM SAND, OCCASIONAL GRAVEL
- FINE TO MEDIUM SAND
- FINE SAND
- WATER TABLE
deposits as well.

A sandy clay to sandy silt unit was encountered beneath the coarse grained deposits in each deep boring drilled during the monitoring well installation phase of the NUS RI. The thickness of this fine grained unit is unknown. However, it is assumed it is over five feet in thickness based on drilling and sampling information acquired from these borings.

Boring logs for monitoring wells RZ-MW-01 through RZ-MW-03 and temporary wells RZ-TW-11 through RZ-TW-25 installed by NUS are provided in Appendix A.

Hydrogeology

One aquifer was encountered during the subsurface investigation of the Rozema Garage site RI. This aquifer is unconfined. The aquifer materials are the sands, and sand and gravel deposits overlying the sandy clay to sandy silt unit. The saturated thickness of this aquifer ranges from approximately 6.0 feet at RZ-MW-03 to 21.0 feet at RZ-MW-01.

Groundwater flow directions across the site are depicted in Figure 11. This map was developed using static water level (SWL) data obtained from the temporary wells installed by NUS during the summer of 1987. It is supplemented with SWL data acquired during the temporary well point sampling done in the winter of 1987.
Figure 11. Groundwater Contours.
Temporary Well Locations

Water Table Elevation Contours
612.00 (inferred where dashed)

NOTE:
Elevations are based on N.G.V.C. (1929).
TB.M. #1 - Marked on flank of hydron b. side
Point Selden St. 600 s. e. of 28th Ave.
125' above ground Elav. 612.82
TB.M. #2 - Marked on flank of hydron b. side
Point Selden St. 100 s. e. of 28 st Ave.
94' above ground Elav. 621.30
TB.M. #3 - N. rim of Michigan Consolidated Gas Co
method. N. corner Port Sheldon St. &
Wishbone Drive Elav. 625.70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The groundwater flow direction across the study area is believed to be controlled by the existence of the underlying sandy clay to sandy silt unit, and by the regional flow direction in the area. It is postulated that flow under the Rozema Garage site is a localized flow component originating beneath the hilly upland region north of the site. There, recharging groundwaters migrate south along the slope of the sandy clay to sandy silt unit. Groundwater flowing under and south of the Rozema site is then redirected towards the east-southeast. This is a result of this local flow component being incorporated into the regional flow regime. The regional flow is presumed to be directed east towards the Grand River.

In-situ aquifer parameter testing was performed during the NUS RI. The data obtained from these tests were used to calculate hydraulic conductivity and transmissivity values of the materials in which NUS monitoring wells were constructed. The average hydraulic conductivity was calculated to be approximately 3.35×10^{-2} cm/s. The transmissivity values range from about 6.13 cm2/s to 21.44 cm2/s. Using the average hydraulic conductivity, an average groundwater flow gradient of 8.10×10^{-3} foot/foot and an estimated effective porosity of 0.20, the groundwater flow velocities in the study area were determined. Flow is
calculated to be migrating at an approximate rate of
1.36 \times 10^3 \text{ cm/s (117.5 cm/day)}.\]

Target Compounds

The organic contaminants of interest in this study include the chlorinated hydrocarbon compounds perchloroethene and 1,1,1-trichloroethane. Perchloroethene (PCE), or tetrachloroethene, is a colorless liquid used in the dry cleaning and metal works industries as a solvent for fats, greases, waxes, rubber, gums and caffeine from coffee. 1,1,1-trichloroethane (TCA), (methylchloroform) is also used as a solvent in the metal works industry for chlorinated rubber and various organic materials such as fats, oils and resins (Verschueren, 1983).

The physical and chemical properties of each compound are presented in Table 1. Included in this table, for comparison, are some of the physical and chemical properties of water and moist air.
Table 1

Physical and Chemical Properties of PCE, TCA, Water and Moist Air

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Molecular Weight (g/mol)</th>
<th>Specific Gravity (20°C/4°C)</th>
<th>Water Solubility (g/l @ 20°C)</th>
<th>Vapor Pressure (mm Hg @ 20°C)</th>
<th>Molar Volume (cm³/mol @ 20°C)</th>
<th>Vapor Density (g/cm³ @ 20°C)</th>
<th>Surface Tension (dyn/cm @ 20°C)</th>
<th>Viscosity (centipoise @ 20°C)</th>
<th>Henry's Law Constant (atm m³/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrachloroethene</td>
<td>165.83</td>
<td>1.626</td>
<td>150(25°C)</td>
<td>14</td>
<td>102.19</td>
<td>5.83</td>
<td>31.74</td>
<td>----</td>
<td>0.0153</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>133.41</td>
<td>1.350</td>
<td>4,400</td>
<td>140</td>
<td>99.63</td>
<td>4.63</td>
<td>1.2</td>
<td>0.0300</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>---</td>
<td>1.0</td>
<td>----</td>
<td>17.55</td>
<td>----</td>
<td>0.00075</td>
<td>72.75</td>
<td>1.002</td>
<td>----</td>
</tr>
<tr>
<td>Moist Air</td>
<td>28.97</td>
<td>----</td>
<td>----</td>
<td>17.55</td>
<td>20.10</td>
<td>1.0</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

CHAPTER IV

DATA ACQUISITION

This study was developed primarily from data acquired during the Rozema Garage Site RI conducted by NUS. Data obtained from one phase of soil gas sampling and two phases of temporary well sampling, both conducted by NUS, were utilized in this study. The author conducted an additional round of soil gas sampling in order to complete the basis of this study.

In this section, the techniques used and procedures followed for the acquisition of soil gas and water quality samples will be presented. The methodologies used to analyze these samples will also be explained.

Soil Gas Sampling

Soil gas sampling was performed by NUS personnel at the Rozema Garage Site and vicinity during January 15 through January 30, 1987. During this time, 41 soil gas samples were obtained. The author collected 51 additional samples on June 14, 23, 24, 28 and July 7, 9, and 22, 1987. Soil gas samples were taken at twenty-four locations during this time.

Figure 12 identifies the soil gas sampling locations
Figure 12. Soil Gas Sampling Locations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Soil Gas Sampling Locations (i.e. RZ-SG-12)

0 200 400 SCALE IN FEET

NOTE:
Elevations are based on N.G.V.O. (1927).
TBM#1 - AKM# bolt on flange of hydrant N. side
Port Sheldon St, 200's E. of 28th Ave. 125' above ground. Elev 626.02.
TBM#2 - AKM# bolt on flange of hydrant N. side
Port Sheldon St, 200's E. of 28th Ave. 65' above ground. Elev 627.30.
TBM#3 - N. rim of Michigan Consolidated Gas Co. manhole NW corner Port Sheldon St & Willow Drive. Elev 625.70.
for this study. Twenty four of these locations were coincident with locations where temporary wells were sampled during the same period of time.

The total number of soil gas samples acquired for this study was 92. This number includes ambient air blank samples, transport and laboratory blanks, field duplicates and resamples. The ambient air blanks were acquired for the purposes of determining detection limits for the target compounds and for troubleshooting purposes, which will be described later in the Chapter. The transport (trip), and laboratory blanks were obtained to identify if extraneous contamination was in contact with the samples either while in transport to, or in the laboratory. Field duplicates and resamples were obtained to verify that data replication was consistent during the study.

The initial soil gas sampling round was conducted in an effort to determine the source areas of the PCE and TCA contamination on the Rozema property and to estimate the direction of migration of these contaminants in the groundwater. The subsequent soil gas sampling was performed in conjunction with temporary well sampling in order to determine correlations between the two data sets.

The following is an explanation of the soil gas sampling procedure used during this study. Each soil gas
sample was obtained in the manner described below. Any
digressions or deviations from this procedure were noted
on log sheets filled out for each sample. These logs
are provided in Appendix B.

The equipment used for the acquisition of the soil
gas samples is listed, with specifications in Table 2.

Prior to use in sampling, the air sampling pumps,
used to draw the soil gas through the sample medium, must
be calibrated. In addition, the Tenax trap tubes (the
sampling medium) must be assembled and conditioned before
beginning a sampling effort. The calibration, and
assembly and conditioning processes are presented in
Appendices C and D, respectively.

Prior to acquiring any soil gas sample from a
specific location the sampling apparatus was thoroughly
decontaminated. This process is always the first step in
the soil gas sampling procedure.

The stainless steel probes and probe points were
decontaminated with a soap solution. Nutrogena dissolved
in water was applied liberally over the probe exterior
with a spray bottle (Figure 13). The probe was then
wiped down with paper toweling, then rinsed thoroughly
with deionized water and wiped dry. The probe points
were cleaned by forcing the soap solution through all
openings on the point with the spray bottle (Figure
14). The soap was also applied over the entire surface
<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1/2 in. (I.D.), 11/16 in.(o.d.)x5.5 ft. stainless steel probe with 20 lb. slide hammer</td>
</tr>
<tr>
<td>2.</td>
<td>11/16 in.(o.d.) stainless steel probe point</td>
</tr>
<tr>
<td>3.</td>
<td>2 mm. (I.D.) polyethylene tubing</td>
</tr>
<tr>
<td>4.</td>
<td>2 mm. (I.D.) teflon tubing</td>
</tr>
<tr>
<td>5.</td>
<td>12 in. x 1/8 in. Tekmar LSC-2 Tenax (60/80 mesh) filled trap tubes</td>
</tr>
<tr>
<td>6.</td>
<td>1/8 in. (I.D.) plastic caps</td>
</tr>
<tr>
<td>7.</td>
<td>SKC Model 222 air sampling pumps</td>
</tr>
<tr>
<td>8.</td>
<td>1 liter plastic freezer bags</td>
</tr>
<tr>
<td>9.</td>
<td>1/2 liter plastic freezer bags</td>
</tr>
<tr>
<td>10.</td>
<td>1/4 in. (I.D.) P.V.C. electrical wire threaders</td>
</tr>
<tr>
<td>11.</td>
<td>20 ml. and 40 ml. glass vials</td>
</tr>
<tr>
<td>12.</td>
<td>1 liter glass pipet bubblometer</td>
</tr>
<tr>
<td>13.</td>
<td>1 liter plastic spray bottles</td>
</tr>
<tr>
<td>14.</td>
<td>Nutrogena soap (bar)</td>
</tr>
<tr>
<td>15.</td>
<td>Stopwatch</td>
</tr>
<tr>
<td>16.</td>
<td>Paper toweling</td>
</tr>
<tr>
<td>17.</td>
<td>Trash bags</td>
</tr>
<tr>
<td>18.</td>
<td>Scissors</td>
</tr>
<tr>
<td>19.</td>
<td>Air pump calibration log</td>
</tr>
<tr>
<td>20.</td>
<td>Indellible ink pen</td>
</tr>
<tr>
<td>21.</td>
<td>Chain-of-custody forms</td>
</tr>
<tr>
<td>22.</td>
<td>Soil gas sample log sheets</td>
</tr>
<tr>
<td>23.</td>
<td>Electrical tape</td>
</tr>
<tr>
<td>24.</td>
<td>Channel lock pliers</td>
</tr>
<tr>
<td>25.</td>
<td>Surgical gloves</td>
</tr>
<tr>
<td>26.</td>
<td>Cooler</td>
</tr>
</tbody>
</table>
Figure 13. Decontamination of Soil Gas Probe.

Figure 14. Decontamination of Probe Points.
of the point. The points were then rinsed with deionized water and then dried with paper toweling. Small (1-2 inches) pieces of Teflon tubing (Figure 15), which were used as joints, or connectors, in the sampling procedure, were also decontaminated with soap and water before obtaining each sample.

Figure 15. Teflon Joints and Soil Gas Probe Points.

Nutrogena was chosen for decontamination soap because it is free of organic based fumigants and is phosphorous free (Scheib, 1987).

After the probes and points were decontaminated, polyethylene (PE) tubing was inserted into each probe with the aid of plastic threaders (Figure 16). Once the
PE tubing had been extended through a probe, approximately four to six inches of the tubing was cut off at the bottom end of the probe. This was done to insure that no grit or dust, which may have been picked up during the threading process, could clog or soil this end of the tubing. The PE tubing was cut at the top end of the probe so that two to three feet of tube extended out of this end.

Figure 16. Threading PE Tubing into Soil Gas Probe.

One of the small Teflon joints was attached to the PE tube, which was extending out the bottom end of the probe. The Teflon joint was pushed over the PE until about half of its length covered the PE. The probe point
was then attached to the Teflon joint. The joint was pushed over the flanged extension of the point until a tight connection was made (Figure 17). Only about a tenth of an inch was separating the point and the end of the PE tubing.

![Figure 17. Soil Gas Probe Point and PE Tubing Connection.](image)

The tubing threaders were then removed from each probe.

Next, the point was screwed into the bottom end of the probe. This was accomplished by rotating the probe as the point was held in place firmly by hand, or by a clean wrench (Figure 18). All the while, the point and
PE tubing assemblage were kept stationary so that no twisting or kinking occurred at the joint.

Figure 18. Connecting Soil Gas Probe and Probe Point.

Rubber surgeons gloves were usually worn while assembling the sampling probes. This was done in order to minimize the possibility of contamination carry-over from the hands. When gloves were not available, the probe point was handled with the wrench or with clean paper toweling.

Having the point secured tightly onto the probe, the apparatus was ready for sample acquisition.

Before heading off to a sampling point, additional
Teflon joints were placed in glass jars. Doing this minimized the possibility of contaminating or soiling the joints while moving to, and setting up at each sampling location.

At each location the probe was pushed into the ground until refusal, if possible. Then, the slide hammer on the probe was used to drive the probe down to the desired sampling depth. This process was generally done without much difficulty. This was especially true in moist granular soils that contained little or no gravel. Even when gravel was encountered, often it was just a matter of pulling the probe out of the ground and moving over a foot or two to try again. However, in cohesive soils or dry granular soils, the hammering process could be very difficult.

Frozen, or over-consolidated ground also make driving the probes very difficult. To facilitate sampling in such conditions, as was done at the Rozema site, a hand operated, hydraulically powered earth auger was used to bore a pilot hole at the sample location. (Figure 19). Pilot holes were drilled to as much as three feet into the ground. Probes were then inserted into these holes and driven to the desired sampling depth.
Figure 19. Drilling Pilot Hole.

Driving the probe into the ground with the 20-pound slide hammer is a somewhat delicate process. Care was taken to assure that the PE tubing assembly within the probe did not twist or vibrate loose during the hammering process. Once the probe was driven to the desired sampling depth, a slight tug was made on the PE tubing extending from the top of this probe. If the tube did not pull loose, then sampling would continue. However, if the tubing came loose, then the probe was withdrawn from the ground and reassembled.

After assuring that the tubing assemblage had not twisted or come loose, the probe was tapped up
two to four inches with the slide hammer. Doing this opens the point head and increases the surface area over which soil gas can be drawn. In addition, the pulling back of the probe creates a void in the soil beneath the point. As a result, a head space was established below the sampling point.

Next, an SKC Model 222 air sampling pump was attached to the PE tubing that was extending out of the top of the probe. The pump was then engaged and allowed to run for about 30 seconds. This purging process was done to remove the ambient air within the PE tubing and to insure that only in-situ soil gases were drawn through the Tenax filled trap tube once it was attached.

After the PE tubing had been purged, approximately three to six inches of it was trimmed off the end. This was done to remove any contamination that may have collected on the tubing end during handling. A Teflon joint was then pushed on the trimmed PE tubing.

Next, a Tenax filled trap tube (Figure 20) was attached to the PE tubing assembly. The flanged end of the trap tube was pushed through the plastic holding bag. The plastic cap covering the end of the trap tube was then removed. The Teflon joint on the PE tubing was then pushed snugly over the trap tube flange so that the ends of the trap tube and PE tubing were almost touching.
The other end of the trap tube was then pushed through the bag. The plastic cap was removed from the end of the tube which was then pushed tightly into the SKC air pump. Care was taken to handle only the plastic bag or Teflon joint throughout this process in order to avoid contaminating the assembly.

Figure 20. Tenax Filled Trap Tube.

Once the air pump had been connected to the trap tube, it was secured to either the probe shaft or onto the ground. This was done in such a manner so that the PE tubing and Teflon joint did not kink. Most often, the air pump was taped to the probe shaft (Figure 21). Occasionally, the plastic bag housing the trap tube had to be taped to the probe as well. This was necessary
because wind would often catch the bag and dislodge the trap tube from the air pump.

Figure 21. Soil Gas Probe and SKC Pump In Place.

At this point in the sampling procedure, a sample log sheet was filled out for the respective sample. The site name, sample number, date, time, sampling depth and location were noted on these logs. In addition, note was taken of the weather conditions at the time of sampling.
This included temperature, wind, relative humidity and cloud cover. Other points of interest that were written on the logs included the sample medium used and the method and the equipment used to analyze the sample. Notes were also made on these logs of any unusual sampling occurrences, or procedural digressions while obtaining a specific sample. An example of a completed log is given in Figure 22.

It was decided that drawing one liter of soil vapor through a trap tube would be sufficient to concentrate contaminants, if present, on the Tenax material without achieving breakthrough of the contaminants through the tube (Scheib, 1987). Over-purging could cause some contaminants to be drawn completely through the tube.

In the comments section of each sample log, the number identifying the air pump used for obtaining the sample was written down. Before starting the sampling purge, a record was made on the sample log of the counts visible on the pump display panel (Figure 23). The number of counts required to purge one liter of soil gas with a pump, as determined by the pump calibration process, was written on the face of each pump (Figure 24). This number was added to the pump count on the sample log sheet. The sum of these two numbers was the pump count which indicated when one liter of soil gas had been purged. Once this count was achieved the pump...
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Ricerca
SAMPLE NUMBER: R2-56-014
DATE SAMPLED: 1/2/87
TIME SAMPLED:
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 47 FT WEST OF EAST FENCELINE, 7 FT NORTH OF SAMPLE OIL LINE
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890 A

COMMENTS:

CLOUDY, COLD (~20)

PUMP #4 5T - 538917
END - 550157

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

Figure 22. Soil Gas Sample Log Sheet.
was shut off and sampling was complete.

Figure 23. SKC Air Sampling Pump.

Once the probe was in place and the pump was connected the sample number was then written, in ink, on the outside of the trap tube bag.

Sampling began with a simple flick of the switch on the air sampling pump.

The plastic caps from the trap tube were held in glass vials during the purging process to minimize any carry-over of contaminants.

After purging one liter of soil gas, the trap tube was disconnected from the air pump and PE tubing and was recapped. The trap tube was then pushed back into
the plastic holding bag and the sample was placed into a cooler. Ice was placed into the cooler with the samples when each sampling round was completed.

After each sampling round was completed, the samples were transported to the field analytical laboratory for analysis. At the laboratory, the samples were transferred directly from the cooler to a refrigerator and were stored at 4.0 Deg. C to await analysis.

In January, 1987 the soil gas samples were handed over directly to the analytical personnel. Chain-of-custody for these samples was insured by the sampling personnel who maintained possession of the samples at all times. However, the samples obtained in the summer of 1987 were delivered to, and stored in the laboratory.

For these samples, a record of the chain-of-custody was kept for the samples acquired during each sampling round. NUS Chain-of-Custody forms (Figure 24) were used to record the sample number, date, time, and location of each sample collected during a sampling effort. This form was signed by the personnel who were responsible for obtaining the samples and in whose custody the samples were held. The personnel responsible for the analysis of the samples signed the Chain-of-Custody as soon as the samples were handed over to them. By doing this, the evidentiary value of the samples was maintained.
Figure 24: NUS Chain of Custody Form.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The analysis of the soil gas samples was performed in an NUS mobile laboratory equipped with full gas chromatography capabilities.

Soil Gas Sample Analysis

The method by which the soil gas samples were analyzed is based on EPA Method 624. Soil gas samples were desorbed and sequentially analyzed by temperature-programmed, purge and trap gas chromatography (GC). A Tekmar LSC-2 Liquid Sample Concentrator (purge and trap device) and a Hewlett Packard 5890A gas chromatograph were used for the analysis of these samples. Detection was accomplished by a flame ionization detector (FID) and the FID responses were quantified using a Shimadzu C-R3A integrator.

The analysis of a set of soil gas samples began by preparing and analyzing a soil gas standard. The soil gas standards were of gaseous phase volatile organic compounds trapped onto a Tenax filled Tekmar LSC-2 trap tube. The standard compounds included the contaminants of interest for the study: perchlorethene and 1,1,1-trichlorethane. The standards were used to calibrate the GC instrumentation so that proper compound identification and quantification could be accomplished when analyzing soil gas samples.

To prepare a soil gas standard, a one-liter Tedlar
air sampling bag was filled to capacity with prepurified nitrogen gas. An aliquot (usually one or five microliters) of a premixed standard solution was then injected into the Tedlar bag. The standard solution, which was prepared in methanol, would quickly vaporize once in the bag. Then, as done when acquiring soil gas samples, the contents of the bag were purged through a trap tube with an SKC pump as shown in Figure 25. The trap tube was connected to the Tedlar bag with a small piece of Teflon tubing.

Figure 25. Purging Soil Gas Standard Mixture into Trap Tube.
The soil gas standard tubes were analyzed in the same manner as the actual soil gas sample tubes. However, the chromatogram for a standard was used to calibrate the GC instrumentation. Because the concentration of each compound in the standard was known prior to analysis, it was possible to establish a response factor (RF) for each compound which could be used to quantify the responses of the soil gas sample analysis that were subsequent to the standard analysis. This RF is calculated by dividing the known concentration of each compound by the area under, or height of the peak, or chromatographic response of that compound produced during the GC analysis and integration of the standard. An identification file consisting of peak identification numbers, peak compound names, retention times (RT) and concentrations for each standard compound was programmed into the Shimadzu C-R3A and was used as the integration, or internal, standard.

The internal standard calibration was used to quantify samples analyzed on the same day of, and after the standard analysis, initially. However, an inspection of the soil gas standard chromatograms for this study revealed that the relationship between peak heights or area responses and the concentration of each target compound in the standards was non-linear. As a result, samples obtained on different days that exhibited similar
PCE and TCA peak heights and area responses were calculated to have concentrations of these compounds differing from each other as much as five and three times, respectively. These calculations were carried out using the RFs as determined by the daily standards, that were programmed into the integrator. However, the concentrations of PCE and TCA in the standards were not constant from day to day. Therefore, the quantification of the samples by this method yielded non-linear values for these samples.

Consequently, the quantification of the samples from each set of data was accomplished by establishing calibration curves. These curves were constructed for both PCE and TCA. The PCE and TCA calibration curves were established for both the winter and summer soil gas data sets.

The standard calibration curves were prepared by plotting the concentration of each compound against the corresponding peak height or area response for that compound. The curve made for the winter data utilized peak areas. Peak heights were used for the summer data. From these plots, best-fit straight lines were approximated, visually, through the points (Figures 26 through 28). Equations were calculated for each line. These equations (Figures 26 through 28) were used to establish the concentration of each compound in each
sample.

An example of a typical chromatogram of a five microliter soil gas standard is presented in Figure 29. The target compounds for this study are shown to be eluting at 13.06 minutes (PCE) and 7.97 minutes (TCA).

After analyzing a soil gas standard, the chromatographic system was demonstrated to be free of contamination by the generation of an acceptable system, or method blank. The method blank was accomplished by the analysis of the soil gas standard trap tube after the initial standard analysis.

The analysis of all soil gas samples, and standards, began by inserting the sample trap tube into the LSC-2 device (Figure 30). Then one to three microliters of an aqueous surrogate compound (2-bromo-1-chloropropane) was mixed into ten milliliters of organic-free water. The water and surrogate solution was then injected into the fritted, glass sparging unit on the LSC-2. The water was purged for four minutes with prepurified nitrogen gas. In the process, the surrogate was stripped from the water, carried in the gaseous phase from the sparging unit and subsequently adsorbed into the Tenax material as the gas stream passed through the sample trap tube.

After the purge cycle was completed, the trap tube was heated to 180 Deg. C. This heating action caused the contaminants adsorbed onto the Tenax to revolatilize.
Figure 26. Soil Gas Calibration Curve for PCE and TCA, January, 1987.
Figure 27. Soil Gas Calibration Curve for PCE, June and July, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 28. Soil Gas Calibration Curve for TCA, June and July, 1987.
Figure 29. Soil Gas Standard Chromatogram.
The vaporous contents of the sample were then desorbed for five minutes by a back flush of nitrogen gas onto the GC. The GC/FID was used to detect the contents of the sample or standard vapors which were resolved by a six meter long, two millimeter (inside diameter) diameter glass analytical column packed with 1% SP-1000 on 60/80 mesh carbopack B. The GC temperature program used to analyze the soil gas samples is given in Table 3. The rate of flow of the nitrogen carrier gas was 38.4 milliliters per minute.

Figure 30. Inserting Trap Tube into LSC-2 Unit.

For each sample, FCE and TCA area responses, or
Table 3

Gas Chromatographic Programming

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Chromatograph</td>
<td>HP5890A</td>
</tr>
<tr>
<td>Flow rate</td>
<td>38.4 ml/min</td>
</tr>
<tr>
<td>Attenuation</td>
<td>0</td>
</tr>
<tr>
<td>Range</td>
<td>3</td>
</tr>
<tr>
<td>Column</td>
<td>1% SF-1000 on CP-B</td>
</tr>
<tr>
<td>Detector</td>
<td>FID</td>
</tr>
<tr>
<td>Initial temperature</td>
<td>60 Deg. C</td>
</tr>
<tr>
<td>Initial time</td>
<td>3 min.</td>
</tr>
<tr>
<td>Temperature ramp</td>
<td>15 Deg. C/min.</td>
</tr>
<tr>
<td>Final temperature</td>
<td>220 Deg. C</td>
</tr>
<tr>
<td>Final time</td>
<td>10.0 min.</td>
</tr>
<tr>
<td>Injection temperature</td>
<td>275 Deg. C</td>
</tr>
<tr>
<td>Detector temperature</td>
<td>290 Deg. C</td>
</tr>
</tbody>
</table>
peak heights (for summer data) were measured (peak heights had to be estimated proportionally with well integrated peak areas for some highly contaminated soils). These values were used with the respective calibration equations to calculate the PCE and TCA concentrations for this study. It should be emphasized that this method, although valid, is not precise. Therefore, all concentrations presented in this study are average values.

An example of a chromatogram from the analysis of a soil gas sample (RZ-SG-60) is shown in Figure 31.

After the analysis of each soil gas sample was complete, the sample trap tube was baked at 203 Deg. C for eight minutes to remove any remnant contamination or other impurities from the tube.

Each soil gas sample was analyzed a second time immediately after the initial analysis. This was done in order to determine that the tube was clean and ready to be used for sampling again. If the tube was determined to be clean, it was removed from the LSC-2, recapped and placed in a new one liter plastic storage bag. The "clean" chromatogram from the second sample analysis was then placed in a smaller plastic storage bag which would be kept with the clean sample trap tube. These clean chromatograms served as a record for the condition of each trap tube during its period of use. Consequently,
Figure 31. Soil Gas Sample Chromatogram.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 32. Chromatogram of "Clean" Preanalysis Run.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
the second analysis and chromatogram for each sample trap tube was deemed the "preanalysis" run for the tube prior to its use for the next sampling. Figure 32 shows an example of a "clean" preanalysis run generated subsequent to the analysis of soil gas sample RZ-SG-114B.

If a sample trap tube was preanalyzed and was determined to be in poor condition, the tube was repacked with Tenax and conditioned as explained in Appendix C. An example of an "dirty" preanalysis run is given in Figure 33.

An initial inspection of all the sample chromatograms proved that the method used to quantify the samples (i.e. calibration curves) did not introduce any false results. Samples were identified visually to be either contaminated with PCE and TCA, or clean. A summary of this inspection is given in Table 4. A comparison of Table 4 with Table 8 (the quantified soil gas sampling results) reveals that, generally, the qualitative and quantitative data correspond highly, with respect to the presence of contamination. However, the quantitative data have been amended by detection limits established for the PCE and TCA data.

The ambient air blanks obtained during this study were used to determine the background concentrations of PCE and TCA around the study area. Blank samples (RZ-SG-107B and RZ-SG-108B) revealed that as much as 0.20 ppb of
Figure 33. Chromatogram of "Dirty" Preanalysis Run.
Table 4

Samples with Visually Identifiable PCA and TCA Chromatographic Responses

<table>
<thead>
<tr>
<th>Soil Gas Sample No.</th>
<th>PCE</th>
<th>TCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ-SG-01</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-02</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-03</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-04</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-05</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-06</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-07</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-08</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-09</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-10</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-11</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-12</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-13</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ-SG-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ-SG-16</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-17</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-18</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 4 — continued

<table>
<thead>
<tr>
<th>Soil Gas Sample No.</th>
<th>Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCE</td>
</tr>
<tr>
<td>RZ-SG-19</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-20</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-21</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-22</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-23</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-24</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-25</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-26</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-27</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-28</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-29</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-30</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-31</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-32</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-33</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-34</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-35</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-36</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-37</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-38</td>
<td></td>
</tr>
<tr>
<td>Soil Gas Sample No.</td>
<td>Compounds</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>PCE</td>
</tr>
<tr>
<td>EZ-SG-39</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-40</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-41</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-42</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-43</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-44</td>
<td>NA</td>
</tr>
<tr>
<td>EZ-SG-45</td>
<td></td>
</tr>
<tr>
<td>EZ-SG-46</td>
<td></td>
</tr>
<tr>
<td>EZ-SG-47</td>
<td></td>
</tr>
<tr>
<td>EZ-SG-48</td>
<td></td>
</tr>
<tr>
<td>EZ-SG-49</td>
<td></td>
</tr>
<tr>
<td>EZ-SG-50</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-50 Dup</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-51</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-52</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-53</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-54</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-55</td>
<td></td>
</tr>
<tr>
<td>EZ-SG-56</td>
<td>X</td>
</tr>
<tr>
<td>EZ-SG-57</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 4 — continued

<table>
<thead>
<tr>
<th>Soil Gas Sample No.</th>
<th>PCE</th>
<th>TCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ-SG-58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ-SG-59</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-60</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-60 Dup</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ-SG-62</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ-SG-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ-SG-65</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note: NA = Not available
 X = Compound present.
property. This contamination may be coming from the truck painting facility across from the Rozema site on Wilshire Drive. Thus, a site specific method detection limit of 0.20 ppb of PCE has been established for this study.

No TCA contamination was present in the ambient air blanks. Therefore, in order to estimate a detection limit for TCA, chromatographic baseline activity was examined. Any "noise" in this baseline that was present at or near the TCA RT was identified. Peak heights of this "noise" were measured. From these heights, corresponding concentrations of TCA were calculated. The detection limit for TCA was then calculated to be two times the level of the average "noise" concentration. This is the minimum signal for TCA that is detectable by the analytical equipment (Lovelock, 1961). The detection limit for TCA was established to be 0.01 ppb from these calculations.

Troubleshooting

An examination of the soil gas sample chromatograms revealed that many compounds of unknown origin were being detected. These compounds were especially evident, and at significant concentrations throughout the last six minutes of the chromatographic analysis. These compounds were not random, but were relatively consistent eluters.
Figure 34. Chromatogram Showing Unknown or Interference Compounds.
Table 5 summarizes the relative retention time ranges for each of these unknown compounds identified in samples acquired in June and July of 1987. Figure 34 identifies a sample chromatogram which exhibits these unknown compounds. This sample (RZ-SG-56) was obtained in July, 1987. The samples obtained in January, 1987 did not exhibit such unknown contamination.

Several tests were performed in order to isolate the source of these unknown compounds. The first test was an examination of the results of the decontamination water blanks which were obtained periodically throughout the sampling rounds. These blanks were analyzed to determine if any contaminants were present in the water. If so, these contaminants could be carried over onto the sampling equipment. These data revealed that small concentrations of chloroform had been detected in some of the blank samples, but that the concentrations were so low that carry-over would be negligible.

After discounting the carry-over theory, the source for the unknown compounds was speculated to be from the PE tubing used as the vapor transport line. This was deduced when it was discovered that the unknown compounds that were identified in the in-situ soil gas samples were not discovered in ambient air blanks, trip blanks or laboratory blanks obtained and analyzed during the same period of time. Blank samples were not drawn through PE
Table 5
Summary of Interference in Soil Gas Samples

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Retention Times of Interference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>RZ-SG-42</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-43</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-44</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-45</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-46</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-47</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-48</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-49</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-50</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-50 Dup</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-51</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-52</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-53</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-54</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-55</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-56</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-57</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-58</td>
<td>X</td>
</tr>
<tr>
<td>Sample No.</td>
<td>3.3</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>RZ-SG-59</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-60</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-60 Dup</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-61</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-62</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-63</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-64</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-65</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-101B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-102B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-103B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-104B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-105B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-106B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-107B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-108B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-109B</td>
<td>X</td>
</tr>
<tr>
<td>RZ-SG-110B</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 5 -- continued

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>3.3</th>
<th>6.4-7.0</th>
<th>7.5-9.8</th>
<th>9.8-10.0</th>
<th>11.4</th>
<th>11.8</th>
<th>13.2</th>
<th>14.05-14.20</th>
<th>14.7-14.9</th>
<th>15.1-15.4</th>
<th>16.2-16.5</th>
<th>17.1-17.5</th>
<th>10.0-18.4</th>
<th>18.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ-SG-111B</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ-SG-112B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-113B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-114B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-115B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-116B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-117B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-118B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-119B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-120B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-121B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-122B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-123B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-124B</td>
<td></td>
</tr>
<tr>
<td>RZ-SG-125B</td>
<td></td>
</tr>
</tbody>
</table>

Note: Dup = Duplicate
X = Compound present
To establish that these unknown compounds were in fact originating from the PE tubing, additional ambient air blanks were acquired through soil gas probes assembled with the PE tubing (samples RZ-SG-107B, 108B and 122B), and through the PE tubing alone, while other blanks, obtained at the same time, were acquired normally (samples RZ-SG-109B and RZ-SG-123B). The results from the analysis of these blanks (shown in Table 5) was conclusive. The unknown compounds were observed to be present only in the blanks drawn through the PE tubing. Consequently, the unknown compounds were the result of interference introduced into the samples from the PE tubing. This interference may have been caused by compounds that had possibly adsorbed onto the inner surface of the tubing during storage. However, because this interference was not observed in the winter samples, it is believed that the warm temperatures caused some of the components of the PE tubing to break down, vaporize and be purged into the samples obtained in the summer.

Other small tests designed to determine if additional interference could be introduced through sampling errors were performed. These included tests to determine how kinking of the PE tubing may increase the level of interference or restrict soil gas flow to the sample trap tube. In addition, a test was done to
determine if the reconnection of tubing assemblages that disconnected during probe implacement could cause additional interference. These tests indicated that no significant interference was added to samples by these means.

The significance of these discoveries is that much of the interference, if not properly accounted for, could cause erroneous interpretations of the soil gas data. Although this interference did not affect the identification and quantification of the target compounds in this study, other target compounds in future studies (i.e. TCE, benzene, toluene, o-xylene, m-xylene, p-xylene) may be affected by this interference.

Temporary Well Sampling

On February 5, 6, 9, and 10, 1987 temporary wells were installed and sampled at, and around the vicinity of the Rozema Garage site. Water quality samples were obtained for volatile organic analysis (VOA) at ten temporary well locations during this period. The objectives of this sampling round were to help determine if the organic contamination in the groundwater was limited to the Rozema site, and to have a preliminary estimate of the downgradient extent of the contamination plume. Any future temporary well sampling was contingent upon accomplishing these objectives.
Fifteen additional temporary wells were installed in the study area on June 18, 19, 24, 25 and July 8, and 9, 1987. Again, groundwater samples were obtained from these wells for volatile organic analysis. The primary objective of this additional sampling was to acquire data to help delineate the downgradient extent of the organic contamination present at the water table. The locations of the 25 temporary wells are presented in Figure 35.

The equipment used to install these temporary wells is listed in Table 6. As with soil gas sampling, all well installation equipment was decontaminated prior to use for sampling. Drilling augers, riser pipe, well screens and pipe couplings were decontaminated by steam cleaning at a local spray car wash. In addition, the equipment used for acquiring water samples from the temporary wells, such as bailers, was steam cleaned. Samples of the decontamination water were obtained, and analyzed with the temporary well samples in order to determine if any contamination was present that could be carried over to the sampling equipment.

At each designated location, the hand operated, hydraulically driven earth auger was used to drill and clear a boring (4-inch diameter) to depth of a few (two to four) feet beneath the water table (Figure 19). This was accomplished by having two operators drill down the full length of each auger flight, then pull back and spin
Figure 35. Temporary Well Locations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Temporary Well Locations (i.e. RZ-TW-21)

21

NOTE:
Elevations are based on NGVD (1929).
TBM#1 - MKW #1, bell on flange of hydrant, NE side
Port Sheldon St. 200' E. of 28th Ave.
3.5' above ground Elevation: 627.30
TBM#2 - MKW #2, bell on flange of hydrant, N side
Port Sheldon St. 100' E. of 28th Ave.
2.8' above ground Elevation: 627.30
TBM#3 - MKW #3, of Michigan Consolidated Gas Co.
Building, NE corner Port Sheldon St. & Wilshire Drive Elevation: 625.70.
Table 6

Temporary Well Sampling Equipment

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>18.0 ft. x 2 in. galvanized steel pipe</td>
</tr>
<tr>
<td>2.</td>
<td>3.0 ft. x 2 in. x 7-slot stainless steel well screen</td>
</tr>
<tr>
<td>3.</td>
<td>2 in. (I.D.) galvanized steel cap</td>
</tr>
<tr>
<td>4.</td>
<td>Little Beaver hydraulically powered earth auger with 25 ft. of 4 in. (o.d.) auger flights</td>
</tr>
<tr>
<td>5.</td>
<td>Pipe wrenches</td>
</tr>
<tr>
<td>6.</td>
<td>Electronic water level indicator</td>
</tr>
<tr>
<td>7.</td>
<td>Polypropylene rope</td>
</tr>
<tr>
<td>8.</td>
<td>3.0 ft. x 1 in. (I.D.) stainless steel bailers</td>
</tr>
<tr>
<td>9.</td>
<td>Water quality sample logs</td>
</tr>
<tr>
<td>10.</td>
<td>Chain-of-custody forms</td>
</tr>
<tr>
<td>11.</td>
<td>40 ml. septum capped glass VOA vials</td>
</tr>
<tr>
<td>12.</td>
<td>Ruler</td>
</tr>
<tr>
<td>13.</td>
<td>Sample bottle labels</td>
</tr>
<tr>
<td>14.</td>
<td>Pen</td>
</tr>
<tr>
<td>15.</td>
<td>Cooler</td>
</tr>
<tr>
<td>16.</td>
<td>Surgical gloves</td>
</tr>
<tr>
<td>17.</td>
<td>5 gallon bucket</td>
</tr>
<tr>
<td>18.</td>
<td>Trash bags</td>
</tr>
<tr>
<td>19.</td>
<td>Paper toweling</td>
</tr>
<tr>
<td>20.</td>
<td>Sledge hammer</td>
</tr>
</tbody>
</table>
out the drill cuttings from the hole. On occasion, a tripod mounted winch was used to facilitate the hole cleaning process.

Auger cutting samples were collected at five foot depth intervals at temporary well locations RZ-TW-11 through RZ-TW-25. These samples were later used to describe the soil characteristics at these locations. Soil descriptions and classifications were done on boring logs following the Unified Soil Classification System. These boring logs are provided in Appendix 1.

After a hole was adequately cleaned out, the temporary well was installed. The well screen and riser pipe was assembled and hoisted down the hole by hand. Once the well screen was resting on the bottom of the boring, it was pushed or hammered down until the screen intersected the water table.

After installation, each well was developed with a stainless steel bailer. A new segment of polypropylene rope was used as bailing cord in each well. Approximately 10 gallons of water and fine grained sediments were removed from each well during development.

Water quality samples for volatile organic analysis (VOA) were obtained after development. Two forty milliliter septum capped glass VOA vials were filled with water from the development bailer. When sampling some wells, duplicate VOA samples were also obtained. At
these locations, two additional VOA vials were filled with well water.

After sampling the well, the water level in the well was determined to the nearest 0.01 foot. This was done using electronic tape measured from the top of the riser on the well. The static water level (SWL) was then entered into a sample log.

Sample log sheets were filled out for every sample acquired from temporary wells during the study. The information contained on these logs include the sample number, location, date, time, sampling personnel, sample depth, static water level, and notes on sampling problems or procedural digressions. An example of a completed sample log sheet for the water quality samples is shown in Figure 36.

Each temporary well was surveyed into a reference point of known elevation from the U. S. Geological Survey Datum before it was removed.

The water quality samples were packed in freezer bags, placed in coolers filled with ice, and were transported to the place of analysis. Before handing over the VOA samples for analysis, a Chain-of-Custody form was filled out as was done with the soil gas samples.

All water quality samples were stored in a refrigerator at the place of analysis and cooled at 4.0
SAMPLE LOG SHEET

<table>
<thead>
<tr>
<th>Project Site Name</th>
<th>R2-TW-09</th>
<th>Project Site Number</th>
<th>8432</th>
<th>Source Location</th>
<th>R2-TW-09</th>
</tr>
</thead>
</table>

Purge Data

<table>
<thead>
<tr>
<th>Well Casing Size & Depth</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" GALV.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Static Water Level</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>97° FT (TOC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>One Casing Volume:</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Start Purge (hrs.):</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>End Purge (hrs.):</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total Purge Time (min.):</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Amount Purged (gal.):</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
</table>

Sample Data

<table>
<thead>
<tr>
<th>Sample Date & Time:</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/10/97 1225 HRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampled By:</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TJM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampled By:</th>
<th>Volume</th>
<th>pH</th>
<th>S.C</th>
<th>Temp. (°C)</th>
<th>Color & Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations / Notes:

- 2-40 ml VOA - FIELD GC ANALYSIS
- 4-500 ml PLASTIC BOTTLES TAKEN FOR MONR - CHEM ANALYSIS - PRESERVED AS PER MONR

Analysis:

<table>
<thead>
<tr>
<th>Type of Sample</th>
<th>Preservative</th>
<th>Organic</th>
<th>Inorganic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Concentration</td>
<td>FEDOSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grab - Composite</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of Sample

<table>
<thead>
<tr>
<th>Preservative</th>
<th>Traffic Report #</th>
<th>Tag #</th>
<th>AS #</th>
<th>Date Shipped</th>
<th>Time Shipped</th>
<th>Lab</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDOSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LND3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2SO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAOH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 36. Temporary Well Sample Log Sheet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Deg. C prior to analysis.

Temporary Well Sample Analysis

The analysis of the water quality samples obtained from the temporary wells was also performed in the NUS mobile laboratory using purge and trap, gas chromatography. These samples were analyzed using the NUS Corporation's field screening methodology for the rapid field analysis of purgeable organic compounds. This methodology is based upon EPA Method 624 and is outlined in Appendix E.

The analytical detection limits for PCE and TCA in water samples for this study were 1.0 ppb for each compound.
RESULTS AND DISCUSSION

The results from the analysis of soil gas samples obtained at the 65 locations, and water quality samples from the 25 temporary well locations were used as the basis of this study. However, additional data were used to supplement the conclusions based on this soil gas and temporary well data. This includes water quality data from three monitoring wells (RZ-MW-01, RZ-MW-02 and RZ-MW-03), three additional temporary wells (RZ-TW-28, RZ-TW-30, and RZ-TW-34) and two soil sampling data points (RZ-SO-01, RZ-SO-02). The supplementary well and soil samples were acquired for the NUS RI after the data acquisition for this study was completed. The locations of these data points are provided in Figure 37. The results from the analysis of these samples are presented in Table 7.

Soil Gas Sampling Results

The results from the analysis of the 65 soil gas samples collected on, and around the Rozema Garage site, as well as all blank and duplicate soil gas samples, are listed in Table 8. The concentrations of PCE in the soil

104
Figure 37. Supplementary Data Locations.
Monitoring Well Locations
- RZ-MW-02

Temporary Well Locations
- RZ-TW-34

Soil Sampling Locations
- RZ-SO-02

NOTE:
Elevations are based on H.G.V.D. (1929).

RZ-MW-01 - N.M.W. bolt on flange of hydrant N. side Fort Sheldon St. 600' E. of 28th Ave.
3.5' above ground Elev. 628.82.

RZ-MW-02 - N.M.W. bolt on flange of hydrant N. side Fort Sheldon St. 1000' E. of 28th Ave.
3.5' above ground Elev. 627.90.

RZ-MW-03 - N.T.M. of Michigan Consolidated Gas Co. manhole N.E. corner Fort Sheldon St. & Wilshire Drive Elev. 628.70.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Concentrations (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCE</td>
</tr>
<tr>
<td>Sample Number</td>
<td></td>
</tr>
<tr>
<td>Soil Samples *</td>
<td></td>
</tr>
<tr>
<td>RZ-SO-01</td>
<td>382.0</td>
</tr>
<tr>
<td>RZ-SO-02</td>
<td>1318.0</td>
</tr>
<tr>
<td>Temporary Well Samples **</td>
<td></td>
</tr>
<tr>
<td>RZ-TW-28</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-28D</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-30</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-34</td>
<td>36.0</td>
</tr>
<tr>
<td>Monitoring Well Samples ***</td>
<td></td>
</tr>
<tr>
<td>(Depth)</td>
<td></td>
</tr>
<tr>
<td>RZ-MW-01 (9.5-12.5 ft)</td>
<td>300.0J</td>
</tr>
<tr>
<td>RZ-MW-01 (19.0-22.0 ft)</td>
<td>300.0J</td>
</tr>
<tr>
<td>RZ-MW-01 (23.5-26.5 ft)</td>
<td>320.0J</td>
</tr>
<tr>
<td>RZ-MW-01 Dup (same)</td>
<td>320.0J</td>
</tr>
<tr>
<td>RZ-MW-02 (11.0-14.0 ft)</td>
<td>600.0J</td>
</tr>
<tr>
<td>RZ-MW-03 (10.0-13.0 ft)</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-MW-03 Dup (same)</td>
<td>ND</td>
</tr>
</tbody>
</table>

Note: * = Sampled on 7/9/87, analyzed on 7/14/87
** = Sampled and analyzed during 12/14-18/87
*** = Sampled on 9/1/87, analyzed on 9/2/87
Dup = Duplicate
J = Average value
ND = Not detected
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date</th>
<th>PCE</th>
<th>TCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ-SG-01</td>
<td>12/17/86</td>
<td>32.66</td>
<td>23.910</td>
</tr>
<tr>
<td>RZ-SG-02</td>
<td>1/15/87</td>
<td>2.64</td>
<td>0.500</td>
</tr>
<tr>
<td>RZ-SG-03</td>
<td>1/16/87</td>
<td>ND</td>
<td>0.200</td>
</tr>
<tr>
<td>RZ-SG-04</td>
<td>1/16/87</td>
<td>28.06</td>
<td>4.160</td>
</tr>
<tr>
<td>RZ-SG-05</td>
<td>1/19/87</td>
<td>1.11</td>
<td>0.130</td>
</tr>
<tr>
<td>RZ-SG-06</td>
<td>1/19/87</td>
<td>0.06</td>
<td>0.011</td>
</tr>
<tr>
<td>RZ-SG-07</td>
<td>1/20/87</td>
<td>314.40</td>
<td>123.740</td>
</tr>
<tr>
<td>RZ-SG-08</td>
<td>1/20/87</td>
<td>282.01</td>
<td>98.950</td>
</tr>
<tr>
<td>RZ-SG-09</td>
<td>1/20/87</td>
<td>208.01</td>
<td>10.130</td>
</tr>
<tr>
<td>RZ-SG-10</td>
<td>1/20/87</td>
<td>0.71</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-11</td>
<td>1/20/87</td>
<td>174.47</td>
<td>0.550</td>
</tr>
<tr>
<td>RZ-SG-12</td>
<td>1/20/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-13</td>
<td>1/21/87</td>
<td>16.90</td>
<td>0.040</td>
</tr>
<tr>
<td>RZ-SG-14</td>
<td>1/21/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-15</td>
<td>1/21/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-16</td>
<td>1/21/87</td>
<td>4.88</td>
<td>0.390</td>
</tr>
<tr>
<td>RZ-SG-17</td>
<td>1/21/87</td>
<td>4.69</td>
<td>2.010</td>
</tr>
<tr>
<td>RZ-SG-18</td>
<td>1/21/87</td>
<td>204.17</td>
<td>46.760</td>
</tr>
<tr>
<td>RZ-SG-19</td>
<td>1/21/87</td>
<td>54.02</td>
<td>5.720</td>
</tr>
<tr>
<td>RZ-SG-20</td>
<td>1/21/87</td>
<td>35.28</td>
<td>7.790</td>
</tr>
<tr>
<td>RZ-SG-21</td>
<td>1/22/87</td>
<td>28.03</td>
<td>2.890</td>
</tr>
<tr>
<td>RZ-SG-22</td>
<td>1/22/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-23</td>
<td>1/22/87</td>
<td>2.04</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-24</td>
<td>1/22/87</td>
<td>38.55</td>
<td>2.470</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Date</td>
<td>Concentrations (ppb)*</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCE</td>
<td>TCA</td>
</tr>
<tr>
<td>RZ-SG-25</td>
<td>1/22/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-26</td>
<td>1/27/87</td>
<td>0.25</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-27</td>
<td>1/27/87</td>
<td>6.01</td>
<td>0.015</td>
</tr>
<tr>
<td>RZ-SG-28</td>
<td>1/27/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-29</td>
<td>1/27/87</td>
<td>0.17</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-30</td>
<td>1/28/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-31</td>
<td>1/28/87</td>
<td>ND</td>
<td>0.002</td>
</tr>
<tr>
<td>RZ-SG-32</td>
<td>1/28/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-33</td>
<td>1/28/87</td>
<td>7.50</td>
<td>0.096</td>
</tr>
<tr>
<td>RZ-SG-34</td>
<td>1/28/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-35</td>
<td>1/29/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-36</td>
<td>1/29/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-37</td>
<td>1/29/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-38</td>
<td>1/29/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-39</td>
<td>1/29/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-40</td>
<td>1/29/87</td>
<td>10.57</td>
<td>1.170</td>
</tr>
<tr>
<td>RZ-SG-41</td>
<td>1/29/87</td>
<td>5.26</td>
<td>0.390</td>
</tr>
<tr>
<td>RZ-SG-42</td>
<td>6/28/87</td>
<td>0.76</td>
<td>0.020</td>
</tr>
<tr>
<td>RZ-SG-43</td>
<td>6/28/87</td>
<td>6.40</td>
<td>1.550</td>
</tr>
<tr>
<td>RZ-SG-44</td>
<td>6/14/87</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>RZ-SG-45</td>
<td>6/24/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-46</td>
<td>6/23/87</td>
<td>0.13</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-47</td>
<td>6/24/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-48</td>
<td>6/23/87</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
Table 8 — continued

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date</th>
<th>Concentrations (ppb)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ-SG-49</td>
<td>6/24/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-50</td>
<td>6/28/87</td>
<td>1.06</td>
</tr>
<tr>
<td>RZ-SG-50 Dup</td>
<td></td>
<td>1.17</td>
</tr>
<tr>
<td>RZ-SG-51</td>
<td>6/28/87</td>
<td>0.35</td>
</tr>
<tr>
<td>RZ-SG-52</td>
<td>7/1/87</td>
<td>0.286</td>
</tr>
<tr>
<td>RZ-SG-53</td>
<td>7/1/87</td>
<td>5.47</td>
</tr>
<tr>
<td>RZ-SG-54</td>
<td>7/1/87</td>
<td>1.98</td>
</tr>
<tr>
<td>RZ-SG-55</td>
<td>7/7/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-56</td>
<td>7/19/87</td>
<td>1.75</td>
</tr>
<tr>
<td>RZ-SG-57</td>
<td>7/19/87</td>
<td>4.26</td>
</tr>
<tr>
<td>RZ-SG-58</td>
<td>7/19/87</td>
<td>0.130</td>
</tr>
<tr>
<td>RZ-SG-59</td>
<td>7/19/87</td>
<td>0.69</td>
</tr>
<tr>
<td>RZ-SG-60</td>
<td>7/19/87</td>
<td>6.03</td>
</tr>
<tr>
<td>RZ-SG-60 Dup</td>
<td></td>
<td>6.28</td>
</tr>
<tr>
<td>RZ-SG-61</td>
<td>7/22/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-62</td>
<td>7/22/87</td>
<td>0.263</td>
</tr>
<tr>
<td>RZ-SG-63</td>
<td>7/22/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-64</td>
<td>7/22/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-65</td>
<td>7/22/87</td>
<td>0.240</td>
</tr>
<tr>
<td>RZ-SG-101B</td>
<td>6/14/87</td>
<td>NA</td>
</tr>
<tr>
<td>RZ-SG-102B</td>
<td>6/23/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-103B</td>
<td>6/28/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-104B</td>
<td>6/28/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-105B</td>
<td>7/7/87</td>
<td>ND</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date</th>
<th>Concentrations (ppb)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PCE</td>
</tr>
<tr>
<td>RZ-SG-106B</td>
<td>7/7/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-107B</td>
<td>7/7/87</td>
<td>0.20</td>
</tr>
<tr>
<td>RZ-SG-108B</td>
<td>7/7/87</td>
<td>0.20</td>
</tr>
<tr>
<td>RZ-SG-109B</td>
<td>7/7/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-110B</td>
<td>7/9/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-111B</td>
<td>7/9/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-112B</td>
<td>7/9/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-113B</td>
<td>7/9/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-114B</td>
<td>7/9/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-115B</td>
<td>7/9/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-116B</td>
<td>7/9/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-117B</td>
<td>7/9/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-118B</td>
<td>7/19/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-119B</td>
<td>7/19/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-120B</td>
<td>7/19/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-121B</td>
<td>7/19/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-122B</td>
<td>7/22/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-123B</td>
<td>7/22/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-124B</td>
<td>7/22/87</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-SG-125B</td>
<td>7/22/87</td>
<td>ND</td>
</tr>
</tbody>
</table>

Note: * = Analysis completed within 24 hours after sample acquisition
ND = Not detected
NA = Not available
Dup = Duplicate
B = Blank
gas are consistently higher than the levels of TCA throughout the study area. The concentrations of PCE in the soil gas range from a high of 314.0 ppb at sample location RZ-SG-07 to a low of 0.240 ppb at location RZ-SG-65. The concentrations of TCA range from 123.74 ppb (RZ-SG-07) to 0.015 ppb (RZ-SG-27).

The distributions of the PCE and TCA contamination detected in the soil gas are presented in Figures 38 and 39, respectively. The concentrations of both compounds were observed to be highest at the north-central portion of the Rozema property. The concentration levels decrease in all directions outward from this area. However, the decrease is more gradual in the southeast direction.

The distribution of the PCE and TCA concentrations in the soil gas on the Rozema property most likely reflect the distribution of localized source areas for these contaminants. Two main source areas can be estimated from the soil gas data. The zone of the highest PCE and TCA contamination corresponds to the position at which the tanker, used to store industrial solvent wastes, was buried. It is speculated that liquid solvent wastes were frequently spilled around this area, and that the tanker was damaged and leaked its contents while buried. A second, less significant source area can
Figure 38. Isoconcentration Contours of PCE in the Soil Gas.
• Soil Gas Sampling Locations (Figure 12)

5.0-Concentration (ppb)

Scale in Feet

Note:
Elevations are based on M.G.V.O (1929).
TB.M.1 - KMW bolt on frame of basement N. side
Port Sheldon St. 200' E. of 28th Ave.
125' above ground. Elev 622.62.
TB.M.2 - KMW bolt on frame of basement N. side
Port Sheldon St. 1000' E. of 28th Ave.
6.3' above ground. Elev 627.80.
TB.M.3 - KMW of Michigan Consolidated Gas Co.
minesite N.E. corner Port Sheldon St &
Wildrose Drive Elev 625.70.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 39. Isoconcentration Contours of TCA in the Soil Gas.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Soil Gas Sampling Locations

5.00-Concentration (ppb)

Scale in Feet

NOTE:
Elevations are based on M.G.V.D. (1929).
T.M.W.1 - N.W.W. well on edge of property N. side
Port Sheldon St. 600'-E. of 20th Ave.
15' above ground. Elev. 62.92.
T.M.W.2 - N.W.W. soil on edge of property N. side
Port Sheldon St. 1000'-E. of 20th Ave.
6.9' above ground. Elev. 62.30.
T.M.W.3 - N. rim of Michigan Consolidated Gas Co.
annex. NE corner Port Sheldon St. &
Wildmere Dr. Elev. 62.70.
be identified along, and inside the eastern fence line of the Rozema site. Here, concentrations of PCE are higher than at soil gas sampling locations immediately surrounding this area. This second source area is believed to be where the open-top dumpster was located. Historical information noted that the soils around this dumpster were discolored. This probably indicates that wastes were spilled or leaked here.

Other zones where high concentrations of PCE and TCA were identified in the soil gas on the Rozema site correspond to areas where truck trailers and tankers were parked most frequently, and where trucks would enter and exit the service garage. More specifically, these zones include the west entrance to the garage on, and the northwest corner of the Rozema property.

Away from the Rozema site the distribution of the soil gas contamination follows the direction of groundwater flow and is believed to define a plume of groundwater contamination originating from the two source areas on the site. PCE and TCA concentrations in the soil gas extend toward the southeast from the identified sources to Port Sheldon Street. At Port Sheldon Street the zone of soil gas contamination tends to be redirected to the east (Figures 38 and 39). The zone of detectable concentrations of PCE in the soil gas is defined by the 0.20 ppb contour line, as shown in
Figure 38. The limit of TCA contamination in the soil gas is defined by the 0.01 ppb contour line (Figure 39).

Upgradient of the Rozema site, three localized zones of soil gas contamination were identified. These zones are located on Wilshire Drive northeast, north and west of the site (Figures 38 and 39). The three pockets of contamination are speculated to be the result of small spills, or discharges of solvent wastes from tankers leaving and arriving at the Rozema facility.

Temporary Well Sampling Results

The results from the analysis of VOA samples from the 25 temporary well locations are summarized in Table 9. These data include the results of the blank and duplicate VOA sample analysis as well. As with the soil gas data, the concentrations of PCE in the groundwater are consistently higher than the concentrations of TCA at the same locations. The concentration of PCE in the groundwater ranges from 314.40 ppb at RZ-TW-07 to 0.24 ppb at RZ-TW-65. The levels of TCA are from 123.74 ppb at RZ-TW-07 to 0.015 ppb at RZ-TW-06.

The distributions of the PCE and TCA contamination in the groundwater across the study area are presented in Figures 40 and 41, respectively. Because of the lack of water quality data from the Rozema site, the upgradient extent of the groundwater plume is inferred.
Table 9

Temporary Well Sampling Results

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date</th>
<th>PCE</th>
<th>TCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ-TW-01</td>
<td>2/05/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-02</td>
<td>2/05/87</td>
<td>46.0</td>
<td>6.0</td>
</tr>
<tr>
<td>RZ-TW-03</td>
<td>2/05/87</td>
<td>210.0</td>
<td>24.0</td>
</tr>
<tr>
<td>RZ-TW-04</td>
<td>2/06/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-05</td>
<td>2/06/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-06</td>
<td>2/09/87</td>
<td>110.0</td>
<td>22.0</td>
</tr>
<tr>
<td>RZ-TW-07</td>
<td>2/09/87</td>
<td>151.0</td>
<td>50.0</td>
</tr>
<tr>
<td>RZ-TW-08</td>
<td>2/10/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-09</td>
<td>2/10/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-10</td>
<td>2/10/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-10 Dup</td>
<td>2/10/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-11</td>
<td>6/18/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-12</td>
<td>6/18/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-13</td>
<td>6/19/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-14</td>
<td>6/19/87</td>
<td>30.0J</td>
<td>3.0</td>
</tr>
<tr>
<td>RZ-TW-15</td>
<td>6/24/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-15 Dup</td>
<td>6/24/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-16</td>
<td>6/24/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-17</td>
<td>6/24/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-18</td>
<td>6/25/87</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-19</td>
<td>6/25/87</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 9 — continued

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date</th>
<th>Concentrations (ppb)</th>
<th>PCE</th>
<th>TCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ-TW-20</td>
<td>6/25/87</td>
<td>100.0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-21</td>
<td>6/26/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-22</td>
<td>7/08/87</td>
<td>3.0</td>
<td>1.0</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-23</td>
<td>7/08/87</td>
<td>41.0</td>
<td>3.0</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-24</td>
<td>7/08/87</td>
<td>3.0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-24 Dup</td>
<td>7/08/87</td>
<td>3.0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-TW-25</td>
<td>7/09/87</td>
<td>33.0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-BLANK-04</td>
<td>6/18/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-BLANK-06</td>
<td>6/24/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-BLANK-07</td>
<td>6/25/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-BLANK-08</td>
<td>7/08/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-DECON-01</td>
<td>2/05/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-DECON-02</td>
<td>2/09/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-DECON-04</td>
<td>6/18/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-DECON-05</td>
<td>6/19/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-DECON-07</td>
<td>6/24/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-DECON-09</td>
<td>7/09/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RZ-DECON-0A</td>
<td>6/25/87</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Note: ND = Not detected
Dup = Duplicate
J = Average value
Figure 40. Isoconcentration Contours of PCE in the Groundwater.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
50-Concentration (ppb)

Temporary Well Locations (Figure 35)

SCALE IN FEET

NOTE:

Eleven fans are based on A.C.V.O. (1959).

TBM#1 - MISO field on flange of hydrant N side of Port Sheldon St. 600' E. of 28th Ave.
6.25 above ground Ekl 625.82.

TBM#2 - MISO field on flange of hydrant N side of Port Sheldon St. 900' E. of 28th Ave.
3.8 above ground Ekl 627.30.

TBM#3 - MISO field on Michigan Consolidated Gas Co. manhole N.E. corner Port Sheldon St. S.
Wilshire Dr. Ekl 625.70.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 41. Isoconcentration Contours of TCA in the Groundwater.
50-Concentration (ppb)

- Temporary Well Locations (Figure 35)

Note:

Elevations are based on M.G.V.O. (1929).

T.B.M. #1 - K.M. bell on Plume of Drinking H. side
Port Sheldon St. East E. of 26th Ave.
1.25" above ground Elevation 228.62.

T.B.M. #2 - K.M. bell on Plume of Drinking H. side
Port Sheldon St. 1000' E. of 23rd Ave.
2.9" above ground Elevation 227.30.

T.B.M. #3 - K.P. of Michigan Consolidated Gas Co.
Anheuser Bier H. corner Port Sheldon St. &
Whippoorwill Drive Elevation 226.70.
from the data from soil samples RZ-SO-01 and RZ-SO-02, and temporary wells RZ-TW-01, RZ-TW-04, RZ-TW-05, RZ-TW-10 through RZ-TW-12, and RZ-TW-34.

The concentrations of PCE and TCA detected in the groundwater decrease in all directions from the source areas on the Rozema site. As with the soil gas data the decrease is more gradual in the southeast direction from the site.

Figures 40 and 41 identify two plumes of PCE and TCA contamination that originate on the Rozema site. The plume of the highest concentrations of PCE and TCA is shown to be originating from the location of the buried tanker. The soil sample (RZ-SO-02) obtained at this location, which was a composite sample of the top three feet of soil, indicates that these soils are contaminated with PCE and TCA (Table 7). The concentrations in this sample suggest that the volume of contaminant liquid in the soil was probably significant enough such that the residual saturation of the liquid in the vadose zone was exceeded. Consequently, the liquid was able to infiltrate to the groundwater at this location.

An additional, less significant, plume was inferred to be originating from the location of the open-top Temporary well sample RZ-TW-34 indicates that there is PCE and TCA contamination present in the groundwater along the fence line near this location (Table 7). This
second plume most likely coalesces with the first plume downgradient of the Rozema site, as shown in Figures 40 and 41.

Other sources of the contamination may include the west entrance to the service garage on, and the northwest corner of, the Rozema property, as identified by the soil gas results. An additional soil sample (RZ-SO-01) which was acquired near the garage entrance confirmed the presence of soil contamination at that location (Table 7). No soil sampling or groundwater data is available for the northwest corner of the site. As a result, the extent of the groundwater contamination on the site was estimated to be confined to the general area around the locations of the known soil contamination and temporary well RZ-TW-34.

Water quality samples obtained from temporary wells RZ-TW-01, RZ-TW-05, RZ-TW-10, RZ-TW-11 and RZ-TW-12 (Figures 40 and 41) indicate that no PCE or TCA contamination was detected upgradient of the Rozema site.

The migration of the groundwater contamination plume is estimated from the water quality data to follow the direction of groundwater flow. The plume extends offsite towards the southeast to Port Sheldon Street where the plume then turns towards the east following the direction of the road.

The data acquired for this study were not adequate
to define the detectable limits of the plume downgradient from the Rozema site. However, the data do indicate a significant decrease in PCE and TCA levels in the groundwater near the corner of Port Sheldon Street and Port Sheldon Court. Consequently, the downgradient extent of the groundwater contamination near the water table is inferred to be just east of the intersection of these two roads (Figures 40 and 41).

Water quality data from NUS monitoring wells RZ-MW-01 and RZ-MW-02 indicate that PCE and TCA levels are higher near the base of the aquifer than near the water table (Table 7). This fact suggests that the main body of the solvent plume is traveling over top of the sandy clay and sandy silt unit.

From these observations, it is speculated that the volumes of liquid solvent wastes that were introduced into the groundwater beneath the buried tanker and possibly the dumpster, were significant enough such that the main fluid body migrated downward to the bottom of the aquifer. Solvent liquids were likely held in residual saturation in the vadose zone and in the saturated zone behind the migrating fluid body. This residual contamination was probably the source of the PCE and TCA in the shallow groundwater and at the water table downgradient from the Rozema site. The flow of groundwater is believed to follow the topography.
of the sandy clay and sandy silt unit and the main solvent body is likely to be travelling along the same path of migration as the shallow contamination.

Discussion of the Results

The soil gas data corresponds well with the water quality data across the study area. The zone of soil gas contamination, shown in Figures 38 and 39, conforms to the groundwater contamination plume outlined in Figures 40 and 41 with only a few exceptions.

The initial examination and comparison of the soil gas and water quality data confirms a definite qualitative correlation between the two data sets. The distribution of both the PCE and TCA contamination in the soil gas adequately defined the plume of these contaminants in the groundwater. The concentration gradients of these two compounds identified in the soil gas were useful for estimating the areas of high groundwater contamination as well.

The soil gas data did not correspond to the predicted groundwater conditions at a few locations. PCE and TCA contamination was detected in the soil gas at locations RZ-SG-23, RZ-SG-26, RZ-SG-27, and RZ-SG-33. However, no groundwater contamination was identified in water samples obtained from temporary wells installed at, or near these locations. In addition, no soil gas
contamination was discovered at locations RZ-SG-38 and RZ-SG-39 which correspond to well RZ-TW-07 where groundwater contamination was detected, and where PCE was identified in soil gas sample RZ-SG-65, located nearby (Figure 38). Finally, no soil gas contamination was present in samples RZ-SG-12, RZ-SG-14, and RZ-SG-15. These samples were acquired at locations close to zones of known groundwater and vadose zone contamination.

As mentioned previously, the PCE and TCA contamination in samples RZ-SG-23, RZ-SG-26, RZ-SG-27, and RZ-SG-33 is believed to have resulted from localized spills, or discharges of liquid solvent wastes from tankers being hauled into and out of the Rozema facility. However, the groundwater beneath these soil gas sample locations was determined to be clean. This leads to the conclusion that the spills or discharges were relatively small in volume and, as a result, the solvent liquids must have penetrated only the first meter or two of the soil before being retained in the soil matrix under residual saturation. Dissolved PCE and TCA carried down to the water table by infiltrating waters most likely were of low, undetectable concentrations. Therefore, the soil gas contamination at these locations must have originated from a surface or vadose zone source.

Marrin, 1986 suggests that some of the initial
indicators of a surface or vadose zone source include an abrupt increase in soil gas contamination compared to surrounding sampling points, and a significant deviation from the soil gas/groundwater concentration ratio estimated for the overall site. The contamination identified in these four soil gas samples do indicate abrupt or anomalous increases in PCE and TCA in the soil gas as compared to surrounding samples. In addition, the majority of the soil gas samples obtained in this study correspond to groundwater contamination at the respective sample locations. Soil gas samples RZ-SG-23, RZ-SG-26, RZ-SG-27, and RZ-SG-33 do not indicate groundwater contamination; therefore, these samples are likely to be indicators of vadose zone contamination.

Sampling errors may have been the main reason why no PCE or TCA contamination was discovered in soil gas sample RZ-SG-39. This sample corresponds to temporary well location RZ-TW-07 which yielded groundwater samples exhibiting PCE and TCA concentrations of 151 ppb and 50 ppb, respectively. The air sampling pump used to acquire RZ-SG-39 was determined to be faulty subsequent to obtaining the sample. In fact, it wasn't until four months later, while preparing soil gas standards, that it was discovered that this pump would not draw air normally when a trap tube was attached to it. The fact that the sample was taken during a period of sub-zero weather

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
probably also added to the loss of power in the pump. The restriction of air flow from the sample tube, and the cold air may have worked together to disable the pump from purging any soil gas vapors while sampling RZ-SG-39.

Samples RZ-SG-35, RZ-SG-37, RZ-SG-42, and RZ-SG-123B were also obtained with this pump. For samples RZ-SG-35, RZ-SG-37 and RZ-SG-123B, the problem was most likely inconsequential. Other soil gas samples acquired adjacent to, and water quality samples corresponding with these locations indicate that contamination was not likely to have been present at these sampling points. However, contamination was detected, as was expected, in RZ-SG-42, which was obtained in June, 1987. The concentrations present in this sample are likely to be much less than what would have been detected in a sample obtained at the same location with a properly operating pump. Yet, because the weather was not cold, the power of the pump was not diminished further. Thus, some vapors were probably drawn into the tube by the faulty pump.

The lack of contamination in sample RZ-SG-38 is probably attributable to the weather conditions at the time of sampling. Sample RZ-SG-38 was taken just prior to RZ-SG-39 in January, 1987.

The vapor pressure of most CH's will increase with an increase in temperature as is the case with PCE and TCA (Table 1). Farmer, et al, 1980 demonstrated how
hexachlorobenzene in contaminated soils exhibited an increase in vapor pressure from 0.42 to 22.40 mm Hg (10^{-5}) with a temperature increase from 15 Deg. C to 45 Deg. C. This rise in vapor pressure induces an increase in the concentration gradient near the source and, correspondingly, an increase in the diffusive flux of solvent vapors from the source. Knowing this, one may expect that the diffusion of CH vapors is less significant during periods of cold weather as opposed to during the warm summer months. In July, PCE was discovered in RZ-SG-65 (located about 50 feet west of RZ-SG-38) at a concentration of 0.24 ppb. This contamination is speculated to be from the lateral diffusion of PCE vapors volatilizing off the water table near the western edge of the plume (Figure 38). The concentration of PCE detected in RZ-SG-65 was very low (near the detection limit); thus, it seems reasonable that the cold weather could have caused a slight decrease in the vapor pressure of PCE which, in turn, may have caused the contamination to go undetected in RZ-SG-38.

A combination of factors most likely was the cause for not detecting soil gas contamination in samples RZ-SG-12, RZ-SG-14, and TZ-SG-15. The most significant factor may have been that these sampling points were not located directly over solvent residuals in the vadose zone, and were probably adjacent to the main groundwater
plumes. However, these facts alone, if true, do not account for why lateral diffusion of the CH vapors did not occur such that contamination could be detected at these sample locations.

These three samples were obtained in the soils of the truck pathway on the Rozema property (Figure 12). Trucks circle the garage on site numerous times daily as they have for several years. The samples were also acquired during a period of extremely cold weather in January, 1987. The sample acquisition required a pilot hole to be bored in the frozen soil at these locations. From these facts it is believed that not only are the soils under the truck path over-consolidated, but that the frost zone beneath the path may have been much deeper there than in the adjacent soils. As a result, if contamination was not present in the soils, or in the groundwater beneath these sample locations, the diffusion of CH vapors from adjacent sources may have been significantly impeded by the decrease in the total air filled porosity of the soil caused by frost and over-consolidation. Slight lithologic changes such as an increase in clay or silt content in the sand may have been present at these locations as well. These changes would enhance the impedance of gaseous diffusion. In addition, the fact that these samples may not have been obtained directly over a plume or in a zone of
vadose zone contamination helps explain the absence of PCE or TCA vapors in these samples.

Marrin, 1986 explains how a radial distance equal to three times the depth to water approximates the extent of significant lateral diffusion from a surface or vadose zone source. Samples collected beyond this distance are usually representative of the underlying aquifer. The depth to water at locations RZ-SG-12, RZ-SG-14, and RZ-SG-15 is between 8 and 9 feet. Thus, 24 to 27 feet is the approximate radial distance from areas of vadose zone or groundwater contamination over which significant diffusion may occur. The sample locations are all about 25 feet away from these contamination sources as inferred by the best available data. Therefore, it seems reasonable to expect that no PCE or TCA would be detected in these soil gas samples.

Statistical Analysis

The subsurface variability of parameters that control gas phase diffusion is such that a theoretical prediction of concentrations of CH's in the groundwater from CH concentrations in the soil gas is probably not feasible. However, site specific calibration of the soil gas method can provide at least a semi-quantitative prediction of groundwater concentrations across a site (Lappala and Thompson, 1984). The soil gas data obtained
during this study can be used to make such predictions.

The correlation of the concentrations of PCE in the soil gas with PCE levels in the groundwater at 11 temporary well locations is shown in Figure 42. The data points shown in Figure 42 are of corresponding soil gas and temporary well sample locations. A regression analysis performed on the data indicated a linear relationship between the two data sets with a correlation coefficient of $r=0.89$. This indicates a high degree of correlation between the soil gas and water quality data for PCE.

The correlation between TCA concentrations at the water table and in the soil gas is also high. A regression analysis was also performed for the two data sets to establish the correlation between TCA levels in the two media at seven locations. Figure 43 presents the results of this analysis. A correlation coefficient of $r=0.91$ was calculated for the TCA data.

Using the linear regression data, semi-quantitative predictions of the concentrations of PCE and TCA at the water table can be estimated from the soil gas data. The equations from the linear regression analysis of the PCE and TCA data are

$$C_{gw\,(PCE)} = 24.34 + 6.56C_{sg\,(PCE)} , \text{ and}$$

$$C_{gw\,(TCA)} = 3.40 + 5.79C_{sg\,(TCA)} .$$
Figure 42. Correlation of PCE in the Soil Gas and Groundwater.
PCE CONCENTRATIONS IN THE SOIL GAS (ppb)

\[r^2 = 0.792 \]
\[r = 0.89 \]
\[n = 11 \]
Figure 43. Correlation of TCA in the Soil Gas and Groundwater.
RATIOS IN THE SOIL GAS (ppb)

$r^2 = 0.828$
$r = 0.91$
$n = 7$
respectively. These equations can be used to determine unknown concentrations for corresponding soil gas or water quality sampling locations across the study area.

The calculations for the regression analysis of both the PCE and TCA soil gas and water quality data are provided in Appendix F.

Site specific and compound specific ratios between soil gas and groundwater (water table) concentrations can be useful for identifying vadose zone versus groundwater contamination sources (Marrin, 1985). Table 10 is a presentation of the concentration ratios of PCE and TCA in the soil gas as compared to the levels of these compounds in the groundwater at the corresponding temporary well locations. The range of the ratios for PCE is from 0.003 to 0.134; the mean and standard deviation were calculated to be 0.071 and 0.050, respectively. The range of the TCA ratios was from 0 to 0.173. The mean ratio value was 0.061 and the standard deviation was 0.058.

For this specific study area, ratios that fall below at least plus two standard deviations of each calculated mean probably indicate that the soil gas levels are from vapors diffusing from contaminated groundwater only. Ratios higher than this may indicate that vadose zone or surface sources of the contaminant vapors are also present.
Table 10

Concentrations and Ratios of PCE and TCA in the Soil Gas and Shallow Groundwater

Corresponding Sample Locations	Concentrations (ppb)								
-------------------------------	----------------------								
Soil Gas	Groundwater	PCE	Soil Gas	Groundwater	Ratio	TCA	Soil Gas	Groundwater	Ratio
RZ-SG-04	RZ-TW-03	28.06	210	0.134	4.16	24	0.173		
RZ-SG-40	RZ-TW-06	10.57	110	0.096	1.71	22	0.078		
RZ-SG-41	RZ-TW-02	5.26	46	0.110	0.39	6	0.065		
RZ-SG-51	RZ-TW-20	0.35	100	0.0035	----	----	----	----	
RZ-SG-52	RZ-TW-22	0.286	3	0.09	0	1	0	----	----
RZ-SG-53	RZ-TW-23	5.47	41	0.13	0.182	3	0.061		
RZ-SG-54	RZ-TW-25	1.98	33	0.06	----	----	----	----	
RZ-SG-55	RZ-TW-24	0	3	0	----	----	----	----	
RZ-SG-56	RZ-TW-25	1.75	33	0.053	----	----	----	----	
RZ-SG-57	RZ-TW-23	4.26	41	0.10	0.153	3	0.051		
RZ-SG-62	RZ-TW-14	0.263	30	0.088	0.071	0	0.061		
Mean								0.071	0.061
Standard deviation								0.050	0.058
CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. The method of concentrating soil gas vapors from a point source onto a sorbent material has been proven to be successful in detecting vapors emanating from PCE and TCA concentrations as low as 3.0 ppb, each, at or near the water table at depths up to 10 feet below the ground surface.

2. Ambient air, trip blank and analytical blank soil gas sample analysis provided site specific detection limits of 0.20 ppb and 0.01 ppb for PCE and TCA, respectively, in soil gas samples obtained from the study area.

3. Calibration curves established from soil gas standards made from vapor phase CH constituents were used successfully to semi-quantitatively determine the concentrations of PCE and TCA in soil gas samples.

4. The polyethylene tubing used for the transport line between the sampling point and the sample trap tube was determined to have introduced interference compounds into these samples. This interference, however, did not affect the PCE and TCA results.
5. The soil gas data were successful in identifying the approximate locations of the source areas, direction of migration, areal extent and chemical composition of the plumes of contamination in the groundwater emanating from the Rozema Garage site.

6. The soil gas sampling data identified two main source areas for the PCE and TCA contamination in the groundwater beneath the Rozema property.

7. The relative concentration distributions of the PCE and TCA levels detected in soil gas samples closely reflect the distribution of the concentrations of those compounds identified in the groundwater (water table) across the study area.

8. The soil gas data also helped identify three areas where vadose zone or surficial sources of PCE and TCA contamination are believed to be present.

9. High degrees of correlations \(r = 0.89, \ n = 11 \) exist between the concentration levels of PCE identified in soil gas samples and PCE concentrations detected at the water table at approximately the same locations and the same time.

10. High correlations \(r = 0.91, \ n = 7 \) also were observed between TCA levels in the soil gas and in the corresponding water quality samples. TCA concentrations were much less than PCE levels in the groundwater over the study area.
11. Site specific and compound specific average concentration ratios between PCE and TCA levels in the soil gas and at the water table were calculated to be 0.071 and 0.061, respectively. These ratios can be used for identifying the presence of vadose zone, surface or groundwater contamination sources.

12. The advantage of using a soil gas sampling technique, as confirmed by Marrin and Thompson, 1984, is that obtaining data from numerous and closely-spaced sampling points prevent small scale geologic or hydrologic anomalies from distorting overall plume characteristics. The soil gas data used for this study enabled the accurate delineation of the contamination plumes.

13. In this study, soil gas sampling appears to be unsuitable for sampling in frost impacted, overconsolidated granular soils.

14. The soil gas data acquired during January, 1987, when temperatures averaged 21.0 Deg. C, were used to delineate the PCE and TCA sources on, and to estimate the plume migration off, the Rozema Site. The soil gas data obtained in June and July, 1987, when the average daily temperature was 79.6 Deg. C., were used successfully to delineate the extent of the water table contamination downgradient of the site. Thus, although temperature fluctuations may have slightly affected the
flux of soil gas contaminants in the vadose zone at some sampling locations, the effects were not significant enough to cause large differences between these two data sets. Therefore, the versatility of the technique was not limited significantly by temperature fluctuations.

Recommendations

1. It is recommended that further studies be performed to evaluate the suitability of other tubing materials through which soil gas samples are drawn. The polyethylene tubing used for this study has been proven to introduce interference in soil gas samples obtained while atmospheric temperatures ranged from 70 Deg. F to 92 Deg. F. The material that is believed to be most suitable to replace this tubing is Teflon.

2. A different, more versatile, type of air sampling pump should be used instead of the SKC Model 222 air pumps used for this study. The new pump should be more powerful and should allow for the accurate regulation of the flow, or purging rates. A peristaltic pump may be inherently more suitable for this type of sampling.

3. A new method for preparing soil gas analytical standards should be investigated. The method used in this study has been shown to cause analytical inconsistencies. As a result, standard calibration
curves were used to calculate the sampling results. However, results from this method of calibration are only semi-quantitative.

4. Additional research must be carried out to evaluate the versatility of this soil gas sampling technique for detecting CH plumes in unconfined aquifers with water table depths exceeding 10 feet below ground level.

5. Anomalous soil gas contamination that has been detected over contaminant free groundwater should be verified with composite soil samples obtained at that location.

6. When analyzing soil gas samples, calibration should be accomplished with a daily series of standards. This series should be comprised of a range of standard concentrations. The concentrations of the target compounds should be at or close to the analytical detection limit, and at levels of the average and high concentrations expected for the soil gas data, as based on the background water quality data for a site. This will allow for a more accurate estimation of the external standard calibration curve used to quantify the daily sample results.

7. Duplicate samples should be obtained once daily instead of with every tenth sample. The duplicate sample is a quality assurance measure that should be obtained
with every daily batch of samples to insure data replication.

8. Handles should be welded onto the slide hammers on the soil gas probes. These handles will minimize the abuse to the palm of the hands when driving the probes through tight, or over-consolidated materials.
APPENDIX A

Boring Logs
<table>
<thead>
<tr>
<th>SAMPLE AND TYPE</th>
<th>BLOW/ 20 BLOWS</th>
<th>SAMPLE DESCRIPTION</th>
<th>SOIL DENSITY</th>
<th>ROCK HAMMER</th>
<th>MATERIAL DESCRIPTION</th>
<th>MATERIAL CLASSIFICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>DRY</td>
<td>LIGHT BROWN</td>
<td></td>
<td></td>
<td>SILTY FINE TO MEDIUM</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAND, TONE, FINE GRAVEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>DRY</td>
<td>LIGHT BROWN</td>
<td></td>
<td></td>
<td>SILTY FINE TO MEDIUM</td>
<td>SW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAND, MARS, SAND TO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MARLE GNESEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>WET</td>
<td>LIGHT BROWN</td>
<td></td>
<td></td>
<td>MARRON SAND, TETE MARS</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

BORING 22-TW-11

SEE LEGEND ON BACK

PAGE 1 OF 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>SAMPLE TYPE (DRY OR WET)</th>
<th>SAMPLE MOISTURE & WATER DEPTH</th>
<th>SOIL DENSITY & CONSISTENCY</th>
<th>COLOR</th>
<th>ROCK HARDNESS</th>
<th>MATERIAL CLASSIFICATION</th>
<th>MATERIAL DESCRIPTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>DRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>WET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>WET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

*SEE LEGEND ON BACK

BORING PE-TW-12

PAGE 1 OF 1
Engineering Log Sheet

Project: Rosetta
Project No.: 3622
Boring: R3-TW-13
Elevation:
Date: 6-22-87
Field Geologist: Timothy J. Mayotte

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type of Material</th>
<th>Moisture</th>
<th>Color</th>
<th>Rock Hardness</th>
<th>Classification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td>Brown</td>
<td>FINE SAND, TRACE FINE</td>
<td>GRAVEL</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td></td>
<td></td>
<td>Brown</td>
<td>FINE SAND TO FINE</td>
<td>GRAVEL</td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td></td>
<td></td>
<td>Brown</td>
<td>SAND</td>
<td>GRAVEL</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

See Legend on Back
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>TYPE</th>
<th>BLOW/SEX HICHS ON RQD%</th>
<th>ELEVATION</th>
<th>DATE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>DRY</td>
<td></td>
<td></td>
<td></td>
<td>Fine sand, some fine to coarse gravel.</td>
</tr>
<tr>
<td>10.0</td>
<td>DRY</td>
<td></td>
<td></td>
<td></td>
<td>Sandy fine sand. Trace fine gravel.</td>
</tr>
<tr>
<td>15.0</td>
<td>DRY</td>
<td></td>
<td></td>
<td></td>
<td>Sandy fine sand to mud. Trace fine gravel.</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION:

- Fine sand, some fine to coarse gravel.
- Sandy fine sand. Trace fine gravel.
- Sandy fine sand to mud. Trace fine gravel.

REMARKS:

Boring 02-TU-14

SEE LEGEND ON BACK
<table>
<thead>
<tr>
<th>BORE NO./ DATE</th>
<th>MATERIAL DESCRIPTION*</th>
<th>SOIL DENSITY/ CONSISTENCY</th>
<th>ROCK HARDNESS</th>
<th>COLOR</th>
<th>MATERIAL CLASSIFICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>WET</td>
<td>Fine to Medium Sand</td>
<td></td>
<td></td>
<td></td>
<td>SP</td>
</tr>
<tr>
<td>10.0</td>
<td>WET</td>
<td>Same</td>
<td></td>
<td></td>
<td></td>
<td>SP</td>
</tr>
</tbody>
</table>

REMARKS

- SEE LEGEND ON BACK

BORING 22-7W-15

PAGE 1 OF 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>SAMPLE REFERENCE</th>
<th>BLOW/(IN. INCHES OR ROG/SQ.</th>
<th>SAMPLE RECOVERY/RECOVERY LENGTH</th>
<th>MATERIAL MOISTURE & WATER DEPTH</th>
<th>MATERIAL DESCRIPTION</th>
<th>MATERIAL CLASSIFICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>DAMP</td>
<td></td>
<td></td>
<td>Listed</td>
<td>MEDIUM SAND</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>WET</td>
<td></td>
<td></td>
<td>Listed</td>
<td>MEDIUM SAND TO SW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FINE GRAVEL</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

BORING 22-TW-16

*SEE LEGEND ON BACK
<table>
<thead>
<tr>
<th>SAMPLE NO. TYPE</th>
<th>BLOW (ON HICKS ON OR 0/50)</th>
<th>SOIL MOISTURE</th>
<th>MATERIAL MOISTURE</th>
<th>MATERIAL DESCRIPTION</th>
<th>MATERIAL CLASSIFICATION</th>
<th>USER OR FGS.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>WET</td>
<td>125</td>
<td>Brown</td>
<td>Silty Fine Sand, Trunc SP</td>
<td>MEDIUM SAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>DRY</td>
<td>125</td>
<td>Brown</td>
<td>MEDIUM SAND, Trunc SP</td>
<td>MUDSE Sand, And Fine</td>
<td>GRAVEL</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

BORING Z2-TW-17

SEE LEGEND ON BACK
<table>
<thead>
<tr>
<th>SAMPLE NO. & TYPE</th>
<th>SAMPLE RECOVERY & WATER DEPTH (ft)</th>
<th>MATERIAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>moist</td>
<td>Fine to medium sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Some coarse sand to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine gravel</td>
</tr>
<tr>
<td>10.0</td>
<td>wet</td>
<td>Silty fine sand to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine gravel</td>
</tr>
</tbody>
</table>

REMARKS

SEE LEGEND ON BACK
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>TYPE</th>
<th>DEPTH (FT)</th>
<th>BLOW/RIEUSEL</th>
<th>SAMPLE RECOVERY</th>
<th>SOIL CONSISTENCY</th>
<th>ROCK INCLUSIONS</th>
<th>COLOR</th>
<th>MATERIAL CLASSIFICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>DRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SILTY FINE SAND, SOME</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MED. SAND, TRACE FINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GRAVEL</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>WET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MEDIUM SAND, SOME</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COARSE SAND AND FINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GRAVEL</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

See Legend on Back
<table>
<thead>
<tr>
<th>SAMPLE NO. & DATE</th>
<th>MATERIAL DESCRIPTION</th>
<th>MATERIAL CLASSIFICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>Brown Fine Sand, Trace Gravel, SP</td>
<td>Gravel</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>Yellow Fine to Medium Sand, SP</td>
<td>Some Fine to Coarse Gravel</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

BORING ZE-TU-20

SEE LEGEND ON BACK

PAGE 1 OF 1
| SAMPLE NO./
<table>
<thead>
<tr>
<th>TYPE</th>
<th>NUMBER</th>
<th>BORE/BOX NUMBER</th>
<th>DEPTH</th>
<th>BLOW/BOX NUMBERS</th>
<th>MATERIAL DESCRIPTION*</th>
<th>MATERIAL CLASSIFICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>DRY</td>
<td></td>
<td></td>
<td></td>
<td>FINE SAND, TRACE</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COARSE SAND AND FILE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>DRY</td>
<td></td>
<td></td>
<td></td>
<td>FINE TO MEDIUM SAND</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOME COARSE SAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRAME FINE GRAVEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>MUST</td>
<td></td>
<td></td>
<td></td>
<td>MEDIUM SAND, TRACE</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FINE GRAVEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

*SEE LEGEND ON BACK

BORING 22-TU-21

PAGE 1 OF 1
<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>MATERIAL DESCRIPTION</th>
<th>MATERIAL CLASSIFICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>Brown, fine to medium sand, silt, trace coarse sand</td>
<td>SP</td>
<td>Trace coarse sand to coarse gravel</td>
</tr>
<tr>
<td>10.0</td>
<td>Brown, medium sand, silt, coarse sand and fine gravel, trace silt</td>
<td>SP</td>
<td></td>
</tr>
</tbody>
</table>

Remarks: BORING R2-TW-22

SEE LEGEND ON BACK
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>MATERIAL DESCRIPTION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>MIST</td>
</tr>
<tr>
<td></td>
<td>VTG</td>
</tr>
<tr>
<td></td>
<td>FINE TO MEDIUM SAND</td>
</tr>
<tr>
<td></td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>TEOE FINE GRAVEL</td>
</tr>
<tr>
<td>13.0</td>
<td>MIST</td>
</tr>
<tr>
<td></td>
<td>VTG</td>
</tr>
<tr>
<td></td>
<td>MEDIUM SAND</td>
</tr>
<tr>
<td></td>
<td>TEOE</td>
</tr>
<tr>
<td></td>
<td>FINE GRAVEL</td>
</tr>
</tbody>
</table>

Remarks

SEE LEGEND ON BACK
Project Information
- **Project No.:** RZ-TW1-24
- **Elevation:**
- **Date:**
- **Field Geologist:**

Material Description

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type</th>
<th>Moisture Condition</th>
<th>Soil Density/Consistency</th>
<th>Rock Hardness</th>
<th>Color</th>
<th>Material Classification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Wet</td>
<td>Light</td>
<td>FINE TO MEDIUM SAND</td>
<td>SP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WITH COURSE GRAVEL</td>
</tr>
<tr>
<td>12.5</td>
<td>Wet</td>
<td>Light</td>
<td>FINE TO MEDIUM SAND</td>
<td>SP</td>
<td></td>
<td></td>
<td>Trace fine gravel</td>
</tr>
</tbody>
</table>

Remarks

- **Remarks:**

SEE LEGEND ON BACK
<table>
<thead>
<tr>
<th>Sample (No. & Depth)</th>
<th>Blow/Gun Holes (or Iniug%)</th>
<th>Sample Recovery</th>
<th>Material Moisture</th>
<th>Water Depth</th>
<th>Soil Density</th>
<th>Grain Size</th>
<th>Rock Hardness</th>
<th>Color</th>
<th>Material Classification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>100</td>
<td>75</td>
<td>Light Green</td>
<td>Fine to Medium Sand, SP</td>
<td>Trace Fine Gravel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>100</td>
<td>75</td>
<td>Light Green</td>
<td>Fine to Medium Sand, SP</td>
<td>Trace Fine Gravel, Trace Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: ________________

BORING R2-TW-25

*See Legend on Back

Page 1 of 1
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>SAMPLE DESCRIPTION</th>
<th>MATERIAL DESCRIPTION</th>
<th>MATERIAL CLASSIFICATION</th>
<th>SOIL DENSITY/CONSISTENCY</th>
<th>NOTES</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>WET</td>
<td>Damp</td>
<td>BROWN FINE SAND TRACER ROCK FRAGMENTS (SD)</td>
<td>TRACER SILT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5-6.0 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-2</td>
<td>WET</td>
<td>Dense</td>
<td>BROWN FINE TO COARSE SAND TRACER (SW)</td>
<td>FINE GRAVEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5-10.0 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-3</td>
<td>WET</td>
<td>Medium</td>
<td>BROWN SAME, LITTLE FINE GRAVEL (SW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5-10.0 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-4</td>
<td>WET</td>
<td>Slightly dense</td>
<td>BROWN SAME, GRAVEL BLOCKED (SW)</td>
<td>GRAVEL-NOS RECOVERY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5-20.0 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

BORING RZ-G1

PAGE 1 OF 2

*SEE LEGEND ON BACK
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>TYPE</th>
<th>BORE HOLE</th>
<th>SAMPLE DEPTH</th>
<th>MATERIAL DESCRIPTION</th>
<th>MATERIAL CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-5</td>
<td>1-2</td>
<td>101.5 ft</td>
<td>24.5-36.0 ft</td>
<td>Brown Fine Sand</td>
<td>(SP)</td>
</tr>
<tr>
<td>C-6</td>
<td>1-7</td>
<td>151.5 ft</td>
<td>29.5-31.0 ft</td>
<td>Gray Clay, Trace Fine Sand</td>
<td>(CL)</td>
</tr>
<tr>
<td>S-7</td>
<td>1-7</td>
<td>191.5 ft</td>
<td>31.32.5 ft</td>
<td>Brown Fine Sand and Silt</td>
<td>(ML-3%)</td>
</tr>
</tbody>
</table>

REMARKS

SEE LEGEND ON BACK

BORING R2-01
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>MATERIAL DESCRIPTION</th>
<th>MATERIAL CLASSIFICATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>LOOSE DAMP</td>
<td>MEDIUM SAND</td>
<td>(SP)</td>
</tr>
<tr>
<td>1.5-4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0-6.5FT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2</td>
<td>DENSE WET</td>
<td>FINE TO MEDIUM SAND</td>
<td>(SP)</td>
</tr>
<tr>
<td>1.5-11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0-12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-3</td>
<td>MEDIUM WET</td>
<td>FINE TO MEDIUM SAND</td>
<td>(SP)</td>
</tr>
<tr>
<td>1.5-4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0-15.5FT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-3A</td>
<td>VERY STIFF DAMP</td>
<td>Silt and Fine Sand</td>
<td>(ML)</td>
</tr>
<tr>
<td>15.5-17.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-3B</td>
<td></td>
<td>CLAY, TRACE FINE SAND</td>
<td>(CL)</td>
</tr>
<tr>
<td>1.5-3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0-15.5FT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-3C</td>
<td></td>
<td>CLAY, TRACE FINE SAND</td>
<td>(CL)</td>
</tr>
<tr>
<td>1.5-3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0-20.5FT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-5</td>
<td></td>
<td>CLAY, TRACE FINE SAND</td>
<td>(CL)</td>
</tr>
<tr>
<td>1.5-3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5-22.0FT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: THIS SAMPLE (S-3A, 3B) TAKEN IN OFFSET BORES. TEMPORARY WELL IN ORIGINAL BORING WAS NOT PRODUCING R2-02 WATER.

SEE LEGEND ON BACK
<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION*</th>
<th>MATERIAL CLASSIFICATION</th>
<th>USES OR ROCK BREAKER</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0.55 ft DAMP</td>
<td>LOOSE BROWN FINE SAND, TRACE FINE (SP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0-10 ft WET</td>
<td>MEDIUM DENSE BROWN FINE TO COARSE SAND, (SA)</td>
<td>TRACE COARSE SAND</td>
<td></td>
</tr>
<tr>
<td>16.5-16.5 ft WET</td>
<td>MEDIUM DENSE BROWN FINE SAND, TRACE FINE GRAVEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5-21 ft WET</td>
<td>VERY STIFF GRAY SILT, TRACE FINE SAND (ML)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0-22.5 ft</td>
<td>VERY STIFF GRAY SILT, TRACE FINE SAND (ML)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: LOG 14.0 FT 22.5 FT NOT TO SCALE ON LOG SHEET.

BORING R2-C3

*SEE LEGEND ON BACK

PAGE 1 OF 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX B

Soil Gas Sample Logs
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZMA

SAMPLE NUMBER: B2-SC-001A & 001B

DATE SAMPLED: 12-17-86

TIME SAMPLED: 0958-1048, 1138

DATE ANALYZED:

SAMPLE DEPTH: 3'

SURVEY COORDINATE:

SAMPLE LOCATION: NW Corner Of Site, Near Well MW3

ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:

GAS CHROMATOGRAPH USED: HP578A

COMMENTS:

001A - 2 liter Pilot Sample
001B - 4 liter Pilot Sample

* Using 12" Terlar Trap Tubes & New 5G Tips

SAMPLING PERSONNEL: DRH/RHC

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

001B - Retaken on 1-16-87 - Start at 0855 -
1050

436800

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: POZEA
SAMPLE NUMBER: GS - 002A, 002B
DATE SAMPLED: 1-15-87
TIME SAMPLED: 1455, 1512
DATE ANALYZED:
SAMPLE DEPTH: 3'
SURVEY COORDINATE: NE CORNER OF SITE NEAR WELL MW
SAMPLE LOCATION:
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

002A - 2 LITER PILOT SAMPLE
002B - 4 LITER PILOT SAMPLE

SAMPLING PERSONNEL: DHK/PHC

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: 12-66-003A & 003B
DATE SAMPLED: 1-16-86
TIME SAMPLED: 0900-1050 (003B) / 1000-1100 (1207)
DATE ANALYZED:
SAMPLE DEPTH: 3'
SURVEY COORDINATE:
SAMPLE LOCATION: SE CORNER OF SITE - AMONG DEBRIS - ADJACENT
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

4L PILOT SAMPLE - 003B
2L PILOT SAMPLE - 003A

SAMPLING PERSONNEL: RHJ/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Roczema
SAMPLE NUMBER: RZ-SG-0044
DATE SAMPLED: 1-15-87
TIME SAMPLED: 1105-1207
DATE ANALYZED:
SAMPLE DEPTH: 3'
SURVEY COORDINATE:
SAMPLE LOCATION: SOUTH EDGE OF PROPELLANT LONG FENCE - MIDWAY GAIN.
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
 Zl Pilot Shop Sample

SAMPLING PERSONNEL: RHC/PRM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZENIA
SAMPLE NUMBER: RZ-S6-005A + 005B
DATE SAMPLED: 1-19-87
TIME SAMPLED: 12:15
DATE ANALYZED:
SAMPLE DEPTH:
SURVEY COORDINATE:
SAMPLE LOCATION: NORTH FENCE LINE, DIRECTLY NORTH OF MIDDLE OF GARAGE 108 FT FROM N CORNER 89 FT FROM NW CORNER
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE TENAX
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: CLOVER, COLD (≈ 20°F)

005A - 2 ft SAMPLE
005B - 1 ft SAMPLE

PUMP # 3 (005A)
END # 438854
TUFF # 4 (005B)
END # 770016

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

770016
9920
77.795%
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozea
SAMPLE NUMBER: RZ-5G - 006A & 006B
DATE SAMPLED: 11/19/87
TIME SAMPLED:
DATE ANALYZED:
SAMPLE DEPTH: 3'
SURVEY COORDINATE:
SAMPLE LOCATION:
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE TEN4X
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Cloudy, cold (~20°F)

<table>
<thead>
<tr>
<th>Container</th>
<th>Volume</th>
<th>Pump #</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>006A</td>
<td>2 liter</td>
<td>#4</td>
<td>(0684)</td>
</tr>
<tr>
<td>006B</td>
<td>1 liter</td>
<td>#3</td>
<td>(0683)</td>
</tr>
<tr>
<td>006A</td>
<td>33.87 ml over 1 liter sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006B</td>
<td>63.16 ml over 1 liter sample</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: FRZ1NA
SAMPLE NUMBER: R2-3G-007
DATE SAMPLED: 1-20-87
TIME SAMPLED: 10:00
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: DIRECTLY SOUTH OF R2-3G-005A - 600 FT FROM #8,
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE TENAX
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS:
 Cloudy, Cold
 Pump $3 START-493475
 END-5044735
 (504 6:40)

SAMPLING PERSONNEL: TM/DBH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: RZ-SG-008
SAMPLE NUMBER: RZ-SG-C&
DATE SAMPLED: 9:45 AM
TIME SAMPLED: 11/20/57
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: SOUTH OF RZ-SG-007;
NORTH OF ROZEMR; GAAGE.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE TENAX
VOLUMETRIC CONTAINER USED: HP5890A
GAS CHROMATOGRAPH USED:
COMMENTS:
- Cold, Snowy

Pump # 4
START: 8053BC
9.92c
END: 810246
SECT FROM WORKS
OF BLDG AND
23 FT DIRECTLY
NORTH OF BLDG

SAMPLING PERSONNEL: Tvm/DZH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: R2-56-009
DATE SAMPLED: 1-20-87
TIME SAMPLED: 11:30 AM
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION:
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

SNOWY, COLD (20°F)

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

SAMPLING PERSONNEL: TOM / D2H

START 50/923
END 51/6/83

11/24/80
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozema
SAMPLE NUMBER: R2-SG-010
DATE SAMPLED: 1-20-87
TIME SAMPLED: 1430
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 35.58 FT SOUTH OF NE CORNER MONITORING WELL. 9 FT WEST OF EAST ROXARINE.
ANALYSIS METHOD - DIRECT INJECTION
ABSOWPTION TUBE ✓

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890 A

COMMENTS:
Cloudy, Cold (≈ 20°)

Pump #3 Start - 516268
 End - 527508

SAMPLING PERSONNEL: TJM/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROSEMA
SAMPLE NUMBER: R2-SG-011
DATE SAMPLED: 1-20-87
TIME SAMPLED: 1430-1530
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 48 FT SOUTH OF SAMPLE 010, 9 FT WEST OF EAST FENCELINE
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890 A
COMMENTS:
CLOUDY, COLD (42°)
Pump 4 start - 816345 816695
END - 826405 816695

HAD TO START OVER W/ NEW TUBE DUE TO WIND BLOWING ORIGINAL OFF THE PAGE

SAMPLING PERSONNEL: Tjm / DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: R2GMA
SAMPLE NUMBER: R2-SG-012
DATE SAMPLED: 1-20-87
TIME SAMPLED: 1620
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 50 FT WEST OF EAST FENCE LINE, 60 FT NORTH OF SOUTH FENCE LINE
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890 A

COMMENTS:

Cloudy, cold (2°F)
Pump #3 RUN START — 927580
END 930620

SAMPLING PERSONNEL: Tom / DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-5G-013
DATE SAMPLED: 1/21/87
TIME SAMPLED: 0725
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 66 FT WEST OF EAST FENCE LINE, 56 FT NORTH OF SOUTH FENCE LINE.
ANALYSIS METHOD - DIRECT INJECTION

ABSOLUTION TUBE

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS:

Rep. #4 826772
9920
836672

Replaced intake seal on pump. Cold air seems to have made plastic hard and deformable such that a proper seal between it and the tube is not insured.

As a result, there may not have been a full liter pulled through the tube.

SAMPLING PERSONNEL: TJM/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROSEM A
SAMPLE NUMBER: R2-SG-014
DATE SAMPLED: 1/21/87
TIME SAMPLED:
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 47 FT WEST OF EAST FENCE LINE. 7 FT NORTH OF SAMPLE OIL LINE.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890 A
COMMENTS:
Cloudy, cold (~20)

Pump #4 ST: 535917
End: 550157

SAMPLING PERSONNEL: TJm/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: R2-SG-01S
DATE SAMPLED: 1-21-87
TIME SAMPLED:
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 27 FT EAST OF BLDG. 72 FT WEST OF EAST FENCE LINE 31 FT FROM SOUTH CORNER BLDG.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HPS590A
COMMENTS: SUNCH COLD (390)

PUMP #3 START — 550324 11240
END — 569564

SAMPLING PERSONNEL: TIM/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Royona

SAMPLE NUMBER: R2-36-016

DATE SAMPLED: 11/24/97

TIME SAMPLED: 11:41 HRS

DATE ANALYZED:

SAMPLE DEPTH: 4'

SURVEY COORDINATE:

SAMPLE LOCATION: 35 FT SOUTH OF SAMPLE 015, 32.5 FT SE FROM SE CORNER OF BUDS

ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:

GAS CHROMATOGRAPH USED: HP5890 A

COMMENTS:

Sunny
cold 6-28-91 Pump # 4 start - 831242
end - 847212

START CUP TIP AFTER EVACUATION

SAMPLING PERSONNEL: TJM/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZENZA
SAMPLE NUMBER: RZ-5G-017
DATE SAMPLED: 1/21/87
TIME SAMPLED: 7:30 HRS
DATE ANALYZED:
SAMPLE DEPTH:
SURVEY COORDINATE:
SAMPLE LOCATION: 69.5 FT SOUTH OF NORTH FENCE LINE, 841.5 FT EAST OF WEST FENCE LINE
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP8904
COMMENTS:

Pump 4 847319
+ 9920
End 857239

Cut tip after evacuation

SAMPLING PERSONNEL: TJM/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: PRAXNA
SAMPLE NUMBER: R2-SS-018
DATE SAMPLED: 1/21/87
TIME SAMPLED: 15:55
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 45' SOUTH OF SAMPLE R2-SS-017, 31 FT WEST OF BLDG.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

Pump #3 START: 561653
+ 1240
END 57293

SAMPLING PERSONNEL: TJM | DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozema
SAMPLE NUMBER: RZ-85-019
DATE SAMPLED: 1-21-87
TIME SAMPLED: 1625
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 40FT SOUTH OF SAMPLE RZ-85-018, 73FT NORTH OF SOUTH FENCELINE
ANALYSIS METHOD - DIRECT INJECTION
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS: Sunny, Windy, Cold (u 20°)

SAMPLING PERSONNEL: Jim / DBY

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMIA
SAMPLE NUMBER: R2-SG-020
DATE SAMPLED: 1-21-87
TIME SAMPLED: 1705
DATE ANALYZED:
SAMPLE DEPTH: 41
SURVEY COORDINATE: 44.5 FT NORTH OF SOUTH FENCE LINE. 40 FT EAST OF WEST FENCE LINE
SAMPLE LOCATION:
ANALYSIS METHOD: DIRECT INJECTION
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Sunny, cold (+20°), windy

PUMP #3
START: 573012
11240
END: 586252
573317
S935

SAMPLING PERSONNEL: JW M / D2H

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

PUMP #3 CALIBRATION

261 cts / 25 ml
2840 cts / 1000 ml
SAMPLE VOLUME 1080
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rosema
SAMPLE NUMBER: RE-SG-021
DATE SAMPLED: 1/24/81
TIME SAMPLED: 1030 HRS
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 71 FT FROM SOUTH FENCELINE, 104 FT EAST FROM WEST FENCELINE
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE /

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED:
COMMENTS:

Pump #2 START 378022
+ 8373
END 388295

SAMPLING PERSONNEL: [Signature]

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROSEMTH
SAMPLE NUMBER: R2-56-022
DATE SAMPLED: 1/24/87
TIME SAMPLED: 1:00 HRS
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: POSTMA PROPERTY
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED:
COMMENTS:

Pump #1
Start 417834
11/11
End 425647
426033
Actual
38605
Sample Volume
1049 mL

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

PUMP #1
781.3 CTS/100mL

*
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozena
SAMPLE NUMBER: RZ-SS-023
DATE SAMPLED: 1/22/87
TIME SAMPLED: 11:20 HRS
SAMPLE DEPTH: A'

ANALYSIS METHOD - DIRECT INJECTION ✓
ABSORPTION TUBE ✓

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED:

COMMENTS:

Pump #2 start 396.4'
+ 8373
End 394.8'

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZENIA
SAMPLE NUMBER: AE-56-004
DATE SAMPLED: 1-22-97
TIME SAMPLED: 1500
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:

SAMPLE LOCATION: JANSEN PROPERTY 39 FT NORTH OF SOUTH FENCE LINE 104 FT EAST OF WEST FENCE

ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A

COMMENTS:

PUMP #1 SST - 426327 7013
END 434140

SAMPLING PERSONNEL: TJM / DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: R-56-025
DATE SAMPLED: 1-22-87
TIME SAMPLED: 1540
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: POSTMA PROPERTY, 55 FT SOUTH OF NORTH FENCING, 53 FT WEST OF R-56-023.
ANALYSIS METHOD - DIRECT INJECTION
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

Johnny, cold (20°), breezy
Pump #2 Start 394957 8373
End 403330
Actual 403640
310050 avg

SAMPLING PERSONNEL: DEH/TUM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

Pump # 1 781.3

Pump # 2 837.3
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-96-024
DATE SAMPLED: 1/27/87
TIME SAMPLED: 1534 HRS
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 330 FT EAST OF EDGE (EAST) OF MARCAN STREET, 25 FT NORTH OF CENTER LINE OF WISHERESK
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

COLD CLOUDY (-18°) Pump # 1
START 434214
END 442029

SAMPLING PERSONNEL: TJM/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-56-027
DATE SAMPLED: 6-27-87
TIME SAMPLED: 1540 hrs
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 230 FT EAST OF EDGE OF MARCAD ST. STREET. 25 FT NORTH OF CURBLINE OF WILSHIRE DRIVE.

ANALYSIS METHOD - DIRECT INJECTION

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A

COMMENTS:
Sunny, Breezy, Cold (~20°)
Pump #2 START — 403746
END — 412159

SAMPLING PERSONNEL: DRH / TJM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Polo West
SAMPLE NUMBER: 22-56-028
DATE SAMPLED: 1-27-87
TIME SAMPLED: 1030 HRS
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 130 FT EAST OF EDGE (EAST) EDGE OF MARCAN STREET
25 FT NORTH OF CENTER LINE (OR) OF WILHERS DRUG
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS: Cloudy, snowy, cold (215°F)

PUMP #1 5T - 492114
END 4/17927

SAMPLING PERSONNEL: TJM / ORH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: RODEMA
SAMPLE NUMBER: R2-SG-029
DATE SAMPLED: 11/27/87
TIME SAMPLED: 1640 HRS
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 30FT EAST OF END (EAST) OF MARCAN STREET, 25FT NORTHERN OF QL OF WILSHIRE DRIVE.

ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

START
Z L 4/02/87
333.33
END 4/20/87

SAMPLING PERSONNEL: TJM/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: POREMA
SAMPLE NUMBER: 22-560-030A
DATE SAMPLED: 1/23/87
TIME SAMPLED: 1:48 HRS
DATE ANALYZED:
SAMPLE DEPTH:
SURVEY COORDINATE:
SAMPLE LOCATION: ADJACENT TO THE MAILBOX OF THE COE SIGN COMPANY
PORT OF THE POREMA SITE, 28 FT FROM C/L OF WILSHIRE DRIVE.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS:

PARTLY CLOUDY
MILD (70-80°F)

PUMP #1 START 450000

END 457821

SAMPLING PERSONNEL: TJJ/DR H

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-SG-031
DATE SAMPLED: 1/28/99
TIME SAMPLED: 1504HRS
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 130 FT SOUTHEAST OF CORNER OF ROZEMA PROPERT
(ROZEMA PROPERTY), 24 FT EAST OF C/L OF WILSHEG DR. DIRECTLY W OF FRONT OF E.B. DIESEL REPAIR

ANALYSIS METHOD - DIRECT INJECTION - PR
cR * DT M W

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A

COMMENTS:

PUMP #1 457902
START: 7/8/93
+65715

PARTLY CLOUDY, MILD (63°F)

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

SAMPLING PERSONNEL: T.J.M./D.E.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: LoZella
SAMPLE NUMBER: 22-563-032
DATE SAMPLED: 1-25-87
TIME SAMPLED: 1520
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 70FT NORTH OF POSTMA SERVICES BUILDING, 35FT WEST OF C/I OF WISHIRE DR.

ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5986

COMMENTS: Partly Cloudy, Mild (230°)

Pump #2
START — 43C.001

5373

FINISH — 438374

ACTUAL 438.730

5560CFU OVER

SAMPLE VOLUME
1066

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

*
SOIL GAS SAMPLE DATA SHEET

SITE NAME: BOREMA
SAMPLE NUMBER: RE-5G - 33
DATE SAMPLED: 1/29/87
TIME SAMPLED: 1555
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 28 FT WEST OF EDGE OF MARCEL AVS. 35 FT NORTH OF CENTER LINE OF WILSHIRE AVS.
ANALYSIS METHOD - DIRECT INJECTION ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5870A
COMMENTS:

PUMP #2 START 437033
+ 8373
END 447406
ACTUAL 447427

SAMPLING PERSONNEL: JIM/DRH 21 CTs overl

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

*
SOIL GAS SAMPLE DATA SHEET

SITE NAME: RZEEMA
SAMPLE NUMBER: RE-SG-034
DATE SAMPLED: 11/28/98
TIME SAMPLED: 1635 HRS
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 35 FT WEST OF EDGE OF WILSHIRE DR.
32 FT NORTH OF CUL DE SAC STREET.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A

COMMENTS:

Pump #1 4658/6 Pump #2 4743/6
4.7 373

Pump Died 4672/6 18ml 4743 5.3 6
0.36

SAMPLING PERSONNEL: TJJ/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

SAMPLE VOLUME 1786 ml

453799

Sample Volume 4743 5373

453811

*
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROREMA
SAMPLE NUMBER: R2-S6-035
DATE SAMPLED: 1/29/87
TIME SAMPLED: 1415 HRS
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 140FT WEST OF EDGE (WESTERN) WILSHIRE DRIVE
21 FT SOUTH OF CENTERLINE OF PORT SHELTON STREET.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP899A
COMMENTS:

SNOW, WWDY 638985 + 12040
END 65/1 025
ACTUAL 65/1 394
369 GTS OVER

SAMPLING PERSONNEL: TJM/DRH
SAMPLE = 1031 ML

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM.

*
SOIL GAS SAMPLE DATA SHEET

SITE NAME: R2-30

SAMPLE NUMBER: R2-SG-036

DATE SAMPLED: 1/29/97

TIME SAMPLED: 1420 HRS

DATE ANALYZED:

SAMPLE DEPTH: 4'

SURVEY COORDINATE:

SAMPLE LOCATION: 21 FT SOUTH OF CENTR LINE OF PORT SHELDON.

ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED:

GAS CHROMATOGRAPH USED: HP 5890 A

COMMENTS:

PUMP #1 START 4/29/92

SUN. WINDY
COLD (20°F)

+9360

END 4/22/82

SAMPLING PERSONNEL: TJM/DRH

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROSEWA
SAMPLE NUMBER: RE-SG-037
DATE SAMPLED: 1-29-87
TIME SAMPLED: 1505
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 150 FT EAST OF EAST EDGE OF WILSHIRE DRIVE. 21 FT SOUTH OF CENTERLINE OF PORT SHELDON STREET.
ANALYSIS METHOD - DIRECT INJECTION:
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890 A
COMMENTS: Snowy, windy, cold (~20°)

SAMPLING PERSONNEL: D.R.H / T.W.

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rosema
SAMPLE NUMBER: RE-SQ-038
DATE SAMPLED: 1-29-87
TIME SAMPLED: 15:10
DATE ANALYZED:
SAMPLE DEPTH: 4
SURVEY COORDINATE:
SAMPLE LOCATION: 250 FT EAST OF EASTERN EDGE OF WILSHIRE DRIVE.
ANALYSIS METHOD - DIRECT INJECTION
ABSorption TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Snowy, Windy, Cold (~20°)

Sampling Personnel: DPH/Tom

Attach copy of chromatogram and report form
SOIL GAS SAMPLE DATA SHEET

SITE NAME: RZELLA
SAMPLE NUMBER: RZ-SG-039
DATE SAMPLED: 1-29-87
TIME SAMPLED: 1605
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 100' E. OF RZ-SG-038 ON PORT SHELDON 21FT SOUTH CENTERLINE
ANALYSIS METHOD - DIRECT INJECTION
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Snow, cold (~20°), windy

Pump #6 8T-662750
12040
End - 674790
Actual 674790
Sample 1008ml

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

*
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozetta
SAMPLE NUMBER: R2-SG-040
DATE SAMPLED: 1-29-87
TIME SAMPLED: 1605
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 100' EAST OF R2-SG-C39 ON POINT SHELDON CENTERLINE
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: H55224-A
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Snow, Windy, Cold (v20°)

Pump #1 ST 501854
9360
51214

SAMPLING PERSONNEL: DRH/TJM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-3G-041
DATE SAMPLED: 1-29-87
TIME SAMPLED: 1655
DATE ANALYZED:
SAMPLE DEPTH: 4'
SURVEY COORDINATE:
SAMPLE LOCATION: 100’ E. of RZ-3G-040, 21’ 3 of CENTERLINE of PORT SHERidon ST.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS: Snowy, Windy (cold ~20°)
Pump #1 ST-511354 9360

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rose

SAMPLE NUMBER: 23-5C-042

DATE SAMPLED: 6-28-87

TIME SAMPLED: 1710

DATA ANALYZED:

SAMPLE DEPTH: Soft

SURVEY COORDINATE:

SAMPLE LOCATION: At NW corner of 2401 Port Sheldon, 12.5 ft S of Corner Stake

ANALYSIS METHOD: DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED: TENAX TUBE

GAS CHROMATOGRAPH USED: HP5890A

COMMENTS: Partly cloudy, warm (~75°F), breezy

Pump #6 5T-931642

10:00

F-942142

SAMPLING PERSONNEL: TDM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozema
SAMPLE NUMBER: R2-56-043
DATE SAMPLED: 6-28-87
TIME SAMPLED: 1720
DATA ANALYZED:
SAMPLE DEPTH: SOFT
SURVEY COORDINATE:
SAMPLE LOCATION: AT NW CORNER OF 2401 SHERidon ST
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: Tenax Tube
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Partly Cloudy, Warly (67°F), Breezy
RPM #1 5T-838165
8613
F - 846778

NOTE: TUBE CAME OFF AT PROBE TIP PRIOR TO INITIAL PULLS. WAS RECONNECTED W/ DECON, PUT BACK IN HOLE, PULLED AND THEN THE TENAX TUBE WAS CONNECTED.

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROBEXA
SAMPLE NUMBER: 23-56-094
DATE SAMPLED: 6-14-87
TIME SAMPLED: 3:15 PM
DATA ANALYZED:
SAMPLE DEPTH: 5.0 FT
SURVEY COORDINATE:
SAMPLE LOCATION: ON PORT SCHLON Rd., 32.5' S OF PORT SCHLON CENTERLINE, 17.5' N. OF UTILITY BOX AT CORNER
ANALYSIS METHOD - DIRECT INJECTION
VOLUMETRIC CONTAINER USED: TEXAS TUBE
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS:
Sunny Hot (~85°F)
Pump #1
Start: 7:53:16
9:08:00
Stop: 7:13:46

SAMPLING PERSONNEL: Tom | Kam

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozema
SAMPLE NUMBER: RE-SG-045
DATE SAMPLED: 6-24-87
TIME SAMPLED: 2035 HRS
DATA ANALYZED:
SAMPLE DEPTH: 1.5 FT
SURVEY COORDINATE:
SAMPLE LOCATION: 2 250' S of and 30' E of RE-TW-14 in pasture
ANALYSIS METHOD - DIRECT INJECTION Tenax Tube
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Sunny, hot (90°F), calm

Pump #1
START 802299
FINISH 810910
8613
810909

1 re-sample taken WNW of RE-TWIS
SAMPLING PERSONNEL: TMU

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozema
SAMPLE NUMBER: R2-85-046
DATE SAMPLED: 6-23-87
TIME SAMPLED: 2:120
DATA ANALYZED:
SAMPLE DEPTH: 50 FT (30 FT)
SURVEY COORDINATE:
SAMPLE LOCATION: N 100.0 FT DUE W. OF R2-85-045 IN PASTURE
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
Sunny, warm (≈ 80°F), calm

Pump #2 START 755802 757329
9093 909

SAMPLING PERSONNEL: Tim

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

pulled water at 50 FT pulled probe back to 3.5 FT. Water in line (small amounts)
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMB
SAMPLE NUMBER: RZ-SG-047
DATE SAMPLED: 6-23-87
TIME SAMPLED: 2155 HRS
DATA ANALYZED:
SAMPLE DEPTH: 6 FT
SURVEY COORDINATE:
SAMPLE LOCATION: 108' DOE OF RZ-SG-046
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
Sunny, warm, CUNC. (75°F)

<table>
<thead>
<tr>
<th>T</th>
<th>80472</th>
<th>802105</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>79853</td>
<td>792492</td>
</tr>
<tr>
<td>R</td>
<td>8413</td>
<td>8413</td>
</tr>
<tr>
<td>I</td>
<td>111111</td>
<td></td>
</tr>
</tbody>
</table>

TIP DRYER DISCONNECTED
FROM: PE. AIR WAS DRAW
THROUGH TIP CONNECTIONS
DRH SET BACK IN NICEL

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

REPRODUCED WITH PERMISSION OF THE COPYRIGHT OWNER. FURTHER REPRODUCTION PROHIBITED WITHOUT PERMISSION.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RE-SG-048
DATE SAMPLED: 6-23-87
TIME SAMPLED: 22:15
DATA ANALYZED:
SAMPLE DEPTH: 1.25 FT
SURVEY COORDINATE:
SAMPLE LOCATION: 100' W. OF RE-SG-047 (DUE WEST),
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TANAX TUBE
GAS CHROMATOGRAPH USED: HP5890B
COMMENTS:
 DUST, WARM (75°F), CALM

Pump #2
766610
903
775703

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozema
SAMPLE NUMBER: R2-SG-049
DATE SAMPLED: 6-24-87
TIME SAMPLED: 2125 HRS
DATA ANALYZED:
SAMPLE DEPTH: 15 FT
SURVEY COORDINATE:
SAMPLE LOCATION: DUE E. OF R2-S2-045, 25', DUE E. OF BARBED WIRE FENCE, 55' W. OF PORT SHELDON CT.
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: Tenax Tube
GAS CHROMATOGRAPH USED: HP5890A

COMMENTS:
Sunny, Warm (~75°F), Calm
Pump #1 STREET - 8/11/01 8:013
FINISH - 8/19/74

SAMPLING PERSONNEL: TJM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RE-SG-050 AND RE-SG-050DUP
DATE SAMPLED: 6-28-86
TIME SAMPLED: 14:50 HRS
DATA ANALYZED:
SAMPLE DEPTH: 5.0FT
SURVEY COORDINATE:
SAMPLE LOCATION: AT JENGEN TRANS. SW. CORNER, INSIDE FENCE
ON EITHER SIDE OF RE-TW 21, 3.5FT APART (E-W)
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE ✓

VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A

COMMENTS:
Sunny, warm (~75°F), breezy

PUMP #1 (050)
START - 820061 1613
FINISH - 828677 828677

PUMP #2 (050 DUP)
START - 785234 794329
FINISH - 794329

SAMPLING PERSONNEL: TUM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMM

SAMPLE NUMBER: R3-SG-051

DATE SAMPLED: 2-28-87

TIME SAMPLED: 1540 HRS

DATA ANALYZED:

SAMPLE DEPTH: 3.0 FT - 3.5 FT

SURVEY COORDINATE:

SAMPLE LOCATION: AT CORNER OF FORT SHELDON ST. & FORT SHELDON CT.

ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED: TENAX TUBE

GAS CHROMATOGRAPH USED: HP5890A

COMMENTS:

PARTLY CLOUDY, WIND (475%), BREEZY

PUMP®

START: 82 8813

END: 82 8613

FINISH: 83 34 26

NOTE: PE TUBING RINKED AT TOP OF PROBE; MAY HAVE VOLATILIZED OR RESTRICTED FLOW.

SAMPLING PERSONNEL: TVH4

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

ENGISH VALUE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROBEMH
SAMPLE NUMBER: R2-54-052
DATE SAMPLED: 7-7-87
TIME SAMPLED: 1930 HRS
DATA ANALYZED:
SAMPLE DEPTH: 20FT (HIT HARD (COMPACTED) BONE + 20FT)
SURVEY COORDINATE:
SAMPLE LOCATION: -100 FT S. OF R2-TW2, NEXT TO FENCE
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS SUNKY, HOT (~80°F), MUGGY, CALM (SLIGHT BREEZE - EASTLY)
COMMENTS:
SUNNY, HOT (~80°F), MUGGY, CALM (SLIGHT BREEZE - EASTLY)

PUMP #4 5T-215310 9760
F - 225070
925072

SAMPLING PERSONNEL: Tom

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-56-053
DATE SAMPLED: 7-7-87
TIME SAMPLED: ~1940 HRS
DATA ANALYZED:
SAMPLE DEPTH: 5.0 FT (UNDER NEWLY SEEDED LAWN)
SURVEY COORDINATE:
SAMPLE LOCATION: ON POST SHELDON, 5' N. OF RD., 450' W. OF RZ-192
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A

COMMENTS:
Sunny Hot (~85°F), Muggy; Breeze = Slight to East; Mostly Calm

Pump #1 S- 566023 8040
F- 874068 874064

SAMPLING PERSONNEL: TJD

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Roseburg
SAMPLE NUMBER: R2-55-054
DATE SAMPLED: 7-7-87
TIME SAMPLED: 12:05 PM
DATA ANALYZED:
SAMPLE DEPTH: ~4.5 ft
SURVEY COORDINATE:
SAMPLE LOCATION: ON POST SHELDON, ACCEES FROM R2-T20, 10° E OF R2-T20
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: Tenax Tube
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
Sunny, hot (~80°F), muggy, cloudy
PUMP #4 S = 225466
9760
F = 235226

Note: Some glass wool came out of infusion ENDS; about (~3-in.), no Tenax observed
Tapped on slide hammer

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROEEMA
SAMPLE NUMBER: RE-56-065
DATE SAMPLED: 7-7-87
TIME SAMPLED: 2:00 HRS
DATA ANALYZED:
SAMPLE DEPTH: 3.5 FT (VERY TIGHT)
SURVEY COORDINATE:
SAMPLE LOCATION: 100' E OF RE-TW20, ON SOUTH SIDE OF PORT SHELDON
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBEture
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
Sunny, Hot (80°F), Muggy, Calm

Pump # 15-874322
8/04/00
F. 882362 88377

NOTE: PUMP Fell OFF PROBE PINCHING OFF PE TUBING AT TOP OF SLIDE HAMMER, WAS REATTACHED.

SAMPLING PERSONNEL: TUM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Boisea
SAMPLE NUMBER: RZ-54-056
DATE SAMPLED: 7-19-87
TIME SAMPLED: 1510
DATE ANALYZED:
SAMPLE DEPTH: 5.0FT
SURVEY COORDINATE:
SAMPLE LOCATION: Located at RZ-TW, 30FT W. of RZ-54-056
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS:
Sunny, hot (48°-90°F), breezy (NNW)

SAMPLING PERSONNEL: TUM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: RZEEMA
SAMPLE NUMBER: RZE-SC-057
DATE SAMPLED: 7-14-87
TIME SAMPLED: 1515
DATE ANALYZED:
SAMPLE DEPTH: 5.4 FT
SURVEY COORDINATE:
SAMPLE LOCATION:
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAY TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
SUNNY, HOT (85-90°F), BREEZY (SNEE)

Pump #2 8-816247
7700
F-823747
824023

* RESAMPLE OF RZE-SC-053

SAMPLING PERSONNEL: TVM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROBZMA
SAMPLE NUMBER: RB-SG-058
DATE SAMPLED: 7-19-87
TIME SAMPLED: 1615
DATE ANALYZED:
SAMPLE DEPTH: 5.0FT
SURVEY COORDINATE:
SAMPLE LOCATION: AT NE CORNER OF 2401 POST SHIRLEY PROP. LINE
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: SUNNY, HOT (85-90°F), BREEZY (SNE)

Pump #4 S-279947 8400 8400
F-288547 288547

X PROBE IN DISTURBED SOIL (3 AND) IN A EVERGREEN KNOLL NEXT TO A FOUNDATION

SAMPLING PERSONNEL: TVM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZENWAL
SAMPLE NUMBER: 22-SG-059
DATE SAMPLED: 7-19-87
TIME SAMPLED: 1420
DATE ANALYZED:
SAMPLE DEPTH: 6.0 FT
SURVEY COORDINATE:
SAMPLE LOCATION: ALONG E. BORDER OF 2461 PORT SHELDON AND VANDENBERGS
ANALYSIS METHOD - DIRECT INJECTION
 □ ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TENHI UK TUBE
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS: SUNNY, HOT (85-90°F) BREEZY (NNE)

PUMP #2 5-824/86
2200
F-83/886
83/701

X PROBE IN DISTURBED SOIL NEXT TO AN EVERGREEN KNOLL.

SAMPLING PERSONNEL: TWM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: Z2-SG-043
DATE SAMPLED: 7-19-87
TIME SAMPLED: 1730
DATE ANALYZED:
SAMPLE DEPTH: 5.0 FT
SURVEY COORDINATE:
SAMPLE LOCATION: AT Z2-SG-043
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: SUNNY, HOT (85-90°F), BREEZY (WNE)
Pump # 2 5- 53216 7:00

F - 539845

839806

* RESAMPLE OR Z2-SG-043

SAMPLING PERSONNEL: TMJ

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZENHA
SAMPLE NUMBER: RZ-86-060-DUP
DATE SAMPLED: 7-19-87
TIME SAMPLED: 1730
DATE ANALYZED:
SAMPLE DEPTH: 5.0FT
SURVEY COORDINATE:
SAMPLE LOCATION: AT RZ-86-043
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Sunny, Hot (85-90°F), Breezy (NNW)
PUMP #4 5-288812

DUPLICATE

SAMPLING PERSONNEL: TM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZENW
SAMPLE NUMBER: RZ-SG-061
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2025
DATE ANALYZED:
SAMPLE DEPTH: 2.5 FT
SURVEY COORDINATE:
SAMPLE LOCATION: 1 FT W. OF RZ-SG-047, 20 FT N. OF RZ-SG-047
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS: Sun, hot (90°F), muggy, calm
Pump # 4 309798
 8600
 818378
 218402

SAMPLING PERSONNEL:

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozena
SAMPLE NUMBER: RZ-SG-042
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2030
DATE ANALYZED:
SAMPLE DEPTH: 4.5 FT
SURVEY COORDINATE:
SAMPLE LOCATION: AT RZ-SG-044
ANALYSIS METHOD - DIRECT INJECTION

VOLUMETRIC CONTAINER USED: Tenax Tube
GAS CHROMATOGRAPH USED: HP 5890 A
COMMENTS: Sunny, Hot (80°F), Muddy, Calm

Pump #6 194832
11 44 0
20G272

Resample of RZ-SG-044

SAMPLING PERSONNEL: Tim

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-SC-003
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2120
DATE ANALYZED:
SAMPLE DEPTH: 50FT
SURVEY COORDINATE:
SAMPLE LOCATION: AT 2461 PORT SHEERON, 70FT DUE W. OF RZ-SC-058 ALONG N. PROP. LINE
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP 5890A

COMMENTS: Sunny, Hot (82°F), Humid, Calm

Sampling Personnel: Tom

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-SG-044
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2125
DATE ANALYZED:
SAMPLE DEPTH: 5.0 FT
SURVEY COORDINATE:
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE ✓

VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A

COMMENTS: Sunny, Hot (~80°F), Muggy, Calm

DUMP #4 318 537
8400
327137

SAMPLING PERSONNEL: TJM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMBA
SAMPLE NUMBER: R3-SG-C65
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2215
DATE ANALYZED:
SAMPLE DEPTH: 5.0FT
SURVEY COORDINATE:
SAMPLE LOCATION: ALONG PORT SHELDON RIGHT-OF-WAY AT NE CORNER OF 2514 P.S., 10FT S. OF TREE AT THAT LOCATION.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE

VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: DUSK, HOT (480°F), Muggy, CALM

Pump # 4 327278
3600
335878
335891

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

SAMPLING PERSONNEL: TM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: rosema

SAMPLE NUMBER: RZ-SG-101B (TRIP BLANK)

DATE SAMPLED: 6-14-87

TIME SAMPLED:

DATA ANALYZED:

SAMPLE DEPTH:

SURVEY COORDINATE:

SAMPLE LOCATION:

ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED: TENAX TUBE

GAS CHROMATOGRAPH USED: HS 5890A

COMMENTS: sunny, hot (90-95°F)

SAMPLE LEFT IN COOLER AT ALL TIMES

SAMPLING PERSONNEL: TOM / KAT

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rozenit
SAMPLE NUMBER: RB-85-1028
DATE SAMPLED: 6-23-87
TIME SAMPLED: 2245
DATA ANALYZED:
SAMPLE DEPTH:
SURVEY COORDINATE:
SAMPLE LOCATION: Trip Blank
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: Tenax Tube
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

SAMPLING PERSONNEL: Tim

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMINA

SAMPLE NUMBER: 23-35-1038

DATE SAMPLED: 6/28/87

TIME SAMPLED: 1545

DATA ANALYZED:

SAMPLE DEPTH: 0' FT

SURVEY COORDINATE:

SAMPLE LOCATION: AMBIENT AIR BLANK PLACED ON FENCE, 2 HUNTS FROM TREE DIRECTLY S. OF RO-ZONA ON PORT SHELDON.

ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED: TENAX TUBE

GAS CHROMATOGRAPH USED: HP 5890A

COMMENTS:

Partly Cloudy, Breezy, Warm (~75°F)

NOTE: AMBIENT AIR BLANK #1

SAMPLE PERSONNEL: TONY

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROSENTA
SAMPLE NUMBER: RE-56-1043
DATE SAMPLED: 6-28-87
TIME SAMPLED:
DATA ANALYZED:
SAMPLE DEPTH:
SURVEY COORDINATE:
SAMPLE LOCATION: TRIP BLANK
ANALYSIS METHOD: DIRECT INJECTION
ABSORPTION TUBE:
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:

TRIP BLANK

COOLER USED TO TRANSPORT SAMPLES; ICE PLACED IN COOLER AT AROUND 1800 HRS.

SAMPLING PERSONNEL: T.J.

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Robema
SAMPLE NUMBER: R2-82-0058
AMBIENT AIR BLANK
DATE SAMPLED: 7-7-87
TIME SAMPLED: 1445
DATA ANALYZED:
SAMPLE DEPTH: 0 FT (AMBIENT AIR BLANK)
SURVEY COORDINATE:
SAMPLE LOCATION: AT R2-82-052, HANGING OFF FENCE 1.5 FT. ABOVE GROUND
ANALYSIS METHOD - DIRECT INJECTION:
ABSORPTION TUBE: ✓
VOLUMETRIC CONTAINER USED: TENAK TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
Sunny, Hot (~80-85°F), Muggy, Calm (Slight Breeze)
PUMP #3 5-856385
10320
F 856768
84707

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

SAMPLING PERSONNEL: TUM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Robeman
SAMPLE NUMBER: RB-SG-1065 TRIP BLANK
DATE SAMPLED:
TIME SAMPLED: 2015 (REMOVED W/SAMPLES)
DATA ANALYZED:
SAMPLE DEPTH:
SURVEY COORDINATE:
SAMPLE LOCATION:
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
Sunny, Hot (80°F), Cloudy, Muggy

TRIP BLANK:
Punched Through Bag (2015)

SAMPLING PERSONNEL: TJM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: 22-SS-1075 (PROBE/AMBIENT AIR BLANK)
DATE SAMPLED: 7-2-87
TIME SAMPLED: 2300
DATA ANALYZED:
SAMPLE DEPTH: 0’ (MFT ABOVE GROUND)
SURVEY COORDINATE:
SAMPLE LOCATION: NEXT TO FENCE ON WHISMORE AT JANTENS SW CORNER
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP8890A
COMMENTS:
DUSK, CLEAR, WARM (75-80°F), MOSSY, COLD

Pump #4 5-236006
9760
F - 245766
246200

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

SAMPLING PERSONNEL: TJM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: R2-SG-108B (PROBE/AMBIENT AIR BULK)
DATE SAMPLED: 7-7-87
TIME SAMPLED: 2200
DATA ANALYZED:
SAMPLE DEPTH: 0' (1FT ABOVE GROUND)
SURVEY COORDINATE:
SAMPLE LOCATION: SAME AS R2-SG-107B
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TELAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
DUSK, CLEAR, WARM (65-86°), MUGGY, CALM
PUMP #1 5-88 2457
8040
F-870497 (890.501)
(Note: PROBE TIP DISCONNECTED, RECONNECTED W/O DECON.)
SAMPLING PERSONNEL: TJM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RZ-86-107B (AMBIENT AIR BLANK)
DATE SAMPLED: 7-7-87
TIME SAMPLED: 2200
DATA ANALYZED:
SAMPLE DEPTH: 0' (1 FT ABOVE GROUND)
SURVEY COORDINATE:
SAMPLE LOCATION: SAME AS RZ-86-107B
ANALYSIS METHOD - DIRECT INJECTION
 - ABSORPTION TUBE
VOLUMETRIC CONTAINER USED:
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS:
 DUSK, CLEAR, WARM (75-80°F), MUDDY, CALM

Pump #2 5-805519
8540
F - 814079
614/19

SAMPLING PERSONNEL: TJM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMAY
SAMPLE NUMBER: RZ-25-11813
DATE SAMPLED: 7-19-87
TIME SAMPLED: 1805
DATE ANALYZED:
SAMPLE DEPTH: 0 FT
SURVEY COORDINATE:
SAMPLE LOCATION: AT SW CORNER OF 2461 PORT SHELLON, 30FT S. OF PAVEMENT.
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: SUNNY, HOT (85-90°F), WINDY (NNE)
PUMP #4 297442
8600
364442

AMBIENT AIR BLANK PULLED THROUGH A NORMALLY RIGGED PROBE.
SAMPLING PERSONNEL: TOWN

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROBEMA
SAMPLE NUMBER: RV-SC-118B
DATE SAMPLED: 7-19-87
TIME SAMPLED: 1805
DATE ANALYZED:
SAMPLE DEPTH: 0 FT
SURVEY COORDINATE:
SAMPLE LOCATION: SAME AS RV-SC-118B
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE ✓
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP 5890A
COMMENTS: SUNNY, HOT (85-90°F), WINDY (NNE)

PUMP # 2 840047 7100
847747

Ambient air blank pulled through a normally rigged probe & kinked 5 FT
TUBING
SAMPLING PERSONNEL: TM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME:	Rozema
SAMPLE NUMBER:	RZ-52-120B
DATE SAMPLED:	7-19-87
TIME SAMPLED:	1805
DATE ANALYZED:	
SAMPLE DEPTH:	0'
SURVEY COORDINATE:	
SAMPLE LOCATION:	SAME AS RZ-52-118B
ANALYSIS METHOD - DIRECT INJECTION	
ABSORPTION TUBE	☑
VOLUMETRIC CONTAINER USED:	TENAX TUBE
GAS CHROMATOGRAPH USED:	HP5890 A
COMMENTS:	Sunny, Hot (85-90°F), Windy (NNE)

Pump #3: 8695cc/9.813 to 87200; Pump #5: 184200/11440

8/18/87

Go to 194640

Ambient Air Blank: Pulled through the TENAX TUBE ALONE.

Sampling Personnel: Tom

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZENNA
SAMPLE NUMBER: LZ-59-1213
DATE SAMPLED: 7-19-87
TIME SAMPLED: 1800 (Punched tube through bag)
DATE ANALYZED:
SAMPLE DEPTH: 0'
SURVEY COORDINATE:
SAMPLE LOCATION: TRIP BLANK
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: Sunny, hot (85-90°F), breezy (NE)

SAMPLING PERSONNEL: TDM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: RB-SC-122B
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2225
DATE ANALYZED:
SAMPLE DEPTH: 0 FT
SURVEY COORDINATE:
SAMPLE LOCATION: AT RB-SC-C65
ANALYSIS METHOD - DIRECT INJECTION
ABSORPTION TUBE

VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: DUSK, HOT (780°F), MOSSY, CALM

Pump # 5 218826 < Pump Pump # 4 335891
11:40 Died 4000
229.710 <
341891
342398

AMBIENT AIR BLANK PULLED THROUGH PE-TUBING.

SAMPLING PERSONNEL: TM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMA
SAMPLE NUMBER: ZZ-SG-1238
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2225
DATE ANALYZED:
SAMPLE DEPTH: 0'
SURVEY COORDINATE:
SAMPLE LOCATION: AT ZZ-SG-065
ANALYSIS METHOD - DIRECT INJECTION

ABSORPTION TUBE

VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: DUSK, HOT (480°F), MOKAY, CALM

PUMP #6
970443
8400
971283

AMBIENT AIR BLANK PULLED THROUGH TENAX TUBE ALONE.

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: ROZEMBA
SAMPLE NUMBER: EA-50-124B
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2:30 PM TUBE ROUSED THROUGH BAG
DATE ANALYZED:
SAMPLE DEPTH: 0 FT
SURVEY COORDINATE:
SAMPLE LOCATION: TRIP BLANK
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: TENAX TUBE
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: SUNNY, HOT (V80°F), MUCY CALM

SAMPLING PERSONNEL: TGM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
SOIL GAS SAMPLE DATA SHEET

SITE NAME: Rossmore
SAMPLE NUMBER: R2-SQ-1258
DATE SAMPLED: 7-22-87
TIME SAMPLED: 2:30
DATE ANALYZED:
SAMPLE DEPTH: 0'
SURVEY COORDINATE:
SAMPLE LOCATION: TRIP BLANK, NIBS REMOVED
ANALYSIS METHOD - DIRECT INJECTION
 ABSORPTION TUBE
VOLUMETRIC CONTAINER USED: Teflon Tube
GAS CHROMATOGRAPH USED: HP5890A
COMMENTS: DUSK, HOT (N80°F), Muggy, Calm

TRIP BLANK, NIBS REMOVED, TUBE PLACED BACK IN UNPUNCTURED BAG.

SAMPLING PERSONNEL: TJM

ATTACH COPY OF CHROMATOGRAM AND REPORT FORM
APPENDIX C

Calibration of the Air Sampling Pumps

The SKC air sampling pumps were calibrated before each sampling round. This was done to determine the number of counts that elapse on the odometer of a pump when one liter of air is drawn through a tenax filled trap tube. By knowing this, a pump can be properly monitored to determine accurately when one liter of soil gas has been purged through a trap tube during sampling.

An estimate of the number of counts that expire per minute was also made during calibration. This helps to determine approximately how long it will take a pump to purge the specified volume of soil gas.

Calibration is done by attaching a pipet bubblometer filled with a soap solution to the exhaust port of the air pump. A Tenax filled trap tube is then attached to the pump intake.

The pump is turned on and allowed to run until bubbles form in the soap solution. Some of these bubbles will rise inside the bubblometer while the pump is running. On the bubblometer is marked the distance over which 25 milliliters of air has been purged by the pump. As a bubble reaches the bottom hash mark, a note is taken.
of the counts on the pump odometer at that instant. At the same time, a stopwatch is engaged. When the bubble reaches the top hash mark, or the 25 milliliter mark, the stopwatch is disengaged and the pump shut off. The odometer reading at that time is then recorded.

This process is repeated four to five times per pump. The entries are made in a calibration log. The counts at the end of each run are subtracted from the count at the beginning of each run. This difference gives the count that expire while purging 25 milliliters of air through the trap tube. The average of the differences from the tests of each pump is calculated. This average, multiplied by four and then by 10, gives the counts required to purge one liter through the sampling medium for given pump.

The average time from the air pump tests is also multiplied by 40 to give an approximation of the time that will elapse while purging one liter of soil gas with each pump.
APPENDIX D

Packing and Conditioning of Sample Trap Tubes

The Tekmar trap tubes used for the acquisition of soil gas samples were packed with Tenax (60/80 mesh) material and conditioned prior to each period of sampling.

One end of a tube was packed with clean glass wool. Tenax material was then poured into the tube until it was brimming. The Tenax was then packed down tightly into the tube with a small, two prong tamping rod. Glass wool was then pushed down tightly into the end used to fill the tube with Tenax. Care should be taken to pack each tube in as consistent a manner as possible. The amount, and packing of the Tenax material must be the same in each tube in order to minimize sampling and analytical inconsistencies.

After each trap tube was packed, it was necessary to bake the tubes in the Tekmar LSC-2 purge and trap device at 205 Deg. C for 20 minutes. This was done to remove any impurities in the tube. The tube was then desorbed in the LSC-2 and analyzed with the HP5890A Gas Chromatograph. This analysis determined the background integrity of each tube prior to sampling. It also
provided a background, or preanalysis, chromatogram for each tube which served as a record of the quality of each tube.
APPENDIX E

Water Quality Sample Analysis Methodology
1.0 SCOPE AND APPLICATION

This methodology uses purge and trap gas chromatography to accomplish the rapid analysis of volatile organic contaminants in aqueous matrices. Based upon EPA Method 624, allowances are made for field laboratory conditions and differences in analytical instrumentation/apparatus. (Because of the field screening focus, only PID/Hall or FID detection is used; mass spectrometric detection is not provided).

2.0 SUMMARY OF METHOD

A twenty ml aliquot of sample or sample dilution is placed into a fritted glass sparger and purged at ambient temperatures using inert nitrogen gas. As the nitrogen gas bubbles through the frit and matrix, it effectively strips the volatile organic contaminants from the sample. The stripped contaminants, now vaporous, exit the purge vessel and are passed onto a packed sorbent tube. The special packing within the sorbent tube adsorbs the organic contaminants while permitting the inert nitrogen gas to continue through the tube (and be vented into the atmosphere).

After the prescribed purging is complete, the sorbent tube is heated and backflushed for desorption into an awaiting pre-programmed gas chromatograph (GC). The contaminants are then separated and resolved chromatographically and an appropriate detector is used to detect the components of interest. GC peak integration is accomplished using a Shimadzu C-R3A data system or equivalent.

3.0 CALIBRATION; ANALYSIS AND QUANTIFICATION

Calibration standards containing the compounds of interest are prepared from commercially purchased stock standard mixes or pure solvent. All VOA standards are made in methanol by introducing appropriate ul aliquots of each compound. The ul injections required represent dilutions or are calculated from each parameter's density with consideration given to the individual response factors. The solvent-flush technique is utilized for all injections; surrogate spike standards are prepared in the same manner.
Calibration of the instrumentation is achieved via an absolute external standard calibration curve, where each parameter's response factor is calculated by analyzing a mixed standard of known concentrations. Response factor (RF) = concentration divided by peak area or peak height. An identification file consisting of peak identification numbers, names, retention times (RT), RF's and concentrations is maintained and used as the integration standard. Sample concentration = sample peak area or height x parameter's RF (as determined from the calibration runs).

4.0 QUALITY ASSURANCE/QUALITY CONTROL

Each calibration standard is verified against a commercially available (Supelco) standard with regard to RT and RF. Certain standard operating procedures such as the thorough conditioning of columns and sorbent tubes prior to each day's analysis, periodic runs of standards and method blanks, use of surrogate spiking compounds, sample duplicates, dilutions and matrix spikes all serve to ensure the quality of results generated. An outline of QA/QC practices is depicted in the attached Figure 1.

5.0 REFERENCES

EPA Method 624; 44 CFR, No. 233

Figure 1

- Samples logged-in promptly upon receipt
- Samples stored at 4\(^\circ\)C until analysis
- Analysis within seven (7) days of receipt
- Only stainless steel or borosilicate glass implements used
- Surrogate-spike compounds used in all analysis runs
- One duplicate run per ten (10) samples analysed
- One matrix spike run per ten (10) samples analysed
- Standard run after every ten (10) samples for continuing calibration
- Method blank analysis following every standard
- Standard response, surrogate-spike and matrix-spike recoveries calculated and tracked
- All computations double-checked
- Thorough and organized system for reporting data
- Formal validation or reported field screening results
APPENDIX F

Statistical Calculations
Calculations of regression equations and correlation coefficients for PCE and TCA soil gas and groundwater quality data

DATA (PCE) 3:

<table>
<thead>
<tr>
<th>Well/Sample</th>
<th>C</th>
<th>g</th>
<th>g²</th>
<th>(\chi²)</th>
<th>(\chi² \text{ tot})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>10,000</td>
<td>0.35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>900</td>
<td>0.25</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>2,025</td>
<td>1.75</td>
<td>57.75</td>
<td>57.75</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>1089</td>
<td>1.98</td>
<td>39.64</td>
<td>39.64</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>1681</td>
<td>5.47</td>
<td>29.929</td>
<td>29.929</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>1681</td>
<td>4.26</td>
<td>18.9476</td>
<td>18.9476</td>
</tr>
<tr>
<td>8</td>
<td>46</td>
<td>2,116</td>
<td>5.26</td>
<td>27.636</td>
<td>27.636</td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>11,100</td>
<td>10.57</td>
<td>111.7249</td>
<td>111.7249</td>
</tr>
<tr>
<td>10</td>
<td>210</td>
<td>44,100</td>
<td>28.06</td>
<td>787.3436</td>
<td>787.3436</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>9</td>
<td>0.036</td>
<td>0.036</td>
<td>0.036</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>650 71774 582.081 788.308</td>
</tr>
</tbody>
</table>

DATA (TCA) 3:

<table>
<thead>
<tr>
<th>Well/Sample</th>
<th>C</th>
<th>g</th>
<th>g²</th>
<th>(\chi²)</th>
<th>(\chi² \text{ tot})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>0.153</td>
<td>0.023469</td>
<td>0.023469</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
<td>0.182</td>
<td>0.033124</td>
<td>0.033124</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>36</td>
<td>0.370</td>
<td>0.15210</td>
<td>0.15210</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>484</td>
<td>1.710</td>
<td>2.9341</td>
<td>2.9341</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>56</td>
<td>4.160</td>
<td>17.354</td>
<td>17.354</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62 1124 4575 26.438 140.805</td>
</tr>
</tbody>
</table>

(\(\chi = \) soil gas concentrations)
(\(y = \) groundwater concentrations)
CALCULATION OF REGRESSION EQUATIONS:

Regression Eq. \(y = A + Bx \), where

\[
B = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}, \quad \text{and} \quad A = \frac{\sum y - B \sum x}{n}
\]

\[B = \frac{11(7863.028) - (58.249)(650)}{11(982.081) - (58.249)^2} = 6.563\]

\[A = \frac{[(650) - (6.563 \times 58.249)]}{11} = 24.34\]

\[y = 24.34 + 6.563x\]

\[7.4\]

\[
B = \frac{7(140.805) - (6.595)(62)}{7(22438.33) - (6.595)^2} = 5.792
\]

\[A = \frac{[(62) - (5.792)(6.595)]}{7} = 3.406\]

\[y = 3.406 + 5.792x\]
CALCULATION OF CORRELATION COEFFICIENT:

\[r = \frac{n \Sigma(xy) - \Sigma(x)\Sigma(y)}{\sqrt{n \Sigma x^2 - (\Sigma x)^2} \times \sqrt{n \Sigma y^2 - (\Sigma y)^2}} \]

RLE

\[r = \frac{11(782.081) - (58.241)(650)}{\sqrt{11(782.081) - (58.241)^2} \times \sqrt{11(747.741) - (650)^2}} = 0.873 \]

TRA

\[r = \frac{7(140.805) - (6.595)(62)}{\sqrt{7(204.8833) - (6.595)^2} \times \sqrt{7(124) - (62)^2}} = 0.911 \]
BIBLIOGRAPHY

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

