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ON RANK-BASED CONSIDERATIONS FOR GENERALIZED LINEAR
MODELS AND GENERALIZED ESTIMATING EQUATION MODELS

Diana R- Cucos, Ph.D.

Western Michigan University, 2002

This study discusses rank-based robust methods for estimation of param­

eters and hypotheses testing in the generalized linear models (GLM) and gener­

alized estimating equations (GEE) setting. The robust estimates are obtained by 

minimizing a Wilcoxon drop in dispersion function for linear or nonlinear regres­

sion models. In addition, diagnostic tools for outliers and influential observations 

are being developed. These models are generalizations of linear and nonlinear 

models. They allow for both nonlinear mean functions and heteroscedasticity of 

their random errors. This makes them quite useful in practice.

Rank-based inference has been developed for linear models over the last 

thirty years. This inference is both robust and highly efficient and it can be 

extended to estimates which have high breakdown. It has recently been extended 

to nonlinear models. In this work, we extend this inference to GLM and GEE 

models.

The robust estimates of the mean function are obtained by minim m ug a 

norm based on Wilcoxon scores in much the same way least squares type esti­

mates are obtained by minimizing the Euclidian norm. For the heteroscedasticity
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problem where the errors are independent but have non-constant variances, we 

show that these robust estimates retain their consistency and asymptotic normal­

ity provided scale is consistently estimated. We further develop asymptotic theory 

for robust testing based on both Wald type tests and drop in dispersion tests. In 

addition, diagnostic tools for outliers and influential observations are developed. 

We discuss extensions to high-breakdown estimates. We discuss a robust estimate 

of the variance-covariance matrix for the auto-regressive structure, used for the 

GEE models.

Examples and simulation studies illustrate the robustness of the procedure 

and Its superiority against the classical statistical techniques currently used. Data 

for the examples include a multiple sclerosis longitudinal trial and a cholesterol 

data from randomly selected individuals from the Framingham study.
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CHAPTER I

IN TR O D U C TIO N

1.1 Background

1.1.1 Generalized Linear Models

Nelder and Wedderbum (1972) were the first to unify regression and linear 

models into the generalized linear model (GLM) and to propose a computational 

method for finding the Maximum Likelihood Estimators (MLE). GLM has been 

used widely in biomedical research for exploring relationships and for estimating 

the effect of a set of covariates on an outcome variable or disease status. In such 

models the mean response is related to a vector of regressor variables through 

a link function. Common link functions are the identity, logit, probit, power, 

log, complementary log-Iog and other domain-specific functions (e.g. Michaelis- 

Menten relation for pharmacokinetic data). However, generalized linear models 

(McCuHagh and Nelder (1989)) require the observations to be independent, and 

to follow an exponential family distribution (often normal, gamma, Poisson or 

binomial). This relationship may be expressed as

/(y,) =  acp{yA ~ a{0,) 3 ( 1 . 1 )
<Pi

1
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with. &i, (j>i unknown, and 0{ >  0, <f>i =  <(> >  0 unknown, and £, >  0 known.

Some of the most interesting studies, though, involve repeated measure­

ments taken on same subject, over time. Successive measurements are usually 

dependent. Other terms used for repeated measures are longitudinal data (used 

to imply that the patients are followed over time), panel study and growth data 

(subjects measured at a common set of ages). For example, in a clinical study, a 

large number of individuals may be examined for a successive number of months 

to determine their reaction to a new asthma medication, and their pulmonary 

function measurements (continuous response) and other possible covariates (both 

static, eg. gender, race, age, severity of disease, comorbidities; and time-varying, 

e.g. weight, height) recorded. The measurements (over time) for a particular 

patient are almost never independent.

1.1.2 Extensions to Generalized Linear Models

Jorgensen (1983) proposed an extension to GLM which allowed for corre­

lated errors and nonlinear hypotheses. The extended class also admitted distri­

butions that are not members of the exponential family. He considered examples 

which included multivariate normal, log gamma, hyperbolic and inverse Gaussian 

distributions.

Since then, GLM has been extended in three directions:

(1) Conditional (or subject-specific) models (Rosner (1985)),
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(2) Random effects models (mixed models), and

(3) Marginal (or population-averaged) models.

Because the random effects are not observed data, in the likelihood form 

of the conditional models, they are integrated out. This integration does not have 

a closed form solution for non-normally distributed data. The popular numerical 

approximation methods (implemented by SAS) do not work well for longitudinal 

data with high correlation (Breslow and Lin (1995)).

1.1.3 Generalized Estimating Equations

Liang and Zeger (Liang and Zeger (1986), Zeger and Liang (1986)) ex­

tended GLM to correlated data using a marginal model, called Generalized Es­

timating Equations (GEE). If number of time points is one, then their method 

reduces to the GLM procedure. The GEE approach has its roots in the quasi­

likelihood methods introduced by Wedderbum (1974) and developed and extended 

by McCullagh and Nelder (1989). Standard maximum-likelihood analysis required 

the specification of the full conditional distribution of the dependent variable 

(most commonly, assuming it to be normally distributed) and estimated param­

eters by solving the score equation (the derivative of the likelihood function with 

respect to the parameters set equal to zero). Instead, the quasi-likelihood methods 

require only that the relationship between the expected value of the dependent 

variable (Y) and the covariates (X) is known. The parameters are estimated by
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solving a quasi-score equation, given by

K

Score: ̂  X j 6 ^  -  a'{(0)) =  0,
i= 1 
K

Quasiscore: ̂  D f (Yj — a'i(0)) =  0,

Si =  diag(fjk), rjit =  x£/9, A  =  -4,£tA„ K' =  Ar RC“)A»̂ , R(a ) known matrix for 

at >  0 , Ai =  diag(a"(0it)).

These marginal models are useful for any situation in which the emphasis 

is on understanding the relationship between the regressor variables and the mean 

response variable, where data are correlated but the correlations are not the main 

focus of the analysis- A detailed discussion of Liang and Zeger model and results 

is presented in Section 2.2.

GEE’s are estimable with a host of software packages. SAS’s Proc Genmod 

estimates GEE for normal, binomial, Poisson and gamma families. Available 

correlation structures are independent, exchangeable, AR(1), m-dependent and 

pairwise. S-plus has a user-written GEE module (formerly OSWALD). Available 

links are identity, log, logit, probit, reciprocal and complimentary log-log. Another 

readily available computer package is BMDP.

GEE’s are used in practice for binary response variables, for event counts, 

for ordered or unordered polvchotomous, and for continuous responses. The 

present study focuses on continuous responses.
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1.1.4 Correlation. Structure

To increase the efficiency of the estimators, GEE’s take into consideration 

the fact that the correlation structure is probably not that of independence. Liang 

and Zeger (1986) assume the working correlation structure is known (from previous 

experience, or the physics of the phenomena being studied). If the working corre­

lation matrix is correctly specified, with its structure constant over clusters, then 

the GEE estimator is consistent and asymptotically normal. Liang and Zeger 

proposed a robust (or empirically-corrected) estimate of the variance-covariance 

matrix, which guarantees the consistency of the estimator even under misspec- 

ification of the correlation matrix. This estimator is also discussed in Section 

2.2.

The correlation structures often used in practice are the following.

(1) Independence - This assumes no intra-cluster correlation. The estimator is

the analogue of pooled estimators.

(2) Exchangeable - The correlation is assumed to be equal across all observations

within a cluster. In this case only one parameter needs to be estimated- The

model is analogous to the random-effects model.

(3) Unstructured - This places no constraints on the correlation structure. Thus

all pairwise correlations need to be estimated.

(4) Autoregressive - The correlation over time is modeled as an exponential
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function of the lag length.

The AR(1) is the correlation structure used most of the time, especially if 

data are equally spaced. Even for unequally spaced data, a continuous time 

AR(1) correlation structure has been proposed by Jones and Boadi-Boateng 

(1991). For an AR(1), one parameter needs to be estimated.

In addition, the researcher may explicitly specify the correlation structure.

Diggle, Liang and Zeger (1995) recommend that:

When the regression coefficients are the scientific focus ... one 

should invest the lions share of time in modeling the mean structure, 

while using a reasonable approximation to the covariance. The robust­

ness of the inferences about 0  can be checked by fitting a final model 

using different covariance assumptions and comparing the two sets of 

estimates and their robust standard errors. If they differ substantially, 

a more careful treatment of the covariance model may be necessary.

Miller (1993) used a working correlation structure based on the inverse of 

Fisher’s z  transformation. But estimation in this case

(see Prentice and Zhao (1991)) requires another working correlation matrix for 

the sum of squares and sum of products variables.

In general, the consistency of the estimator of 0  may be established even 

when the ’working5 correlation matrix is incorrectly specified; hence, the assump­

tion o f experience-dictated correlation matrix will be used throughout this re­
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search. That is, we will assume the structure of the correlation model, but the 

correlation will have unknown parameters which we will estimate in Section 3.5.

Liang and Zeger (1986) assumed that the longitudinal correlation structure 

remains the same for all individuals. This approach reduces the number of corre­

lation parameters to be estimated and it is widely applicable in practice. Least 

Squares (LS) and moment methods have been used in order to obtain consistent 

estimators of the correlations. In the present research, the correlation parameters 

(same across subjects) will be estimated using robust methods.

An alternative developed by Liang, Zeger and Qaqish (1992) allows for the 

j'oint estimation of the regression coefficients (including the intercept) and it is 

more efficient than the original estimation method (often referred to as G E E i). 

Unlike GEE, this technique (GEE2), obtains estimates using the first two empirical 

moments instead of j'ust the first empirical moment. However, the mean and the 

correlation structure need to be correctly specified, and this estimator Is even 

more sensitive to departures from the true covariance structure. Hence, it is even 

less robust than the traditional GEE.

1.1.5 Diagnostics for GEE

Although consistent, GEE estimators are not efficient (Crowder (1995), 

Sutradhar and Das (1999)) and they are not robust in the presence of outlying 

observations. At the present time, standard residual diagnostics are employed.
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alongside plots of residuals stratified by time or by subject. Goodness-of-fit is 

assessed using Schwartz’s Bayesian Criterion and the Akaike’s Information Cri­

terion, both functions of the likelihood- However, since the GEE residuals are 

correlated, summary goodness-of-fit statistics may not be appropriate. Zheng 

(2000) extended four goodness-of-fit measures of GLM to GEE models: propor­

tional reduction in entropy, percent reduction in deviance, concordance correlation 

coefficient and concordance index.

1.1.6 Robust Methods

Considerable effort was put into robustifying methods for longitudinal data. 

Morgenthaler (1992) replaced the norm by the Li norm in the derivation of 

the quasi-likelihoods. However, the extension leads to biased estimating equations. 

In order to obtain consistent estimators, the underlying distribution needs to be 

known. The mean and the covariance structure alone do not suffice anymore.

Chi and Reisel (1989) proposed a mixed linear model containing fixed re­

gression parameters, random effects across individuals and autocorrelation in the 

within-individual errors. Gill (2000) robustified the log-likelihood for Chi’s model, 

using Huber’s p function. Details of this estimator are provided in Section 2.3.1.

Hu and Lachin (2001) developed a robust alternative to the GEE’s, called 

truncated robust estimating equations, not sensitive to heavy-tailed distributions, 

contaminated distributions or extreme values. Their estimator is based on trun-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cated estimating functions (namely, on Huber’s M estimator). The robust estima­

tor is more efficient for non-normal data, and it is not as sensitive to departures 

from the true correlation structure. As pointed by the authors, the danger in 

using M-estimators is to over-truncate the tail values, which may contain some 

useful information. The details of this estimator are presented in Section 2.3.2.

Robust alternatives were studied extensively for non-continuous data: M 

estimation, applied to binomial and poisson models (Cantoni and Ronchetti (2001)); 

M estimation applied to logistic regression (Adimari and Ventura (2002)); resis­

tant generalized estimating equations that include weights in the estimating equa­

tions to downweight influential observations (weights are computed according to 

the observation leverage (Mallows class downweights), or residual (Schweppe class 

downweights) (Preisserand Qaqish (1999)).

The present research will investigate rank-based robustness, as an extension 

to Generalized Estimating Equations. The theory will follow as an extension from 

the theory for rank-based analysis of GLM, presented by Hettmansperger and 

McKean (1998). The complete inference in Hettmansperger and McKean (1998) 

holds for the general rank scores. For the present research, however, we have 

chosen the Wilcoxon scores.
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1.2 Motivating Example

Gill (2000) compared his robust estimators with, two previously published 

GEE estimators for a longitudinal clinical trial on multiple sclerosis patients (see 

details in Section 6.1). The data have been analyzed by Petkau and White (1995) 

and D’yachkova et al. (1997) using GEE’s, although the data (or its transforma­

tion) are not normally distributed.

The study was a 3-year double-blind placebo-controlled randomized trial 

of interferon beta-lb given at two dosing schedules: 0.05 mg every other day, and 

0.25 mg every other day. Each patient had a baseline cranial magnetic resonance 

imaging (MRI), and this was repeated yearly.

As part of the clinical trial, a cohort of 52 patients had head MRIs repeated 

at approximately 6-week intervals for two years. Data from 49 patients were used 

in the analysis. The patient burden of disease was used as an indicator of the 

severity of the disease at the time of the scan. Graphical analyses of the data 

revealed strong skewness in the burden measurements. Petkau and White (1995) 

suggested a log transformation to normalize the data. However, as shown in 

Figure 1, the transformed data has very long tails, with outlying observations 

mainly in the placebo and low-dose group (high-dose group is close to normal).
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Figure 1. Q-Q Plot of Log-Transformed Multiple Sclerosis Data
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Gill’s estimators of slope parameters (see Table 1) show a significant dif­

ference in the estimators for the placebo and low-dose group, with the high-dose 

groups estimators being practically equal to their GEE counterparts. The stan­

dard errors of his robust estimators are lower than the GEE standard errors.

Table 1

LS Estimates Versus Gill’s Robust Estimates

Placebo Low Dose High Dose
MLE 0.036 0.032 -0.095
Gill’s Robust 0.021 0.038 -0.094

Since Gill’s estimators are a M-robust version for the mixed linear models, 

it would be of interest to compare the LS results with those of a direct rank-based 

robust extension of GEE.
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CHAPTER II

CLASSICAL GEE THEORY AND EXTENSIONS

2.1 Notation

We shall use the notation in Liang and Zeger (1986).

Let Y ”xl =  (ya, - - -, J/m)T be the vector of outcome values and Alnxp =  

(x ,i,- . - ,Xin)T be the matrix of covariates for the ith subject, i  =  t =

1 , . . . , 72.

Assume that the marginal distribution of yu, i  — 1, . . . ,  K , t  =  1, . . . ,  n is :

f{yu) =  exp[{yit9it -  a(6u) +  b(yit)}0 ], (2.1)

where a(-) and 6(-) are continuous functions, 0 and <j> are model parameters, and

we are fitting the model

E(yn) =  gtfit), On — h(r}it ), T}it =  x^/3, (2.2)

where #(*) and h(-) are continuous functions and /3pxI is a vector of unknown

coefficients.

13
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Equivalently, the mean for each subject may be expressed as

Mi(0 ) =  - - - ,s (/i(x £ 0 ))]T.

Using a moment-generating-function argument, it follows that the first two 

moments of yu are given by

E M  s  MiW =  <■'(»«),

and

var(yif) =  °  ^  =  aft*

Let
f)Q*

A”xn =  diag(—^-) and At =  diag(a"(0it)). 
drjit

Furthermore, let R(ot) be a n x  n symmetric matrix with c*axl, s  >  0, 

a vector which fully characterizes R(<x). R (a :) is called the working correlation 

matrix.
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2.2 Least Squares Theory

Under the independence assumption, the Fisher score equation from a like­

lihood analysis has the form

K

U m = Y . X i ^  (Y i -  *(<>)) =  0 (2.3)
1 = 1

The estimator j3r is the solution to the score equation.

Liang and Zeger (1986) proposed a class of estimating equations which take 

the correlation R(at) into account.

Let Vi be an estimator for cov(Yi), based on R {a), and given by

„  _
‘ * •

Then the General Estimating Equations are defined to be

K
=  0, Di =  A iX X i. (2.4)

i=l

The estimator j3G is the solution to the quasi-score equation, and it is called GEE 

estimator.

Note that (2.4) reduces to (2.3) if R(ct) is the independence (identity) 

matrix.

Equation (2.4) is a function of both a  and /3, but can be re-expressed as
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a function of /3 alone by replacing oc by 6c, where

K*(ac — a ) A  0;

that is, o: is \ [K  consistent when /3 and <p are known.

Provided that the mean is correctly specified, and regardless of the correct 

specification of R(oc), the following two theorems hold; see Liang and Zeger (1986).

Theorem. 2 .2 .1 . The estimator (3G of 0  is consistent.

The following theorem summarizes the asymptotic properties of /?g-

T heorem  2.2 .2 . Under mild regularity conditions and given that:

(i) 6c is K 5 -consistent given f$ and <j>;

(ii) <p is K'i -consistent given 0  ; and

(Hi) l2^ !  <  “ Acre

then

K i 0 c  - /3)$N „(0,V a), (2.5)

where

K  fC

Va =  U m  i f ( £ ;  D?VriD{)-H j2 DTVr1<MYi)Vr1Di}(E,DTVrlDirK
=1 1=1
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Note that, similar to the quasi-likelihood theory, Vq does not depend on 

the choice of estimator for a  and <f>. Thus, even when the exact nature of the 

dependence is not known, GEE offers asymptotically unbiased estimators.

To compute /3C, Liang and Zeger used the Gauss-Newton method: mod­

ified Fisher scoring for /3, calculate standardized residuals and then use moment 

estimation to obtain consistent estimates of a  and /3.

At each iterative step they compute

p u + l)= /3U)- { £  d j  (3 (V r l (0 oV iG 8 o ,)}_ lE  D<
t = l  i = l

(2.6)

where S, =  Y, -  aj(0) and Viffl) =  K[/3, a { 0 ,

Note that this iterative step is the equivalent to performing an iteratively 

reweighted LS estimation of the linear regression of Z  =  D 0  — S  on D  with weight 

V ~ l , where V nK*nK is block diagonal with Vi as diagonal elements.

In Zeger and Liang (1986) the following robust variance estimate, consis­

tent even when Vi is incorrectly specified, was proposed:

Vp =  Mq X M\M q 1 . where
K

Mo= '£ , DT 0 )V T 1 AO), and
i = l

Mi
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This estimator, called sandwich variance estimator,, is frequently used in practice.

The scale parameter 4> is estimated using the standardized residuals at a 

given iteration (i.e. generalized form of Pearson’s statistic).

=  K  £  aT*T ’ n  = n K - (2-7>t , i N ~ p

where rit is the estimated standard residual

- _  Vit ~ a'(flit)

l£ [a>r0it)\^

The correlation parameter ot is estimated as a function of

k  . .
fy   x '  t̂uTiv

The form of the function is dictated by the choice of R(ac).

In particular, for AR{ 1), a  is estimated by the slope from the regression 

of log(fitf ir) on iog(|£ -  t'l).

2.3 Robust Estimates

2.3.1 Robustness in Mixed Linear Model setting

Gill (2000) proposed a robust procedure for estimating parameters of a 

mixed linear model, applied to longitudinal data.
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Given K  subjects, each observed on n time points, we let yu be the continuous 

random variable corresponding to the response observed on the £th subject at time 

t. Assume the linear model to be

Vit = frt +  £u,

where (Jit is comprised of the general mean, time-dependent covariates, treatment 

effect and subject effect, and e,-* is the within-subject error. Errors from different 

subjects are assumed to be uncorrelated.

Hence,

A*t =  X i0  4- CfcTfc,

Ck being the design matrix for the random effects.

Correlation among within-subject errors was assumed to follow an AR(1) 

structure.

Let cov(yv) =  o2E, where E is a function of an unknown parameter vector,

CL.

Following maximum-likelihood estimation, the log-likelihood for the generalized 

linear mixed models is:

L(fit ol\Y) =  constant -  ^Mlogip2) -  y io g |E | -  | r rt-ri, (2.8)
i = l

where r* =  <x-I E- 2(yt- — Xi/3).
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Gill robustified this equation by replacing half of the sum of squares ^ i i i  

by a robust function, namely Huberts p, function given by

|a 2 if |a[ <  c,
p{a) =  '

c|a[ — iyc2 if |a| >  c

where c >  0 is a fixed constant.

It is well known that the influence function for this function is bounded:

if |a| <  c,
4>(a) =

csign(a) if |a| >  c.

Hence, Gill’s robust version of the log-likeiihood, to be maximized, is given by

T](f3,ct\Y) =  constant — ^Mlog(cr2) — ^ArdoglEj —
t=I £= I

where hi =  E(rtp(r)) is Huggins’ consistency correction factor.

The parameter /3 is estimated using score equations. The iteration for the 

scoring procedure is given by

dp

with Hppr =  vcr~2Y £=iX T ^~ LX i, the Hessian matrix for P, u =  Pr([r| <  c).
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It has been shown that the asymptotic distribution of this estimator is

W  X l t - 'X i ) - ' ) .  (2.9)

Note that if c =  oo, & and its distribution reduce to the classical ML forms 

(under ML normality assumption, var(/3) =

To estimate the covariance parameters, a , in a first order auto-regressive 

setting, a similar scoring iteration is used

Empirical Bayes estimates are used for the random effects tv

Goodness-of-fit was evaluated using an extension of Akaike’s information 

criterion to robust regression, in particular to Huber’s p function.

Using the example discussed in Section 6.1.1, these robust estimates were 

compared to the usual ML estimates, proving to be robust to outlying observa­

tions. In addition, the robust variance parameter estimates were lower than the 

corresponding ML estimates.

2.3.2 M-robust Estimation

Hu and Lachin (2001) introduced the truncated robust estimating equa­

tions, a direct extension to the GEE method, based on Huber’s M-estimation.
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The truncation function is given by

K
U{0,a,4>) =  Y ^ D T R - ' ia M n ) ,  (2.10)

with ip(-) the multivariate generalization to univariate M-estimation, and =

var(rt).

Note that (2.10) is different from the estimating equation (2.4) in bound­

ing the influence of the (standardized) residuals. Hence, if ip is the identity func­

tion, (2.10) reduces to GEE.

A further robust generalization uses K- =  var('0 (ri)) (the variance-covariance 

matrix of the truncated residuals) instead of Ri(ct) in the estimating equation 

(2.10). It has been shown, though, that the difference between the correlation of 

the truncated and untruncated residuals is trivial. Based on simulation studies,

Hu chose to use when scales are heterogeneous over time.

Under the same regularity conditions imposed to GEE, with the additional 

assumption that E[ip(r)\ =  0, the truncated robust estimator of (2.10) is consis­

tent for /3 and its asymptotic distribution is:

AM/S, Iim KV^V„(Vol)T),
iv —►oo

where VD =  £ £ ,  D f  and K„ =  0 p ? - 1(ct)ccHr(,«rj)).Rr1(a)A -.
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The median absolute deviation was used as an estimator of scale:

4> =  frmedianflfit — median{f,-t}[},

with 6 dependent on the distribution of the residuals, chosen such that ^ is an 

unbiased estimator. For example, for normally distributed data, b =  1.483 and 

for double exponential distributed data, b =  2 .1.

Note that the estimator o f #  is consistent if  0 is unbiased, so in practice 

b =  1.483 or b =  2.1 is used.

A simulation was conducted for a linear model, with 6 =  2.1 and the trun­

cated constant c =  1.345 to compare this estimator and GEE, under a multitude 

of error distributions. It was shown that the GEE is, as expected, more efficient 

for normal errors (relative MSE= .94) and less efficient for non-normal data, such 

as mixed normal error of 80% standard normal and 20% N(0,9) (relative MSE= 

1.3) or mixed normal error of 95% standard normal and 5% gamma(2,4) (rela­

tive MSE= 1.69). Both estimators were unbiased and there were no differences 

between the two with respect to variance estimators.

The authors note that:

One danger in the use of the robust estimating equations is to over- 

truncate the tail values, which may wash out some useful information 

in the tails. The cut-off point c in the ^-function is often chosen such
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that the robust estimating equations are 95 percent efficient when the 

error distribution is exactly normal.

i
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CHAPTER III 

ROBUST WEIGHTED ESTIMATION

3.1 Development for Generalized Linear Models

Assume that we have a vector of observations y  =  (yx,. . . ,  yn)T following 

an exponential family distribution:

f { y ; 0 ,<t>) =  expfty3# - a(0) +  6(y )}<j)\ (3.1)

and the log-likelihood function given by

, <?>; y ) =  0 {yT0  -  a(0) +  6(y)} (3-2)

Let p  =  E (y). Prom

it follows that,

25
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In. a similar fashion, from

, E (a m , 2 
E{- m w + E {- d r >  _ 0 ’

we obtain the variance

V a l(y )  =  =  (3 '4)

Note that

9 ^  9 _( a a W )  =  K (  }
do d ov ;

We are fitting the model

9(Pi) =  5 2  1 -  1 -  n' & e  (3-5)
j=i

where ff is a known one-to-one third order differentiable function, called the link 

function.

In vector notation, we have g(ft) =  X nxpf3. Hence we can express the mean f t  as 

a function (not necessarily linear) of the parameter /3

M - f i ( 0 ) = J " l (XS), (3.6)

Following the least squares theory, the maximum likelihood estimator (MLE) is
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the solution to:

91 „   ̂ n
g 5  =  « ( y - r t = o ,

dl_ _  dl_ d0_ 
dp dO dp

=  <t>V~l (p ){y  -  p)

Hence, the least squares norm al equations are: 

Vr' 1(M(/3))(y-M(/8)) =  0.

Now let

DOS)**' =
op

and l(/3) =  l(p(/3),y). It is easy to show that

/O )  =  <t>DTV ~l{y -  mOS))

=  ^ r O»)V-109)(y- /« (^))

and

fQ9) =  -  TJ -  0D tV “1D

where e  =  y  -  p(J3), W  =  T =  £>r K" W ~ lD, and S  ■■ 3 W )
aodeT~
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Then the MLE soLves:

m = o

Using a Taylor expansion about 0 O) i(fi) »  /(/30) +  I(pq)(@ — j30) «  0. So

P * Z p Q +  { - l { 0 Q)}-H (f)Q) (3-10)

To obtain the estimator, /3, the Gauss-Newton approximation method is being 

used, with the iteration step of:

/3<i+l) =  0 (i) +  {-i'CSo)}’ 1̂ ' 0)

Replacing — l(j3) by its expectation: E (—l(/3)) =  <f>Dr V~lD, Gauss-Newton be­

comes the iterative weighted least squares

0 (*+i) =  +  {(D Tv - lD)~lDTV~le}W  (3.11)

=  {(D r V - lD ) - lDTV~lZ}W

where Z  =  D 6  -F e.

This iteration is exactly the least squares solution to Z  =  where E{7 ) =  0

and Var(7 ) =  V.
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Hence, the GLM model, is equivalent to the regression modeL

Vi =  mOo)

where Vrar(e,-) =  K, and ^(ji) =  Xf3.

3.2 Rank-Based Robustness and Link Functions 

In general, given the model

y  =  M 0 ) + e ,

the least squares estimator minimizes

I M I is  =  ei =  iC fefc ~  » ( £ ) ] * -
i = l  t = l

Equivalently, J| * | | | 5  can be expressed as

w ! s = E E f e - e i ) 2-
i = l  j=L

The rank-based analysis is based on the pseudo-norm

n-

l N U = 5 3 ° v ( fl(c«))c«»
i= l
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where av (i) are scores such that 0^(1) <  - - - <  av (n) and “<?(*) =  0 - 

General rank scores have the form.

where <p(u) is a nondecreasing function defined on the interval (0 ,1), fg ip(u)du =  0 

and fg (p?(u)du =  1.

This study only considers Wilcoxon scores, generated by the function

For the linear model, that is, when g is the identity link, or =  X/3, 

and when e» are iid, the asymptotic theory of the Wilcoxon estimator was devel­

oped by Jaeckel (1972). McKean and Hettmansperger (1976,1978) developed the 

corresponding inference theory; see chapters 3-5 of Hettmansperger and McKean 

(1998) for discussion.

<pR(u) =  \ / l 2 ( i t -  5 ).

Hence, the rank-robust estimator minimi7.es

n n

or, equivalently, the rank-robust estimator minimizes
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Ia practice, the form, of the link is mainly dictated by previous knowledge 

and research with similar data. McCuIlagh and Nelder (1989) present a multitude 

of examples, mainly using discrete data, illustrating different link functions. 

Besides the identity link, widely used in practice, the logit link

g(p) =  ln(—̂ — )
1 —

is popular, mainly used with binomial distributed data, Bi(rii,fii), 0 <  fXi <  1. 

Other links employed with binomial data are the probit,

g{n) = $ - l (/*)

and the complementary log-log,

g(li) =  ln [-ln ( 1 -  /*)!-

It has been shown that when the true mean, fi, is close to 0.5, it is hard to 

differentiate among these link functions.

For counts data, not in form o f proportions, the log-linear link,

g (f i )  =  ln(fs)

is used. The log-linear link is used with counts of events in Poisson-like processes.
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For example, one might consider a model using a log-linear link if the dependent 

variable is the number of new cases of juvenile diabetes when collecting data over 

a decade.

When modeling a gamma distribution, such as the rate of a process, the 

canonical link,

9(p) =  P~l

is generally used. For example, assume the mean of a process is /x(/3) =  ,

then the inverse linear link is just g(n) =  A> +  ~r-

3.3 Development for Generalized Estimating Equations

Following the same notation introduced in Section 2.1, we have y  =  ( y i , . . . ,  

following an exponential family distribution:

/(yu) =  exp[{t/i£0it -  a(9u) + b(yit)}4>]. 

We are now generalizing the GLM model to the GEE, fitting

(3.12)

where g is a known link function and is known.
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Ia vector notation, we have g(fx) =  f(/3). Hence

H := /i(/3) =  (g 1 o f)(0 ) =  h(y8 ), (3.13)

with h.(*) nonlinear.

The development for the GLM detailed in Section 3.1 applies, using the 

fM form in (3.13), instead of n  =

It follows that the GEE model is equivalent to the nonlinear regression

model

Vi =  hi(0 o) +  <*,

where V arfe) — V.

3.4 Asymptotic Properties 

Consider the general regression model, equivalent to the GEE,

Vi =  hi{p0) + e it for 1 < i < n ,  (3.14)

where V ar(e,) =  V,  V  positive definite, where V -1  can be factorized as 

and /30 €  ©°. We will assume that 0  is a compact subspace of 3RP.

Standardize the model in (3.14), by multiplying with to obtain

i f  =  (3.15)
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Vi — V  lyi, f ; (P 0) =  V  *hiQ30), and £% =  V  *£i, independent, with Var{e*) =

p x P^

We define the weighted Wilcoxon dispersion function by

( 2)1 (3-16)
A - / J  t<J-

where 2, 03 ) =  y* — /,*03), i =  1, is an initial estimator, and Wij are 

weight functions. We will denote the minimizer by 0y,n-

Estimation based on the weighted Wilcoxon dispersion function was in­

troduced by Sievers (1983) who assumed the weights, u/y, to be non-stochastic. 

Naranjo and Hettmansperger (1994) further developed the weighted Wilcoxon and 

used it to obtain the so-called generalized R (GR) estimates of regression coef­

ficients in the linear model. By using Mallows weights they were able to obtain 

estimators with a bounded influence function.

The weighted Wilcoxon dispersion function (3.16) in its present form was 

given by Chang et al. (1999). They considered the linear model, /* (/30) =  x^/30,

and obtained estimates of /30 that have high breakdown point and at the same
~ ( 0)

time possess high efficiency. They also showed that if the initial estimator, /3n , 

has high breakdown, then the estimate obtained by minfmi'ziTig (3.16) will have 

high breakdown as well; for more details, see also the discussion in Hettmansperger 

and McKean (1998).
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In model (3.15), when the variance V  o f e, is assumed to be known, the 

model is a nonlinear model. For this case, we sketch the theory for the Wilcoxon 

estimator; see Abebe (2002) for details. We do extend the discussion in several 

instances, so that we can generalize the results for our later development.

The following theorem gives the existence of the minimizer of (3.16).

T heorem  3.4.1. Under model (3.14), if  f o r i  < i  <  j  <  n, Wij(-) are continuous,
_
3fJ+ valued functions, then @Vn exists.

In order to prove the consistency of the estimator, define hi(/3,/3*) =  

f t  (£) -  f t m ,  = w , / 3 * )  -  A fG W ),

and A .G M -)

The following assumptions will be needed.

A l:  For 1 <  i , j  <  n , Wij are nonnegative, continuous functions with Wij(/30) <  

M  <  oo, E yt^ O S o) >  and gradients Vwij bounded uniformly in i and 

j  on 0 °.

A2: lim„_,oo n~x̂ n(0, £ 0) =  0 for all G 0 .

- ( 0)
A3: f3n 0 Q in probability.

The following lemma shows the convergence for the process D™ provided 

that the weight functions and the initial estimator, behave in a favorable 

manner.
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Lem m a 3 .4 .1 . Under assumptions A l - A3,

{D % m  -  DZU3„)} -  E{D *(f}) -  -+ 0 ,

in probability.

In addition to A l - A3 above, assume the following.

A4: e} — ej have a common distribution G which satisfies G(0) =  1/2 and has

density g continuous at 0 with #(0 ) >  0 .

A5: For 1 <  i , j  <  n, and 0 “ a closed subset of 0  \  {/30}, there exist a rj >  0

and a n0 such that for all n >  n0 we have

infj9ee- ( 2 )  wa(PoKhii(0*Po))2 >  V .
i<j

Lem m a 3 .4 .2 . Under A4 and A5, there exists a £ >  0 and a no such that for all 

n >  no,

i g mE(D ” (f3 )-D Z (/3 o ))> Z -  

The following theorem gives the consistency of @v<n.

T heorem  3 .4 .2 . Under A l - A5, f)Vn is weakly consistent for /30.

Proof The proof follows from Lemma 3.4.1 and Lemma 3.4.2. □
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For the asymptotic normality, a linear approximation of the model is used. 

Define the following errors, based on a Taylor approximation around /30 for /*(/3)

+  /o r l < i  < n .  (3.17)

Then the model

L ~  (Xi)r ^ 0 +  £*i , (3.18)

has errors e f, where y£ =  y‘ -  /*(/30) +  (V /t*(/30)}T/3, and x» =  V/*(/30). We 

shall use this model several times in the sequel.

Define

Sn(/3) = K)1
—i

409)1
i<j

(3.19)

Denote the minimizer of Sn by £ n.This estimator is the one considered by 

Chang et al. (1999) as a high breakdown estimator of linear regression coefficients.

Define the associated weighted Wilcoxon dispersion function with deter­

ministic weights as

(2)] -4(0)1- (3-2°)

Denote the minimizer of Tn by /3„. Notice that this is an estimator of a 

vector of linear regression coefficients. Tn corresponds to the dispersion function
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given by Sievers (1983). To prove the asymptotic normality of f3v n̂, Abebe (2002) 

showed the asymptotic equivalence of (3Vn and /9n (or, under weaker conditions, 

the asymptotic equivalence of 0 Vn and 0 n ) and then the asymptotic normality

of3„-

Assume the following.

NX: The true errors, £•*, are independent, identically distributed with

E[|£X|] <  oc .

N 2: For 1 <  i <  n and 1 <  j  <  p, V/j*-(/3) =  V(V~^hij(/3) are continuous in /3 

on 0 °.

Lem m a 3 .4 .3 . Under A1-A5, N lt and N2

\/n(3v;n -  3 n) 0 ,

in -probability.

Let 7  =  J* he-2 where fte* is the density of c*. Define

a
Aet&o) =  ^  > ii(flo)(V&-(flo) — V/yfcO 0)), 1 <  fc <  p, 1 <  i  <  n .

/=!

Let A„. be the n x p  matrix with the (i, Ar)th element equal to A** and let Vn =  

A^An. Let Fc =  (/„ — n~lJn)Vf*  be the centered n x  p design matrix and let
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V /* fc be the average of the kth column of V /* . Here In is the n x  n identity 

matrix while Jn is the n x n  matrix of ones.

The following assumptions are given by Sievers (1983).

S N l: For 1 <  i , j  <  n, Wij(-) are symmetric.

SN 2: For each k — 1 , . . . ,  p,

m ax^^n -4?fc(/30)

SN 3: For each k =  1, . . .  ,p t 

SN 4: For each k =  l r. . .  ,p,

n~LV max \V&IJ30) -*•<>.

SN 5: There is a positive definite matrix E(/30) such that

n-'FciPoFF'tfe)  -► £(/J„).
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SN 6 : There is a positive definite matrix V(/30) such that

n - 3Vn(0o) - f  V (fl0).

SN 7: For k =  2(n(n -  I ) ) ' 1 -  V /J (A ,))]2 is

bounded as n —► oo.

SN 8 : Let the p x p  matrix Cn(/3 0) be defined with the (fc, /)th element 

i<j

There is a nonsingular matrix C  with n- 2Cn(/30) —» C(/30).

The following theorem along with a proof can be found in Sievers (1983)- 

T heorem  3.4 .3 . Under A4, SNl-SNS,

\ f c ( P n - 0 o )  3 -  « p(O ,(I ^ ) C - l(/90)n /» o )C -1(3 0))

Under weaker assumptions, the following lemma, equivalent to Lemma 

3-4.3 can be proved (in a similar fashion):

Lem m a 3 .4 .4 . Under A1-A5, and N2

~  fin) 0 >
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tn probability.

This result will prove important for our development. It connects the 

theory of the estimator in the nonlinear model to the linear model (3.18).

The following theorem along with a proof can be found in Hettmansperger 

and McKean (1998).

Theorem. 3.4 .4 . Under A4, SN1-SN8,

y /n 0 n  -  0o) ^p (0 t Vasy) -

The following theorems prove that the two estimators, f3n and @v,n 3X6 

equivalent.

Theorem  3.4 .5 . If

(i) 3 f  A f t  (AS),

(ii) V /*(/30) are uniformly bounded for all I < i  <  j  < n  (N2), and

(iii) n~l —>■ Af 

then for any 5 >  0

sup |Sn( /3 ) - r n(0)[^O .
Il0-0oll<*

T heorem  3.4 .6 . Under A1-A5, Nl, N2, SN1-SN8 and the assumptions of The­

orem 3.4.5 we have

nL/2(Pn - 0 n )  ^ 0 .
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The main asymptotic result can. be proved as a direct application of Slut­

sky’s Theorem.

T heorem  3.4 .7 . Under A1-A5, Nl, N2r SN1-SN8,

i / » ( 3 v , - A > )  3 - J V O , ( j ^ j ) C ’- 1O8 o)V (0 o)c - \ M ) .

Proof. The proof is an immediate consequence of Lemma 3.4.3 and Theorem 3.4.3.

□

3.5 Estimators for the Variance-Covariance Matrix

In practice, it is assumed that V  is not completely specified and, that, 

instead, its structure is known from prior research. Hence, a consistent estimator 

of V, V, will be used in standardizing the model. If V  is diagonal, we show 

in Section 3.5.1 that the resulting estimator is consistent, and follows the same 

asymptotic properties as the estimator /9V'n. In Section 3.5.3, we are focusing our 

attention in obtaining consistent robust estimators when the variance-covariance 

matrix, V, is non-diagonal, but follows an AR(1) structure.

3.5.1 Diagonal Weights

In the nonlinear model (3.14),

Vi =  hi(fi0) +  Si, for 1 <  i  <  n ,
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Var(et) =  V, where V  is known.

If V  is a diagonal matrix, the model can be expressed as

Vi =  hi(p o) +  cn e lt for l < i < n ,

e* i.i.d, Of >  0. Note that, in this case, y, is a scalar random variable. The above 

model corresponds to a generalized linear model with heteroscedastic errors. 

Standardizing the model, as in (3.15), we obtain

»?= / r o s  „ )+«; .

where y' =  jrM Ai) and 0) =  ± h ,(0 „).
a*1*..

Let /3v,n denote the Wflcoxon estimator for this model.

Now consider the theory outlined in Section 3.4. Here the weight function 

Wij(f30) =  1. Consider the approximate linear model given in (3.17), i.e.

4 w = » : - f ; w + { ^ f : w < , ) } T( 0 - 0 o )  i <«<■».  (3 .2 1 )

â .  arf̂. __
As in Section 3.4, denote the Wilcoxon estimator of model (3.21) by /3„. Then, 

using the results in Section 3.4, we have that

(3.22)
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Using \ / n  consistent estimators of a*, <7,, in standardizing the model, let

f ” ) !  (3-24)
- -* i<j

and denote its minimizer by /9+.

Under certain conditions (see Section 3.5.2), Dixon and McKean (1996) 

have proven that

v ^ ( f „ - / 3 +)A 0 , (3.25)

Therefore, the following Lemma holds

Lem m a 3.5.1.

Vn(0v,n ~  £ +) A o .

Proof. The result is a direct implication of equations (3.22) and (3.25). □

T heorem  3.5 .1 . Under regularity assumptions,

Proof. The result follows from the asymptotic normality of fdVn (3.23) and the 

asymptotic equivalence o f the estimators, proven in Lemma 3.5.1. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



That is, when the errors are independent, with unknown heteroscedastic 

variances, and when a consistent estimator of scale is used in obtaining the robust 

estimator, the estimator is consistent and follows the same asymptotic distribution 

developed for the known variance-covariance matrix.

3.5.2 Issues in Applying Theorem 3.5.1

Our Theorem 3.5.1 serves as a basis for robust inference in the important 

cases where the errors are heteroscedastic but independent. These situations arise 

in practice quite often. The generalized linear models discussed in Section 3.1 are 

of this form. Other examples include conditional models based on most spherical 

multivariate models.

There is one aspect of the Wilcoxon fit that needs to be discussed.

In the nonlinear model, frequently there is no intercept parameter. This is 

always true for our weighted models. For even if there is an intercept parameter 

in the original model, the model that is fitted is the model after division by <xt-, 

which has no intercept.

The Wilcoxon estimate, and R estimates in general, do not fit a no intercept 

model. That is, if the model is of the form

Vi =  +  e*-, 1 <  * <  n , (3.26)

where P does not include an intercept parameter (i.e., 1 is not in the colum n space
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of the design matrix), then R-estimates fit the model

Vi =  (x» — x)'/3 4- e i, 1 <  i  <  n . (3.27)

Dixon and McKean (1996) proposed the following solutions to this problem. 

Instead of fitting model (3.26), fit the model

yi — ocq +  x(-£ +  e*, 1 <  i  <  ti, (3.28)

where qq is an intercept parameter, theoretically equal to 0. Let Y* be the R- 

fit of this model, where the intercept is estimated by the signed-rank location 

estimate based on the residuals yi — x(/3 . Let X  =  [x(] denote the design matrix 

for model (3.26). Let

Y  =  Px Y*t

where for any matrix A, Pa is the projection operator onto the space spanned by

the column of A, and let j3 be the solution to

X 0 =  Y .

Then under the additional assumption of symmetry of the error distribution, The­

orem 3.5.1 holds.

If the assumption of symmetry is unrealistic, then we can proceed by fitting
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the intercept in model (3.28) by the median of the residuals. This affects the 

asymptotic variance of our estimate. By algebraic manipulation, we can show 

that the asymptotic variance is

((X -)r X -)-l (X -)T[(5 ^ 5 y)2P1 +  T2PXj]X - ( P n r X - ) - \  (3-29)

where, for the asymptotic variance of /3n, X* =  V /* (0 O) and X q — X* — X m. In 

the representation (3.29), P represents the projection matrix.

3.5.3 Non-Diagonal Weights

We will focus our attention on obtaining robust estimators, V, of the 

variance-covariance matrix V, when V  has an AR(1) structure.

In many clinical trials, subjects are followed over a period of time and 

the observations on each individual patient compose a time series. For these 

observations assumed to follow an AR(1) structure, V  =  {cry}, where

era =  o"2t and ai3- =  (3.30)

where p is the autocorrelation coefficient.

The present research uses an adaptation of the robust estimate for the 

autocorrelation proposed by Koul and Saleh (1993), as follows.

Assuming that within each subject z, I <  i  <  n, observations follow an autore­
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gressive series of order 1,

Vit =  PVi{t-i) +  ea, 2 <  t  <  p, 

the autoregressive model can be described as a linear model

y t- =  W  +  efl

where yi =  (yi2, y ip)T, Xi =  {yi u . . . .  pi(p_ l))T, and et- iid.

Hence, the estimator pi is the argument which minimizes Y2k<i I6’* — e*r |» where 

eik =  (y*)fc — (x,p-°̂ )jfc, and pf^ an initial estimator.

Since the variance-covariance matrix V  is common for all subjects, the above al­

gorithm is applied for each subject and an overall robust estimate of p is obtained,

p =  median{pu . . . ,  pn},

to be used in standardizing the model (3.14).

Further research is needed in proving a result similar to Theorem 3.5.1 for 

non-diagonal weights, i.e. that the estimators are consistent and have the same 

asymptotic distribution when p is used as an estimator of p.

Terpstra et al. (2001) proposed a weighted rank-based (GR) estimate of p, 

which might provide more protection against points of high leverage. Furthermore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Terpstra et al. (2000) introduced the concept of HBR-estimates, using Schweppe- 

type weights, to autoregressive models.

If the time between measurements is not equally spaced, Diggle (1988) 

proposed an extension to the AR(1) structure of the form

cnj =  o2eah,

where h is the time distance between the two measurements, — tj\.

When the covariance between two observations on the same subjects does 

not depend on the times of measurement but rather on the conditions under which 

the measurements were taken, the variance-covariance structure is assumed to be 

that of compound symmetry. In this case, observations within each patient have 

a variance-covariance matrix of the form

V =  o2Jp +  a^Ip,

where Jp is a p x  p  matrix of 1. That is, measurements within the same subject 

have the same covariance, regardless of how far apart (in time) they were collected. 

More research is needed in obtainingrobust estimators of the compound symmetry 

matrix.
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CHAPTER IV

ASYMPTOTIC TESTS

Although, most of the theory developed for the Generalized Estimation has focused 

on estimation, in practice there is often the case that testing is needed- Often, 

more than one treatment group is being followed over time, for example, and 

differences among treatments (or some other type of contrasts) are subject to 

investigation.

We are developing the testing theory for the Generalized Estimating Equa­

tions, using the robust theory presented in Chapter EH.

4.1 Wald-Type and Score Tests 

In order to test the hypotheses

H0 : vs Ha z 0 ^ 0 o (4.1)

we developed a robust equivalent to Wald’s test.

Since

v 'n fg v , -  ft.) ^  *T»(0 ,

50
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it follows that

0  -/SofK^c-H/Soimic-'OSorH/J - M

asymptotically has a chi-square distribution with p degrees of freedom. 

Let tv be the scale parameter, given by

?■</ =  /  <p(«)¥V(u)»

, , TT—lf \\ »hc.( f fe.L(u))

where h£. is the distribution of the errors, and for our case, the Wilcoxon score 

function, <p(u) =  y/l2(u — £), is used.

Koul, Sievers and McKean (1987) proposed a density-type estimator of r^, 

based on residuals; see details and discussion in Section 3.7 of Hettmansperger 

and McKean (1998). It has been shown that, under regularity conditions, is a 

consistent estimator of scale.

Using calculus manipulations, it is easy to show that
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Then, the Wald’s test F w  , given, by

F w = -  w r ( c ~ 1w m ) c - ‘ w li r l i g  -  ^ 0) ] /p  (4  2)
T2

follows a chi-square distribution, with p degrees of freedom. Small sample studies 

suggest using the F distribution with p and n — p — 1 degrees of freedom as an 

approximation to the asymptotic chi-square distribution.

Similarly, to test the general linear model hypothesis

Ho : M/3 =  0 vs Ha : M/3 ±  0 ,

where M qxp matrix of constraints, one would use the Wald’s test statistic given 

by

 •

The approximate test would be to compute this test with Fw F ( q , n - p -  1) 

critical values.

Another robust test is the rank gradient scores test. This is asymptotically 

equivalent to the Wald’s test described in (4.2) for testing the hypothesis (4.1).

Given the distribution of the gradient in the linear model setting (see 

Hettmansperger and McKean (1998), page 174, for details)

S(/3o) 3 w p(0,nE),
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the test

F„ =  i s O „ ) r S - lS (ft)  (4.3)n

follows a chi-square distribution with p degrees of freedom (unlike the Wald type 

test, there is no natural F-approximation).

If we replace E by anc  ̂S((30) by y/l2(Vf*(fi0))T[H(em) —

|] , (4.3) simplifies to

Fr =  12(£T(e*) -  i  f P W )  -  i ) ,

with P , projection onto the tangent plane, defined as

(V /-^ o )){ (V /* 0 „ ))r (V /*(^0))}-H V /-(/30) r .

4.2 Drop in Dispersion Test 

Recall the linear model in (3.18)

Vi =  (.Xi)TP o »

Since this is a linear model with i-i.d errors, the linear models theory described 

in Chapter 3 of Hettmansperger and McKean (1998) directly applies. Hence, the 

drop in dispersion test for testing the hypotheses introduced in (4.1)

Ho z 0 = 0 o vs Ha z 0 ^ p o
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is given by

where RD =  Sn(/3Q) — Sn{{3), and Sn given in (3.19),

S n (f3 ) = ' ' ' n ' i 1

and Wij(j3^) =  1. The drop in dispersion test follows an asymptotic x2 distribu­

tion, but Hettmansperger and McKean (1998) have shown in small-sample studies 

that it is best to compare Fs  to F critical values with p and n —p — 1 degrees of 

freedom.

The test can be used with the non-weighted dispersion function, and the 

examples in Chapter VI illustrate its applicability when the errors are correlated 

and an estimator of the variance-covariance matrix V  is used in standardizing the 

model.

4.3 Testing for Different Link Functions

Although, often, the link function is known from historical research, it is 

interesting to develop a test of accuracy of the link- function. In many instances, 

the general family of the link function is known, but choosing among members 

of that family is a task many times left on the hands of the clinician, not the 

statistician.
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Using the previous notation, testing for a link function can be written as

H0 : h(/3) =  ho(/3) vs Ha : h ( 0 ) ^ h o(0), (4.5)

where h(/3) and h0(f3) are different link functions.

Notice that (4.5) can be written as

H0 t d ( p ) =  0 vs Ha : d(J3) ^  0, 

where d(0) =  h(0) -  ho(P), d : *RP -)> ft*.

Under this setup, (4.5) will be tested using a Wald-type test derived in a 

similar fashion as (4.2), i.e.,

F w  =  (4_6)

where is the jacobian matrix of d.

Thus an approximate size a  test for d((3) =  0 is

<KF) =
1 X F > F Z n_p_  L
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4.4 Discussion

There has been extensive discussions in the literature regarding GLM and 

the interpretation of the tests for the standardized model. That is, if the model 

is of the form

Y  =  X 0 + e .

Var(e) =  V, should we regress Y* on X*, or should we use the original design 

matrix and regress Y* on X? Here, Y* and X* correspond to the standardized 

model, Y* =  V '* Y ,  and X* =  V ~ ix .

In simulation studies using the multiple sclerosis data, we found the two 

methods to be similar (see Table 2 ), and we have chosen to present the results 

for the fully standardized model (regressing Y* on X*) for the remainder of this 

study. Details of the simulation study are presented in Section 6.1.2.

Table 2

Wilcoxon Tests: Standardized vs. Non-standardized Design Matrix

Wilcoxon: Test F test, using X* F test, using X
Equal intercepts and slopes 9.0328 9.6237
Equal intercepts 1.9784 1.7428
Equal slopes 1.5982 1.4456
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CHAPTER V

DIAGNOSTICS

An important part of the analysis is the examination of the fitted values. Besides 

residual plots, overall and at each, time point, another useful tool are diagnostic 

techniques. We are focusing on diagnostic techniques that detect outlying cases 

and influential subjects.

5.1 Asymptotic Representation of fiVn

As shown in Theorem 3.4.7, the asymptotic distribution of the estimator 

is given by

Since S(/30)-+Np(Q,nE), let the following be the asymptotic representation of

-  M  =  - j L - { C - L ( 0 o)V<j3<>)C-'-fJ>o) } i x ?  (5.1)

where E =  U n w , ,

and S(3„) =  v'T2(V/-(/30))r {ir[y i  -  (V /* 0 » ))f t  1 “  k b

57
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Using SN1 and SN8 , (5.1) simplifies further to

= ^ -{n ‘Ĉ 1(̂ o)n-!,V.(J8o)Ĉ 10So)}4s-i^ i +o„(l)

Denote B  =  n C - l {/3Q)Vn(p0)C - l (PQ). Then

X (Vr(A))r{H[yi -  7f(AWJ -  i} + Op(l)
=  T -l (S )i{ (V r(i8 o ))r (V r(/3 l)))} -* x

x ( v n M f m y 1- -  v r & M  -  5 } +«*( i )

Note that in a neighborhood of /30, i?[yL — V /* (/30)/30] is approximately 

equal to H(e*).

Hence,

= a , + :C (B )^ { (v r (^ o ))T( v r ( /3 0) )} - ’ xy/Tl

x  (V /*(ft,))T[ff(e*) -  i ]  +  <*(n-i) (5.2)

In order to obtain the asymptotic representation of y*, a Taylor expansion 

for /*(/3), about j30, will be used.

m = rip 0)+(vr 03o))r(/3 -  ao+a.,
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where Rn 0 as n —* oc.

Then the predicted values , y*, can be expressed as

y' =  r ( 0 v.n) 

= rO».) +  CVr <fit ))T<fiv„ -  A>) +  Rn,

where Rn —y 0 as n —► oc.

Define

P‘  =  2^ (V /- ( /9 0) ) ( S ) i{ ( V /- ( ^ ) ) r (V rG 9 „ ))} - i(V /-(A ))1-y/n

and

p  = (vr(^ )){(vrc30))T(vr(/3o))rl(vr(iSo))r

Using 5.2, It follows that

y- =  /*O o) +  P W )  -  | ]  +  Optn-i) (5.3)

Since e* =  y* — y*T it follows that the asymptotic representation of the 

residual is

«• =  tT0»o) + e ‘) -  i r m  +  P “[ff(e ') -  | l )

=  e- -  F*[H (e') -  | j  +- (5 .4 )
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Suppose the true model is

y * = r ( / 3)+<7(A)+e* 

but instead, the following model is being fit

y ' = r w  + f

= r(/3o)+(V.T(A,))T(/?-/3o)+'!'. (5.5)

Under this misspecified model, the asymptotic representation of 0 Vn is

3 V,„  =  0, + ^ ( B ) H ( V r ( ^ o ) ) r ( V / * ( f t ) ) } - i ( V r ( 3 o ) ) T ( H ( e ' )  -  f ]

+  { (V /’ (^o)F (V r(/3o))}‘ , ( V r ( A ) ) Ts(A) +  or(n - i )  (5.6)

Note that the asymptotic representation of the Wilcoxon estimator differs 

from that of the LS estimator only in using a bounded function of the residuals, 

ff(e*) - 1
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5.2 Standardized Residuals

Prom the asymptotic representation of the estimator we obtain the first- 

order expressions of the residuals and fitted values.

r  =  r (/So) +  P“[ff(e') -  i ]  +  P g W  +  or(.n-i) (5.7)
A

=  V ( M  +  9(A) +  e") -  (/*(/3„) +  P“[H(e') -  i ]  +  Pj(A))

=  «• -  P*[ff(e*) -  i ]  +  (7 -  P)j(A) + o p(n“a) (5.8)

Note that the residuals have the expected asymptotic bias, (I — P)g(A). 

In order to obtain the standardized residuals, the variance-covariance ma­

trix of the residual in (5.4) will be computed. Note that

E(e') =  E(e‘ -  P*[P(e”) -  |])  (5.9)

=  E(e*)
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It follows that

Cov(e*) =  E[(e* -  E(e*))[(e* -  E(e*))T] (5.10)

=  E[((e* -  E(e*)) -  P “(tf(e) -  |))((e*  -  E(e*)) -  P “(ff(e*) -  i ) ) T]

=  Cov(e*) -  2P“E[((e* -  E(e*))(P(e*) -  i ) T] +  P “Cov(P(e*))(Pa)T

=  E  -  25P a -  — P a(P a)T,
12

where 5 =  E[e*(P"(e*) — j)r ].

For diagnostics,we will use the standardized residuals, defined as

rit = ---- ^ ----  (5.11)
Var= (e*t)

We will declare a case a potential outlier if the absolute value of the stan­

dardized residual is greater than 2.

yn potential outlier if |r,-f| >  2.

5.3 Influential Subjects

Other statistics used with Least Squares methods in determining influen­

tial observations are Cook’s (1977) measure (the change in fitted, values when 

observations from one individual, jt, are removed) and the DBETAS proposed by 

Belsley et aL (1980) (the change in the estimator values when observations from
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one individual, yi, are removed).

We are extending Belsley's measure to the robust estimator and look at 

influential subjects, as opposed to influential cases. The method is necessary 

when one identifies from profile plots that the observations from one subject are 

substantially different from the other subjects in the study. In that case, a qq-plot 

(or residual plot) of overall residuals is not helpful, since the repeated observations 

for that subject might all lie in the tail of the distribution, suggesting an overall 

poor fit. Instead, a better plotting approach is creating residual plots stratified 

by time points.

Since influential points don't necessarily have large residuals and points 

with large residuals are not necessarily influential, Belsley’s statistics looks at the 

change in the estimator values when observations from one individual, y,, are 

removed, as a measure of the effect of yt-.

W D B E T A i  — ^ v,n ~  l (£v;n)) H ffv.n. ~  &V,n)

f 2 ~

with C, V, and f  introduced in Chapter IV, and f3Vn the robust Wilcoxon esti­

mator when observations for subject yi are removed from the model.

In order to declare a subject to be influential, W D B E T A i  will be compared 

to F(ptn — p — 1).

An analogous method o f identifying influential subjects is the jack-knife 

or cross-validatory residual, which fits the model excluding subject yi7 and stan-
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daxdizes the residuals using the fits and standard deviations based on this reduced 

model. However, it is easy to show that the jack-knife is a monotone function of 

the standardized residuals, and it will not be pursued any further in this study.
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CHAPTER VI

EXAMPLES AND SIMULATION RESULTS

6.1 Multiple Sclerosis Example

6.1.1 Estimation and Testing

Going back to the motivating example introduced in Section 1.2, the mea­

sure of change within patient is the log relative burden, the logarithm of the ratio 

of the area of the brain impacted by Multiple Sclerosis at a given time to the 

area impacted by the disease at baseline. For modeling, the variance-covariance 

matrix of within patient observations are assumed to follow an AR(1) structure. 

In addition, no Wilcoxon weights will be used (i.e., u/,3- =  1). Only 44 patients 

with complete records will be used for our analysis.

The autocorrelation coefficient is estimated using the robust procedure 

to be 0.28037, coming close to the LS estimator of .23472, with individual AR 

coefficients ranging from -.347 to .916.

Outliers are present in the placebo group, at time point 6, and in the low 

dose group, at time 15 (see Figure 2). If the outlying points are ignored, the slopes 

and the intercepts for the three treatment groups seem to be equal.

The q-q plots for data (Figure 3), by treatment group, flag the above

65
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Figure 2. Profile Plots of Log-Transformed Multiple Sclerosis Data

Figure 3. Q-Q Plots of Log-Transformed Multiple Sclerosis Data, by Group

mentioned observations in the placebo and low-dose group as outliers, while the 

high-dose group follows a short-tailed distribution.

Fitting a model of different intercept and different slopes for the three 

treatment groups, the Wilcoxon and Least Squares estimators introduced in Chap­

ters II and III differ, as expected, for the skewed groups (placebo and low dose) 

(Table 3).
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Table 3

Wilcoxon. Estimates Versus LS Estimates (Multiple Sclerosis Data)

Group Estimator Wilcoxon Least Squares
Placebo Intercept -.00542 (.03372) .02956 (.04884)

Slope .01957 (.00326) .02449 (.00473)
Low dose Intercept .00817 (.04936) .00851 (.0715)

Slope -.00631 (.00477) -.0161 (.00692)
High Dose Intercept -.0788 (.04936) -.11268 (.0715)

Slope -.00745 (.00477) -.01303 (.00692)
Overall P .28037 .23472

Scale f  =  1.80657 a  =  1.48336

Testing different models, for equal intercepts and slopes, equal intercepts 

and then equal slopes, as expected, Least Squares comes closer than Wilcoxon to 

declaring the three treatment slopes to be significantly different (Table 4).

Table 4

Wilcoxon Tests Versus LS Tests (Multiple Sclerosis Data)

Wilcoxon: Test DF F test p-value
Equal intercepts and slopes (4,741) 9.765 <  .001
Equal intercepts (2,741) 1.9784 .278
Equal slopes (2,741) 1.5982 .406
LS : Test DF F test p-value
Equal intercepts and slopes (4,742) 12.4976 <  .001
Equal intercepts (2,742) 1.7084 .3638
Equal slopes (2,742) 3.1127 .0902

Q-q plots o f the standardized robust residuals (Figure 4) are comparable to
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Figure 4. Residual Plots for Multiple Sclerosis Data

the standardized least squares residuals. The robust estimators are possibly biased 

due the biasness introduced by the AR(1) parameter estimators (see discussion in 

Section 6.1.2).

6.1.2 Simulation Study

We conducted a small simulation studies to see how liberal the inference 

is for the GEE model with autoregressive correlation structure.

Consider a linear model with time series errors. (In our case, this would be the 

model for one patient).

The following is often called the Prais- Winsten Method.

1. Fit an initial short autoregressive time series.
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2. Estimate autoregressive parameter (for LS):

L
P L S -

3. Transform using p is  as our estimate of p.

4. Refit.

The resulting inference based on the second fit (item 4) is quite liberal; see, studies 

by McKnight et al. (1999) and Huitema et al. (1999).

For example: empirical levels for 4 effects on one such study (n =  30, p =  4, 

AR(1), nominal or =  .05, 5000 simulations) exceed the .05 nominal level even 

when the true parameter, p, is 0. In addition, the departure from the empirical 

level grows with p.

The simulation study (500 simulations) based on the multiple sclerosis data 

has a total sample size of n =748, with p =6. We are assuming that all linear 

model parameters are 0, that the errors are normal and that p E  {0, .95}.

The empirical levels for pairwise slope and intercept differences are pre­

sented in Table 5 and Table 6. Wilcoxon, though liberal, is closer to the nominal 

levels than the LS estimators.
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Table 5

Empirical a  Levels of Slope Effects

Slope Effects, p =  0
Slope(2) — Slope(l) Slope(3) — Slope(l)

a LS wa. LS wa.
0.10 .122 .108 .126 .114
0.05 .064 .058 .068 .060

Slope Effects, p — .95
Slope(2) — Slope(l) Slope(3) — Slope(l)

a LS Wil. LS Wil.
0.10 .260 .240 .246 .218
0.05 .182 .144 .180 .152

Table 6

Empirical a  Levels of Intercept Effects

Intercept (Level) Effects, p =  0
p(2) -  M l) M3) -  Ml)

Ot LS wa. LS wa.
0.10 .120 .104 .120 .134
0.05 .074 .054

00COo

.080
Intercept (Level) E nets, p =  .95
M2) -M l) M3) -  Mi)

a LS wa. LS Wil.
0.10 .436 .404 .394 .398
0.05 .346 .328 .326 .296
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The empirical levels for the same tests described in. Section 6.1.1 are presented in 

Table 7 and Table 8.

Table 7

Empirical Levels: p =  0

Same Model Same Intercepts Same Slopes
a LS Wil. LS Wil. LS Wil.
0.10 .136 .130 .134 .124 .128 .128
0.05 .088 .078 .070 .064 .058 .062

Table 8

Empirical Levels: p =  .95

Same Model Same Intercepts Same Slopes
O' LS Wil. LS Wil. LS Wil.
0.10 .792 .734 .506 .472 .320 .294
0.05 .718 .660 .404 .378 .210 .200

These analyses are somewhat liberal. This is not surprising due to the 

liberalness of the Prais-Winsten procedure on linear models with time series errors. 

As expected, the liberalness seems to grow worse as p increases.
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6.2 Cholesterol Example

The next example consists of cholesterol levels over 10 years for 22 ran­

domly selected individuals from the Framingham study, analyzed by Zhang and 

Davidian (2001). Data is collected at baseline and then at years 2, 4, 6, 8, and 10 

of the study, for a total of 6 time points. Age is a possible covariate for this study, 

and besides changes in cholesterol levels over time, it is of interest to compare 

cholesterol levels and their rate of change between genders.

As with the multiple sclerosis example, it is assumed that the longitudinal 

data is correlated, and that the variance-covariance matrix has an AR(1) struc­

ture. The robust estimate of the autocorrelation coefficient is .2336, while the 

LS estimate is .0852. The difference lies in that the robust estimate is using the 

median of AR coefficients obtained from individual subjects, while the LS is using 

the mean of the same estimators. When investigated, the distribution of the 22 

AR estimators appears to be negatively skewed, with a range from -.9310 to .7222.

Plots of the data by time point (Figure 5) and the qqplots by time point 

(Figure 6) indicate that the data is positively skewed, with subject number 19 

having significantly higher measurements at all time points.
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Figure 5. Scatter Plots for Cholesterol Data, by Time
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Figure 6. Q-Q Plots for Cholesterol Data, by Time
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The Wilcoxon estimators are close to their Least Square counterparts (see 

Table 9), but their standard errors are consistently smaller. For this model, the 

Wilcoxon test flags a significant difference between genders (F test is 18.8739, 

with a p-value <  .0001, when compared to F critical values of 1 and 128 degrees 

of freedom), and similar result for the LS testing (F test =  18.0508, p< .0001).

To test the robustness of the estimator, the baseline observation of the 

first subject was changed by a magnitude of 1. The Wilcoxon estimators were 

robust to this change, while the LS estimators were greatly influenced by it (see 

Table 10). In addition, while the Wilcoxon test of gender differences remained 

significant (F =  17.6357, p< .0001), the LS p-value changed from <  .0001 to .6883 

(F =  0.1671).

Table 9

Wilcoxon Estimates Versus LS Estimates (Cholesterol Data)

Estimator Wilcoxon Least Squares
Intercept 119.301 (8.29945) 118.849 (26.1041)
Gender Slope -35.8443 (2.44994) -32.7388 (7.70576)
Age Slope 3.3273 (.19715) 3.395 (.62009)
P .2336 .0852
Scale f  =  5.43807 <r =  3.00122

We noted in the beginning of the example that subject 19 seems to con­

sistently have higher measurement than the other subjects. Ik order to analyze 

whether subject 19 is influential, the model was refit with 21 subjects (eliminating
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Table 10

Wilcoxon Estimates Versus LS Estimates (Stressed Cholesterol Data)

Estimator Wilcoxon Least Squares
Intercept 125.859 (4.62625) 246.880 (89.6751)
Gender Slope -34.5544 (1.36563) -10.6377 (26.4715)
Age Slope 3.1938 (.10989) .2734 (2.1302)
P .1319 .0691
Scale f  =  5.8333 a  =  10.4713

all measurements collected on subject 19). The estimators for this reduced model 

were substantially different from the original estimators (see Table 11).

Table 11

Wilcoxon Estimates for Pull Model Versus Model Excluding Subject 19

Estimator Full Model Excluding Subject 19
Intercept 119.301 (8.29945) 174.295 (29.1645)
Gender Slope -35.8443 (2.44994) -24.4925 (7.9622)
Age Slope 3.3273 (.19715) 1.6699 (.7287)
P .2336 .2941
Scale f  =  5.43807 a  =  5.1807

The robust measure described in Section 5.3 flags subject 19 as being in­

fluential,

W D B E TA 19 =  4.0776, p =  .0084.

However, it is not our recommendation to delete this subject but, instead, to

i
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further investigate the reason for its apparent abnormal values.
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CHAPTER VII

CONCLUSION

The present thesis extends the theory of robust analyses for linear and nonlinear 

models to the Generalized Estimating Equations models.

Models can be linear or non-linear (e.g. Michaelis-Manten or Bateman 

relations for pharmacokinetic data) and computation can be handled by Gauss- 

Newton type algorithms.

The robust estimator, presented in Chapter HI, based on the weighted 

Wilcoxon dispersion function, exists, is consistent and follows an asymptotically 

normal distribution. For the heteroscedastidtv problem, where the errors are 

independent but have non-constant variances, we show that these robust estimates 

retain their consistency and asymptotic normality provided scale is consistently 

estimated. We have also investigated different covariance structures and provided 

estimation details for the AR(1) structure.

The asymptotic tests derived in Chapter IV were: the quadratic form-based 

Wald test for testing generalized linear model hypothesis, the gradient scores test 

and the drop in dispersion test. A test for different link functions is also derived.

In Chapter V, a check for outliers, based on the standardized residuals, 

was developed, using the asymptotic representation of the estimator. La addition,
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influential subjects are detected using a generalized Belsley’s approach.

In Chapter VI real-data examples illustrated the estimator and the new 

testing techniques. The cholesterol example further proved the robustness of the 

Wilcoxon. estimator when the data is stressed, in the presence of an outlier. The 

new method of detecting influential subjects is also put in practice with the choles­

terol example, and one subject, suspected to be influential from the qqplots, is 

deemed to be influential by the WDBETA statistic.

The simulation results based on a multiple sclerosis example proved that 

the analyses based on the robust GEE are somewhat liberal. This is not surprising 

due to the liberalness of the Prais-Winsten procedure on linear model with time 

series errors. As with this simpler model, the liberalness seems to grow worse as 

p increases.

For the simpler model, McKnight et al. (1999) proposed a double bootstrap pro­

cedure which led to reasonable empirical a  levels and empirical confidences, in 

general quite close to nominal. This procedure combines a Durbin two-stage esti­

mation procedure with a bootstrap designed to estimate the bias in the estimate 

of the autoregressive parameters.

We intend to consider this bootstrap procedure in future research.

More research is needed in obtaining consistent robust estimates of the 

variance-covariance matrix, when it does not follow an AR(1) structure, but, for 

example, a compound symmetry or exchangeable structure. When these consis-
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tent estimates of the variance-covariance matrix are used, more research is needed 

in showing that the parameter estimators are consistent and follow an asymptotic 

normal distribution.
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