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RAINBOW  RAMSEY NUM BERS

Linda Eroh, Ph.D .

W estern Michigan University, 2000

We investigate a new generalization of th e  generalized ram sey num ber for 

graphs. Recall th a t the generalized ramsey num ber for graphs G i,G 2 ,- - -  , Gc 

is the m inim um  positive integer N  such th a t any coloring of the edges of the 

com plete graph K n  w ith c colors must contain a  subgraph isomorphic to G, in 

color i for some i. Bialostocki and Voxman defined R M (G )  for a  graph G to be 

the m inim um  N  such th a t any edge-coloring of K n  w ith any  num ber of colors 

must contain a subgraph isomorphic to G in which either every edge is the same 

color (a monochromatic G) or every edge is a different color (a rainbow G). This 

num ber exists if and only if G is acyclic.

Expanding on this definition, we define the rainbow ramsey number R R (G j, Gi) 

of graphs Gi and G'2 to be the  minimum N  such th a t any edge-coloring of K n  

with any num ber of colors contains either a  m onochrom atic G 1 or a rainbow G2. 

This num ber exists if and only if G x is a s ta r or G 2  is acyclic. We present upper 

and lower bounds for R R ( K Un, K m), R R (K n,T m), R R ( K n , R R (K i ,n, m K 2)

and R R ( n K 2, where Tm is an arbitrary  tree  of order m.

We also define the edge-chromatic ramsey number C R ( G i ,G 2 ) to be the 

m inim um  N  such th a t any edge-coloring of K n  m ust contain either a  monochro­

m atic Gi or a  properly edge-colored G2. W hen bo th  are defined, C /? (G i,G 2) < 

R R {G u G 2). We consider bounds for G R (G „,P m), C R { K Un,P m ), C R {P n,P m),
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and the corresponding rainbow ramsey numbers.

These two new ram sey numbers can be further generalized as the JF-free 

ramsey number. For a set of graphs T ,  an ^ -free  coloring of a graph G is a  coloring 

so th a t G does not contain any monochromatic subgraph isomorphic to any graph 

in J-. The T-free ramsey number of graphs Gi and G i , denoted Rj:{G \.G i).  is the 

minimum N  such th a t every edge-coloring of Kw contains either a monochromatic 

copy of Gi or an JF-free copy of GV
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IN T R O D U C T IO N

Frank Ramsey was actually  considering decision problems in formal logic 

when he proved the theorem  which dem onstrates the existence of both the trad i­

tional and generalized ram sey numbers. In terms of graph theory, the traditional 

ram sey number r ( n 1?ri2 , n 3 . • - • , n c) is the smallest integer N  such tha t any edge- 

coloring of the complete graph A^v on N  vertices with c colors m ust contain a 

com plete subgraph I \ni on n,- vertices with every edge color i for some i. In gen­

eralized ramsey theory, the com plete graphs K ni m ay be replaced with arbitrary  

graphs. Many of the results in traditional ramsey theory are asym ptotic bounds, 

though a few specific formulas are known for the generalized ram sey numbers of 

certain  classes of graphs. Recently, Bialostocki and Voxman defined a new gener­

alization allowing the use of an arb itrary  number of colors. They considered the 

diagonal values, th a t is, values of their num ber when the two graphs considered 

are the same. We extend their definition to consider the off-diagonal numbers and 

o ther generalizations of the ram sey numbers.

1.1 Background and Basic Definitions

In 1930, in a paper titled  “On a Problem of Formal Logic” [13], Frank 

Ram sey proved the com binatorial result th a t dem onstrates th e  existence of w hat 

would later be called ramsey numbers. His result received little  a tten tion  at the 

tim e and was later rediscovered by G. Szekeres and P. Erdos. We s ta te  only the 

finite version of Ramsey’s Theorem .

T h e o re m  1 (R a m se y ). For any positive integers n i ,n 2, ..  - , n c and.d, there ex-
1
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ists an integer N  =  r<i(rai,n2,    n c) such that i f  the d-element subsets o f  the set

{ 1 ,2 ,3 , . . .  , N }  are colored with c colors, then fo r  some i, 1 <  i < c, there is a 

subset A  C { 1 ,2 ,3 , . . .  , iV} with n, elements such that every d-element subset o f  

A is colored with color i.

We may view the set { 1 ,2 ,3 , . . .  , N }  as the vertices of the com plete graph 

I<N-  W hen d =  1 , the coloring described in R am sey’s Theorem is a  coloring of the 

vertices of A'yv. In this case, Ram sey’s Theorem  says th a t for any  set of integers 

{n l? n 2, . . .  , n<;}, there is an integer N  so th a t  if the vertices of the com plete graph 

A;V are colored with k  colors, there m ust be n,- vertices in color i  for som e i. Of 

course, this is sim ply the Pigeonhole Principle; N  = — 1) +  1 suffices.

The first nontrivial case occurs when d  =  2. In this case, the  coloring 

described in Ram sey’s Theorem may be viewed as a coloring of th e  edges of the 

com plete graph A',v- From this point of view, Ram sey’s Theorem says th a t  for any 

set of integers {rci,n2, . . .  ,n c}, there is som e integer N  such th a t if the  edges of 

A a/ are colored with c colors, say colors { 1 , 2 , . . .  c}, then the resulting g raph  m ust 

contain a com plete graph on n, vertices w ith every edge colored w ith  color i, for 

some i. The sm allest such integer N  is called the ramsey number r ( n ! ,n 2, . . .  , n c). 

We will refer to  this number here as th e  traditional ramsey number.

When we consider colorings of subsets of order d >  3, we have ram sey 

theory for A-uniform hypergraphs with k  > 3. Recall th a t a  k-uniform hypergraph 

is a graph in which edges are replaced by A-element subsets of th e  vertex  set, 

where A is a constant. Very little work has been done to find ram sey num bers for 

d > 3, and no nontrivial hypergraph ram sey num bers are presently known.

We will only prove Ram sey’s Theorem  in the finite case for d =  2, since 

these are the values which interest us. T he  following proof is based on th e  proof
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I

in the book by G raham , Rothschild, and Spencer [11, p. 3].

Proof o f  Ram sey’s Theorem f o r d  =  2. In any coloring of the edges of K m with 

two colors, say red and blue, either a t least one edge is red or all of the edges are 

blue. Thus, r(2, m ) — m .  Similarly, r (n , 2 ) =  n.

Now, suppose r ( n ,m  — 1 ) and r(n  — l ,m )  both  exist. Let N  =  r (n ,m  —

1 ) -f- r(n  — l,m ) . Consider any coloring of the edges of AV in red and blue. Let 

x  be an arbitrary  vertex of /v'v and define

U =  {y  €  I \ s \ x y  is red }

and

F’ =  {y  £  K ff\xy  is blue }.

Since \U\ + |V"| +  1 =  r(n  — l,m )  +  r (n ,m  — 1), either \U\ >  r(n  — l ,m )  or

\V\ >  r (n ,m  — 1 ). Suppose \U\ >  r(n  — l ,m ) . Then there is e ither a  blue

subgraph I \m or a  red subgraph /ifn- i  contained in the subgraph induced by U .

If there is a red /vn- i ,  then this graph and the vertex x  induce a red K n. The 

case \V\ >  r (n ,m  — 1 ) is sim ilar. Thus, r (n ,m ) exists for all positive integers n 

and m  and is bounded above by r(n — 1 , m)  +  r(n , m  — 1 ).

We proceed by induction on the number of colors c. Suppose r (n i ,  n 2, ..  - , nc- i)  

exists for all positive integers n i, n 2, . . .  , nc_ i, for some c > 3. Let N  = r ( r ( n i ,n 2, . . .  , ric.t), n c). 

For any edge-coloring of K n  w ith c colors, consider the colors 1 ,2 , . . .  , c — 1 red 

and the color c blue. Then there m ust be either a  copy of K nc in blue, th a t is,

color c, or a copy of K r(niin^ „c_l) in red, that is, entirely  in colors 1 , 2 , . . .  , c — 1 .

In the second case, this “red” graph m ust contain K nt in color i for some z,

where 1 <  i < c — 1. Thus, r ( n i ,n 2, . . .  ,n c) exists for all positive integers

^ 2} • • • ? . L_1
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As an illustration, we give the proof of the first nontrivial trad itional ram ­

sey num ber.

T h e o re m  2. The ramsey number r(3 , 3) =  6 .

Proof. To obtain a coloring of the edges of K 5  with two colors so th a t the resulting 

graph does not contain a copy of Kz in e ither color, color one 5-cycle red and the 

rem aining 5-cycle blue.

Now suppose the edges of K& are colored with two colors, say red and blue. 

Let v be any vertex. Since v is incident with five edges, there must be some set 

of th ree  edges incident with v which are colored with the same color, say blue. 

Suppose u, w  and x  are the other incident vertices of these three edges. If any one 

of the  edges uw, wx  and xu  are colored blue, then we have a blue A3 . Otherwise, 

all th ree  edges are red and form a red A3 . □

Once the ramsey numbers had been viewed in term s of graph theory, it 

becam e natural to rewrite the traditional ramsey num ber as r(A ni, A„2, ■ ■ ■ Knk) 

and to  define r(G j, G2 , . .  - G*) for graphs G 1, G2, . . .  , G* which are not necessarily 

com plete. This number, known as the generalized ramsey number, is defined to 

be the  sm allest integer N  such th a t every coloring of the edges of K n  contains 

a subgraph isomorphic to G, with every edge colored with color i for some i, 

1 <  i <  k. This generalization was first explored in a series of papers by Chvatal 

and Harary[7]. Harary described his discovery of the generalization:

In his lecture at my seminar on graph theory, he[Paul Erdos] wrote 
G —► F, H  to mean that every 2 -coloring of E(G)  contains a green 
subgraph F  or a  red subgraph H . He then defined the  ramsey number 
r (m ,n )  as the smallest p such th a t I \p —► K m, K n. I proposed a t once 
to  rew rite r (m ,n )  as r (A m, An ) and  to study the generalized (not only 
for com plete graphs) ramsey num ber r (F , H ), defined of course as the
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m inim um  p such th a t K p F, H  where graphs F  and H  have no 
isolated points. Later we learned th a t  several special cases of r (F , H )  
were being investigated in Hungary and elsewhere a t about the sam e 
tim e.[12]

For more of the  early work on generalized ramsey numbers, see th e  series 

of papers “Generalized Ramsey Theory for G raphs” by C hvatal and H arary  [7]. A 

good overview of ram sey theory can be found in the book by Graham , Rothschild, 

and Spencer[ll].

1.2 Some Traditional Results

Many of the results concerning the  trad itional ramsey numbers were dem on­

stra ted  using the  probabilistic m ethod pioneered by Paul Erdos. One early  exam ­

ple of this m ethod is the proof of the following lower bound.

T h e o re m  3 (E rd o s ) .  For any integer n  >  3, the ramsey number

r (n ,n )  >  [2 *J

Proof. Let N  =  [2n 2̂J . If we label the vertices of then there are 2^ 2 ) different 

colorings of the edges of I\pf with two colors, say red and blue. Since n  vertices 

may be chosen in (^ )  different ways and there are different ways to  color

the rem ainder of the graph, there are at m ost

different colorings containing a  red K n. By symmetry, then, a t most
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6

different colorings contain either a  red K n or a blue K n. Since

■O' n\
2 N n 2 n/2 

~  n! 2n2/2“
2n/2+l

<   -— 2 '  ^ )
n I

<  2 (>)

for n >  3. there m ust be some coloring of I \ t\  which does not contain either a  red

or a blue I \n. □

From the proof of Ram sey’s Theorem , it follows tha t

r(n , m) <  r (n ,  m  — 1 ) +  r (n  — 1 , m ). ( 1 )

Since r (n , 2) =  n = and r(2, m ) = m  = (™) for any integers n and m  g reater

than  1 , the  recursion in equation 1 yields the upper bound

f n + m - 2 \
r ( " ’ m ) - V  n - i  )

This bound is approxim ately

c4n
r(n . n) < —pz 

yjn

for some constant c.

Despite this progress on asym ptotic bounds, few actual numbers are known 

for the traditional ram sey numbers. T he situation for generalized ramsey num bers 

is m ore promising. O ne of the b e tte r  known results in generalized ramsey theory 

is C hvata l’s formula for r(T , K n) where T  is a tree of order m [6]. Given the  

scarcity  of such closed formulas, the  proof is surprisingly elegant.
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T h e o re m  4 (C h v a ta l) .  For any tree T  o f  order m , the ramsey number

r (T , I<n) =  1 +  (m — l)(n  — 1 )

Proof. For the lower bound, color the edges of n  — 1 disjoint copies of K m- i  red 

and the edges between them blue. The resulting graph has (n — l)(m  — 1) vertices, 

no connected red subgraph of order m  or larger, and no blue Kn.

For the upper bound, let N  =  (n — l)(m  — 1 ) +  1 and suppose the edges of 

k ,x  are colored red and blue. Assume th a t the resulting graph has no blue Kn as 

a subgraph, so the  subgraph H  induced by the red edges does not contain any set 

of n independent vertices. If we consider H  as a graph, any chrom atic coloring of 

the vertices of H  can use each color at most n — 1 tim es, so at least m different 

colors must be used. Since H  has chrom atic num ber a t least m, there must be 

some subgraph of H  with minimum degree at least m  — I. Otherwise, proceeding 

by induction on the  order of the subgraph, each subgraph of H  could be colored 

with m — 1 colors by removing a vertex of m inim um  degree, coloring the  remaining 

subgraph, replacing the removed vertex, and coloring this vertex w ith some color 

not used on its neighbors. In this case, H  would have chrom atic num ber less than 

m. which is a  contradiction. Since any graph with m inim um  degree a t least m  — 1 

contains every tree of order m  as a subgraph, T  m ust be a subgraph of H. □

Few other general formulas are known. One such formula which we will 

use later involves stripes, tha t is, disjoint unions of copies of I\ 2  [8 ]. We omit the 

proof.

T h e o re m  5 (C o c k a y n e , L o r im e r) .  I f  n l : n 2, . . .  , n c are positive integers and 

ni = m ax(n i,  n2, ■ , n c), then
C

r ( n iK 2 , n 2 K 2, . . .  , n cI<2) = n t +  1 +  ^ ( n , -  -  *)•
i= 1
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8

1.3 W here the Rainbow Begins

Another im portan t set of problems which are closely related to graphical 

ramsey theory involve colorings of the integers { 1 ,2 ,3 , . . .  , N } .  These problems 

originated with a result by B. L. van der W aerden in 1927. In the following 

theorem, we call a sequence monochromatic if every integer in the sequence is the 

same color. Later, we will say th a t a sequence is rainbow if no two integers in the 

sequence are colored with the same color. See [1 1 , p. 29].

T h e o re m  6  (v an  d e r  W a e rd e n ) . I f  the positive integers are colored with two 

colors, then there is a monochromatic arithmetic progression o f  any desired length.

A slight generalization of van der W aerden’s result shows that for any 

positive integers n and k, there is a positive integer W {n\ k) such that any coloring 

of the integers 1 ,2 , . . .  ,W { n \k )  w ith k  colors m ust contain a monochromatic 

arithm etic sequence of length n. A considerable am ount of interest has been 

directed towards discovering these num bers for various values of n and k.

In a paper published in 1979, Erdos and G raham  suggested a number 

of generalizations and  new problems related to van der W aerden’s Theorem[9]. 

Among the generalizations, they define H{n) to be the sm allest positive integer 

n such that any coloring of the integers 1 ,2 , . . .  , H (n)  with any  number of colors 

must contain an arithm etic  sequence of length n th a t is either monochromatic or 

rainbow.

Bialostocki and Voxman may have been inspired by this generalization 

when they defined, in [1], the num ber R M (G )  for a  graph G. This num ber is 

defined as the sm allest integer N  such th a t if the edges of the complete graph A'yv 

are colored with any  num ber of colors, then the resulting graph must contain a
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subgraph isomorphic to G  in which either every edge is the sam e color or every 

edge is a  different color. They note th a t this num ber exists if a n d  only if G  is 

acyclic. This result follows from a theorem  by Erdos and Rado.

For the purposes of the Erdos-Rado Theorem , a canonical coloring of either 

a finite or an infinite complete graph with vertices num bered 1 , 2 , 3 , .  . - is any one 

of four particular edge-colorings. A monochromatic coloring is one in  which every 

edge is the same color. In a m inim um  coloring, edge i j  is color m i n ( i , j ); in a 

maximum  coloring, this edge is color m a x ( i , j ) .  For a finite graph, e ith e r of these 

two colorings may be obtained from the other by reversing the o rder in which the 

vertices are labelled, but for an infinite graph, they are nonisom orphic. A rainbow 

coloring is an edge-coloring in which every edge is a  different color. A  graph th a t 

is colored with a monochromatic, m inim um , m axim um , or rainbow coloring is said 

to be canonically colored [11].

We state  and prove the Erdos-Rado Theorem  only as it applies to finite 

graphs. For a more general s ta tem ent, see [11, p. 129].

T h e o re m  7 (E rd o s , R a d o ) . For any positive integer k, there exists a positive 

integer N  such that any edge-coloring o f  R fj  contains a canonically colored com­

plete subgraph on k vertices.

Proof. According to Ram sey’s Theorem , there is some integer N  such th a t if all 

of the 4-element subsets of the vertices of K n  are colored w ith 203 colors, the 

resulting graph m ust contain a com plete subgraph Kk in which every  4-element 

subset is the same color. Consider any edge-coloring (coloring of two-element 

subsets) of K n - At most six colors are used on the subgraph induced  by any set 

of four vertices {a, 6 , c, d}, where we assum e a < b < c < d. Up to  renam ing  and 

rearranging colors, there are 203 different ways th a t a  labelled com plete  subgraph
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induced by four vertices may. be colored. Label each four-element subset of the 

vertices of K.y w ith its coloring, up to interchanging colors, so th a t the four- 

elem ent subsets are colored with a t most 203 colors.

Thus, there  m ust be a com plete subgraph of order k , say H, on which all 

of these four-element subsets are colored with the sam e color. Label the vertices 

of H  by ui, v2, . . .  Ufc where u, < vj if and only if i < j .

Since the subsets {ur, u2, v3, v4}, {ui,u2, ^3 , ^s} {^i, u2, u4,u 5}, {^i, v3, o4,u 5}, 

{u2, t’3 , U4, U5}, {^1, U4,u 5,t>6}, {u2, u4, u5, u6}, and {v3, u4, u5, u6} all have the same 

coloring, the following equations are either all true  or all false:

color Viv2  =  color v iv 3  

color ViV2  = color u iu4 

color V\V3  =  color iqtq

color v 2 v3  =  color u2u4 (2)

color V1 V4  =  color U1U5 

color v 2 v4  =  color v 2 v$ 

color v3 v 4  = color v3 v 5

and, similarly, the set of equations

color v 1 v3  = color v 2 v3  

color V1 V4  = color u2u4
(3)

color V1 V4  = color u3 i>4 

color v 2 v4  = color v3 v 4
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are either all true or all false. Notice th a t the equations

color V1 V2  =  color v2 v3  

color V1 V2  = color v2 v*
(4)

color V1 V3  — color U3U4 

color V2 V3  =  color V3 V4

are either all true or all false. The pair of equations

color ViV2  =  color V3 V4

(5)
color V1 V2  = color V3 V5

are either both true or bo th  false, and m ust be false if the equations in (2 ) are 

false. Similarly, the equations

color V2 V3  = color V1 V4

( 6 )
color V2 V3  =  color U1U5 

are either both true or both  false, and the equations

color U1U3 =  color v 2 v4

(7)
color V1 V3  =  color v2 v$

are either both true or both  false, and m ust all be false if the equations in (2 ) are 

false.

Suppose all of the equations (2) and all of the equations in (3) are true.

In this case, {tq, v2, v3, v4} is colored monochromatically. Any two nonadjacent 

edges V{Vj and vivp in H  m ust be the same color, since {ut, vj, vi, vp} is colored the 

same as {ui, v2, V3 , u4}. Also, any two adjacent edges V{Vj and in H  are the 

same color, since {u,-, uy, u/, vp} is colored the same as {ui, u2, u3, v4}, where vp is 

some other vertex. Thus, H  is colored monochromatically.
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Suppose the equations in (2) are true  and the equations in (3) are false. 

Then {rq, u2, u3, u4} is colored with the minimum coloring. For any integers i < 

j  < I, since {iq, u2, r>3, u4} is colored the same as {u,-, tq, u*, up}, where vv is any 

other vertex (not necessarily having the highest index), the edge u,Uj m ust be the 

sam e color as the edge ut-u/ and the edge vjvi is not the same color as the edge 

u,u/. It follows that H  is colored with the minimum coloring.

Similarly, if the equations in (2) axe false and the equations in (3) are true, 

then both {rq, u2, u3, u4} and H  are colored with the maximum coloring.

Suppose the sets of equations in (2) and (3) are all false. It follows th a t 

the equations in (4) must also be all false. If they were all true, then  color tqu2 =  

color u2u3 =  color u3u4 =  color uru3. Thus, all of the equations in (2), (3), (4), (5),

(6 ), and (7) are false, so {tq, tq, u3. u4} is rainbow colored. Since any set of vertices 

(u,-, vj, vi. Up} in H  must also be rainbow colored, H  is also be rainbow-colored. □

Suppose G is an acyclic graph with k  vertices. Then any m onochrom atic 

copy of h'k contains a m onochrom atic copy of G, and any minimum-colored, 

maximum-colored, or rainbow colored copy of h'k contains a rainbow copy of G. 

Thus, R M (G )  exists and is a t most the integer N  described in th e  Erdos-Rado 

Theorem .

However, suppose G  contains a cycle U[,U2, . . .  , up. For any integer N ,  

color AOv vvith the minimum coloring. Consider any subgraph isomorphic to G. 

Assume w ithout loss of generality th a t tq receives the smallest label o f the vertices 

tq ,u 2, . . .  , Up. Since V1V2 and uiup are the same color, this subgraph G  is not 

rainbow colored. However, U1U2 and u3u3 are different colors, so G  is also not 

m onochrom atically colored.

Bialostocki and Voxman discovered the following formula fo r . /2A /(n/v2 ).
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We present a proof similar to theirs[l].

T heorem  8  (B ia lostock i, V oxm an). For every positive integer n, the number

R M (nK 2) — n{n — 1) + 2

Proof. For the lower bound, color the edges of Kn2_n+I as follows. First, partition 

the vertex set into n — 1 sets At , A2, ■ ■ ■ , An_t where |Ai| =  2n — 1 and |A,| =  n —1 

for 2 < i < n — 1. Color the edges among the vertices in Ai with color i for 

1 < i < n — 1 and color the edges between vertices in A, and vertices in A, 

with color m ax(i,j) for 1 < i < j  < n — 1. The resulting graph contains no 

monochromatic nK 2  and has too few colors to contain a rainbow m K 2.

To demonstrate the upper bound, we proceed by induction on n. For 

n = 1 or n =  2, the result is immediate. Assume n > 3 and RM ((n  — l ) /^ )  = 

(n —l)(n —2)+2. Consider any edge-coloring of Kn2 _n+2. If fewer them n colors are 

used, then by Theorem 5, there must be a monochromatic copy of n K 2. Thus, we 

may assume that at least n colors appear. Choose a set H  of n edges, in n different 

colors, so that H  contains as many independent edges as possible. If |V{H)\  =  2n, 

then we have a rainbow n l \ 2 , so we may assume that \V(H)\ < 2n — 1. Let M  be 

the subgraph of Kn2 _ n + 2  induced by the vertices not in H.

If any new color appears on an edge in M  which does not appear in H , then 

we may replace one of the edges in H  which is not independent with an edge from 

M  in this new color to obtain a set of n edges in n different colors containing more 

independent edges than H. This contradicts our choice of H. We may assume 

that no new color appears in M.

Similarly, if every color which appears in H also appears in A/, then we 

may replace some edge in H  which is not independent with an edge In the same
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color from M. Again, we would have a set of n  edges in n  different colors with 

more independent edges th an  H , which contradicts our choice of H.  Thus, we 

may assume th a t th e  colors which appear in M  are a  proper subset of the colors 

which appear in H .

Suppose \ V(H) \  < 2 n  — 2. Then \ V(M) \  > n 2  — 3n +  4 =  (n — l)(n  —

2) +  2. By the inductive hypothesis, we know th a t M  m ust contain either a 

monochromatic (n — 1 ) K 2  o r a  rainbow (n — l ) / \ 2 • If M  contains a monochromatic 

(n — 1 ) K 2, then we may add an edge in the same color from H  to  obtain a 

monochromatic n l \ 2 . If M  contains a rainbow (n — l)/v'2 , then we may add an 

edge from H  in some new color to obtain a  rainbow n /f j .

Thus, we may assume that |V (//) j =  2n  — 1. The structure  of H is de­

term ined, up to interchanging colors. We may assume th a t H  contains n — 2 

independent edges x,y,-, where edge x.y, is color z, for 1 <  i < n — 2 , and two 

adjacent edges uv  and vw,  where uv  is color n — 1 and vw  is color n. If M  con­

tains any edges in colors other than  1 ,2 , . . .  ,n  — 3 and n — 2, then we have a 

rainbow n l \ 2. For any 2 €  V( M) ,  if edge uz  is a new color or color n — 1 , then we 

have a rainbow n K 2\ we may assume th a t all such edges are colored with colors 

1 ,2 ,3 , . . .  ,rc — 2 and n. If no such edge is color rz, then the subgraph induced 

by M  U {u} is colored with colors 1 ,2 ,3 , . . .  ,n  — 3 and n — 2. Since this sub­

graph contains R M { ( n  — 1 )/v2) =  (n — l)(n  — 2) +  2 vertices, it m ust contain a 

monochromatic (n — 1 ) K 2  *n one of the colors 1 ,2 , 3 , . . .  , n — 2. We may add an 

edge from H  to obtain  a m onochromatic n l \ 2. Thus, we may assume th a t ua is 

color n  for some vertex a E  V( M) .  Similarly, every edge wz  for z  E  V ( M )  must 

be in one of the colors 1, 2, 3 , . . .  n — 1, and for some b E  V'r(M ), edge wb is color 

n — 1 . If a 7̂  6 , then we have a  rainbow n K 2\ assum e a = b.
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Now, every edge vz, for 2 E V ( M )  and z ^  a, m ust be colored with one 

of the colors 1 ,2 ,3 , . . .  , n — 2, or else we have a rainbow n K i . We may assume 

without loss of generality th a t there is some vertex c €  V { M)  such th a t vc  is color 

1. For any z € V( M) ,  w ith z ^  c and z ^  a, edges x \ z  and y \ z  cannot be colored 

with colors n or n — 1 or any new color, or we would have a rainbow n / \ 2. Thus, 

we may assume that all such edges are colored with the colors 1 , 2 , . . .  , n — 2 .

Consider the subgraph induced by V{ Af)U{xi, t/i} — {c}. All of the edges on 

this subgraph are colored with colors 1 , 2 , . . .  n — 2 , so there are not enough colors 

for a rainbow (n — l ) / \ 2. However, there are R M( ( n  — l ) / ^ )  =  (n —l)(n —2) +  2 

vertices in this set, so there must be a monochromatic (n — l ) / \ 2 in one of the 

colors 1, 2 , . . .  , or n — 2. We may add the appropriate edge from H  to obtain a 

monochromatic n K 2■ d
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R A IN B O W  R A M S E Y  N U M B E R

Next we consider a  slight generalization of Bialostocki and Voxman’s defi­

nition. We define the rainbow ramsey number R R ( G i , G 2 ) to be the least positive 

integer N  such tha t if the edges of K s  are colored with any num ber of colors, 

the resulting graph m ust contain either a subgraph isomorphic to G j all of whose 

edges are  the same color or a subgraph isomorphic to G 2 all of whose edges are 

different colors. Notice th a t this definition is not sym m etric in G 1 and G2 , th a t is, 

we have no reason to expect R R (G  1, G 2 ) and R R ( G 2 , Gi)  to be the same num ber. 

(The issue of sym m etry is explored further in chap ter 5.)

For simplicity, we will say th a t a  graph is monochromatic if all of its edges 

are colored the same color, and we will say th a t a  graph is rainbow if all of its 

edges are colored different colors.

2.1 Existence of Rainbow Ram sey Numbers

We next determ ine for which graphs G 1 and G 2  the rainbow ramsey num ber 

exists. T he existence theorem  follows quickly from th e  Erdos-Rado Theorem, but 

we will present instead a  constructive proof independent of this theorem  which 

also yields upper bounds.

F irst, we need a simple but useful lemma:

L e m m a  1 . I f  R R (G i ,  G 2 ) exists, Hi is a subgraph o f  G\,  and H 2  is a subgraph 

o f  G 2 , then R R (H \ ,  H2) also exists and R R ( H i , H 2 ) <  R R (G i ,  G 2 ) .

This lem m a follows from the fact that any g rap h  which contains a m onochro­

m atic copy of Gi m ust also contain a  m onochrom atic copy of its subgraph Hi and
16
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any graph which contains a rainbow copy of G 2 m ust also contain a  rainbow copy 

of H 2 ■ In the sta tem en t of the following theorem , a  forest  is an acyclic graph.

T h e o re m  9. The rainbow ramsey number R R ( G i , G 2 ) exists i f  and only i f  G\ is

a star or G 2 is a forest.

Proof. We will consider four cases. The first case dem onstrates indirectly th a t if 

R R ( G \ .G 2 ) exists, then G 1 is a s tar or G 2  is a  forest. The rem aining three cases 

show the converse; case 2 serves as a lem m a for case 3.

C a s e  1 . Gi is n o t  a  s t a r  an d  G 2  is n o t  a  fo re s t  For any integer N,  label 

the vertices of Ajv with the integers 1 ,2 , . . .  , iV, and color edge i j  with color 

m in ( i , j ) .  For any color i, every edge of color i is incident with vertex i. Thus, 

any m onochrom atic subgraph must be a  star.

Suppose th a t A^v contains a rainbow subgraph isomorphic to G2 . Since 

G 2  is not a forest, it m ust contain some cycle Ck- Thus, K n  contains a rainbow 

subgraph isomorphic to  Ck- Let uj, i?2, . . .  , be the labels of the vertices of this 

cycle. We may assum e w ithout loss of generality th a t uj <  ut- for each i, 2 <  i <  k. 

B ut then by the definition of the coloring, edge VkV 1 and edge v tV2  are both colored 

w ith the same color ui- We have a contradiction; there is no rainbow subgraph 

isomorphic to G2 -

Since this m inim um  coloring may be used for any integer N ,  the rainbow 

ram sey number does not exist in this case.
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C a s e  2 . G i =  K n a n d  G 2  =  / \ j ,m fo r  so m e  p o s itiv e  in te g e rs  n a n d  m.

This case serves as a lemma for Case 3. Let

(m  — l)(" - 2Hr a - I )+2 _  i
N  =  ---------- -----------------------

m  — 2
( n —2) (m —1)+1 

1 = 0

Color the edges of f\jv with any num ber of colors. Choose an arb itra ry  vertex v t . 

If m  or more colors appear on the edges adjacent to tq, then we have a rainbow 

copy of Ki,m- Otherwise, at most m  — 1 colors appear, so there m ust be a t least

_  , (»-2Km-l)
— r  =  y .

1= 0

edges incident with v\ which are colored with the same color, say color 1. Keep 

only these edges and the vertices Wi incident with them , and ignore the rem ainder 

of the graph.

Now, choose any vertex v 2  from Wi.  Again, if m or more colors appear 

am ong the edges between v2  and the o ther vertices of Wi,  then there is a rainbow 

copy of I \ i ,m. Otherwise, at most m  — 1 colors appear, so there exists a set of at

least

( n - 2 ) ( m - l ) - l

>
171—1

t= 0

edges in the same color, say color 2 , between v2  and the other vertices of W v. 

Notice th a t colors 1 and 2 are not necessarily distinct.

Continuing in this fashion, we m ay assume that we have a sequence of 

vertices iq, v2, . . .  , U(n - 2 ) ( m - i ) + 2  such th a t every edge v.;Vj, for 1 <  i < j  < 

(n — 2 )(m  — 1 ) +  2 , is color z, where the colors i and j  are not necessarily distinct 

for i 7̂  j .  If m  or more of these colors, say colors zl7Z2, ---  ,im i are  distinct,
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then vertex U(n- 2)(m-i)+2 is the central vertex of a  rainbow K i <m, with endvertices 

utI,u,2, . . .  , utm. Otherwise, there are a t most m — 1 distinct colors appearing in 

this subgraph. Thus, of the (n — 2)(m  — 1 ) +  1 colors appearing, there m ust be 

a set of at least n — 1 colors which are identical, say =  i 2  =  . . .  =  i’n- i-  In 

this case, the subgraph generated by the vertices u,-,, ux2, . . .  , u,n_ 1 and the vertex 

n(n-2)(m-i)+2 is a  monochromatic com plete subgraph of order n.

Case  3. G\ =  K n a n d  G 2  is a  t r e e  o f  o r d e r  m  fo r so m e  in te g e rs  n a n d  m

We will proceed by induction on the order m  of the tree. Since a tree of order 

2 or 3 is necessarily a star, the base case is included in Case 2 .

Suppose for some integer m  th a t the rainbow ramsey num ber R R ( K n , T)  

exists for any tree T  of order m  — 1. Let T '  be a tree of order m  with an endvertex 

v adjacent to  a vertex u. Let R R ( K n, T '  — {u}) =  M . From case 2, we know th a t 

the rainbow ram sey num ber R R ( I \n, exists; suppose it is N.

Consider the complete graph K n m  ° n N M  vertices. Suppose the edges 

are colored arb itrarily  with any num ber of colors. We may divide the vertices of 

fCvw into N  disjoint sets of M  vertices each. The subgraph generated by each 

set of M  vertices must contain either a monochromatic copy of K n or a rainbow 

copy of T 1 — v.  If any monochromatic copy of K n appears, we are done, so we 

may assume th a t we have iV rainbow copies of T ’ — v. Let Ui,u2,.  ..u jv  be the 

corresponding copies of the vertex u. Now, the graph generated by the m  m ust 

contain either a monochromatic copy of I \ n or a rainbow copy of If it

contains a m onochrom atic A'n, the proof is complete. Suppose u t- is the central 

vertex of a rainbow copy of i- One of the m  — 1 different colors in this s ta r

must be different from any of the m  — 2  colors appearing in the zth rainbow copy
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of T '  — {u}. Thus, we m ay add the  edge in this color to  th e  ith  rainbow T '  — {u} 

to produce a rainbow copy of T ' .

Since the rainbow ram sey num ber exists when Gi is com plete and G2 is a 

tree, Lemma 1 implies th a t it exists for any graph G 1 provided G 2  is a  forest.

C a s e  4 - Gi =  K ltn a n d  G2 =  K m fo r  s o m e  p o s it iv e  in te g e r s  n  a n d  m  For

convenience in what follows, we will use the falling factorial  notation. If m  is an 

integer, the falling factorial

mSk  ̂ =  m ( m  — 1 ) . . .  (m — k  -f 1) =
ml

(m — A;)!

Notice that m W behaves asym ptotically  like m k.

Choose the integer N  so th a t

N  > 3 +  +  (8)s
and color the edges of K n  arb itrarily . Assume th a t there  is no monochromatic 

copy of /vl n in K n - We will show th a t there  m ust be a  rainbow copy of K m. 

Notice that the to ta l num ber o f  different copies of K m in K n  is (^ )-

We wish to bound the num ber of copies of K m th a t are not rainbow. First, 

consider the num ber of copies o f K m th a t contain two adjacent edges, say uv and 

uw,  which are the sam e color. T here  are N  choices for the  vertex u. Suppose there 

are a, edges of color i incident w ith  u, where 1 <  i <  k.  Then a i  —  N  —  1 ,

where 1 <  a, <  n — 1 for each i ,  and the num ber of different choices for v and w 

is ( 2')- T he m axim um  occurs when each a,- is cis large as possible, so there

are at most

( 7 V - l ) / ( „ - 1)
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choices for v and w. Then there are ( ^ 3) choices for the rem aining vertices of 

K m. Thus, there are a t most

w A W » - A / W - J \
n-1 V 2 J  \ m  — 3/

copies of K m of this type.

Now, consider copies of K m in which two nonadjacent edges are the same 

color. There are (^ ) choices for the first edge, and N  — 2 ways to choose an 

endpoint for the second edge. This vertex is incident with no more th an  n  — 1 

edges which are the same color as the first edge and not adjacent to th a t edge.

Since neither the order in which the edges are  chosen nor the order in which the

endpoints of the second edge are chosen is im portan t, we are counting each pair of 

edges a t least 4 times this way. Thus, there are a t most N ( N  — l ) ( N  — 2){n — l ) / 8  

ways to  choose two nonadjacent edges of the sam e color, and (^ I^ ) ways to  choose 

the rem aining vertices of K m. The edge-colored copy of K ^  can contain a t most

N ( N  -  l ) ( N  — 2)(n -  1) / N  -  4 \
8  \m  — 4y

copies of K m of this type.

Thus, there are a t most
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N  -  1 / n  3 \  N ( N  — l ) ( N  — 2)(n — 1) /W  -
n  — 1 \  2 /  \m  — 3 /  ^  8 \m  —

-0
- 4  

4
(n — 2 )m(3) (n — 1 )m  

I 2 ( N - 2 )  +
-  i W 3)

3) +

8 (JV — 3)
(n — l)m*4)

8 ( i V - 3 )  
(n — 1 )(m  +  1)*4) 

8 (iV — 3)

/JV \ f ( n - l ) ,
V ^ / L 2 ( ^ - 3 )  ' 8 ( i V - 3 )

_  (n — l)m*3)(4 +  m — 3)

■  C) 
= 0

nonrainbow copies of K m in AV, which means th a t there must be at least one 

rainbow copy. The last inequality follows from equation 8 .

We know from Lemma 1 that since the rainbow ramsey num ber R R ( I \ i <n, I \m) 

exists, the num ber R R ( I \ \ tn, G2 ) also exists for any graph G 2  of order m. □

This proof im m ediately produces the upper bounds
( n - 2 ) ( m - l ) + l

R R { K n, K Um) <  ^  (m — 1)*
t= 0

m — 1 / ( n - 2 ) ( j - l )  +  l

R R ( K n,T m) <  I I  H
j = 2  \  i =  1

(n — l)(m  +  l)^4̂R R ( k \ nJ<m) < 3  +
8

where Tm is an arb itrary  tree of order m . The second bound can be improved. 

In Case 3, we actually  only need (m — l ) ( N  — I) + M  vertices to force N  = 

R R ( I \ n, I \ copies of T  — {u}. We can force the copies of T  — {u} one at a 

time, removing the vertices of one copy before forcing the next one. Thus,
<( n - 2 ) ( m - 2 ) + l  \

R R ( K n, Tm) < ( r n -  1) I J 2  ( m - 2 )‘ -  l l  +  RR(I<n, T ^ ) .
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Since R R { K n^Tz) <  n, the improved upper bound is

m —1 / ( n - 2 ) ( j - l ) + l

Y .  ( j  ~ 1)
j=3 \  .=0

Rainbow ramsey numbers also have a  strong relationship with generalized 

ram sey num bers, as the following theorem  illustrates. In the theorem , r (G : m  — 

1) =  r(G , G , . . .  , G), the generalized ram sey num ber for a m onochrom atic graph 

G when a  com plete graph is edge-colored w ith m  — 1 colors.

T h e o re m  1 0 . For any positive integer m  > 2 and any graph G,

r(G ; m — I) <  R R (G , m l \ 2 ) <  r(G ; m  — 1 ) +  2(m — 1).

Proof. For the lower bound, suppose N  = r ( G \ m  — 1). Consider a  coloring of 

A-v-i with m — 1 colors th a t does not contain any monochromatic copy of G. 

Since the graph is colored with fewer than  m  colors, it also cannot contain any 

rainbow copy of m / \2. Thus, R R ( G ,m I \ 2 ) >  N-

For the upper bound, let M  =  r(G ; m  — 1) +  2(m — 1). Consider any 

coloring of the edges of K m . If fewer than  m  — 1 colors are used, then  there 

m ust be a monochromatic copy of G. Choose an edge in, say, color 1, and remove 

the two vertices incident with this edge. If fewer than m — I colors are used 

on the  rem aining /va/_2, there must be a  m onochrom atic G; so there m ust be 

some edge in a  color other than 1. Remove th e  vertices incident with th is edge. 

We m ay repeat this argum ent until we have removed the vertices incident with 

m  — 1 independent edges in m  — 1 different colors, leaving a complete graph on 

r (G ; m  — 1) vertices. If the complete graph induced by these r(G ; m  — 1 ) vertices 

is edge-colored with m — 1 or fewer colors, then  it contains a m onochrom atic copy 

of G. Otherwise, it contains at least m colors, including a  color distinct from the
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colors used on the m — 1 edges already removed. In tha t case, we have a  rainbow 

copy of mK'i- Thus, R R ( G , m K 2) <  M.  □

2.2 Lower Bounds

The preceding existence proof provides rough upper bounds on the  rainbow 

ram sey num bers. In this section, we will present some general lower bounds.

T h e o re m  1 1 . For any positive integers n > 3 and m  >  3 and any tree Tm o f  

order m,  R R ( K n ,T m) > (n — l )771-2 +  1.

Proof. Let N  =  (n — l)771-2. We may view the vertices of I \ n  as represented by 

the set of (m  — 2)-tuples whose entries are elements of { 1, 2 , . . .  n — 1 }. Color 

the edge between two (m — 2 )-tuples with color i if the first position in which 

their entries differ is position i. Since only m — 2 colors are used, no subgraph of 

K n  can form a rainbow Tm. Suppose any n different vertices are chosen. Let j  

be the  index of the first entry in which some pair of these (m — 2 )-tuples differs. 

Thus, the first j  — 1 entries are identical for all n vertices. Now, some pair of 

these vertices differ in the j t h  entry, bu t since there are only n — 1 choices for 

this entry, some pair must be th e  same in the j th entry. Thus, at least one edge 

is color j  and a t least one edge is a color strictly  greater than j .  These vertices 

cannot form a m onochromatic K n. □

We can obtain an alternative lower bound by generalizing the  proof of 

E rdos’s bound r ( n , n )  > [2n/ 2J in Theorem  3.

T h e o re m  1 2 . For any positive integers m  a n d n  which satisfy A < m <  (n !)2/̂ n+2) +  

2, and any tree T  o f  order m ,  the rainbow ramsey number

R R ( K n , T ) >  [(m — 2)n/,2J.
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Proof. Let N  =  [(m — 2)"/,2J. If we color the edges of K n  with m  — 2 or fewer 

colors, there are (m — 2 ) N ^ N ~ 1 ^ 2  different colorings. For any set of n  vertices, there 

are (m  — 2 ) N ^ N ~ l ^ 2 ~ n ^n ~ 1 ^ 2  different colorings of K ^  in which these n  vertices 

form a monochromatic K n in color 1. Thus, the number of nonidentical colorings 

of Aryv which contain a monochromatic K n in color 1 is at most

^  ( m  _  2 ) ^ ( ^ - U / 2 - n ( n - l ) / 2

<  — {m -  2 ) ' V ( * - l ) / 2 - n ( n - t ) / 2

<  (m — 2 )/V(;V — 1 ) /2 (m -  2 ) n '|1 /2

. (n !)2 .
<  — 1— (rrz _  2 )^(^v-D /2

m -  2

where the last inequality holds because m  <  (n\) 2 Rn+2) + 2 . Since the  same argu­

ment holds for each of the m  — 2 colors, there are strictly  less than (m  — 2 ) N ( ' N ~ 1 ^ 2  

colorings of K which contain a m onochromatic subgraph on n vertices. There 

m ust be some coloring with no such subgraph. Since only m  — 2 colors are used, 

this graph also cannot contain a rainbow subgraph isomorphic to T .  □

We should note here tha t the condition m  < (rz!)2̂ n+2  ̂ +  2  is not unrea­

sonable. For n > 8 , (n!)2/(n+2) >  n, so the bound above holds for m  < n + 2.

T h e o re m  13. For any integers n >  3 and m  >  3, the rainbow ramsey number

(n — 1 ) ^ m2- 7n~2^ _j_ 2 i f  n is odd or m  =  0 o r  1 (mod 4 )

(n — 1 ) ^ m2~2m~2^ +  1 otherwise

Proof. Let N  = (n — 1 ) ^ m2~rn~2^ +  i. if n |s odd, then factor Kw  into (./V — 1 )/2  

ham iltonian cycles. Color (n — l ) /2  of the ham iltonian cycles w ith each color. 

The resulting graph contains no m onochromatic K i <n and strictly fewer than  (™) 

colors.

R R { K i t n , K m) >
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Assume that n is even.. If m =  0,1 (mod 4), then N  is even. Thus, Ajv 

can be 1-factored, and n  — 1 I-factors colored with each color. If m  =  2,3 (mod 

4), then let N '  = (n — I) Since N'  is even, the complete graph K n '

can be decomposed into (n  — 1 ) — 1 1-factors. Color (n — 1) 1-factors

with each color except for the last and color (n — 2 ) 1-factors in the last color to 

obtain a coloring with no monochromatic and no rainbow K m- □

2.3 Stars

In the simplest case, when both graphs are stars, we have the following 

closed formula for the rainbow ramsey number.

T h e o re m  14. The rainbow ramsey number R R ( K i iTIi K i >m) =  (n — l ) (m — 1) + 2 .

Proof. Suppose the edges of /v(n_ 1)(m_i )+2 are colored with any number of colors. 

Consider any vertex v. Then there are (n — l ) (m — 1) +  1 edges incident with 

v, so either m  or more different colors appear on these edges, or some set of n 

of these edges are the same color. Thus, we have either a rainbow K i,m or a 

monochromatic K ltn.

We must also show th a t /v(„_i)(m_i)+i may be colored so that neither graph 

appears. If (n — l ) (m — 1) +  1 is even, then A ^n-i^m -ij+i can be factored into 

1-factors. There are (n — l ) ( m — 1) of these 1-factors; color n — 1 of them  with 

each color to obtain a coloring with no m onochromatic A'i,„ and no rainbow K\^m.

If (n — l ) (m — 1 ) +  1 is odd and n — 1 is even, then A'(n_ 1)(m _ l )+1 can be 

factored into (n — l ) (m — l ) / 2  ham iltonian cycles. Color (n — l ) /2  of these cycles 

with each color to obtain the desired coloring.

Finally, i f (n — l ) (m — 1) +  1 is odd and n — 1 is also odd, color A'(n_i)(m_!)+ i
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as follows. For convenience, set N  = ( n — l ) ( m  — 1) + 1 .  Label the vertices of K n 

by {x} U f <  m — 1,1 <  j  < n  — 1}. For each i, w ith 1 <  i < m  — 1, color

the  edges of the complete graph induced by {x, ut>1, u,-,2, . . .  w ith color i. For

each i and  j  with i 7̂  j ,  color the edges jo ining the vertices {u,,i, ^i,3i • • • uf.n-i}

with th e  vertices {uy.i, vj<2, V j j , . . .  Uj,n_ i} w ith some new color. Thus, the edges 

in any given color induce a subgraph isom orphic to  either I \n or ATn_i,„_ i, neither 

of which contain A'i>n. Exactly m  — 1 colors appear a t each vertex, so there is no 

rainbow K i>m. □

2.4 Rainbow Ramsey N um bers and M atchings

W e will call a 1-regular graph a matching.  Notice th a t any 1-regular graph 

consists o f n disjoint copies of the com plete graph on 2 vertices, for some integer 

n. Such a  graph is commonly denoted by n l \ 2 -

In  Theorem  5, Cockayne and Lorim er presented a  form ula for the  standard 

ram sey num ber for such graphs:

C

r ( n i K 2 , n 2 K 2, ■ ■ . n cI \2) = n v +  1 +  — 1. (9)
i=i

In particu lar, if nj =  n 2 =  . . .  =  nc, we have 

C o r o l la ry  1 . I f  n  is any positive integer, then

r{nl<2, n l \ 2, . .. n l < 2 ) =  (c +  l ) (n  — 1 ) -}- 2

A graph colored with c or fewer colors cannot possibly contain a rainbow 

copy of (c  +  1)I<2. If the graph is colored w ith c +  1 or more colors, then such a 

subgraph is possible. Thus, taking m  =  c +  1,

R R ( n K 2 , m K 2) > r (n K 2 , n K 2, . . .  n K 2) =  m(n  — 1) +  2 •
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We may easily see the inequality R R ( n K 2 , m K 2) >  m (n  — 1) +  2 directly. 

Color the graph /vm(n-i)+i as follows. Color all of the edges of a subgraph iso­

morphic to  K 2n- \  with color 1.  Choose n  —  1 additional vertices and color all 

of the edges among these vertices and between these vertices and those already 

colored w ith color 2. For each color i =  3 , 4 , . . .  m  — 1, choose n — 1 additional 

vertices and color the edges among those vertices and between those vertices 

and the part of the graph already colored with color z. T he resulting graph has 

2n —l +  ( m —2 )(n —1 ) =  m (n —1 ) +  1 vertices and contains no set of n independent 

edges in the  same color. Since only m  — 1 colors appear, it also cannot contain a 

set of m independent edges in different colors.

In the case when m  =  n, Bialostocki and Voxman showed th a t this in­

equality is in fact an equality, in Theorem  8 .

We suspect th a t their result can be generalized as follows:

C o n je c tu re  1. For every pair o f  positive integers n and m ,  where n > 3 and  

m  >  2 .

R R ( n K 2 , m K 2) =  m (n  — 1 ) +  2 .

F irst, we handle several trivial cases. Any graph w ith at least one edge 

must contain both a m onochromatic and a  rainbow K 2, so R R ( K 2 , m K 2) =  

R R ( n f \ 2l K f )  = 2 .  If a graph contains at least n independent edges, then  ei­

ther two of the edges are different colors or all of them  are the  same color. Thus, 

R R { n K 2i 2 /V2 ) =  2n.  Similarly, if a  graph contains a t least m  independent edges, 

then it m ust contain either a rainbow m K 2 or a  m onochrom atic 2K 2. However, 

a graph w ith fewer than  2 m vertices could be colored with every edge a  different 

color to avoid these two graphs. Therefore, R R ( 2 K 2 , m K 2) =  2m.
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Bialostocki and Voxman’s proof can be adapted to show Conjecture 1 in 

the case m  <  n.

T h eorem  15. For any two positive integers n  and m ,  where 2 <  m  < n,

RR(nA' 2 ,m A ' 2 ) =  m (n  — 1 ) +  2 .

Proof. We will proceed by induction on m . The formula holds when m  =  2, as 

discussed above. For some m > 3, suppose the edges of /vm(n_ lj+2 are colored 

with any number of colors. If fewer th an  m  colors are used, then we may apply 

Corollary 1 with c =  m  — 1 to see th a t some monochromatic copy of n K 2  m ust 

appear. Thus, we may assume w ithout loss of generality th a t a t least m  colors 

are used.

Choose one edge of each of m different colors that appear in such a  way 

th a t the number of independent edges in this set is maximal. Let H  represent 

these edges and let V (H )  represent th e  vertices incident with these edges. If 

|V(H)\  =  2m, then we have a rainbow copy of m l \ 2  and we are done. Assume 

th a t \V(H)\  <  2m -  1.

Let M  =  V(I \m (n- 15+2 ) — V{H).  If there is any color which appears in the 

graph induced by M  and not in H,  then the  num ber of independent edges in H  is 

not maximal, which contradicts our choice of H.  If every color which appears in 

H  also appears in M , then we may choose some color in H  which does not appear 

on an independent edge and replace th a t edge with an edge of the same color in 

M  to produce a  set of representatives of the  colors with more independent edges 

than H. Again, th is contradicts our choice of H.  Thus, the colors appearing in 

M  must be a proper subset of the set of colors appearing in H.
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Since m  < n, the set M. contains a t least

\M\ >  (n — l)m  +  2 — (2m — 1)

=  nm  — 3m +  3 

>  nm  — 2m — n +  1 +  3 

=  (n — 2)(m -  1) +  2

vertices. Therefore, by the inductive hypothesis, the subgraph generated by M  

contains either a monochromatic copy of (n —1 )/\2 or a  rainbow copy of (m  — 1)A'2. 

Since H  contains one edge of each color appearing in M  and a t least one edge of 

a color not appearing in M, we m ay add an edge from H  to the subgraph in M  

to produce either a monochromatic n A 2 or a rainbow m/v'2. □

Next we will show that the sam e formula holds for m  = n +  1. Two of the 

sm aller values m ust be shown separately.

T h e o re m  16. The rainbow ramsey number  /2/2(3/if2,4/\"2) =  10.

Proof. By the coloring described previously, we know that /2/2(3A'2, 4 K 2) > 10. 

Suppose the edges of A'io are colored with any num ber of colors. Consider any set 

of 5 independent edges, say ab, cd, e / ,  gh  and i j .  If 4 or more colors appear, or if 

some color appears at least 3 tim es, we are done. W ithout loss of generality, we 

may assume th a t the edges ab, cd, e / ,  gh  and i j  are colored with colors 1,1, 2,2, 

and 3, respectively.

Notice th a t if color 3 is used on any of the edges ac, bd, ad, be, then it cannot 

be used on any of the edges eg, f h ,  eh, f g  w ithout creating a m onochrom atic 3 A 2 

in color 3. Thus, we may assume th a t this color appears on at m ost one of these 

sets of four edges. Assume without loss of generality th a t color 3 does- not appear
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on the edges ac, bd, ad, be. Notice th a t color 2 cannot appear on these edges 

either w ithout creating a m onochromatic Z K 2-

C a se  1 . O n e  o f  th e  e d g es  ac, bd, ad, be is so m e  new  co lo r. Suppose 

without loss o f generality th a t ac is a new color, color 4. Since ac, bd, e f ,  and i j  

are independent edges, edge bd must be one of the colors 2,3 or 4, or else we have 

a  rainbow 4 K 2.

We m ay assume th a t bd is color 4. If the edge ce is any color except 2 or 

3, then we have a rainbow 4/^2, using e ither ab or bd along with ce, gh, and i j .  

Similarly, we m ay assume th a t d f  is colored either 2 or 3. If ce and d f  are the 

same color, then  together with either gh or i j  they  form a monochromatic ZK2. 

Thus, w ithout loss of generality, ce is color 3 and d f  is color 2.

By the  sam e argum ent, one of the edges ag and bh is color 2 and the other 

is color 3. However, we now have 3 l\ 2  in color 3.

C a se  2 . T h e  e d g e s  ac, bd, ad, be a r e  a ll  c o lo r  1 . If any edge from the set of 

vertices a, b, c, d to the set e, f , g ,  h is a  new color, then we have a rainbow 4 K 2.

Consider the edges ae, eg, bf,  and dh,  colored in the three colors 1,2 ,3 . If 

color 1 appears twice, then we have ZI\ 2  in color 1. Similarly, if color 3 appears 

twice, we have a  monochromatic ZK2. If color 2 appears twice incident with e f  

or twice incident with gh,  then we have 3/\2 in color 2. We may assume th a t 

color 2 appears twice, once incident with th e  edge e f  and once incident with gh.  

W ithout loss o f generality, edges ae and eg are  color 2, edge b f  is color 1 and edge 

dh is color 3.

Consider edge ai. If this edge is in some new color, then ai, eg, b f  and dh 

form a rainbow 4 I \ 2. If it is color 1, then it forms a m onochromatic ZK 2 along
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with b f  and cd. If it is color 2, then it forms a  m onochrom atic 3K 2  along with e f  

and gh. Thus, we m ay assume without loss of generality that edge ai is color 3. 

Similarly, we m ay assume th a t edge cj  is color 3. B ut then edges a i , cj  and dh 

form a m onochrom atic 3 K 2■ □

T h eorem  17. The rainbow ramsey number R R ( 4 I \ 2, 5 K 2) =  17.

Proof. The lower bound follows from the coloring discussed previously.

Suppose th a t the edges of I \ n  are colored with any number of colors. If 4 

or fewer colors are used, then by Corollary 1, th e re  is a monochromatic subgraph 

isomorphic to AK2. Thus, we m ay assume th a t a t least 5 colors are used.

Since R R ( 4 K 2 , 4 K 2) =  14 <  17, we may also assume without loss of gener­

ality th a t there is a  rainbow subgraph isomorphic to  4 K 2\ we will label the colors

1, 2, 3, and 4. Some color 5 m ust appear som ew here in the graph. If color 5 

appears on an edge independent from the edges of the  4 / \2, we are done.

Suppose an edge of color 5 appears incident w ith two of the edges of the 

4K2. as shown in Figure 1. Since R R (3 K 2 , 3 K 2) =  8 <  9, there must be either 

a m onochrom atic or a rainbow 3 K 2  on the rem aining 9 vertices. If there is a 

m onochromatic 31\ 2 in some new color, then we have a  rainbow o K 2  in colors 1,

2, 3, 4, and this new color. If there is a m onochrom atic 3K 2  in one of the colors 

1, 2, 3, 4, or 5, then  we may add the appropriate edge to obtain a monochromatic 

4A'2. Thus, we m ay assume wlog th a t there is a  rainbow 3 K 2, necessarily using 

three of the four colors 1, 2, 3, and 4. In particu lar, there is an edge in color 3 or 

an edge in color 4, so, up to interchanging colors, we may assume th a t we have a 

subgraph as shown in Figure 2.

Let N  = V ( I \ n )  — {a, b, c, d, e, f , g ,  h, z}. If N  contains an edge in any 

color o ther than  1, 2, and 3, then we have a  rainbow 5K 2. Since =  8 =
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Figure 1. Possible Location for Edge of Color 5 in Theorem 17.

cf1 cJ
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Figure 2. O ther Possible Location for Edge of Color 5 in Theorem 17.
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R R (3 K 2 , 3 K 2), there  m ust be either a m onochrom atic 3 A 2 in color 1, 2, or 3 

or a rainbow 3/v2 on colors 1, 2, and 3 on N.  If N  contains a monochromatic 

3AT2, then we have a  m onochromatic 4 K 2  in the original graph. Thus, we may 

assume th a t N  contains three independent edges in colors 1, 2, and 3, respectively. 

The rem aining independent edge in N  must be color 1, 2, or 3, say wlog color 1. 

W ithout loss of generality, we have the graph shown in Figure 3.

Let M  =  V'(A'17) — {<z,b,c}. Since [;V/[ =  14 =  R R ( 4 K 2 , 4 K 2), we may 

assume wlog th a t M  contains a rainbow 4 I \2. If th is  4/^2 does not contain an 

edge of color 4 and an edge of color 5, then we m ay add  edge be or edge ab to 

obtain a  rainbow 5 K 2- Thus, we may assume th a t an edge of color 4 and an edge 

of color 5 appear in M .

If the color 4 edge appears anywhere in M  besides the edges ng, n f ,  og, 

of ,  pd, pe, qe, an d /o r  qd, then we have a rainbow o I \2. W ithout loss of generality, 

we may assum e th a t edge ng  is color 4.

Consider edge op. If op is color 1, then we have a 4 K 2  in color 1. If op is 

color 2, 4, or 5, or some new color, then we have a rainbow  5 K 2. Thus, op must 

be color 3. Similarly, oq, oe, od, fp ,  fq ,  f e , and f d  m ust all be color 3.

Consider edge qd. If qd is color 1, we have a m onochrom atic 4A'2 in color 

1; if qd is color 2, 4, or 5, or some new color, then we have a rainbow 5A'2. Thus, 

qd and, sim ilarly, edges qe, pe, and pd must all be color 3.

Now, if any edge on the vertices h, i , j ,  k, I, and m  is color 3, we have a 4A 2 

in color 3. If any one of these edges is color 2, 4, or 5 o r some new color, then we 

have a  rainbow 5AT2. Thus, we may assume tha t vertices h , i , j , k , l ,  and m induce 

a complete graph in color 1.

Finally, consider the six edges hd, ie, j f ,  ko, Ip, and mq.  If two or more
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Figure 3. Subgraph Which Must Exist, W LOG, in Theorem 17.

of these edges are color 1 or if two or more are color 3, then  we have a monochro­

m atic 4A'2. If any one of these edges is color 2, 4, or 5, or a  new color, then 

we have a rainbow 5/\2- There are no other possibilities; we must have either a 

m onochromatic 4 / \ 2 or a  rainbow 5/\2- □

The proof for n >  5 and m  =  n +  1 actually shows a slightly more general 

case. First, we will need a  few technical lemmas.

L e m m a  2. Assume that R R ( n K 2 i (m  ~  1 ) ^ 2) =  (m  — l ) (n  — 1) -f 2. Suppose 

Km(n- 1)+2 is edge-colored with any number o f  colors. Then either K m(n- i ) + 2  con­

tains a monochromatic n l \ 2  or a rainbow m / \ 2 , or any set o f  independent edges 

in a given color can be extended to a set o f  independent edges in that color.

Proof. Suppose there is a  set of k  independent edges in the  same color, say color
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1. Let M  be the set of 2k  vertices incident with these edges. If

2k < m (n  — 1 ) +  2 — R R ( n K 2, {m — \ ) K 2)

=  m (n  — I) -f 2 — [(m — l )(n — 1) +  2]

=  n -  1 ,

then we may assume th a t there is either a monochromatic n K 2 or a rainbow 

(m — 1)K 2  on the rem aining vertices. If the rainbow (m — 1 )K 2  does not contain 

color 1, then we may add an edge in color 1 to produce a rainbow m K 2 . Otherwise,

the rainbow (m — l ) I \ 2  contains an edge in color I independent from the edges

in M . We may add the vertices incident w ith this edge to M  and repeat the 

argum ent. Continuing in this fashion, we can extend the set M  until \M\  =  2 k, 

where 2 k  > n — 1, th a t is, until k > (n — l ) /2 .  □

We will prim arily use this lem m a in the following form.

C o ro lla ry  2. Assume R R ( n K 2, (m — 1 ) / ^ )  =  (m  — l ) (n — 1) +  2 and n >  5. I f  

Rm(n-1)+2 is edge-colored with any number o f  colors, then either the graph contains 

a monochromatic n K 2  or a rainbow m K 2, or any edge or pair o f  independent edges 

in a single color can be extended to a set o f  three independent edges in that color.

L e m m a  3. Assume that R R ( n K 2 , p K 2) =  p(n — 1) +  2 for  every positive integer 

p < m .  Suppose / \ m(n—1)+2 is edge-colored with any number of colors and suppose 

the resulting graph does not contain either a monochromatic n K 2  or a rainbow 

m f \ 2. I f  M  is a set o f  vertices and S  is a set o f  c colors, c > 1, such that

(I) there is a set o f c independent edges on the vertices o f  M  containing an edge 

in each color o f  S  and
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(2) \M\ < c(n — 1),

then there is an edge in / \ 'm(n _ 1)+2 independent o f  M  colored with one of the colors

o f  S.

Proof. Let M  be such a set. Since

\M\ < c(n  — 1 )

=  (m (n  — 1 ) +  2 ) — ((m — c)(n — 1 ) + 2 )

--- (m (n  — 1) +  2) — R R ( n K 2, (m  — c )K 2),

the rem ainder of the graph m ust contain either a m onochrom atic n K 2 or a rainbow 

(m — c ) K 2 . If none of the colors of S  appear in the rainbow (m — c)A2, then it 

can be extended to a rainbow m K 2. Thus, we may assume th a t there is a rainbow 

(m — c)I< 2 independent from M  containing an edge in one of the colors of S.  □

We are now ready to  prove the main result. Notice th a t for n > 5, we have

n 4- 1 <  | ( n  — 1).

T h eorem  18. For n > 5 and  2 <  m <  |( n  — 1), the rainbow ramsey number

R R ( n  I\ 2  , m  I \2) =  m (n — 1 ) +  2

Proof  We proceed by strong induction on m , using Theorem s 8 and 15 as the 

base. Thus, we assume th a t the formula holds for R R ( n K 2 , p K 2 ) for all p < m  

and that m  > n > 5. Suppose A'm(n_i)+2 is edge-colored with any num ber of 

colors. Since m (n  — 1) +  2 > (m — l ) (n  — 1 ) +  2 =  /Z/J(n/v2,(m  — 1)/G ), we 

may assume w ithout loss of generality th a t there is a rainbow (m — 1 )K2, say in 

colors {1, 2 , . . .  m — 1}. Now, since m  < 2(n — 1), it follows th a t there are at least 

m (n — 1 ) +  2 — 2(m — 1) >  (m  — 2){n — 2 )+  2 =  R R ((n  — 1)K 2, (m  — 2 )/f 2 ) vertices
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remaining. If a m onochrom atic (n — 1 ) ^ 2  appears in a new color, then we may 

add an edge in this new color to the rainbow (m — 1 )K 2  to produce a  rainbow 

m K 2. If a m onochrom atic (re — 1 ) K 2 appears in one of the colors 1 , 2 , . . .  m — 1 , 

then this subgraph along with the appropriate edge from the rainbow  (m — l ) /v2 

yields a m onochrom atic n K i .

Thus, we m ay assume without loss of generality th a t a rainbow  (m — 2)K 2  

appears, independent from the (m — l ) K 2. If any new color appears on this 

(m — 2 ) I \2, then we have a rainbow m K 2. Thus, without loss of generality, we 

may assume th a t th e  (m — 2 ) / \ 2  is colored with colors 1 , 2 , . .  . m  — 2 .

S i n c e m <  (3/2)(re —1 ), there are a t least m(re —1) + 2 —2 ( m — 1 )—2 (rre—2 ) >  

(m — 3)(re — 3) -f- 2 =  R R ((n  — 2)/v2, (m  — 3 )K 2) vertices rem aining. If there is a 

m onochromatic (re — 2 )K 2  on these vertices in one of the colors 1 , 2 , . . .  m  — 2 , then 

we have a m onochrom atic n l \ 2. If, on the other hand, there is a  m onochrom atic 

(re — 2 )/v2 or a  rainbow (m — ^ ) K 2  containing some new color, then we have a 

rainbow m l \ 2. Thus, we may assume, w ithout loss of generality, th a t we have one 

of the following th ree cases.

C a se  1  T h e re  is a  m o n o c h ro m a tic  (re — 2 )K 2 in  co lo r  m  — 1 . Label 

the vertices as shown in Figure 4, so th a t edges U{V{ and W{Xi are color i for

1 <  i < m  — 2 .

From corollary 1, if only rre — 1 colors were used to color the edges of 

/v'm(n_!)+2, then there m ust be a  m onochrom atic n l \ 2. Thus, we m ay assume th a t 

there is some new color, say color m, appearing on these vertices. According to 

corollary 2, we m ay also assume th a t this color appears on a t least 3 independent 

edges. If any edge in color m  is not an edge u,X{, V{Wi o r u.-rr, for some i,
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Figure 4. Case 1 of Theorem 18.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 <  i <  m  — 2, then we have a rainbow m K 2. At most 2 of the 3 independent 

edges in color m  can appear incident with and x, for any given i. Thus,

we m ay assum e without loss of generality th a t edges viWi and v2 w2  are color m.

We will proceed by induction. Let

M < i  =  { u j . V j . W j . X j |1 < j  < z}

Then the  graph induced by M < 2  contains a pair of independent edges in any two 

of the th ree  colors 1, 2 , and m, that is, it contains two independent edges in colors 

1 and 2 , two independent edges in colors 1 and m , and two independent edges in 

colors 2  and m.

Suppose, for any z, 1 <  i < m —2, th a t the graph induced by M<, contains a 

set of i independent edges in any i of the colors 1, 2 , . . .  z, and m.  Since |A/<, | =  4z, 

we may apply lem m a 3 with c = i and S  =  {1 , 2 , . . . z}.  Since n >  5, we have 

4z <  c(n — 1 ). Thus, there must be some edge independent from M<, in one 

of the colors 1,2, . . . i .  If this edge is not UjWj, u j x j , vjwj  or vjxj  for some j ,  

where i < j  < m  — 2 , then we have a rainbow m.K 2  using this edge in, say, color 

k, a m atching on M<, in the colors {1 , 2 , . . .  z, m} — {/:}, and a matching in the 

rem ainder of the graph in colors z +  l , z + 2 , . .  . m  — 1 . Thus, we may assume without 

loss of generality th a t the new edge in color k, I < k  < i, is the edge u1+iu;,-+1. Let 

C be any subset of z -f 1 colors from the set { 1 , 2 , . . .  z +  1, m}. If C  contains color 

i +  1, th en  the graph induced by M<1+1 contains a set of independent edges in the 

colors of C , since M<x contains a set of independent edges in colors C — {z +  1}. If 

C does not contain color z +  1, then C  =  { 1 , 2 , . . .  z,m }. Since the graph induced 

by M<i contains a  set of independent edges in colors {1,2, . . . z ,  m} — {A;}, the 

graph induced by A/<,+i contains a set of independent edges in the colors of C .

Continuing inductively, we may assum e th a t A/ < m_2 contains a  set of m  — 2
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independent edges in any  m —2 of the colors { 1 , 2 , . . .  m —2, m}. If we apply lem m a 

3 with c =  m  — 2 and S  = {1, 2 , . . .  m  — 2}, then  we m ay assume that there is an 

edge independent from Af<m_2 in one of the colors 1 , 2 , . . .  m  — 2 . Then this edge, 

say in color k , an independent edge in color m — 1 , and a set of independent edges 

in -/Vf< m _2 in colors {1 , 2 , . . .  m  — 2 , m} — {k}  form a rainbow m K 2.

C a s e  2  T h e re  is a  ra in b o w  (m  — 3 )K 2 n o t  c o n ta in in g  co lo r m  — 1.

W ithout loss of generality, we may assume th a t there is a subgraph as shown in 

Figure 5. As in case 1, we may assume th a t some new color, say m, appears on 

at least three independent edges. If any edge in this new color is not adjacent 

to either the edge in color m — 1 shown in Figure 5 or both of the edges of color 

m — 2, then we have a  rainbow m K 2. Since a t m ost two independent edges can 

be adjacent to the edge in color m  — 1 , we may assum e th a t a t least one edge of 

color m  appears adjacent to both edges of color m  — 2 .

Let M  be the set of vertices incident with the  edges of colors m —2 and m —1 

shown in the figure. We may apply lem m a 3 w ith  c =  2 and S  = {m  — 2, m — 1}. 

Since 6 <  2(n — 1 ) for n >  5, we may assume th a t there is an edge in color m  — 1 

or color m — 2 independent from M . If an edge in color m  — 2 appears, then  we 

have a  rainbow m l \ 2\ we may assume th a t an edge in color m  — 1 appears. Let M '  

be the set of vertices in M  along w ith the two endpoints of this new edge of color 

m  — 1 . Apply lem m a 3 to  M '  with c =  2 and S  =  {m — 2, m  — 1}, since 8 <  2 (n — 1) 

for n >  5. Thus, there m ust be another edge in color m  — 1 independent from M ' .

Now, from corollary 2, we may also assum e th a t there is an edge in color 

m  — 2 independent from the two edges in th a t color shown in Figure 5. If th is 

edge is not adjacent to the edge in color m  — 1, then we have a rainbow m K 2.
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Figure 5. Case 2 of Theorem  18.

So we may assum e th a t there is an edge in color m  — 2 adjacent to  the edge of 

color m  — 1 . Since there  are two independent edges in V ( K ^ )  — M  in color m  — 1, 

there is an edge in color m — 1 independent from this new edge in color m  — 2 . 

Consider these two edges in colors m — 1 and m  — 2, respectively, and the edge of 

color m.  If there is still a  set of m  — 3 independent edges in colors 1 , 2 , . . .  m  — 3 

on the rem ainder o f the graph, then we have a rainbow m K i.

Since we are  using three vertices of V ( K ^ )  — M , it is possible that these 

three vertices are incident with three different edges in the same color, say color 

m  — 3. Let L be the  set of vertices in M  along w ith the 6 vertices adjacent to the  

edges in color m  — 3. We may apply lem m a 3 to  L w ith S  =  {m  — 3, m  — 2, m  — 1}. 

Since 12 <  3(n — 1) for n > 5, there m ust be some edge independent from L  in 

one of these th ree colors. Observe th a t w ith this edge and the edges in L, we can
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Figure 6 . Case 3 of Theorem 18.

obtain an independent set of edges in colors m — 3, m — 2, m  — 1 and m. T here m ust 

be an independent set of edges in colors 1, 2 , . . .  m  — 4 on the vertices rem aining, 

so vve have a rainbow m / \2.

Case  3  T h er e  is a  rainbow  (m — 3)/v2 con ta in in g  color m  — 1. We may

assume th a t we have the graph shown in Figure 6 , with edges u,ut and W{Xi in 

color z, for i =  m  — 3, m — 2, m — 1.

As in th e  previous two cases, we m ay assum e that there is some new color, 

say color m , appearing on at least three independent edges. If any edge in color 

m  is not one o f the edges U(W(, UiXi, u.-io,- or u ,-a fo r z =  m — 3, m — 2, or m — 1, 

then we have a  rainbow m K 2. Since a t most two independent edges can be chosen 

from {uiWi,UiXi,ViWi,ViX{} for each z, we m ay assume without loss of generality
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that edges um_2u;m_2 and vm- iw m- i  are color m.

Let M  =  {um_2,u m_2,u;7n_2,x m_2,u m_ i,u m_i,i« 7n_ i ,x m_i}. If we apply 

lemma 3 to M  with c — 2 and S  =  {m — 2 , m  — 1}, we have some edge in color 

m — 2 o r m - 1  independent from M.  If this edge is not one of the  edges u7n_3inT7l_3 , 

um-3^m -3 i or um_3xm_3, then we have a rainbow m K 2. Assume wolog

that edge um_3u;m_3 is color m — 2 or m  — 1. Let M '  =  {u,-, ut-, u>,-, x ,|i = m  — 

3, m — 2, m  — 1}, and let 5  =  {m  — 3, m  — 2, m — 1}. According to  lemma 3, there 

is some edge in one of the colors m — 3 ,m  — 2 ,m  — 1 independent from M ' . Thus, 

there is a rainbow m K 2. □

We have seen th a t the formula

M (n A '2,mA'2) =  m (n  — 1) +  2

from Conjecture 1 holds for m < | ( n  — I). In general, for n > 2, we have

m (n  — 1) +  2 < R R ( n K 2, m l \ 2) <  2(n — l)m

The lower bound was discussed previously. Notice that the upper bound holds 

for n =  2 and for m =  1 provided n > 2. For any n >  3 and m > 2, suppose 

RR(nI \ 2 , (m — I)A"2) <  2(n — l)(m  — 1 ) and RR ((n  — 1 )K 2 , m K 2) < 2(n — 2)m. 

Consider any edge-coloring of K 2 (n-i)m. If the resulting graph does not contain a 

rainbow m l \ 2, then w ithout loss of generality it m ust contain a  monochromatic 

(n — l) /v 2. If we remove these 2(n — 1 ) vertices, there are 2(n — l)(m  — 1 ) vertices 

remaining. Thus, there is either a monochromatic n K 2 or a rainbow (m — l)/v "2 on 

the remaining vertices. W ithout loss of generality, then, we have a  monochromatic 

(n — I)/v2, say in color c, and a disjoint rainbow (m  — 1 )K 2. E ither the rainbow 

(m — I )K 2  contains an edge in color c or it does not. If it contains an edge in color
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c, then this edge along with the m onochrom atic (n  — l ) K 2  form a m onochrom atic 

n l \ 2. O therwise, an edge in color c from the (n — 1 )K 2 may be added to the 

rainbow (m — 1 )K 2  to produce a rainbow m K 2.

2.5 M atchings and Stars

Next, we consider the rainbow ram sey num ber when one of our graphs is 

a  m atching and the other is a star. In the case of a  monochromatic s ta r  and a 

rainbow m atching, the following upper and lower bounds meet to give a formula 

for an infinite num ber of param eters n  and m.  F irst, we present the lower bound.

T h eo rem  19. For any positive integers n and vn, provided that n is odd or m  is 

even, the rainbow ramsey number RR(I\ i^n, m l \ 2) > (re — l)(n i — 1) +  2. I f  n is 

even and m  is odd, then R R ( [ \ i tJl, m K 2) > (n — I)(m  — 1) +  1.

Proof. Let iV =  (n — l ) ( m — 1) +  1. If n  is odd, then  N  is also odd, and can be 

factored into ham iltonian cycles. Color (n — I ) /2  of the ham iltonian cycles with 

each color. The resulting graph contains no m onochromatic K i <n and fewer than 

77i colors.

If 7i and 77i are both even, then N  is even. In this case, K s  can be factored 

into 1-factors. Color n — 1 1-factors with each color to obtain a  coloring with 

neither a m onochrom atic K i in nor a  rainbow m K 2. If n is even and m  is odd, 

then N  — 1 is even. Thus, K ^ - i  can be factored into N  — 2 1-factors. Color n  — 1 

1-factors with each color, with only n — 2 1-factors in the last color. Again, only 

771 — 1 colors are used, and each color appears a t most n — 1 tim es a t any given 

vertex. □
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In the corresponding upper bound, we em ploy the standard  convention

tha t

if k <  2 .

T h eo rem  20. For any positive integers n and m ,  the rainbow ramsey number 

R R ( h \ n, m K 2) <  (n -  l)(m  -  1 ) 4- 2 +  "  +  ^

Proof. Let N  = (n — l)(m  — 1)4-24- (m~2 +3)- Suppose the edges of /Cv are colored 

so th a t there is no monochromatic subgraph isomorphic to K i,n. We will show that 

there m ust be a rainbow copy of m K 2. Since R R ( K i ,n, A'i.m) =  (n — l)(m  — 1)4-2, 

we m ay assum e without loss of generality th a t there is a rainbow copy of Ai,m. 

Tem porarily remove these m +  1 vertices from the graph. Notice th a t there are

(n -  l)(m  -  1 ) +  2 +  "  +  -  (m  +  1 ) >  (n -  l)(m  -  2 ) +  2 +  ”  +

vertices rem aining.

Continuing inductively for i =  m — 1, m — 2 , . . .  I ,  suppose we have (n — 

l)(z’ — 1) +  2 +  ( '~ 2+3) — RR (K \ ,n ,K \ , i )  vertices. We may assum e wlog that 

there is a rainbow copy of K lti. If we remove these i  +  1 vertices, we are left with 

(n — I ) ( z  — I )  +  2 — (i + I )  +  (‘~ 2+3) vertices. If i — n4 -2  <  0, th a t is, if t — n4-3 < 1, 

then ( t_2+3) =  Thus, there are

( n - l ) ( . - - l ) + 2 - ( i + l ) +  ( ' _ 2 +  3)

=  ( n - l ) ( i - l ) + 2 - ( l  +  l)

=  ( n - l ) ( i - 2 )  +  2 +  ( n - i - 2 )

>  (7i - l ) ( i - 2 ) + 2 + ( ! _ " +  2)
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vertices left over. If i — n  +  2 .>  0, then (,_ 2+3) =  3-> so we have

i — n + 2

( n - l ) ( i - l )  +  2 - ( i  +  l) +  £  3
j = i

t —TI+l

=  (n -  l) ( i  -  1) +  2 -  (i +  1) +  (* -  n  +  2) +  i
J  =  1

i —n + 1

=  (n — l)(z — 2 ) +  2  +  (n — i — 2 ) +  (i — n +  2 ) +  2 ^  j
j= i

i —n + 1

=  (n — l)(i — 2) +  2 +  ^ 2  J

j = i

=  (n - l ) ( « - 2 ) + 2 + ( ’ _ 2 + 2)

vertices remaining.

Thus, we may assume th a t there are vertex-disjoint rainbow copies of /\ [ , 

for i =  1, 2 , . . .  m, in which the sam e color could appear in different stars. Choose 

a collection of edges as follows. Take the edge in K i ,i- Now, one of the two edges 

in A'i,2 m ust be some new color, so take tha t edge. For each i, A'i,t contains one 

more edge than  we have previously chosen, so we m ay take an edge in some new 

color. Thus, there is a  rainbow copy of m / t2. □

Thus, we have a formula when n > m  -f 2 and n  is odd or m  is even. For 

other values of n and m, we have upper and lower bounds. It is possible that 

neither bound is sharp. For instance, for n =  m  =  3, the previous two theorems 

yield 6 <  R R ( K i 7s, 3A'2) <  9. The actual value lies s tric tly  between these bounds.

T h eo rem  21. R R ( K i , 3, 3 / \2) =  7.

Proof. Figure 7 shows a coloring of /v6 containing neither a  monochromatic K l t 3  

nor a rainbow 3/f2.
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Figure 7. Coloring of I\ 6  Showing RR(  A'i,3, 3A' 2 ) >  7.

Suppose the edges of K 7  are colored so that no m onochrom atic A”li3 ap­

pears. Take out any edge ab. From Theorem  20, we know th a t R R ( K i t3 , 2A'2) <  o, 

so we may assume w ithout loss of generality th a t there are two independent edges 

in different colors, say colors 1 and 2, on the remaining 5 vertices. If the edge we 

removed is in a color other than color 1 or 2, then we are done. We m ay assume 

tha t we have three independent edges ab, cd, and e / ,  colored with colors 1 , 1, 

and 2 respectively. Let x  be the other vertex. If any one of the edges ax, bx , 

cx, or dx  is a color other than color 1 or 2 , then we have a rainbow 3Ar2. If any 

color appears more than  twice a t ar, we have a monochromatic Thus, we

may assume th a t two of these four edges are color 1 and the other two are color 

2. There are only two cases up to  symmetry.

C a se  1  S u p p o se  ed ges ax  and bx are co lor  1, and ed ges cx  a n d  dx  are  

color 2. Consider the four edges ac, ad, be and bd. If any one of these edges is 

color I, we have a /vl 3 in color 1. If any one is a  new color, then th a t edge, edge 

e / ,  and either ax  or bx forms a rainbow 3A'2. Thus, we may assume th a t all four 

are color 2 ; bu t then we have a copy of K lt3 in color 2 centered a t vertex c.
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C a s e  2  S u p p o se  ed g es  ax. and cx  are co lor  1 and ed ges bx an d  dx  are  

c o lo r  2 . Consider the two edges ae  and ce. If either edge is color 1, we have a 

K  1,3 in color 1 centered at a or c. If e ither is a  new color, then along w ith edges 

bx and cd or edges dx  and ab, this edge forms a rainbow ZK2. Therefore, we may 

assum e th a t both ae and ce are color 2 ; bu t then, again, we have a copy of 3  

in color 2  centered a t vertex e. □

W hen m  — n  +  3 is large, th e  following upper bound is often be tte r.

T h e o re m  22. For any positive integers n and m,

R R ( K i<n, m K i )  <  (n 4- I)(m  — 1) +  2.

I f  in  4- l)(m  — 1) > 2m  -f I (for instance, n > 2 and m  >  4 or n > 3 and m  > 3), 

then we may improve the bound above to

R R ( K i <n, m K 2) <  (n +  l)(nz — I).

Proof. Notice th a t R R ( K i ^ , m K 2) =  2 for any m , since any coloring of K  1,1 is 

m onochrom atic. We m ay assume th a t  n  >  2.

We will proceed by induction on m . If m =  1, then any copy of m/'G is 

rainbow-colored, and R R ( K l n, m f ^ )  =  2.

For any positive integers n > 2  and m >  2, assume tha t R R ( K \ in, (m  — 

1 ) ^ 2 ) ^  (n +  l)(m  — 2) -(- 2 <  (n +  l)( ru  — I). Consider any edge-coloring of Kw,  

where N  = (n +  l)(m  — I) if (n +  l) (m  — 1) >  2m +  1 and N  =  (n +  l)(m  — 

1) +  2 otherwise. By the inductive hypothesis, we m ay assume th a t there is a 

rainbow copy of (m — l ) / \ 2- Label th e  vertices of this m atching x i , x 2, ■ ■ -^m -i 

and y i , y 2, . . .  , ym- i ,  so tha t edge x.y,- is color i  for 1 <  i < m — 1.
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First, suppose (n +  l)(m  — 1) <  2m +  1. Since n >  2, we still have N  =  

(n + l) (m  —1)+2 >  2(m —1). Thus, there  is some vertex u> distinct from the vertices 

{ * i , y i , X 2 , y 2 , C o n s i d e r  the N  -  2(m — 1) — 1 =  (n — l)(m  — 

1) +  1 edges incident with w  and not incident with {xi, yi, x 2, t/2, —  , x m- i , y m^i} .  

E ither some color appears n tim es on these edges, producing a  m onochromatic 

A'i.n, or some new color appears. T he edge in this new color, along with the edges 

Xiy, for 1 <  i < m  — 1, forms a  rainbow m h '2.

Suppose (n +  l)(m  — 1) >  2m +  1. In this case, / \(n+i)(m-i) contains 

some o ther edge uv  independent from the  edges X iy i , x 2 y 2 , ■ • ■ , Xm-iym-i-  If uv  is 

colored with a new color, we are done. We m ay assume w ithout loss of generality 

that uv  is colored with color 1. Now, since (n -f l)(m  — I) >  2m -f 1, there is some 

other vertex, say w. Consider the  edges w z , where z is d istinct from the vertices 

{™,x 2 , y 2 , x z , y 3, . . .  ,x m_ i,y m_j}. T here are (n +  l)(m  -  1) -  2(m -  2) -  1 =  

(n — l)(m  — 1) +  I such edges. E ither n of these edges are the same color, so we 

have a monochromatic copy of Ki,n w ith central vertex w , or m different colors 

appear on these edges. Thus, one of these edges must be in a  new color m  distinct 

from 1 ,2 , . . .  , m — 1. This edge can be adjacent with a t m ost one of uv  or Xij/i; 

assume wlog th a t it is not adjacent to x ij/i. Then this edge along with the edges 

1 <  i <  m — 1, forms a rainbow m l \ 2. □

Suppose, instead, th a t we consider m onochromatic m atchings and rainbow 

stars. We have a lower bound on the  order of 2nm.

T h e o re m  23. For any positive integers n >  2 and m  >  3, the rainbow ramsey 

number

RR{nI< 2 , K i <m) > (2m — 3)(n — 1) +  1.
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Proof. Let N  =  (2m — 3)(n — 1). Divide the vertices of K n  into 2m — 3 subsets 

of order n — 1 each, say 5 l? 5 2, • • • 52m_3. Color every edge w ithin 5,- with color i. 

Color the  edges from 5t- to 5 t+j, 5 t+2, • • • Si+m- 2  w ith color i for 1 <  * <  2m — 3, 

where the indices are taken modulo 2m — 3. Since there are exactly m — 2 sets

joined to 5,- by colors o ther than i and every other set 

is joined to 5, with color i ,  any vertex in 5, is incident with a t m ost m — 1 colors. 

Thus, there is no rainbow Ki,m. Any edge in color i is incident with one of the 

n — 1 vertices in 5,, so there are at most n — 1 independent edges in any given 

color. Hence, there are no monochromatic subgraphs isomorphic to n K 2. □

For the upper bound, we first dem onstrate the following recursive result.

L e m m a  4. For any positive integers n and m, where m  >  2 and n >  2, the 

rainbow ramsey number R R ( n K 2, ,m) <  m + 2 (m — l)(n  — 2 ) + R R ( n K 2, Ah.m-i)-

Proof. Let N  — m  +  2(m — l)(n  — 2) +  R R ( n K 2 , K Consider any coloring 

of the edges of Kn-  There m ust be either a monochromatic copy of n K 2 or a 

rainbow copy of AT.m-i; assume that there is a  rainbow copy of AT,m- i 5 with 

edges in colors 1 ,2 , . . .  ,m  — 1 . If we remove the m  vertices incident with this 

subgraph, there are 2 (m — l)(n  — 1 ) +  R R ( n K 2, Ah,m-i) vertices remaining. Thus, 

we may assume without loss of generality that there is another rainbow AT|,m_i.

If these two disjoint rainbow copies of A^.m-i have no colors in common, 

then consider the edge e between their central vertices in K n . A t least one of the 

copies of A'i,m-i does not contain any edges in the same color as e, so this copy 

along with e forms a  rainbow copy of A \.m. Thus, we may assum e without loss of 

generality th a t the two rainbow copies of AT,m_i share a color, say color 1.

Now, remove the m vertices incident with the first rainbow A'i,m_i and
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the  2 vertices incident w ith the edge in color 1 in the other star. There are 

2((m  — l)(n  — 2) — 1 ) +  R R { n K 2, /ifi.m-i) vertices remaining, so we m ay assume 

th a t there is another rainbow copy of Afi,m_ i. W ithout loss of generality, this 

copy contains an edge colored with one of the colors 1 ,2 , . . .  , m  — 1 . Remove the 

two vertices incident with this edge.

If we continue in this fashion, we have a rainbow copy of A î,m_i in colors

1 . 2 . . . .  , m — 1 and (m — l)(n  — 2 ) disjoint independent edges colored with the 

sam e m  — 1 colors. There are R R ( n K 2, vertices remaining, so we may

assum e w ithout loss of generality th a t there is another rainbow copy of If

this copy does not contain any of the colors 1 , 2 , . . .  , m  — 1 , then consider the edge 

e betw een its central vertex and the central vertex of the other rainbow / \ li7n_ |. 

In this case, a t least one of the rainbow copies of A'i>m_i does not contain any 

edge in the same color as edge e, so this and edge e form a rainbow K i,m.

Otherwise, the new rainbow contains an edge in one of the  colors

1 .2 . . . .  , m  — 1 . We have (m  — 1 )(n — 2) +  1 such edges independent of the  rainbow 

in colors 1 ,2 , . . .  , m  — 1. Some color m ust appear n — 1 tim es, plus once

in the  rainbow A \ m_i, to form a m onochrom atic n K 2. □

Since R R ( n K 2, K i ,2) =  2n, the lem m a above yields the upper bound 

R R ( n f \ 2, A i,m) <  2n  +  (3 +  4 -F . . .  +  m ) +  2(2 +  3 +  . . .  +  (m  — l) ) (n  — 2).

If we simplify, we obtain the following upper bound, on the order of m 2 n.

T h e o r e m  24. For any integers m  and n,  where m  >  2 and n >  2, the rainbow

ramsey number R R ( n K 2, Ki,m) <  m ( m  — l)n  — |(3 m  +  l)(m  — 2).
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G E N E R A L IZ A T IO N S OF TH E R A IN B O W  R A M SE Y  N U M B E R

If we view the rainbow ramsey num ber in a  more general context, sev­

eral related num bers are naturally defined, including the edge-chromatic ram sey 

num ber and the .P-free ram sey number.

3.1 Edge-Chromatic Ram sey Number

The edge-chromatic ramsey number G /2 (G j,G 2) is the  minimum integer 

N  such th a t if the edges of /\jv are colored w ith any num ber of colors, then the 

resulting graph contains either a subgraph isom orphic to G i w ith every edge the 

same color or a  subgraph isomorphic to G 2  w ith no two adjacent edges the sam e 

color, th a t is, properly colored. It is im m ediate th a t C /? (G i,G 2) < RR(Gi,  G 2 ) 

for any graphs G 1 and G 2. The existence proof for the edge-chromatic ram sey 

num ber is essentially the  same as the proof for th e  rainbow ram sey numbers, so 

we om it it here. The edge-chromatic ramsey num ber C R (G i,G 2) exists if and 

only if Gi is a  s ta r or G 2 is acyclic.

Naturally, if G 2 is a s tar K i,m or a  triangle C3 , then  G R (G i,G 2) =  

R R ( G i , G 2)- In order to  compare these two num bers, we next consider bounds 

and formulas for both  numbers for several classes of graphs.

3.2 Bounds for Cycles and Paths

It is not hard to show th a t RR(Cn, P2) =  C R ( C n, P2) =  2 and RR(Cn , P3) =  

C R ( C n, P3) =  n for any n > 3. However, for longer paths, the two param eters 

differ significantly.

53
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T h e o re m  2 5 . For any integer m  > 2, C R(Cz, Pm) =  m.

Proof. The result is im m ediate for m  =  2 and m  — 3. We proceed by induction 

on m.

Suppose for some m >  4, we know th a t C R(Cz, Pm- i )  =  m — 1. Let 

the edges of K m be colored arbitrarily. We will assume th a t K m contains no 

m onochromatic triangle C3. Then necessarily K m contains a properly colored 

subgraph isomorphic to P m -1- Suppose this path has vertices 1/1, v2, . . .  ura_i. 

where the edge utu,+1 is color c,-, for 1 <  i < m  — 2. Then c, ^  c,+ i for 1 <  i < 

m — 3, but otherwise the colors need not be distinct. Let x be the vertex of K m 

not on this pa th . If xvi  is not color ci, then x, Vi, v2, . . .  vm- i  is a  properly colored 

path on m  vertices. We m ay assume th a t xvi  is color ci.

Suppose xv{ is color c,- for some i. If i r ,+1 is also color c,, then x , u,, and 

u,-+i form a m onochrom atic triangle. If xu,+i is some other color besides c,+i, then 

Vi, u2, • - • Vi, x , . . .  vm- 2 , vm- i  is a  properly colored path of length m. Thus, 

we may assum e that xu,- is color c,- for each i, 1 <  i <  m  — 2, inductively.

Thus, x v m - 2  and um- 2um -i are both color cm_2. If i v _ i  is color Cm- 2  

then v/e have a  m onochromatic triangle. If not, then ul5 v2, - -. vm- 2 , vm- h  x is a 

properly colored path on m  vertices.

We have shown th a t CR{Cz,  Pm) <  m.  The graph K m- \  m ay be colored 

with every edge a  different color so th a t it contains neither a m onochrom atic Cz 

nor a properly colored Pm- Thus, CR(Cz,  Pm) = m.  □

However, the rainbow ramsey num ber grows a t least exponentially for any 

odd cycles, including Cz-

T h e o re m  26. For any integer m  > 2  and any odd integer n > 3, R R ( C n, Pm) >
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2m~2 +  l.

Proof. We will define a coloring on a com plete graph with 2l vertices inductively.

If i =  1 , color K 2  with color 1.

Once the coloring on the complete graph with 2,_1 vertices is defined, take 

two identical copies of this graph, with the  same colors, and color every edge 

between the two copies with a new color. Thus, the graph induced by the edges 

in this new color is a complete bipartite graph.

Since the graph induced by any particu lar color is b ipartite , there are no 

monochromatic odd cycles. And since exactly  i colors are used in the graph 

on 2* vertices, the graph on 2 m -2  vertices cannot contain any rainbow subgraph 

isomorphic to Pm. □

The existence theorem, Theorem 9, yields a rough upper bound on R R (C 3, Pm). 

From case 2, with n =  3, we have

(m  -  2 )m -  1
RR{C3, ±---------}— ----- .

m  — 3

Using this num ber for N  in case 3, we have

R R (C 3, Pm) < RR (C 3, Pm-i) ( & - * ? - } )  ,\ m  — 3 J  

or, as observed in the discussion following the  proof,

<  R R (C 3 , P m _  1)  +  ( m  -  1) ( (”> -  2 ) l ~ !  -  1 )
\  m  — 3 /

=  />„_,) +  (m  -  1) ( ( m  ~  ~  Q j

< fifl(C 3, />„_,) + 2(m -  l ) ( ( m - 2 ) ”- 1 -  1)
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Since R R ( C 3, P3) =  3, we have 

R R (C 3, Pm) <  3 +  6(23 — 1) +  8(34 — 1) +  . . .  +  2 (m  — l)((m  — 2 ) m_1 — 1)

A simple induction argum ent yields an upper bound which is only slightly

Let /V =  m — l +  (m — 2 ) (R R (C 3, Pm- i )  —1) +  1. By induction, we may assum e th a t

this path . Then v has (m  — 2 ) (R R(C 3, Pm- i )  — 1) +  1 neighbors not on the path. 

Thus, either v is incident w ith an edge in some new color, so th a t the path  can 

be extended to  a rainbow Pm, or v is incident w ith RR (C 3, Pm- i) edges all in the 

same color, say color c. Let M  be the set of endpoints of these edges, excluding 

v. W ithout loss of generality, we may assume th a t there is a rainbow Pm_i on 

the subgraph induced by M .  If color c appears on this p a th , then the endpoints 

of the edge in color c and th e  vertex v induce a m onochrom atic C3. O therwise, 

vertex v may be added to  the  end of this path  to  produce a  rainbow Pm. If we 

solve the induction in equation 10 , we have

m

3 +  ] C  [2(A:- ! ) ( ( * - 2 )* -1 - ! ) ]

<  3 +  2(m  — 3)(m — 1) [(m — 2 )m-1 — l]

better. Trivially, we have R R ( C 3, P2) =  2 and R R (C 3, P3 ) =  3. For any m  > 3,

we claim that

R R (C 3, Pm) < m  -  1 +  (m -  2 ) (R R (C 3, Pm^ ) - ! )  +  !. (10)

Kit  contains a rainbow copy of Pm- 1, using m  — 2 colors. Let v  be an endvertex of

R R (C 3, Pm) < rn

m—2
=  m  + J 2 i ( m -  2)(m" ,- 1)

i '= 2

<  m  +  2(m — 3)(m  — 2)!
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Thus, RR(Cz,  Pm) is bounded asym ptotically between 2m_2 and approxim ately 

2 (m — 3 )(m  — 2)!.

We can extend the idea behind Theorem  25 to obtain upper and lower 

bounds on the chrom atic ramsey num ber of a  4-cycle versus a path.

T h e o re m  27. For any integer m  >  3, m +  1 <  C R(C 4 , Pm) <  2m — 2 .

Proof. F irst we will color K m so th a t it contains no monochromatic C 4  and no 

properly colored Pm. Color a triangle on vertices u _ i,u 0, and Vi with color 1. For 

each color i, 2 <  i <  m  — 2 , add a  new vertex u, and color every edge ViVj for 

— 1 <  j  < i w ith color i. In the resulting K m, every m onochromatic subgraph is a 

s ta r  or a  triangle, and not C\.  On any properly colored path , at most one of the 

vertices adjacent to u, can have an index less than  i, for 2 <  i <  m  — 2 . Thus, at 

m ost two of the vertices u_i,uq, i>i can appear on the path.

Next, we must show th a t an a rb itra ry  coloring of the edges of K 2 m - 2  results 

in either a m onochrom atic C\ or a  properly colored Pm. We will proceed by 

induction on m. Since any P2  is properly colored, C R(C4, P2) =  2 .

For any m  > 3, suppose C R ( C 4, Pm- 1) <  2m — 4. Color the edges of 

K'im—'i arbitrarily. We may assume th a t the resulting graph contains a  properly 

colored path  Pm_ t , say on vertices Vi,v2, .. where edge u,u,+i is color c,- for

1 <  i < m  -  2 . Let M  =  Vr( / \ 2m- 2 ) -  (Pm-1), so \M\ = m  -  1 .

Suppose there is no properly colored path  of length m .  We claim  th a t for 

each z\ at least m  — i of the vertices of M  are joined to u, by an edge of color c,. 

If for some x  G M , V\X is not color ct , then x, Vi, v2, . . .  um- i  is a properly colored 

pa th , so we m ay assume m  — 1 vertices are joined to v\ with edges of color cj.

Assume th a t a t least m  — i of the vertices of M  are joined to V{ by an 

edge of color c,-. If any one of these sam e vertices, say x, is joined to uI+1 by an
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edge of some color o ther than  c,- or c,-+i, then V1 .V2 , ■ ■ ■ u;, x,  u,+i, u,+2 , • • • ^m-i is a 

properly colored path  on m  vertices. However, if m ore than  one of these vertices, 

say x and y, are joined to ut+1 by an edge of color a ,  then ut-, x, t\-+1, and y form a 

monochromatic C4. Thus, we may assume that a t least m  — (i + 1) of these edges 

are color c,+ l.

Thus, vm — 2  is joined to at least 2 vertices, say x  and y, in M  by edges of 

color Cm-2- If any edge from um_i to M  is not color Cm-2 , then we have a properly 

colored path of length m.  However, if v m - \ X  and vm- i y  are both color m  — 2, 

then we have a m onochrom atic C4. Therefore, C R (C 4, Pm) <  2m — 2. □

3.3 Bounds for Stars and Paths

We can quickly obtain  upper and lower bounds for the edge-chromatic and 

ramsey numbers o f a  m onochrom atic star and a  rainbow path. These bounds 

suggest that C R { K \<n, Pm) grows roughly like the sum  n +  m , while R R { K i,„, Pm) 

grows like the product nm .

First, we establish the upper and lower bounds for CR(Kim,  Pm)- Since 

C R ( K u u Pm) = C R ( K l,n, P 2) = 2, C R { K Un, P 3) = n +  1 for n > 2 ,  and 

CR{I<i a ,Pm) =  rn for m  >  3, we assume th a t n > 3 and m >  4. The up­

per bound requires a lemma.

L e m m a  5. For any integer n > 3, C R ( K i <n, P4) =  n +  1.

Proof. The lower bound results from coloring the edges of K n with a single color. 

Suppose the edges of K n+i are colored so that there  is no monochromatic K li7l. 

Thus, there m ust be two adjacent edges uv and vw  which are different colors, say 

colors 1 and 2, respectively. There is a t least one o ther vertex x in the graph. For 

any x not contained in {u ,v ,tu} , if u x  is not color 1 or uw  is not color 2, then
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x , u , v , w  or u , v , w , x  is a  properly colored path of length 4. Assum e th a t ux  is 

color 1 and w x  is color 2 for any such vertex x. Consider edge uw.  If this edge 

is color 1, then  u is the central vertex of a  m onochrom atic Ki,n . If it is color 2 , 

then there is a  K i,„ in color 2 w ith center {u>}- We m ay assum e th a t uw  is some 

new color, bu t then v , u , w , x  is a  properly colored P4. □

The general upper bound results from applying th e  sam e approach induc­

tively.

T h e o re m  28. For any integers n > 3 and m > 4,  the edge-chromatic ramsey 

number C R ( K \ <n. Pm) < m  +  n — 3.

Proof. We will proceed by induction on m.  The base step  is handled in Lemma 

o. Suppose th e  edges of K m +n^ 3 are colored so th a t there  is no monochromatic 

By the inductive hypothesis, we may assume th a t th ere  is a  properly colored 

path on m — 1 vertices, say v\,  v2, ■ ■ ■ um-i-  Suppose edge v i v 2  is color 1 and edge 

^ - 2 ^ - 1  is color 2, where colors 1 and 2 are not necessarily d istinct. For any 

vertex x  of the  n  — 2  >  1 vertices not on this path, we m ay assum e th a t vix  is 

color 1 and vm- i x  is color 2 , or we have a properly colored p a th  of length m. 

Consider edge If this edge is color 1, then Vi is the  central vertex of a

K  i,n in color 1 . Similarly, if it is color 2 , there is a K i,n in color 2 . Suppose it is 

some other color 3, distinct from colors 1 and 2. Let x  be som e vertex not on the 

path. Then x , Vi, nm- i ,  um_2, . . .  v2  is a  properly colored p a th  on m vertices. □

For the  corresponding lower bound, we will require a  special coloring. Let 

v i , v 2. . . . v k  be k  vertices in a complete graph K n  where N  > k. A kth  order 

pathlrap coloring on the edges incident with these vertices is a  coloring such that 

every edge where x  is not in {ui, v2, . . .  is color i and every-edge v(Vj is
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Figure 8. Exam ples of P ath trap  Colorings W ith 3 and 4 Vertices.

either color i or color j .  Figure 8 shows one possible 3rd order pa th trap  coloring 

and a possible 4th order p a th trap  coloring. The set of vertices {ui, v2, . ■. ujk} will 

be referred to as a pathtrap. Notice that for each k, a Ath order pa th trap  coloring 

exists in which for each z, 1 <  i <  fc, at m ost [(/: — 1 )/2"| of the edges V{Vj are 

color i. In other words, there  is a k th  order path trap  coloring in which each color 

appears at most f(A: — l) /2 ]  tim es within th e  pathtrap.

Suppose a graph K n  is colored w ith  a  kth  order p a th trap  coloring with 

pa th trap  {u1? v2, . . .  u -̂}, and suppose P  is a  properly colored path  in K n - If P  

enters the path trap , then  P  cannot leave it, in the following sense. Suppose x  € P  

where x  is not in the p a th tra p  and x  is followed on the p a th  by u,-. Then xv{ is 

color i, and every edge u,-y, where y  is not in the pa th trap , is also color i. Thus, 

the next vertex on the p a th  m ust be some Vj, where Vj is in the pa th trap  and 

ViVj is color j .  Every edge incident with vj which is not color j  again lies in the 

pa th trap . Continuing in th is fashion, we see th a t every vertex on P  a fter x  must 

be a vertex of the pa th trap .
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T h e o re m  29. For any integers n > 3 and m  > 6, the edge-chromatic ramsey 

number

C R ( K Un, Pm) > n  + m +  1

Proof. Let IV = n + l"12̂ - ]  — 3. We may assume th a t IV > m  — I, since a  rainbow 

colored K m- \  contains neither a monochromatic K  1<n nor a rainbow Pm.

Color the edges of PCjv as follows. Form an (m —3)rd order pa th trap  coloring 

on vertices ux, . . .  um - 3  so th a t each color i appears a t most \{m — 4 )/2] tim es 

within the path trap . Color the rem aining edges with a new color, color m — 2. 

For each color i in the p a th trap , there are at most

m — 4
+  n  + — 3 — (m — 3) =  n  — 1

edges incident with vertex u, in color i. Every other color appears at most once 

at vertex ut. Color m  — 2 appears incident with at most

m +  1
n  + — 3 — (m — 3) <  n

vertices, and each other color appears once at each vertex outside the path trap . 

Thus, there are no m onochrom atic copies of Ariin.

Since a  properly colored path cannot enter and then  leave the path trap , 

any vertices on the path  and not in the pathtrap  m ust appear consecutively on 

the path. Therefore, any such path  can contain at most two vertices not in the 

path trap ; thus, there is no properly colored path on more than  (m  — 3 )+ 2  =  m —1 

vertices. □

The upper bound for the rainbow ramsey num ber results from a more 

general upper bound for s tars  and trees.
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T h e o re m  30. For any integers n >  2 and m  > 3 and any tree T  of  order m ,  the 

rainbow ramsey number

R R ( K i tTl, T)  <  m  — 1 +  (m  — ‘2)(n — 1).

Proof. We proceed by induction on m.  The only tree of order m =  3 can be 

thought of as /vi,2- If no rainbow K \ yi  appears in Ajv, then the entire graph must 

be monochromatic. Thus, R R ( K ltn, A'1,2) =  n +  1 =  3 — 1 +  (3 — 2)(n — 1).

Suppose R R ( K i tn,T ' )  < m  — 2 +  (m — 3)(n — 1) for any tree T '  of order 

m — 1. Let T  be a tree of order m with endvertex v adjacent to a vertex u, and 

let A m_i+(m-2)(n-i) be edge-colored with any num ber of colors. We may assume 

that A'm_ 1+(m_2)(„_!) contains either a m onochrom atic copy of A'ii„ or a  rainbow 

copy of T  — v. Suppose it contains a rainbow copy of T  — v. If we remove these 

m — 1 vertices, there are (m — 2)(n — I) vertices remaining. Consider the edges 

between u  and these vertices. If m — 1 or more colors appear on these edges, then 

some edge is in a color not yet appearing in T  — v. We may add this edge to T  — v 

to obtain a rainbow copy of T . Thus, we may assume that at most m  — 2 colors 

appear and th a t these are the same colors which appear in T  — v. If any color 

appears more than n — I times, then there is a  monochromatic copy of K i <n] so we 

may assume th a t each color appears exactly n  — 1 tim es. But now consider a  color 

which appears on some edge incident with u o ther than  uv.  This color appears 

incident with u at least n times, so we have a monochromatic copy of A'i,n. □

Notice th a t if T  contains an endvertex v adjacent to a vertex u with 

degru = k , then the above bound can be improved to

AA(A'i,n, T)  <  m — 1 +  (m  — 2)(n — 1) — (k  — 2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As we have seen previously, a com plete graph A'(m_2)(n-i)+i can be factored 

into 1-factors when (m — 2 )(n — 1) + 1  is even. Then n — 1 1-factors may be colored 

with each color to  produce a graph with no m onochrom atic K \ yn and w ith too few 

colors to contain any rainbow tree of order m .  Similarly, if (m  — 2)(n — 1) +  1 is 

odd and n — 1 is even, th en  A'(m_2)(Ti-i)+i can be factored into ham iltonian cycles 

and (n — l) /2  of these cycles can be colored with each color. If n and m  are both 

even, then can be factored into 1-factors, and n  — 1 or n — 2 of these

1-factors colored with each color so that only m — 2 colors are used.

Combining these observations with Theorem 30, we have the following 

theorem and corollary.

T h e o re m  31. For any integers n > 2 and m  > 3 and any tree T  of  order m, the 

rainbow ramsey number

(m  — 2)(n — 1) +  1 <  R R ( I \ l n , T )  <  (m  — 2)(n — 1) + (m — 1),

where the lower bound can be improved to (m  — 2)(n — 1) +  2 i f  n and m  are not 

both even.

C o ro lla ry  3. For any n  >  2 and m  > 3,

(m — 2)(n — 1) +  1 <  R R ( K i tn, Pm) <  (m -  2)(n — 1) +  (m — 1).

3.4 Bounds for P aths and Paths

We will next ob ta in  upper bounds on the edge-chrom atic and rainbow 

ramsey numbers of paths. F irst we will need a couple of lem m as for the edge- 

chrom atic ram sey num bers.

L e m m a  6 . For any integer n  > 3 ,  C R (P n, P4) =  n +  1.
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Proof. Suppose the edges of / \n+1 are colored w ith any number of colors. If 

every edge is the same color, then there is certainly a monochromatic subgraph 

isomorphic to  Pn. We may assume th a t there are vertices u, v and w  such tha t 

uv  is color 1 and vw  is color 2. Let M  = V ( K n+l) — {u,u,u;}. Every edge from 

u to a vertex in M  is color 1 or we have a  properly colored Pi. Similarly, every 

edge from w to M  m ust be color 2. If any edge in M  is a new color, say color 3, 

then there is a  properly colored P4  using this edge and vertices u and w.  If there 

are two adjacent edges in M  such th a t one is color 1 and the other is color 2, then 

we may a ttach  vertex u to the appropriate end of th is path  to obtain a  properly 

colored path  of order 4. Thus, we m ay assum e th a t all of the edges w ithin M  are 

a single color, either color 1 or color 2, say color 1. We m ay take a  pa th  of order 

n — 2 in color 1 in M  and add the vertices u and v to  form a monochromatic path  

of order n.

For the lower bound when n > 4, color I \n as follows. Fix a  vertex x. 

Color every edge not incident with x  w ith color 1, and color the edges incident 

with x  with color 2. No properly colored path  in this graph can contain more 

than one edge in color 2, since all of the  edges in color 2 are adjacent; necessarily, 

any such edge m ust appear at the beginning or end of the path. Thus, th is graph 

contains no properly colored P4. Any pa th  of order n  m ust contain the  vertex x  

and, since n >  4, at least three other vertices. But then the path m ust contain 

at least one edge incident with x  and a t least one edge not incident w ith  x,  so it 

cannot be monochromatic. If n — 3, then  color I\ 3  w ith rainbow colors to  avoid 

a m onochrom atic P3  and a proper P4. □

Lem m a 7. For any integers n >  5 and m  >  5, the edge-chromatic ramsey num­

bers C R (P n, Pm) < C R {P n , Pm_t ) +  (m  -  l ) ( f f l  -  1).
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Proof. Let N  = CR{Pm Pm- i ) ■+ (m  — 1)(T — 1)- Assume tha t the edges of K n  

are colored so th a t there is no monochromatic Pn. We may assume th a t there is 

a  properly colored subgraph isomorphic to Pm- i .  Remove these m  — 1 vertices. 

Since C R (P n, Pm- i )  +  (m — —2) vertices rem ain, we may assume th a t there 

is another properly colored Pm-i -  Continuing in this fashion, we may assum e that 

I \ n  contains [ j ]  disjoint properly colored paths of order m  — 1.

Consider any two of these paths P  and Q. Suppose the vertices of path  P  

are v i , v 2, . . .  vm^ i  and the vertices of path  Q are u i, u2, . . .  um_i. If any edge ViUi 

is a color other th an  the color of v \v2, then we can extend the path P  to  a  properly 

colored path of length m. Similarly, every edge um_ iu t- must be the sam e color 

as ym_2um_ i, every edge u,-ui m ust be the same color as the edge u iu 2, and every 

edge m ust be the same color as the edge um_2um_ l . Thus, these colors

m ust all be the same, so u\, u 2, u j, v2, u m_i, um_2, um- i ,  «m- 2 is a  m onochromatic 

path  of order 8.

Suppose we have a m onochrom atic path of order 4i beginning a t and 

ending at um_2 for some edge-chrom atically colored path  u i, u 2, . . .  where

edges u iu 2  and um_2um_i are the same color. Let R  be some other edge-chromatically 

colored path w ith vertices w i , w 2 ,w 3 , . . . w m- i .  Then again we may assum e that 

edges UiU2, u iu^, U\w2, and W\W2  are all the  same color, so th a t w 1 , w 2 , u l may 

be attached to the beginning of the m onochromatic path. Similarly, wm- i w m ^ 2  

and tnm_1um_2 m ust be the sam e color as un,_2um_i, so um_2, tom_2 may

be attached to the  end of the m onochrom atic path. Proceeding by induction, we 

have a monochromatic path on 4 [ j ]  vertices. □
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By combining these two lemmas, we have the upper bound

CR(Pn,Pm) <  ( „  +  l ) + 4 ( [ | |  - l )  + 5 ( [ | |  - l )  + . . .  +  ( m - L ) ( | ' j ]  - L  

=  n +  L +  (4 +  5 +  . -. +  (m — 1)) — l )

=  n  +  1 +  ( ™ - 4 L(™ +3> ( ! ! ] _ ! )

which is sum m arized in the next theorem .

T h e o re m  32. For any integers n > 5 and m  > 4, the edge chromatic ramsey 

number

CK(P„, f t . )  <  (m +  3)2( m ~ 4) ( f l ]  -  i )  +  „ +

Consider a  (m  — 3)rd order pa th trap  coloring on / \ m+n_4, w ith the remain­

ing edges colored w ith one new color. Any properly colored path  contains at most 

2 vertices outside the  pa th trap , for a  to tal of a t most m — 1 vertices. Each color 

which appears w ithin the pa th trap  induces a star, and the color outside the path­

trap induces a com plete graph on n — 1 vertices, so there is no m onochrom atic 

subgraph isomorphic to Pn for n > 4. Thus, we have the following lower bound.

T h e o re m  33. For any integers n > 4 and m  > 6, C R (P n, Pm) > m  +  n  — 4.

For the rainbow ram sey num ber, s ta rt with a edge-chrom atic or proper 

coloring of K m- 2 using a t most m — 2 colors, labelled 1 ,2 , . . .  m  — 2. Replace each

vertex with a set of vertices, so th a t all of the edges between two sets are

colored with the sam e color as the edge between the original two vertices. Color 

the edge between any pair of vertices in the same set with color 1. Since only 

m  — 2 colors appear, this graph cannot contain any rainbow subgraph isomorphic
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to  Pm. Any m onochrom atic path can contain vertices from  at most two sets, for 

a to ta l of 2 <  n — 1 vertices. Thus, we have a  lower bound.

T h e o re m  34. For any integers m  >  3 and n  >  3, the rainbow ramsey number 

R R ( P n, P m) > { r n -  2) L ^ J + l -

3.5 The F -free  Ramsey Num ber

Let F  be a  family of graphs. Define an F-free edge coloring o f a graph G  

to be an edge coloring so th a t G does not contain any m onochrom atic subgraph 

isom orphic to any graph in F .  Thus, if F  =  {2K 2, K ia } ,  then an F -free  coloring 

is a rainbow coloring. Similarly, if F  =  then an F -free coloring is an

edge-chrom atic coloring.

For a nonem pty set F  of graphs, where each graph has size a t least 2, we 

define the  F-free ramsey number R p ( G i , G 2 ) of two graphs Gi and G i  to be the 

m inim um  integer N  such th a t any coloring of the edges of K n ,  w ith any num ber 

of colors, m ust contain either a m onochrom atic subgraph isomorphic to  G i or an 

F -free  subgraph isomorphic to (?2 . The Erdos-Rado Theorem  is a useful tool for 

determ ining the existence of these num bers.

T h e o re m  35. Assume that F  is a nonempty set o f  graphs, where each graph has 

size at least 2 . I f  F  does not contain any stars, then Rjr(Gi,  Gf)  exists for  any  

graphs G\ and G2 . Otherwise, let K\^n be the smallest s tar  contained in F .  Then 

Rjr{G i ,G 2 ) exists i f  and only i f  G 1 is a star or G 2  does not contain any induced 

subgraph with min imum degree at least n .

Proof. According to the Erdos-Rado Theorem , for any integer k, there  is an inte­

ger N  such th a t any edge-coloring of K n  contains a canonically colored Kk- Recall
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th a t for a finite graph, there are only three canonical colorings: monochromatic, 

rainbow, and the m inim um  coloring, where the color of edge i j  is m i n ( i , j )  for 

each i and j . A sufficiently large m onochromatic complete graph would certainly 

contain a m onochrom atic subgraph isomorphic to  Gy, and a large rainbow com­

plete graph would contain an .F-free subgraph isomorphic to  G2. If F  does not 

contain any stars, then  a  m inim um  coloring would also be .F-free. Thus, a  large 

complete graph with a m inim um  coloring would contain an .F-free copy of G2.

Suppose F  does contain a star, and let Ky%n be the sm allest such star. If 

Gy is a star, then a sufficiently large m inim um  coloring would contain a  monochro­

m atic Gy. Suppose every induced subgraph of Gi  has minimum degree strictly  less 

than n. Then we claim th a t a complete graph of order \V{Gi)\ w ith the minimum 

coloring has an F -free  subgraph isomorphic to Gi.  Let vy be a  vertex of Gi  with 

degree strictly  less than  n.  Then let v2 be a  vertex of G2 — vy so th a t its degree 

in the graph induced by V (G i )  — vy is less than  n. Continuing in this fashion, we 

can label the vertices of Gi  so th a t in a minimum coloring, no color appears more 

than n — 1 times at any vertex. Since F  contains no stars smaller than  Afi,n, this 

is an F-free coloring of Gi.

Now, suppose th a t Gy is not a star, so Gy is not a m onochrom atic subgraph 

of any complete graph w ith the minimum coloring, and suppose th a t Gi  has an 

induced subgraph H  w ith m inim um  degree at least n. If G2 is a subgraph of some 

complete graph with th e  m inim um  coloring, then let v be the vertex in H  with the 

minimum index. Now, deg/y(u) > n, and every edge from v to any other vertex in 

H is the same color, so G 2 m ust contain a  m onochromatic subgraph isomorphic 

to Ky,n. Thus, we m ay color any complete graph with the m inim um  coloring to 

avoid both a m onochrom atic Gy and an F -free G2. □
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Notice th a t Theorem  35 generalizes Theorem  9, the existence theorem for 

the rainbow ram sey numbers.

The following observations are im m ediate, but useful. If T \  C F 2, then 

any F 2-free coloring is necessarily Fj-free.

O b se rv a tio n  1. I f  F \  C F-j, then for  any graphs G\ and Gi fo r  which both 

numbers are defined,

R^{G\,Gi)  ^ RfiiGi  ̂Gi)

Thus, for exam ple, the rainbow ramsey num ber is always an upper bound 

on the edge-chrom atic ramsey number. In fact, since a rainbow coloring is .F-free 

for any set T  of graphs such th a t each graph has size at least two, R?(Gi ,G 2) < 

R R ( G i , Gi).

The second observation follows from the fact th a t any coloring of Gi (or 

of A'|V(g2)|) e ither contains a monochromatic G\  or it does not.

O b se rv a tio n  2 . I f  J- = {C?i}, where G\ is a graph o f  size at least 2, then fo r  

any graph Gi,

R t {Gu Gi ) = \V(G i )\

Finally, notice th a t if no graph in T  is a subgraph of G i , then any coloring 

of Gi is F-free.

O b se rv a tio n  3. I f  no graph in the set T  is contained in the graph Gi, and G 1 

is a graph with size at least 2 , then

R r { G u Gi) = \V{Gi)\
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We will concentrate on the cases F" =  { R ^ ,  2A'2}> F  — {^"1,2}, and T  =  

{2 /^2 }- In the first two cases, the .F-free ramsey num ber is precisely the rainbow 

ramsey num ber and the edge-chrom atic ramsey num ber, respectively. As noted 

in Observation 1,

C R ( G u G2) < R R {G u G2) 

R-iKziGiiGi) <  RR(Gi,G2 )

for any graphs G 1 and G 2  for which these numbers are defined. The other two 

numbers cannot be placed in a consistent linear order, however. For example,

4 = C R ( K i ' 2 ,  Pa) < R 2 K2 (^i,2i Pa) =  5
but

4 =  / W 2 / G ,  Pa) < CR(2I<2, Pa) =  5-

See Figure 9 for colorings o f K 4  containing no m onochrom atic K \ , 2  and no {2 /1̂ 2 }- 

free P4  or no m onochrom atic 2 K 2  and no {AT,2}-free P4, respectively. However, 

a brief argum ent shows th a t

C R(Pa , P4) =  5 =  R 2 K2 {Pai Pa)-

Thus, any ordering of these two ramsey numbers is possible.

3.6 The 2 /v2-free Ramsey Num ber

The 2 / \2-free ram sey num ber /22A'2(£n, G 2 ) of two graphs G 1 and G 2  is the 

sm allest integer JV such th a t  any edge coloring of Kpj contains either a monochro­

m atic copy of G 1 or a  copy of G 2  in which no two nonadjacent edges are the 

same color. Thus, each color in G 2  m ust induce either a  s ta r  or a triangle. This
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Figure 9. Colorings of I\ 4  Showing R 2 k 2 {Ki,2, P a ) >  5 and C R ( 2 K 2 , P a ) > 5.

particu lar .F-free ram sey number exists for any  graphs G i and G 2. According to 

Theorem  35, R 2 K2 ( K n, K m) is defined. The nex t theorem gives upper and lower 

bounds on this num ber.

T h e o re m  36. For any positive integers n >  3 and m  > 3,

(n -  I)— 3 +  1 <  R 2 K * (K n ,K m) <

m _j_ y - ^ ( n - 2 ) ( m - 2 ) - l  p m - l ) ' * 1 ( m - 2 ) l( m - 3 ) '  _j_ ^ ( m - Ii  —  l ) ( m —2 ) ( m — 3) 
2

( n - 2 ) ( m - 2 )

Proof. For the lower bound, we require a coloring of the edges of Kfj,  where 

IV =  (n — l ) m -3, with neither a m onochrom atic K n nor a { 2 K 2}-ivee K m. There 

are two ways to  view the relevant coloring. We m ay start with a  copy of /C»-i in 

color 1 and proceed inductively. For each color, take n — 1 copies of the previous 

graph and color the edges between these copies w ith the new color. Continue 

until m  — 3 colors are used. Alternately, we m ay label the edges of I \ n  with the 

(72 — 1 )m-3 different (m  — 3)-tuples of the num bers { 1 ,2 , . . .  , n — 1}. Color an edge 

between two vertices w ith the index of the first en try  in which the ir (772 — 3)-tuples 

differ. E ither o f these descriptions yields the sam e coloring.
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Consider any n vertices i>i,t>2, •. - vn. Suppose each edge incident with uj 

is the  same color, say i. Then the zth entry in the tuple for Vi differs from the 

zth en try  in each of the tuples for the o ther vertices. Thus, there  are only n — 2 

choices for the zth entry  in these n — 1 tuples. The tuples for some pair of vertices, 

say v 2  and v2, m ust have the same zth entry. Thus, edge v2 v2  is not color i; there 

cannot be any m onochromatic copy of K n.

Next, consider any set of m  vertices. Since at most m  — 3 colors are used to 

color their edges, we may apply Corollary 1 to Cockayne and Lorim er’s theorem 

with c =  m  — 3 and n =  2. We have

r{2Ii 2 , 2 K 2, • • • 2 K 2) = m

Thus, the subgraph induced by any m  vertices must contain a  copy of 2 K 2  in 

some color, so there is no {2 /v'2}-free copy of K m.

For the upper bound, recall th a t a  minimum coloring is a  coloring in which 

edge i j  is color m i n ( i , j )  for each pair of vertices i and j .  For our present purposes, 

we will allow colors to  be repeated, so th a t for instance, color 1 m ight be the same 

as color 3. We claim th a t any com plete graph on (n — 2)(m — 2) +  2 vertices with 

the m inim um  coloring must contain either a monochromatic n K 2  or a {2/\2}-free 

K m. Label the vertices of such a graph 1 ,2 , . . .  (n — 2)(m  — 2) +  2. The graph is 

colored with colors 1, 2 , . . .  (n — 2)(m  — 2) +  1, which are not necessarily distinct. 

If any n — 1 of these colors are identical, say color Cy = color c2  = . . .  = color 

Cn-i. then the vertices c i ,c2, . . .  Cn-i and (n — 2)(m — 2) + 2  form a monochromatic 

subgraph I \n. Otherwise, there m ust be a t least m  — 1 different colors. Suppose

color ci, color C2 , __, color c™_2, and color Cm-i are all d istinct. In this case, the

vertices ci, c2, .. .Cm_i and (n — 2)(m  — 2) +  2 induce a {2A'2}-free copy of K m.

Now, let a (n ,m , N)  be the sm allest integer M  such th a t any edge-coloring
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of I \ \ f  contains a minimum-colored copy of Ajv, a m onochrom atic copy of K n, or 

a 2AT2-free copy of K m. From the discussion above, we know th a t

R-2 K2 ( K n, K m) <  a (n ,m ,(n  -  2)(m -  2) +  2).

Since any graph on 1 or 2 vertices is minimum-colored, a (n ,m , 1) =  1 and 

a (n ,m , 2) <  2. Any graph on 3 or fewer vertices is necessarily {2A'2}-free, so 

a (n ,2 , N) < 2 and a ( n ,3 , N )  < 3. Next, we claim th a t a ( n ,m ,  N )  is bounded 

above by

max[a(n , m  — 1, N ) ,  m  +  - (m  — l)(m  — 2)(m — 3)(a(n , m , N  — 1) — 1)] (11)

for n > 3, m  >  4 and N  > 3.

Let L =  m a i[a (n , m — 1, N ) ,  m + ^ ( m  — l ) (m —2 )(m —3 )(a (n ,m , A^—1) — 1)]. 

Color the edges of K l w ith any num ber of colors. Since L > a (n ,m  — 1, Ar), we 

may assume w ithout loss of generality th a t there is a {2Af2}-free copy of K m_t in 

K'l . Label the vertices of K m- i  by «i, . . .  um_i. Let / /  be the set of vertices

V ( K l ) — V ( K m-i)-  Define m  — 1 subsets # ! , • • • Hm- i  of H  by

Hi =  {u € H\uv{ is the same color as VjVk for some j ,  k ^  i, 1 <  j  < k  <  m — 1}.

If any vertex u 6 H  is not in Hi for any z, then K m- i  + u  is a  {2A'2}-free K m. Of 

course, some vertices m ay be in Hi for more than one value of i. Thus, we may 

assume that

m —1 .

>  —(m — l)(m  — 2)(m  — 3)(a(n ,m , Af — 1) — 1) +  1.
i=i

Assume w ithout loss of generality th a t |/ / i |  >  \Hi\ for 2 <  i < m  — 1. Then 

l^fil >  ~  2 ){m — 3)(a(rz, m, N  — 1) — 1) 4-1. Now, there are a t most (m~2) =
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|(m  — 2 )(m  — 3) colors used in K m_i on edges not incident w ith vertex t?!. D ivide 

the set Hi  into a t most \ { m  — 2)(m — 3) subsets £ i ,  £<2 , . . .  by defining

Lj  =  { « £  Hi\uvi  is color j } .

There are a t most |(m  — 2)(m  — 3) such subsets, and their union is H\.  Thus, 

there m ust be some subset, say Li, such th a t

Iffil1̂ 1 > \ { m  — 2)(m -  3)
>  a(n.  m , N  — 1).

We m ay assum e th a t the subgraph induced by contains a copy of K n -  1 w ith 

the m inim um  coloring. Since every edge from i>i to  L\  is the  same color, th is  

K,\-i  along with the vertex Vi yields a K n  w ith the  m inim um  coloring.

Now, solving the recursion in equation 11 w ith respect to  N  shows th a t for

N  > 3,
yv-3

a(n, m, N )  <  m  +  ^  ^
1 = 1

1
^■(m — l ) '+1(m — 2)‘(m  — 3)‘ + ^ (m  -  l)(m  -  2)(m  -  3)

N —2

If we set N  = (n — 2)(m — 2) +  2, we have the desired upper bound. □

3.7 Bounds for S tars and Cycles

We will consider one more set of bounds for a  class of graphs. The proofs 

of the following bounds help illustrate th e  relationships between the various *?r- 

free ram sey num bers. Since a rainbow coloring is .F-free for any set T  of graphs 

with size a t least two, the previous upper bounds for rainbow ramsey num bers 

are useful for any F-free ram sey number. In the proof of the following bound, we 

actually force a stric ter coloring than necessary in order to  simplify the proof.

T h e o re m  3 7 . For any integers n >  3 and m  > 3,

R 2 K , ( K i<n,C m) < (2n  — l)(m  — 2)
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Proof. Let N  =  (2n — 1 )(m — 2)- Suppose K n  is edge-colored with no monochro­

m atic K l<n. According to Corollary 3, R R ( K i <n, Pm- i ) <  (m — 3)(n — 1) +  (m  — 2). 

Since (m — 3)(n — 1) +  (m — 2) <  (2n — l)(m  — 2), we may assume w ithout loss 

of generality th a t there is a rainbow Pm_j in K n - Let M  be the set of vertices in 

K n  which are not on this path . Then

\M\ =  (2n — l)(m  — 2) — (m  — 1)

=  2(n — l) (m  — 2) — 1.

Let v  and w be the end vertices of the path . Since there is no m onochrom atic 

K i , n , each of the m  —2 colors which appear on the path  can be used at m ost n — 1 

tim es on the edges between v and M .  T he color of the edge incident w ith v on 

the pa th  can be used at most n — 2 tim es. Thus, a t most (n — l)(m  — 2) — 1 of the 

edges from v to M  are colored in colors which appear on the path. Similarly, at 

most (n — l)(m  — 2) — 1 of the edges from w  to  M  can be colored in colors which 

appear on the path . Since \M\ > 2[(n — l) (m  — 2) — 1], there m ust be some vertex 

u e  M  such th a t neither uv  nor uw  are colored w ith any of the colors appearing 

on the  path  Pm- 1 - Notice th a t uv  and u w  could be the same color; regardless, 

the path  Pm_i and these two edges form a  {2 / \ 2}-free copy of Cm. □

Essentially the same idea can be used to prove the following upper bound 

for th e  rainbow ramsey number, although a little  greater care is needed in the

final step to  ensure th a t the last two edges of the cycle are not the same color.

T h e o re m  38. For any integers n > 2  and m  > 3,

R R ( K i tn, Cm) <  n3 +  n 2(m  — 5) — n { m  — 5) +  (m  — 2)

Proof. Let A'" =  n 3 +  n 2(m — 5) — n (m  — 5) +  (m  — 2). Suppose the  edges of K n  are 

colored so th a t there is no monochromatic subgraph isomorphic to K itn. For n > 2
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and m  > 3, we have n 3  + n 2 (m.— 5) — n(m — 5) +  (m  — 2) >  (m — 4)(n — l) +  (m —3). 

Since there is no monochromatic corollary 3 guarantees a  rainbow Pm_2. Let 

v and w be the  endpoints of this path. Since m — 3 colors axe used on the path, 

one of which is incident w ith v , a t most (m — 3)(n — 1) — 1 of the edges from v to 

vertices not on the path  are the same color as edges on the path. Each new color 

incident w ith v  can appear a t most n — 1 times. Since

(n — l)(m  — 3) — 1 +  (n — l)(n  — 2) <  n 3  +  n2(m  — 5) — n(m  — 5),

there must be a t least n — 1 new colors appearing on edges incident with v. Let 

u i, u2, .. .u n- i  be vertices not on the path such th a t the edges vu^, uu2, - . .  vun-1  

are all colored with distinct new colors.

Let M  be the set of remaining vertices, th a t is, M  =  V ( K ^ )  — Vr(Pm_2) — 

{ui, u2, . . .  un_i}. Then \M\ =  n3 -f n 2(m — 5) — n ( m  — 5) — (n — 1) = n 3  + n 2(m — 

5) — n(m  — 4) +  1. At this point, we have used m  +  n — 4 colors. Since there is 

no monochromatic K i ,n, for each i, 1 <  i < n — 1, at m ost (n — l)(m  +  n — 4) of 

the edges from u, to M  are colored with colors already used. Similaxly, at most 

(n — l)(m  +  n — 4) of the edges from w to M  are colored with colors already used. 

Since

n(n  — 1 )(m +  n  — 4) =  n3 -f- n 2(m  — 5) — n(m  — 4)

<  \ M \ ,

there must be a vertex x  €  M  such that each of the edges i u i ,  xu 2, . . .  i u n_i and 

xw  are colored with colors not previously used. If these n  edges are all the same 

color, then we have a  monochromatic copy of AT>n- Otherwise, there is some i 

such that xui is not the same color as xw.  Thus, if we add the edges vu{, u,x and 

xw  to the path  Pm_2, we obtain a  rainbow copy of Cm. • □
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T he proof of the upper bound for the edge-chrom atic ram sey num ber is 

very sim ilar, except th a t we can apply Theorem 28 instead of corollary 3.

T h e o re m  39. For any integers n  >  2 and m  > 3, the edge-chromatic ramsey 

number

C R (K i ,n , Cm) < Ti{n -  1) +  (m  — 2)

Proof. Let IV =  n(n — 1) +  (m  — 2). Suppose that the  edges of K ^  are colored 

so tha t there is no m onochrom atic subgraph isomorphic to K i,n. Since n(n — 

1) +  (m — 2) >  m +  n — 5, we may apply Theorem 28. There m ust be an edge- 

chrom atically colored path  on 772 — 2 vertices. Let w  and v be the  end vertices of 

this path , and let w'  and v'  be the vertices on the p a th  which are ad jacent to w 

and u, respectively.

There are 72(72 — 1) vertices not on the path. Since each color can appear 

011 at m ost 72 — 1 edges incident with u, there must be a t least n different colors 

appearing on edges between v and the vertices not on the  path , including a t least 

72 — 1 colors different from the color of edge vv ' . Let u j, u2, . . .  u n_i be vertices 

not on the  path so th a t the  edges vu\,  uu2, . . .  uun_i and vv '  are all colored with 

different colors.

Let M  be the set of rem aining vertices, so th a t M  =  V { K ^ )  — Vr(Pm_2) — 

{«!, u2, . .  - u„_i}. Then \M\  =  (72 — l ) 2. For each 2, 1 <  i <  n  — 1, a t m ost 72 —2 of 

the edges between u, and M  are the same color as vu{. O therwise, we would have 

a monochromatic Ki,n in th a t color. Similarly, a t most n  — 2 of the  edges between 

w and M  are the sam e color as wwr. Since (72 — l ) 2 >  72(72 — 2), there m ust be 

some vertex x  in the set M  such th a t xu{ is not the sam e color as u.-u, for each 

1, and x w  is not the sam e color as w w ' . If all of the edges x u i ,iU 2 , . 2 : ^ - 1  and
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x w  are the sam e color, then  we have a  m onochrom atic copy of K \<n. Otherwise, 

there is some i  such th a t x u x is not the  same color as xw.  Thus, if we add the  

edges vu{, and  x w  to the edge-chromatically colored pa th  on m — 2  vertices,

we have an edge-chrom atically colored cycle on m  vertices. □
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D IS C O N N E C T E D  G R A PH S

Suppose a graph G has components Gi  and G3 . If we know R f ( G \ ,G i ) 

and G3 ), what can we say about Rjr{Gi,G)l  W hen T  =  { / \ lt2}, so that

R ?  is the edge-chromatic ram sey number, we can obtain bounds.

T h e o re m  40 . For any graphs G 1, G 2 and G3 for  which the following numbers 

are defined, the edge-chromatic ramsey number satisfies

C R { G i ,G 2) <  C R ( G u G 2  U G3) <  m a x( \V (G 3)\ +  C R{G U G2) ,C  R{G U GZ))

Proof. The lower bound is clear. Suppose A  >  m a x( \V {G z ) \+ C R {G i ,G 2 ) ,C R (G i ,G z ) ) .  

Color the edges of w ith any num ber of colors. Since Ar >  C R (G i ,G z ) ,  we 

may assume w ithout loss of generality th a t there is a properly colored subgraph 

isomorphic to G 3. If we remove these |V^(G3 )| vertices, the rem aining graph con­

tains either a m onochrom atic copy of Gi or a properly colored copy of G 2 which 

is disjoint from the copy of G3 . Thus, we have a m onochromatic copy of Gi or a 

properly colored copy of G 2  U G3 . □

Notice th a t the roles of G 2  and G3 are interchangeable. Since CR{G\ ,  G2) > 

max(\V(Gi)\ ,  [V'(C?2 )| ) for any graphs G 1 and G 2  with size a t least 2 , we have the 

following corollary.

C o ro lla ry  4. For any graphs G 1 and G 2  o f  size at least 2 fo r  which the following 

numbers are defined,

C R {G u G 2) < C R { G u 2G2) < 2 C R ( G u G2)
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As an example, Theorem 40 gives the following bounds:

6 <  C/?(A'i,3, 2A'i,3) <  10

The actual value of this param eter is CR {K \ , 3 , 2 K it3) = 8 . T he complete graph 

f\~ may be edge-colored rainbow to avoid both graphs. Suppose th a t Kg is edge- 

colored so th a t no color appears more than twice a t any vertex. Pick an edge uv  

colored with color 1. At least three other colors m ust be used on edges incident 

with vertex u. Suppose, then, that edges ua, ub, and uc are colors 2 , 3, and 4, 

respectively. Let d, e and /  be the remaining vertices of the graph. If vd, ve  and 

v f  are all different colors, then we have a properly colored 2 Ki, 3 - If they are all 

the same color, then we have a monochromatic K li3. We may assume without 

loss of generality th a t vd  and ve are color ci, possibly equal to 1, 2, 3, or 4, and 

v f  is color co, where ci ^  c2, but c2 could be 1, 2, 3, or 4. No o ther edge incident 

with v is color Ci and at m ost one other edge is color c2. Thus, we may assume 

wlog th a t edges va and vb are not color ci or color c2.

At most one of the edges ud  and ue can be color 4. Assume wlog that ud  

is not color 4. If ud  is color 2, then the edges ub, uc, ud, va, ve, and v f  form 

a properly colored subgraph isomorphic to 2A'i,3. If ud is not color 2, then th e  

edges ua, uc, ud, vb, ve, and v f  form the desired subgraph.

Theorem  40 can be generalized for .F-free ramsey numbers provided all of 

the graphs in T  are connected.

T h e o re m  41. Suppose T  is a family o f  connected graphs. Then for  any graphs 

G \ ,G 2, and G3  fo r  which the numbers are defined,

R r { G i , G 2) < R r{G x ,G 2 yjG3) <max{\V{G3)\  + R A G u G 2 ) , R r { G u G3)).
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The proof is com pletely analogous to the proof of Theorem  40. We again 

have a corollary.

C o ro lla ry  5. Suppose J- is a family o f  connected graphs. Then for  any graphs 

G i and Gi o f  size at least 2  for  which the numbers are defined,

R r { G \ , G 2) — R f ( G \ , 2 G 2) <  2 R ? { G U G2)

However, the condition th a t T  contain only connected graphs is essential. 

For example, R R ( G i ,2 G 2) is not less than 2 R R ( G i , G 2) in general. For at least 

two small examples, the  opposite inequality holds. T he rainbow ram sey number 

RR{Ki^n, K 2) =  2 while R R ( K i fTl, 2 K 2) > n +  1. Similarly, R R ( K i <n, K i <2) =  n +  1 , 

while R R ( K i 'n,2 K i '2) > 3n — 2. To see this last inequality, notice th a t when n 

is odd, I\zn- 2  may be decomposed into 3(72 — l ) / 2  ham iltonian cycles; (n — l ) / 2  

cycles may be colored with each color, so th a t no m onochrom atic K\,n appears 

and only three colors are used. W hen n  is even, K 3 n - 2 may be decomposed into 

3(n — 1) perfect m atchings and n — 1 matchings m ay be colored with each color.
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S Y M M E T R Y  IN .F-FREE R A M S E Y  N U M B E R S

The definition of the  traditional ram sey num bers is symmetric, in the sense 

that r ( G i , G 2 ) =  r (G i ,G i ) .  If we have a  coloring of K ,v with no red G\  and no 

blue G 2 , we merely need to interchange the colors to obtain  a coloring with no red 

G 2  and no blue G 1. For the rainbow, edge-chrom atic, and other F-free ram sey 

numbers, however, the  definitions contain no such sym m etry.

For exam ple, there is no simple relationship between R R ( G i ,G 2 ) and 

R R (G 2 iG i )  in general. We described bounds for the num ber RR{Cz, Pm), but 

RR{Pn ,Cz)  does not exist for n > 4. In cases where both numbers exist and 

G\ C G2 , we have seen numerous examples where R R ( G i , G 2) < R R (G 2 , G \ ). 

Recall, for instance, th a t

RR{4K 2 , 5 K 2) = 17 

R R (5 K 2 ,4I<2) =  18.

On the o ther hand, K i>2 C  K m for m  > 3. Since any coloring of K m th a t is not 

m onochrom atic m ust contain two adjacent edges in different colors, RR {K m , A i,2 ) =  

m. However, /2R(A'ii2, K m) > 2(m — 2) +  1. To see this inequality, color K 2 {m- 2 ) 

as follows. Color a  perfect matching in one color, say color 1 , and color the o ther 

edges with different colors. Thus, there are no two adjacent edges in the sam e 

color, but any set of m  vertices must contain a t least two edges of the perfect 

m atching in color 1 .

It is perhaps surprising, then, th a t there  is an alm ost symmetrical rela­

tionship for the edge-chrom atic ramsey num ber when one of the graphs is a  star.
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T h e o re m  42. For any graph G and any positive integer n,

C R ( K l ,n, G ) < C R ( G , K l,n+l)

Proof. Suppose C R ( K i tTl,G)  =  N  +  1 for some integer N .  Color the edges of 

I\,\r so th a t there are no m onochrom atic copies of K i n and no edge-chromatically 

colored copies of G.

Now, define a new coloring of as follows. For each color in the original 

coloring, recolor the edges of the subgraph induced by th a t color with an edge- 

chrom atic coloring in colors 1 , 2 , . . .  k,  using as few colors as possible. According 

to Vizing’s Theorem , the edge-chromatic num ber of any graph is a t most one more 

than its m axim um  degree. Since the m axim um  degree of the subgraph induced by 

any color class in the original coloring is at most n — 1 , at m ost n  colors are used 

in this new coloring. Thus, there can be no edge-chromatically colored A'l.n+i in 

the new coloring.

Suppose a monochromatic copy of G  appears in the new coloring. If e 

and /  are any two adjacent edges of G  in the new coloring, notice th a t they 

must have been different colors in the original coloring. Thus, th is copy of G was 

edge-chromatically colored in the original coloring, which is a contradiction.

Thus, we have an edge-coloring of K n  with no m onochrom atic G and no 

edge-chromatic A\,n+i, so CR(G ,  A'i,n+i) > N  + I. □
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D IG R A P H  R A IN B O W  A N D  E D G E -C H R O M A T IC  R A M SE Y  

N U M B E R S

Determ ining rainbow or edge-chromatic ram sey numbers for paths is diffi­

cult, in part, because the paths could move through the vertices of the complete 

graph in any order. If we order the directions of both  the  paths and the com plete 

graphs, this difficulty is elim inated. This idea leads naturally  to the definition of 

rainbow ramsey and edge-chrom atic ramsey num bers for acyclic digraphs.

Let D i and D 2  be any two acyclic digraphs. We define the digraph rain­

bow ramsey number D R R ( D i, D2) as the m inim um  integer N  such th a t any arc- 

coloring of the com plete acyclic digraph D n  m ust contain either a monochromatic 

subdigraph isomorphic to D i or a rainbow subdigraph isomorphic to D2. In what 

follows, an outstar is a s ta r K i,n in which every edge is directed away from the 

central vertex, and an instar  is a  s tar in which every edge is directed towards the 

central vertex.

For which digraphs D\ and D 2  do these num bers exist? For any integer N , 

label the vertices of Djv with the integers 1 ,2 , . . .  N  so th a t the edge from vertex 

i to  vertex j ,  where i < j , is directed from i to j .  If this graph is colored with 

the m inim um  coloring, so th a t the arc i j  is color m i n ( i , j )  for each i and j ,  then 

the  only monochromatic subdigraphs are outstars and no rainbow subdigraph can 

contain a vertex with outdegree greater than  I. If this same graph is colored 

w ith the m axim um  coloring, so th a t arc i j  is colored with color m a x ( i , j )  for each 

i and j ,  then the only m onochrom atic subdigraphs are instars and no rainbow 

subdigraph contains a  vertex with indegree more than  1. In the next theorem , we
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will show that if the digraph rainbow ram sey num ber of any pair of digraphs D\ 

and Di  exists for these two colorings, then it exists for any coloring of K at.

T h e o re m  43. Let D\ and D 2  be two nontrivial acyclic digraphs, so that D\ has 

at least 2 arcs. Then the digraph rainbow ramsey number D R R ( D  1 , D 2 ) exists i f  

and only if  one of the following holds:

1 . is an outstar and D 2  has no vertex with indegree greater than 1

2 . is an instar and D 2  has no vertex with outdegree greater than 1 , or

3. D 2  is a union o f  directed paths, that is, D 2 has no vertex with outdegree

greater than 1  and no vertex with indegree greater than 1 .

Proof. The examples given above show th a t D R R ( D  1, D 2 ) does not exist unless 

one of these three requirem ents is satisfied. If D\  is an o u ts ta r, then an acyclic di­

graph with the m axim um  coloring contains no m onochrom atic D\  and no rainbow 

subdigraph with indegree greater than 1. If D\  is an instar, then an acyclic di­

graph with the m inim um  coloring contains no m onochrom atic D\  and no rainbow 

subdigraph with outdegree greater than 1. Finally, if Dj is neither an instar nor an 

outstar, then neither the m inim um  nor m axim um  colorings contain a monochro­

m atic D\.  The only rainbow subdigraphs contained in bo th  colorings are those 

digraphs with no outdegree greater than I and no indegree g reater than 1.

Suppose Di is an o u ts ta r  with underlying graph F£i,n an d suppose D 2  is an 

acyclic digraph of order m  such th a t indeg v <  1 for ail v €  V ( D 2 ). We will show 

th a t D R R { D \ , D2) exists by induction on m.  If m  =  2, then  D R R ( D i , D 2 ) =  2 

trivially.

Since D 2 has no directed  cycles and no vertex with indegree greater than 

1, there cannot be any cycles in its underlying graph. Thus, th e  underlying graph
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is a tree or a union of trees, each component of which m ust have at least two 

end-vertices. Let u and v  be two end-vertices in the sam e com ponent of D2. If 

both u and v have positive outdegree, then there m ust be a  vertex on the  path 

between u and v w ith indegree a t least 2. This is a  contradiction; we may assume 

w ithout loss of generality th a t u has outdegree 0 and indegree 1.

By induction, we know th a t D R R ( D i , D 2 —u) exists. Let N  = D R R {D i ,  D 2 — 

u) + (n — l)(m  — 2) +  1 . Consider any coloring of the arcs of D jv- On the 

D R R ( D i , D 2 —u )  vertices w ith highest outdegree, there m ust be either a monochro­

m atic copy of D\ or a  rainbow copy of D2  — u. Suppose there  is a  rainbow copy of 

D 2 — u.  Let w  be the vertex adjacent to u in D2. There are a t least (n — I)(m —2) +  l 

vertices in Dyv which are not in D 2  — u and which are ad jacent from w. If any n 

of the arcs from w to these vertices are the same color, we have a m onochromatic 

copy of Dy . Otherwise, there  m ust be arcs in at least m  — 1 different colors. Since 

the underlying graph ol D 2  — u is acyclic and has order m  — 1, D 2  — u contains 

a t most m — 2 arcs. Thus, a t least one of these colors m ust be a new color. We 

m ay add this arc to D 2  — u to  obtain  a rainbow copy of D 2.

Thus, D R R { D \ , D2) exists, where D\ is an o u tsta r w ith  underlying graph 

Ki,n and D 2  is an acyclic digraph with no vertex with indegree greater than 1. 

Solving the recursive bound

D R R (D i ,  D2) =  2 when D 2  has order 2 

D R R ( D i , D2) < D R R ( D i , D 2  — u) + (n — I)(m  — 2) -I- 1 when D 2  has order m

yields the upper bound

D R R ( D i , D 2) < —(m  — 2)(m  — l)(n  — 1) +  m . (12)
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A very sim ilar argument shows that if D i is an instar with underlying 

graph AT,n and Di  is an acyclic digraph with no vertex with outdegree greater 

than  1, then D R R ( D i , D 2 ) exists and

D R R ( D i , D2 ) <  —(m  — 2 )(m — l)(n  — 1 ) +  m.

Suppose D 2  is a  digraph such that each vertex has outdegree a t most one 

and indegree a t most one. We will need some additional definitions and a  lemma 

to show the existence of D R R (D  1, D2 ) in this case. We will say th a t a  complete 

acyclic digraph D , along with a coloring of its arcs, is a  type-A digraph or has a 

type-A coloring if any two arcs incident from the sam e vertex in D  are colored with 

the same color. Similarly, we will say that D is a  type-B digraph or has a  type-B 

coloring if any two arcs incident from the same vertex are different colors. Thus, 

type-A is a generalization of the minimum coloring, while type-5  includes both 

the maximum and the rainbow colorings. Let A B ( k , j )  be the m inim um  positive 

integer N  such th a t any coloring of the com plete acyclic digraph D n  contains 

either a type-A com plete digraph on k  vertices or a ty p e -5  complete digraph on 

j  vertices.

Lem m a 8. For any positive integers k and j , the number A B ( k , j )  exists.

We will prove the lemma by induction on k  and j .  If k — 1 or 2 or j  =  1 or 

2 , then the num ber exists trivially; any coloring of any complete digraph on 1 or 2 

vertices is both type-A and type-5 . Suppose both  A B { k  — 1, j )  and A B ( k , j  — 1) 

exist. Let N  =  (A B ( k  — 1 , j )  — 1 ) ( A B ( k , j  — 1 ) — 1) +  2. Color the arcs of Dw 

arbitrarily. Let v  be the vertex in D n  with m axim um  outdegree. Suppose there 

are A B ( k  — l , j )  arcs incident from v in the sam e color. In this case, th e  vertices 

incident from these arcs induce a  digraph containing either a type- 5  digraph of
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order j  or a type-A digraph of order k — 1. T he vertex v  could be added to a  type- 

A digraph of order k  — 1 to  produce a type-A  digraph of order k. Otherwise, there 

m ust be A B ( k , j  — 1) arcs incident from v  such that each arc is a  different color. 

The digraph induced by the vertices incident from these arcs m ust contain either 

a type-A  digraph of order k  or a  type-B  digraph of order j  — 1. The vertex v could 

be added to a type-B digraph of order j  — I to  produce a  type-B  digraph of order 

j .  Thus, A B ( k , j )  exists and A B ( k , j )  <  (A B ( k  — 1 , j )  — 1 ) ( A B ( k , j  — 1) — 1) +  2 

for k > 3 and j  > 3.

Next, suppose D i is a  complete acyclic digraph of order n  and suppose 

D2  is a  directed path  o f order m. We claim  that D R R ( D i , D2) exists. Let N  =  

A B ((n  — 2)(m  — 2) -h 2, m (m  — l) /2  +  1). Consider any coloring of the arcs of the 

com plete acyclic digraph Dn-  E ither this digraph contains a com plete subdigraph 

of type A with (n — 2)(m  — 2) +  2 vertices or a complete subdigraph of type B  with 

m ( m  — l ) /2  +  1 vertices. Suppose there is a  type-A digraph on (n  — 2)(m  — 2) +  2 

vertices. Label the vertices with their outdegrees 0 ,1 ,2 , . . .  (n —2)(m  —2) +  l. The 

arcs out of any given vertex are all the sam e color, so a t m ost (n  — 2)(m — 2) +  1 

colors are used. If n — 1 of these colors are th e  same, then  these n  — 1 vertices and 

the vertex with outdegree 0 form a m onochromatic copy of D \ . Otherwise, there 

are m  — 1 different colors appearing. The corresponding m  — 1 vertices and the 

vertex with outdegree 0, in order, produce a  directed rainbow path  of order m.

Suppose, instead, th a t there is a type-B  digraph on m (m  — l) /2  +  1 =  

1 +  1 + 2 +  3 +  . . .  +  (m  — 1) vertices. Label the vertices, in order from highest 

to lowest outdegree, by S tart w ith arc V\v2. At most one of

the arcs v 2 v3  and v2 v4  can be the same color as ViV2; choose whichever one is a 

different color, say v 2 v4. Now, a t least one of the arcs v 4 Vs, v4 V6 , and v4vj  must
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be in some new color; choose this arc. Continuing in this fashion, we can choose

a directed rainbow path  of order a t least m.

Thus, D R R ( D i ,  D 2 ) exists, where D\ is a complete acyclic digraph and D2  

is a  directed  path . It follows th a t D R R { D \ , D2 ) exists for any acyclic digraph D\ 

and any union of directed paths Z?2-

To obtain  an upper bound in this case, we first need an upper bound on 

A B ( k , j ) .  F irst, notice th a t A B ( 2 , j )  = A B ( k ,2 )  = 2. For k  >  3 and j  > 3, we

A B ( k J )  < ( A B ( k - l J ) - l ) ( A B ( k , j - l ) - l )  + 2  

= A B ( k  -  1 J ) A B ( k J  -  1) -  AB{k  -  1 , j )  -  A B ( k J  -  1) +  3 

<  A B ( k - l , j ) A B ( k , j - l ) .

We can verify this form ula by induction. If k — 2 , then (Jq2) =  1, s o  A B ( 2 , j )  =  

21. If j  = 2, then we have (^I^) =  1 so A B ( k , j )  = 21. Suppose th e  form ula holds 

for A B ( k . j  — 1) and A B ( k  — 1 , j ) .  Then

have

Solving this bound recursively yields

(kV-~24)
A B ( k J )  < 2

A B ( k , j )  < A B ( k J  - l ) A B ( k - l J )  

f k + j  — 5k + j -  5 \  
I k - 2 k — 3  J('

<  2 2

2 .
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Thus, when Dy is a complete acyclic digraph of order n and D 2  is a directed path 

of order m, we have the bound

D R R ( D i ,  £>2) <  A B ( ( n  — 2)(m  — 2) +  2, m (m  — l) /2  +  1)

/ ( n  — 2 )(m — 2) +  m (m  — l) /2  — l \
V (n -  2)(m  -  2) /

<  2 .

□

Suppose we color the com plete acyclic digraph on m  +  | ( n  — l) (m —2 )(m —3) 

vertices so th a t edge u,u:+J is colored with color This digraph has no

monochromatic subdigraph isomorphic to an outstax with underlying graph K l>n. 

Any edge in color i must skip a t least (n — l)(z — 1) +  1 indices, so a rainbow- 

colored directed path  on m  vertices must skip a t least 1 +  (1 +  (n — 1)) +  (1 +  

2(n — 1)) + . . .  -f- (1 +  (m — 2)(n — 1)) indices from the first vertex to the last vertex 

on the path. Combining this discussion with the bound in equation 12, we have 

the following theorem .

T h e o re m  44 . I f  Dy is an outstar (or, similarly, i f  Dy is an instar) with under­

lying graph Ky,n and D 2 is a directed path on m  vertices, then

D R R (D y , £>2) = rn + i ( n  — l)(m  — l)(m  — 2).

If we apply the Pigeonhole Principle to  the  colors of the arcs from the vertex 

with m aximum outdegree, the next formula is im m ediate. The lower bound follows 

from a coloring of the complete acyclic digraph on (m  — l) (n  — 1) 1 vertices with

m  — 1 colors, so th a t no vertex has more than  n — 1 arcs adjacent from it in the 

same color.
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T h e o re m  45. I f  Di is an outstar with underlying graph K i <n and D 2  is an outstar 

with underlying graph K i,m, then

D R R ( D i , D 2) =  (m — l)(n  — 1) +  2.

For any outstar D\  with underlying graph A'i>n and any acyclic digraph 

D2  on m vertices containing no vertex with indegree greater th a n  1, the digraph 

rainbow ramsey num ber lies between m  +  £(n — l)(m  — l)(m  — 2) and (m — 2)(n — 

1) +  2. The upper bound is included in the existence proof; the lower bound 

follows from the coloring for the last theorem.
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P O S S IB L E  D IR E C T IO N S F O R  F U R T H E R  S T U D Y

Many questions rem ain open for study. Certainly, the rainbow and edge- 

chrom atic ram sey num bers for other classes of graphs could be considered, and 

the bounds we have found may be improved. Some o ther generalizations seem 

natural. For exam ple, we could define R R ( G i , G2, Gz , • • • ; H)  for a graph H  and 

a sequence of graphs G j, G2, G 3 , . . .  to be the sm allest integer N  such that any 

coloring of w ith colors 1 ,2 ,3 , . . .  m ust contain either a  m onochrom atic copy 

of Gi in color i for some i or a  rainbow copy of H.

Relationships between the various param eters could be explored. For ex­

am ple, we have bounds on the rainbow ramsey num ber in term s of the gener­

alized ramsey num ber. Could similar bounds be found for the edge-chromatic 

ram sey number? Is there any relationship between Ryr(Hi,G  1), /2.^(./72, G2), and 

Rjr(Hi  x H2 , G l x G 2) for some family of graphs J 7!

We have often found an optim al lower bound coloring for the rainbow 

ram sey number R R (G i,G 2) by using m  — 1 colors, where G2 has m  edges. The 

lower-bound coloring for /2/2(/vii3, 3 /^ )  m ust use 3 colors, but we have seen few 

other examples. It would be interesting to find significant exam ples where this 

optim al coloring is forced to use m  or more colors or, perhaps, to  establish that 

such examples do not exist except in special cases such as R R (K i , 3 , 3AT2).

The trad itional and generalized ramsey num bers involve only monochro­

m atic graphs, w ith a  m axim um  num ber of colors used to  color K yy. We might 

define a similar rainbow num ber, involving only rainbow subgraphs, if we set a 

minim um  num ber of colors. Is there a natural way to  set a  m inim um  number of
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colors to  use in coloring Ajv, presum ably dependent on N t  W hat relationships 

m ight we expect between such a  num ber, the traditional ramsey num ber, and the 

rainbow ram sey number?

In another direction, the edge-chrom atic num ber of a graph is the minimum 

num ber of colors needed to color its edges with no two adjacent edges the same 

color, th a t is, w ith no m onochrom atic subgraph isomorphic to AT^. We might 

also explore the .F-free edge-chrom atic num ber for o ther families of graphs T ,  

defined of course to  be the m inim um  num ber of colors needed to edge-color G so 

th a t there  is no m onochrom atic subgraph isomorphic to  any graph in T .  Thus, 

when T  =  {AY2}, we have the usual edge-chrom atic num ber. The rainbow or 

{ 2 K 2, A'ii2}-free chrom atic num ber is sim ply the num ber of edges in th e  graph, 

th a t is, its size.

The {2 / \ 2 , A 3 } - free edge-chrom atic num ber equals the vertex cover num ber 

q (G ), defined [see 4, p. 243] to be the m inim um  num ber of vertices needed to 

cover all of the edges in the graph. If { v i , v 2, . . .  ,Vk} is a  set of vertices that 

covers all of the edges in G, then G  could be colored {2A^, /v3}-free using k  

colors, by decomposing G  into k  stars w ith centers a t v i , v 2, . . .  ,fjt. Conversely, 

if G  is {2 A 2 , Ar3}-free colored, then G  is decomposed into k  m onochrom atic stars. 

Their centers uj, u2, . . .  , u* necessarily cover all of the edges of G. We m ight also 

consider the  {2 A'2}-free edge-chrom atic num ber. For which graphs does it differ 

from the  {2 A'2, A'3 }-free edge-chrom atic num ber?

These and many other questions involving both ramsey theory and  color­

ings of graphs could naturally  be considered.
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