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DEVELOPMENT OF AN INTEGRATED SENSOR FOR THE
MEASUREMENT OF THE ACOUSTIC LOCAL VOLUME
DISPLACEMENT OF VIBRATING BEAMS
Randall Rozema, M.S.E.

Western Michigan University, 2001

Currently, the methods used for sensing the volume displacement of a
vibrating structure entail the use of a polyvinylidene fluoride sensor that spans the
entire length of the structure. However, this work shows that the surface behavior
related to volume displacement can be measured through the use of a polyvinylidene
fluoride sensor that spans only the area of interest. In this application it was shown
that two-point sensors are required in addition to the distributed, polyvinylidene
fluoride sensor to achieve an accurate measurement. Asaresult, a set of four beams
with different end conditions were constructed so that the localized sensors developed
could be examined. In designing the localized surface sensors, the polyvinylidene
fluoride surface sensor shape was devel oped, the sensor shapes necessary to measure
alocalized area of interest were determined, the sensors were constructed, and
subsequently, they were tested using a test fixture constructed for this specific
purpose. Finaly, acomparison between the theoretical and actual measured values
was completed so as to determine the accuracy of these sensors. From the
comparison it was discovered that the localized sensors devel oped were sufficiently
accurate for sensing the volume displacement of the vibrating beam with minor

variations.
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INTRODUCTION

The foundation of this research is based on common active noise control
methods that are in practice, where active control can be defined as the
implementation of a secondary control actuator to reduce the sound power radiated
from a structure. In this active control process a method for sensing the undesired
sound or vibration is required to send asignal to a controller, which then drives a
secondary control actuator. The secondary wave generated by the control actuator in
turn cancels the undesired disturbance resulting in the reduction of unwanted noise or
vibration. It is possible to achieve active control systems that affect alarge
surrounding area (global area) and are effective for a broad range of frequencies.
However, these systems require that multiple sensors and multiple actuators be used
in conjunction with a complex multi-input, multi-output controller for controlling
undesired disturbances. The advantage to this method of control is that only one
control device (be it complex) isrequired to affect awide area. However, the
disadvantages are that this type of a system is complex to implement and, as aresult,
are not cost effective.

Due to the complexity of such control systems, it is desired to devise an active
control system which focuses on the reduction of broad band sound or vibration at a
localized area. This method of control would entail asingle localized sensor for
sensing the disturbance at a desired location. In addition to the single sensor, asingle
cancellation device or secondary control actuator will be required. Both the sensor

and cancellation device are connected through the implementation of a simple single-



input single-output controller. Figure 1 shows a schematic representation of the
desired control system. Thistype of control system is advantageous because a
simplified controller will be more cost effective and easier to implement. However,
the desired control system will be limited in its frequency range and the cancellation
area over which the controller is effective. As such, multiple single-input, single-
output control systemswill be required to reduce unwanted disturbances over alarge

area (global areq).

Micrﬂp}iﬂﬂe‘

Analyais computer

Controller 1

Figure 1. Two Single-Input Single-Output Control Systems.

In the devel opment of a single-input single-output control system many
components need to be researched and developed. These componentsinclude the
sensor, controller, and cancellation device. Thus, the focus of the remainder of this
research is on the development of single localized sensors. The final goal of this
research isto develop alocalized surface sensor which spans and measures the
volume displacement of a specific area of interest on the surface of avibrating

structure.



CHAPTERI

REVIEW OF RELEVANT LITERATURE

One of the means of achieving noise control is to reduce the sound radiated
from vibrating structures. Through an understanding of volume displacement and
methods of controlling it, the desired sound reduction may be possible. The volume
displacement is a measure of the total volume of air displaced as the result of surface
vibrations. Simply stated, it is the displacement of the structure integrated over its
surface. However, it isassumed that structures vibrate in a harmonic motion, and
therefore, the volume displacement and the volume velocity of the structure are
directly related. The volume velocity is proportional to the total sound power radiated
from the structure at low frequencies (Rex, 1991). Therefore, at low frequencies, by
reducing the volume velocity or volume displacement, it is possible to reduce the total
sound power radiated from avibrating structure. A flow chart of possible sound
power reduction methods can be seen in Figure 2.

The sound power can be controlled in one of two ways. The first method is
through passive control. In this application, passive control would reduce the sound
power radiated from a structure by altering the dynamic properties of the structure
through adding absorbing materials or by isolating the structure from its source of
excitation. The other method of control, which is preferred at lower frequencies, is
referred to as active control. Active control relies on the implementation of secondary

control actuators that can be used for reducing the sound power radiated (Johnson &



Elliott, 1995). A recent publication by Zahui, Kamman, and Naghshineh (2001b)
presented an example of active control in which the sound power of a beam was
reduced through the use of acoustic actuators. The acoustic actuators were used to
control the local volume displacement of a clamped vibrating beam.

In order for active control to be successful, effective implementation of three
components are necessary as shown in Figure 2. These are a sensor, a controller, and
an actuator. The sensor must be a structural sensor that informs the controller how
and when to activate a secondary actuator. Therefore, in the case of a vibrating beam,
the structure has to be outfitted with vibrational surface sensors. The vibrational
sensors can be either point sensors or continuous sensors. An example of atypical
point sensor is an accelerometer which is used to measure the vibration of asingle
point on astructure. However, a point sensor is not typically desired as multiple
accelerometers would be required to measure the vibration of a surface, thereby
adding to the complexity of the control system. In contrast, a continuous sensor is a
sensor that spans over a section of a structural surface. Recently, continuous sensors
used for measuring surface vibrations were formed from piezoel ectric materials.
Such sensors can be used as either alocal (measuring over limited segment of a
structural surface of interest) or aglobal sensor (measuring over the entire structural
surface of interest), asthe flow chart in Figure 2 demonstrates. For the
implementation of alocal sensor, the structure would have to be divided into finite
sections. To confirm that the local sensors are measuring the surface movement

properly, a summation of local



Sound Power Reduction Methods

Active Passive
Control Control

'

Sensor > Controller > Actuator

i L

Point Continuous Becomes simple Structural Acoustical
Sensor Sensor once a single sensor Actuators Actuators
(accel erometer) (PVDF) and single actuator (Loudspeaker)
/ \are implemented
Global Local
Sensor Sensor

v

Experimental > Baffled > Beam > Plate
Platforms Piston

Figure 2. Sound Power Reduction Methods.

sensor measurements would be required. The summation would then yield the same
values as atotal or aglobal sensor measurement. Additionally, each finite structural
segment would require its own sensor and controller. On the other hand, a global
sensor would cover an entire structure with one continuous sensor and only require
one controller. However, the drawback to the global sensor is that the entire structure
isbeing controlled. This can be undesirable as at higher frequencies where the

structural wavelength is smaller and the sound that is radiated may be coming from



many isolated smaller portions of the total structure. Thus, it is more desirable to use
alocal sensing method (multiple local sensors).

The research of Guigou et al. (1994 & 1996), Johnson and Elliott (1995),
Naghshineh et al. (1998), and Zahui et al. (2001a) has demonstrated that the theory of
controlling volume velocity to minimize radiated sound power has been tested in
severa applications. Some of the applications in which this theory has been applied
are with a baffled piston, a vibrating beam, and a vibrating plate. However, in these
applications, many assumptions are made, therefore, many variations are possible.
Thus, examples of the sensors that can be used in these different applications were
examined.

Baffled Piston

The first structure considered was a baffled piston. The baffled piston
(uniformly vibrating circular disk surrounded by an infinite, rigid baffle) isasimple
structure for which the theory and equations are readily available for analysis. In
research presented by Naghshineh et al. (1998), the theory examined included the
reduction of noise through the utilization of a noise-control device that acts over the
surface of aradiating disk. In this application the device is controlled as the result of
amotion sensor (an accelerometer) that informs the system when to be activated. An
example of the system can be seen in Figure 3, where avibrating disk is controlled by

aloudspeaker placed near its center.



VIBRATING
LOUDSPEAKER
ENCLOSURE AREA

CONTRQL
ELECTRONIKCS

Figure 3. Vibrating Disk Noise-Control System.

The theory behind such a system is best described as a baffled piston of radius
a, containing a noise-control device of radius a;, which acts asan inner piston. A
diagram of a baffled piston model can be seen in Figure 4. The idea behind such an
apparatus is that the inner piston will vibrate at a velocity such that the total sound
radiated from the system will be minimized. A theoretical prediction for the radiation
from such an apparatus can be represented by the following equation as presented by

Junger and Feit (1993) as.

p(r.6) =

2

ikoce™ B, J,(ka,sing) ‘v 0, Jy(kasnd , J,(kasing [H 1)
r " kasing 5 kasing kasnd [

where E)(r,e) isthe radiated pressure; r and 6 are the coordinates of the observation

point (Figure 4); \:1 and vA2 are the inner piston and outer ring surface velocities,

respectively; k isthe acoustic wave number; p isthe air density; and c is the speed of
sound through air. After smplification it is found that in order for the inner piston to

cancel the outer ring, the velocity profile for the piston must be represented as:

\:1 = —\;2(%), (2)

where A; and A; are the areas of the inner piston and the outer ring.

7



[: Baffled ring (radiusas,, vclocxty V)
4 Inner piston (radiusa, velocity v )

Observation point
a poin

>a

Figure 4. Schematic of a Piston Ring Setup.

Naghshineh et al. (1998) tested the system’ s performance by recording the
output with a series of microphones located at many points. These measurements
included both conditions when the control system was turned on and when it was
turned off. Figure 5 shows the location of these measurements in the experimental
setup. From the data collected, two plots were created which show the sound level
reductions achieved. Thefirst set of data was measured one meter away from the
plate in 15 degree increments. This data can be seen in Figure 6, and shows that when
the noise-control system is activated, a reduction of up to 20 dB can be achieved for a
frequency range of 50- to 500-Hz. The next set of data displayed accounted for the
system performance as a function of microphone angle. Figure 7 shows that the
system consistently reduced the sound pressure level by 10 to 13 dB over all angles
examined. Asaresult of these experiments, it was concluded that the new system for
reducing the sound power radiated from a baffled piston was effective within a 50- to
100-Hz frequency band. However, in the area near the loudspeaker, the reduction was

minimal since it was the dominant noise source.
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Figure 5. Experimental Setup and Location of Measurement Points.
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Figure 6. Sound Pressure Level Reduction Achieved as a Function of Frequency.
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Figure 7. Sound Pressure Level Reduction Achieved as a Function of Angle.

Vibrating Beam

Since the baffled piston was a simple, uniformly vibrating system, the next
step in progression was to study a beam that is a one-dimensional, non-uniformly

vibrating system. Research has been completed in which the sound power radiated

9



from avibrating beam was reduced (Zahui et al. 2001b). Unlike the baffled piston for
which a single accelerometer served as an effective motion sensor, the vibrating beam
experiments utilized a PolyVinyliDene Fluoride (PVDF) sensor. The PVDF on the
beam was used to sense the beam’ s volume displacement and to provide the controller
with the necessary information to excite the secondary actuators, thereby reducing the
emitted sound power. This process could be thought of as the second generation of
volume displacement control.

One method of control presented by Zahui et al. (2001b) implements
loudspeakers as secondary actuators. In this application each loudspeaker reduces the
local volume displacement of the nearby section of the vibrating structure. By
reducing the volume displacement of the beam locally at multiple sections, the ability
of the entire structure to radiate sound is reduced. In thisexample Zahui et al.

(2001b) used a clamped-clamped aluminum beam vibrating non-uniformly. The
vibration was aresult of the beam being driven by a shaker, which was monitored by
aforce sensor mounted between the shaker and beam. The radiated sound pressure
was then measured with a microphone placed above the beam. It was assumed that a
reduction in overall sound power resulting from a minimization of the overall volume
displacement could be sensed by measurements of the reduction in the sound pressure
level radiated from the beam at multiple points surrounding the beam. Figure 8

shows the experimental setup used to verify that the sound power was reduced.
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Figure 8. Concept Illustration of the Experimental Implementation of Active Control
Using this Methodol ogy.

Zahui et a. (2001a) continued to examine the use of local sensors since PVDF
has the ability to sense changesin strain only. In designing the local sensors, it was
noted that at least one non-vibrating beam boundary condition had to be included in
the area covered by the PVDF. In other words, the sensor had to span the entire
length of the beam and include a fixed or hinged boundary condition. With thisin
mind, a closer examination of the development of a sensor for any arbitrary portion of
abeam was completed. The beam of interest spanned arangefromx=0tox =1, and
the section of interest was contained within that length and ranged fromx=atox = c.

Figure 9 shows an illustration of how the beam was segmented.

1 2 3
I |
—>, | ;
x=0 x=a x=c x=¢

Figure 9. Beam to Be Examined With Section of Interest Shaded.
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To account for the beam essentially being broken into three sections, the
charge generated from the PV DF sensor will have to be calculated in three sections.
The total electrical charge for the PVDF in this case becomes the sum of al the

sections calculated. When written in its equation form, it appears as follows:

q=0,+0,+0s, ©)
where the subscripts refer to the sensor segment over sections 1,2, and3 (0<x<a, a
< X<, c<x<|), respectively. Therefore, the general form of the equations for

determining the sensor shape are as follows:

.= e+ IR @7 (@ F@2(@)] R OZ0 - F 020 + [R (02000, (4)

6 =-eu(h + VR0 - ©Z0] [ @) - F @2+ [F (026040, (4b)
and
|
& = -2l +ROZ0 - R OZ0] RO © -2 + [ (02000, (40)

where F1(X), F2(X), and F3(x) describe the sensor shape over sections 1, 2, and 3,
respectively. Since the area of interest for sensingisintherangea<x<c, F"(x) and
F,"(x) are set equal to zero (straight line) such that F,(x) isthe only portion of the

sensor measuring the strain in the beam. Imposing the continuity of shape and slope,

arelationship between these functionsis formed as follows:

F.(a) = F,(a), (5a)
F'(a) = F,'(a), (5b)
F,(c) = F;(c), and (5¢0)
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F,'(c) = K'(c). (5d)
Considering that F»(x) isthe only section of the sensor being used to measure the

volume displacement the three sensor shape functions that comprise the entire sensor

shape can take the form of:
Fi(X) = Ax + By, (69)
Fo(X) = k¢ + Ax + By, and (6b)
Fa(x) = Asx + Bs, (60)

such that through combinations of boundary conditions as specified by various beam
mountings, the constants Ay, By, A2, Bz, Ag, B3, and k can be found and the sensor
shape determined. Due to the large degree of freedom in this problem, there are many
possible solutions that satisfy the sensor shape constraints. Figure 10 shows an
example of some of the possible sensor shapes for a clamped-clamped end condition
when the sensor is calculated in three segments similar to the conditions that the
above equations describe. Similarly, Figure 11 shows the sensor shapes for a
clamped-simply supported beam. Clearly, it is observed that the development of
sensors for measuring the volume displacement of alocal areaon avibrating beam is

possible.
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Figure 10. Possible Clamped-Clamped Beam Sensor Shapes
(The solid line represents area whose volume displacement is to be monitored).
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Figure 11. Possible Clamped-Simply Supported Beam Sensor Shapes
(The solid line represents area whose volume displacement is to be monitored).
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Vibrating Plate

The next, more complex application in which surface sensors can be used to
sense and potentially be used to reduce the sound power emitted is a vibrating
rectangular plate. Like the vibrating beam, a PV DF film can be used to create the
surface sensors instead of using multiple point sensors such as accelerometers. The
plateis very similar to the beam except that there are two directions in which the
sensors span. That is, instead of just spanning in the x direction, the sensor now has
to span in both the x and the y directions. An example of this concept was given by

Charette et al. (1998) as shown in Figure 12.

Plate surface

Y
A

»X

Figure 12. Sensors on a Plate in the x and y Directions (Charett et a. 1998).

One example of PVDF implementation on a plate was presented by Johnson
and Elliott (1995). In this example afixed plate was used and the general charge
eguation was presented as.

lylx

— (- 0 0°Z(xy) , ., 9°Z(xy)U
q= !-! hF (X1 y) %ﬂ axz + %2 ayz ngy’ (7)
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where g isthe total charge of the film, h isthe film-neutral axis separation, F(x,y) is

the sensor shape of the film, e3; and es; are piezoelectric constants, z(x,y) are the

are due

2 2
transverse displacement (i.e., deflections) of the plate, and 2 Zai); y) 9 Za;); Y)
to the strain caused by the bending in the plate. This equation can be broken into two
components, one describing the x direction and the other describing the y direction

such that g = gx + g, where:

Iylx

9%Z(x,
a.= [[-rFexe, 2O axy ®
lylx 2
0°Z(X,
and q, = -! -hF(x,y)e, 65/); y) dxdy . 9)

After some mathematical manipulation, Johnson and Elliott (1995) showed that the
sensor output charge in the x direction is proportional to the integrated displacement

of the surface as represented by

lylx

0, = Zh%l_[ Z(x,y)dxdy —heyl,[Z(l,,y) + Z(0,y)]dy (10)

It is recognized next that the output due to bending in the y direction needs to be zero;

therefore, EQ. (9) is manipulated to become a function of the x direction as follows:

N @zZ(x,]
qy=—h%2! FD S; y)—"’zg'o’éux. (11)

Since the plate has fixed edges, the deflections at y=0 and at y=I, will equal zero, and
thus, gy will equal to zero aswell. Therefore, the total charge output from the sensor

will equal gy, which will represent the volume displacement of the entire plate.
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Figure 13 shows how the sensor may be distributed on the surface of the plate.
Consequently, this example showed how the sensor distribution might vary from one
application to another. Likewise, it shows that there is more that one possible
solution to the problem of measuring the volume displacement of a plate, asthe
sensor configurations in Figures 12 and 13, even though very different, still measure

the same surface behavior.

uadratic
h{"l'l'--'lrl'n]['!.'

Constant sensilivily

Figure 13. Possible Sensor Distribution on the Surface of a Plate (Johnson & Elliott,
1995).

Piezoel ectric Sensing Material

As mentioned, vibrational sensors can be constructed from piezoelectric
materials to sense the movement of a surface. Piezoelectric materials also maintain
the ability to change their dimensions when subjected to an electrical field (Johnson &
Elliott, 1993). With the ability to change dimensions under electrical fluctuations,
piezoel ectric materials can be used as actuation device in addition to sensing

applications. In applications where vibrations of alarge surface or portions of alarge
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surface need to be sensed, the desired material is PolyVinyliDene Fluoride (PVDF).
PVDF is constructed in the form of a multi-layer polymeric film that can be shaped
for use as agiven application requires. Additionally, PVDF is astrain-sensitive
material, and therefore, it is capable of providing the user with alocal strain
measurement (Zahui et al., 2001a). The PV DF senses strain in the material and
produces an electrical charge potential to thisstrain. Thus, if such a sensor is bonded
to atest structure, it can measure its strain over the portion of the structural surface
covered by PVDF. Since an applied strain produces an electrical charge, it should be
noted that the PV DF exhibits a characteristic of polarity. In addition to measuring the
magnitude of strain applied, the direction of the movement can be sensed. Another
advantage to using PVDF isthat it provides the user with a distributed sensor for
which spatial filtering techniques can be applied by tailoring the sensor shape
(Chartette et a., 1998). In other words, the sensor can be formed to the optimal shape
for the application in which it will be used.

The general equation for the charge generated by a PV DF sensor is used to
determine the sensor shape. This equation varies depending on the PVDF application
and assumptions made. From Zahui et al. (2001a), an example of an equation used

for a PVDF sensor in one dimension is given as.
|
a=~(h, +h)ea[F()Z"(xdx, (12)
0

where q isthe PVDF charge, h, and hs are the beam and the PV DF sensor thicknesses,

e31 Isthe PVDF sensor stress/charge coefficient, z"(x) isthe second derivative of the
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displacement field z(x) , and F(x) represents the function describing the shape of the

PVDF sensor. Then, through integration by parts, the equation takes the form:
' 0
q=-ey(h, + hs)gF(l)Z'(l) -FOzO]-FOZO-FOZO] + [Fezeea.  (13)

It isfound that if the function F(x) takes the form of a quadratic equation such as:
F(X) =kX* + Ax+B, (14

wherek , A, and B are unknown coefficients, then the integral can be simplified as:
| |
{F"(X)Z(x)dx = E{Z(x)dx = E(%). (15)

In the above equation, b represents the beam width and D the total volume
displacement of the beam. Solving for the constants <, A, and B in Eq. 14 yields a
total sensor shape F(x), which can be fabricated. This can be tricky asthe PVDF is
sensitive enough that the slightest error in sensor construction can introduce
significant errors in the desired sensor output. The two main sources of error in
implementation of PVDF sensors are sensor forming and sensor placement. One
method for forming sensors used by Johnson and Elliott (1995) was to chemically
etch the PVDF using ferrous chloride and standard circuit board etching techniques.
However, there is another etching approach that does not implement any chemicals.
In this method, a power supply is used to pass a current through the film. The current
is passed through two leads, one of which is grounded to the film'’s surface while the
other is used to outline the desired sensor shape (AMP, 1994). On the other hand, a

more conventional sensor forming technique used by Zahui et al. (2001a) wasto
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physically cut the material into shape. The advantage in using this method of cutting
is that many methods can be used which range from arazor knife to a precision laser.
Once the sensor is formed to its desired shape, it has to be bonded to the
surface on which it will be used. One method for adhering the sensors used by Clark
and Burke (1996) was to place the sensor on double-sided carpet tape and then place
it on the structure. However, another method that could be used to adhere the sensors
to the structureisto use aliquid adhesive (AMP, 1994). The advantage to using a
liquid adhesiveisthat it would alow the sensor to be relocated on the structure’s
surface before the adhesive dries, thus reducing placement error. The placement error
can also be reduced by forming the sensor shape after the PV DF has been applied to
the structure’ s surface and etching using the chemical process as opposed to the
cutting process. Additionally, caution needs to be taken when using liquid adhesives
to ensure that the PV DF isisolated from al metallic surfaces on which it is mounted.
Finally, in research presented by Clark and Burke (1996), it was shown that the errors
from forming inaccuracies are minimal compared to the errors from misalignment and
placement. For example, Clark and Burke (1996) ran an experiment in which the
theoretical response of a sensor designed to respond to the second and third modes of
a simply-supported beam was compared to the same sensor with a placement error of
0.26 percent with respect to the beam length. That is, for a 380-millimeter beam, the
sensor had a placement error of one millimeter. The resultsin Figure 14 show that

the error can be on the magnitude of 10 to 20 decibels near the resonance of other
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modesin the beam. Asaresult, when constructing sensors, special attention must be

paid to where the sensor is placed.
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Figure 14. Comparison of Analytical and Actual Datafor 2-3 Mode Sensor.
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CHAPTER I

THEORETICAL DEVELOPMENT

Theoretica Development of Localized Sensors

Recognizing that it is possible to sense the local volume displacement of a
beam with a sensor that traverses the entire length of abeam, it was desired to form a
localized sensor that would be applied only over a desired length of a beam as
opposed to over the entire length of abeam. Simply stated, it was desired to measure
alocal volume displacement while only monitoring the local surface area of interest.
Figure 15 illustrates a beam segmented into three sections where the shaded area
would represent the area covered by alocal sensor. In other words, the sensor would
span from the point x=a to the point x=c and only measure the beam volume
displacement within theregion a< x<c. By localizing the sensor in this manor, the
sensor shape will be independent of the beam end conditions present. Instead, the
sensor shape will be adjusted to the length of the localized area of interest. The
possible beam end condition combinations examined in this work include fixed-fixed,
fixed-free, fixed-simply supported, and simply supported-simply supported. The
reason for examining all of these end conditions is that each end condition will
produce different vibrational behavior which will in turn yield different beam volume
displacement yielding a different radiated sound. Therefore, sensors for each set of

end conditions were devel oped.
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Figure 15. Segmented Beam.

Thefirst step in the sensor devel opment was to generate the equations for the
localized sensors so that the sensor shapes for the areas of interest could be
constructed. However, before progressing to the development of the localized sensor
eguations, the calculations for atotal sensor performed by Johnson and Elliott (1993)
werereviewed. Intheir work, Johnson and Elliott started with the PVDF charge

eguation:
a=eu(h, +)[FOZ' (090 (16)
Then, through double partial integration a charge equation takes the form:
q=-ey(h, +h){[F()Z'(1) - F'H)ZzHO] -[F(0)Z'(0) - F*(0)Z(0)] +jF"(X)Z(X)dX}- (17)

The new charge equation and the assumption that the sensor shape was a quadratic
function in the form:

F(x) =kx* + Ax+ B (18)
were used in conjunction with the beam’ s boundary conditions to develop an
expression for the volume displacement of the beam and the shape of the sensor. The
research also presented that the sensor shape shall meet the assumed conditions that

F(0)=F()=0 and F'(0) =-F'(l) signifying that the sensor shape will be symmetric

along the x axis and equal to zero at itsends. Thus, by differentiating the assumed
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guadratic sensor shape function, Eq. (18), the derivatives and functions at the end

conditions became:

F(x) =kx*+ Ax+B 0 F(0) = B,F(l) =kX* + Ax+B, (19)
F'(x) =2kx+ A0 F'(0) = AF(l) = 2kx+ A and (20)
F"(x) = 2K. (21)

Next, the differentiated equations, Egs. (19, 20, and 21), are set equal to the sensor
shape constraints and the resulting equations are solved for the constants A and B,
thereby resulting in a new sensor shape function:
F(x) = kx> —KIx = K (x* = IX). (22)

The result of the new sensor shape equation isthat the first and second derivatives for
the sensor shape equation meet the required conditions for the sensor shape
(F(0)=F() =0 and F'(0) =-F'(l) = -k1). Applying these sensor shape constraints to
the charge equation, it takes the ssmplified form:

q = ey (h, +h){-KI[Z() + Z(0)] + %iZ(X)dx} : (23)
However, it is known that the volume displaced D can be represented as:

|

D= b‘!’Z(x)dx (24)

where b is the beam width and can be rearranged to take the form:

o|o

j!’Z(x)dx =—. (25)

In its new form, the volume displacement can be substituted into Eqg. (23), and the

charge equation will take the form:
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q = —ey(h, +h{-K1[Z(0) +Z(1)] + 21'5%}- (26)

Solving the above expression for the volume displacement, D, an expression as a
function of the sensor shape and charge results in the form:

b/2k

—7= 1], 27
el + 1) <

D =‘§E’{-fa [Z(0)+ZM]} -d

where Z(0) and Z(l) are the displacement at the boundary of the beam, q is the charge
generated by the PVDF. However, in the case where the beam isideally clamped,
Z(0) and Z(l) are zero, and the entire first term drops out of Eq. (27). Therefore, these
calculations as performed by Johnson and Elliott (1993) will develop atotal volume
displacement sensor that spans the entire length of the beam.

Using a similar approach to the above by Johnson and Elliott (1993), a
quadratically shaped localized surface sensor can be developed for abeam. This
localized sensor would in fact span fromx =atox=cinFigure 15. Again, in
developing the localized sensor shape and volume displacement equations, the initial
equation used was the PV DF charge equation, Eq. (16), except the limits of
integration are now changed fromx=0and x =1 to x=aand x = c. Therefore, the

new general form of the charge equation in one dimension becomes:
q=-ey(h+ hs)J'F(X)Z"(X)dX- (28)

Once again, applying double partial integration, the charge equation takes the form of

alocalized charge equation (§):

q = -ey(h, + h){[F(c)Z'(c) - F'(c)Z(c)] - [F(a)Z'(a) - F'(a)Z(a)] +IF"(X)Z(X)0|X}- (29)
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Like before, the sensor shape, F(X) is assumed to take the form:
F(x) =kx* + Ax+B (30)
and the sensor shape constraints of F(a) = F(c) =0 and F'(a) = -F'(c) are being applied

again. In meeting these conditions the localized charge equation can be simplified to:
g =-ey(h, +h){F'(@)[Z(a) + Z(c)] + ZI?J'Z(X)dx}, (31)

where Z(a) and Z(c) are the displacements of the beam at locations coinciding with
the ends of the sensor. Each of these values can be measured with an accelerometer.

Since the localized volume displacement (D ) can be represented as:

J'Z(x)dx = %, (32)

and substituted back into the local charge equation, EqQ. (31), then local charge can be

expanded as a function of local volume displacement as:

- . 2kD

a=-ey(h, +th{F'@[Z(a) + Z(O)]} + —ey(h, + hs)T- (33)
This equation can be solved for the local volume displacement (D) as:

(F@iz@+Z©) -2

p=_P _ bk
2% e, (h, +h)

1, (34)
where F'(a) isthe slope of the sensor shape, Z(a) and Z(c) are the displacements at the
ends of the sensor, and § isthe charge generated by the localized PVDF sensor. Asa
result, if PVDF is applied only to the area between a and ¢, and the charge gas well

as the displacements Z(a) and Z(c) are measured, the local volume displacement (D)

can be calculated.
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Using the above generalized sensor shape equation, the specific sensor shape
can be determined. Assuming that k isgiven and the sensor shapeisafunction of a
and c, the coefficients A and B can be calculated. Substituting a and c in for x, the
generalized equation takes the form:
F(a) =Kka®+ Aa+B =0, (35)
F(c) =kc*+ Ac+B = 0. (36)
Satisfying the boundary condition F'(a) = —F'(c), the expression for the constant A can
be found to be:
A=-K(a+c). (37)
Substituting the above equation into either Eq. (35) or Eq. (36), the expression for the
constant B can be derived as:
B = Kac. (38)
Thus, substituting the constants A and B into Eqg. (30), the sensor shape becomes the
following function of x:
F(x) =K[x*—(a+c)x+ac], (39)
wherea, cand k are al constants. Using this expression, it is possible to determine
the location of the maximum value on the curve. Thisis calculated by taking the first
derivative of EQ. (39) with respect to x and setting it equal to zero. It was found that
the maximum occurs at the midpoint between a and c,

_a+c
X=— (40)




Therefore, replacing x in Eq. (39) with the expression in Eg. (40), the maximum point

on the curve can be represented as:

F O =RICZD - (a+ 0 (5 +ad. (41)
Simplifying the above equation, we can write:
F (0 =R~ 22, (42)

4
However, the maximum point on the curve also occurs at the midpoint along the

length of the beam:

H@ng. (43)

Setting these two expressions equal, one can solve for the constant k¥ as:
k= (a_—2 3)2 ’ (44)

and the sensor shape function can be expressed purely as a function of x:
F(X) = 2 [X* - (a+c)x+ac] asx<c (44)

(a-c)’
Upon inspection it is recognized that the sensor shape is not unique to any specific set
of boundary conditions as the local sensor is designed to span a fraction of a beam
instead of an entire beam. In other words, the origin of the sensor shapeis free to
traverse the length of the beam between x =0 and x =1. Thissignifiesthat the
localized sensor shapes are independent of boundary conditions and are only unique
to the length of the section of interest on the test specimen. Figure 16 depicts the
general shape that represents sensor shape used. This shape includes the plotting of
both F(x) and —F(Xx).
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F(X)

Figure 16. General Shape Used for the Surface Sensor.

With the generation of a specific sensor shape equation, it is possible to
generate a specific expression for the localized volume displacement. However,

before any substitutions are possible, an expression for F'(a) is needed. This

expression can be obtained by differentiating Eq. (45) and letting x = a such that after
simplification:

2b

F'(a) = c-a)

(46)

Thus, by substituting k from Eq. (44) and f'(a) from above into Eq. (34) the result
yields:

(a-o)?
4e; (h, +h,)

D= [(c —Za)b

1[Z(a) + Z(c)] +d ] (47)

In the above equation, Z(a) and Z(c) are displacements, but the measurements being
acquired are taken with accelerometers and are measures of acceleration. Therefore,
if harmonic motion is assumed, the time harmonic equivalent to the displacement is:
Z = Xe“. (48)
However, in the time domain, acceleration is ssmply the second derivative of the
displacement; thus, the accelerometer measurement can be represented as:

Z =-w?*Xe“. (49)
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By substituting the displacement into the accel eration expression, the acceleration can
be represented as a function of the displacement:

7 = -w’Z. (50)
Rearranging the above, the required displacement can be expressed as a function of

the measured acceleration as;
z=-Z, (51)
w

which can be substituted into Eq. (47) to express the local volume displacement as a
function of frequency, measured accel eration atwo sensor ends, and local charge as.

—(c—-a)b
20°

(a-o°

D= a7y
4ey (h, + )

[Z(a)+Z(c)] +dl . (52)

Therefore, when alocal PVDF sensor with two accelerometers at its endsis applied to
avibrating beam, the data acquired can be used to compute the local volume
displacement of the beam under this integrated sensor.

Verification Process for a Localized Sensor

With a hypothesis developed, a plan as to how it will be verified was needed.
The technique used was based on a known measurement technique such as the use of
many accelerometers to compute the local volume displacement as a means of
comparison to measurements taken with the integrated surface sensor. Additionally,
since the beam will be radiating sound, the sound power of the beam can be measured
and compared to a theoretically predicted sound power. Asaresult, a systematic

approach was required for the integrated sensor verification process.

30



The first step in the verification process was to construct an integrated sensor
using the developed localized equations. This sensor was developed to contain a
PV DF surface sensor which works in conjunction with the two accelerometers at the
sensor’ s ends to measure the total volume displacement for the beam. Once the total
volume displacement was measured with the integrated sensor, a set of accelerometer
measurements were taken at finite, equally spaced points along the length of the beam
covered by the sensor. Then, the accelerometer data was compiled using the
trapezoidal rule integration technique to determine the volume displacement per beam
width, which was then multiplied by the beam width to obtain the volume
displacement for the beam. Lastly, the volume displacement measured by the
integrated sensor was compared with the volume displacement measured using the
multiple accelerometers. When the volume displacements area compared, it is said
that the data shows an acceptable correlation if the two measurements match.

After the total sensor was checked and the correlation was acceptable, a series
of local sensors were constructed to span the length of the entire beam. Thelocal
volume displacement was then gathered for each individual local sensor, and the local
sensors were combined to compute the beam’ s total volume displacement. This total
volume displacement was then compared to the volume displacement measured by the
total sensor that was fabricated per the verification process described in the previous
paragraph. Finally, the compiled volume displacement from the local sensors was
compared to the volume displacement as determined using the trapezoidal rule and

accelerometer measurements.
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Thefina verification method for the data was to measure the sound power
emitted from the beam. In this process the procedure for the ANSI S12-31 1990
standard was followed, and the sound power was directly measured. After measuring
the actual sound power, the theoretical sound power was calculated using the volume
displacement measurements from the previous verification steps. More details for the

processes followed in the experimental verification can be found in alater chapter.
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CHAPTERIII

EXPERIMENTAL SETUP

Overview

Before the experimental setup was constructed the facilities within which the
research was to be conducted were examined. The facilities were checked for any
limitations that may dictate how the experimental setup wasto be constructed. The
only major constraint that was encountered was the fact that the reverberation
chamber that was to be used for the sound power measurements had alower cutoff
frequency of 125 Hz. Meaning that any sound power measurements made below 125
Hz in the chamber wereinvalid. Asaresult, it was determined that all of the beams
would be designed to have a 250 Hz first resonance. Thisway the lower cutoff of the
reverberation chamber was not a concern. Additionally, dueto limitationsin the
source excitation the frequency range of interest was given an upper limit of 1600 Hz.
With the effective measuring range from 0 to 1600 Hz, the first two modes of
resonance were excited and measured for all the beams, and the third mode was
excited and sensed for the fixed-fixed and fixed-simply supported beams.

It was also discovered that an apparatus was required in which only the sound
from the vibrations of the top surface of the beam would be radiated. Therefore, a
baffled box was constructed in which the top of the beam was to lie in the same plane
asthe top of the box and the sides of the beam were covered by the thickness of the

baffle. In addition to constructing a baffled box atest fixture was required to hold the
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test beams in place while the experiments were completed. However, this fixture had
to be designed in such a manner that it would fit inside the baffled box and adjust in
such a manner that each of the beams could be examined from the one test platform.
As aresult, the test beams were designed, the test fixture was constructed, and the
baffled box was assembled.

Calculation of Beam Lengths

Before the experimental verification of the sensor shapes could begin and
based on the variety of end conditions to be analyzed, a systematic approach to the
problem was required. The first step in the analysis was to determine the effective
lengths for the various beams being analyzed since each pair of end conditions
contributes to different vibrational modes within the beams. Therefore, each beam
had its own unique length. However, before the effective beam lengths could be
calculated, the beam material, the material properties, the beam cross section, and the
cross-sectional properties had to be chosen. After considering severa materials such
as brass, bronze, nickel, steel, and titanium, it was decided that 6061-T6 auminum
exhibited the most desirable material propertiesfor a0.0127 m (0.5 inch) by 0.0381
m (1.5 inches) rectangular cross section. The material and cross-sectional properties
used for the calculations are listed in Table 1 below. In addition to the material
properties, the desired frequency at which the first resonant frequency was to occur
had to be decided, asthisis one of the main factors that helps justify the length of the

beams. For this research, due to equipment limitations, it was determined that the
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first resonance for al the beams should occur at afrequency of approximately 250
Hz.

Knowing the beam’ s material and cross-sectional properties, the effective
lengths could now be determined for the various end conditions. However, due to the

varying end conditions, the beam lengths will not all be identical since the set of

Table 1.

6061-T6 Aluminum Material Properties (Gere and Timoshenko, 1997).

6061-T6 Aluminum
E =70 GPa

p = 2700 kg/m®

v =0.33

A = 483.9 mm”°

| = 6503.6 mm®

boundary conditions will change for each beam. For example, Hayek (2001) states

that the fixed end condition will exhibit a displacement and a slope both equal to zero

(7] ., :O’?ﬂ_i =0), while asimply supported end condition will have a
3
displacement and a moment both equal to zero(z|x=0:0,zT§ =0). Similarly, the

x=L
free end condition will have a shear and a moment both equal to zero

d’z

d’z
( dX3

v =0). Thus, by using the general equation for the transverse

x=L x=L

vibration of a prismatic beam and the boundary conditions for each beam end

condition, the resonant frequencies can be derived. From this derivation, the effective
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beam lengths can be determined if the first resonant frequency is known. Therefore,
using afixed free beam as an example, the beam length equation will be derived.

In deriving the expression for the fixed-free beam, the general equation for
transverse vibration of a prismatic beam is expressed as.

y = Acosk, x+Bsink, x+C coshk; x+ Dsinhk; X, (53

where A, B, C, and D are constants, k; is a constant that is dependent on the beam’s
boundary conditions, x is the point along the length of the beam of interest, and y is
the vertical displacement of the point of interest. Then, from the boundary conditions,

it can be recognized that the first, second, and third derivatives of Eq. (53) are

required and can be expressed as.
%:y’:kf(Bcoskfx—Asinkfx+Csinh k, x+ D coshk; x), (54
X
2
j Z= y" =k?(-Bsink, x— Acosk; +C coshk, x+ Dsinhk; x), and (55)
X
3
Z 3/=y’"=k?(Asinkfx—Bcoskfx+Csinhkfx+ D coshk; X). (56)
X

Applying the fixed boundary conditions at x = 0, it can be found that:

V.., =0=A+C 0A=-C,and (57)

dy
dX|,-o

X

=0=k,(B+D) O0B=-D. (58)

Thus, if Egs. (53), (54), (55), (56) are rewritten with the above constant relationships,

these equations take the form:
y = A(cosk, x — coshk, x) + B(sink, x — sinh k; x), (59)
y =k, (A(sink, x +sinhk, x) + B(cosk; x — coshk; X)), (60)
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y" = k(- A(cosk, x + coshk, x) - B(sink, x + sinhk, x)), and (61)
y" = k}(A(sink, x - sinhk, x) — B(cosk x + sinhk; x)). (62)
Next, the boundary conditions for the free end x = | are applied, producing:
0 = k?(-A(cosk; | + coshk,l) - B(sink,| +sinhkl)), and (63)
0= k3(A(sink,| —sinhk,l) - B(cosk, | + coshkl)). (64)
Rearranging Egs. (63) and (64) to aform in which the coefficient A is divided by the

coefficient B, the following expression:

B _ —(coskl +coshkl)  (sink;l —sinhkI) (65)
A (sink] +sinhk,])  (cosk,l +coshk,I)
isobtained. Cross-multiplying the sine and cosine functions yields:
— (cosk;| +coshk,l)? = sin’k,| —sinh?k,l. (66)

By expanding the cosine squared terms and rearranging the terms, the equation results
in:

— 2cosk, | coshk,| =sin’k,l +cos*k,| +cosh’k,| +sinh?k,l. (67)
Now simplifying the above equation, the expression becomes cosk; I coshk,| = -1, and

the solution for kI becomes:
1
kil =(n-2)m (68)

Having solved for the expression of kI, the expression for the resonant frequency can

be expressed as:

1,
G ﬂ:u\/ﬁ (69)
" oon? \pA 21t ? PA’
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where f; is the resonant frequency, (kl)? is a constant that is dependent on the end

conditions, | isthe beam length, E is Young' s Modulus for the material, | isthe

moment of inertia, p isthe material density, A isthe cross-sectional area, and f isthe

mode number. Thus, using the same approach laid out from Eq. (53) to Eq. (69) each

of the other boundary conditions can be analyzed and the values for (kil)? determined.

It should also be noted that the values of (ki)? are independent of the material used

and have been predetermined by Thompson (1993). They can be found in Table 2 for

each of the beams analyzed.

Constants Used for Determining the Beam Natural Frequencies.

Table 2.

(kal)* (ko) * (kql)*
Beam Configuration Fundamental Second Mode | Third Mode
Simply Supported 9.87 39.5 88.9
Cantilever 3.52 22 61.7
Clamped-Clamped 22.4 61.7 121
Clamped-Hinged 154 50 104

Having developed an expression for the resonant frequency as a function of

the material and cross-sectional properties as well as the beam length, the beam

lengths required to achieve afirst resonance at 250 Hertz can be calculated. Thiscan

be done by rearranging Eq. (69) such that the equation takes the form:

eHt B

(k1)?
21t

38
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P
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Note that the beam length is independent of the beam width and beam cross section.
Therefore, using the material propertiesin Table 1 and the (kl)? valuesin Table 2, the
beam lengths can be calculated. The resulting beam lengths can be found in Table 3.

Test Fixture Construction

With the required beam lengths analytically determined, the construction of
the test specimens could begin. The design and construction of the test fixture used to

support the test specimens was initialized aswell. The test fixture was designed such

Table 3.

Calculated Beam Lengths for a250 Hz First Resonance.

Support L, (m) | L, (ft)
Simply Supported 0.34 1.12
Cantilever 0.20 0.67

Clamped-Clamped 0.52 1.68
Clamped-Hinged 0.43 1.39

that it could be disassembled and reassembled to accommodate different beam end
conditions. The different setups had to be capable of supporting a fixed-fixed, a
fixed-free, afixed-simply supported, and a simply supported-simply supported beam.
Therefore, in addition to the beams themselves, the different components of the test
fixture included the base, two slides, two towers, two fixed end conditions, and two
simply supported end conditions.

In constructing the beams, several factors had to be considered. Thefirst item
was that the beam lengths cal culated were the effective beam lengths. In other words,

all the beams needed to be slightly longer than the calculated length so that the beams
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could be mounted in the test fixture and still effectively resonate at 250 Hz. Asa
result, depending on the end conditions, a set length was added to each beam. For al
the fixed end conditions, an extra 0.1016 meters (4 inches) was added to the length of
the beam, while for all the ssmply supported end conditions, 0.0127 meters (0.5
inches) was added to each of the beams. Also, the method by which the fixed and
simply supported end conditions were going to be modeled had to be considered.
Thisissue was resolved by simply drilling and tapping a set of six %220 holesin the
end of the beam for the fixed end conditions (Figure 17). Similarly, for the ssmply
supported end conditions, a dimple was put on the side of the beam and a pin was
machined to sit in the dimple and hold the end condition in place (Figure 18). The

complete set of machined beamsis shown below in Figure 19.

Figure 17. Fixed End With Six Tapped Holes.

Figure 18. Simply Supported End With a Connecting Pin.
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Figure 19. Machined Set of Beams (From the Top Down: Fixed-Free, Smply
Supported-Simply Supported, Fixed-Simply Supported, Fixed-Fixed).

Like the beams, the design of the base had to be carefully planned because the
base had to be constructed in such away that the force used to excite the beam did not
vibrate the test fixture. In other words, the base had to be designed in such away that
the vibrations it experienced would not influence the vibration of the beam under
examination. To prevent this several things were done. First, the base was designed
to have alarge mass such that it would require a large force to create disturbing
vibrationsinit. Next, alarge slot was machined in the center of the base so that the
structure that supported the shaker (excitation force) was isolated from the entire test
fixture. Thefina preventative measure taken was to put adjustable rubberized feet
under the base (Figure 20). Therefore, multiple tapped holes were drilled in the base
to allow it to be leveled and to provide a connecting point for the slides (Figure 21).

The finished base without the feet can be seen in Figure 22.

Figure 20. Rubberized Leveling Feet.
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Figure 21. Base With Tapped Holes for Leveling and Mounting the Slides.

Figure 22. Machined Base for the Test Fixture.

Once the base was constructed, two slides were designed and fabricated. The
purpose of these slides was to allow for adjustments to be made. The adjustments
necessary included the ability to accommodate the different beam lengths. Since
every beam tested had a unique length, machined slots were placed on each side that
allowed for fine adjustments in length (23). The slides were also designed in such a
way that they had guides that were used to assist in alining the slots and the holes in
the base when the slides were moved (Figure 24). The guides were also used to assist
in keeping the fixture assembled squarely. The slides also had a series of four holes

drilled into their centers. These holes were countersunk on the bottom side and were
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intended for attaching the towers (Figure 25). The reason the holes are countersunk is

that the bottom of the slides remain level, and there are no bolt heads protruding.

Figure 23. Close Up View of the Slots Machined in the Slides.

Figure 25. Countersunk Holes for Mounting the Towers.

After the slides were machined, construction on a pair of towers began. The
purpose of the towers was to merely act as an extension and to elevate the beam to a
height at which the shaker could be placed under it. The towers were designed to

provide approximately 0.2032 meters (8 inches) of elevation. Since the towers were
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so tall, it was decided that a solid cross section of 0.1016 meters (4 inches) would
provide stable support. The solid cross section was used instead of a hollow cross
section for two reasons. First, the solid cross section provided more mass to the test
fixture for damping undesired vibrations, and second, the solid cross section would
allow the tower to be easily bolted to the slide. The bolts used to connect the tower
and the slide were atapered 3/8-16 socket head screw. Figure 25 depicts one of the

screws used, while Figure 26 illustrates one of the towers mounted on aslide.

Figure 26. One of the Towers Mounted on a Slide.

Completing the towers, the foundation for the test fixture was complete. Next,
the end conditions had to be designed and fabricated. The end conditions are referred
to astheoretical since it is very difficult to exactly model afixed and asimply
supported end condition. In an attempt to model afixed end condition as accurately
as possible, apair of fixed end condition blocks were constructed. These blocks

contained four countersunk holes on their corners which were used to connect the
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blocks to the towers. They also included six holes positioned 0.0254 meters (1 inch)
apart along the center line. These holes were positioned in such away that the blocks
could be bolted to the fixed ends of the test beams (Figure 27). After constructing the
fixed end condition blocks, it was realized that the some of the material along the
edge had to be removed because it was interfering with the vibration at the end of the
beams (Figure 28). The removal of this materia also affected the effective length of
the beams and, as aresult, lowered the resonant frequencies of the beams containing
fixed end conditions.

The simply supported end conditions were constructed in a similar manner as
the fixed end conditions. Again the block contained countersunk holes for attaching it
to the tower. However, since the simply supported beam was to be held on the sides,
the block had to be designed such that the beam could be moved freely. Therefore, a
opening for the beam was machined and holes for the simply supported pins were
positioned such that the top of the beam was flush with the top of the block when it
wasin use (Figures 29, 30). The pins used were machined to a point and threaded so
that the force they applied to the beam could be regulated (Figure 31). With the
ability to adjust the applied force as necessary, the theoretical simply supported end
condition could be accurately modeled. After completing the interchangeable blocks
it was now possible to sufficiently model all the beams being investigated and the
verification process could begin. (Note: A set of detailed drawings associated with

the fixture componentsis located in Appendix A.)
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Figure 28. Fixed End Condition With Material Removed.
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Figure 29. Simply Supported End Condition.

Figure 30. Assembled Simply Supported End Condition.

Figure 31. Simply Supported Pin.

Baffled Box Construction

While in the design and construction process, a baffled box was constructed to
house the test fixture for testing the surface sensors. The purpose of the baffled box is
to isolate the source of the sound being radiated. In other words, the baffled box was
used to mask undesired sounds that may be generated by the test fixture, the shaker,

and the underside of the beam. Asaresult, abox was constructed that was large
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enough to house the test fixture, the shaker, and some vibrational dampening
materials.

In the construction, 0.01905 meter (0.75 inch) plywood was used for the sides
of the box (Figure 32). However, the box bottom and box top for each of the beams
were fabricated from 0.0127 meter (0.5 inch) plywood (Figure 33). Also, when
connecting the sides and bottom, all the joints were sealed with silicone to prevent air
leaks. Inasimilar manner the top of the sides was designed in such away that al the
tops would be airtight when in use. This was accomplished by using strips of airtight
foam around the perimeter of the sides where the tops were bolted on (Figure 34).
Each of the tops was constructed in such away that the beam fit flush with the surface
of the tops when they were in use (Figure 35). By having the top and the beam lie
flush with one another, the box could be totally sealed by applying tape over the gaps
between the beam and the box (Figure 36). Inthisway, al the volume displacement
measured by the surface sensor is known to be only the result of the beam’s surface
vibrations. Finally, since the box was designed to be airtight, a set of connectors was
mounted in the front face of the box (Figure 37). These connectors were used for
connecting the shaker and force gauge to their respective excitation and measurement
devices. A set of detailed drawings for the construction of the baffled box can be

found in Appendix B.

48



Figure 32. Plywood Box Constructed With the Simply Supported Beam Inside (Top
Cover Removed).

(©) (d)
Figure 33. Baffled Box Covers Constructed From Plywood. (a) Fixed-Fixed Cover,
(b) Fixed-Free Cover, (c) Fixed-Simply Supported Cover, (d) Simply
Supported-Simply Supported Cover

Figure 34. Seal Material and Connecting Stud.
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Figure 35. Simply Supported Beam in the Baffled Box, Such that the Cover and the
Beam are Flush.

Figure 36. Simply Supported Beam Sealed Along the Edges With Tape.

Figure 37. Connectors Utilized to Link the Electrical Signals from Outside the Box to
the Instruments Located Inside the Box.

Experimental Equipment

With the construction of the test fixture and the baffled box, the equipment
required for the testing portion of this sensor verification study had to be set up.
Locating the equipment required for the testing process, learning how to assembleit,

and learning to operate it properly were the first steps to successfully testing the
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developed integrated surface sensors. The components used for gathering the
vibrational data throughout this research were a Hewlett Packard (HP) Dynamic
Signal Analyzer (model 35670 A) and a TEAC Digital Audio Tape (DAT) recorder
(model RD-135T) (Figure 38). In addition to data acquisition, the HP dynamic signal
analyzer was used in conjunction with a Techron power amplifier (model 5507) and a
Labworks seven pound el ectrodynamic shaker (model ET-132-2) to provide the beam
avibratory source of excitation (Figures 39 and 40). This excitation was transmitted
to the beam through a short piece of threaded rod, referred to as a stinger (Figure 40).
Consequently, severa instruments were considered for measuring the excitation force
and vibrations of the beam. In the cases where point sensors were used to sense the
vibrations, PCB Piezotronics accelerometers (models U353B 16 and 352C22) were
used (Figure 41). Similarly, the excitation force was measured using a PCB
Piezotronics force gauge (model 208B02) (Figure 42). The signals generated by the
accelerometer and the force gauge were passed through a set of PCB signal
conditioners (model 480E09) before being routed to the TEAC DAT recorder (Figure
43). By passing the signal through a PCB signal conditioner, the signal was filtered
and amplified before it reached the TEAC DAT recorder. A schematic of the test
setups used for the accelerometer and the integrated sensor measurements can be seen

in Figures 44 and 45.
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Figure 38. HP Analyzer and TEAC DAT Recorder Used for Data Collection.

Figure 39. Techron Amplifier Used for Shaker Excitation.

Stinger

Figure 41. Accelerometers Used for Sensing the Vibrations.
(Left: Model U353B16, Right: Model 352C22)
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Figure 43. Single Channel PCB Signa Conditioner.
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Figure 44. Test Setup Used for Taking the Accelerometer M easurements.
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In asimilar manner to the vibrational data collected, sound data collection
required much of its own unique equipment. However, the excitation process was the
same for the sound power measurements as it was for the vibrational measurements.
Also, the signa measured was initially recorded by the TEAC DAT recorder in much
the same manner as the vibrational signal. Then, the DAT recording was played back
to aLarson Davis Spectrum Analyzer (model 2900B) for compl eting the sound power
analysis (Figure 46). However, the signal that was recorded was sensed through a set
of six half inch TMS microphones (model 140AQ) with preamplifiers (model
426A01) instead of accelerometers and aforce gauge (Figure 47). The microphone

signal was then passed through a multi-channel PCB signal conditioner (model 481)



similar to the PCB signal conditioners used for the vibrational data (Figure 48). A

schematic of this setup can be seen in Figure 49.

Figure 46. Larson Davis Analyzer Used for Sound Power M easurements.

Figure 47. Half-Inch Microphone Used for Sensing Sound Power.

Figure 48. Multi-Channel Signal Conditioner.
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Figure 49.Schematic of the Test Setup Used for the Sound Power M easurements.

Beam Resonance Verification

With the test fixture and the test specimens completed, the next logical step
was to verify that the beam’ s first mode of resonance was indeed at the theoretically
designed value of 250 Hz. This process of verification was completed by mounting
the beams in the test fixture one at atime and exciting them with arandom excitation
produced by a LDS (Ling Dynamic Systems L.T.D.) four pound shaker (model V203)
(Figure 50). The shaker was driven at 2.2 Volts peak to peak by the HP spectrum
analyzer; however, the signal from the spectrum analyzer was later amplified by the
amplifier at a setting of four on the volume knob (Figure 51). In addition to driving
the shaker with arandom signal, the location at which it was placed was critical. The
driving location had to be in such a place that nothing interfered with the modes of the
first three resonances of the beams, which were the modes of interest. In other words,

the stinger had to be located in such away that it was not on a node of any of the
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modes of interest. Asaresult, the stinger was located at a distance of 0.1524 meters
(6 inches) from the end of the beam for the fixed-fixed, the fixed-simply supported,
and the simply supported-simply supported cases and 0.0254 meters (1 inch) from the
free end on the fixed-free beam (Figure 50).

Once the method and location of the excitation was set up, the required
measurements had to be determined. It was decided that the best measurement for
depicting the resonances in the beams was to show the frequency response using an
accelerometer and force gauge. In setting up for such a measurement, an
accelerometer and aforce gauge are required to be placed in the same plane as one
another such that they essentially lie directly on top of each other (Figure 52). Then,
the signals from the two sensors are brought into the spectrum analyzer where the
accelerometer measurement is automatically divided by the force measurement,
thereby producing the frequency response spectrum.

After setting up the test fixture, the beam was excited and the frequency
response function between an accelerometer located on the beam (above or closeto
the stinger attachment point) and the force gauge was measured and saved for each
beam. Figures 53, 54, 55, and 56 show a representation of this frequency response
spectrum as it was displayed on the spectrum analyzer for the fixed-fixed, the fixed-
free, the fixed-simply supported, and the simply supported-simply supported beams,
respectively. From these spectra, the actual beam resonant frequencies can be
identified by locating the peak values of the spectrum. Once the experimental

resonances are measured, they can be compared to the theoretical resonances
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Figure 50. Beam Resonance Verification Setup for Different Beam Boundary
Conditions. (a) Fixed-Fixed Beam, (b) Fixed-Free Beam, (c) Fixed-Simply
Supported, (d) Simply Supported-Simply Supported

Amplifier

Figure 52. Shaker and Accelerometer Setup For Measuring the Beam Resonances.
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calculated based on the effective beam lengths. Table 4 represents the comparison
between the theoretical and experimental resonant frequencies for the first three
modes of the fixed-fixed and the fixed-simply supported beams, and the first two
modes for the fixed-free and the simply supported-simply supported beams. In
comparing the cal culated and measured first resonant frequency for the fixed-free
beam, it was recognized that alarge variation occurred. This difference was realized
to be aresult of the fixed end condition being modified and effectively lengthening
the fixed-free beam. However, based on the comparison of the resonant frequencies
for the remaining beams, it was believed that the end conditions were being
satisfactorily modeled. Therefore, it was believed that the integrated sensors designed

should be able to measure the volume displacement of the beams accurately.
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Figure 53. Frequency Response for the Fixed-Fixed Beam.
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Figure 54. Frequency Response for the Fixed-Free Beam.
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Figure 56. Frequency Response for the Simply Supported-Simply Supported Beam.

Table 4.

Theoretica and Measured Resonances for the Beams Under Test.

Support Type f,(Hz) | f;(H2) f,(Hz) |f,(Hz)| f3(Hz) |f;(HZz)
Simply Supported | 252.50 244 1010.52 | 948 [ 2274.31| N/A

Fixed-Free 230.41 156 1440.05 [ 1152 4038.67 | N/A
Fixed-Fixed 223.19 204 614.76 | 568 | 1205.60 (1092
Fixed-Hinged 233.15 232 756.98 | 712 | 1574.53| 1460

Key Theoretical Measured

Sensor Construction

Once the sensor layout had been analytically determined and the beam lengths
experimentally verified, the PVDF sensors had to be constructed. The shaping
process can be performed using one of several methods. The first method is to cut the

PVDF into its desired shape with arazor blade, scissors, or aform of precision cutting
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laser. This method was used by Zahui et a. (2001a) and proved to be somewhat
inaccurate. The second method was to electrically cut the film (AMP, 1994). Inthis
process, the ground of a nine volt battery is connected to the surface of the PVDF, and
the positive lead of the battery is connected to awire that comes to a sharp point and
is used to trace the sensor shape (Figure 57). While tracing the sensor shape, the
voltage of the battery is passed through the PVDF and the material on the surface of
the PVDF is“melted” away, thus producing an isolated shape that isto be used as a
sensor. This method proved to be a clean and effective approach to sensor shaping
except the sensor shape was hard to see after it was formed due to the fine point on
the electrode. However, the third method is etching the surface with a dilute solution
of printed circuit board solution (ferrous chloride). This process was developed by
Johnson and Elliott (1993). Through personal communications with Dr. Steve Elliott
(2000) of the Institute for Sound and Vibration Research at the University of
Southampton, U.K. and consulting with Dr. John Miller (2000) in the chemistry
department at Western Michigan University, it was found that the process used for
etching the PVDF is very much like that used for etching electrical circuit boards. In
the electrical circuit board etching process, the area that isto carry a current is marked
off. Then, the etching solution is applied to the unmasked material. The solution
removes the unmasked material, forming an accurate sensor shape. Unfortunately, the
PV DF etching process had not been used at Western Michigan University before.
Experimentation was required to perfect an effective etching process for sensor

formation.

62



Figure 57. Battery and Leads Used for Surface Sensor Shaping.

In the process of constructing the PVDF sensors, the PVDF had to be adhered
to the surface of the beam. This could be achieved using one of two methods. The
first method was to use double-sided tape, and the second method was to use a glue or
epoxy. One of the advantages to using the glue or epoxy was that the sensor could be
repositioned without harming the sensor before the adhesive hardened. However,
when using a glue or epoxy, caution had to be used so that the PVDF was electrically
isolated from the structure. On the other hand, by using the tape, the sensor wasto be
isolated from the structure as the tape added a membrane layer between the beam and
the sensor. Therefore, it was better to use the tape as long as the sensor could be
positioned properly. Consequently, since it was possible to etch the sensor shape with
the PVDF already mounted on the beam, the errors associated with locating the sensor
on the structure were minimized.

Preliminary Experiments

Before constructing any surface sensors, some experiments were conducted in
order to characterize the behavior of the PVDF when it was formed. This experiment
was conducted using awooden ruler as a beam and using different PVDF

configurations. For example, the first experiment that was run involved applying a
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rectangular piece of PVDF to the surface of the ruler (Figure 58). The ruler was then
excited with a shaker, and the resulting beam characteristics were measured for a
frequency range from zero to 800 hertz (Figure 59). Then, the PVDF on the ruler was
etched to half of its original length (Figure 60). The PVDF behavior was once again
measured for afrequency range from zero to 800 hertz when the ruler was excited by
the shaker (Figure 61). After the etched PV DF was measured, it was cut with arazor
knife along the etched line (Figure 62). Again the ruler was excited by the shaker,
and the behavior of the PVDF was measured for a frequency range from zero to 800
hertz (Figure 61). The reason for cutting the PVDF at the etched line was to prove
that the etching had indeed had an effect on the PVDF. Therefore, the results of this
set of tests confirmed that the PV DF could in fact be formed into the desired sensor

shape.

Figure 58. Ruler With Full Length Piece of PVDF.

In addition to examining the chemical etching process, the method of
electrically forming the PV DF was also examined. In this set of tests the piece of
PV DF that had been chemically etched in half was electrically separated in half again
(Figure 63). Theruler was excited and the PV DF behavior was measured for a
frequency range from zero to 800 hertz (Figure 64). Then, once the PVDF behavior
was documented, the PVDF was physically cut at the same point that the electrical cut

was made (Figure 65). Now with one quarter of the original length actually being
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measured, the beam was excited again. The PVDF behavior was once again
measured
Measured PVDF Behavior for a Full Length Piece of PVDF
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Figure 59. PVDF Behavior for the Full Length Piece of PVDF.

Figure 60. Etched PVDF Sensor.

for afrequency range from zero to 800 hertz and compared to the behavior measured
when the PVDF was electrically cut (Figure 64). The results showed that the PVDF
behaved asif it had been actually cut when it was electrically etched, therefore

proving that this was aso a viable option for etching the surface sensors.
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Measured PVDF Behavior for the Shortened PVDF
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Figure 61. Chemically Etched and Cut PVDF V olume Displacement Measurement.

Figure 63. Electrically Cut PVDF Sensor.
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Measured PVDF Behavior for the Electrically Etched PVDF
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Figure 64. Electrically Cut and Physically Cut PVDF Volume Displacement
M easurement.

Figure 65. PVDF Physically Cut at the Electrically Etched Location.

Understanding the PV DF etching process more, a procedure for forming and
constructing surface sensors from PVDF was developed. Thefirst step in the sensor
formation process was to formulate the sensor shape equation, F(x), based on the
beam’ s dimensions and material properties. The next step was to program the sensor
shape equation into MATLAB such that it would generate a plot of F(x) and —F(x) on
the set of coordinate axes. This plot was then scaled in such away that when it was

printed, it would be on a one to one scale with the beam of interest. After the scaled
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plot was printed, it was carefully cut out with arazor blade, thereby producing a

traceable template (Figure 66).

Figure 66. Traceable Sensor Shape Template.

The third step in the sensor construction process was to clean the surface of
the beam where the sensor was to be applied. This cleaning process includes the
removal of any dirt or residue on the surface with white board cleaning solvent and,
the removal of any deformations or discontinuities with arazor blade. Once the
surface was cleaned, alayer of 0.0381 meter (1.5 inch) wide double-sided tape was
applied to the surface. The tape was applied carefully so that no bubbles or wrinkles
were formed on the surface. After the tape wasin place, it was trimmed to the
effective length of the beam of which was to be measured. The next step after
applying the tape was to apply alayer of PVDF to this tape (Figure 67). When
applying the PVDF, care was used again to prevent the formation of bubbles and

wrinkles.

Figure 67. Applying the PVDF to the Taped Surface.
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Once the PVDF was in place and the sensor template was made, the template
was taped in place over the PVDF (Figure 68). Then, ablack permanent marker was
used to trace the shape of the sensor onto the PVDF (Figure 69). Next, the marker
was used to fully shade in the area of the sensor and alead which was used for
making the necessary electrical connectionsto the sensor (Figure 70). The areathat
was shaded was to be the effective area of the sensor which was to be used for making

the beam volume displacement measurements.

Figure 68. Template Taped in Place Over the PVDF.

Figure 69. Black Marker Being Used to Color in an Electrical Lead on the Sensor.

Figure 70. Shaded Sensor Shape and Lead Before Etching.
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The next step after the shading was completed was to use afoam brush to
apply asmall amount of Radio Shack Printed Circuit Board etchant along the edges of
the shaded sensor shape (Figure 71). This etchant solution, once in contact with the
unprotected PV DF, removes the surface layer of the PVDF and resultsin an etched
sensor shape. The excess etchant solution on the surface was later removed by drying
it with a soft cloth or towel (Figure 72). At this point the sensor could be used;
however, the sensor would be colored in with marker, and the condition of the sensor
surface would not be known (Figure 73). Therefore, it is recommended that the
marker be removed from the surface. The marker removal was achieved by using a
soft cloth and applying isopropyl alcohol (rubbing alcohol) to the surface (Figure 74).
By cleaning the surface with the alcohol, the sensor that remains can be inspected for
scratches and discontinuities which indicate that the sensor isbad. At this point, the
beam can be placed in the test fixture and preparation can be made to begin testing.

Once the inspected beam had been placed in the test fixture and in the baffled
box, the electrical leads had to be attached to the sensor. This was completed by
soldering copper leads to a shielded wire which was used to protect against outside
noise, such asthe 60 and 120 Hz signals generated by electrical currents. The other
end of the shielded wire contained a BNC connector which was used to connect the
sensor to the TEAC DAT recorder and from there, connected to the HP analyzer.
Once connected to the HP analyzer, the sensor was ready to take measurements.

Therefore, the only remaining steps in testing a surface sensor are to place the
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accel erometers at the ends of the sensors and to excite the beam with the shaker

(Figure 75).

Figure 71. (Left) Etchant Being Applied With a Foam Brush.
(Right) Etchant After Application.

Figure 72. Removing the Excess Etchant Solution With a Soft Cloth.
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Figure 73. Etched Sensor.

Figure 74. 1sopropyl Alcohol Being Used to Remove the Marker.

Figure 75. Finished Sensor With Accelerometers.
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CHAPTER IV

VOLUME DISPLACEMENT MEASUREMENTS

Localized PVDF Sensor Verification Process

With the PV DF sensor construction process developed, it was necessary to
verify that the integrated PV DF and accelerometer sensors correctly measured the
beams' volume displacement. The process used for verifying the integrated sensors
included measuring the local and total volume displacements for a given beam with
different integrated sensors. After comparing the integrated sensor volume
displacement measurements, a set of accelerometer measurements (predicted) were
taken at finite points, and the volume displacement was again calculated and
compared to the local and total integrated sensor measurements. However, for the
purpose of active control, measuring the magnitude of the volume displacement is not
as important as sensing the frequencies at which the maximum volume displacements
occur. Thus, the measurements made by the local sensors are considered sufficient
for control purposesif the resonances (maximum volume displacement) for both the
predicted and actual measurements coincide with respect to frequency. Finaly, the
sound power of the beam being examined was measured and compared to the
theoretical sound power calculated using the volume displacement.

Thefirst step in the verification process was to devel op a baseline; therefore,
the first sensor constructed was a total sensor. This total sensor was used to measure

the volume displacement over the entire surface of the beam. After measuring the
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beam’ s volume displacement, the raw data, in volts, as output by the PVDF charge
and the accelerometer were collected with the dynamic signal analyzer had to be
processed. Inthe processing of the raw data, a correction factor needed to be applied
to the data, which converted the data from avolt per volt measurement to a volume
per unit force measurement. In achieving this unit conversion, the first step wasto
multiply the raw data by the calibration factor for the force gauge. This correction
factor was 51.5 mV/lby (manufacturer’ s calibrated value). However, since the metric
unit system measurement was desired, the correction factor had to be divided by a
conversion factor of 4.448 N/Iby. Thereby, afinal correction factor of 0.1164 V/N
was produced.

By applying this correction factor, the new units on the calculation became
volts per newton, so another conversion factor was necessary to form the units of
cubic meters per newton. To account for the volume portion of the measurement, it
was recalled that the total charge (q) was proportional to the total volume
displacement (D). Therefore, if the measured PVDF voltage was converted to a
charge (q), the charge could be set equal to the volume displaced. Asaresult, the
voltage measurement was divided by the internal resistance of the dynamic signal
analyzer, which was measured to be 1.006 MQ, and a measure of the current resulted.
This measure of current wasin reality equal to the charge, as current is actually a
measure of charge flowing per second. Thus, the final correction factor accounting
for both the volume displaced and the excitation force for all the PV DF measurements

was 1.157* 10 m3/N.
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Additionally, when the total volume displacement is measured by the PVDF, it
was found through experimentation that the measurements taken by the
accelerometers on the ends of the sensor are insignificant for the fixed-fixed, fixed-
simply supported, and simply supported-simply supported end conditions. In other
words, the expression in Eq. (34) containing the accel erometer measurements can be
ignored as their effect on the measurement in these cases was minimal (Figure 76).
Upon further investigation, it was realized that those accel erometer measurements
should be insignificant as they are positioned such that they are taking measurements
at locations where ideally there is no movement (fixed and simply supported end
conditions). The reason these measurement locations are ideally motionlessis due to
the beam end conditions. Thus, for all cases where a simply supported or afixed end
condition were at the end of a sensor, the accel erometer measurement at that point
was be deemed insignificant and the total volume displacement (D) was measured
strictly with the PV DF sensor.

The second step in verifying the PV DF sensors was to construct the localized
sensors. Thelocalized sensors varied in length as the beam lengths were not all
identical, and the sensor sizes were determined by dividing the beams into halves and
thirds. So, the resulting sensor lengths were related to the effective length of the
beams as opposed to being a predetermined length. Also, the local sensor
measurement required that the accelerometer data be incorporated into the local

volume displacement (D). The accelerometers were required now as the local
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surface sensors utilized measurement points that were no longer at the ends of the

beams.

Volume Displacement per Unit Force Comparison

1.005.06-1.
e

1.00E-08 1%

[
o
o
m
o
NG

1.00E-09

1.00E-10

Volume Displacment per Unit Force (m*/N

1.00E-11

—e—Charge —#—Charge + Accels
1.00E-12 : : J

0 200 400 600 800 1000 1200 1400 1600
Frquency (Hz)

Figure 76. Volume Displacement Comparison With and Without Accelerometers.

When including the accel erometer measurements, an additional correction factor was
needed. Thisnew correction factor was used in conjunction with the one used for the
total PVDF sensors. This additional correction factor was also used to account for the
accelerometers and resulted from calibrating the accelerometers. In the calibration
process, the accel erometer was excited with a known acceleration of 10 m/s” at 1000
Hz, and the number of millivolts present at 1000 Hz was measured. After taking the
measurement, aratio of the measured millivolts was created with the excitation
acceleration. Theratio calculated was then multiplied by the voltage measured using

the accelerometer while testing the localized PVDF sensor. Thisresulted in a unit
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conversion from volts to a unit of acceleration in m/s’. Then, by multiplying the first
half of Eq. (34) by the correction factors for the accelerometer and the force gauge a
measure of volume displaced per unit forcein m*N was obtained. Then, after the
localized volume displacement had been measured for each of the localized sensors
that comprised the entire length of the beam, the total volume displacement was
calculated by summing the local volume displacement of al the sections of the beam.
This compiled total volume displacement was then compared to the total volume
displacement which was directly measured by the total PV DF sensor, thus, producing
the first confirmation that the local sensors were measuring the data accurately.
Continuing the verification process, a series of accelerometer measurements
was taken to verify that the local and total PV DF sensors are accurately measuring the
beam volume displacement. A series of accel erometer measurements was taken along
the center line of avibrating beam. These measurement points were spaced at an
increment of two centimeters apart along the entire effective length of the beam
(Figure 77). Since each beam had a different length, the number of data points
measured changed with the beam end conditions tested. These accelerometer
measurements were converted to a measure of volume displacement through the use
of the trapezoidal rule of integration. By using the trapezoidal rule of integration, the
volume per width of air moved along the center line of the beam can be quantified.
By multiplying the volume per width moved by the beam width, the volume of air

moved can be obtained (i.e., volume displacement). Thus, the general form of the
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trapezoidal rule expression for the volume displacement of the localized or total
PV DF surface sensor area would be:

D= _rffz;fa))zb[o.sz(a) +7(%) + Z(%,) + o+ 052 (C)], (72)

where a and ¢ are the sensor end points, n is the number of finite divisions between
points a and ¢, f isthe frequency of a particular measurement, and Z isthe
accelerometer measurements at the two centimeter finite divisions. This volume
displacement cal culation can be considered accurate since care was taken to ensure
that the stinger connected to the shaker driving the beam is threaded into the beam at
the midpoint of itswidth. Therefore, by driving the beam along its centerline, the
deflection throughout the beam width is considered to be uniform. Thus, the volume
displacement calculated by the trapezoidal rule can be compared to the volume
displacement measured by the PVDF sensors. This comparison will act as a second

verification that the localized PV DF sensors are measuring these values accurately.

Figure 77. Simply Supported Beam Marked at Every Two Centimeters.

Thefina verification method used was to compare the measured sound power
radiated from the beam to the theoretical sound power that was calculated from the
total volume displacement. The reason for comparing both the total volume

displacement per unit force and the sound power measurements is that at low
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frequencies, the total sound power radiated into the far field by a baffled vibrating
surface is proportional to the squared magnitude of the volume displacement of the
surface (Rex, 1991). Therefore, it is possible to calculate this sound power and
confirm the validity of the sensor through the use of the volume displacement in the

following equation:

w=2P

Ui (72)

where W is the sound pressure, wisthe circular frequency in rad/s, c is the speed of
sound, p, isdensity, and V isthe complex volume displacement. With the sound

pressure calculated, the sound power can be computed by:

w

dBpower = 10|Oglo (10—_12

), (73)

where dB,,.. isthe sound power level (Lord et al., 1987). However, when comparing

the sound power data, caution had to be used to ensure that the major contributionsto
the total sound power radiated were strictly from the beam. Therefore, the difference
in vibration between the beam and the baffled box top was measured. By quantifying
the vibrational difference, it was possible to show that the box top vibration was not a
significant contributor to the total measured sound power from the box.

V olume Displacement Experiments

In order to verify the accuracy of the integrated sensors designed, a sequence
of experiments was conducted. This sequence included testing the fixed-fixed, the
fixed-free, the fixed-simply supported, and the simply supported-simply supported

beam end conditions. Unfortunately, since each beam was a different length, the
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sensors used in the verification process were unique as they all varied in length.
However, even though each sensor shape and set of results obtained are unique, the
steps taken in the analysis of the resultsis the same. For the sake of brevity, the full
analysisfor the fixed-fixed beam is presented here along with the data used to
perform this analysis. However, only adiscussion is given of the data acquired on
other beam end conditions and the graphs and depictions of the dataare givenin
Appendices C, D, and E. In all cases, the conclusions drawn and the problem

encountered are similar to those discussed for afixed-fixed beam.

Fixed-Fixed Beam

The fixed-fixed beam was the longest beam analyzed, so three different
surface sensors were designed and tested on this beam. Thefirst sensor was asingle,
total surface sensor which spanned from one fixed end to the other fixed end. Then, a
second surface sensor, which was the first set of the localized sensors, was examined.
This set of sensors was designed in such away that each sensor measured volume
displacement of one half of the beam’ s effective length. These two local sensors aso
shared a common intersecting point in the center of the beam where an accel erometer
was located. Since both of these sensors were constructed from one long piece of
PV DF, these sections were physically cut at their intersection (middle of the beam) so
asto isolate the individual sensors from each other, thus preventing the possibilities
of errors (Figure 78). Finally, athird set of local sensors was constructed that divided
the beam into three equal lengths. These sensors contained the same general shape as

the previous sensors except their individual length was shorter. The PVDF was again
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cut to ensure these sensors were isolated from one another while sharing two common
accelerometer points on the beam. Figure 79 depicts the different sensor shapes as
they were designed for use on the fixed-fixed beam. Once the integrated sensor
measurements were collected, the set of accelerometer measurements required for
calculating the local and the total volume displacement from the trapezoidal rule were
taken over 28 equally spaced points along the length of the beam. After the
accelerometer and integrated sensor data was analyzed using Eq. (34), the volume
displacement per unit force was plotted as afunction of the excitation frequency.
These results were compared to determineif the integrated sensor designed accurately

measured the beam local and total volume displacement.

Figure 78. Localized PVDF Sensors After They Have Been Isolated From Each Other.
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Figure 79. Sensor Shapes Used for the Total and Local Sensors.
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The first set of plots constructed were for the two sectioned localized sensors.
This set of plots included both the volume displacement per unit force and the phase
of volume displacement as computed using Eq. (34), for both the accelerometer and
the PVDF measurements of the left side and the right side sensors. Examining the
volume displacement per unit force for the local sensor on the left side, section A, it
was found that the frequencies at which the resonances occurred corresponded amost
exactly for the accelerometer and the integrated sensor measurements (Figures 80).
Additionally, when the phase measured by the accelerometer and integrated sensor
were examined with respect to frequency, the results were found to behave in much
the same manner (Figure 81). The only major difference between the two sets of data
was that the magnitude of the volume displacement measured using the integrated
PVDF and accelerometer sensors was higher than expected at frequencies above
approximately 800 Hz. This error may be due to a poor signal-to-noise-ratio
measured by the PVDF, so the power spectrum of the PV DF sensor was compared to
background noise to ensure that a sufficient signal was measured (Figure 82). In
checking the power spectrum, it was found that the signal was sufficiently above the
background noise to be free of errors. Asaresult, the magnitude difference was
considered to be real, and it was concluded that the PV DF sensor on section A wasin
fact measuring the beam’ s resonant response accurately. This dominant response is
the main source of the sound power being radiated from the vibrating beam.

Similar to the left side sensor, the local sensor on the right side of the beam,

section B, was examined. From the volume displacement per unit force and phase
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plots (Figures 83, 84), it was again concluded that the sensor on section B was
accurately measuring the behavior of the beam’s movement. Like the sensor on
section A, at frequencies above approximately 800 Hz, the magnitude of the
accelerometer and the integrated PV DF and accel erometer sensor measurements
varied as the integrated sensor was measuring alarger volume displacement than the
accelerometers.  Once again, the power spectrum was checked to seeif the variations
may have been the result of abad PVDF measurement (Figure 85). However, the
difference did not result from the PV DF sensor based on the signal-to-noise-ratio
measured in the power spectrum. Therefore, having checked the most logical sources
of the magnitude differences and not being able to fully explain these differences at
thistime, the local sensor on the right half of the beam was determined to be

measuring the beam resonances precisely.
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Figure 80. Fixed-Fixed Volume Displacement Magnitude for Section A of the Double
Sensor.
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Figure 81. Fixed-Fixed Volume Displacement Phase for Section A of the Double
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Figure 82. Power Spectrum for Section A of the Two Section Local Sensor.

The second set of plots was constructed for the data collected for the three
section sensor. This data was plotted in the same fashion as the two section sensor
data. In examining the extreme left hand local sensor, section A, it was found that the
accelerometer and integrated sensor measurements were aimost identical to those
measured using discrete accel erometer measurements at frequencies below 800 Hz
and that some discrepancies occurred at frequencies above 800 Hz (Figures 86, 87).
However, there are two factors that can contribute to some of the discrepancies
present. First, the phases do not match at the higher frequencies where the variations
in the volume displacement occur. In fact, in some instances, the phases are almost a

full 180 degrees different, signifying that the volume displacement measured by the
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Figure 83. Fixed-Fixed Volume Displacement Magnitude for Section B of the Double
Sensor.

two measuring devicesis different. Also, the power spectrum for the PV DF sensor
shows some low points where the signal measured is less than a factor of ten greater
than the background signal. Thisweak signal may signify that the measurement
includes erroneous data measured from an outside source. However, since the peaks
that represent the resonances (the frequencies the radiate sound power most
efficiently) are accurately measured, the sensor was concluded to be sufficient for
sensing the frequencies at which the sound power should be reduced for the leftmost

portion of the excited beam.
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Figure 84. Fixed-Fixed Volume Displacement Phase for Section B of the Double
Sensor.

Next, the middle integrated sensor, section B, was analyzed. The phase and
the volume displacement per unit force were found to share the same trends in both
the integrated sensor and accelerometer measurements (Figures 89, 90). However,
like many of the previous integrated sensors, at the higher frequenciesthereisa
magnitude variation the volume displacement per unit force measurements. In
considering the source of the variations, the power spectrum was checked and found
to be free from errors (Figure 91). Thus, the local PVDF sensor was considered to be
sufficient for representing the behavior and the resonances of the middle portion of
the beam.

The final local sensor analyzed was the sensor furthest to the right, section C.

This data showed the best correlation of all the sensors examined, as the volume
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displacement per unit force almost exactly matched a frequency of approximately 800
Hz for both the accelerometer and the integrated sensor (Figure 92). At the
frequencies greater than 800 Hz, some variation occurred, but it was so small that it
could be declared insignificant. Then, looking at the phase of the accelerometer and
integrated sensor measurements, it was recognized that at frequencies greater than 800
Hz, the two data sets are out of phase (Figure 93). Thus, the phase could be
contributing to the variations in the magnitude. However, the power spectrum for the
PV DF sensor was a so checked to insure that there was no contribution to the error as
the result of abad signal (Figure 94). Since the signal-to-noise-ratio was sufficient,
the variation in the volume displacement per unit force was deemed acceptable, and
the PV DF sensor was determined to sufficiently represent the behavior of section C of
the three sectioned local sensor. Consequently, having examined each of the
localized sensors that comprised this test individually, it was decided that the

measurements taken by the PV DF did represent the behavior of the beam effectively.
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Figure 89. Fixed-Fixed Volume Displacement Magnitude for Section B of the Triple
Sensor.
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Figure 91. Power Spectrum for Section B of the Three Section Local Sensor.
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Figure 92. Fixed-Fixed Volume Displacement Magnitude for Section C of the Triple
Sensor.
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Figure 93. Fixed-Fixed Volume Displacement Phase for Section C of the Three
Section Sensor.
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Figure 94. Power Spectrum for Section C of the Three Section Local Sensor.

Finally, aset of plotswas constructed that compared the total volume
displacement per unit force. These plots included measurements from the
accelerometer, the total surface sensor, and the two sets of localized integrated PVDF
and accelerometer sensors (Figures 95, 96). Comparing the volume displacement per
unit force measurements, the observations showed that the accel erometer
measurements predicted a lower volume displacement than the integrated sensor
measured at frequencies greater than the first resonance. However, even though the
predicted magnitude was lower, the frequencies at which the anti-resonances and
resonances occurred are still aligned. Therefore, the many deviations that occurred in

the phase of the integrated sensor in comparison to the accelerometer and the
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possibility of erroneous datain the power spectrum will be the mgjor contributors to
the magnitude variations. Investigating the power spectrum for the total sensor, it was
found that the signal measured by the PV DF was more than strong enough to be free
from errors (Figure 97). Asaresult, if the magnitude differences are concluded to be
insignificant, the total and local PV DF sensors constructed for the fixed-fixed beam
are considered to accurately depict the behavior of the beam for both global and

localized measurements.

Fixed-Free Beam

The second set of sensors examined were for the fixed-free end condition, and
since this was the shortest beam analyzed, only two different surface sensors were
tested, one total sensor and one set of two localized sensors. First, the total surface

sensor which spanned the entire length of the beam was tested. Since one end was
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free, an accelerometer was required at that end. Next, the set of localized surface
sensors were examined. This set of sensors was designed in such away that each
sensor spanned one half of the beam’ s effective length. These individual local
sensors then shared a common intersection at the midpoint of the effective length of
the beam where an accelerometer was located, just as in the case of the fixed-fixed
beam. The PVDF aso had to be cut so asto insure that the individual PVDF sensors
were isolated. Figure 98 depicts the different sensor shapes used, as they were
specifically designed for use on the fixed-free beam. Once the integrated PVDF and
accel erometer sensor measurements were taken, the set of accelerometer
measurements necessary for calculating the volume displacement were taken along
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the centerline of the beam. Then, the integrated sensor and the accelerometer volume
displacement per unit force measurements were plotted as a function of frequency,
and the results were compared (Appendix C).

During the data analysis, the volume displacement per unit force was plotted
as afunction of the excitation frequency for both the accelerometer and the integrated
sensor measurements. The first set of plots generated from these measurements
included the volume displacement and phase for the both the left and the right local
sensors. Examining the volume displacement measured by the local sensor on the left
Side, section A, it was found that the accel erometer and PV DF measurements were
amost identical in phase and magnitude. The few discrepancies that did occur in the

volume displacement per unit force can be traced back to changes that occurred in the

phase.
/j:/ Tota Sensor \;\;
Accderometer 1 T Accelerometer 2
Total Sensor Layout.
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v\\\ o T~ e
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Two Section Local Sensor Layout.

Figure 98. Sensor Shapes Used for the Fixed-Free Beam.
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In asimilar manner, the local sensor on the right side of the beam, section B,
was examined. Inspecting the volume displacement per unit force and phase plots, it
was concluded that the sensor on section B was measuring accurately for the first 400
Hz, after which the volume displacement per unit force measurement became
overwhelmed with excessive noise. This noise that appeared in the volume
displacement plot also appeared in the phase plot, leading to a suspicion of a
insufficient signal or large amounts of noise. Therefore, the power spectrum
measurements for this local sensor were examined to ensure that a strong signal was
being measured. The power spectrum measurements for the local sensor, on section
B, showed that indeed there existed alow signal-to-noise-ratio, thus producing the
inaccuracies in the measurement.

Finally, after finding that only one local sensor measured accurately, a set of
plots was constructed that compared the total volume displacement per unit force for
all the sensors. These plotsincluded data from the accelerometer measurements, the
total surface sensor, and the set of combined localized integrated sensors. Comparing
the all volume displacement per unit force measurements, it was noticed that the
accelerometer measurements had predicted alower volume displacement than those
made by the integrated PV DF sensor. These discrepancies in the magnitude of the
volume displacement per unit force can be traced back to poor power spectrum
measurements. However, the frequency and magnitude for the first resonance
coincide, and the frequency at which the second resonance occurs is aligned even

though the volume displacement does not coincide. Therefore, considering that the
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signal is not sufficient for some of the frequencies measured, the integrated sensors
were considered adequate for measuring the volume displacement behavior for the

vibrating fixed-free beam.

Fixed-Smply Supported Beam

The third beam examined was for the fixed-simply supported end condition,
and since it was the second longest beam analyzed, three different configurations of
surface sensors were tested on this beam as they were for the case of the fixed-fixed
beam. Firgt, atotal surface sensor that spanned the entire length of the beam was
tested. The next surface sensor was a set of two localized sensors each covering half
of the beam. Asaresult, the two local sensors shared a common end point at the
middle of the beam where an accelerometer was located. However, like the other
local sensors, the PV DF was cut at this intersection to isolate the individual sensors
from each other. Finally, a set of threelocal sensors each covering athird of the beam
were constructed and tested. These PV DF sensors were also cut so that they were
isolated from one another, while sharing two common intersections where
accelerometers were located on the beam. Figure 99 depicts the different sensors as
they were designed for use on the fixed-simply supported beam. Like the other
beams, once the PV DF sensors were constructed and tested, a set of accelerometer
measurements were taken. Using the trapezoidal rule, the total and local volume
displacements were calculated. After the trapezoidal rule was applied to the

accelerometer measurements and the necessary correction factors were applied to the
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PV DF data, the resulting volume displacement per unit force was plotted as a function
of the excitation frequency (Appendix D).

Thefirst set of data that was plotted represented the two sectioned localized
sensors. This set of plotsincluded both the volume displacement per unit force and
the phase of the beam as measured by both the local sensor on the left side and the
local sensor on the right side of the beam. The resulting volume displacement per
unit force for the local sensor on the left side, section A, was found to be identical to
the volume displacement per unit force obtained using the accelerometers with only
dight variations in the magnitude. Additionally, the phase measured by the
accelerometer and integrated sensor shared the same general trends. Therefore, with
the exception of the slight deviations at some of the higher frequencies, the local
sensor output on section A shows a good correlation to the true (accel erometer)

measurements.
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Figure 99. Fixed-Simply Supported Sensor Shapes.
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Next, the local sensor for the right side of the beam, section B, was examined.
From the volume displacement per unit force plot, it was recognized that the
frequency at which the resonances occurred was measured accurately. However, the
magnitude of the volume displacement per unit force measurements demonstrated
variations in which the integrated sensor measured larger volume displacements than
were predicted. Inasimilar fashion, the phase plot contained many variations
between 200 and 400 Hz and again at frequencies above 1000 Hz. Therefore, the
magnitude difference can be partly attributed to the difference in phase, meaning that
the accelerometer and the integrated sensor were not accurate. However, for the
purpose of active control, measuring the magnitude of the volume displacement is not
as important as sensing the frequencies at which the maximum volume displacements
occur. Thus, the measurements made by the local sensors are considered sufficient
for control purposes.

The data collected for the three section sensor was analyzed in the same
fashion as the double section sensor. In examining the extreme left hand sensor,
section A, it was found that the accelerometer and integrated sensor measurements
were almost identical for the frequencies below 800 Hz, and some magnitude
discrepancies occurred above 800 Hz. However, some of these discrepancies can be
attributed to the fact that the phases have a difference associated with them at higher
frequencies. Additionally, the power spectrum measured for this sensor contains a

low signal-to-noise-ratio throughout most of the measurement. In other words, the
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signal measured is less than a factor of ten greater than the background signal for
much of the frequency measured. Therefore, if the phase differences and a poor
signal-to-noise-ratio account for the variations present in the magnitude, the sensor
can be considered accurate for the purpose of measuring the fixed-simply supported
beam’ s volume displacement.

Following the inspection of the PVDF sensor on section A, the middle sensor,
section B, was analyzed. It was found that like many of the other sensors, the
vibrational movement of the beam was being depicted accurately with respect to the
frequency. On the other hand, the magnitude of the volume displacement per unit
force measurement for the integrated sensor differed from the accel erometers at
frequencies higher than 800 Hz, at which point the integrated sensor was measuring a
larger volume displacement than was predicted. However, this variation in magnitude
was not the result of a phase change or a bad signal being generated by the PVDF. As
aresult, the only logical explanation for the magnitude difference can be the fact that
the accelerometer measurements were taken at finite locations every two centimeters
along the beam, whereas the PV DF measurements were continuous.

Finally, the local sensor furthest to the right, section C, was examined. From
this data, it was found that the volume displacements per unit force measurements
matched extremely well except at the anti-resonance at approximately 1100 Hz. At
this frequency there are some discrepanciesin the data. However, from the power
spectrum for this sensor, it was recognized that from approximately 800 Hz to 1100

Hz, the signal measured contained a large amount of noise producing alow signal-to-

103



noise-ratio, and the variations may be the result of an outside disturbance.
Consequently, the three local sensors measured the volume displacement and the
resonances of the beam precisely for frequencies below 800 Hz, while representing
the behavior at higher frequencies with some magnitude variations.

Thefina set of plots created for the fixed-simply supported beam were for the
total volume displacement per unit force and the total phase. These plotsincluded the
accelerometer, the total PV DF surface sensor, and the two sets of localized PVDF
sensors measurements. In comparing the volume displacement per unit force
measurements, it was observed that the accel erometer volume displacement
measurements have a large variation from the PV DF measurements at frequencies
greater than 600 Hz. However, even though the magnitudes vary, the resonances still
appear at the same frequencies for the accelerometer and the PVDF. Therefore, the
PV DF sensors are measuring the frequencies at which the behavior is occurring
accurately, while the variations in magnitude will be explained below.

First, the phase measured by the PV DF may be affecting the volume
displacement measured since it exhibits many variations from the phase predicted by
the accelerometer. Thus, during the time in which the measurements were made by
the accelerometer and the PV DF, something may have happened to the force that was
exciting the beam. Second, the signal generated by the PV DF may not have been
strong enough to be free of outside disturbances. Thus, the variation in the magnitude

can be attributed to experimental error.
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Smply Supported-Smply Supported Beam

The final set of sensors examined was for the simply supported-simply
supported end condition, and since it was the second shortest beam analyzed, only
two surface sensor configurations were tested, one total sensor and one set of two
equal-length localized sensors. The total surface sensor which spanned the entire
length of the beam was investigated. Then, after testing the total sensor, the set of the
localized sensors were examined. This set of sensors was designed such that each
sensor spanned one half of the beam’ s effective length. These two local sensors then
shared a point of intersection where an accelerometer was located and a piece of
PV DF was removed to isolate the two local sensors. Figure 100 depicts the total and
the local sensors as they were designed for use on the simply supported-simply
supported beam. Then, after testing the integrated sensors, the accel erometer
measurements were collected, and the total and local volume displacements were
calculated for the accel erometer and integrated sensor. Finally, the volume
displacement per unit force and the phase were plotted as functions of the frequency

for each of the setups examined.
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Figure 100. Simply Supported-Simply Supported Sensor Shapes.
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First, the volume displacement per unit force was measured by the local sensor
on the left side, section A, and it was found that the accelerometer and integrated
sensor measurements were nearly identical in phase and magnitude up to afrequency
of 800 Hz. After 800 Hz, the accelerometer and the integrated PVDF and
accelerometer sensor measurements no longer share any similarities except at the
point where aresonant frequency is present. The discrepancies that occur in the
volume displacement per unit force can be traced back to changes that occurred in the
phase and to the fact that the power spectrum shows that a weak signal-to-noise-ratio
was generated by the PVDF surface sensor used in the integrated sensor. Therefore, it
could be concluded that the integrated sensor on section A was measuring the
vibrational volume displacements of the beam for frequencies up to 800 Hz
sufficiently.

In asimilar manner, the local sensor on the right side of the beam, section B,
was examined. Inspecting the volume displacement per unit force and phase plots, it
was concluded that the sensor on section B was measuring accurately for the first 800
Hz after which the integrated surface sensor measurement of volume displacement per
unit force became filled with noise and deviated from the behavior predicted by the
accelerometer. This noise that appeared in the volume displacement per unit force
plot also appeared in the phase plot, leading to a suspicion of abad signal. Therefore,
the power spectrum measurements for this local sensor was examined to ensure that
the suspicion was correct. The power spectrum measurements for the local sensor on

section B showed that indeed there was a poor signal-to-noise-ratio, thus producing
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the inaccuracies and noise in the measurement. The local sensors for the simply
supported-simply supported beam were then declared to be accurate for frequencies
below 800 Hz, while being questionable at frequencies above 800 Hz.

Finally, after finding that the local sensor measured accurately up to 800 Hz, a
pair of plotswas constructed that compared the total volume displacement per unit
force and the phase for all the sensors. These plots included data from the
accelerometer measurements, the total surface sensor, and the two localized integrated
surface sensors. Comparing the volume displacement per unit force measurements
for al the sensors, it was noticed that the accel erometer measurement and the
localized integrated surface sensor measurement were comparable, while the total
sensor contained some variation. However, from the power spectrum of the total
sensor, it was noticed that not only was the signal weak but it was filled with noise as
the variations in the plot show. Therefore, the total sensor cannot be used to
accurately compare the data from the local sensors. However, since the accel erometer
and the localized integrated surface sensor measurements are comparable, it can be
tentatively concluded that the localized sensors are measuring accurately to at least a
frequency of 800 Hz.

Sound Power M easurements

After al the beam vibrational data was collected and analyzed for each beam
end condition, the final phase of the sensor verification process was performed. This
final verification entailed quantifying the maximum vibrations on the beam and on the

top of the baffled box, setting up and measuring the sound power of the vibrating
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beam, and analyzing these results. The first experiment conducted on each of the
beams and box tops was to measure the maximum vibration per unit force that
occurred at finite points on their surfaces. These points of interest were measured at
approximately every fourth accelerometer measurement point, which is an average of
eight centimeters apart, along the length of the beam and at an average of every
0.0635 meters (2.5 inches) across the top of the box. Thus, agrid was formed on each
box top. An example of the grid for the fixed-fixed beam and box top can be viewed
in Figure 101. By making these measurements, it was possible to check and ensure
that the box top was not vibrating at an excessive level, thus, representing an
insignificant contribution to the overall sound radiated from the box. To be
considered an excessive vibration per unit force, the difference between the vibration
per unit force of the beam and the vibration per unit force of the box top had to a
difference of 10 dB((m/s?)/N) or less over a frequency range of 60 to 1600 Hz.
Therefore, if the datais examined for each of the beams, it can be observed that for
each box top, the maximum level of vibrational excitation is not great enough to
create a disturbing sound power (Tables5, 6, 7, 8). However, in each set of data, it
was noticed that with the fixed and simply supported end conditions, the maximum
vibrations of the beam, over arange from 60 to 1600 Hz, were not a factor of ten
greater than those for the box top. In these instances, the beam measurements were
taken at the end conditions where the vibrations are naturally small, and therefore, the
small differences are to be expected as the box top should not be vibrating a great deal

inthese areas. Therefore, the experiment performed insured that the vibrations from
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the baffled box did not contribute to the sound power radiated or interfere with the

beam vibrations at a significant level.

Figure 101. Fixed-Fixed Beam With the Test Grid Laid Out on the Box Top.
Table5.

Fixed-Fixed Beam and Box Top Maximum Vibration Per Unit Force (dB((m/s%)/N)).

Node | Node | Node | Node | Node | Node | Node | Node | Node | Node
1 4 7 10 13 16 19 22 25 28
rowl| -3.47]-2.09]-2.23] -1.99 | -3.01 | -2.35| -3.04 | -3.07 | -2.70 | -1.81
row2 | -2.13] -3.01 | -2.22| -2.45| -3.66 | -1.92 | -2.50| -1.88 | -1.07 | -1.68
row3 | -2.34] -256 | -2.75| -2.07 | -2.21 | -3.00| -2.09 | -2.62 | -2.44 | -2.95
beam| -0.14 | 23.98 | 25.81 | 18.64 | 26.38 | 25.29| 18.26 | 27.95 | 24.07 | -0.98
row4 | -1.67 | -2.27 | -3.31| -2.83 | -2.63 | -2.30| -2.63 | -1.98 | -1.95 | -2.66
rows|-2.911]-3.13| -2.76 | -2.75| -2.17 | -2.45] -2.41 | -1.80| -2.53 | -1.84
row6 | -1.39] -2.79 | -2.20| -2.49 | -1.85| -1.55| -2.52 | -2.49 | -1.88 | -3.09
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Table 6.

Fixed-Free Beam and Box Top Maximum Vibration Per Unit Force (dB((m/s)/N)).

Node 1 | Node 5| Node 9| Node 12
rowl -1.21 -0.95 -2.09 -1.78
row2 | -1.64 -2.08 -2.59 -2.37
row3 | -0.77 -0.76 -0.29 -1.30
beam | 0.09 22.47 | 19.59 21.73
row4d | -2.00 -0.67 -1.34 -1.59
rows | -1.48 -0.84 -1.30 -3.41
row6 0.00 -1.33 -1.71 -2.25
Table 7.

Fixed-Simply Supported Beam and Box Top Maximum Vibration Per Unit Force

(dB((m/S%)/N)).
Node 1| Node 4 | Node 7 | Node 10 | Node 14 | Node 17 | Node 20 | Node 23
rowl| -3.26 -2.66 -3.27 -1.74 -3.81 -2.26 -3.60 -2.46
row2 | -3.40 -2.65 -2.72 -2.17 -3.35 -2.04 -2.35 -2.05
row3| 2.16 -1.55 -2.78 -2.57 -2.50 -2.57 -2.94 -2.84
beam| 1.15 27.32 | 27.07 24.36 24.26 25.07 24.48 -2.48
row4d | -0.34 -2.16 -2.33 -2.67 -2.42 -2.79 -2.50 -2.76
row5| -2.83 -3.24 -1.82 -2.10 -1.74 -2.97 -2.38 -2.85
rowé | -2.29 -3.16 -2.27 -3.20 -3.01 -2.34 -2.99 -2.45
Table 8.

Hinged-Hinged Beam and Box Top Maximum Vibration Per Unit Force

(dB((m/S%)/N)).
Node 1| Node 5 | Node 9| Node 13 | Node 18
rowl | -1.92 -2.57 -2.77 -2.22 -2.54
row2 | -1.07 -1.99 -2.30 -2.15 -2.57
row3 | -1.62 -2.41 -2.37 -1.96 -2.38
beam | -1.33 25.31 | 19.82 26.21 5.34
row4 -2.13 -1.64 -1.64 -1.94 -2.14
rows5 | -1.99 -2.33 -2.48 -1.91 -2.09
rowé | -1.81 -2.48 -2.31 -2.43 -2.59
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Next, the method used for calculating the sound power had to be determined
because there is more than one approach that can be used to calcul ate the sound power
of atest object. Thus, it was decided that for this process, the comparison method of
measuring sound power would be used. In the comparison method, the sound
pressure level of the subject under test along with the sound pressure level of aknown
reference source are measured and used in conjunction with the known sound power
for the reference sound source. Thisinformation was used in the following
expression:

Ly =L, +(Ly — Ly, (74)
to cal culate the sound power radiated by atest subject, L., where L, is the sound
pressure of the test subject averaged over the six microphones, L, is the sound power
of areference sound source and Ly is the sound pressure of the reference sound
source averaged over the six microphones (ANSI, 1990). Having decided what
method to use for testing the sound power, the reverberation chamber (Figure 102)
was set up to make the required measurements from the baffled beams and reference

sound source.

Figure 102. Reverberation Chamber Setup for Sound Power M easurements.
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In setting up the reverberation chamber for the sound power measurements,
the locations of the microphones and sound source within the chamber had to be
determined. Therefore, the ANSI S12.31 — 1990 standard was used to determine the
required limitations and locations for the sound power equipment. The standard
required that the sound source not fill more than 1% of the room’ s total volume.
Since the volume of the Western Michigan University reverberation chamber is 74.9
m? (2,646 ft%), the sound source needed to fill avolume less than 0.749 m® (26.46 ft%).
This requirement was fulfilled as the reference sound source used was contained a
volume of approximately 0.0425 m* (1.5 ft%), and the baffled box was approximately
0.198 m® (7 ft%). Figure 103 shows the G& G Acoustic Reference Sound Source

(model GA60) which was used as a known sound power source.

Figure 103. Reference Sound Source Used for Sound Power Measurements.

Additionally, the sound source was required to be at least 1.5 meters away

from any wall or diffuser as specified by the standard. Thus, the sound source was
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positioned inside a rectangle identifying the acceptable source placement area that
was marked using red tape on the floor of the chamber. Figure 104 shows a section of
the outlined area within which the sound source could be placed. Once placed within
this area, the source was oriented such that it was not parallel to any nearby walls.

Consequently, according to the standard for any sound power measurements
conducted within the Western Michigan University reverberation chamber, the
microphones must be at least one meter from all reflective surfaces, including the
ceiling and floor. Thus, the microphones were placed within an outlined area that was
marked using green tape on the floor of the reverberation chamber (Figure 104).
Also, the ANSI standard required that the microphones be a minimum of aone half of
awavelength of the lowest frequency of interest apart at all times. The wavelength is
frequency dependent; therefore, the distance of separation will depend on the lower
cutoff frequency for the reverberation chamber. In this case, the lower cutoff
frequency was 125 Hz, so the microphones had to be at least 1.372 meters (4.5 feet)
apart as determined by:

c

_A_ ¢
x-2 Y (75)

where X is the distance of separation, A isthe wavelength, cisthe speed of sound in
air, and f isthe frequency of the wavelength (Lord et al., 1987). Asaresult, the
microphones were placed, and their |ocations were recorded in case one was bumped

during the baffled beam testing (Table 9).
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Green Outline

Red Outllin

Figure 104. Axis of Orientation and Color Coded Borders.

Table 9.

Microphone Locations used in the Sound Power Measurements.

Location (meters)
Microphone X Y Z
1 3.20 2.91 1.44
2 1.14 3.09 1.68
3 5.38 1.02 1.67
4 2.88 1.23 1.74
5 5.08 3.07 1.71
6 1.31 1.30 1.39

Confident that the baffled box is not significantly contributing to the sound
power radiated by the beam and that the reverberation chamber was set up properly
for making the sound power measurements, the sound power for the fixed-fixed, the
fixed-free, the fixed-simply supported, and the simply supported-simply supported
beams was measured. Then, the theoretical sound power was calculated for the
accelerometer, total surface sensor, and local integrated sensors using their volume

displacement measurements using Egs. (72) and (73). The results of the actua
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measured and the theoretically cal culated sound powers were then plotted for the 1/3
octave band frequencies from 160 Hz to 1250 Hz (Figures 105, 106, 107, 108).

From the resulting graphs, a comparison study could be completed for each of
the beams. However, since the trends that appear tend to do so in each of the graphs,
the sound power conclusions will be presented all at once. First, it is recognized that
the sound power measured and the sound power calculated from the accel erometer
volume displacements share the same sound power magnitude fluctuations throughout
the majority of the frequency spectrum analyzed for each beam. Also, the sound
power represented by the PV DF sensors shares the same general trends as the sound
power that was directly measured. However, in most cases, the calculated sound
power does not have the same magnitude as the measured sound power. When the
overall sound power was calculated, it was found that the sound power calculated
from the volume displacement measurements matched quite closely to that which was
measured directly from the beam. Asaresult, if the discrepancies that occurred in the
volume displacement measurements are considered to be one of the major sources of
error, it can be concluded that the total and local PV DF sensors developed for the
beams are capable of sensing the beam’ s volume displacement and sound power

radiated.
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Fixed-Fixed: Sound Power
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Figure 105. Fixed-Fixed Beam Sound Power Comparison.

Fixed-Free: Sound Power
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Figure 106. Fixed-Free Beam Sound Power Comparison.
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Fixed-Simply Supported: Sound Power
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Figure 107. Fixed-Simply Supported Beam Sound Power Comparison.
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Simply Supported-Simply Supported: Sound Power
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CHAPTERYV

CONCLUSION AND RECOMMENDATIONS

Conclusion

As mentioned before, the ultimate goal of this research isto use surface
sensors to measure the volume velocity or volume displacement of a vibrating
structural surface. As the background information has shown, there are three different
types of structures for which similar research has already been completed. These are
a baffled piston, abeam, and aplate. In this background research, different methods
and approaches were described in which the surface vibrations of a structure could be
measured. Also, local sensors used for sensing the local volume displacement of a
radiating structure, and total sensors that sensed the volume displacement of an entire
structure and operated on a global level for noise reduction were investigated.
However, only the local sensors were examined in detail as they could be focused on
one particular section of an entire structure and potentially be used to reduce the
sound power radiated from particular areas of interest. Ultimately, some existing
local and total sensor shapes were presented for a vibrating beam and plate.
Therefore, it was believed more practical localized sensors could be developed for a

vibrating beam.
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Believing that it was possible to ssimplify the design of local sensors used on
beams, atest platform was designed and constructed, and a verification process was
developed to test the sensors designed. Therefore, by performing multiple tests to
verify the integrated PV DF and accel erometer sensors that were devel oped for sensing
the vibrational modes of multiple beam end conditions, it was discovered that in each
case, it was feasible to accurately measure the desired volume displacement. In an
effort to show that this theory was practical for implementation in active control
systems, a set of volume displacement (per unit force) and sound power
measurements were performed. In each case, the integrated PV DF and accel erometer
sensors devel oped showed some discrepancies in the magnitude of the measurements
taken; however, the general trends of the beams' volume displacement were
accurately measured with respect to the frequencies. The integrated PVDF and
accelerometer sensors were indeed capable of measuring the resonant frequencies and
many of the other movements that occurred as a function of frequency. However, it
was determined that the variations in the magnitudes could be the result of using an
excitation force that was too small for driving the beam. Additionally, in the case of
the sound power, the variations in the 1/3 octave frequencies may have resulted from
the fact that there were inaccuracies in the magnitude of the measured volume
displacement used for calculating the theoretical sound power from the volume

displacement.
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Recommendations for Future Work

Having worked with PVDF for this research, some of the limitationsin its
behavior were discovered and explored while many other questions were devel oped
asaresult. Thefirst question encountered involved how to most effectively attach
electrical leadsto the PV DF for the purpose of taking a measurement. Some of the
methods explored included soldering the wire for the lead to copper tape and using
the copper tape to stick to the PVDF for making the measurements. Next, smply
using the copper tape to stick the wire leads to the PV DF was explored and found to
still produce inconsistent signals like the previous method. Therefore, it is believed
that through some future exploration, a method for attaching electrical leads to the
PV DF can be devel oped in which the measurements can be made on a consistent
basis.

The next question that was raised throughout this work was with respect to the
value of the stress per charge coefficient (es1, €32, and e33) of the PVDF and apossible
method for obtaining the exact values for this property. This became an issue asthe
PV DF being used ran out on oneroll and anew roll of PVDF had to be used to finish
the measurements. In switching from oneroll of materia to another, the possibility
existed that the values of the stress per charge coefficient may have changed and
caused some of the data to be skewed as aresult. Therefore, the idea of developing a
method by which the PVDF could be tested and the stress per charge coefficient
determined was discussed. When calling the manufacturer of the PVDF, the technical

support representative claimed that he did not know of any commercially available
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apparatus that could be used to measure the PV DF stress per charge coefficient and
confirmed that the PVDF can have up to a 20% variation in the stress per charge
constant from oneroll to another. Therefore, it is recommended that a device for
experimentally measuring the stress per charge constant and strain constants of the
PV DF be developed.

Another unknown property of the PVDF iswhether the stress per charge
coefficient (es1, €32, and es3) isalinear value or if it isafunction of frequency. The
reason that thisis of interest isthat if the stress per charge coefficient is afunction of
frequency or responds in a non-linear manner, many of the magnitude variations at
higher frequencies may be explained. Thus, it is suggested that some investigation be
done to determine if the stress per charge coefficient is linear under the conditions
used for measuring the volume displacement.

The final question that was devel oped was related to the work that was
performed for the localized PVDF sensors. This question was based on the fact that
for most radiating structures, the main source of sound radiation occurs in the form of
end and edge radiation. In other words, the majority of the undesirable sound radiated
in this application would be produced along the edge of the beam. Therefore, rather
than sensing the behavior for the entire beam or even alocalized portion of a beam, it
would be more beneficia to measure the behavior at the ends and along the edges of
the beam. Thus, thereisroom for future improvements in the development of sensors
for measuring the localized sources of radiated sound for the purpose of the active

control of sound.
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Appendix A

Assembly Drawings of the Beams and Test Fixture
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A1l. 3-Dimensional Drawings of the Fixed-Fixed Beam.
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A2. Detailed Working Drawing of the Fixed-Fi Beam.
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A3. 3-Dimensional Drawing of the Fixed-Free Beam.
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A4. Detailed Working Drawing of the Fixed-Free Beam.
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A5. 3-Dimensional Drawing of the Fixed-Simply Supported Beam.
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AB6. Detailed Working Drawing of the Fixed-Simply Supported Beam.
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A7. 3-Dimensional Drawing of the Simply Supported-Simply Supported Beam.
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A8. Detailed Working Drawing of the Simply Supported-Simply Supported Beam.
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A9. 3-Dimensional Drawing of the Base.
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A10. Detailed Working Drawing of the Base.
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A12. Detailed Working Drawing of the Slide.
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A13. 3-Dimensional Drawing of the Tower.
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A14. Detailed Working Drawing of the Tower.
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A15. 3-Dimensiona Drawing of the Fixed End Condition.
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A16. Detailed Working Drawing of the Fixed End Condition.



A17. 3-Dimensiona Drawing of the Simply Supported End Condition.
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A18. Detailed Working Drawing of the Simply Supported End Condition.
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Appendix B

Assembly Drawings of the Baffled Enclosure
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B1. 3-Dimensional Drawing of the Baffled Box.
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B2. Detailed Working Drawing of the Bottom.
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B3. Detailed Working Drawing of the Front and Back Sides.
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B4. Detailed Working Drawing of the Ends.
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B5. 3-Dimensiona Drawing of the Top Reinforcing Rail.
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B6. Detailed Working Drawing of the Top Reinforcing Rail.
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B7. 3-Dimensiona Drawing of the Fixed-Fixed Top.
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B8. Detailed Working Drawing of the Fixed-Fixed Top.
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B9. 3-Dimensional Drawing of the Fixed-Free Top.
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B10. Detailed Working Drawing of the Fixed-Free Top.
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B11. 3-Dimensional Drawing of the Fixed-Simply Supported Top.
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B13. 3-Dimensional Drawing of the Simply Supported-Simply Supported Top.
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B14. Detailed Working Drawing of the Simply Supported-Simply Supported Top.
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Appendix C

Volume Displacement per Unit Force, Phase, and Power Spectrum
Plots for the Fixed-Free Beam
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Appendix D

Volume Displacement per Unit Force, Phase, and Power Spectrum
Plots for the Fixed-Simply Supported Beam
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Fixed-Simply Supported:
Total Sensor Power Spectrum
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Appendix E

Volume Displacement per Unit Force, Phase, and Power Spectrum
Plots for the Simply Supported-Simply Supported Beam
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Simply Supported-Simply Supported: Section A Phase
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Simply Supported-Simply Supported:
Section B Volume Displacement Per Unit Force
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ES5. Hinged-Hinged Volume Displacement for Section B of the Double Sensor.
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E6. Hinged-Hinged Phase for Section B of the Double Sensor.
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Simply Supported-Simply Supported:

Total Beam Volume Displacement Per Unit Force
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Simpliy Supported-Simply Supported:
Total Sensor Power Spectrum
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E11. Power Spectrum for the Total Sensor.
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