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THERMODYNAMICS OF THE DILUTED SPIN HEISENBERG
CHAIN WITH SINGLE ION ANISOTROPY
Salmah Ahmed, M.A

Western Michigan University, 1987

The thermodynamice of the one-dimensional diluted Heisenberg
magnet of classical spins in the presence of single fon anisotropy
is calculated. The magnetization, susceptibility, energy and
specific heat are determined as functions of the magnetic concen-
tration and single ion anisotropy for both ferromagnetic and
antiferromagnetic couplings. Spin-spin correlation functions and
the elastic scattering are also calculated'for various values of

anisotropy and spin concentration for the ferromagnetic system.
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CHAPTER I
INTRODUCTION

The work done in this thesis solved exactly for the thermo-
dynamics of spin chain in the presence of single ion anisotropy,
specifically for the chains which are mixtures of magnetic and
non-magnetic ions. These systems are found to be good represen-
tation of compounds formed from CsNiF3 and CsMnF3. This solution
can be done on the computer by essentially exact techniques involv-
ing the sum over chain fragments.

The physics of systems with less than three dimensions, such as
the one solved here, has been widely studied in recent years,
especlally since the discovery of real materials whose properties
closely approximate those of one- or two-dimensional lattice
models. The reason to study the systeﬁ in one dimension is largely
because it 1s easy to construct models which in some cases can. be
solved exactly. The classical models studied in this thesis
as opposed to quantum mechanical models are widely being used in
studying such systems because many of the properties of experimental
systems at not too low temperatures are successfully treated by
such models, and also classical models are usually more solvable
for exact solutions compared to the method of quantum mechanics.
There are numbers of solutions which exist in one-~ and two-dimen-

sional systems for models based on classical spins such as the one
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studied in this thesis. Examples in one dimension are (1) The
Ising, (2) The Classical Spin Heisenberg, (3) The X-Y models and
many solutions of the continuum model. For two—dimens:lénal systems
there exist a varlety of solutions of Ising and vertex system.
Thermodynamic properties in lower dimensional magnetic spin
systems have long been studied theoretically as well as experi-
mentally. In the study of one-dimensional magnetic materials, the
model which has found considerable success in describing experi-
mental system is the classical spin Heisenberg model. For isotropic
exchange coupling in zero applied field, Fisherl provided an exact
solution for the thermodynamic behavior and the static spin corre-
lation function. On the other hand, JoyceZ has solved the problems
for anisotropic exchange interactions using the same model. This
model has been used to fit the experimentally determined magnetic
properties of many chain compounds and has given good represen-
tations of such properties as the spin—spin correlation lengths,
magnetic susceptibilities, and specific heats over a wide range of
temperature for both ferromagnetic and antiferromagnetic systems.
The Heisenberg model is not only useful in studying the
properties of pure infinite chain compounds, but it can be used also
for the diluted or alloyed magnetic materials like this case with
zero applied field. In diluted materials, the system consists of
random mixtures of spins with non-magnetic impurities, while in
alloys the spins mix with spins of differing magnitudes and inter-
spin exchange coupling. Examples of experimental works on diluted

chain compounds which are related to classical model solutions are
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(CD3)4NMnyCuj_»Cl3, worked by Endoh et al.3 and CsMnj_yBr3 by
Furrer and Gudel.4 Theoretical solutions for a diluted system in
the absence of external field achieved very good agreement with
experimental data in those two types of materials.3)4 In both of
the above experimental efforts, the classical spin Heisenberg model
was used to fit the experimental data.

These diluted and alloyed classical magnetic systems have not
been previously solved for the single ion anisotropy terms which
often occur in one-dimensional chain compound. The result presented
in this thesis will hopefully stimulate experiments on such systems
8o as to determine the validity of the classical spin description
for this kind of system.

The work reported here 1s concerned with the thermodynamics and
static correlation behavior in the diluted one-dimensional classical
Heisenberg model in the presence 'of single ion anigotropy. The
magnetization, susceptibility, energy, and specific heat of the
diluted system are calculated as functions of magnetic concentration
and single ion anisotropy. Following the procedures in Dong and
McGurn,5 the properties for the finite chains were first determined
in order to obtain the properties of the diluted system. Then the
weighted sum of such terms is found where the weight multiplying a
given term in the sum over the finite chain properties is the
probability that a chain for that particular length occurs in the
diluted system. Taking the sums on chains of up to forty spins
in length for magnetic concentrations of p = 0.8 and 0.5 give very

accurate values to the properties of this system where for the pure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



system p = 1.0.
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CHAPTER II
DILUTED CLASSICAL SPIN HEISENBERG CHAIN
Theory

For a case in three-dimensional crystal where the magnetic ions
have a strong coupling in one direction and very weak in the other
two, the system can be discussed as a one-dimensional system. In

this "one-dimensional" system, the Hamiltonian can be written as
P SN -
H=-JTSy.544) + Z V(S1) (2.1)
i i

Here V@i) is the interaction potential between magnetic ions and
the orbital moment of the crystal field in the presence of magnetic
dipoles. J 1s a nearest—neighbour exchange coupling and {31} are
classical unit vectors at the discrete sites of the lattice.

Because of the strong crystal field and the very weak dipole
forces, the moment of the system is often quenched. Therefore, the

first approximation can be taken and equation (2.1) becomes
- -
H= —J%Si.si.;.l (2.2)

A spin one ion like Ni2+ usually has good orbital quenching where

the most general form of its interaction potential is
-
V(S;) = A(54%)2 + constant

Hence, the total Hamiltonian is

a
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H=-JZcqeq4) S4.S44] = D¥cy (s12)2 (2.3)
v t

where D is the strength of the single site anisotropy and Cj = 1 or
0 depending on whether or not a spin is present on the ith gite.
The system is ferromagnetic if J>0 and antiferromagnetic 1f J<O0.
Fo-r: the system of non-magnetic impurities (i.e. Cx = O for
certain k in equation (2.3)), the infinite chain tends to break up
into isolated chain segments of finite length. Assuming the
non-magnetic impurities occur at random, and there is no corre-
lation between them, then the partition function of the above
Hamiltonian can be written as a product of the individual chain as
»0 2
z(T,D,p) = IT [z(T,D)N(1-P) P
L=1 (2.4)
Here p 1s the concentration of spins present in the system N0
lattice site and Zj,(T,D) is the partition function for a chain of L
spins. Then the magnetization, energy; specific heat and magnetic
susceptibility per lattice site of the diluted system can be written

following the notation in Dong and McGurn® as

ol

M(T,D,p) = (1 - p)2 LZ' pLMp(T,D) (2.5)
oD

E(T,D,p) = (1-p)2 LZ| pLE,(T,D) (2.6)
oD

c(T,D,p) = (1-p)2 LZ| pLcy(T,D) (2.7)

and

o0

X(T,D,p) = (1-p)2 Lzl pLxy (T,D) (2.8)
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where My (T,D), Er(T,D), C,(T,D) and Xy (T,D) are the magnetic moment,
total energy, specific heat and magnetic susceptibility of a chain
of L spins.

Again, considering only for chain of L spins, the Hamiltonian

of equation (2.2) can be written as

L-1 L-1 ,
H, = -J T S4.5i41 --3-7: [(312)2 + (3“_12)2] -%(812)2
i=] . i+1
- 2(5.2)2 (2.9)

The thermodynamics properties of this equation have to be solved in
order to obtain My(T,D), Ey(T,D), C,(T,D) and X (T,D). The par-
tition function Z(T,D) of equation (2.4) can be written following

the notation in Blume et al.b as

zp(1,0) = ... {as; ... dsp exp{%e [(5:2)2 + (st)zl}
L~

x 1 expl V(51.5441)] (2.10)
(£ .
where

V(S31.8541) = -381.5141- 2 ((512)24(54412)2) (2.11)

and B = J/kT. dS; = 8in B;d@: dg where ©: and P: are the polar
and azimuthal angles of the ith gpin and this term represents an
element of solid angle for that ith gpin.

Equation (2.10) can be written in terms of the eigenvecotrs and
eigenvalues of the eigenvalue problem defined by the integral

equation
Cexp[BV(3).82)] tn(52)d8; = Nata(S)) (2.12)

where n = 0,1,2...are the labels of the eigenstates.

F———_ — e ———

3
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Hence

[
exp[ BV(51.5141)] ',,Z,o Mo Y B Y Grep) (2.13)
Then cquation (2.9) becomes

2,(T,D) -%‘fds e BD(S®2 Y|2 2, *(2.14)

6

From Blume et al.,” the internal energy for L spins is given by

B =-JT <81.5141 > - DY «(542)> (2.15)

Then the specific heat is calculated by simply taking the derivative

of the energy equation with respect to temperature.
2

The magnetization and magnetic susceptibility of the L spins chain

are given by the standard relatiom

My(T,D) = 5‘% 1n 71 (T,D) (2.17)
X,(T,D) = 5‘%; My (T,D) ' (2.18)

To obtain results from equations (2.6) to (2.8) for energy, specific
heat and magnetic susceptibility, the eigenvalue problem defined in
equation (2.12) and all the equations from (2.15) to (2.18) need to
be evaluated numerically. This procedure will be discussed in
the next section. '

Since the work discussed in this thesis deals with the system
in the absence of an external magunetic field, it is known that the
magnetization does not exist, Therefore, in order to calculate the

magnetic susceptibility, an assumption has to be made that the

i
g
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applied field is not zero and then solve the equation in the limit
that H = 0. In the presence of an external field, the Hamiltonian

of chain of L spins is
H, = -J}F§1.'§1+1 -ugi 3542 - Dg(siz)Z (2.19)
The partition function is then
7, =§e-#HL 48, (2.20)

Evaluating the magnetization and magnetic susceptibility defined in

equations (2.17) and (2.18) at H = 0 yields

ML, (T,D) |H=O -3—% 1n ZL(T’D)|H=O
and

)
XL(T.D)IH,O - M(T,D,B)lm

The equation of magnetic susceptibility above can be expressed also
in terms of the correlation function a;
L —
X = (Burg?)~l 3~ <sy2.842 >
I=1 (2.21)
where <§IZT§323 is the average correlation function.

The static properties of this 'one-dimensional' system which is
defined by equation (2.2) can be used to calculate the cross section
for neutron scattering S(§) in the quasielastic approximation. This
system with only one kind of atom was first solved by Fisher! and

the solution utilizes the expansion

e Pla = ofBB5m 4R T M lBY) Y, B Ty () (2.22)
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Here
+1
A (BY) = (1/2) JePIX By (x) dx (2.23)
-1

where Ylm(gi) are spherical harmonics and P)(x) are Legendre

Polynomials. Evaluating equation (2.23) yields
A(p3) = (Sinh PJ)/PJ (2.24)

From Thorpe7 the cross-section for neutron scattering is given

by the wave vector dependent susceptibility

. TG
S(Q = (/M) T eleq-T (54,844, (2.25)
i,r
Following the notation in that paper,’/ equation (2.25) can be
rewritten as
-
S(q) = (1/N) Z  eld8r 54,54, (2.26)
i,r
-

This expression depends only on the component of q (wave vector of
neutron) chain which is denoted by q and a is the interatomic

spacing. Considering only the z-direction so that only 1 =1, m =0

term contributes and
A r
<512.8%y4p> = (1/3)(T\) (2.27)
v
equation (2.26) becomes

by irl
S(q) = (I/N) T elqar ([ 22 (2.28)
i,r ( A")

where the summation over r goes over all positives and negatives

integers. Lettingu = 7‘/)0 and evaluating equation (2.23) leads to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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F_____ .

u= ™M/, = coth(pJ) ~ 1/(8J) (2.29)

For the diluted system when D = 0 and q = O, the sum defined by
equation (2.26) can be written as
00 [ 1S
S() =3(1-p)2F 2 2 uli-ilpl
L=] {=] j=l

= p(1 + up)/3(1 - up) (2.30)

where u 18 defined as in equation (2.29) and j = { + r. This sum is
Just equal to the magnetic susceptibility for isotropic chain
system. However, when q # 0 the sum over the exponential term of
equation (2.28) will contribute a cosine function and the cross-
section for the neutron scattering from the diluted system can be

rewritten as
$(q) = pl1 - (up)2] /3[1 + (up)? - 2up cos(qa)]. (2.31)

Both of these results are extended to include the D # 0 case
which is obtained from equation (2.26) calculated in the basis of

states from equation (2.12).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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CHAPTER IIIX
RESULTS AND COMPARISONS

To solve for the partition function for L spins, the eigenvalue
problem defined by equation (2.12) can be rewritten into the form of
a matrix eigenvalue problem. Letting Y,(S) = Y, (x)el®® /27 where x
= cos® and inserting this into equation (2.12) gives the following

eigenvalue equation

28( ax’ exp {AJxx'-i- & (x+ x')} In(BI[(1-x2) (1-x’ 2) I*) fu(x )

- Alu\hm(x) (3.1)
where
1 2n
Im(x) = 75 S exp(x cos ¢ - img)dep = Im(~x) (3.2)
o

Then, equation (3.2) can be written as a matrix equation by the use
of Gaussian integration formula
+) N
Sf(x)dx = 2 wyf(xy) (3.3)
-) jsi
where N-yoo and the weight wy and points xj are given in tables. The

matrix eigenvalues equation becomes

jz: chm<x1,x,)\‘hm(x,) = M Filxp) (3.4)
where
Gu(x,x ) = 2Wexp[pixx’ + &2 (x + x')] In(pJ[i-x2>(1-x'2)11/2) (3.5)
letting
Hyy(m) = [y Gy (xg,x4) Jwy and ¢:M) = Jug 't (xq)

12

3
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and substituting these into equation (3.5) yields

N () (Am)

ZH ey - Mm@ (3.6)
i

Since these calculations concern only the chain of finite length,

only the m = 0 solution of equation (3.6) exist. The partition

function of equation (2.14) can be written in terms of the solution

of equation (3.6) as

oo L=l
2L(T,D) = Z [gyl 2 Ay (3.7)
=0
where
ot (Am)
ay =JenZ Wy exp (Pij/2)¢L (3.8)
i

Values for Ep(T,D) and CL(T,D) are then obtained from equations
(2.15) and (2.16) by numerically calculating the derivatives of
21,(T,D) and E;(T,D) with respect to (?; and T. Once these properties
are calculated for chains of length L,' the sums in equations (2.5)
to equation (2.8) can be used to evaluate the properties of the
diluted systems. Then the susceptibility of the diluted system is
obtained by numerically differentiating My (T,D) with respect to H as
mentioned in the previous section. Finally, to obtain the neutron
scattering, equation (2.25) needs to be evaluated numerically.

In Figures la through 1d the graphs of energy per spin versus
temperature for magnetic concentrations p = 0.8 and 0.5 are pre-
sented for the ferromagnetic system. The curves for different
ratio D/J are plotted on the same graph. The correct high and low

temperature limits are obtained and the comparison of the curves for
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negative anisotropy can be made by referring to the paper by Dong
and McGurn.? In all the figures, the curves presented are found to
closely approach the high temperature limit (i.e. -(D/J)p/3) at the
right hand edge of the drawings.

The graphs of specific heat versus temperature are shown in
Figures 2a through 2d for both magnetic concentrations p = 0.8
and 0.5 and with different values of anisotropy. Again the correct
high temperature 1limit are observed which closely equal to p2/3 +
lop(D/J)?-/loS. Table 1 presents the results for emergy and specific
heat obtained from the high temperature 1limit and also from the
computer calculation. In both cases (i.e. energy and specific
heat), it is found that all characteristics of the curves imn the
ferromagnetic coupling are exactly the same for the same magnitude
but opposite sign of anisotropy and the same magnetic concentration
in the antiferromagnetic coupling. This fact can be seen from
equation (2.9) where for the antiferromagnetic system -J is8 used
instead of +J but the summation is still the same.

The magnetic susceptibilities for the ferromagnetic and the
antiferromagnetic system are presented in Figures 3 and 4 respec-
tively. From Table II to V, the results obtained from the low and
high temperature limits and from the computer calculations are shown
for both ferromagnetic and antiferromagnetic couplings, The figures
show that the isotropic susceptibility seems to separate the
susceptibility for negative and positive anisotropy. However,
at low temperature in the ferromagnetic case, the values of sus-

ceptibility in the z-direction for positive anisotropy are getting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 2. Ferromaguetic specific heat per lattice site versus kgT/J
for D/J = 2.0 (dot-dashed), 1.0 (dashed) and 0.5 (solid)
for (a) p = 0.8, (b) p = 0.5. Curves for D/J = -2,0

(dot-dashed), -1.0 (dashed) and -0.5 (solid) for (c) p =
0.8 and (d) p = 0.5
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Table 1

Ferromagnetic Energy and Specific Heat

E/J E/J C/k({J)z c/k(pd)2
P D/J (calculated) (computer) (calculated) (computer)
0.8 0.5 -.1333 -.1562 .2311 .2300
1.0 -.2667 -.2948 . 3844 .2827
2.0 -.5333 -.5830 .4978 .4978
-0.5 .1333 .1101 .2311 .2297
-1.0 . 2667 .2380 . 2844 .2801
-2.0 .5333 .4835 .4978 | .4769
0.5 0.5 -.0833 -.0928 .0944 .0918
1.0 -.1667 -.1795 .1278 .1180
2.0 -.3333 -.3598 .2611 «2250
-0.5 .0833 .7390 .0944 .0917
~-1.0 .1667 .1539 .1278 .1167
-2.0 .3333 .3076 .2611 «2146

bigger, while for the negative values the susceptibility tends to
approach zero. On the other hand, the curves for x- and
y-directions show an opposite character where t!.. susceptibility for
positive anisotropy tends to approach zero and the other way around
for the negative values. At high temperatures, all the curves seem
to approach the correct high temperature limit where kﬁ’l‘xlnz = p/3,
For antiferromagnetic coupling, the susceptibility tends

to decrease as the temperature 1is lowered except at the very
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Figure 3. Zero field ferromagnetic susceptibility per lattice site
versus kgT/J for fields along the z-axis in (a) p = 0.8,
(b) p = 0.5 and fields along the x-axis in (c) p = 0.8,
(d) p = 0.5. cCurves for D/J = 2,0 (long dash-dot), 1.0
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(solid), -1.0 (short~-dashed) and ~2.0 (long dashed).
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Figure 4. Zero field antiferromagnetic susceptibility per lattice

site versus kgT/J for fields along the z-axis in (a) p =
0.8, (b) p = 0.5 and fields along the x-axis in (¢) p =
0.8, (d) p = 0.5. Curves for D/J = =2.0 (long-dashed),
-1.0 (short-dashed), =-0.5 (solid), 0.0 (dotted), 0.5
(s01id dotted), 1.0 (short dash-dot), 2.0 (long
dash-dot).
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Table 2

Ferromagnetic Susceptibility (z-axis)

P D/J ls:‘;Tx/,u2 (calculated) k"l‘x//oz (computer)

p(1+p)/(1-p) = 7.20 6.8316
6.6455
6.3566
0.0203
0.0410
0.0831

U
O NOM~N
L]
MOoOOWVWO O
o

0.5 p(1+p)/(1-p) = 1.50 1.4389
1.3908

1.3053

] 0.0126

0.0254

0.0509

1
O NOMN

L]
VVOOWLOO

"p/3 = 0.2667 0.2971
0.2889
0.2849
0.2665
0.2731
0.2770

U
O M= NO =N
e @&

0.5 p/3 = 0.1667 0.1820

0.1771
0.1747
0.1630
0.1676
0.1700

L]
MOOWmO O MOoOOoOWwNMO O

O = NO =N
.
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Table 3

Ferromagnetic Susceptibility (x-axis)

P D/J kPTx/y 2(calculated) kaTX/u 2(computer)

0 0.0204
0.0415
0.0856
p(1+p)/2(1-p) = 3.600 2.6975
2.6559
2.5933

i1
O = NO =N
a e o

0.0128
0.0262
0.0553
p(1+p)/2(1-p) = 0.7500 0.6858
0.6743
5 0.6551

0.5

U
O NO N

.
COOWMWO O VMOOWVMO O
o

T

2.0 p/3 = 0.2667 0.2729
1.0 0.2769
0.5 : 0.2789
2.0 0.2887
1.0 0.2848
0.5 0.2829
0.5 0 p/3 = 0.1667 0.1675
0 0.1699
5 0.1711
.0 0.1770
0 0.1747
5 0.1735

"
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Table 4

Antiferromagnetic Susceptibility (z-axis)

P D/J kPTXAaz (calculated) kPTxﬁuz (computer)

-3
4
o

(=
-
o

0 ~0.0116

0.0168

0.0227

p(1-p)/(1+p) = 0.0889 0.0918
0.0879

0.0808

s e

U
O NO =N
L ]
VOOWOO

0 0.0089

0.0148

0.0236

p(l-p)/(1+p) = 0.1667 0.1584
0.1499

0.1318

O NO=N
. .
VOO WVMOO

p/3 = 0.2667 0.2410
0.2462
0.2493
0.2655
0.2590
0.2557

-
MOoOOoOWwOo o LOoOOoOWMOoO O

O=NOMN
.

0.5 - p/3 = 0.1667 0.1530
' 0.1571
0.1591
0.1697
0.1654

0.1633

.

O=NOMMDN
L ]
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Table 5

Antiferromagnetic Susceptibility (x-axis)

P D/J kp'.l‘x/,ll2 (calculated) k,TX/uz (computer)

]
4
o

(=]
D)
[+ <)

0 p(1~p)/2(1+p) = 0.0444 0.0550
0 0.0541
5 0.0527

.0 0 0.0116
0 0.0171
5 0.0236

2.0 p(1-p)/2(1+p) = 0.0834 0.0871
1.0 0.0852
0.5 0.0817
2.0 0 0.0263
1.0 0.0153
0.5 0.0095

p/3 = 0.2667 0.2588
0.2557
0.2541
0.2460
0.2493
0.2509

1
O=NO=N O NOM~N
L ]

.
VOOWmMO O

0.5 p/3 = 0.1667 0.1653
0.1633
0.1622
0.1570
0.1591

0.1602

*
VOOWO O

3
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low temperature, where it increases for negative anisotropy for the
z-direction and positive for the x- and y-directions.

Finally the graph of neutron scattering versus wave vector are
plotted in Figures 5a through 5d for the ferromagnetic case with
kT/J = 1,0 and 0.2 for both isotropic and anisotropic systems. The
parameter D/J used for the anisotropic system is -4.5/23.6 which 1is
appropriate to the systems formed from CsNiF3 at low temperature.
It can be seen that for the z-direction, the values for the iso-~
tropic system are bigger than for the anisotropic system, while for

the x- and y-directions the opposite case happens.
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Figure 5. Plot of S)(q) versus ga for 1 = x and z and kT/J = 0,2
and 1.0. Curves for S4(q) with in (a) p = 0.8 and (b) p
= 0,5 where D/J = -0,1907 (solid) and D/J = 0.0
(dashed). Curves for SX(q) with in (¢) p = 0.8 and (d) P
= 0.5 where D/J = -0.1907 (solid) and D/J = 0.0 (dashed).
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CHAPTER IV

CONCLUSIONS

In this study, the thermodynamics and magnetic properties of
the disordered materials in the absence of an external field are
calculated and comparisons are made between the results obtained
with the low and high temperature limits. In all the cases except
for the neutron scattering, calculations are made for both systems,
ferromagnetic and antiferromagnetic. In addition, for the magnetic
susceptibility and neutron scattering, both isotropic and aniso-
tropic systems are considered. The plots which represent the
results for magnetic concentration p = 0.8 and 0.5 are presented.

This study is interesting because the phenomena happens
in the real system for compounds formed from CsNiF3 and TMMC. It
was shown also, that the thermodynamics of the diluted classical
spin Heisenberg chain with single ion anisotropy can be solved

exactly in one dimension based on the classical models.
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