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RAINBOW RAMSEY NUMBERS

Linda Eroh, Ph.D.
Western Michigan University, 2000

We investigate a new generalization of the generalized ramsey number for
graphs. Recall that the generalized ramsey number for graphs G,,G>,...,G.
is the minimum positive integer N such that any coloring of the edges of the
complete graph Ky with ¢ colors must contain a subgraph isomorphic to G; in
color ¢ for some z. Bialostocki and Voxman defined RM(G) for a graph G to be
the minimum N such that any edge-coloring of Kx with any number of colors
must contain a subgraph isomorphic to G in which either every edge is the same
color (a monochromatic G) or every edge is a different color (a rainbow G). This
number exists if and only if G is acyclic.

Expanding on this definition, we define the rainbow ramsey number RR(G,, G,)
of graphs G; and G; to be the minimum N such that any edge-coloring of Ky
with any number of colors contains either a monochromatic G; or a rainbow G,.
This number exists if and only if G| is a star or G, is acyclic. We present upper
and lower bounds for RR(K\ n, Km), RR(K,,Tyn), RR(Kn, K1 ;m), RR(K} n,mK>)
and RR(nK,, K\ ), where T, is an arbitrary tree of order m.

We also define the edge-chromatic ramsey number C R(G,,G2) to be the
minimum N such that any edge-coloring of Kx must contain either a monochro-
matic G, or a properly edge-colored G,;. When both are defined, CR(G,,G;) <
RR(G,,G2). We consider bounds for CR(C,, Pn), CR(K\n, Pm), CR(Py, Pn),
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and the corresponding rainbow ramsey numbers.

These two new ramsey numbers can be further generalized as the F-free
ramsey number. For a set of graphs F, an F-free coloring of a graph G is a coloring
so that G does not contain any monochromatic subgraph isomorphic to any graph
in 7. The F-free ramsey number of graphs G, and G,, denoted Rz(G;,G,), is the
minimum N such that every edge-coloring of Kn contains either a monochromatic

copy of G} or an F-free copy of G,.
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INTRODUCTION

Frank Ramsey was actually considering decision problems in formal logic
when he proved the theorem which demonstrates the existence of both the tradi-
tional and generalized ramsey numbers. In terms of graph theory, the traditional
ramsey number r(n;,ns,n3, ... ,n.) is the smallest integer /V such that any edge-
coloring of the complete graph Ky on N vertices with ¢ colors must contain a
complete subgraph K, on n; vertices with every edge color 7 for some . In gen-
eralized ramsey theory, the complete graphs K,, may be replaced with arbitrary
graphs. Many of the results in traditional ramsey theory are asymptotic bounds,
though a few specific formulas are known for the generalized ramsey numbers of
certain classes of graphs. Recently, Bialostocki and Voxman defined a new gener-
alization allowing the use of an arbitrary number of colors. They considered the
diagonal values, that is, values of their number when the two graphs considered
are the same. We extend their definition to consider the off-diagonal numbers and

other generalizations of the ramsey numbers.
1.1 Background and Basic Definitions

In 1930, in a paper titled “On a Problem of Formal Logic”[13], Frank
Ramsey proved the combinatorial result that demonstrates the existence of what
would later be called ramsey numbers. His result received little attention at the
time and was later rediscovered by G. Szekeres and P. Erdos. We state only the

finite version of Ramsey’s Theorem.

Theorem 1 (Ramsey). For any positive integers ny,ny, ... ,n. and.d, there ez-
1
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ists an integer N = rq(ny,ns,... .n.) such that if the d-element subsets of the set
{1,2,3,... . N} are colored with c colors, then for some i, 1 < i < ¢, there is a
subset A C {1,2,3,... | N} with n; elements such that every d-element subset of

A is colored with color 1.

We may view the set {1.2,3,... , N} as the vertices of the complete graph
K. When d = 1, the coloring described in Ramsey’s Theorem is a coloring of the
vertices of K. In this case, Ramsey’s Theorem says that for any set of integers
{n1.na,... ,nk}, there is an integer V so that if the vertices of the complete graph
K'n are colored with k colors, there must be n; vertices in color ¢ for some . Of
course, this is simply the Pigeonhole Principle; N = Zle(n,- — 1) + 1 suffices.

The first nontrivial case occurs when d = 2. In this case, the coloring
described in Ramsey’s Theorem may be viewed as a coloring of the edges of the
complete graph Ky. From this point of view, Ramsey’s Theorem says that for any
set of integers {n,,n2,...,n.}, there is some integer N such that if the edges of
KA'n are colored with c colors, say colors {1, 2,...c}, then the resulting graph must
contain a complete graph on n; vertices with every edge colored with color ¢, for
some z. The smallest such integer N is called the ramsey number r(ny,na, ... ,n.).
We will refer to this number here as the traditional ramsey number.

When we consider colorings of subsets of order d > 3, we have ramsey
theory for k-uniform hypergraphs with £ > 3. Recall that a k-uniform hypergraph
is a graph in which edges are replaced by k-element subsets of the vertex set,
where £ is a constant. Very little work has been done to find ramsey numbers for
d > 3, and no nontrivial hypergraph ramsey numbers are presently known.

We will only prove Ramsey’s Theorem in the finite case for d = 2, since

these are the values which interest us. The following proof is based on the proof
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in the book by Graham, Rothschild, and Spencer [11, p. 3].

Proof of Ramsey’s Theorem for d = 2. In any coloring of the edges of K,, with
two colors, say red and blue, either at least one edge is red or all of the edges are
blue. Thus, r(2,m) = m. Similarly, r(n,2) =n.

Now, suppose r(n,m — 1) and r(n — 1,m) both exist. Let N = r(n,m —
1) + r(n — 1,m). Consider any coloring of the edges of Ky in red and blue. Let

z be an arbitrary vertex of Kx and define

U= {y e Ky|zyis red }
and

V = {y € Kn|zy is blue }.

Since |U| + |[V|+ 1 = r(n — 1,m) + r(n,m — 1), either |[U| > r(n — 1,m) or

V| > r(n,m — 1). Suppose |[U| > r(n — 1,m). Then there is either a blue

subgraph K, or a red subgraph K,_; contained in the subgraph induced by U.

If there is a red K,_;, then this graph and the vertex z induce a red K,. The

case |V| > r(n,m — 1) is similar. Thus, r(n,m) exists for all positive integers n

and m and is bounded above by r(n — 1,m) + r(n,m — 1).

We proceed by induction on the number of colors ¢. Suppose r(n;,n,,... ,n._1)

exists for all positive integers ny,n2,... ,n._;, forsomec > 3. Let N = r(r(ny,na,... ,n._1),n).
For any edge-coloring of Knx with ¢ colors, consider the colors 1,2,... ,c¢— 1 red

and the color ¢ blue. Then there must be either a copy of K, in blue, that is,

color c, or a copy of Ky (n, n,.... n._,) iD red, that is, entirely in colors 1,2,... ,c—1.
In the second case, this “red” graph must contain K, in color ¢ for some ¢,
where 1 < 2 < ¢— 1. Thus, r(ny,n2,...,n.) exists for all positive integers

Ny, N2y... 3 Ne. ° O
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As an illustration, we give the proof of the first nontrivial traditional ram-

sey number.
Theorem 2. The ramsey number r(3,3) = 6.

Proof. To obtain a coloring of the edges of K5 with two colors so that the resulting
graph does not contain a copy of K3 in either color, color one 5-cycle red and the
remaining 5-cycle blue.

Now suppose the edges of N are colored with two colors, say red and blue.
Let v be any vertex. Since v is incident with five edges, there must be some set
of three edges incident with v which are colored with the same color, say blue.
Suppose u, w and r are the other incident vertices of these three edges. If any one
of the edges uw, wz and zu are colored blue, then we have a blue K3. Otherwise,

all three edges are red and form a red K. O

Once the ramsey numbers had been viewed in terms of graph theory, it
became natural to rewrite the traditional ramsey number as r(K,,, Kn,, ... K., )
and to define r(Gy, G, ... Gy) for graphs Gy, G2, . .. , Gy which are not necessarily
complete. This number, known as the generalized ramsey number, is defined to
be the smallest integer N such that every coloring of the edges of K'x contains
a subgraph isomorphic to G; with every edge colored with color 7 for some z,
1 <7 < k. This generalization was first explored in a series of papers by Chvatal

and Harary[7]. Harary described his discovery of the generalization:

In his lecture at my seminar on graph theory, he[Paul Erdos] wrote
G — F,H to mean that every 2-coloring of E(G) contains a green
subgraph F or a red subgraph H. He then defined the ramsey number
r(m,n) as the smallest p such that K, = K., K,. I proposed at once
to rewrite r(m,n) as r(K,,, K,) and to study the generalized (not only
for complete graphs) ramsey number r(F, H), defined of course as the
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minimum p such that K, — F, H where graphs F' and H have no
isolated points. Later we learned that several special cases of r(F, H)
were being investigated in Hungary and elsewhere at about the same
time.[12]
For more of the early work on generalized ramsey numbers, see the series
of papers “Generalized Ramsey Theory for Graphs™ by Chvatal and Harary [7]. A

good overview of ramsey theory can be found in the book by Graham, Rothschild,

and Spencer|[l1].
1.2 Some Traditional Results

Many of the results concerning the traditional ramsey numbers were demon-
strated using the probabilistic method pioneered by Paul Erdés. One early exam-

ple of this method is the proof of the following lower bound.
Theorem 3 (Erdés). For any integer n > 3, the ramsey number
r(n,n) > LQ%J

Proof. Let N = |2™/2]. If we label the vertices of Ky, then there are 2(2) different
colorings of the edges of Ky with two colors, say red and blue. Since n vertices
may be chosen in (1:) different ways and there are 2(2)-(3) different ways to color

the remainder of the graph, there are at most

(-:’)g(f:)-m

different colorings containing a red K,,. By symmetry, then, at most

g(f:)g(z)-(;)
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different colorings contain either a red K, or a blue K,. Since

2(N)2(':)—(:) < 2NH-)
n =~ nl

n 9n/2
2N™ 2 o(¥)
n! 27%/2

n/2+1
< 2 2(%)

n!

for n > 3, there must be some coloring of Ky which does not contain either a red

or a blue A7,. O

From the proof of Ramsey’s Theorem, it follows that
r(n,m) <r(n,m—1)+r(n —1,m). (1)

Since r(n,2) =n = (,",) and r(2,m) = m = (7T) for any integers n and m greater

than 1, the recursion in equation 1 yields the upper bound

n+m-—2
n—1

r(n,m) < (

This bound is approximately

4
r(n, n) S c_’

vn
for some constant c.

Despite this progress on asymptotic bounds, few actual numbers are known
for the traditional ramsey numbers. The situation for generalized ramsey numbers
is more promising. One of the better known results in generalized ramsey theory
is Chvatal’s formula for r(T, K,) where T is a tree of order m [6]. Given the

scarcity of such closed formulas, the proof is surprisingly elegant.
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Theorem 4 (Chvatal). For any tree T of order m, the ramsey number
r(T,K,)=14+(m—1)(n-1)

Proof. For the lower bound, color the edges of n — 1 disjoint copies of K,,_; red
and the edges between them blue. The resulting graph has (n —1)(m — 1) vertices,
no connected red subgraph of order m or larger, and no blue K.

For the upper bound, let N = (n—~1)(m —1)+ 1 and suppose the edges of
K'x are colored red and blue. Assume that the resulting graph has no blue K, as
a subgraph, so the subgraph H induced by the red edges does not contain any set
of n independent vertices. If we consider H as a graph, any chromatic coloring of
the vertices of H can use each color at most n — 1 times, so at least m different
colors must be used. Since H has chromatic number at least m, there must be
some subgraph of H with minimum degree at least m — 1. Otherwise, proceeding
by induction on the order of the subgraph, each subgraph of H could be colored
with m —1 colors by removing a vertex of minimum degree, coloring the remaining
subgraph, replacing the removed vertex, and coloring this vertex with some color
not used on its neighbors. In this case, H# would have chromatic number less than
m. which is a contradiction. Since any graph with minimum degree at least m — 1

contains every tree of order m as a subgraph, T must be a subgraph of H. a

Few other general formulas are known. One such formula which we will

use later involves stripes, that is, disjoint unions of copies of K, [8]. We omit the

proof.
Theorem 5 (Cockayne, Lorimer). [f n,,n,,... ,n. are positive integers and
ny = maz(n,,na,... ,n.), then

r(niKy,na b, ... neKa) = nyp + 14 ) (ni—1).

=1
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1.3 Where the Rainbow Begins

Another important set of problems which are closely related to graphical
ramsey theory involve colorings of the integers {1,2,3,... , N}. These problems
originated with a result by B. L. van der Waerden in 1927. In the following
theorem, we call a sequence monochromatic if every integer in the sequence is the
same color. Later, we will say that a sequence is rainbow if no two integers in the

sequence are colored with the same color. See [11. p. 29].

Theorem 6 (van der Waerden). [f the positive integers are colored with two

colors, then there is a monochromatic arithmetic progression of any desired length.

A slight generalization of van der Waerden’s result shows that for any
positive integers n and &, there is a positive integer W (n; k) such that any coloring
of the integers 1,2,...,W(n;k) with £ colors must contain a monochromatic
arithmetic sequence of length n. A considerable amount of interest has been
directed towards discovering these numbers for various values of n and k.

In a paper published in 1979, Erd6és and Graham suggested a number
of generalizations and new problems related to van der Waerden’s Theorem[9].
Among the generalizations, they define H(n) to be the smallest positive integer
n such that any coloring of the integers 1,2,... , H(n) with any number of colors
must contain an arithmetic sequence of length n that is either monochromatic or
rainbow.

Bialostocki and Voxman may have been inspired by this generalization
when they defined, in [1], the number RM(G) for a graph G. This number is
defined as the smallest integer N such that if the edges of the complete graph Kn

are colored with any number of colors, then the resulting graph must contain a
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subgraph isomorphic to G in which either every edge is the same color or every
edge is a different color. They note that this number exists if and only if G is
acyclic. This result follows from a theorem by Erdés and Rado.

For the purposes of the Erdés-Rado Theorem, a canonical coloring of either
a finite or an infinite complete graph with vertices numbered 1,2,3,. .. is any one
of four particular edge-colorings. A monochromatic coloring is one in which every
edge is the same color. In a minimum coloring, edge i is color min(i,j); in a
mazimum coloring, this edge is color maz(i, j). For a finite graph, either of these
two colorings may be obtained from the other by reversing the order in which the
vertices are labelled, but for an infinite graph, they are nonisomorphic. A rainbow
coloring is an edge-coloring in which every edge is a different color. A graph that
is colored with a monochromatic, minimum, maximum, or rainbow coloring is said
to be canonically colored [11].

We state and prove the Erdés-Rado Theorem only as it applies to finite

graphs. For a more general statement, see [11, p. 129].

Theorem 7 (Erdds, Rado). For any positive integer k, there ezists a positive
integer N such that any edge-coloring of Kn contains a canonically colored com-

plete subgraph on k vertices.

Proof. According to Ramsey’s Theorem, there is some integer N such that if all
of the 4-element subsets of the vertices of K'x are colored with 203 colors, the
resulting graph must contain a complete subgraph K in which every 4-element
subset is the same color. Consider any edge-coloring (coloring of two-element
subsets) of Kn. At most six colors are used on the subgraph induced by any set
of four vertices {a, b, c,d}, where we assume a < b < ¢ < d. Up to renaming and

rearranging colors, there are 203 different ways that a labelled complete subgraph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



induced by four vertices may.be colored. Label each four-element subset of the
vertices of Ky with its coloring, up to interchanging colors, so that the four-
element subsets are colored with at most 203 colors.

Thus, there must be a complete subgraph of order k, say H, on which all
of these four-element subsets are colored with the same color. Label the vertices

of H by vy,v,,...vr where v; < v; if and only if i < j.

Since the subsets {vy, v2,v3, va}, {vy,v2, V3, U5} {v1, V2, va, vs}, {v1, U3, va, U5},

{’Ug, U3, Uy, 7.15}, {vla U4, Us, 1’6}, {v2v Vg4, Vs, v6}7 and {'U3, V4, Us, US} all have the Same

coloring, the following equations are either all true or all false:

color v, v, color v v3
color v, v, color vyvy
color v;v3 color v vy
col(?r Va3 color vpvy (2)
color v vy color v;vs
color vavy color v,us
color v3vy color vavs
and, similarly, the set of equations
color v,v3 color vpv3
color v vy color vyuy
(3)
color v;vy color v3vy
color vovy color vavy
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are either all true or all false. Notice that the equations

color vyv, = color vyus

color viv, = color vyvuy
(4)

color vivz = color vauy

color vouz = color v3vy

are either all true or all false. The pair of equations

color v,v, = color v3vy 5)
5

color v v, = color v3us

are either both true or both false, and must be false if the equations in (2) are

false. Similarly, the equations

color v,v3 = color v vy

(6)
color vpuz = color v vs
are either both true or both false, and the equations
color v,v3 = color vavy )
7

color vyvz = color vavs

are either both true or both false, and must all be false if the equations in (2) are
false.

Suppose all of the equations (2) and all of the equations in (3) are true.
In this case, {v,v2,v3,v4} is colored monochromatically. Any two nonadjacent
edges v;v; and vv, in H must be the same color, since {v;, v;, v, vp} is colored the
same as {v;,v2,v3,v4}. Also, any two adjacent edges v;v; and vv in H are the
same color, since {v;,v;,v;,vp} is colored the same as {vy,v2,v3,v4}, where v, is

some other vertex. Thus, H is colored monochromatically.
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Suppose the equations in (2) are true and the equations in {3) are false.
Then {v,,vs,v3,v4} is colored with the minimum coloring. For any integers : <
7 < [, since {vy,vy,v3,v4} is colored the same as {v;,v;, v, v,}, where v, is any
other vertex (not necessarily having the highest index), the edge v;v; must be the
same color as the edge v;v; and the edge v,v; is not the same color as the edge
vivg. It follows that H is colored with the minimum coloring.

Similarly, if the equations in (2) are false and the equations in (3) are true,
then both {v,,v2,v3,v4} and H are colored with the maximum coloring.

Suppose the sets of equations in (2) and (3) are all false. It follows that
the equations in (4) must also be all false. If they were all true, then color vjv, =
color vav3 = color vzus = color vyvz. Thus, all of the equations in (2), (3), (4), (5),
(6). and (7) are false, so {v,, v2, v3. v4} is rainbow colored. Since any set of vertices

{vi, vj, v, vp} in H must also be rainbow colored, H is also be rainbow-colored. [

Suppose G is an acyclic graph with & vertices. Then any monochromatic
copy of A contains a monochromatic copy of G, and any minimum-colored,
maximum-colored, or rainbow colored copy of K} contains a rainbow copy of G.
Thus, RM(G) exists and is at most the integer N described in the Erdés-Rado
Theorem.

However, suppose G contains a cycle v,vz,... ,v,. For any integer N,
color Ay with the minimum coloring. Consider any subgraph isomorphic to G.
Assume without loss of generality that v; receives the smallest label of the vertices
U1,V2,... ,Vp. Since vjv, and v,v, are the same color, this subgraph G is not
rainbow colored. However, v,v; and vyvs are different colors, so G is also not
monochromatically colored.

Bialostocki and Voxman discovered the following formula for RM (nK,).
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We present a proof similar to theirs[1].

Theorem 8 (Bialostocki, Voxman). For every positive integer n, the number
RM(nK3) =n(n —1)+2

Proof. For the lower bound, color the edges of K,._,,, as follows. First, partition
the vertex set into n—1 sets Ay, A,,... ,An_; where |A;| =2n—1and [A;] =n—-1
for 2 <7 € n— 1. Color the edges among the vertices in A; with color 1 for
1 €1 < n—1 and color the edges between vertices in A; and vertices in A;
with color max(i,j) for 1 < i < j < n — 1. The resulting graph contains no
monochromatic nK, and has too few colors to contain a rainbow mK,.

To demonstrate the upper bound, we proceed by induction on n. For
n =1 or n = 2, the result is immediate. Assume n > 3 and RM((n — 1)K;) =
(n—1)(n—2)+2. Consider any edge-coloring of K,2_,,,. If fewer than n colors are
used, then by Theorem 5, there must be a monochromatic copy of nK,. Thus, we
may assume that at least n colors appear. Choose a set H of nn edges, in n different
colors, so that H contains as many independent edges as possible. If |V (H)| = 2n,
then we have a rainbow n K3, so we may assume that |V(H)| < 2n — 1. Let M be
the subgraph of K,2_.,» induced by the vertices not in H.

If any new color appears on an edge in M which does not appear in f, then
we may replace one of the edges in H which is not independent with an edge from
M in this new color to obtain a set of n edges in n different colors containing more
independent edges than H. This contradicts our choice of H. We may assume
that no new color appears in M.

Similarly, if every color which appears in H also appears in M, then we

may replace some edge in H which is not independent with an edge in the same
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color from M. Again, we would have a set of n edges in n different colors with
more independent edges than H, which contradicts our choice of H. Thus, we
may assume that the colors which appear in M are a proper subset of the colors
which appear in H.

Suppose |V(H)| < 2n — 2. Then |[V(IM)| > n*-3n+4 = (n ~1)(n—
2) + 2. By the inductive hypothesis, we know that M must contain either a
monochromatic (n — 1)K or a rainbow (n—1)K,. If M contains a monochromatic
(n — 1)K;, then we may add an edge in the same color from H to obtain a
monochromatic nK,. If M contains a rainbow (n — 1)A%, then we may add an
edge from H in some new color to obtain a rainbow nK,.

Thus, we may assume that |V(H)| = 2n — 1. The structure of H is de-
termined, up to interchanging colors. We may assume that H contains n — 2
independent edges r;y;, where edge z;y; is color 7, for 1 <7 < n — 2, and two
adjacent edges uv and vw, where uv is color n — 1 and vw is color n. If M con-
tains any edges in colors other than 1,2,... ,n — 3 and n — 2, then we have a
rainbow nK,. For any z € V(M), if edge uz is a new color or color n — 1, then we
have a rainbow nK>3; we may assume that all such edges are colored with colors
1,2,3,... ,n — 2 and n. If no such edge is color n, then the subgraph induced
by M U {u} is colored with colors 1,2,3,... ,n — 3 and n — 2. Since this sub-
graph contains RM((n — 1)K;) = (n — 1)(n — 2) + 2 vertices, it must contain a
monochromatic (n — 1)K in one of the colors 1,2,3,... ,n — 2. We may add an
edge from H to obtain a monochromatic nK,. Thus, we may assume that ua is
color n for some vertex a € V(M). Similarly, every edge wz for z € V(M) must
be in one of the colors 1,2,3,...n — 1, and for some b € V (M), edge wb is color

n — 1. If a # b, then we have a rainbow nK5; assume a = b.
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Now, every edge vz, for = € V(M) and z # a, must be colored with one
of the colors 1,2,3,... ,n — 2, or else we have a rainbow nK,;. We may assume
without loss of generality that there is some vertex ¢ € V(M) such that vc is color
1. For any z € V(M), with z # c and z # a, edges z,z and y;2 cannot be colored
with colors n or n — 1 or any new color. or we would have a rainbow nK,. Thus,
we may assume that all such edges are colored with the colors 1,2,... ,n — 2.

Consider the subgraph induced by V(M )U{z,,y1}—{c}. Allof the edges on
this subgraph are colored with colors 1,2,...n — 2, so there are not enough colors
for a rainbow (n — 1)K,. However, there are RM((n —1)K2) = (n—1)(n —2) +2
vertices in this set, so there must be a monochromatic (n — 1)K in one of the
colors 1,2,..., or n — 2. We may add the appropriate edge from H to obtain a

monochromatic n K. a
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RAINBOW RAMSEY NUMBER

Next we consider a slight generalization of Bialostocki and Voxman’s defi-
nition. We define the reinbow ramsey number RR(G,,G>) to be the least positive
integer /N such that if the edges of Ky are colored with any number of colors,
the resulting graph must contain either a subgraph isomorphic to G; all of whose
edges are the same color or a subgraph isomorphic to G, all of whose edges are
different colors. Notice that this definition is not symmetric in G; and G5, that is,
we have no reason to expect RR(G,,G2) and RR(G»,G}) to be the same number.
(The issue of symmetry is explored further in chapter 5.)

For simplicity, we will say that a graph is monochromatic if all of its edges
are colored the same color, and we will say that a graph is rainbow if all of its

edges are colored different colors.
2.1 Existence of Rainbow Ramsey Numbers

We next determine for which graphs G| and GG the rainbow ramsey number
exists. The existence theorem follows quickly from the Erdés-Rado Theorem, but
we will present instead a constructive proof independent of this theorem which
also yields upper bounds.

First, we need a simple but useful lemma:

Lemma 1. If RR(G,,G,) ezists, H, is a subgraph of G\, and H, is a subgraph
of G, then RR(H,, H;) also exists and RR(H,, H,) < RR(G,, G.).
This lemma follows from the fact that any graph which contains a monochro-

matic copy of G; must also contain a monochromatic copy of its subgraph H; and
16
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any graph which contains a rainbow copy of G2 must also contain a rainbow copy

of H,. In the statement of the following theorem, a forest is an acyclic graph.

Theorem 9. The rainbow ramsey number RR(G,,G,) ezists if and only if Gy is

a star or G, is a forest.

Proof. We will consider four cases. The first case demonstrates indirectly that if
RR(G,,G,) exists, then G is a star or G, is a forest. The remaining three cases

show the converse; case 2 serves as a lemma for case 3.

Case 1. G, is not a star and G is not a forest For any integer N, label
the vertices of Ky with the integers 1.2,... ,N, and color edge ij with color
min(z, ). For any color z, every edge of color 7 is incident with vertex i:. Thus,
any monochromatic subgraph must be a star.

Suppose that Kn contains a rainbow subgraph isomorphic to G,. Since
G2 is not a forest, it must contain some cycle Ci. Thus, Knx contains a rainbow
subgraph isomorphic to Ci. Let vy, v,,... ,v; be the labels of the vertices of this
cycle. We may assume without loss of generality that v; < v; foreach:,2 <: < k.
But then by the definition of the coloring, edge vcv; and edge v, v, are both colored
with the same color v;. We have a contradiction; there is no rainbow subgraph
isomorphic to G,.

Since this minimum coloring may be used for any integer N, the rainbow

ramsey number does not exist in this case.
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Case 2. G, = K,, and G; = K, ,, for some positive integers n and m.
This case serves as a lemma for Case 3. Let

(m . 1)(n—2)(m—l)+2 -1

N = m—2

(n=2)(m—-1)+1
(m —1)

=0
Color the edges of Ky with any number of colors. Choose an arbitrary vertex v;.
If m or more colors appear on the edges adjacent to vy, then we have a rainbow

copy of K, .. Otherwise, at most m — 1 colors appear, so there must be at least

(n—2)(m-1)
N -1 3 ,-
m—1 (m—1)
=0

edges incident with v, which are colored with the same color, say color 1. Keep
only these edges and the vertices W, incident with them, and ignore the remainder
of the graph.

Now, choose any vertex v, from W;. Again, if m or more colors appear
among the edges between v, and the other vertices of W, then there is a rainbow

copy of K . Otherwise, at most m — 1 colors appear, so there exists a set of at

least
(n=-2)(m-1)-1
Wil -1 i
wor 2z 2 (meb

i=0
edges in the same color, say color 2, between v, and the other vertices of W,.
Notice that colors 1 and 2 are not necessarily distinct.
Continuing in this fashion, we may assume that we have a sequence of
vertices vy, V2, ..., U(n-2)(m—1)+2 Such that every edge vvj, for 1 < : < j <
(n —2)(m — 1) + 2, is color i, where the colors 7 and j are not necessarily distinct

for z # j. If m or more of these colors, say colors i;,is,... ,¢,, are distinct,
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then vertex v(n—2)(m-1)+2 is the central vertex of a rainbow K ,,, with endvertices
Uiy Vigy - - - s Vip,- Otherwise, there are at most m — 1 distinct colors appearing in
this subgraph. Thus, of the (n — 2)(m — 1) + 1 colors appearing, there must be
a set of at least » — 1 colors which are identical, say iy, = i, = ... = i,,_;. In
this case, the subgraph generated by the vertices v; ,vi,,... ,v;,_, and the vertex

U(n-2)(m—-1)+2 15 @ monochromatic complete subgraph of order n.

Case 3. G, = K, and G; is a tree of order m for some integers n and m
We will proceed by induction on the order m of the tree. Since a tree of order
2 or 3 is necessarily a star, the base case is included in Case 2.

Suppose for some integer m that the rainbow ramsey number RR(K,,T)
exists for any tree T of order m — 1. Let T’ be a tree of order m with an endvertex
v adjacent to a vertex u. Let RR(K,,T' — {v}) = M. From case 2, we know that
the rainbow ramsey number RR(A,, K| m-1) exists; suppose it is V.

Consider the complete graph Kxar on NM vertices. Suppose the edges
are colored arbitrarily with any number of colors. We may divide the vertices of
Ky into N disjoint sets of M vertices each. The subgraph generated by each
set of M vertices must contain either a monochromatic copy of K, or a rainbow
copy of T" — v. If any monochromatic copy of K, appears, we are done, so we
may assume that we have N rainbow copies of T — v. Let u,,us,...un be the
corresponding copies of the vertex u. Now, the graph generated by the u; must
contain either a monochromatic copy of K, or a rainbow copy of K ,,_;. If it
contains a monochromatic A, the proof is complete. Suppose u; is the central
vertex of a rainbow copy of K ,._;. One of the m — 1 different colors in this star

must be different from any of the m — 2 colors appearing in the ith rainbow copy
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of T — {v}. Thus, we may add the edge in this color to the :th rainbow T’ — {v}
to produce a rainbow copy of 7.
Since the rainbow ramsey number exists when G, is complete and G; is a

tree, Lemma 1 implies that it exists for any graph G, provided G; is a forest.

Case 4. G, = K, , and G, = K,, for some positive integers n and m For
convenience in what follows, we will use the falling factorial notation. If m is an

integer, the falling factorial

m!

m(k)zm(m—l)...(m—k+1)=m.

Notice that m(¥) behaves asymptotically like m*.
Choose the integer N so that

(n — 1)(m + 1)1

- (8)

N >3+

and color the edges of Ky arbitrarily. Assume that there is no monochromatic
copy of K;, in Kn. We will show that there must be a rainbow copy of K.
Notice that the total number of different copies of K,, in Ky is (Z)

We wish to bound the number of copies of K, that are not rainbow. First,
consider the number of copies of K. that contain two adjacent edges, say uv and
uw, which are the same color. There are N choices for the vertex u. Suppose there
are a; edges of color 7 incident with u, where | <7 < k. Then Zle a; =N -1,
where | < a; < n — 1 for each 7, and the number of different choices for v and w
is Zf.‘:l (%)- The maximum occurs when each a; is as large as possible, so there

are at most

(Nnml) A /n—1
(27)=7= ()

x-l
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choices for v and w. Then there are (: :g) choices for the remaining vertices of

K,,. Thus, there are at most

NN—I n—1 N -3
n—1 2 m—3

copies of K, of this type.

Now, consider copies of K,, in which two nonadjacent edges are the same
color. There are (’Z) choices for the first edge, and N — 2 ways to choose an
endpoint for the second edge. This vertex is incident with no more than n — 1
edges which are the same color as the first edge and not adjacent to that edge.
Since neither the order in which the edges are chosen nor the order in which the
endpoints of the second edge are chosen is important, we are counting each pair of
edges at least 4 times this way. Thus, there are at most N(N —1)(N —2}(n—1)/8
ways to choose two nonadjacent edges of the same color, and 'r: ___:) ways to choose

the remaining vertices of K,,. The edge-colored copy of Ky can contain at most

NN -1)(N-2)(n—-1) (N —4
8 (m—4)

copies of K, of this type.

Thus, there are at most
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NN—I(n—-l)(N—3)+N(N—-1)(N—2)(n——1)(N—4)

n—1 2 m — 3 8 m—4
_ (N [(n —2)m® (n —1)m®
- m>_2(N—2) 8(N—3)]
N\ [(n—=1)m® (n—1)m®
= (m) ECED S(N—s)]
_ (N) [(n — 1)m®)(4 + m — 3)
— \m/ | 8(N —3) ]
— (N) [(n — 1)(m + 1)
T o\m/ | 8N -3 ]
< ()

nonrainbow copies of K,, in Ky, which means that there must be at least one
rainbow copy. The last inequality follows from equation 8.
We know from Lemma 1 that since the rainbow ramsey number RR( K 5, Kin)

exists, the number RR(A', 1, G2) also exists for any graph G, of order m. O

This proof immediately produces the upper bounds
(n—2)(m-—1)+1 )
RR(K.,K\») < ) (m—1)

1=0

m—-1 [(n-2)(7-1)+1
RR(K..Tn) < II( > (j—l)‘)

1=2 i=1
RR(K\..Kn) < 3+ (n - l)(;n + 1)@

where T, is an arbitrary tree of order m. The second bound can be improved.

In Case 3, we actually only need (m — 1)(N — 1) + M vertices to force N =
RR(K., Ki,m-1) copies of T — {v}. We can force the copies of T — {v} one at a

time, removing the vertices of one copy before forcing the next one. Thus,

(n—2)(m~2)+1

RR([\’n,Tm)s(m—l)< > (m—2)‘—1)+RR(I(n,Tm_1).

1=0
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Since RRE(K,,T3) < n, the improved upper bound is

m—1 (n=2)(7-1)+1

RR(K.,Tn) <Y j Z G-1)Y=1] +n.

=3 i=0
Rainbow ramsey numbers also have a strong relationship with generalized
ramsey numbers, as the following theorem illustrates. In the theorem, r(G;m —
1) =r(G,G,... ,G), the generalized ramsey number for a monochromatic graph

G when a complete graph is edge-colored with m — 1 colors.

Theorem 10. For any positive integer m > 2 and any graph G,
r(Gim — 1) < RR(G.mK;) <r(G;m —1)+2(m —1).

Proof. For the lower bound, suppose N = r(G;m — 1). Consider a coloring of
Ky_, with m — 1 colors that does not contain any monochromatic copy of G.
Since the graph is colored with fewer than m colors, it also cannot contain any
rainbow copy of mK,. Thus, RR(G,mK,) > N.

For the upper bound, let M = r(G;m — 1) + 2(m — 1). Consider any
coloring of the edges of K. If fewer than m — 1 colors are used, then there
must be a monochromatic copy of G. Choose an edge in, say, color 1, and remove
the two vertices incident with this edge. If fewer than m — 1 colors are used
on the remaining Kjs_,, there must be a monochromatic G; so there must be
some edge in a color other than 1. Remove the vertices incident with this edge.
We may repeat this argument until we have removed the vertices incident with
m — 1 independent edges in m — 1 different colors, leaving a complete graph on
r(G;m — 1) vertices. If the complete graph induced by these r(G;m — 1) vertices
is edge-colored with m — 1 or fewer colors, then it contains a monochromatic copy

of G. Otherwise, it contains at least m colors, including a color distinct from the
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colors used on the m — 1 edges already removed. In that case, we have a rainbow

copy of mK,. Thus, RR(G,mK,;) < M. O
2.2 Lower Bounds

The preceding existence proof provides rough upper bounds on the rainbow

ramsey numbers. In this section, we will present some general lower bounds.

Theorem 11. For any positive integers n > 3 and m > 3 and any tree T,, of

order m, RR(K,,T,) > (n —1)™"%2 + 1.

Proof. Let N = (n — 1)™"2. We may view the vertices of Kx as represented by
the set of (m — 2)-tuples whose entries are elements of { 1,2,...n — 1 }. Color
the edge between two (m — 2)-tuples with color i if the first position in which
their entries differ is position z. Since only m — 2 colors are used, no subgraph of
Kn can form a rainbow T,,. Suppose any n different vertices are chosen. Let j
be the index of the first entry in which some pair of these (m — 2)-tuples differs.
Thus, the first 7 — 1 entries are identical for all n vertices. Now, some pair of
these vertices differ in the jth entry, but since there are only n — 1 choices for
this entry, some pair must be the same in the jth entry. Thus, at least one edge
is color 7 and at least one edge is a color strictly greater than j. These vertices

cannot form a monochromatic R',. [

We can obtain an alternative lower bound by generalizing the proof of

Erdés’s bound r(n,n) > {2%/2] in Theorem 3.

Theorem 12. For any positive integers m and n which satisfy4 < m < (n!)¥/("+2)

2, and any tree T of order m, the rainbow ramsey number

RR(K.,T) > [(m —2)"?].
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Proof. Let N = |(m — 2)*/2|. If we color the edges of Ky with m — 2 or fewer

colors, there are (m —2)V(N-1)/2 different colorings. For any set of n vertices, there
are (m — 2)N(N-1)/2-n{n-1)/2 different colorings of K in which these n vertices
form a monochromatic K, in color 1. Thus, the number of nonidentical colorings

of Kx which contain a monochromatic A, in color | is at most

(N) (m _ 2)N(N—l)/2—n(n—l)/2

n
< ﬁ;(m _ 2)1V(N—l)/‘2—n(n—l)/2
—9) 1/2
< (m-— 2)N(N—-l)/2 [(T’En')2) }

1
m—2

S (m _ 2)N(;V—l)/2

where the last inequality holds because m < (n!)?/("*2) 1 2. Since the same argu-
ment holds for each of the m —2 colors, there are strictly less than (m — 2)V(¥-1)/2
colorings of K'x which contain a monochromatic subgraph on n vertices. There
must be some coloring with no such subgraph. Since only m — 2 colors are used,

this graph also cannot contain a rainbow subgraph isomorphic to 7. O

We should note here that the condition m < (n!)?/("+2) 4 2 is not unrea-

sonable. For n > 8, (n!)?/("*+2) > n_ so the bound above holds for m < n + 2.

Theorem 13. For any integers n > 3 and m > 3, the rainbow ramsey number

n—1)(2=m=2) 12 ifn isodd orm =0 orl (mod 4)
RR(K\n, Kn) > (n=h) ( 2 )
(n—1) (ﬁ;‘—'z) + 1 otherwise

2

Proof. Let N = (n—1) (m——m-Z) +1. If n is odd, then factor Ky into (N —1)/2
hamiltonian cycles. Color (n — 1)/2 of the hamiltonian cycles with each color.
The resulting graph contains no monochromatic K, , and strictly fewer than (7)

colors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Assume that n is even. If m = 0,1 (mod 4), then N is even. Thus, Kn
can be l-factored, and n — 1 1-factors colored with each color. If m = 2,3 (mod
4), then let N = (n — 1) (L—zm_ﬁ) Since N’ is even, the complete graph K-
can be decomposed into (n — 1) (-’12"—2"‘-'—2> — 1 l-factors. Color (n — 1) l-factors
with each color except for the last and color (n — 2) 1-factors in the last color to

obtain a coloring with no monochromatic K, , and no rainbow K. O
2.3 Stars

In the simplest case, when both graphs are stars, we have the following

closed formula for the rainbow ramsey number.

Theorem 14. The rainbow ramsey number RR(K, », Kim) = (n—1)(m—1)+2.

Proof. Suppose the edges of K(n_1)(m-1)+2 are colored with any number of colors.
Consider any vertex v. Then there are (n — 1)(m — 1) + 1 edges incident with
v, so either m or more different colors appear on these edges, or some set of n
of these edges are the same color. Thus, we have either a rainbow K. or a
monochromatic K7 ,.

We must also show that K{,_1)(m-1)+1 may be colored so that neither graph
appears. If (n —1)(m — 1) + 1 is even, then K(,_1)(m-1)+1 can be factored into
I-factors. There are (n — 1)(m — 1) of these 1-factors; color n — 1 of them with
each color to obtain a coloring with no monochromatic K , and no rainbow K ,,.

If(n ~1)(m —1)+ 1is odd and n — 1 is even, then K(;_j)(m-1)4+1 can be
factored into (n — 1)(m — 1)/2 hamiltonian cycles. Color (n — 1)/2 of these cycles
with each color to obtain the desired coloring.

Finally, if (n—1)(m —1)+1isodd and n—1 is also odd, color K(n_1)(m~1)+1
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as follows. For convenience, set N = (n — 1)(m — 1) + 1. Label the vertices of Kn
by {z}U{vijll <i<m~-1,1<j<n-—1}. Foreachi, with1l <:<m—1, color
the edges of the complete graph induced by {z,v; 1, vi2,-..vin-1} with color i. For
each 7 and j with 7 # j, color the edges joining the vertices {v;,1,vi2,vi 3, ... Vin-1}
with the vertices {Uj_!,vj'z,vj':;, ...Vjn—1} with some new color. Thus, the edges
in any given color induce a subgraph isomorphic to either K, or K, _; .1, neither
of which contain A',. Exactly m — 1 colors appear at each vertex, so there is no

rainbow K .. a
2.4 Rainbow Ramsey Numbers and Matchings

We will call a 1-regular graph a matching. Notice that any 1-regular graph
consists of n disjoint copies of the complete graph on 2 vertices, for some integer
n. Such a graph is commonly denoted by nK,.

In Theorem 5, Cockayne and Lorimer presented a formula for the standard
ramsey number for such graphs:

T‘(Tlll\'z,nzl\,g,.. .TI.c[\Iz) =n; + 1+ Zn; — 1. (9)

=1
In particular, if ny = n, = ... = n., we have
Corollary 1. If n is any positive integer, then

r(nKy;,nKy,...nK3) =(c+1)(n—-1)+2

A graph colored with ¢ or fewer colors cannot possibly contain a rainbow
copy of (¢ + 1)K,. If the graph is colored with ¢ + 1 or more colors, then such a

subgraph is possible. Thus, taking m = ¢ + 1,

RR(nK;,mK,) > r(nK;,nK,,...nK;)=m(n—1)+2 .
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We may easily see the .inequality RR(nK2,mK2) > m(n — 1) + 2 directly.
Color the graph Ko (n—1)+1 as follows. Color all of the edges of a subgraph iso-
morphic to K,,_; with color 1. Choose n — 1 additional vertices and color all
of the edges among these vertices and between these vertices and those already
colored with color 2.. For each color ¢ = 3,4,...m — 1, choose n — 1 additional
vertices and color the edges among those vertices and between those vertices
and the part of the graph already colored with color :. The resulting graph has
2n—14(m—2)(n—1) = m(n—1)+1 vertices and contains no set of n independent
edges in the same color. Since only m — 1 colors appear, it also cannot contain a
set of m independent edges in different colors.

In the case when m = n, Bialostocki and Voxman showed that this in-
equality is in fact an equality, in Theorem 8.

We suspect that their result can be generalized as follows:

Conjecture 1. For every pair of positive integers n and m, where n > 3 and

m > 2,
RR(nK;,mK;)=m(n —1)+2.

First, we handle several trivial cases. Any graph with at least one edge
must contain both a monochromatic and a rainbow K,, so RR(K,,mK,;) =
RR(nK,, K;) = 2. If a graph contains at least n independent edges, then ei-
ther two of the edges are different colors or all of them are the same color. Thus,
RR(nK,,2K32) = 2n. Similarly, if a graph contains at least m independent edges,
then it must contain either a rainbow m K, or a monochromatic 2K,. However,
a graph with fewer than 2m vertices could be colored with every edge a different

color to avoid these two graphs. Therefore, RR(2K,,mK,) = 2m.
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29
Bialostocki and Voxman'’s proof can be adapted to show Conjecture 1 in

the case m < n.

Theorem 15. For any two positive integers n and m, where 2 < m < n,
RR(nK;,mK,;) =m(n—1)+2.

Proof. We will proceed by induction on m. The formula holds when m = 2, as
discussed above. For some m > 3. suppose the edges of K,,(n_1)+2 are colored
with any number of colors. If fewer than m colors are used, then we may apply
Corollary 1 with ¢ = m — 1 to see that some monochromatic copy of n K, must
appear. Thus, we may assume without loss of generality that at least m colors
are used.

Choose one edge of each of m different colors that appear in such a way
that the number of independent edges in this set is maximal. Let H represent
these edges and let V(H) represent the vertices incident with these edges. If
[V(H)| = 2m, then we have a rainbow copy of mK, and we are done. Assume
that |V(H)| <2m — 1.

Let M = V(Knn-1)+2) — V(H). If there is any color which appears in the
graph induced by M and not in H, then the number of independent edges in H is
not maximal, which contradicts our choice of H. If every color which appears in
H also appears in M, then we may choose some color in H which does not appear
on an independent edge and replace that edge with an edge of the same color in
M to produce a set of representatives of the colors with more independent edges
than H. Again, this contradicts our choice of H. Thus, the colors appearing in

M must be a proper subset of the set of colors appearing in H.
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Since m < n, the set M contains at least

IM| > (n—=1ym+2—-(2m —1)
= nm—3m+3
> nm-2m—-n+1+3

= (n—2)(m—1)+2

vertices. Therefore, by the inductive hypothesis, the subgraph generated by M
contains either a monochromatic copy of (n—1) K3 or a rainbow copy of (m —1) K.
Since H contains one edge of each color appearing in M and at least one edge of
a color not appearing in M, we may add an edge from H to the subgraph in M

to produce either 2 monochromatic n K’ or a rainbow mK>,. ]

Next we will show that the same formula holds for m = n + 1. Two of the

smaller values must be shown separately.
Theorem 16. The rainbow ramsey number RR(3K,,4K;) = 10.

Proof. By the coloring described previously, we know that RR(3R;,4K,) > 10.
Suppose the edges of K|y are colored with any number of colors. Consider any set
of 5 independent edges, say ab, cd, ef, gh and ij. If 4 or more colors appear, or if
some color appears at least 3 times, we are done. Without loss of generality, we
may assume that the edges ab, cd, ef, gh and ij are colored with colors 1,1, 2,2,
and 3, respectively.

Notice that if color 3 is used on any of the edges ac, bd, ad, bc, then it cannot
be used on any of the edges eg, fh, ek, fg without creating a monochromatic 3K,
in color 3. Thus, we may assume that this color appears on at most one of these

sets of four edges. Assume without loss of generality that color 3 does.not appear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30



on the edges ac, bd, ad, bc. Notice that color 2 cannot appear on these edges

either without creating a monochromatic 3K,.

Case 1. One of the edges ac, bd, ad, bc is some new color. Suppose
without loss of generality that ac is a new color, color 4. Since ac, bd, ef, and i3
are independent edges, edge bd must be one of the colors 2,3 or 4, or else we have
a rainbow 4K,.

We may assume that bd is color 4. If the edge ce is any color except 2 or
3. then we have a rainbow 4K, using either ab or bd along with ce, gh, and ;.
Similarly, we may assume that df is colored either 2 or 3. If ce and df are the
same color, then together with either gh or z7 they form a monochromatic 3K5.
Thus, without loss of generality, ce is color 3 and df is color 2.

By the same argument, one of the edges ag and b/ is color 2 and the other

is color 3. However, we now have 3K, in color 3.

Case 2. The edges ac, bd, ad, bc are all color 1. If any edge from the set of
vertices a, b, ¢, d to the set e, f, g, h is a new color, then we have a rainbow 4 K.

Consider the edges ae, cg, bf, and dh, colored in the three colors 1,2,3. If
color 1 appears twice, then we have 3K, in color 1. Similarly, if color 3 appears
twice, we have a monochromatic 3K,. If color 2 appears twice incident with ef
or twice incident with gh, then we have 3K, in color 2. We may assume that
color 2 appears twice, once incident with the edge ef and once incident with gh.
Without loss of generality, edges ae and cg are color 2, edge bf is color 1 and edge
dh is color 3.

Consider edge a:. If this edge is in some new color, then ai, cg, bf and dh

form a rainbow 4K,. If it is color 1, then it forms a monochromatic 3K, along
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with bf and cd. If it is color 2, then it forms a monochromatic 3K, along with ef
and gh. Thus, we may assume without loss of generality that edge at is color 3.
Similarly, we may assume that edge cj is color 3. But then edges ai, ¢j and dh

form a monochromatic 3K,. ]
Theorem 17. The rainbow ramsey number RR(4K,,5K>) = 17.

Proof. The lower bound follows from the coloring discussed previously.

Suppose that the edges of K7 are colored with any number of colors. If 4
or fewer colors are used, then by Corollary 1, there is a monochromatic subgraph
isomorphic to 4K,. Thus, we may assume that at least 5 colors are used.

Since RR(4K;,4K;) = 14 < 17, we may also assume without loss of gener-
ality that there is a rainbow subgraph isomorphic to 4K>; we will label the colors
1, 2, 3, and 4. Some color 5 must appear somewhere in the graph. If color 5
appears on an edge independent from the edges of the 4K, we are done.

Suppose an edge of color 5 appears incident with two of the edges of the
4K5, as shown in Figure 1. Since RR(3K;,3K,;) = 8 < 9, there must be either
a monochromatic or a rainbow 3K, on the remaining 9 vertices. If there is a
monochromatic 3K, in some new color, then we have a rainbow 5K in colors 1,
2, 3. 4, and this new color. If there is a monochromatic 3K, in one of the colors
1, 2,3, 4, or 5, then we may add the appropriate edge to obtain a monochromatic
4K,. Thus, we may assume wlog that there is a rainbow 3K, necessarily using
three of the four colors 1, 2, 3, and 4. In particular, there is an edge in color 3 or
an edge in color 4, so, up to interchanging colors, we may assume that we have a
subgraph as shown in Figure 2.

Let N = V(K,7) - {a,b,c,d,e, f,g,h,i}. If N contains an edge in any

color other than 1, 2, and 3, then we have a rainbow 35K,. Since |N| = 8 =
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Figure 1. Possible Location for Edge of Color 5 in Theorem 17.

Figure 2. Other Possible Location for Edge of Color 5 in Theorem 17.
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RR(3K,,3K,), there must be either a monochromatic 3K, in color 1, 2, or 3
or a rainbow 3K, on colors 1, 2, and 3 on N. If N contains a monochromatic
3K,, then we have a monochromatic 4K, in the original graph. Thus, we may
assume that NV contains three independent edges in colors 1, 2, and 3, respectively.
The remaining independent edge in N must be color 1, 2, or 3, say wlog color 1.
Without loss of generality, we have the graph shown in Figure 3.

Let M = V(K\7) — {a,b,c}. Since M| = 14 = RR(4K,,4K3), we may
assume wlog that M contains a rainbow 4K,. If this 4K, does not contain an
edge of color 4 and an edge of color 5, then we may add edge bc or edge ab to
obtain a rainbow 5K;. Thus, we may assume that an edge of color 4 and an edge
of color 5 appear in M.

If the color 4 edge appears anywhere in M besides the edges ng, nf, og,
of, pd, pe, qe, and /or qd, then we have a rainbow 5K,. Without loss of generality,
we may assume that edge ng is color 4.

Consider edge op. If op is color 1, then we have a 4K in color 1. If op is
color 2, 4, or 5, or some new color, then we have a rainbow 5K,. Thus, op must
be color 3. Similarly, oq, oe, od, fp, fq, fe, and fd must all be color 3.

Consider edge qd. If ¢d is color 1, we have a monochromatic 4K, in color
1; if qd is color 2, 4, or 5, or some new color, then we have a rainbow 5K,. Thus,
qd and, similarly, edges ge, pe, and pd must all be color 3.

Now, if any edge on the vertices h, 1, 5, k,[, and m is color 3, we have a 4K,
in color 3. If any one of these edges is color 2, 4, or 5 or some new color, then we
have a rainbow 5K,. Thus, we may assume that vertices h, 1, j,k,/, and m induce
a complete graph in color 1.

Finally, consider the six edges hd, ie, jf, ko, {p, and mq. If two or more
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Figure 3. Subgraph Which Must Exist, WLOG, in Theorem 17.

of these edges are color 1 or if two or more are color 3, then we have a monochro-
matic 4K,. If any one of these edges is color 2, 4, or 5, or a new color, then
we have a rainbow 5K,. There are no other possibilities; we must have either a

monochromatic 4K, or a rainbow 5K5. O

The proof for n > 5 and m = n + 1 actually shows a slightly more general

case. First, we will need a few technical lemmas.

Lemma 2. Assume that RR(nK;,(m — 1)K3) = (m — 1)(n — 1) + 2. Suppose
Ki(n-1)+2 s edge-colored with any number of colors. Then either Ko(n—1)+2 con-
tains a monochromatic nK, or a rainbow mK;, or any set of independent edges

in a given color can be extended to a set of fzz‘—] independent edges in that color.

Proof. Suppose there is a set of k independent edges in the same color, say color
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1. Let M be the set of 2k vertices incident with these edges. If

2k € m(n—-1)+2— RR(nK;,(m — 1)K>)
= mn-1)+2—-[(m—-1)(n—-1)+72]

= n-—1,

then we may assume that there is either a monochromatic nK, or a rainbow
(m — 1)K, on the remaining vertices. If the rainbow (m — 1)K, does not contain
color 1, then we may add an edge in color 1 to produce a rainbow m K,. Otherwise,
the rainbow (m — 1)K, contains an edge in color 1 independent from the edges
in M. We may add the vertices incident with this edge to M and repeat the
argument. Continuing in this fashion, we can extend the set M until |M| = 2k,

where 2k > n — 1, that is, until £ > (n — 1)/2. O
We will primarily use this lemma in the following form.

Corollary 2. Assume RR(nK,,(m —1)K;)=(m—1)(n—1)+2 andn > 5. If
Ko(n-1)+2 is edge-colored with any number of colors, then either the graph contains
a monochromatic nK, or a rainbow m K>, or any edge or pair of independent edges

in a single color can be eztended to a set of three independent edges in that color.

Lemma 3. Assume that RR(nK,,pK;) = p(n — 1) + 2 for every positive integer
p < m. Suppose K,(n_1)+2 is edge-colored with any number of colors and suppose
the resulting graph does not contain either a monochromatic nK, or a rainbow

mK,. If M is a set of vertices and S is a set of ¢ colors, ¢ > 1, such that

(1) there is a set of ¢ independent edges on the vertices of M containing an edge

in each color of S and
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(2) IM] < ¢(n —1),

then there is an edge in Kp(n_1)+2 independent of M colored with one of the colors

of §.
Proof. Let M be such a set. Since

M| < ¢(n-1)
= (mn-1)+2)—((m—-c)(n—-1)+2)

= (m(n—-1)+2) - RR(nK>,(m — c)K>2),

the remainder of the graph must contain either a monochromatic nK’; or a rainbow
(m — c)K,. If none of the colors of S appear in the rainbow (m — c¢)K;, then it
can be extended to a rainbow mK,. Thus, we may assume that there is a rainbow

(m — c)K; independent from M containing an edge in one of the colors of S. [

We are now ready to prove the main result. Notice that for n > 5, we have

n+1< 3(n—1).
Theorem 18. Forn > 5 and2 <m < ‘;-’(n — 1), the rainbow ramsey number

RR(nK; ,mK;)=m(n —1) +2

Proof. We proceed by strong induction on m, using Theorems 8 and 15 as the
base. Thus, we assume that the formula holds for RR(nK;,pK:) for all p < m
and that m > n > 5. Suppose Kpn(n-1)+2 is edge-colored with any number of
colors. Since m(n —1)+2 > (m —1)(n — 1) + 2 = RR(nKk>,(m — 1)K3), we
may assume without loss of generality that there is a rainbow (m — 1)K, say in
colors {1,2,...m —1}. Now, since m < 2(n — 1), it follows that there are at least

m(n—1)+2-2(m—-1) > (m—-2)(n—2)+2 = RR((n—-1)K,, (m —2)K,) vertices
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remaining. If a monochromatic (n — 1)K, appears in a new color, then we may
add an edge in this new color to the rainbow (m — 1)K, to produce a rainbow
mK,. If a monochromatic (n — 1)K, appears in one of the colors 1,2,...m — 1,
then this subgraph along with the appropriate edge from the rainbow (m — 1)K,
yields a monochroma_xtic nk,.

Thus, we may assume without loss of generality that a rainbow (m —2) K>
appears, independent from the (m — 1)K,. If any new color appears on this
(m — 2)K,, then we have a rainbow mK,. Thus, without loss of generality, we
may assume that the (m — 2)K; is colored with colors 1,2,...m — 2.

Sincem < (3/2)(n—1), there are at least m(n—1)+2—-2(m—1)—2(m—2) >
(m—=3)(n-3)+2= RR((n —2)K,,(m — 3)K,) vertices remaining. If there is a
monochromatic (n — 2) K; on these vertices in one of the colors 1, 2,...m —2, then
we have a monochromatic nK,. If, on the other hand, there is a monochromatic
(n — 2)K; or a rainbow (m — 3)K, containing some new color, then we have a
rainbow mK,. Thus, we may assume, without loss of generality, that we have one

of the following three cases.

Case 1 There is a monochromatic (n — 2)K; in color m — 1. Label
the vertices as shown in Figure 4, so that edges uw;v; and w;z; are color : for
1<:<m-2.

From corollary 1, if only m — 1 colors were used to color the edges of
Koi(n-1)+2, then there must be a monochromatic nK,. Thus, we may assume that
there is some new color, say color m, appearing on these vertices. According to
corollary 2, we may also assume that this color appears on at least 3 independent

edges. If any edge in color m is not an edge u;w;, u;z;, v;w; or v;z; for some i,
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Figure 4. Case 1 of Theorem 18.
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1 €7 < m— 2, then we have a rainbow mK;. At most 2 of the 3 independent
edges in color m can appear incident with u;,v;,w; and z; for any given 7. Thus,
we may assume without loss of generality that edges v;w; and v,w, are color m.

We will proceed by induction. Let
Mg = {uj,vj,wj, z;[1 < j <1}

Then the graph induced by M<; contains a pair of independent edges in any two
of the three colors 1,2, and m, that is, it contains two independent edges in colors
1 and 2, two independent edges in colors 1 and m, and two independent edges in
colors 2 and m.

Suppose, forany ¢, 1 < i < m—2, that the graph induced by M<; contains a
set of 7 independent edges in any i of the colors 1,2,...7, and m. Since |M<;| = 41,
we may apply lemma 3 with ¢ = 7and § = {1,2,...7}. Since n > 5, we have
41 < ¢(n — 1). Thus, there must be some edge independent from Mc; in one
of the colors 1,2,...:. If this edge is not w;wj, ujzj, v;w; or v;z; for some j,
where 1 < 7 < m — 2, then we have a rainbow m K> using this edge in, say, color
k, a matching on Mg; in the colors {1,2,...i,m} — {k}, and a matching in the
remainder of the graph in colors t+1,7z+2,...m—1. Thus, we may assume without
loss of generality that the new edge in color &, 1 < k <z, is the edge v,y w;4,. Let
C be any subset of i + 1 colors from the set {1,2,...7+4 1,m}. If C contains color
¢+ 1, then the graph induced by Mc;, contains a set of independent edges in the
colors of ', since Mc; contains a set of independent edges in colors C — {i +1}. If
C does not contain color 7 + 1, then C = {1,2,...7,m}. Since the graph induced
by Mc; contains a set of independent edges in colors {1,2,...i7,m} — {k}, the
graph induced by Mc<;;; contains a set of independent edges in the colors of C.

Continuing inductively, we may assume that M<n,_, contains a set of m —2
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independent edges in any m—2 of the colors {1,2,...m—2,m}. If we apply lemma
3 withc=m—2and S = {1,2,...m — 2}, then we may assume that there is an
edge independent from M<,,_; in one of the colors 1,2,...m — 2. Then this edge,
say in color k, an independent edge in color m — 1, and a set of independent edges

in M<,,_; in colors {1,2,...m ~ 2,m} — {k} form a rainbow mKp,.

Case 2 There is a rainbow (m — 3)K; not containing color m — I.
Without loss of generality, we may assume that there is a subgraph as shown in
Figure 5. As in case 1, we may assume that some new color, say m, appears on
at least three independent edges. If any edge in this new color is not adjacent
to either the edge in color m — 1 shown in Figure 5 or both of the edges of color
m — 2, then we have a rainbow mK,. Since at most two independent edges can
be adjacent to the edge in color m — 1, we may assume that at least one edge of
color m appears adjacent to both edges of color m — 2.

Let M be the set of vertices incident with the edges of colors m—2 and m—1
shown in the figure. We may apply lemma 3 with c =2 and S = {m -2,m — 1}.
Since 6 < 2(n — 1) for n > 5, we may assume that there is an edge in color m — 1
or color m — 2 independent from M. If an edge in color m — 2 appears, then we
have a rainbow m K3; we may assume that an edge in color m — 1 appears. Let M’
be the set of vertices in M along with the two endpoints of this new edge of color
m—1. Apply lemma3 to M’ withc=2and S = {m—2,m—1}, since8 <2(n—1)
for n > 5. Thus, there must be another edge in color m — 1 independent from M".

Now, from corollary 2, we may also assume that there is an edge in color
m — 2 independent from the two edges in that color shown in Figure 5. If this

edge is not adjacent to the edge in color m — 1, then we have a rainbow mK,.
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Figure 5. Case 2 of Theorem 18.

So we may assume that there is an edge in color m — 2 adjacent to the edge of
color m — 1. Since there are two independent edges in V/(Kx)— M in color m — 1,
there is an edge in color m — 1 independent from this new edge in color m — 2.
Consider these two edges in colors m — 1 and m — 2, respectively, and the edge of
color m. If there is still a set of m — 3 independent edges in colors 1,2,...m — 3
on the remainder of the graph, then we have a rainbow mK,.

Since we are using three vertices of V(Kn) — M, it is possible that these
three vertices are incident with three different edges in the same color, say color
m — 3. Let L be the set of vertices in M along with the 6 vertices adjacent to the
edges in color m —3. We may apply lemma 3 to L with S = {m—-3,m—2,m—1}.
Since 12 < 3(n — 1) for n > 5, there must be some edge independent from L in

one of these three colors. Observe that with this edge and the edges in L, we can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

Um-3 Um-2 Um—1
1 2 m-—4 m—3 m—2 m—1
Um-3 Um—2 Um-1
Wm-3 Wm—2 W1
o o 0
1 2 m— 4 m—3 m—2 m—1
& & N Im-3 Tm-2 Tm-1
(@) (@) ?
1 2 m—4
b b &

Figure 6. Case 3 of Theorem 18.

obtain an independent set of edges in colors m—3,m—2, m—1 and m. There must
be an independent set of edges in colors 1,2,...m — 4 on the vertices remaining,

so we have a rainbow mAK,.

Case 3 There is a rainbow (m — 3)K; containing color m — 1. @ We may
assume that we have the graph shown in Figure 6, with edges u;v; and w;z; in
colorz,fort=m—-3,m—-2,m—1.

As in the previous two cases, we may assume that there is some new color,
say color m, appearing on at least three independent edges. If any edge in color
m is not one of the edges u;w;, u;z;, viw; or viz; fori=m -3, m -2, or m — 1,
then we have a rainbow mK,. Since at most two independent edges can be chosen

from {w;w;, uiz;, viw;,viz;} for each i, we may assume without loss of generality
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that edges vy—2w,m—2 and v, w,_; are color m.

Let M = {um-2,Vm-2,Wm-2,Tm—2, Um—-1,VUm—1,Wm—1,ZTm—1}- If we apply
lemma 3 to M with ¢ =2 and S = {m — 2,m — 1}, we have some edge in color
m—2 or m—1 independent from M. If this edge is not one of the edges u;,_3wm-3,
Um-3Tm -3, Um—-3Wm—3 OF Um_3Tm_3, then we have a rainbow mK,. Assume wolog
that edge vm_3wm—3 is color m —2 or m — 1. Let M’ = {u;,v;,wi,zi|t = m —
3m—2,m—1},and let S={m—3,m —2,m —1}. According to lemma 3, there
is some edge in one of the colors m —3,m — 2, m — 1 independent from M’. Thus,

there is a rainbow m K. |

We have seen that the formula
RR(nK;,mKy;)=m(n—1)+2
from Conjecture 1 holds for m < 3(n — 1). In general, for n > 2, we have
m(n—1)+2< RR(nK,,mK;) <2(n—1)m

The lower bound was discussed previously. Notice that the upper bound holds
for n = 2 and for m = 1 provided n > 2. For any n > 3 and m > 2, suppose
RR(nK;,(m —1)K3) <2(n —1)(m —1) and RR((n — 1)K;,mK3) < 2(n — 2)m.
Consider any edge-coloring of Kj(n_1)m. If the resulting graph does not contain a
rainbow mK,, then without loss of generality it must contain a monochromatic
(n — 1)K,. If we remove these 2(n — 1) vertices, there are 2(n — 1)(m — 1) vertices
remaining. Thus, there is either a monochromatic n K, or a rainbow (m —1) K> on
the remaining vertices. Without loss of generality, then, we have a monochromatic
(n — 1)K>, say in color c, and a disjoint rainbow (m — 1)K,. Either the rainbow

(m — 1)K contains an edge in color c or it does not. If it contains an edge in color
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¢, then this edge along with the monochromatic (n — 1)K, form a monochromatic
nkK,. Otherwise, an edge in color ¢ from the (r — 1)K, may be added to the

rainbow (m — 1)K, to produce a rainbow mK,.
2.5 Matchings and Stars

Next, we consider the rainbow ramsey number when one of our graphs is
a matching and the other is a star. In the case of a monochromatic star and a
rainbow matching, the following upper and lower bounds meet to give a formula

for an infinite number of parameters n and m. First, we present the lower bound.

Theorem 19. For any positive integers n and m, provided that n is odd or m is
even, the rainbow ramsey number RR(K,,,mK,) > (n—-1)m—-1)+2. Ifnis

even and m is odd, then RR(K,,,mK;) > (n —1)(m —1) + 1.

Proof. Let N = (n—1)(m—1)+1. If n is odd, then N is also odd, and K can be
factored into hamiltonian cycles. Color (n — 1)/2 of the hamiltonian cycles with
each color. The resulting graph contains no monochromatic K, , and fewer than
m colors.

If n and m are both even, then N is even. In this case, Ky can be factored
into 1-factors. Color n — 1 1-factors with each color to obtain a coloring with
neither a monochromatic K, nor a rainbow mK,. If n is even and m is odd,
then N —1 is even. Thus, Ky_,; can be factored into N —2 1-factors. Color n —1
1-factors with each color, with only n — 2 1-factors in the last color. Again, only
m — 1 colors are used, and each color appears at most n — 1 times at any given

vertex. a
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In the corresponding upper bound, we employ the standard convention

that

if £ < 2.

Theorem 20. For any positive integers n and m, the rainbow ramsey number

m—n-+3
9

RR(K;,, mK;)<(n—-1)(m—-1)+2+ (
Proof. Let N = (n—1)(m—1)+2+(™7%*). Suppose the edges of K are colored
so that there is no monochromatic subgraph isomorphicto K; ,,. We will show that
there must be a rainbow copy of mK,. Since RR(K n, Kim) = (n—1)(m—1)+2,
we may assume without loss of generality that there is a rainbow copy of Kj .

Temporarily remove these m + 1 vertices from the graph. Notice that there are

m—n+‘2)

m_n+3>—(m+1)2(n-—l)(m—2)+2+( 0

0

4

(n—1)(m-—-1)+2+ (
vertices remaining.
Continuing inductively for t = m — 1,m — 2,...1, suppose we have (n —
NeE—-1)+2+ ("";*"3) > RR(K, ., K,;) vertices. We may assume wlog that
there is a rainbow copy of K ;. If we remove these i + 1 vertices, we are left with
(n—1)(F—1)+2—(Z+ 1)+ ("3*°) vertices. [fi—n+2 <0, that is, if i—n+3 < 1,

then (*"3*®) = 0. Thus, there are

(n-D@GE—-1)+2—(+1)+ (i_’;+3>

= (n-1DE—-1)+2—-(+1)

= (n-1)(i-2)+2+(n—i—2)

> (n—l)(i—2)+2+(i_’;+2)
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t—n-2

vertices left over. If 1 —n 4+ 2.> 0, then (i_';+3) = Zj___l 7, so we have

i-n+42
(r=-DE-1)+2-(G+1)+ > j
= t—n+l
= (n=)E-1)+2=(+1)+(GE-n+2)+ »_j

=1

t~n+1
= (n-1)(i-2+2+(n-i=2+(E-n+2)+ > j
t—n4l =
= (n-1)(E-2)+2+ Y j
j=1
- (n—1)(i—z)+2+(i_’;+2)

vertices remaining.

Thus, we may assume that there are vertex-disjoint rainbow copies of K, ;
forz =1,2,...m, in which the same color could appear in different stars. Choose
a collection of edges as follows. Take the edge in K, ;. Now, one of the two edges
in A'; 2 must be some new color, so take that edge. For each 7, K ; contains one
more edge than we have previously chosen, so we may take an edge in some new

color. Thus, there is a rainbow copy of m K. O

Thus, we have a formula when n > m + 2 and n is odd or m is even. For
other values of n and m, we have upper and lower bounds. It is possible that
neither bound is sharp. For instance, for n = m = 3, the previous two theorems

vield 6 < RR(K,3,3K,) <9. The actual value lies strictly between these bounds.
Theorem 21. RR(K,3,3K;)=T.

Proof. Figure 7 shows a coloring of K¢ containing neither a monochromatic K 3

nor a rainbow 3I,.
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Figure 7. Coloring of K Showing RR(/\;3,3K,) > 7.

Suppose the edges of K7 are colored so that no monochromatic K, 3 ap-
pears. Take out any edge ab. From Theorem 20, we know that RR(K, 3,2K3) < 3,
so we may assume without loss of generality that there are two independent edges
in different colors, say colors 1 and 2, on the remaining 5 vertices. If the edge we
removed is in a color other than color 1 or 2, then we are done. We may assume
that we have three independent edges ab, cd, and ef, colored with colors 1, 1,
and 2 respectively. Let z be the other vertex. If any one of the edges az, bz,
cz, or dr is a color other than color 1 or 2, then we have a rainbow 3K,. If any
color appears more than twice at r, we have a monochromatic K, 3. Thus, we
may assume that two of these four edges are color 1 and the other two are color

2. There are only two cases up to symmetry.

Case 1 Suppose edges az and bz are color 1, and edges cz and dz are
color 2. Consider the four edges ac, ad, bc and bd. If any one of these edges is
color 1, we have a K, 3 in color 1. If any one is a new color, then that edge, edge
ef, and either az or bz forms a rainbow 3K,. Thus, we may assume that all four

are color 2; but then we have a copy of K, 3 in color 2 centered at vertex c.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48



Case 2 Suppose edges az. and cz are color 1 and edges bz and dz are
color 2. Consider the two edges ae and ce. If either edge is color 1, we have a
K3 in color 1 centered at a or c. If either is a new color, then along with edges
bz and cd or edges dz and ab, this edge forms a rainbow 3K,. Therefore, we may
assume that both ae and ce are color 2; but then, again, we have a copy of K3

in color 2 centered at vertex e. O

When m — n + 3 is large, the following upper bound is often better.
Theorem 22. For any positive integers n and m,
RR(K,,,mK;) < (n+1)(m—1)+2.

If(n+1)(m—1) > 2m+1 (for instance, n > 2 andm >4 orn>3 and m > 3),

then we may improve the bound above to
RR(K,,,mK;) < (n+ 1)(m —1).

Proof. Notice that RR(K,,,mK;) = 2 for any m, since any coloring of K, is
monochromatic. We may assume that n > 2.

We will proceed by induction on m. If m = 1, then any copy of mK, is
rainbow-colored, and RR(K,,,mK;) = 2.

For any positive integers n > 2 and m > 2, assume that RR(K, ,,(m —
NK;) < (n+1)(m~2)+2< (n+1)(m —1). Consider any edge-coloring of Ky,
where N =(n+1)m—-1)if (n+1)(m—-1)22m+1and N = (n + 1)(m —
1) + 2 otherwise. By the inductive hypothesis, we may assume that there is a
rainbow copy of (m — 1)K,. Label the vertices of this matching z,,z4,...Zm-1

and y;,Y2,--. ,Ym—1, SO that edge z;y; is color i for 1 <: <m — 1.
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First, suppose (n + 1)(m — 1) < 2m + 1. Since n > 2, we still have N =
(n+1)(m—1)+2 > 2(m—1). Thus, there is some vertex w distinct from the vertices
{z1,y1, 22,92, .. yTm-1,Ym-1}. Consider the N —2(m —~1) -1 = (n — l)(m —
1) + 1 edges incident with w and not incident with {z,y1,Z2,¥2,--- » Tm—1,Ym—1}-
Either some color appears n times on these edges, producing a monochromatic
Ky n, or some new color appears. The edge in this new color, along with the edges
z;y; for 1 <7 <m — 1, forms a rainbow mKk>.

Suppose (n + 1}(m — 1) > 2m + 1. In this case, K(n41)(m-1) contains
some other edge uv independent from the edges z,y;, z2y2, ... ;, Tm-1Ym-1- [fuvis
colored with a new color, we are done. We may assume without loss of generality
that uv is colored with color 1. Now, since (n +1)(m —1) > 2m + 1, there is some
other vertex, say w. Consider the edges wz, where z is distinct from the vertices
{w,z2,y2,T3,Y3, - - - s Tm—1,Ym-1}- There are (n + 1)(m —1) - 2(m —-2) -1 =
(n — 1)(m — 1) + 1 such edges. Either n of these edges are the same color, so we
have a monochromatic copy of K, with central vertex w, or m different colors
appear on these edges. Thus, one of these edges must be in a new color m distinct
from 1,2,... ,m — 1. This edge can be adjacent with at most one of uv or zy;;
assume wlog that it is not adjacent to z,1y;. Then this edge along with ?;he edges

zyi, | €1 <m —1, forms a rainbow mK,. O

Suppose, instead, that we consider monochromatic matchings and rainbow

stars. We have a lower bound on the order of 2nm.

Theorem 23. For any positive integers n > 2 and m > 3, the rainbow ramsey

number

RR(nK;, Kim) > (2m — 3)(n — 1) + 1.
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Proof. Let N = (2m — 3)(n — 1). Divide the vertices of Ky into 2m — 3 subsets
of order n — 1 each, say S, Ss,...S2m-3. Color every edge within S; with color 1.
Color the edges from S; to Si41, Sit2,..-Sism—2 With color ¢ for 1 < i < 2m —3,
where the indices are taken modulo 2m — 3. Since there are exactly m — 2 sets
Sitm—1,Si4my--- 5';+2,,}_4 joined to S; by colors other than ¢ and every other set
is joined to S; with color 7, any vertex in S; is incident with at most m — 1 colors.
Thus, there is no rainbow A’ ... Any edge in color 7 is incident with one of the
n — 1 vertices in S;, so there are at most n — 1 independent edges in any given

color. Hence, there are no monochromatic subgraphs isomorphic to n K. a
For the upper bound, we first demonstrate the following recursive result.

Lemma 4. For any posiiive inlegers n and m, where m > 2 and n > 2, the

rainbow ramsey number RR(nK,, K, ,) < m+2(m—1)(n—2)+ RR(nK>, K\ m-1)-

Proof. Let N =m+2(m —1)(n —2)+ RR(nK,, K1 »-1). Consider any coloring
of the edges of Kn. There must be either a monochromatic copy of nK, or a
rainbow copy of K| m-;; assume that there is a rainbow copy of K m—;, with
edges in colors 1,2,... ,m — 1. If we remove the m vertices incident with this
subgraph, there are 2(m —1)(n — 1)+ RR(nK,, K| m—1) vertices remaining. Thus,
we may assume without loss of generality that there is another rainbow K ,,_;.
If these two disjoint rainbow copies of K| ,,—: have no colors in common,
then consider the edge e between their central vertices in K. At least one of the
copies of Ay ,_, does not contain any edges in the same color as e, so this copy
along with e forms a rainbow copy of K. Thus, we may assume without loss of
generality that the two rainbow copies of K ,,_, share a color, say color 1.

Now, remove the m vertices incident with the first rainbow K ,,_; and
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the 2 vertices incident with the edge in color 1 in the other star. There are
2((m —1)(n —2) ~ 1) + RR(nK,, K| m—) vertices remaining, so we may assume
that there is another rainbow copy of K, n,-1. Without loss of generality, this
copy contains an edge colored with one of the colors 1,2,... ,m — 1. Remove the
two vertices incident with this edge.

If we continue in this fashion, we have a rainbow copy of K ,.—; in colors
1,2,...,m — 1 and (m — 1)(n — 2) disjoint independent edges colored with the
same m — | colors. There are RR(nK,, K| »-1) vertices remaining, so we may
assume without loss of generality that there is another rainbow copy of Ky m—. If
this copy does not contain any of the colors 1,2,... ,m —1, then consider the edge
e between its central vertex and the central vertex of the other rainbow K ,._,.
In this case, at least one of the rainbow copies of K, ,,_; does not contain any
edge in the same color as edge e, so this K, -1 and edge e form a rainbow K ,,.

Otherwise, the new rainbow K ,._; contains an edge in one of the colors

1,2,...,m—1. We have (m —1)(n—2)+1 such edges independent of the rainbow
KRy m-1 in colors 1,2,... ,m — 1. Some color must appear n — 1 times, plus once
in the rainbow K ,,_,, to form a monochromatic n K. a

Since RR(nK>, K, ;) = 2n, the lemma above yields the upper bound
RR(nK, Kim)<2n +3+4+...+m)+22+4+3+...+(m—1))(n —2).
If we simplify, we obtain the following upper bound, on the order of m?n.

Theorem 24. For any integers m and n, where m > 2 and n > 2, the rainbow

ramsey number RR(nK>, K1) < m(m — 1)n — 1(3m + 1){(m — 2).
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GENERALIZATIONS OF THE RAINBOW RAMSEY NUMBER

If we view the rainbow ramsey number in a more general context, sev-
eral related numbers are naturally defined, including the edge-chromatic ramsey

number and the F-free ramsey number.
3.1 Edge-Chromatic Ramsey Number

The edge-chromatic ramsey number C R(Gy,G?) is the minimum integer
N such that if the edges of K'n are colored with any number of colors, then the
resulting graph contains either a subgraph isomorphic to G; with every edge the
same color or a subgraph isomorphic to G, with no two adjacent edges the same
color, that is, properly colored. It is immediate that CR(G,,G?) < RR(G,, G2)
for any graphs G, and G,;. The existence proof for the edge-chromatic ramsey
number is essentially the same as the proof for the rainbow ramsey numbers, so
we omit it here. The edge-chromatic ramsey number C R(G,,G>) exists if and
only if G, is a star or G, is acyclic.

Naturally, if G, is a star K,,, or a triangle C;, then CR(G,,G;) =
RR(Gy,G>). In order to compare these two numbers, we next consider bounds

and formulas for both numbers for several classes of graphs.
3.2 Bounds for Cycles and Paths

[t is not hard to show that RR(C,, ;) = CR(C,, P;) = 2 and RR(C,, P3) =
CR(C,, P3s) = n for any n > 3. However, for longer paths, the two parameters

differ significantly.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem 25. For any integer m > 2, CR(Cs, P,) = m.

Proof. The result is immediate for m = 2 and m = 3. We proceed by induction
on m.

Suppose for some m > 4, we know that CR(C3, Pn_1) = m — 1. Let
the edges of K,, be colored arbitrarily. We will assume that K, contains no
monochromatic triangle C3. Then necessarily K,, contains a properly colored
subgraph isomorphic to P,,_.;. Suppose this path has vertices vy, v2,...Um_1;
where the edge v;v;;; is color ¢;, for 1 <7 <m ~2. Then ¢; # ¢ci41 for 1 <i <
m — 3., but otherwise the colors need not be distinct. Let z be the vertex of K.
not on this path. If zv, is not color ¢,, then z,v,,v,,...vn_; is a properly colored
path on m vertices. We may assume that zv, is color c;.

Suppose zv; is color ¢; for some . If zvy, is also color ¢;, then z,v;, and
vi41 form a monochromatic triangle. If zv;4; is some other color besides c;4, then
Ui, U2, .. Uiy Ty Vigly- .. Um—2,Um—) is a properly colored path of length m. Thus,
we may assume that zv; is color ¢; for each 7, 1 <7 < m — 2, inductively.

Thus, zvm-2 and vm-20m_1 are both color ¢;n_s. If zv,,—; is color ¢, _;
then we have a monochromatic triangle. If not, then vy, v2,...Um_2,Um-1,Z is 2
properly colored path on m vertices.

We have shown that CR(Cs, Pn) < m. The graph K,,_; may be colored
with every edge a different color so that it contains neither a monochromatic Cs;

nor a properly colored P,,. Thus, CR(C3, P,) = m. O

However, the rainbow ramsey number grows at least exponentially for any

odd cycles, including C3.

Theorem 26. For any integer m > 2 and any odd integer n > 3, RR(Cn, Py,) >
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2m=2 4 1.

Proof. We will define a coloring on a complete graph with 2! vertices inductively.
If : =1, color K3 with color 1.

Once the coloring on the complete graph with 2'~! vertices is defined, take
two identical copies of this graph, with the same colors, and color every edge
between the two copies with a new color. Thus, the graph induced by the edges
in this new color is a complete bipartite graph.

Since the graph induced by any particular color is bipartite, there are no
monochromatic odd cycles. And since exactly ¢ colors are used in the graph
on 2* vertices, the graph on 2™~2 vertices cannot contain any rainbow subgraph

isomorphic to P,,. O

55

The existence theorem, Theorem 9, yields a rough upper bound on RR(C3, Py,).

From case 2, with n = 3, we have .

(m-2)" -1

m—3

RR(C3, Kim-1) <

Using this number for N in case 3, we have

(m—-2" -1
RR(C3, P,) < RR(C3, Pn—1) ( ) )

m—3

or, as observed in the discussion following the proof,

RR(C3, Pn) < RR(Cs,Pn_y)+ (m—1) ((m—?)"‘—l_1>

m—3

—'z)"*—(m—2)>

m-—3

= RR(C3, Pn_i) + (m—1) ((m

< RR(C3, Pn_y) +2(m —1)((m-=2)"""1~1)
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Since RE(C3, P3) = 3, we have

RR(C3,Pn) < 3+6(2-1)+83'-1)+...+2(m—-1)((m-2)"""-1)

= 3+ [2(k—1)((k-2)" —1)]
k=4
< 34+2(m—-3)(m-—-1) [(m —2)mt — 1]
A simple induction argument yields an upper bound which is only slightly

better. Trivially, we have RR(C3, P,) = 2 and RR(C3, Ps) = 3. For any m > 3,

we claim that
RR(C3,Pn) <m—1+(m—-2)(RR(C3, Pn~1) — 1)+ 1. (10)

Let N =m—14+(m~-2)(RR(C3, Pn_1)—1)+1. By induction, we may assume that
K x contains a rainbow copy of Pp,_;, using m — 2 colors. Let v be an endvertex of
this path. Then v has (m — 2)(RR(C3, Pm—-1) — 1) + 1 neighbors not on the path.
Thus, either v is incident with an edge in some new color, so that the path can
be extended to a rainbow P, or v is incident with RR(C3, Pn-1) edges all in the
same color, say color c. Let M be the set of endpoints of these edges, excluding
v. Without loss of generality, we may assume that there is a rainbow P,_; on
the subgraph induced by M. If color ¢ appears on this path, then the endpoints
of the edge in color ¢ and the vertex v induce a monochromatic C3. Otherwise,
vertex v may be added to the end of this path to produce a rainbow P,. If we
solve the induction in equation 10, we have

RR(Cs, Pn) < m+Y Xm—2)

=2

m-—2
= m+ 3 i(m—2)meiY
=2

< m+2(m—3)(m—2)!
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Thus, RR(C3, Pn) is bounded asymptotically between 2™~% and approximately
2(m — 3)(m — 2)L.
We can extend the idea behind Theorem 25 to obtain upper and lower

bounds on the chromatic ramsey number of a 4-cycle versus a path.
Theorem 27. For any integer m >3, m+1 < CR(C4, Pr) < 2m — 2.

Proof. First we will color K,, so that it contains no monochromatic Cs and no
properly colored P,. Color a triangle on vertices v_;, vg, and v, with color 1. For
each color 7z, 2 <7 < m — 2, add a new vertex v; and color every edge v;v; for
—1 < j <@ with color z. In the resulting K,,, every monochromatic subgraph is a
star or a triangle, and not C4. On any properly colored path, at most one of the
vertices adjacent to v; can have an index less than 7, for 2 < ¢ < m — 2. Thus, at
most two of the vertices v_;, vy, v; can appear on the path.

Next, we must show that an arbitrary coloring of the edges of K3,,_, results
in either a monochromatic C4 or a properly colored P,. We will proceed by
induction on m. Since any P, is properly colored, CR(Cy, P;) = 2.

For any m > 3, suppose CR(Cy, Pr—1) < 2m — 4. Color the edges of
K3m_2 arbitrarily. We may assume that the resulting graph contains a properly
colored path P,_;, say on vertices vy, vs,...vm—;, where edge v;v;;, is color ¢; for
1<:<m—2. Let M = V(K3n-2) = (Pn-1),s0 |M|=m — L.

Suppose there is no properly colored path of length m. We claim that for
each iz, at least m — 7 of the vertices of M are joined to v; by an edge of color c;.
If for some z € M, v,z is not color ¢, then z,v,,v,,...vm—; is a properly colored
path, so we may assume m — 1 vertices are joined to v, with edges of color c;.

Assume that at least m — ¢ of the vertices of M are joined to v; by an

edge of color ¢;. If any one of these same vertices, say z, is joined to v;4; by an
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edge of some color other than c; or ¢;41, then vy, vq,. .. v, 2, Vig1,Vig2,.. . Un_y is a
properly colored path on m vertices. However, if more than one of these vertices,
say z and y, are joined to v;y, by an edge of color ¢;, then v;, z, v;y;, and y form a
monochromatic C4. Thus, we may assume that at least m — (i + 1) of these edges
are color ¢;y,.

Thus, v,,_, is joined to at least 2 vertices, say z and y, in M by edges of
color ¢;—2. If any edge from v,,_; to M is not color ¢,,—2, then we have a properly
colored path of length m. However, if v,_1z and v,,—1y are both color m — 2,

then we have a monochromatic Cy. Therefore, CR(Cy, Pn) < 2m — 2. O
3.3 Bounds for Stars and Paths

We can quickly obtain upper and lower bounds for the edge-chromatic and
ramsey numbers of a monochromatic star and a rainbow path. These bounds
suggest that C R( K n, Pn) grows roughly like the sum n +m, while RR(K, », Pn)
grows like the product nm.

First, we establish the upper and lower bounds for C R(K) ., Pn). Since
CR(K11,Pn) = CR(K\n, P,) = 2, CR(K\n,P3) = n+1forn > 2, and
CR(K:\2,Pn) = m for m > 3, we assume that n > 3 and m > 4. The up-

per bound requires a lemma.
Lemma 5. For any integer n > 3, CR(K,,,Py) =n + 1.

Proof. The lower bound results from coloring the edges of K, with a single color.
Suppose the edges of K,4; are colored so that there is no monochromatic K ,.
Thus, there must be two adjacent edges uv and vw which are different colors, say
colors 1 and 2, respectively. There is at least one other vertex z in the graph. For

any z not contained in {u,v,w}, if uz is not color 1 or uw is not color 2, then
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z,u,v,w or u,v,w,T is a properly colored path of length 4. Assume that uz is
color 1 and wz is color 2 for any such vertex z. Consider edge uw. If this edge
is color 1, then u is the central vertex of a monochromatic K . If it is color 2,
then there is a K, in color 2 with center {w}. We may assume that uw is some

new color, but then v, u,w, z is a properly colored P;. O

The general upper bound results from applying the same approach induc-

tively.

Theorem 28. For any integers n > 3 and m > 4, the edge-chromatic ramsey

number CR(Kyn,. Pn) <m+n-—3.

Proof. We will proceed by induction on m. The base step is handled in Lemma
5. Suppose the edges of K,,,,-3 are colored so that there is no monochromatic
K'1.n. By the inductive hypothesis, we may assume that there is a properly colored
path on m — 1 vertices, say v, v2,...Um—1. Suppose edge v,v2 is color 1 and edge
Um—2Um~1 is color 2, where colors 1 and 2 are not necessarily distinct. For any
vertex z of the n — 2 > 1 vertices not on this path, we may assume that v,z is
color 1 and v,,—17 is color 2, or we have a properly colored path of length m.
Consider edge vyv,—;. If this edge is color 1, then v, is the central vertex of a
K in color 1. Similarly, if it is color 2, there is a K; , in color 2. Suppose it is
some other color 3, distinct from colors 1 and 2. Let £ be some vertex not on the

path. Then z,v;,Ym—1,Vm-2,...v2 is a properly colored path on m vertices. O

For the corresponding lower bound, we will require a special coloring. Let
vy, V2,... U be k vertices in a complete graph Ky where N > k. A kth order
pathtrap coloring on the edges incident with these vertices is a coloring such that

every edge v;z, where  is not in {vy,vs,...v}, is color 7 and every-edge vv; is
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Figure 8. Examples of Pathtrap Colorings With 3 and 4 Vertices.
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either color 7 or color j. Figure 8 shows one possible 3rd order pathtrap coloring
and a possible 4th order pathtrap coloring. The set of vertices {vi, v2,. .. v} will
be referred to as a pathtrap. Notice that for each k, a kth order pathtrap coloring
exists in which for each 7, 1 < 7 < k, at most [(k — 1)/2] of the edges v;v; are
color ¢. In other words, there is a kth order pathtrap coloring in which each color
appears at most [(k — 1)/2] times within the pathtrap.

Suppose a graph K is colored with a kth order pathtrap coloring with
pathtrap {vy,vs,...vx}, and suppose P is a properly colored path in Ky. If P
enters the pathtrap, then P cannot leave it, in the following sense. Suppose z € P
where z is not in the pathtrap and z is followed on the path by v;. Then zv; is
color z, and every edge v;y, where y is not in the pathtrap, is also color :. Thus,
the next vertex on the path must be some v;, where v; is in the pathtrap and
v;v; is color j. Every edge incident with v; which is not color j again lies in the
pathtrap. Continuing in this fashion, we see that every vertex on P after z must

be a vertex of the pathtrap.
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Theorem 29. For any integers n > 3 and m > 6, the edge-chromatic ramsey

number
CR(Kyn,Pn) > n+ [mTH] —2.

Proof. Let N =n + l'ﬂ‘—'zﬂ] — 3. We may assume that ¥ > m — 1, since a rainbow
colored K,,_; contains neither a monochromatic K, nor a rainbow P,,.

Color the edges of Kn as follows. Form an (m—3)rd order pathtrap coloring
on vertices vy, vs, - . . Um—3 SO that each color ¢ appears at most [(m — 4)/2] times
within the pathtrap. Color the remaining edges with a new color, color m — 2.

For each color ¢ in the pathtrap, there are at most

[ I T TP

edges incident with vertex v; in color i:. Every other color appears at most once

at vertex v;. Color m — 2 appears incident with at most

n+[m:11 —3-(m-3)<n

<

vertices, and each other color appears once at each vertex outside the pathtrap.
Thus, there are no monochromatic copies of K| ,.

Since a properly colored path cannot enter and then leave the pathtrap,
any vertices on the path and not in the pathtrap must appear consecutively on
the path. Therefore, any such path can contain at most two vertices not in the
pathtrap; thus, there is no properly colored path on more than (m—3)+2=m—1

vertices. a

The upper bound for the rainbow ramsey number results from a more

general upper bound for stars and trees.
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Theorem 30. For any integers n > 2 and m > 3 and any tree T of order m, the

rainbow ramsey number
RR(K )., T)<m—-14(m—2)(n-1).

Proof. We proceed l_)y induction on m. The only tree of order m = 3 can be
thought of as K ;. If no rainbow K} 2 appears in Ky, then the entire graph must
be monochromatic. Thus, RR(Kn, Ki12)=n+1=3 -1+ (3 —2)(n —1).
Suppose RR(K 1, T') <m — 2+ (m — 3)(n — 1) for any tree T’ of order
m — 1. Let T be a tree of order m with endvertex v adjacent to a vertex u, and
let R 14(m-2)(n-1) be edge-colored with any number of colors. We may assume
that Km_4(m-2)(n-1) contains either a monochromatic copy of K, , or a rainbow
copy of T — v. Suppose it contains a rainbow copy of T — v. If we remove these
m — 1 vertices, there are (m — 2)(n — 1) vertices remaining. Consider the edges
between u and these vertices. If m — 1 or more colors appear on these edges, then
some edge is in a color not yet appearing in 7' — v. We may add this edge to T — v
to obtain a rainbow copy of T. Thus, we may assume that at most m — 2 colors
appear and that these are the same colors which appear in T' — v. If any color
appears more than n — 1 times, then there is a monochromatic copy of K ,; so we
may assume that each color appears exactly n — 1 times. But now consider a color
which appears on some edge incident with u other than uv. This color appears

incident with u at least n times, so we have a monochromatic copy of K n. O

Notice that if T contains an endvertex v adjacent to a vertex u with

degru = k, then the above bound can be improved to

RR(K\n,T)<m—1+4 (m—2)(n—1)— (k- 2).
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As we have seen previously, a complete graph K(;_2)(n-1)+1 can be factored
into 1-factors when (m —2)(n —1)+1 is even. Then n—1 1-factors may be colored
with each color to produce a graph with no monochromatic K, and with too few
colors to contain any rainbow tree of order m. Similarly, if (m —2)(n — 1)+ 1 is
odd and n—1is even, then K(m-2)(n—1)+1 can be factored into hamiltonian cycles
and (n — 1)/2 of these cycles can be colored with each color. If n and m are both
even, then K(;n_2)(n—1) can be factored into 1-factors, and n — 1 or n — 2 of these
1-factors colored with each color so that only m — 2 colers are used.

Combining these observations with Theorem 30, we have the following

theorem and corollary.

Theorem 31. For any integers n > 2 and m > 3 and any tree T of order m, the

rainbow ramsey number
(m-2)n-1)+1< RR(K;,,T)<(m=-2)(n—-1)+(m—1),

where the lower bound can be improved to (m —2)(n — 1) + 2 if n and m are not

both even.

Corollary 3. For anyn > 2 and m > 3,
(m—-2)(n—-1)+1 L RR(K)n,Pn) < (m-=2)(n—-1)+ (m—-1).
3.4 Bounds for Paths and Paths

We will next obtain upper bounds on the edge-chromatic and rainbow
ramsey numbers of paths. First we will need a couple of lemmas for the edge-

chromatic ramsey numbers.

Lemma 6. For any integer n >3, CR(P,,P;) =n+ 1.
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Proof. Suppose the edges of K,,,; are colored with any number of colors. If
every edge is the same color, then there is certainly a monochromatic subgraph
isomorphic to P,. We may assume that there are vertices u, v and w such that
uv is color 1 and vw is color 2. Let M = V(K,4+1) — {u,v,w}. Every edge from
u to a vertex in M is color 1 or we have a properly colored F,. Similarly, every
edge from w to M must be color 2. If any edge in M is a new color, say color 3,
then there is a properly colored P, using this edge and verticesu and w. If there
are two adjacent edges in M such that one is color 1 and the other is color 2, then
we may attach vertex u to the appropriate end of this path toobtain a properly
colored path of order 4. Thus, we may assume that all of the edges within M are
a single color, either color 1 or color 2, say color 1. We may take a path of order
n —2in color 1 in M and add the vertices u and v to form a monochromatic path
of order n.

For the lower bound when n > 4, color K, as follows. Fix a vertex z.
Color every edge not incident with = with color 1, and color the edges incident
with r with color 2. No properly colored path in this graph can contain more
than one edge in color 2, since all of the edges in color 2 are adjacent; necessarily,
any such edge must appear at the beginning or end of the path. Thus, this graph
contains no properly colored P;. Any path of order » must contain the vertex z
and, since n > 4, at least three other vertices. But then the path must contain
at least one edge incident with z and at least one edge not incident with z, so it
cannot be monochromatic. If n = 3, then color K3 with rainbow colors to avoid

a monochromatic P; and a proper FP;. )

Lemma 7. For any integers n > 5 and m > 5, the edge-chromatic ramsey num-

bers CR(Pay Pn) < CR(Pa, Pr_y) + (m — 1)([2] = 1).
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Proof. Let N = CR(Pp, Pn_y)+ (m —1)([3] — 1). Assume that the edges of Ky
are colored so that there is no monochromatic P,. We may assume that there is
a properly colored subgraph isomorphic to P,_,. Remove these m — 1 vertices.
Since C R(Pp, Pm_1)+(m—1)([%]—2) vertices remain, we may assume that there
is another properly colored P, .,. Continuing in this fashion, we may assume that
Ky contains [%] disjoint properly colored paths of order m — 1.

Consider any two of these paths P and Q. Suppose the vertices of path P
are vy, Uq,...Un—1 and the vertices of path Q are u;,uq,...un—;. If any edge viu;
is a color other than the color of v v, then we can extend the path P to a properly
colored path of length m. Similarly, every edge v,,_;u; must be the same color
as Um-2Um-1, every edge v;u; must be the same color as the edge u,u,, and every
edge v;u,_; must be the same color as the edge u;n_2un,—;. Thus, these colors
must all be the same, so u;, us, V1, V2, Um—1, Um—2: Um—1, Um—2 iS @ monochromatic
path of order 8.

Suppose we have a monochromatic path of order 4: beginning at u,; and

ending at u,,—, for some edge-chromatically colored path u;,u,,...ux,—1, where

65

edges u uz and u,, —2um—) are the same color. Let R be some other edge-chromatically

colored path with vertices w;, wy,ws,...wn—;. Then again we may assume that
edges u,u,, ujw;, u w2, and wyw, are all the same color, so that w,;, w,u; may
be attached to the beginning of the monochromatic path. Similarly, wm—1wmn-2
and wWm,_1um_2 must be the same color as u;,;,_oU;m_1, SO Um—2, Wm_1, Wm—2 May
be attached to the end of the monochromatic path. Proceeding by induction, we

have a monochromatic path on 4 f%] vertices. O
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By combining these two lemmas, we have the upper bound

66

CR(P.,Pn) < (n+1)+4([§-] —1)+5([§] —1)+...+(m—1)([;—’] —1)

= n+1+(4+5+...+(m—1))([%] —1)

= ner+ (2 6) (3] -1)

-~

m=m 3 (2]

= n+1+
which is summarized in the next theorem.

Theorem 32. For any integers n > 5 and m > 4, the edge chromatic ramsey

number

CR(P,, Pn) <

(m+3)2(m_4) (E] —1)+n+1.

Consider a (m — 3)rd order pathtrap coloring on K,,4,_4, with the remain-
ing edges colored with one new color. Any properly colored path contains at most
2 vertices outside the pathtrap, for a total of at most m — 1 vertices. Each color
which appears within the pathtrap induces a star, and the color outside the path-
trap induces a complete graph on n — 1 vertices, so there is no monochromatic

subgraph isomorphic to P, for n > 4. Thus, we have the following lower bound.
Theorem 33. For any integersn > 4 and m > 6, CR(P,,P,) > m+n — 4.

For the rainbow ramsey number, start with a edge-chromatic or proper
coloring of K,,_, using at most m — 2 colors, labelled 1,2, ... m — 2. Replace each
vertex with a set of |23} | vertices, so that all of the edges between two sets are
colored with the same color as the edge between the original two vertices. Color
the edge between any pair of vertices in the same set with color 1. Since only

m — 2 colors appear, this graph cannot contain any rainbow subgraph isomorphic
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to P,. Any monochromatic path can contain vertices from at most two sets, for

a total of 2 |_“2;‘_| < n — 1 vertices. Thus, we have a lower bound.

Theorem 34. For any integers m > 3 and n > 3, the rainbow ramsey number

RR(Pa, Pm) > (m —2) 252 + 1.
3.5 The F-free Ramsey Number

Let F be a family of graphs. Define an F-free edge coloring of a graph G
to be an edge coloring so that G does not contain any monochromatic subgraph
isomorphic to any graph in F. Thus, if ¥ = {2K,, K, ,}, then an F-free coloring
is a rainbow coloring. Similarly, if F = {K,.}, then an F-free coloring is an
edge-chromatic coloring.

For a nonempty set F of graphs, where each graph has size at least 2, we
define the F-free ramsey number Rr(G;,G2) of two graphs G and G- to be the
minimum integer /V such that any coloring of the edges of Ky, with any number
of colors, must contain either a monochromatic subgraph isomorphic to G; or an
F-free subgraph isomorphic to G;. The Erdés-Rado Theorem is a useful tool for

determining the existence of these numbers.

Theorem 35. Assume that F is a nonempty set of graphs, where each graph has
size at least 2. [f F does not contain any stars, then Rr(G,,G,) ezists for any
graphs Gy and G2. Otherwise, let K, be the smallest star contained in F. Then
Rr(G,,G,) exists if and only if G, is a star or G, does not contain any induced

subgraph with minimum degree at least n.

Proof. According to the Erdés-Rado Theorem, for any integer k, there is an inte-

ger N such that any edge-coloring of Ky contains a canonically colored K. Recall
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that for a finite graph, there are only three canonical colorings: monochromatic,
rainbow, and the minimum coloring, where the color of edge 5 is min(z, ) for
each 7 and j. A sufficiently large monochromatic complete graph would certainly
contain a monochromatic subgraph isomorphic to G,, and a large rainbow com-
plete graph would contain an F-free subgraph isomorphic to G,. If F does not
contain any stars, then a minimum coloring would also be F-free. Thus, a large
complete graph with a minimum coloring would contain an F-free copy of G,.

Suppose F does contain a star, and let K, be the smallest such star. If
G, is a star, then a sufficiently large minimum coloring would contain a monochro-
matic G;. Suppose every induced subgraph of G; has minimum degree strictly less
than n. Then we claim that a complete graph of order |V(G,)| with the minimum
coloring has an F-free subgraph isomorphic to G,. Let v, be a vertex of G, with
degree strictly less than n. Then let v, be a vertex of Gz — v; so that its degree
in the graph induced by V(G2) — v; is less than n. Continuing in this fashion, we
can label the vertices of G so that in a minimum coloring, no color appears more
than n — | times at any vertex. Since F contains no stars smaller than K ,, this
is an F-free coloring of G-.

Now, suppose that GG} is not a star, so (¢; is not a monochromatic subgraph
of any complete graph with the minimum coloring, and suppose that G, has an
induced subgraph H with minimum degree at least n. If G, is a subgraph of some
complete graph with the minimum coloring, then let v be the vertex in H with the
minimum index. Now, degg(v) > n, and every edge from v to any other vertex in
H is the same color, so G2 must contain a monochromatic subgraph isomorphic
to Ki». Thus, we may color any complete graph with the minimum coloring to

avoid both a monochromatic Gy and an F-free G,. O
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Notice that Theorem 35 generalizes Theorem 9, the existence theorem for
the rainbow ramsey numbers.
The following observations are immediate, but useful. If F, C F;, then

any F,-free coloring is necessarily F-free.

Observation 1. If F, C F,, then for any graphs G, and G, for which both

numbers are defined,

Rr (G1,G2) < Br, (G, G?)

Thus, for example, the rainbow ramsey number is always an upper bound
on the edge-chromatic ramsey number. In fact, since a rainbow coloring is F-free
for any set F of graphs such that each graph has size at least two, Rr(G,G2) <
RR(G,,G3).

The second observation follows from the fact that any coloring of G, (or

of Kjv(g,))) either contains a monochromatic G, or it does not.

Observation 2. If F = {G,}, where G, is a graph of size at least 2, then for

any graph Gz,
Rr(G1,Gz) = V(G2

Finally, notice that if no graph in F is a subgraph of G, then any coloring

of G5 is F-free.

Observation 3. [f no graph in the set F is contained in the graph G,, and G,

is a graph with size at least 2, then

Rr(G1,Ge) = [V(G.)]
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We will concentrate on the cases F = {K,2,2K;}, F = {K12}, and F =
{2K,}. In the first two cases, the F-free ramsey number is precisely the rainbow
ramsey number and the edge-chromatic ramsey number, respectively. As noted

in Observation 1,

CR(G:,G2) < RR(Gy,G,)
R2K2(G13G2) S RR(G[,G2)

for any graphs G, and G- for which these numbers are defined. The other two

numbers cannot be placed in a consistent linear order, however. For example,
4 =CR(K:2,P;) < Rop, (K12, P4) =5

but
4 = Rop,(2K3, Py) < CR(2K2, Py) = 5.

See Figure 9 for colorings of K4 containing no monochromatic K2 and no {2K:}-
free Py or no monochromatic 2K, and no {K.}-free P;, respectively. However,

a brief argument shows that
CR(Py, Ps) =5 = Ror,(Py, Py).
Thus, any ordering of these two ramsey numbers is possible.
3.6 The 2K,-free Ramsey Number

The 2K;-free ramsey number Rz, (G, G2) of two graphs G, and G is the
smallest integer N such that any edge coloring of Ky contains either a monochro-
matic copy of G; or a copy of G2 in which no two nonadjacent edges are the

same color. Thus, each color in G2 must induce either a star or a triangle. This
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Figure 9. Colorings of K4 Showing Ra,(K1,2, Ps) 25 and CR(2K;, Py) > 5.

particular F-free ramsey number exists for any graphs G, and G,. According to
Theorem 33, Rk, (Kn, Ki) is defined. The next theorem gives upper and lower

bounds on this number.

Theorem 36. For any positive integers n > 3 and m > 3,

(n — 1)m—3 +1 S RZK:(I\/nvl(m) S

m + Z(n—Z)(m—Z)—l [(m-l)-+l(m-2)-(m—3)'] + [(m—l)(m-—Z)(m—3)

(n—2)(m=2)

Proof. For the lower bound, we require a coloring of the edges of Ky, where
N = (n — 1)™~3, with neither a monochromatic K, nor a {2K,}-free K,,. There
are two ways to view the relevant coloring. We may start with a copy of K,,_; in
color 1 and proceed inductively. For each color, take n — 1 copies of the previous
graph and color the edges between these copies with the new color. Continue
until m — 3 colors are used. Alternately, we may label the edges of Ky with the
(n—1)™~3 different (m — 3)-tuples of the numbers {1,2,... ,n—1}. Color an edge
between two vertices with the index of the first entry in which their (rm —3)-tuples

differ. Either of these descriptions yields the same coloring.
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Consider any n vertices vy, V2, ...v,. Suppose each edge incident with v,
is the same color, say i. Then the :th entry in the tuple for v, differs from the
tth entry in each of the tuples for the other vertices. Thus, there are only n — 2
choices for the ith entry in these n — | tuples. The tuples for some pair of vertices,
say v, and vz, must have the same 7th entry. Thus, edge v,v3 is not color ¢; there
cannot be any monochromatic copy of K,.

Next, consider any set of m vertices. Since at most m — 3 colors are used to
color their edges, we may apply Corollary 1 to Cockayne and Lorimer’s theorem

with ¢ = m — 3 and n = 2. We have
T‘(2[(2, 2[(2, .. 2K2) =m

Thus, the subgraph induced by any m vertices must contain a copy of 2K in
some color, so there is no {2k’ }-free copy of K,,.

For the upper bound, recall that a minimum coloring is a coloring in which
edge 1 is color min(i, j) for each pair of vertices i and j. For our present purposes,
we will allow colors to be repeated, so that for instance, color 1 might be the same
as color 3. We claim that any complete graph on (n — 2)(m — 2) + 2 vertices with
the minimum coloring must contain either a monochromatic n K, or a {2K> }-free
K. Label the vertices of such a graph 1,2,...(n — 2)(m — 2) + 2. The graph is
colored with colors 1,2,...(n —2)(m — 2) + 1, which are not necessarily distinct.
If any n — 1 of these colors are identical, say color ¢; = color ¢c; = ... = color
¢n-1. then the vertices ¢y, ¢z, .. .chy and (n —2)(m —2) 42 form a monochromatic
subgraph K,. Otherwise, there must be at least m — 1 different colors. Suppose
color ¢y, color c,, ..., color ¢,,_,, and color ¢,,_, are all distinct. In this case, the
vertices ¢y, €y, ...cm~1 and (n — 2)(m — 2) + 2 induce a {2K}-free copy of K.

Now, let a(n, m, N) be the smallest integer M such that any edge-coloring
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of K contains a minimum-colored copy of K, a monochromatic copy of K, or

a 2K,-free copy of K,,. From the discussion above, we know that
Rak, (K., K) < a(n,m,(n —2)(m — 2) + 2).

Since any graph on 1 or 2 vertices is minimum-colored, a(n,m,1) = 1 and
a(n,m,2) < 2. Any graph on 3 or fewer vertices is necessarily {2K}-free, so
a(n,2, N) < 2 and a(n,3,N) < 3. Next, we claim that a(n,m, N) is bounded

above by
maz[a(n,m — 1,N),m + —;-(m — 1)(m = 2)(m — 3)(a(n,m, N — 1) - 1)] (l11)

forn>3,m>4and N > 3.

Let L = maz[a(n,m—1,N),m+3(m~1)(m—2)(m—3)(a(n,m, N—1)-1)].
Color the edges of K with any number of colors. Since L > a(n,m — 1, N), we
may assume without loss of generality that there is a {2K, }-free copy of K,,_; in
K'p. Label the vertices of K,n_, by vy,vs,...vm_1. Let H be the set of vertices

V(KL) — V(Kp-1). Define m — 1 subsets Hy, H,,... H,,_, of H by
H; = {u € Hluv; is the same color as v;v; for some j,k #:,1 <j<k<m-1}

If any vertex u € H is not in H; for any ¢, then K,,_; +u is a {2K,}-free K,,. Of
course, some vertices may be in H; for more than one value of :. Thus, we may

assume that
Z |H;| > %(m - 1)(m = 2)(m - 3)(a(n,m, N —1) — 1) + 1.

Assume without loss of generality that |H,| > |H;| for 2 < i < m — 1. Then

|Hy| > $(m —2)(m —3)(a(n,m, N —1) — 1) + 1. Now, there are at most (mz-z) =
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%(m — 2)(m — 3) colors used in K,,_, on edges not incident with vertex v;. Divide

the set H, into at most 1(m — 2)(m — 3) subsets L;, L2, ... by defining
Lj = {u € H,|uvy is color j}.

There are at most %(m — 2)(m ~ 3) such subsets, and their union is H,. Thus,

there must be some subset, say L;, such that

LA
L(m —2)(m —3)

|Ly| > [ ] > a(n,m,N —1).

We may assume that the subgraph induced by L, contains a copy of Kyx_; with
the minimum coloring. Since every edge from v, to L, is the same color, this
Ky~ along with the vertex v, yields a Kx with the minimum coloring.

Now, solving the recursion in equation 11 with respect to NV shows that for

N2>3

1

N-3 . » . 1 N-2
aln,m,N)<m+ Z [—‘.(m - 1)*Y(m - 2)Y(m — 3)’] + [E(m — 1)(m —2)(m — 3)] .

If we set N = (n —2)(m — 2) + 2, we have the desired upper bound. O
3.7 Bounds for Stars and Cycles

We will consider one more set of bounds for a class of graphs. The proofs
of the following bounds help illustrate the relationships between the various F-
free ramsey numbers. Since a rainbow coloring is F-free for any set F of graphs
with size at least two, the previous upper bounds for rainbow ramsey numbers
are useful for any F-free ramsey number. In the proof of the following bound, we

actually force a stricter coloring than necessary in order to simplify the proof.

Theorem 37. For any integersn > 3 and m > 3,

Ropc,(K12,Cr) < (2n — 1)(m — 2)
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Proof. Let N = (2n — 1)(m — 2). Suppose K is edge-colored with no monochro-
matic K ,. According to Corollary 3, RR(K n, Pm-1) £ (m=3)(n—-1)+(m —2).
Since (m — 3)(n — 1) + (m — 2) < (2n — 1)(m — 2), we may assume without loss
of generality that there is a rainbow P, _; in Kxn. Let M be the set of vertices in

Ky which are not on this path. Then

M = (2n—1)(m—2)— (m—1)
= 2(n—-1)(m—-2)—1.

Let v and w be the end vertices of the path. Since there is no monochromatic
K n, each of the m — 2 colors which appear on the path can be used at most n —1
times on the edges between v and M. The color of the edge incident with v on
the path can be used at most n — 2 times. Thus, at most (n — 1)(m —2) — 1 of the
edges from v to M are colored in colors which appear on the path. Similarly, at
most (n — 1)(m — 2) — 1 of the edges from w to M can be colored in colors which
appear on the path. Since [M| > 2[(n — 1)(m — 2) — 1], there must be some vertex
u € M such that neither uv nor uw are colored with any of the colors appearing
on the path P,_,. Notice that uv and uw could be the same color; regardless,

the path P,_, and these two edges form a {2K;}-free copy of C.. ]

Essentially the same idea can be used to prove the following upper bound
for the rainbow ramsey number, although a little greater care is needed in the

final step to ensure that the last two edges of the cycle are not the same color.
Theorem 38. For any integers n > 2 and m > 3,
RR(Ki»,Cpn) < n®+n%*m —5) —n(m~5)+ (m —2)

Proof. Let N = n®+4n%(m —5) —n(m —5) +(m —2). Suppose the edges of Kx are

colored so that there is no monochromatic subgraph isomorphic to K; 5. Forn > 2
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and m > 3, we have n®+n?(m—5)—n(m—-5)+(m—2) > (m—4)(n—1)+(m-3).
Since there is no monochromatic K ., corollary 3 guarantees a rainbow P,,_,. Let
v and w be the endpoints of this path. Since m — 3 colors are used on the path,
one of which is incident with v, at most (m — 3)(n — 1) — 1 of the edges from v to
vertices not on the path are the same color as edges on the path. Each new color

incident with v can appear at most n — 1 times. Since
(n—1)(m—-3)—1+(n—1)(n-2) <n®+n*(m—5) —n(m - 3),

there must be at least n — 1 new colors appearing on edges incident with v. Let
Uy, Uz,...Un—; be vertices not on the path such that the edges vu,, vu,, ... vu,—;
are all colored with distinct new colors.

Let M be the set of remaining vertices, that is, M = V(Ky) — V(Pn-2) —
{u1,us,...un—1}. Then [ M| =n2+n?(m-5)—n(m—-5)—(n—1) = nd +n%(m -
5) — n(m —4) + 1. At this point, we have used m + n — 4 colors. Since there is
no monochromatic K ,, for each i, 1 <i<n —1, at most (n — 1)(m +n —4) of
the edges from u; to M are colored with colors already used. Similarly, at most
(n —1)(m +n —4) of the edges from w to M are colored with colors already used.

Since

n(n—1)(m+n—-4) = n®+n%m—>5)—n(m—4)

< [M|,

there must be a vertex z € M such that each of the edges zu,,zu,,...zu,_; and
zw are colored with colors not previously used. If these n edges are all the same
color, then we have a monochromatic copy of K;,. Otherwise, there is some ¢
such that zu; is not the same color as zw. Thus, if we add the edges vu;, u;z and

zw to the path Pn,_2, we obtain a rainbow copy of Ci,. . a
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The proof of the upper bound for the edge-chromatic ramsey number is

very similar, except that we can apply Theorem 28 instead of corollary 3.

Theorem 39. For any integers n > 2 and m > 3, the edge-chromatic ramsey

number
CR(K,5,Chn) <n(n-1)+(m —2)

Proof. Let N = n(n — 1) + (m — 2). Suppose that the edges of Kn are colored
so that there is no monochromatic subgraph isomorphic to K, ,. Since n(n —
1)+ (m —2) > m + n — 5, we may apply Theorem 28. There must be an edge-
chromatically colored path on m — 2 vertices. Let w and v be the end vertices of
this path, and let w’ and v’ be the vertices on the path which are adjacent to w
and v, respectively.

There are n(n — 1) vertices not on the path. Since each color can appear
on at most n — 1 edges incident with v, there must be at least n different colors
appearing on edges between v and the vertices not on the path, including at least
n — 1 colors different from the color of edge vv’. Let u;,u;,...un_; be vertices
not on the path so that the edges vu;,vu,,...vu,,—; and vv' are all colored with
different colors.

Let M be the set of remaining vertices, so that M = V(Ky) — V(Pp_;) —
{uj,uz,...un_y}. Then [M| = (n—1)2. Foreachi,1 <i<n-—1,at most n—2of
the edges between u; and M are the same color as vu;. Otherwise, we would have
a monochromatic K, in that color. Similarly, at most n — 2 of the edges between
w and M are the same color as ww’. Since (n — 1) > n(n — 2), there must be
some vertex z in the set M such that zu; is not the same color as u;v, for each

i, and zw is not the same color as ww'. If all of the edges zu., zus,...zu,—; and
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zw are the same color, then we have a monochromatic copy of K,,. Otherwise,
there is some 7 such that zu; is not the same color as zw. Thus, if we add the
edges vu;, u;z and zw to the edge-chromatically colored path on m — 2 vertices,

we have an edge-chromatically colored cycle on m vertices. a
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DISCONNECTED GRAPHS

Suppose a graph G has components G, and G3. If we know Rx(G,,G>)
and Rx(G;,G3), what can we say about Rr(G;,G)? When F = {K, 2}, so that

Rr is the edge-chromatic ramsey number, we can obtain bounds.

Theorem 40. For any graphs G, G, and G3 for which the following numbers

are defined, the edge-chromatic ramsey number satisfies

CR(G,,G;) < CR(G,,G2 U G3) < maz{|V(G3)| + CR(G,, G;),CR(G:,G3))

Proof. The lower bound is clear. Suppose N > maz(|V(G3)|+C R(G\, G:), C R(G1, G3)).
Color the edges of K with any number of colors. Since N > CR(G;,G3), we
may assume without loss of generality that there is a properly colored subgraph
isomorphic to G3. If we remove these |V (G3)| vertices, the remaining graph con-
tains either a monochromatic copy of G, or a properly colored copy of G, which
is disjoint from the copy of G3. Thus, we have a monochromatic copy of G; or a

properly colored copy of G2 U G3. .

Notice that the roles of G; and G35 are interchangeable. Since C R(G,, G2) =
maz(|V(G,)|, [V(G,)|) for any graphs G, and G, with size at least 2, we have the

following corollary.

Corollary 4. For any graphs G, and G2 of size at least 2 for which the following

numbers are defined,

CR(G,,G2) £ CR(G:,2G2) £2 CR(G,,G?)

79
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As an example, Theorem 40 gives the following bounds:
6 < CR(K13,2K13) <10

The actual value of this parameter is CR(K, 3,2K;3) = 8. The complete graph
K7 may be edge-colored rainbow to avoid both graphs. Suppose that Ks is edge-
colored so that no color appears more than twice at any vertex. Pick an edge uv
colored with color 1. At least three other colors must be used on edges incident
with vertex u. Suppose, then, that edges ua, ub, and uc are colors 2, 3, and 4,
respectively. Let d, e and f be the remaining vertices of the graph. If vd, ve and
vf are all different colors, then we have a properly colored 2K ;. If they are all
the same color, then we have a monochromatic K;3. We may assume without
loss of generality that vd and ve are color c;, possibly equal to 1, 2, 3, or 4, and
v f is color ¢z, where ¢; # c2, but ¢; could be 1, 2, 3, or 4. No other edge incident
with v is color ¢; and at most one other edge is color ¢;. Thus, we may assume
wlog that edges va and vb are not color ¢, or color c,.

At most one of the edges ud and ue can be color 4. Assume wlog that ud
is not color 4. If ud is color 2, then the edges ub, uc, ud, va, ve, and vf form
a properly colored subgraph isomorphic to 2K, 3. If ud is not color 2, then the
edges ua, uc, ud, vb, ve, and v f form the desired subgraph.

Theorem 40 can be generalized for F-free ramsey numbers provided all of

the graphs in F are connected.

Theorem 41. Suppose F is a family of connected graphs. Then for any graphs
G, G2, and G3 for which the numbers are defined,

Rr(Gy,Ge) £ Re(G1, G2 U G3) < maz(|V(Gs)| + Rx(G1, G2), Rx(G, Gs3)).
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The proof is completely analogous to the proof of Theorem 40. We again

have a corollary.

Corollary 5. Suppose F is a family of connected graphs. Then for any graphs

G, and G, of size at least 2 for which the numbers are defined,
Rr(G1,G2) < Rr(G1.2G,) < 2Rx(G, G2)

However, the condition that F contain only connected graphs is essential.
For example, RR(G\,2G?) is not less than 2RR(G,,G>) in general. For at least
two small examples, the opposite inequality holds. The rainbow ramsey number
RR(K,n.K?) =2 while RR(K, »,2K3) > n+1. Similarly, RR(K} 5, K12) = n+1,
while RR(K | ,,2K,2) = 3n — 2. To see this last inequality, notice that when n
is odd, K3,-; may be decomposed into 3(n — 1)/2 hamiltonian cycles; (n — 1)/2
cycles may be colored with each color, so that no monochromatic K, , appears
and only three colors are used. When n is even, K3,_, may be decomposed into

3(n — 1) perfect matchings and n — 1 matchings may be colored with each color.
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SYMMETRY IN F-FREE RAMSEY NUMBERS

The definition of the traditional ramsey numbers is symmetric, in the sense
that r(G,, G2) = r(Gz,G). If we have a coloring of Ky with no red G; and no
blue G, we merely need to interchange the colors to obtain a coloring with no red
G2 and no blue G,. For the rainbow, edge-chromatic, and other F-free ramsey
numbers, however, the definitions contain no such symmetry.

For example, there is no simple relationship between RR(G,,G;) and
RR(G.,G,) in general. We described bounds for the number RR(Cs, P,,), but
RR(P,,C3) does not exist for n > 4. In cases where both numbers exist and
Gy C G2, we have seen numerous examples where RR(G,,G;) < RR(G,,G,).

Recall, for instance, that

RR(4K,,5K,) = 17

RR(5K,,4K,) = 18.

On the other hand, K2 C K,, for m > 3. Since any coloring of K,, that is not
monochromatic must contain two adjacent edges in different colors, RR( K, K12) =
m. However, RR(K\ 2, Krx) 2 2(m — 2) 4+ 1. To see this inequality, color Kz(m-2)
as follows. Color a perfect matching in one color, say color 1, and color the other
edges with different colors. Thus, there are no two adjacent edges in the same
color, but any set of m vertices must contain at least two edges of the perfect
matching in color 1.

It is perhaps surprising, then, that there is an almost symmetrical rela-

tionship for the edge-chromatic ramsey number when one of the graphs is a star.
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Theorem 42. For any graph G and any positive integer n,
CR(K 1, G) SCR(G, K nt1)

Proof. Suppose CR(K,,,G) = N + 1 for some integer N. Color the edges of
K so that there are no monochromatic copies of K, and no edge-chromatically
colored copies of G.

Now, define a new coloring of K5 as follows. For each color in the original
coloring, recolor the edges of the subgraph induced by that color with an edge-
chromatic coloring in colors 1,2, ...k, using as few colors as possible. According
to Vizing’s Theorem, the edge-chromatic number of any graph is at most one more
than its maximum degree. Since the maximum degree of the subgraph induced by
any color class in the original coloring is at most n — 1, at most n colors are used
in this new coloring. Thus, there can be no edge-chromatically colored K ., in
the new coloring.

Suppose a monochromatic copy of G appears in the new coloring. If e
and f are any two adjacent edges of G in the new coloring, notice that they
must have been different colors in the original coloring. Thus, this copy of G was
edge-chromatically colored in the original coloring, which is a contradiction.

Thus, we have an edge-coloring of Kx with no monochromatic G and no

edge-chromatic K ny1,s0 CR(G, K| n41) 2 N + 1. |
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DIGRAPH RAINBOW AND EDGE-CHROMATIC RAMSEY
NUMBERS

Determining rainbow or edge-chromatic ramsey numbers for paths is diffi-
cult, in part, because the paths could move through the vertices of the complete
graph in any order. If we order the directions of both the paths and the complete
graphs, this difficulty is eliminated. This idea leads naturally to the definition of
rainbow ramsey and edge-chromatic ramsey numbers for acyclic digraphs.

Let Dy and D, be any two acyclic digraphs. We define the digraph rain-
bow ramsey number DRR(D,, D;) as the minimum integer N such that any arc-
coloring of the complete acyclic digraph Dy must contain either a monochromatic
subdigraph isomorphic to D, or a rainbow subdigraph isomorphic to D,. In what
follows, an outstar is a star K, in which every edge is directed away from the
central vertex, and an instar is a star in which every edge is directed towards the
central vertex.

For which digraphs D; and D, do these numbers exist? For any integer V,
label the vertices of Dy with the integers 1,2,... N so that the edge from vertex
i to vertex j, where 1 < j, is directed from z to 7. If this graph is colored with
the minimum coloring, so that the arc 77 is color min(z, ) for each : and j, then
the only monochromatic subdigraphs are outstars and no rainbow subdigraph can
contain a vertex with outdegree greater than 1. If this same graph is colored
with the maximum coloring, so that arc ij is colored with color maz(3, j) for each
: and j, then the only monochromatic subdigraphs are instars and no rainbow

subdigraph contains a vertex with indegree more than 1. In the next theorem, we
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will show that if the digraph rainbow ramsey number of any pair of digraphs D,

and D, exists for these two colorings, then it exists for any coloring of K.

Theorem 43. Let D, and D, be two nontrivial acyclic digraphs, so that D, has
at least 2 arcs. Then the digraph rainbow ramsey number DRR(D,, D,) ezists if

and only if one of the following holds:

1. Dy is en outstar and D, has no vertex with indegree greater than I

(3

. Dy is an inster and D, has no vertex with outdegree greater than 1, or

3. D, is a union of directed paths, that is, D, has no vertex with outdegree

greater than 1 and no vertex with indegree greater than 1.

Proof. The examples given above show that DRR(D,, D;) does not exist unless
one of these three requirements is satisfied. If D, is an outstar, then an acyclic di-
graph with the maximum coloring contains no monochromatic D; and no rainbow
subdigraph with indegree greater than 1. If D; is an instar, then an acyclic di-
graph with the minimum coloring contains no monochromatic D, and no rainbow
subdigraph with outdegree greater than 1. Finally, if D, is neither an instar nor an
outstar, then neither the minimum nor maximum colorings contain a monochro-
matic D;. The only rainbow subdigraphs contained in both colorings are those
digraphs with no outdegree greater than 1 and no indegree greater than 1.

Suppose D, is an outstar with underlying graph K, and suppose D, is an
acyclic digraph of order m such that indeg v < 1 for all v € V(D;). We will show
that DRR(D,, D,) exists by induction on m. If m = 2, then DRR(D,, D,) = 2
trivially.

Since D, has no directed cycles and no vertex with indegree greater than

L, there cannot be any cycles in its underlying graph. Thus, the underlying graph
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is a tree or a union of trees, each component of which must have at least two
end-vertices. Let u and v be two end-vertices in the same component of D,. If
both u and v have positive outdegree, then there must be a vertex on the path
between u and v with indegree at least 2. This is a contradiction; we may assume
without loss of generality that u has outdegree 0 and indegree 1.

By induction, we know that DRR(D,, D,—u) exists. Let N = DRR(D,, D,—
u) + (n — 1)(m — 2) + 1. Consider any coloring of the arcs of Dy. On the
DRR(D,, D;—u) vertices with highest outdegree, there must be either a monochro-
matic copy of D, or a rainbow copy of D, — u. Suppose there is a rainbow copy of
D;—u. Let w be the vertex adjacent to u in D;. There are at least (n—1)(m—2)+1
vertices in Dy which are not in D; — u and which are adjacent from w. If any n
of the arcs from w to these vertices are the same color, we have a monochromatic
copy of D;. Otherwise, there must be arcs in at least m — 1 different colors. Since
the underlying graph of D, — u is acyclic and has order m — 1, D; — u contains
at most m — 2 arcs. Thus, at least one of these colors must be a new color. We
may add this arc to D, — u to obtain a rainbow copy of Ds.

Thus, DRR(D,, D;) exists, where D, is an outstar with underlying graph
Kin. and D, is an acyclic digraph with no vertex with indegree greater than 1.

Solving the recursive bound

DRR(Dy,D,;) =2 when D, has order 2

DRR(D,,D;) < DRR(Dy,D; —u)+ (n —1)(m—-2) + 1 when D, has order m

yields the upper bound

DRR(D,, D,) < é(m—z)(m—1)(n—1)+m. . (12)
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A very similar argument shows that if D, is an instar with underlying
graph K. and D, is an acyclic digraph with no vertex with outdegree greater

than 1, then DRR(D,, D,) exists and

N r=

Suppose D; is a digraph such that each vertex has outdegree at most one
and indegree at most one. We will need some additional definitions and a lemma
to show the existence of DRR(D,, D) in this case. We will say that a complete
acyclic digraph D, along with a coloring of its arcs, is a type-A digraph or has a
type-A coloring if any two arcs incident from the same vertex in D are colored with
the same color. Similarly, we will say that D is a type-B digraph or has a type-B
coloring if any two arcs incident from the same vertex are different colors. Thus,
type-A is a generalization of the minimum coloring, while type-B includes both
the maximum and the rainbow colorings. Let AB(k, j) be the minimum positive
integer /V such that any coloring of the complete acyclic digraph Dy contains
either a type-A complete digraph on k vertices or a type-B complete digraph on

J vertices.
Lemma 8. For any postitive integers k and j, the number AB(k,j) ezists.

We will prove the lemma by inductionon kand j. fk=10or2o0rj=1or
2, then the number exists trivially; any coloring of any complete digraph on 1 or 2
vertices is both type-A and type-B. Suppose both AB(k—1,7) and AB(k,j7—1)
exist. Let N = (AB(k—1,j) —1)(AB(k,7 — 1) — 1) + 2. Color the arcs of Dy
arbitrarily. Let v be the vertex in Dy with maximum outdegree. Suppose there
are AB(k — 1,7) arcs incident from v in the same color. In this case, the vertices

incident from these arcs induce a digraph containing either a type-B digraph of
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order j or a type-A digraph of order k— 1. The vertex v could be added to a type-
A digraph of order £ — 1 to produce a type-A digraph of order k. Otherwise, there
must be AB(k,j — 1) arcs incident from v such that each arc is a different color.
The digraph induced by the vertices incident from these arcs must contain either
a type-A digraph of order k or a type-B digraph of order j — 1. The vertex v could
be added to a type-B digraph of order j — 1 to produce a type-B digraph of order
j- Thus, AB(k,j) exists and AB(k,j) < (AB(k—1,5) — 1)(AB(k,j—1)—1)+2
for k> 3 and j > 3.

Next, suppose D; is a complete acyclic digraph of order n and suppose
D, is a directed path of order m. We claim that DRR(D,, D;) exists. Let N =
AB((n —-2)(m —-2)+2,m(m —1)/2 +1). Consider any coloring of the arcs of the
complete acyclic digraph Dy . Either this digraph contains a complete subdigraph
of type A with (n —2)(m —2)+2 vertices or a complete subdigraph of type B with
m(m — 1)/2 + 1 vertices. Suppose there is a type-A digraph on (n —2)(m —2) +2
vertices. Label the vertices with their outdegrees 0,1,2,...(n—2)(m—2)+1. The
arcs out of any given vertex are all the same color, so at most (n —2)(m —2) +1
colors are used. If n — 1 of these colors are the same, then these n — 1 vertices and
the vertex with outdegree 0 form a monochromatic copy of D;. Otherwise, there
are m — | different colors appearing. The corresponding m — 1 vertices and the
vertex with outdegree 0, in order, produce a directed rainbow path of order m.

Suppose, instead, that there is a type-B digraph on m(m —1)/2 + 1 =
1+1+4+2+4+3+...4 (m — 1) vertices. Label the vertices, in order from highest
to lowest outdegree, by vy, v2, ... Um(m-1)/241- Start with arc v;v,. At most one of
the arcs vov3 and vav, can be the same color as v,v,; choose whichever one is a

different color, say vovs. Now, at least one of the arcs v4vs, vqvs, and v4v7 must
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be in some new color; choose this arc. Continuing in this fashion, we can choose
a directed rainbow path of order at least m.

Thus, DRR(D;, D;) exists, where D, is a complete acyclic digraph and D,
is a directed path. It follows that DRR(D,, D,) exists for any acyclic digraph D,
and any union of dirfected paths D,.

To obtain an upper bound in this case, we first need an upper bound on
AB(k, 7). First, notice that AB(2,7) = AB(k,2) =2. Fork > 3 and j > 3, we

have

AB(k,j) < (AB(k—1,5) — 1)(AB(k,j—1) = 1) +2
= AB(k—1,5)AB(k,j—1)~ AB(k—1,7) — AB(k,j — 1) + 3

< AB(k—-1,5)AB(k.j —1).
Solving this bound recursively yields
k+7-4
k-2
AB(k,7) < 2

We can verify this formula by induction. If &k = 2, then (’;2) =1,s0 AB(2,7) =
21 If 7 = 2, then we have (,’:'_'g = 1so AB(k,j) = 2!. Suppose the formula holds
for AB(k,j—1) and AB(k —1,5). Then

AB(k,j) < AB(k,j—1)AB(k — 1,j)

k+7—5\ (k+j—5
k—2 k—3

< 2 2

k+j7—4
k-2

= 2.
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Thus, when D, is a complete acyclic digraph of order n and D, is a directed path

of order m, we have the bound

DRR(D\,D;) < AB((n—2)(m —2)+2,m(m —1)/2 +1)

((n —-2)(m —-2)+m(m-—-1)/2 - 1)
(n —2)(m - 2)
2.

<
g

Suppose we color the complete acyclic digraph on m+3(n—1)(m—2)(m—3)
vertices so that edge v;v;y; is colored with color [;‘_’_—l] This digraph has no
monochromatic subdigraph isomorphic to an outstar with underlying graph K ..
Any edge in color ¢ must skip at least (n — 1)(z — 1) + 1 indices, so a rainbow-
colored directed path on m vertices must skip at least 1 + (1 + (= — 1)) + (1 +
2(n—1))+...+(1+(m—=2)(n—1)) indices from the first vertex to the last vertex
on the path. Combining this discussion with the bound in equation 12, we have

the following theorem.

Theorem 44. [f D, is an outstar (or, similarly, if D, is an instar) with under-

lying graph K, . and D, is a directed path on m vertices, then
L
DRR(Dy,D;) = m+ ;(n —1)(m—-1)(m -2).

[f we apply the Pigeonhole Principle to the colors of the arcs from the vertex
with maximum outdegree, the next formula is immediate. The lower bound follows
from a coloring of the complete acyclic digraph on (m —1)(n—1)+1 vertices with
m — 1 colors, so that no vertex has more than n — 1 arcs adjacent from it in the

same color.
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Theorem 45. If D, is an outstar with underlying graph K, ,, and D, is an outstar

with underlying graph K, ,,, then
DRR(D,,D;)=(m - 1)(n—1)+2.

For any outstar D, with underlying graph K, and any acyclic digraph
D, on m vertices containing no vertex with indegree greater than 1, the digraph
rainbow ramsey number lies between m + 3(n —1)(m —1)(m —2) and (m —2)(n —
1) + 2. The upper bound is included in the existence proof; the lower bound

follows from the coloring for the last theorem.
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POSSIBLE DIRECTIONS FOR FURTHER STUDY

Many questions remain open for study. Certainly, the rainbow and edge-
chromatic ramsey numbers for other classes of graphs could be considered, and
the bounds we have found may be improved. Some other generalizations seem
natural. For example, we could define RR(G,,G2,Ga, ... ; H) for a graph H and
a sequence of graphs G;,G,,G3,... to be the smallest integer N such that any
coloring of K'x with colors 1,2,3,... must contain either a monochromatic copy
of G; in color 7 for some 7z or a rainbow copy of H.

Relationships between the various parameters could be explored. For ex-
ample, we have bounds on the rainbow ramsey number in terms of the gener-
alized ramsey number. Could similar bounds be found for the edge-chromatic
ramsey number? Is there any relatibnship between Rx(H,,G,), Rx(H,,G-), and
Rr(H{ x H,,G; x G3) for some family of graphs F7?

We have often found an optimal lower bound coloring for the rainbow
ramsey number RR(G,,G>) by using m — 1 colors, where G, has m edges. The
lower-bound coloring for RR(K, 3,3K;) must use 3 colors, but we have seen few
other examples. It would be interesting to find significant examples where this
optimal coloring is forced to use m or more colors or, perhaps, to establish that
such examples do not exist except in special cases such as RR(K 3,3K3).

The traditional and generalized ramsey numbers involve only monochro-
matic graphs, with a maximum number of colors used to color K. We might
define a similar rainbow number, involving only rainbow subgraphs, if we set a

minimum number of colors. Is there a natural way to set a minimum number of
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colors to use in coloring K, presumably dependent on N? What relationships
might we expect between such a number, the traditional ramsey number, and the
rainbow ramsey number?

In another direction, the edge-chromatic number of a graph is the minimum
number of colors needed to color its edges with no two adjacent edges the same
color, that is, with no monochromatic subgraph isomorphic to K,;2. We might
also explore the F-free edge-chromatic number for other families of graphs F,
defined of course to be the minimum number of colors needed to edge-color G so
that there is no monochromatic subgraph isomorphic to any graph in . Thus,
when F = {K.}, we have the usual edge-chromatic number. The rainbow or
{2K;, K 2}-free chromatic number is simply the number of edges in the graph,
that is, its size.

The {2K>, K3}-free edge-chromatic number equals the vertex cover number
a(G), defined [see 4, p. 243] to be the minimum number of vertices needed to
cover all of the edges in the graph. If {vi,v2,...,vc} is a set of vertices that
covers all of the edges in G, then G could be colored {2K,, K3}-free using &
colors, by decomposing G into k stars with centers at vy,v,,... ,vi. Conversely,
if G is {2K,, K3}-free colored, then G is decomposed into k£ monochromatic stars.
Their centers vy, vq,... ,v; necessarily cover all of the edges of G. We might also
consider the {2K,}-free edge-chromatic number. For which graphs does it differ
from the {2A7, K3}-free edge-chromatic number?

These and many other questions involving both ramsey theory and color-

ings of graphs could naturally be considered.
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