
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Masters Theses Graduate College

8-2017

A Study on the Impact of Instruction Set Architectures on A Study on the Impact of Instruction Set Architectures on

Processor’s Performance Processor’s Performance

Ayaz Akram
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Akram, Ayaz, "A Study on the Impact of Instruction Set Architectures on Processor’s Performance" (2017).
Masters Theses. 1519.
https://scholarworks.wmich.edu/masters_theses/1519

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Masters Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/1519?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1519&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A Study on the Impact of Instruction Set Architectures on
Processor’s Performance

by

Ayaz Akram

A thesis submitted to the Graduate College
in partial fulfillment of the requirements

 for the degree ofMaster of Science in Emgineering
Electrical and Computer Engineering

Western Michigan University
August 2017

Thesis Commitee:

Dr. Lina Sawalha, Chair
Dr. Janos Grantner
Dr. Steven Carr

A Study on the Impact of Instruction Set Architectures on
Processor’s Performance

Ayaz Akram, M.S.E.

Western Michigan University, 2017

The recent advances in different instruction set architectures (ISAs) and the way those ISAs

are implemented have revived the debate on the role of ISAs in overall performance of a

processor. Many people in the computer architecture community believe that with current

compiler and microarchitecture advances, the choice of ISA does not remain a decisive matter

anymore. On the other hand, some researchers believe that this is not the case and they claim

that ISAs can still play a significant role in the overall performance of a computer system.

Novel heterogeneous architectures exploiting the diversity of different ISAs have been already

introduced. This thesis evaluates applications’ behavior compiled for different RISC (Reduced

Instruction Set Computers) and CISC (Complex Instruction Set Computers) ISAs using var-

ious microarchitectures. We correlated performance differences of same applications across

ISAs to certain ISA features. This work shows that ISAs can affect the overall performance of

applications differently based on their inherent characteristics.

Acknowledgments

I would like to thank my advisor, Dr. Lina Sawalha for her help, support and guidance to

conduct this research. She has been a continuous source of motivation during the period of

my Masters’ studies. I have learned a lot from her and will always stay grateful to her. I am

also thankful to other thesis committee members, Dr. Janos Grantner and Dr. Steven Carr,

for serving on my thesis committee. I also acknowledge the help of Brandon Arrendondo and

Tyler Bayne to perform this study.

It would not have been possible for me to accomplish anything without the support and

love of my parents. I wish to show my gratitude to them for all their sacrifices and help to

achieve my goals. I am also thankful to my siblings for their encouragment and support.

Finally, I would like to thank all of my friends at WMU. Discussing various technical and

non-technical issues with them has provided me with new insights and exposure to other fields.

I wish to say thanks to them for their help.

Ayaz Akram

ii

 Copyright by
 Ayaz Akram
 2017

Contents

1 Introduction 1
1.1 Evolution of RISC and CISC ISAs . 1
1.2 Overview of Instruction Sets Under Analysis 4

1.2.1 x86-64 . 4
1.2.2 ARMv8 . 5
1.2.3 Alpha . 6

1.3 Thesis Contributions . 7

2 Related Work 9

3 Methodology 15
3.1 Basic Requirements . 15
3.2 Simulation Environment . 15

3.2.1 Modifications in the Simulator . 16
3.3 Target Microarchitectures . 17
3.4 Benchmarks . 21
3.5 Mapping Simpoints Across ISAs . 21
3.6 Definitions of Studied Metrics . 23

4 Results and Analysis 25
4.1 Cycle Counts and µ-architecture-Independent Statistics 25
4.2 Individual Benchmark Analysis . 28
4.3 Other Microarchitecture Dependent Statistics 47
4.4 Performance Analysis Across Microarchitectures 50
4.5 Microarchitectural Optimizations for x86 51
4.6 Summary of the Findings . 53

5 Conclusion and Future Work 55

Appendix A Kiviat Plots for All Benchmarks 57

Appendix B Example Code Blocks 62

Bibliography 66

iii

List of Tables

1.1 Features of CISC and RISC ISAs . 3

3.1 Target Configurations . 18

iv

List of Figures

3.1 Mapping simpoints across ISAs . 21

4.1 Cycle counts relative to x86 for OoO Cores 26
4.2 Cycle counts relative to x86 for IO Cores 26
4.3 Instruction counts relative to x86 . 27
4.4 µ-op counts relative to x86 . 27
4.5 Types of µ-ops relative to x86 . 27
4.6 Probability of register dependency distance (<=16) for each ISA 28
4.7 Average degree of use of registers for each ISA 28
4.8 Cycles over windows of 50k insts. for bitcnts on Haswell core 30
4.9 Cycles over windows of 50k insts. for bitcnts on Atom core 30
4.10 Cycles over windows of 50k insts. for qsort on Haswell core 33
4.11 Cycles over windows of 50k insts. for qsort on Atom core 33
4.12 Cycles over windows of 50k insts. for bzip2 simpoint 2 on Haswell core . . . 35
4.13 Cycles over windows of 50k insts. for omnetpp simpoint 2 on Haswell core . 36
4.14 Cycles over windows of 50k instsructions for libquantum on Haswell core . . 38
4.15 Cycles over windows of 50k instructions for libquantum on Atom core 38
4.16 Cycles over windows of 50k instructions for a simpoint of milc 44
4.17 I-Cache Misses relative to x86 for OoO Cores relative 47
4.18 I-Cache Misses relative to x86 for IO Cores 47
4.19 Normalized L1-d cache misses for OoO cores 48
4.20 Normalized L1-d cache misses for IO cores 48
4.21 Normalized LLC cache misses for OoO cores 49
4.22 Normalized LLC cache misses for IO cores 49
4.23 Branch predictor misses relative to x86 for OoO cores 50
4.24 Branch predictor misses relative to x86 for IO cores 50
4.25 Execution time relative to ARM Haswell for embedded benchmarks 51
4.26 Execution time relative to ARM Haswell for integer benchmarks 51
4.27 Execution time relative to ARM Haswell for floating point benchmarks . . . 51
4.28 Percentage improvement for x86 using µ-op fusion and µ-op cache 52
4.29 Cycles relative to x86 (with µ-architecture optimizations) for OoO Cores . . 53

A.1 kiviat plot for basic math . 57
A.2 kiviat plot for bitcnt . 57
A.3 kiviat plot for dijkstra . 57
A.4 kiviat plot for jpeg . 57
A.5 kiviat plot for qsort . 58
A.6 kiviat plot for string search . 58
A.7 kiviat plot for typeset . 58

v

A.8 kiviat plot for bzip chicken . 58
A.9 kiviat plot for gobmk . 58
A.10 kiviat plot for omnetpp . 58
A.11 kiviat plot for perlbench . 59
A.12 kiviat plot for hmmer . 59
A.13 kiviat plot for libquantum . 59
A.14 kiviat plot for mcf in . 59
A.15 kiviat plot for sjeng ref . 59
A.16 kiviat plot for lbm . 59
A.17 kiviat plot for milc . 60
A.18 kiviat plot for namd . 60
A.19 kiviat plot for povray . 60
A.20 kiviat plot for soplex . 60
A.21 kiviat plot for sphinx . 61

vi

Chapter 1

Introduction

Instruction set architecture (ISA) serves as an abstraction layer between hardware and software

layers of a computer system. An ISA is considered to be analogous to human language [1]; it

is the language of a processor. An ISA defines the instructions available to the programmer.

Other components of an ISA usually include registers, addressing modes, data-types, memory

management, devices and exception handling, power management and multi-threading support

[2]. The actual implementation of an ISA on hardware is known as Microarchitecture. A single

ISA can be implemented in different ways, and thus can have various microarchitectures. Most

modern ISAs can be classified into two classes: RISC (Reduced Instruction Set Computer)

and CISC (Complex Instruction Set Computer). This thesis explores the impact of an ISA on

application’s performance using a specific microarchitecture. We chose to study and compare

three different ISAs: 64-bit ARM (ARM-v8), x86-64 and Alpha. This comparative analysis is

done using six different microarchitectures for selected ISAs.

1.1 Evolution of RISC and CISC ISAs

In the earlier days of computers, physical wires were used to specify the operation of a

CPU. Maurice Wilkes proposed the idea of “microprogramming” in 1951 [3]. He proposed

that the CPU could have a general design by specifying it’s control unit in a program store

referred as microcode. This microcode was changeable without any hardware changes. More-

over, it specified the instruction set available to the programmer of a particular CPU [4]. This

1

was a promising idea to reduce the development costs and provide more flexibilty to computer

designers. IBM’s System/360 family of computers was the first commercial family of com-

puters having CPU with control units in microcode (firmware) [4]. Individual models of the

System/360 series were compatible due to System/360 firmware but had differences in per-

formance and pricing [4, 5]. Commercial success of System/360 established firmware as the

future direction of computer architecture. The System/360 family of machines was a commer-

cial success but lagged behind in performance compared to the fastest computers at that time

[4]. The firmware layer that intervened betweem hardware and program was responsible for

diminishing speed in comparison to hard wired CPUs [4]. Later, John Cocke proposed the

idea of “Reduced Instruction Set Computer” (RISC) to make IBM firmware better in terms

of performance [6]. Cocke, while analyzing the compiled code for IBM’s System/370 ma-

chines, noticed that machine compilers do not always select the best sequence of instructions

to perform a certain task. He observed that the main reason for compiler’s inability to come

up with the best sequence of instructions was that the instruction set available to the compilers

was too “rich” [4]. Cocke proposed the idea of reducing the available instructions to “a set

of primitives carefully chosen to exploit the fastest component of the storage hierarchy and

provide instructions that can be generated easily by compilers” [4, 7]. Less number of choices

for compilers could lead to generation of more efficient code. After the introduction of RISC,

non-RISC architectures got the name of CISC (Complex Instruction Set Computer) [4]. This

eventually led to an unending debate that which one of the two classes of instruction sets is

better. Table 1.1 shows the distinguishing features that characterized the CISC and RISC ISAs.

Processor technology has been in continuous evolution and has changed significantly since

the introduction of RISC ISAs. The microarchitectures (the implementation of any ISA on

hardware) are continuously being optimized. As a result, the lines between RISC and CISC

ISAs are blurring. The two types of ISAs have adopted various features of each other. CISC

architectures like x86 started to decode complex instructions into simpler RISC like instruc-

tions called microoperations (µ-ops), to make pipelining more feasible. As Moore’s law [8]

continues to hold [9], more transistors can fit in a single chip, giving RISC architectures the

opportunity to incorporate more complicated CISC like instructions. Some people view the

2

present time as “post-RISC” era, implying that the current architectures are neither fundamen-

tally CISC nor RISC [10].

Table 1.1: Features of CISC and RISC ISAs

CISC RISC

Complex instructions Simple/reduced instructions

Emphasis on hardware Emphasis on software

Can incorporate load and store in other in-

structions

Load and store are independent instruc-

tions

Smaller static code size Larger static code size

Variable length instructions Fixed length instructions

Higher number of addressing modes Limited number of addressing modes

Complex encoding of instructions Simple encoding of instructions

Usually have specialized instrucions Avoid having specialized instructions

Limited number of general purpose regis-

ters

Large number of general purpose regis-

ters

Examples: x86, VAX, Z80
Examples: ARM, Alpha, MIPS, SPARC,

PowerPC

3

1.2 Overview of Instruction Sets Under Analysis

This section provides an overview of the evolution and features of the ISAs chosen for this

study: x86-64, ARMv8 and Alpha.

1.2.1 x86-64

x86-64 instruction set is a 64-bit version of the x86 instruction set (CISC ISA), which is largely

used in desktop and server applications. x86 has been used by many processor vendors like

Intel, AMD, Cyrix and VIA. x86 traces back its origin to Intel’s 8086 CPU [11, 12]. Intel

8086 microprocessor was a 16-bit extenstion of Intel 8080 microprocessor and was followed

by 80186 and 80286. 80386 (32-bit version) was introduced in 1985 [12] and was followed by

80486 processor. Originally, the 64-bit version of x86 ISA was introduced by AMD [13], but

it is currently used by both AMD and Intel.

There have been many additions and extensions to the ISA over time with backward com-

patibility. x86 had grown a lot in terms of number of supported instructions. 8086 had a sup-

port of around 400 instructions, while the number had increased to around 1300 instructions

by the time Intel Haswell was introduced [14]. As of today, majority of personal computers

are based on x86. According to PassMarks quarterly market share report, Intel and AMD’s

combined share of CPU market was close to 100% [15] in first quarter of 2017. x86 also

holds a huge share in server and high performance computing domain. Approximately 90% of

supercomputers in TOP500 supercomputers list [16] were based on x86-64 in 2015 [17].

Following are some of the features of x86-64:

• Variable length complex instructions ranging from 1 byte to 15 bytes in size.

• Higher code density than its RISC counterparts resulting in lower static code size.

• Decoding of x86 instructions into simpler operations at run time called microoperations

(µ-ops).

• Single Instruction Multiple Data (SIMD) support through SSE/AVX extensions [18, 19].

4

• Sixteen 64-bit registers for integer operations and sixteen 128-bit registers for floating-

point and SIMD operations.

• Support of absolute memory addressing, sub-register addressing and register-to-register

spills, which normally leads to lower register pressure [20].

• Use of implicit operands for various instructions.

The decoding of x86 instructions into µ-ops provides higher opportunity for instruction-

level parallelism (ILP) and has become necessary due to high ILP demands of modern, deep

pipelined microarchitectures. An example of use of implicit operands in some x86 instructions

is a multiply instruction (MUL). In MUL instruction, the destination operand is an implied

operand located in register AL, AX or EAX. The use of implicit operands results into extra

dependencies in some cases, results into negative impact on available parallelism [21]. Most of

the x86 instructions are two-operand instructions which over-write one of the source registers

with the result of the operation. If certain register values need to stay alive across instructions

they should be first copied to other registers [22]. These copying operations create unnecessary

dependencies in the code. A brief guide to main x86-64 instructions can be found in [23].

1.2.2 ARMv8

The 64-bit variant of ARM architecture (ARMv8) targets low power server market, along

with embedded systems. Original ARM architecture was a 32-bit RISC architecture having

16 registers [24]. Later on, a condensed ISA extension named Thumb was added to ARM

(ARMv4T). The latest evolved 32-bit version of ARM was ARMv7. Introduced in 2011,

ARMv8 is a redesigned ISA when compared to ARMv7. Several features of ARMv7 like

predicated instructions, load-multiple and store multiple instructions were removed. ARMv4

had support for 300 instructions [14]. The number had grown to more than a thousand in

ARMv8 [22]. Overall ARMv8 is complex and has many instruction formats.

ARM is a major contributor in embedded low power systems. For example, ARM’s market

share by volume was 90% in mobile application processors (smartphones, tablets), 30% in

embeded intelligence (microcontrollers, smartcards) and 45% in other mobile chips (modems,

5

sensors, GPS) in 2016 [25]. Even though ARM server chips are in market for more than five

years now, they have not been able to make any significant server market share so far [26].

Below are some of the features of ARMv8:

• Fixed-size 32-bit long instructions.

• Support of eight different addressing modes, but still a load/store architecture, i.e. in-

struction operands cannot be values residing in memory.

• Thirty one 64-bit general purpose registers.

• No support for compact Thumb instruction encoding.

• SIMD support through NEON extensions [27].

• Addition of an integer division instruction unlike ARMv7.

NEON is mandatory for ARMv8, and software floating-point ABI (Application Binary

Interface) is not provided. ARMv8 is compact but does not compete well in code size with

ISAs that have variable-length instructions [22]. ARMv8 instructions can boost performance

by 15% to 20% in comparison to ARMv7 instructions [28]. A short guide to important ARMv8

instructions can be found in [29].

1.2.3 Alpha

Designed by Digital Equipment Corporation (DEC) in the early 1990s, Alpha is another 64-

bit RISC ISA. Alpha was designed for high-performance systems, was simple to implement

because of it’s simple features and was the first 64-bit ISA [30]. Many of the least attractive

features of commercial RISC ISAs like branch delay slots were ommitted to achieve simplicity

[22]. The first implementation of Alpha was Alpha 21064 (EV4) and was followed by Alpha

21164 (EV5), Alpha 21264 (EV6) and Alpha 21364 (EV7). Alpha chips were able to run

at much higher clock speeds compared to other chips of their time [30]. Alpha was highly

optimized for in-order cores and contained some features that could hurt modern out-of-order

microarchitectures [22].

6

Some of the features of Alpha are given below:

• Fixed-size 32-bit long instructions.

• Support of six different instruction formats.

• Support of thirty two integer and thirty two floating point 64-bit registers.

• No support for any compressed ISA extension.

• Imprecise floating-point trap model.

• Support of SIMD operations through an extension named Motion Video Instructions

(MVI) [31].

• Larger code size because of it’s extreme RISC approach [30].

Alpha defines that exception flags and default values if needed should be provided by

software routines. It requires the insertion of trap barrier instructions after most of the floating-

point arithmetic instructions. MVI is composed of simple instructions that operate on integer

data types. Development of Alpha was discontinued in favor of Intel’s Itanium [32], and Alpha

ISA has died out now. Last implementation of Alpha was developed in 2004. A brief overview

of important Alpha instructions can be found in [33].

1.3 Thesis Contributions

The main contributions of this thesis are as follows:

• Analysis and comparison of different ISAs.

• Analysis of applications’ performance across different CISC and RISC ISAs for fixed

microarchitectures.

• Analysis of various microarchitecture dependent and independent statistics across ISAs

with the same microarchitectures.

7

• Correlation of performance differences across ISAs to applications’ assembly code for

each ISA.

• A survey of different ISA related studies.

The rest of this thesis is organized as follows: Chapter 2 surveys various ISA related stud-

ies. Chapter 3 discusses the methodology adopted to perform this ISA comparative study.

Chapter 4 discusses the results and provides an analysis. Finally, Chapter 5 concludes the

thesis.

8

Chapter 2

Related Work

Most of the ISA studies are old and do not include state-of-the art developments in ISAs

and their implementations [34, 35, 36, 37]. Some other studies either focus only on one ISA

[14, 38] or target only particular ISA features [39]. Two recent studies by Venkat and Tullsen

[20] and Blem et al. [40], have conflicting claims regarding the role of ISA in the performance

of a processor. Venkat and Tullsen [20] suggest that ISAs can affect performance significantly

based on their features. On the other hand, Blem et al. [40] conclude that microarchitecture

is the main reason for performance differences across different platforms and ISA effects are

indistinguishable. Our work focuses on analysing different ISAs and checking the validity of

such claims by adopting a different methodology than what they used.

In 1990’s Bhandarkar and Clark studied different implementations of MIPS, VAX, x86

and Alpha ISAs [34, 35]. They concluded that RISC processors have a performance edge over

CISC processors. CISC ISAs required more aggressive microarchitecture optimizations to

overcome the performance bottleneck. Isen et al. [36] compared the performance of Power5+

to that of Intel Woodcrest, and they concluded that both architectures matched in performance.

They indicated that with the aggressive microarchitectural techniques CISC ISAs can have

similar performance as RISC ISAs.

A recent comparative study of ISAs performed by Blem et al. [41] provides a detailed

analysis of x86 and ARM ISAs. The authors claimed that the different ISAs are optimized for

different performance gains and that none of the ISAs is fundamentally more energy efficient

9

than the other. Blem et al. concluded that the primary reason for performance differences is

microarchitecture. They used diverse hardware platforms for their study and tried to remove

non-ISA effects in the study by using the same compilers and by normalizing the effect of

any differences across microarchitectures. Different mobile, desktop and server applications

were used to perform this study. They also found that, overall, x86 implementations consume

more power than ARM implementations. However, choice of power or performance optimized

core design impacts core power use more than the ISA. Later, they included MIPS ISA and

some other hardware test platforms in their study [40] to conclude that their previous findings

still hold true. Although, the authors have considered the microarchitecture differences across

different test platforms to study ISA impact on performance and power consumption, it is hard

to accurately isolate microarchitecture and ISA effects across different test platforms. On the

other hand, our work makes use of a simulator to make sure that the microarchitectures used

across different ISAs are same and only ISA effects could be studied.

Weaver and Mckee [39, 42] studied the effect of ISAs on code density. Their study included

more than 20 ISAs (including x86 64, ARM64 and Alpha). They also found that code density

is mostly affected by: number of registers, instruction length, hardware divisors, the existence

of a zero register, number of operands, etc. Their work shows x86 to be one of the most dense

ISAs. Lozano and Ito [43] added few 8-bit instructions to ARM 16-bit Thumb ISA to further

increase its code density. They used innovative techniques like compression of immediate

values in instructions and achieved 30% reduction in code size alongwith 10% reduction in

processor’s power consumption.

Duran and Rico used graph theory techniques to quantify the impact of ISAs on super-

scalar processing [44]. Rico et al. also studied the impact of x86 specifically on superscalar

processing [21]. They quantitatively analyzed three sources of limitations on the maximum

achievable parallelism for x86 processors: implicit operands, memory address computations

and condition codes. Lopes et al. [14] analyzed x86 instruction set and proposed a way to

remove repetitive/unnecessary instructions, to make space for new instructions to be added

to the ISA, while still supporting legacy code. The motivation behind this work is that x86

ISA, which started with somewhere around 400 total instructions has approximately 1300 in-

10

structions now. This is true for other ISAs like ARM and PowerPC. The proposed recycling

mechanism allowed to encode new instructions with less bits and reduced complexity of x86.

They showed that 40% of x86 instructions could be emulated with less than 5% overhead. This

improved the area and power consumption of the instruction decoder significantly. Ye et al.

[37] characterized the performance of different x86-64 applications and compared them with

32-bit x86 applications. They showed that for integer benchmarks, 64-bit binaries perform bet-

ter than 32-bit by an average amount of 7%. But this is not true for all benchmarks, as some

perform slower in a 64-bit mode. They showed that the memory-intensive benchmarks, which

use long and pointer data types extensively, suffer from performance degradation in a 64-bit

mode.

Some of the previous studies examined different ISA extensions such as compact ISA ex-

tensions, SIMD extensions and cryptographic extensions [45, 46, 47]. Lopes et al. [45] evalu-

ated different compact ISA extensions including Thumb2 and MicroMIPS. They also proposed

SPARC-16, a 16-bit extension to SPARC processor. SPARC-16 is shown to have better com-

pression ratio in comparison to other compact extensions. It can achieve compression ratio as

low as 67% reducing cache miss rate to 9% [45]. Lee [47] provides an overview of various

multimedia extensions of different ISAs for general purpose processors used to accelerate me-

dia processing (e.g. MAX, MMX, VIS). Similarly, Slingerland and Smith surveyed existing

multimedia instruction sets and examined the mapping of their functionality to a set of com-

putationally important kernels [48]. Bartolini et al. [46] analyzed various existing instruction

set extensions for cryptographic applications. They reviewed the associated benefits and lim-

itations of such extensions. Jundt et al. [49] studied ARMv8 based XGene and Intel’s Sandy

Bridge processors to analyze the most important architectural features that affect power and

performance of high performance computing applications. Their results indicated that the CPU

frontend and branch predictor affected performance the most for X-Gene (ARMv8 based) pro-

cessor. On the other hand, frontend and cache had the biggest impact on Intel’s Sandy Bridge

(x86 based) processor. Mayank et al. [50] studied and analyzed NVIDIA Graphics Processor

Unit (GPU) instruction set architectures. Mayank et al. showed that the Fermi ISA is a big

improvement over Tesla ISA and has more versatile memory access modes, more complicated

11

ALU operations and control flow management with higher efficiency. Fermi ISA reduces the

dynamic instruction count by 22.6% on average and results in 15.4% performance improve-

ment compared to Tesla [50].

Ing and Despain [51] researched instruction sets designed for application specific needs

that had a tighter integration with the underlying hardware. They outlined automatic instruc-

tion set generation for these application specific designs. This technique, named Automatic

Synthesis of Instruction Set Architectures (ASIA), was able to outperform manually designed

instruction sets. However, it had some limitations, for instance the need of hardware resources

specifications by the designer.

DeVuyst et al. [52] developed a mechanism to migrate execution of a program to cores

of different ISAs with a minimum cost. Execution migration is a hard problem as it requires

transfering memory image, architecture specific program state and creating registers state. To

keep the memory image consistent across all ISAs, the proposed strategy ensured consistency

in data section, code section and stack for all ISAs. Migration was only allowed at specific

points of equivalence, which were essentially function calls in program’s binary. To achieve

instantaneous migration at non-equivalence points, a binary translator was proposed and op-

timized mainly for migration use. They concluded that the total overhead due to migrations

was less than 5% even if migrations happened at every timer interrupt. Based on this execution

migration methodology, Venkat and Tullsen [20] developed a heterogeneous ISA CMP (chip

multiprocessor) by exploiting the diversity of three ISAs: Thumb, x86-64 and Alpha. Their

chosen heterogeneous architecture results in 21% increased performance compared to the best

single-ISA heterogeneous architecture, in addition to reduced energy and energy delay prod-

uct. The authors exploited the energy efficiency of ARM’s Thumb ISA, the high performance

of x86-64 and the simplicity of Alpha to achieve better performance and energy efficiency

compared to a single-ISA heterogeneous CMP.

Barbalace et al. [53] proposed a complete software stack (including OS and compiler) to

run programs on heterogeneous-ISA asymmetric multicore processors . Their compiler frame-

work calculates the cost of migration offline (also considers information of hardware platform)

and marks certain points in program binaries based on this cost, before generating multi-ISA

12

binaries. Morever, min-cut algorithm is used to consider program affinity for different ISAs.

At marked points, the proposed framework selects the most efficient island (island is composed

of multiple cores of same ISA) at run-time and migrates thread to that island. They performed

some experiments using Xeon and Xeon Phi and showed performance improvement over using

OpenCL or only one of Xeon or Xeon phi.

Celio et al. [54] compared RISC-V [55], a new research ISA, with ARMv7, ARMv8, IA-

32 and x86-64 ISAs using SPEC-INT2006 benchmarks. They found that RISC-V (RV64G)

instruction count is within 2% of the µ-ops on x86-64. The compressed version of RISC-V

(RV64GC) is found to be the densest ISA out of the studied ones. Moreover, they found that

effective instruction count of RISC-V can be reduced by 5.4% on average by fusing instruc-

tions (macro-ops) at run time. The authors claim that a single ISA can be acceptable for both

low and high-end implementations using microarchitectural optimizations such as macro-op

fusion.

Steve Terpe researched the historical “RISC vs CISC” debate in [4]. The author collected

viewpoints of computer scientists Robert Garner, Peter Capek and Paul McJones on this topic.

The findings suggest that the Moore’s law ended the RISC vs CISC controversy. ISA being

RISC or CISC or a combination of both does not matter. Instead, other technology devel-

opments (like caching, pipelining, register renaming) play more significant role towards de-

termining the overall performance of a system. Jakob [56] argues that the ISA still matters

for performance. He specifically studied AArch64 (ARM-v8) and x86-64 cases to prove his

point. Cortex-A57 and A53 when run with AArch64 code can achieve 10% performance im-

provement over AArch32 due to less register spills and more optimized instruction set in case

of AArch64. Similarly, performance improvement of 5% to 10% was observed by the move

from x86-32 to x86-64 due to better register allocation and overall clearner instruction set. Jon

Stokes asserts that current architectures embody a variety of design approaches, and that in

this post-RISC era it is not sensible to keep the RISC and CISC division intact [57]. Instead,

current platforms should be evaluated on their own merits.

13

Our initial work [58] with x86-64, ARMv8 and Alpha ISAs indicated that these ISAs affect

performance differently depending on the microarchitecture used.

14

Chapter 3

Methodology

This chapter discusses the requirements for this study and the methodology adopted to fulfill

those requirements.

3.1 Basic Requirements

To explore the impact of ISAs on performance, it is necessary to keep all non-ISA factors

constant across ISAs for a particular run. The main requirements to perform this study were:

1. To keep the same ISA-independent microarchitectural features across all ISAs for all

runs.

2. To examine a diverse set of microarchitectural configurations that are close to real im-

plementations of the studied ISAs.

3. To keep the same compilation infrastructure when compiling benchmarks for all ISAs.

4. To study the same phases of execution across all ISAs.

3.2 Simulation Environment

We used gem5 [59] simulator for all of our experiments. This ensured the behavior analysis of

different ISAs on the same microarchitectures. gem5’s implementation isolates the simulated

15

hardware (microarchitecture) from ISAs [60], making it a good fit for our study. Another

reason for choosing gem5 is its ability to support many ISAs (including Alpha, ARM and x86-

64) [61]. It is also capable of simulating a wide range of microarchitectures and configurations.

Some of the modifications that were applied to the simulator to use it for this study are briefly

discussed next.

3.2.1 Modifications in the Simulator

We added code to gem5 to allow it to output different microarchitectural statistics like branch

mispredictions, cache misses and execution cycles for fixed instruction intervals (50,000 in-

structions). We also added code to calculate and output different microarchitecture indepen-

dent statistics like register dependency distance (the number of instructions between the in-

struction that writes a register and the instruction that reads the same register later), degree of

use of registers (number of instructions that consume the value of a register, once the value is

written) [62].

Moreover, we observed that x86 microoperations (µ-ops) to instructions ratio resulted from

gem5 was very high. We modified the source code of the simulator to make this decoding

more realistic. We relied on the information available in [63] and code of other simulators like

ZSim [64] and Sniper [65] to change instruction to µ-ops decoding of various instructions. We

then compared the modified gem5’s µ-ops to instruction ratio with that of the real hardware

to make sure that the new ratio is within 5% of that of the real hardware and what was previ-

ously found in [66, 67]. It was also observed that in case of in-order cores, called MinorCPU

in gem5, the implemented branch predictor was not working correctly for x86. On debug-

ging further we figured out that x86 control instructions were not triggering a call to branch

prediction unit. We modified the fetch stage of MinorCPU, to make sure that x86 control in-

structions were able to use simulated branch predictor. Other changes related to specific x86

microarchitecture optimizations were added to the simulator and will be discussed in Chapter

4.

16

3.3 Target Microarchitectures

This work uses a diverse set of microarchitectures for this study, including three OoO (out-of-

order) and three IO (in-order) cores. In-order (IO) cores execute instructions in the program

order as provided by the compiler. Out-of-order (OoO) cores execute instructions out of their

program order and perform dynamic scheduling of instructions based on ready instruction

operands [68]. Independent instructions do not need to wait for long latency old instructions

and this results in better utilization of free pipeline resources like functioanl units. The out-of-

order execution of instructions is performed at the expense of complicated hardware structures

like reservation stations, register renmaing stages and reorder buffers.

The simulated cores are based on Intel Haswell (OoO) [69, 70], Intel Atom (IO) [71, 70],

ARM Cortex A15 (OoO) [72], ARM Cortex A8 (IO) [73], Alpha 21264 (OoO) [31] and Alpha

21164 (IO) [74]. Table 3.1 shows the detailed configurations of the selected microarchitec-

tures. This work relies on various sources [75, 76, 77, 63, 78, 79, 80, 41, 81, 82, 83] to find the

configurations of these microarchitectures. For ARMv8, gem5 uses four destination registers

(each of 32 bits) to simulate a single FP/SIMD physical register. Thus, for ARMv8 the number

of physical floating point registers configured in gem5 should be four times the actual number

of physical floating point registers to be simulated as shown in Table 3.1.

17

Ta
bl

e
3.

1:
Ta

rg
et

C
on

fig
ur

at
io

ns

Pa
ra

m
et

er
H

as
w

el
l

A
15

A
lp

ha
21

26
4

A
to

m
A

8
A

lp
ha

21
16

4

Pi
pe

lin
e

O
oO

O
oO

O
oO

IO
IO

IO

C
or

e
cl

oc
k

3.
4

G
H

z
2

G
H

z
1.

2
G

H
z

1.
6

G
H

z
80

0
M

H
z

50
0

M
H

z

Fr
on

te
nd

w
id

th
6

µ
-o

ps
3

µ
-o

ps
4

µ
-o

ps
3

µ
-o

ps
2

µ
-o

ps
4

µ
-o

ps

B
ac

k
en

d
w

id
th

8
µ

-o
ps

7
µ

-o
ps

4
µ

-o
ps

3
µ

-o
ps

2
µ

-o
ps

4
µ

-o
ps

In
st

ru
ct

io
n

qu
eu

e
60

en
tr

ie
s

48
en

tr
ie

s
40

en
tr

ie
s

32
en

tr
ie

s
32

en
tr

ie
s

32
en

tr
ie

s

R
eo

rd
er

bu
ff

er
19

2
en

tr
ie

s
60

en
tr

ie
s

80
en

tr
ie

s
N

/A
N

/A
N

/A

N
um

be
r

of
st

ag
es

19
15

7
13

13
7

L
oa

d/
St

or
e

Q
ue

ue
72

/4
2

en
tr

ie
s

16
/1

6
en

tr
ie

s
32

/3
2

en
tr

ie
s

5
en

tr
ie

s
12

en
tr

ie
s

5
en

tr
ie

s

Ph
ys

ic
al

IN
T

/F
P

R
eg

-

is
te

rs
16

8/
16

8
90

/6
4

80
/7

2
N

/A
N

/A
N

/A

C
ac

he
lin

e
si

ze
64

64
64

64
32

32

L
1D

-$
si

ze
32

K
B

32
K

B
64

K
B

24
K

B
32

K
B

8K
B

L
1D

-$
as

so
ci

at
iv

ity
8

w
ay

2
w

ay
2

w
ay

6
w

ay
4

w
ay

1
w

ay

N
ot

e:
N

/A
:N

ot
A

va
ila

bl
e/

A
pp

lic
ab

le
,O

oO
:O

ut
-O

f-
O

rd
er

,I
O

:I
n-

O
rd

er

18

Pa
ra

m
et

er
H

as
w

el
l

A
15

A
lp

ha
21

26
4

A
to

m
A

8
A

lp
ha

21
16

4

L
1D

-$
la

te
nc

y
4

cy
cl

es
4

cy
cl

es
3

cy
cl

es
3

cy
cl

es
2

cy
cl

es
3

cy
cl

es

L
1I

-$
si

ze
32

K
B

32
K

B
64

K
B

32
K

B
32

K
B

8K
B

L
1I

-$
as

so
ci

at
iv

ity
8

w
ay

2
w

ay
2

w
ay

8
w

ay
4

w
ay

1
w

ay

L
1I

-$
la

te
nc

y
4

cy
cl

es
2

cy
cl

es
3

cy
cl

es
2

cy
cl

es
2

cy
cl

es
2

cy
cl

es

L
2-

$
si

ze
25

6K
B

2M
B

2M
B

51
2K

B
25

6K
B

96
K

B

L
2-

$
as

so
ci

at
iv

ity
8

w
ay

16
w

ay
16

w
ay

8
w

ay
8

w
ay

3
w

ay

L
2-

$
la

te
nc

y
12

cy
cl

es
20

cy
cl

es
12

cy
cl

es
12

cy
cl

es
6

cy
cl

es
10

cy
cl

es

L
3-

$
si

ze
8M

B
N

/A
N

/A
N

/A
N

/A
4M

B

L
3-

$
as

so
ci

at
iv

ity
16

w
ay

N
/A

N
/A

N
/A

N
/A

1
w

ay

L
3-

$
la

te
nc

y
36

cy
cl

es
N

/A
N

/A
N

/A
N

/A
10

cy
cl

es

D
R

A
M

la
te

nc
y

57
ns

81
ns

60
ns

85
ns

65
ns

25
3

ns

D
R

A
M

ba
nd

w
id

th
25

.4
G

B
/s

25
.4

G
B

/s
25

.4
G

B
/s

25
.4

G
B

/s
25

.4
G

B
/s

1.
6

G
B

/s

D
R

A
M

cl
oc

k
2G

H
z

93
3M

H
z

93
3M

H
z

60
0M

H
z

16
6M

H
z

16
6M

H
z

IT
L

B
en

tr
ie

s
12

8
12

8
12

8
16

16
48

D
T

L
B

en
tr

ie
s

10
88

54
4

12
8

80
80

64

N
ot

e:
N

/A
:N

ot
A

va
ila

bl
e/

A
pp

lic
ab

le
,O

oO
:O

ut
-O

f-
O

rd
er

,I
O

:I
n-

O
rd

er

19

Pa
ra

m
et

er
H

as
w

el
l

A
15

A
lp

ha
21

26
4

A
to

m
A

8
A

lp
ha

21
16

4

R
ea

d/
W

ri
te

po
rt

s
2/

1
1/

1
1/

1
1/

1
1/

1
1/

1

B
ra

nc
h

Pr
ed

ic
to

r

(G
lo

ba
l/

L
oc

al
Ta

bl
e)

To
ur

na
m

en
t

To
ur

na
m

en
t

To
ur

na
m

en
t

To
ur

na
m

en
t

To
ur

na
m

en
t

2-
B

it
C

ou
nt

er

si
ze

s)
(4

09
6/

40
96

)
(4

09
6/

10
24

)
(4

09
6/

10
24

)
(4

09
6/

10
24

)
(5

12
/5

12
)

(2
04

8
en

tr
ie

s)

B
ra

nc
h

ta
rg

et
bu

ff
er

40
96

en
tr

ie
s

20
48

en
tr

ie
s

20
48

en
tr

ie
s

12
8

en
tr

ie
s

51
2

en
tr

ie
s

51
2

en
tr

ie
s

R
et

ur
n

ad
dr

es
ss

ta
ck

16
en

tr
ie

s
48

en
tr

ie
s

32
en

tr
ie

s
8

en
tr

ie
s

8
en

tr
ie

s
12

en
tr

ie
s

N
ot

e:
N

/A
:N

ot
A

va
ila

bl
e/

A
pp

lic
ab

le
,O

oO
:O

ut
-O

f-
O

rd
er

,I
O

:I
n-

O
rd

er

20

3.4 Benchmarks

We used C/C++ benchmarks of SPEC-CPU2006 benchmarks suite [84] and embedded bench-

marks from MiBench [85] suite in this study. The benchmarks were compiled for each ISA

using gnu gcc version 4.8.5 for x86 and ARM, and 4.3.5 for Alpha, instead of using any

vendor-specific compiler. We built the gcc cross compilers using crosstools-ng [86] version

1.22. The same versions of libraries were used to build all of the cross-compilers. While

SPEC-CPU2006 benchmarks do not contain SIMD code, the autovectorization feature of gcc

can result in SIMD instructions in the compiled binary. We did not disable the autovectoriza-

tion feature of the compiler. All benchmarks are compiled with -O3 optimization flag.

3.5 Mapping Simpoints Across ISAs

Embedded benchmarks were run completely for this study. On the other hand, because it

is infeasible to simulate entire SPEC-CPU2006 benchmarks, five statically relevant simpoint

intervals (each interval of 500 million x86 instructions approximately) [87] were chosen for

these benchmarks. Using multiple intervals also allowed us to study the varying behavior of

an ISA for different intervals of the program. To make sure that we were comparing different

ISAs for same intervals of benchmarks, we made use of the pseudo-instruction [88] support in

gem5 simulator.

Figure 3.1: Mapping simpoints across ISAs

21

Next is a summary of the methodolgy for studying the same simpoint intervals across all

ISAs:

1. We used simpoint tool with x86 binaries and found five simpoint intervals, each of 500

million x86 instructions. Since, total number of dynamic instructions for all ISAs can

be different for a particular benchmark as shown in Figure 3.1, instruction counts cannot

be used to map same simpoints across ISAs.

2. We profiled SPEC-CPU2006 benchmarks using gprof [89] tool to identify critical func-

tions. We chose four functions for each program based on gprof output: two where the

program spent the most of the time and the other two which were called the highest

number of times during the execution of the program. To map x86 intervals to other

ISAs, we marked critical functions of the benchmarks.

3. We inserted gem5 pseudo instructions in all four chosen functions for each benchmark

and ran the marked binaries to calculate the total number of marked-function calls at the

starting and ending point for each interval for x86 binaries.

4. This call count was then used to map similar simpoint intervals on other ISAs as shown

in Figure 3.1. Marking critical functions provides a better opportunity for accurate map-

ping as there is a higher chance that one of these functions will be executed close to the

simpoint boundary.

5. We dumped different microarchitectural performance statistics such as cache misses,

branch mispredictions, blocks of different stages, etc. and some microarchitecture in-

dependent statistics like register dependency distance and instruction mixes for each

simpoint for each ISA over time.

6. Finally, we compared the differences in performance for various ISAs across these

phases of execution.

22

3.6 Definitions of Studied Metrics

This section defines all of the microarchitecture dependent and independent metrics that were

considered for this study. Following are the microarchitecture dependent metrics:

Cycle Counts: The number of cycles that each benchmark compiled for a particular ISA

takes to execute on a particular microarchitecture. This is the primary metric used to compare

performance across ISAs on the same microarchitecture.

Branch Mispredictions: Branch mispredictions refer to the number of times a branch

predictor predicts a control instruction incorrectly. This metric helps in understanding the extra

cycles that a pipeline might be spending because of following an incorrect path of execution.

L1 Instruction Cache Misses: L1 Instruction cache misses refer to the number of times an

instruction block is not found in the instruction and cache has to be brought from lower levels

of cache.

L1 Data Cache Misses: The number of times a cache block is not found in L1 data cache

when an instruction tries to read/write from/to that particular block of memory are known as

L1 data cache misses.

Last Level Cache (LLC) Misses: These misses indicate the events when data or instruction

cache blocks are not found in last level cache (L2 or L3) and need to be brought from the main

memory.

L1 Data Cache Accesses: This metric represents total accesses made to L1 data cache. The

total number of data cache accesses can vary across microarchitectures depending on branch

mispredictions and memory order violations.

Decode Blocks: This metric represents the number of times the decode stage is blocked

because one of the structures in the following pipeline stages is full.

Rename Blocks: Rename Blocks refer to number of events when rename stage has to be

blocked because either the reorder buffer and/or physical rename register file are full.

IEW Blocks: This metric represents total number of times issue, execute or write-back

stages are blocked.

IQ Full: IQ Full referes to the total events when the instruction queue is full and new

instructions cannot be issued.

23

LSQ Full: This metric represents the total number of events when load or store queue does

not have any empty spots and new memory operations cannot be issued.

ROB Full: ROB Full refers to total number of times when the reorder buffer is full and the

rename stage has to block because of that.

Rename Register Full: This metric shows the number of events when physical rename

register file does not have vacant slots and rename stage has to be blocked.

Mem-Order Violations: Mem-Order Violations refer to number of times memory order is

violated due to out-of-order scheduling of memory operations and pipeline needs to re-execute

violated instructions.

Next is a description of microarchitecture independent metrics that we considered in this

study:

Instruction Counts: These are the total number of committed instructions (macro-ops)

each benchmark takes to execute.

Micro-op (µ-op) Counts: This metric counts the number of committed micro-ops (µ-

ops) each benchmark takes to execute, as many complicated instructions in modern ISAs are

decoded into simple operations at run-time called µ-ops.

Types of µ-ops: We considered certain types of micro-ops as well that each benchmark

takes to execute. Types were divided into four categories: load operations, store operations,

branch operations and others that include all operations that do not fall in the previous three

categories.

Average Register Dependency Distance: Register dependency distance refers to the num-

ber of instructions between an instruction that writes a particular register and the instruction

that reads the value of that register later. This metric calculates the average value of regis-

ter dependency distance for each benchmark. Higher register dependency distance refers to

higher available instruction level parallelism in the code that can be exploited by out-of-order

pipelines to improve performance.

Average Degree of Use of Registers: Degree of use of registers refers to the number of

instructions that read the value of a register once it is written. Higher degree of use of registers

could mean a higher number of dependencies in the code.

24

Chapter 4

Results and Analysis

We considered various microarchitecture dependent and independent statistics to observe the

differences across ISAs. This chapter shows the average performance of ISAs on different

microarchitectures and discusses few examples of the observed differences across ISAs.

4.1 Cycle Counts and µ-architecture-Independent Statistics

Figures 4.1 and 4.2 show the cycle counts for ARM and Alpha ISAs (relative to x86) for out-

of-order and in-order cores respectively. In case of SPEC-CPU2006 benchmarks, the cycle

counts are cumulative cycles for all studied simpoint intervals. On average, ARM takes the

least number of cycles for all types of benchmarks on out-of-order cores. As the figures show,

the ISAs behave differently for different benchmarks and microarchitectures. For example,

gobmk always takes a lower number of cycles on Alpha than x86 because x86 suffers from

higher branch mispredictions. However, perlbench always takes lower cycles on x86 than

Alpha as Alpha suffers from higher register pressure in this case. In case of hmmer, ARM

takes a larger number of cycles than x86 on Haswell-like core, but it takes lower cycles than

x86 on other out-of-order cores. In case of in-order cores, the difference in cycles taken by

x86 and ARM is reduced significantly for this benchmark and on average as well. There are

many cases, where the behavior of ISAs changes over different phases of execution of the

same benchmark (some of them will be mentioned later in this chapter).

Figures 4.3 to 4.7 show various microarchitecture independent metrics. Figure 4.3 shows

the dynamic instruction counts for Alpha and ARM ISAs relative to x86 instructions. Figure

25

4.4 shows the dynamic microoperation (µ-op) counts for Alpha and ARM ISAs normalized to

x86 µ-op counts for all benchmarks. As the figure shows, the final number of dynamic µ-ops

is ISA dependent and x86 has the most number of µ-ops in most of the cases. Figure 4.5 shows

the number of different types of µ-ops for all ISAs relative to x86. The total number of µ-ops

of a particular type depends on the ISA as well. Figure 4.6 shows the average values of register

dependency distance (the number of instructions between the instruction that writes a register

and the instruction that reads the same register). Figure 4.7 shows the average values for degree

of use of registers (number of instructions that consume a value of a register, once the value is

written). x86 has the highest degree of use of registers, which often blocks instruction queue

in out-of-order cores.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

b
as

ic
_m

at
h

b
it

cn
ts

d
ij

ks
tr

a

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_c

h
ic

ke
n

go
b

m
k

o
m

n
et

p
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_i
n

sj
e

n
g_

re
f

A
vg

.

A
vg

_n
o

_
m

cf

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.C
yc

le
 c

o
u

n
ts

 r
e

la
ti

ve
 t

o
 x

8
6

Arm_Haswell Alpha_Haswell Arm_A15 Alpha_A15 Arm_21264 Alpha_21264

INT-SPEC CPU2006EMBEDDED FP-SPEC CPU2006

2.3

Figure 4.1: Cycle counts relative to x86 for OoO Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.C
yc

le
 c

o
u

n
ts

 r
e

la
ti

ve
 t

o
 x

8
6

Arm_Atom Alpha_Atom Arm_A8 Alpha_A8 Arm_21164 Alpha_21164

INT-SPEC CPU2006 FP-SPEC CPU2006EMBEDDED

Figure 4.2: Cycle counts relative to x86 for IO Cores

26

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

In
st

s.
 r

e
la

ti
ve

 t
o

 x
8

6

Arm Alpha

INT-SPEC CPU2006 FP-SPEC CPU2006EMBEDDED

Figure 4.3: Instruction counts relative to x86

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

M
ic

ro
-o

p
s

 r
e

la
ti

ve
 t

o
 x

8
6

 Arm Alpha

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

Figure 4.4: µ-op counts relative to x86

0

0.5

1

1.5

lo
ad

s
re

la
ti

ve

to
 x

8
6

Arm x86 Alpha

0

0.5

1

st
o

re
s

re
la

ti
ve

to

 x
8

6

0

0.5

1

1.5

b
ra

n
ch

es
 r

el
at

iv
e

to
 x

8
6

0

0.5

1

b
as
ic
_m

at
h

b
it
cn
ts

d
ij
ks
tr
a

jp
e
g

q
so
rt

st
ri
n
g_
se
ar
ch

ty
p
e
se
t

A
vg
.

b
zi
p

go
b
m
k

o
m
n
et
p
p

p
e
rl
b
e
n
ch

h
m
m
e
r

lib
q
u
an

tu
m

m
cf
_i
n

sj
e
n
g_
re
f

A
vg
.

lb
m

m
ilc

n
am

d

p
o
vr
ay

so
p
le
x

sp
h
in
x

A
vg
.

o
th

er
s

re
la

ti
ve

to
 x

8
6

Figure 4.5: Types of µ-ops relative to x86

27

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

p
ro

b
. r

e
gi

st
e

r
d

e
p

e
n

d
e

n
ce

 <
=

1
6

Arm x86 Alpha

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

Figure 4.6: Probability of register dependency distance (<=16) for each ISA

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.A
vg

.
d

e
gr

e
e

 o
f

u
se

 o
f

re
gi

st
e

rs

Arm x86 Alpha

INT-SPEC CPU2006 FP-SPEC CPU2006EMBEDDED

Figure 4.7: Average degree of use of registers for each ISA

4.2 Individual Benchmark Analysis

This section analyzes all studied benchmarks and shows performance differences across ISAs.

MiBench Embedded Benchmarks

basic math:

This benchmark performs simple mathematical calculations that are usually suitable for em-

bedded processors. It is important to note that we modified the code of this benchmark to

replace ‘long double’ variables with ‘double’ data type in one of the functions SolveCubic.

Listing 4.1 shows declared ‘long double’ variables in this function. When operations are per-

formed on these variables it emulates floating point operations in case of Alpha and ARM

although hardware floating point is switched on in both cases during compilation. This is

28

because Alpha and ARM use more than 64 bits for long double data types. This leads to an

increased number of instructions for Alpha and ARM (more than 5 times) as compared to

x86, which results in a higher number of cycles on Alpha and ARM. After modifying the

benchmark, software emulation is not used and this change also does not cause any functional

inaccuracy for the benchmark on Alpha and ARM. Alpha takes the highest number of dynamic

µ-ops to execute the modified benchmark.

Listing 4.1: Example from SolveCubic function
void So lveCub ic (double a ,

double b ,
double c ,
double d ,
i n t ∗ s o l u t i o n s ,
double ∗x)

{
long double a1 = b / a , a2 = c / a , a3 = d / a ;
long double Q = (a1∗ a1 − 3 . 0∗ a2) / 9 . 0 ;
long double R = (2 . 0 ∗ a1∗ a1∗ a1 − 9 . 0∗ a1∗ a2

+ 27 .0∗ a3) / 5 4 . 0 ;
double R2 Q3 = R∗R − Q∗Q∗Q;

bitcnts:

bitcnts is an embedded benchmark that counts the number of bits in an array of integers using

different methods. x86 takes the most number of cycles to execute this benchmark on out-

of-order cores, but on in-order cores Alpha takes the most number of cycles. Alpha takes the

highest number of µ-ops to execute this benchmark as well. Another interesting observation

is the behavior of this benchmark over time. Figure 4.8 shows the number of cycles taken to

execute each interval of 50 000 instructions for all ISAs on Haswell-like core. As shown in the

figure, for the first phase (almost until 18000 intervals or 900 million instructions), x86 takes

almost the same number of cycles as taken by the other ISAs for each interval. However, for

all following phases, x86 takes a higher number of cycles compared to the other ISAs. Listing

4.2 shows an example of assembly code that leads to reduced performance on aggressive out-

of-order cores for x86 compared to the other ISAs. As shown in Figure 4.9, this behavior is

not observed in in-order cores like Atom.

29

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1E+09 2E+09 3E+09 4E+09 5E+09 6E+09

C
yc
le
s

Instructions

ARM x86 Alpha

phase involving bitcount function

Figure 4.8: Cycles over windows of 50k insts. for bitcnts on Haswell core

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1E+09 2E+09 3E+09 4E+09 5E+09 6E+09

C
yc
le
s

Instructions

ARM x86 Alpha

phase involving bitcount function

Figure 4.9: Cycles over windows of 50k insts. for bitcnts on Atom core

The code snippet in Listing 4.2 is taken from a function bitcount that executes repeatedly

inside a loop. The execution of this function starts approximately after 900 million instruc-

tions; the execution phase involving this function is circled in Figure 4.8. As can be seen in

Listing 4.2, there are more dependent operations in case of x86. This piece of code calcu-

lates the final value of a variable i. One source of more dependent operations is the first mov

operation in x86, which copies the initial value of variable ‘i’ from reg %rdx to %rax. This

copying is needed to perform two different ‘and’ operations with variable i, as the value of the

register (%rdx) containing i will be modified after first ‘and’ operation due to nature of x86

ISA. Since, there are more dependent operations on i in x86, this results into congestion in

instruction queue on out-of-order cores as our results indicate. It should also be noted that the

C/C++ line of code in Listing 4.2 is one of the 5 similar lines of code each of which uses a

previous value of i to calulate the new one.

30

Listing 4.2: Example from bitcount function

x86:

i = ((i & 0xFF00FF00L) >> 8) + (i & 0x00FF00FFL) ;
mov %rdx ,% r a x // ‘i’ in rdx, dependent operation
and $0 x f f 0 0 f f ,% edx // dependent operation
and $0 x f f 0 0 f f 0 0 ,% eax // dependent operation
s a r $0x8 ,% r a x // dependent operation
add %rdx ,% r a x // dependent operation

ARM:

i = ((i & 0xFF00FF00L) >> 8) + (i & 0x00FF00FFL) ;
movk x0 , #0 xf f00 , l s l #16 // independent operation
movk x3 , #0 x f f , l s l #16 // independent operation
and x3 , x1 , x3 // ‘i’ in x1, dependent operation
and x0 , x1 , x0 // dependent operation
add x0 , x3 , x0 , l s r #8 // dependent operation

Alpha:

i = ((i & 0xFF00FF00L) >> 8) + (i & 0x00FF00FFL) ;
z a p n o t t1 , 0 xa , v0 // ‘i’ in t1, dependent operation
z a p n o t t1 , 0 x5 , t 1 // dependent operation
s r a v0 , 0 x8 , v0 // dependent operation
addq v0 , t1 , v0 // dependent operation

Listing 4.3: Example from ntbl cnt function

i n t c n t = b i t s [(i n t) (x & 0 x0000000FL)] ;
i f (0L != (x >>= 4))

x86:

mov %r d i ,% r a x // ‘x’ in rdi, 3 dependent operations
s a r $0x4 ,% r d i
and $0 xf ,% eax

ARM:

and x2 , x0 , #0 x f // ‘x’ in x0, 2 dependent operations
a s r x1 , x0 , #4

Alpha:

s r a a0 , 0 x4 , t 2 // ‘x’ in a0, 2 dependent operations
and a0 , 0 xf , a0

Another similar sort of example is shown in Listing 4.3. This code is taken from function

31

ntbl cnt. The assembly instructions shown in the Listing 4.3 are responsible for performing an

‘and’ operation with ‘x’ to use the result as an index into bits array and shift the value of ‘x’

by 4 bits to the right to compare the result with 0 in the shown ‘if’ condition. Again, for x86

there is an extra mov operation needed to copy value of x from register %rdi to another register

%rax.

dijkstra:

This benchmark uses dijkstra’s algorithm to calculate the shortest path between every pair of

nodes in a large graph. For dijkstra benchmark, Alpha suffers from high register pressure and

has a greater number of load operations compared to the other ISAs as shown in Figure 4.5.

This leads to lower performance on most of the microarchitectures for Alpha. One possible

reason for higher register pressure on Alpha in some cases (including dijkstra) is less flexible

addressing modes and instruction formats as compared to other ISAs.

jpeg:

jpeg is a common image compression and decompression benchmark. x86 takes the most

number of cycles in all OoO cores, while Alpha takes the most in all IO cores. One interesting

thing to note, for this benchmark is that for one phase of exectuion (700-900th window, where

each window is 50 000 instructions), the number of memory reads and µops/instruction ratio

for x86 is increased significantly.

qsort:

qsort sorts a large array of strings using quicksort algorithm. We modified qsort to remove

all printings to focus on only sorting related code. x86 takes the most number of cycles on

OoO cores, while Alpha takes the most number of cycles on IO cores, mainly due to higher

µ-op and instruction counts for Alpha. Figure 4.10 shows that there are two major phases of

execution for this benchmark. As pointed in the figure, all ISAs exhibit similar performance

32

for the first phase. However, in the second phase, x86 takes the highest number of cycles for

each interval of instructions. In this phase, x86 exhibits higher number of instruction queue

full (IQ Full) events compared to other ISAs for each interval of instructions. Moreover, this

behavior is not observed in IO cores like Atom as shown in Figure 4.11. Although there are

few occasional spikes but largely the number of cycles taken by all ISAs for each interval

overlap.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 50000000 100000000 150000000 200000000 250000000

C
yc
le
s

Instructions

ARM x86 Alpha

starting point of phase where
ISAs behave differently

Figure 4.10: Cycles over windows of 50k insts. for qsort on Haswell core

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

0 50000000 100000000 150000000 200000000 250000000

C
yc
le
s

Instructions

ARM x86 Alpha

starting point of phase where ISAs
behave differently for Haswell

Figure 4.11: Cycles over windows of 50k insts. for qsort on Atom core

string search:

This benchmark searches for given words in phrases using a comparison algorithm. x86 takes

the most number of cycles to execute this benchmark, but the total number of instructions for

this benchmark is pretty low (less than 5 million x86 instructions).

33

SPEC-CPU2006 INTEGER BENCHMARKS

bzip2:

Listing 4.4: Example from mainGtU function
Used Index Variables:

UInt32 i1, UInt32 i2 / /32− b i t u n s i g n e d

C Code:

c1 = b l o c k [i 1] ; c2 = b l o c k [i 2] ;
i f (c1 != c2) r e t u r n (c1 > c2) ;

x86:

l e a 0x1(% r12) ,% eax
l e a 0x1(% rbp) ,% edx
movzbl (%rbx ,% rax ,1) ,% eax
cmp %al ,(% rbx ,% rdx , 1)
j n e 402987 <mainGtU+0x37>

ARM:

add w6 , w19 , #0 x1
add w0 , w1 , #0 x1
l d r b w6 , [x2 , x6]
l d r b w0 , [x2 , x0]
cmp w6 , w0
b . ne 4029 a0 <mainGtU+0x50>

Alpha:

z a p n o t a0 , 0 xf , t 0 // extra inst. to clear upper 32 bits
z a p n o t a1 , 0 xf , t 1 // extra inst. to clear upper 32 bits
addq s2 , t0 , t 0
addq s2 , t1 , t 1
ldbu t3 , 0 (t 0)
l dbu t2 , 0 (t 1)
cmpeq t3 , t2 , t 0
cmpul t t2 , t3 , v0
beq t0 ,120001 b28 <mainGtU+0x78>

bzip2 is a SPEC-CPU2006 integer benchmark, which performs compression and decompres-

sion of an input file [90]. While Alpha takes the most number of cycles on Haswell-like

microarchitecture and less on the other out-of-order cores on average, this behavior is not true

34

for all simpoint intervals. For example, in one of the simpoint intervals (interval 3) Alpha al-

ways performs worse on all OoO cores. There are two important functions in this benchmark;

mainGtU and mainSort. They both use unsigned 32-bit integers to access arrays. In case of

Alpha, extra instructions are required to clear the upper 32 bits of the index variables as pointed

out in Listing 4.4. This interval, in which Alpha performs the worst, uses these functions fre-

quently. ARMv8 and x86-64 have addressing modes that can only read/write parts of a 64-bit

register. So they do not need any clear operations. The same behavior was also observed by

Celio et al. in [54]. Another interesting thing to observe is the behavior of x86 within the

simpoint interval number 2. As shown in Figure 4.12, in the circled phase x86 takes a higher

number of cycles compared to other ISAs. The observed reasons are higher number of µ-ops

per instruction and memory accesses for this phase for x86. Similar behavior is observed in

simpoint interval 5 as well.

0

20000

40000

60000

80000

100000

120000

140000

0 100000000 200000000 300000000 400000000 500000000 600000000

C
yc
le
s

Instructions

ARM x86 Alpha

Sub-phase where x86
behaves differently

Figure 4.12: Cycles over windows of 50k insts. for bzip2 simpoint 2 on Haswell core

gobmk:

This program analyzes different moves on a Go board. In case of gobmk, x86 suffers from

high number of branch mispredictions in all out-of-order cores and thus takes a higher number

of cycles in comparison to the other ISAs. One of the possible reasons for higher number of

branch mispredictions is higher number of branch operations for x86 in comparison to other

ISAs, as shown in Figure 5. It should also be noted that the fraction of branch operations out

of the total operations is very high for this benchmark (more than 20%). Interestingly Alpha

and x86 take the same number of cycles on one of the 5 studied simpoints, even in case of

out-of-order cores. On this particular simpoint Alpha takes almost 12% more dynamic µ-ops

35

than x86.

omnetpp:

This benchmark simulates a large Ethernet network. Although it is an integer benchmark,

it includes many floating-point operations. Alpha takes the most number of cycles for all

simpoints. Alpha suffers from much higher number of memory order violations in case of out

of order cores, resulting into more dcache accesses. One interesting thing to observe is the

behavior of Alpha during one of the 5 simpoint inervals. As shown in Figure 4.13, there are

clearly two phases of execution within this simpoint. Alpha performs similar to other ISAs on

Phase 2, but takes a higher number of cycles on Phase 1 because of the increased number of

memory accesses in case of Alpha compared to the other ISAs.

0

100000

200000

300000

400000

500000

600000

0 50000000 100000000 150000000 200000000 250000000

C
yc
le
s

Instructions

ARM x86 Alpha

Phase 2

Phase 1

Figure 4.13: Cycles over windows of 50k insts. for omnetpp simpoint 2 on Haswell core

perlbench:

This is a benchmark for Perl language, where most of the OS-specific features are removed.

Like dijkstra, perlbench is another benchmark where Alpha suffers from high register pressure.

perlbench has a significant number of stack operations in the generated code for all ISAs.

However, Alpha has significantly larger number of stack operations compared to the other

ISAs. For example, in one of the most used functions of this benchmark S regmatch, Alpha

has approximately 39% more stack operations than the other ISAs. This results into lower

performance of Alpha on all simpoints compared to the other ISAs.

36

hmmer:

This program benchmarks searching operations in a gene sequence database. In case of hmmer,

x86 takes the minimum number of cycles on Haswell-like core, but fails to do so on other out-

of-order cores. This benchmark has a high number of ARM and Alpha µ-ops compared to

x86. An important function in the benchmark P7Viterbi (where program spends most of the

time) contains many ‘if’ statements around store operations. An example of such statements

with corresponding assembly instructions for all ISAs is shown in Listing 4.5.

Listing 4.5: Example from P7Viterbi function
C Code:

i f ((s c = i p [k−1] + tp im [k−1]) > mc [k])
mc [k] = sc ;

x86:

mov (%r8 ,% rax ,4) ,% r15d //complex addressing mode
add 0x0(%r13 ,% rax ,4) ,% r15d //complex addressing mode
cmp %ecx ,% r15d
cmovge %r15d ,% ecx
mov %ecx , 0 x4(% rdx)

ARM:

add x5 , x5 , #0 x4
l d r w11 , [x1 , x5]
l d r w4 , [x26 , x5]
add w11 , w11 , w4
cmp w11 , w12
c s e l w11 , w11 , w12 , ge
s t r w11 , [x6 , # 4]

Alpha:

l d q t3 , 1 6 0 (sp)
addq t3 , t9 , t 2
l d l t1 , 0 (t 2)
l d l t0 , 0 (a5)
a d d l t1 , t0 , t 1
cmple t1 , t3 , t 2
cmovne t2 , t3 , t 1
s t l t1 , 4 (t 1 0)

As can be seen in Listing 4.5, x86 makes use of complex addressing modes resulting in

37

a lower number of instructions (and also µ-ops) compared to the other ISAs. Even though

x86 has a lower number of total µ-ops, on less aggressive out-of-order cores there is more

congestion for x86 in the instruction queue resulting into lower performance on A15-like and

Alpha-21264-like cores.

libquantum:

libquantum is a benchmark for the simulation of a quantum computer. Figure 4.14 shows the

behavior of ISAs on one of the simpoints of libquantum for Haswell core. There are two main

phases in this simpoint, which are circled in Figure 4.14. While on phase 1 all ISAs show

similar behavior, on phase 2 the behavior of ISAs is very different from each other. In case

of IO cores like Atom, as shown in Figure 4.15, on phase 2 ARM and Alpha show similar

behavior but, x86 takes much more number of cycles as compared to them.

40000

60000

80000

100000

120000

140000

0 50000000 100000000 150000000 200000000 250000000

C
yc
le
s

Instructions

ARM x86 Alpha

Phase 2Phase 1

Figure 4.14: Cycles over windows of 50k instsructions for libquantum on Haswell core

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 50000000 100000000 150000000 200000000 250000000

C
yc
le
s

Instructions

ARM x86 Alpha

Phase 2Phase 1

Figure 4.15: Cycles over windows of 50k instructions for libquantum on Atom core

38

During phase 2 in Figure 4.14, a function quantum sigma x executes and runs a loop re-
peatedly. In this loop x86 has one more uop compared to ARM as shown in Listing 4.6. This
could result in a higher number of cycles per window of instructions for x86.

Listing 4.6: Example from quantum sigma x function
C/C++ Code:

f o r (i =0 ; i<reg−>s i z e ; i ++)
{

/∗ F l i p t h e t a r g e t b i t o f each b a s i s s t a t e ∗ /
reg−>node [i] . s t a t e ˆ= ((MAX UNSIGNED) 1 << t a r g e t) ;
}

x86:

mov %rdx ,% r c x
add 0x10(% rbx) ,% r c x // inst. will be decoded into 2 µ-ops
add $0x1 ,% eax
add $0 x10 ,% rdx
xor %r8 , 0 x8(% r c x) // r8 = 1 << target, inst. will be decoded into 3 µ-ops
cmp %eax , 0 x4(% rbx) // inst. will be decoded into 2 µ-ops
j g 401 ee0 <quan tum s igma x +0x60>

ARM:

l d r x4 , [x19 , # 1 6]
add w3 , w3 , #0 x1
add x4 , x4 , x2
l d r x5 , [x4 , # 8]
add x2 , x2 , #0 x10
e o r x5 , x5 , x0 // x0 = 1 << target
s t r x5 , [x4 , # 8]
l d r w4 , [x19 , # 4]
cmp w4 , w3
b . g t 401 bdc <quan tum s igma x +0 x6c>

Alpha:

l d q t0 , 1 6 (s0)
a d d l t4 , 0 x1 , t 4
addq t0 , t3 , t 0
l d a t3 , 1 6 (t 3) // not a memory reference
l d q t1 , 8 (t 0)
xor t1 , a0 , t 1 // a0 = 1 << target
s t q t1 , 8 (t 0)
l d l t2 , 4 (s0)
cmple t2 , t4 , t 2
beq t2 ,120001600 <quan tum s igma x +0x80>

39

mcf:

mcf is a memory intensive benchmark and Alpha takes a larger number of cycles to execute

this benchmark. It has approximately 40% more instruction queue full events and 28% more

ROB full events compared to ARM on Haswell-like core. An example of extra dependency

in primal bea mpp function function (the most critical function) in case of Alpha is shown in

Listing 4.7. x86 makes use of complex addressing modes and results into one less instruction

compared to the other ISAs. Alpha also suffers from higher register pressure as it has a higher

number of loads and stores as shown in Figure 4.5 compared to the other ISAs for this bench-

mark. An example of higher register pressure is observed at the end point of primal iminus

function (the second most called function), where Alpha restores (or loads) double the number

of callee-saved registers as compared to the other ISAs.

Listing 4.7: Example from primal bea mpp function
C Code:
perm [n e x t]−>a = a r c ;

x86:

mov 0 x6b4d60 (,% r10 ,8) ,% r s i
mov %rax ,(% r s i)

Alpha:

s8addq t8 , s1 , t 2
l d q t0 , 0 (t 2)
s t q t5 , 0 (t 0)

ARM:

l s l x5 , x10 , #3
l d r x9 , [x7 , x5]
s t r x0 , [x9]

40

sjeng:

sjeng is an AI related benchmark. All ISAs perform similar for this benchmark.

SPEC-CPU2006 FLOATING POINT BENCHMARKS

lbm:

This program uses “Lattice Boltzman Method” to simulate fluids. lbm is another memory in-

tensive benchmark like mcf. For lbm, x86 takes a larger number of cycles compared to the other

ISAs. ARM and Alpha have significantly lower number of µ-ops than x86. Listing 4.8 shows

an example from the most critical function of the benchmark, LBM performStreamCollide.

Since there are several additions performed with many intermediate sums, this piece of code

needs several registers, x86 spills some registers (temporary loaded values) onto stack and later

use them for addition. This finding is similar to what Venkat et al. found in [20]. Although

x86 takes on average a high number of cycles compared to the other ISAs, on one of the 5

studied simpoints (simpoint 3) all ISAs take almost the same number of cycles. x86 has higher

number of rename registers full events on all simpoints, except simpoint 3, compared to the

other ISAs.

41

Listing 4.8: Example from LBM performStreamCollide
C/C++ Code:

rho = + SRC C (s r c G r i d) + SRC N (s r c G r i d)
+ SRC S (s r c G r i d) + SRC E (s r c G r i d)
+ // this continues

// a total of 19 additions are performed

x86:

movsd (% r d i) ,%xmm7
and $0x2 ,% edx
movsd 0x8(% r d i) ,%xmm13
movapd %xmm7,%xmm0 // final sum in xmm0
movsd %xmm7, 0 x20(% r s p)
movsd 0x10(% r d i) ,%xmm7 // xmm7 loaded
addsd %xmm13,%xmm0
movsd 0x18(% r d i) ,%xmm15
movsd %xmm7,(% r s p) // xmm7 pushed to stack
movsd 0x20(% r d i) ,%xmm4
movsd 0x28(% r d i) ,%xmm3
addsd (% r s p) ,%xmm0 // xmm7 on stack + xmm0
movsd %xmm4, 0 x8(% r s p)
....... // same pattern follows

ARM:

l d r d10 , [x0]
l d r d23 , [x0 , # 8]
l d r d22 , [x0 , # 1 6]
l d r d25 , [x0 , # 2 4]
f add d9 , d10 , d23 // final sum in d9
l d r d24 , [x0 , # 3 2]
f add d9 , d9 , d22
....... // same pattern follows; no stack additions

Alpha:

l d t $ f10 , 0 (s1)
s t t $ f10 , 1 6 8 (sp)
l d t $ f15 , 8 (s1)
l d t $ f11 , 1 6 (s1)
l d t $ f13 , 2 4 (s1)
l d t $ f12 , 3 2 (s1)
l d t $ f20 , 4 0 (s1)
l d t $ f14 , 4 8 (s1)
l d t $ f22 , 5 6 (s1)
l d t $ f23 , 6 4 (s1)
a d d t $ f10 , $ f15 , $ f10 // final sum in f10
....... // same pattern follows; no stack additions

42

milc:
milc focuses on simulations of four dimensional lattice gauge theory. x86 takes the most

number of cycles on all configurations. An example of why it might have led to more µ-ops

on x86 as compared to the other ISAs is shown in Listing 4.9.

Listing 4.9: Example from mult su3 na function
C/C++ Code:

a r =a−>e [i] [0] . r e a l ; a i =a−>e [i] [0] . imag ;
b r =b−>e [j] [0] . r e a l ; b i =b−>e [j] [0] . imag ;
c r = a r ∗ br ; t = a i ∗ b i ; c r += t ;
c i = a i ∗ br ; t = a r ∗ b i ; c i −= t ;

x86:

movsd (% r d i) ,%xmm3 //‘ar’ in xmm3
movsd 0x8(% r d i) ,%xmm4 //‘ai’ in xmm4
movsd (% rbx) ,%xmm0
add $0 x30 ,% r d i
movsd 0x8(% rbx) ,%xmm2
movapd %xmm3,%xmm1 //‘ar’ copied to xmm3
movapd %xmm4,%xmm5 //‘ai’ copied to xmm5
mulsd %xmm0,%xmm1
mulsd %xmm2,%xmm5
mulsd %xmm4,%xmm0
mulsd %xmm3,%xmm2

ARM:

l d r d3 , [x0]
l d r d2 , [x0 , # 8]
l d r d5 , [x1 , # 8]
l d r d0 , [x1]
fmul d16 , d2 , d5
fmul d7 , d3 , d5
fmadd d16 , d3 , d0 , d16
fnmsub d7 , d2 , d0 , d7

Alpha:

l d t $ f12 , 0 (s0)
l d t $ f13 , 8 (s0)
l d t $ f26 , 0 (s2)
l d t $ f27 , 8 (s2)
mul t $ f12 , $ f27 , $ f11
mul t $ f13 , $ f26 , $ f10
mul t $ f12 , $ f26 , $ f12
mul t $ f13 , $ f27 , $ f13

43

This Listing shows the code from the most critical function, mult su3 na, of the bench-

mark. One of the main sources of extra instructions and more dependent operations is two

copying operations, which are pointed out in Listing 4.9. The registers containing values of

ai and ar will not retain their values after performing multiplication in the 3rd line of C/C++

code, so these are copied to two other registers to use these values to perform multiplication

operations shown in the 4th line of C/C++ code. While on average Alpha is doing better than

x86 this is not true for all simpoints. One out of the 5 studied simpoints is shown in Fig-

ure 4.16. There are two main phases in this simpoint as shown in the figure. x86 and Alpha

alternate their behavior in those phases. During phase 1 x86 has the highest number of mem-

ory reads per window of instructions, while during phase 2 Alpha has the highest number of

memory reads per window of instructions.

0

100000

200000

300000

400000

500000

600000

0 50000000 100000000 150000000 200000000 250000000

C
yc
le
s

Instructions

ARM x86 Alpha

28300000

Change of
behavior of ISAs
across phases

Figure 4.16: Cycles over windows of 50k instructions for a simpoint of milc

namd:

On namd, x86 takes much higher number of µ-ops than the other ISAs, which causes x86 to

take the most number of cycles to execute this benchmark on all cores. Generally, in floating-

point benchmarks, x86 leads to high number of µ-ops which hurts its performance in compar-

ison to the other ISAs. Listing 2.1 in Appendix B shows an example code for namd. As shown

in Listing 2.1 x86 has clearly less number of independent operations in this piece of code com-

44

pared to other ISAs, which shows an example of low performance for x86. It should be noted

that the independent operations, in this example, refer to operations that are not dependent on

any other operations within the shown code sequence.

povray:

povray is a ray tracing benchmark that performs rendering on reference input images. On

average for this benchmark, ARM always takes the least number of cycles. Alpha takes the

most number of cycles on most of the configurations except A15 and 21264.

sphinx:

This is a speech recognition benchmark. Like most of the other floating-point benchmarks, x86

takes the most number of cycles on most of the cores. For OoO cores, there are much more

physical register full-events for x86 compared to the other ISAs. A code example is shown in

Listing 4.10. x86 uses two operations unpcklps and cvtps2pd to convert single precision values

to double precision values in this code example. As a result there is an extra operation in this

piece of code for x86 compared to the other ISAs.

Figure A.1 to A.21 in Appendix A show generated kiviat plots for all benchmarks. Each

axis in these kiviat plots represent performance of each ISA normalized to x86 for each mi-

croarchitecture. ISA with the lowest area of the resulting hexagon will be the one performing

best for all microarchitecutres on average.

45

Listing 4.10: Example from mgau eval function
C/C++ Code:

d i f f 1 = x [i] − m1[i] ;
d v a l 1 −= d i f f 1 ∗ d i f f 1 ∗ v1 [i] ;

x86:

movss 0x0(%rbp ,% rdx ,4) ,%xmm0
movss (% r s i ,% rdx ,4) ,%xmm2
s u b s s (%rcx ,% rdx ,4) ,%xmm0
add $0x1 ,% rdx
c v t p s 2 p d %xmm2,%xmm2
cmp %edx ,% ebx
u n p c k l p s %xmm0,%xmm0 // 1st op. of single to double precision conversion
c v t p s 2 p d %xmm0,%xmm0 // 2nd op. of single to double precision conversion
mulsd %xmm0,%xmm0
mulsd %xmm2,%xmm0
subsd %xmm0,%xmm1

ARM:

l d r s3 , [x19 , x1]
l d r s1 , [x2 , x1]
l d r s4 , [x3 , x1]
f s u b s1 , s3 , s1
f c v t d1 , s1
add x1 , x1 , #0 x4
fmul d1 , d1 , d1
f c v t d3 , s4
cmp x1 , x20
fmsub d2 , d1 , d3 , d2

Alpha:

l d s $ f10 , 0 (t 0)
l d s $ f11 , 0 (t 1)
l d s $ f12 , 0 (t 2)
subs $ f10 , $ f11 , $ f10
fmov $ f10 , $ f10
mul t $ f10 , $ f10 , $ f10
mul t $ f10 , $ f12 , $ f10
s u b t $ f13 , $ f10 , $ f13

46

4.3 Other Microarchitecture Dependent Statistics

This section examines other microarchitecture dependent statistics like branch mispredictions

and cache misses across ISAs for all benchmarks. Figures 4.17 and 4.18 show instruction

cache misses for ARM and Alpha relative to x86 for OoO and IO cores respectively. On

average ARM has the lowest instruction cache misses and there are observed differences across

ISAs. However, instruction cache misses are very low in number for most of the benchmarks

on these studied cores. It can be concluded that the sizes of used L1 instruction caches are

enough to mitigate any ISA bottlenecks related to code size.

0

0.5

1

1.5

2

2.5

3

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

I-
$

 m
is

se
s

re
la

ti
ve

 t
o

 x
8

6
 Arm_Haswell Alpha_Haswell Arm_A15 Alpha_A15 Arm_21264 Alpha_21264

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

6.7132 5.6 19

Figure 4.17: I-Cache Misses relative to x86 for OoO Cores relative

0

0.5

1

1.5

2

2.5

3

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

I-
$

 m
is

se
s

re
la

ti
ve

 t
o

 x
8

6

Arm_Atom Alpha_Atom Arm_A8 Alpha_A8 Arm_21164 Alpha_21164

INT-SPEC CPU2006 FP-SPEC CPU2006

4.8 42 7 4.3 10

EMBEDDED

Figure 4.18: I-Cache Misses relative to x86 for IO Cores

Figures 4.19 and 4.20 show L1-data cache misses for ARM and Alpha relative to x86 for

OoO and IO cores respectively. As shown in Figure 4.20, in case of IO cores the number of

L1-data cache misses resemble across ISAs. However, in case of OoO cores the number of L1-

data cache misses can differ considerably across ISAs as shown in Figure 4.19. One possible

47

explanation for this behavior is because the timing of cache accesses for OoO cores do not

match for all ISAs. This is based on the dependencies in the dynamic instruction sequence for

that ISA, which can lead to a different number of L1 data cache misses.

0

0.5

1

1.5

2

2.5

3

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.L1
-D

 $
 m

is
se

s
re

la
ti

ve
 t

o
 x

8
6

 Arm_Haswell Alpha_Haswell Arm_A15 Alpha_A15 Arm_21264 Alpha_21264

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

Figure 4.19: Normalized L1-d cache misses for OoO cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

L1
-D

 $
 m

is
se

s
re

la
ti

ve
 t

o
 x

8
6

 Arm_Atom Alpha_Atom Arm_A8 Alpha_A8 Arm_21164 Alpha_21164

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

2.1

Figure 4.20: Normalized L1-d cache misses for IO cores

Figures 4.21 and 4.22 show last level cache (L3 for Haswell and Alpha-21164 and L2 for

other cores) misses for ARM and Alpha relative to x86 for OoO and IO cores respectively. As

shown in these figures the number of last-level cache misses are very close across ISAs for

both OoO and IO cores respectively.

48

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijs

kt
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

LL
C

-M
is

se
s

re
la

ti
ve

 t
o

 x
8

6
 Arm_Haswell Alpha_Haswell Arm_A15 Alpha_A15 Arm_21264 Alpha_21264

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

Figure 4.21: Normalized LLC cache misses for OoO cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijs

kt
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

LL
C

-M
is

se
s

re
la

ti
ve

 t
o

 x
8

6

Arm_Atom Alpha_Atom Arm_A8 Alpha_A8 Arm_21164 Alpha_21164

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

3.3

Figure 4.22: Normalized LLC cache misses for IO cores

Figures 4.23 and 4.24 show branch predictor misses for ARM and Alpha relative to x86

for OoO and IO cores respectively. For most of the benchmarks, the number of branch mis-

predictions are very close across ISAs for both OoO and IO cores. There are few exceptions

as well like gobmk, qsort and povray. Having high number of branch operations and differing

in exact number of branch operations across ISAs (Figure 4.5) could explain this behavior for

the aforementioned benchmarks.

49

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

B
ra

an
ch

 M
is

p
re

d
ic

ti
o

n
s

 r
e

la
ti

ve
 t

o
 x

8
6

Arm_Haswell Alpha_Haswell Arm_A15 Alpha_A15 Arm_21264 Alpha_21264

INT-SPEC CPU2006 FP-SPEC CPU2006EMBEDDED

31 6

Figure 4.23: Branch predictor misses relative to x86 for OoO cores

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

B
ra

n
ch

 m
is

p
re

d
ic

ti
o

n
s

re
la

ti
ve

 t
o

 x
8

6
 Arm_Atom Alpha_Atom Arm_A8 Alpha_A8 Arm_21164 Alpha_21164

EMBEDDED INT-SPEC CPU2006 FP-SPEC CPU2006

126 22

Figure 4.24: Branch predictor misses relative to x86 for IO cores

4.4 Performance Analysis Across Microarchitectures

This section analyzes the differences in performance across microarchitectures rather than

ISAs. Figures 4.25, 4.26 and 4.27 show time taken to execute each benchmark on any mi-

croarchitecture and ISA combination relative to ARM Haswell (combination of ARM ISA

and Haswell microarchitecture) for embedded, SPEC-CPU2006 integer and floating point

benchmarks respectively. As shown from these figures, the effect of significant changes in

microarchitecture on perfromance is bigger than the effect of change of an ISA on a particular

microarchitecture (Figure 4.1 and 4.2). For example, going from Haswell-like core to A15-like

core affected performance more than an ISA change affected on each of the two cores.

50

0
2
4
6
8

10
12
14
16
18
20

basic_math bitcnts dijkstra jpeg qsort string_search typeset Avg.

N
o

rm
al

iz
e

d
 T

im
e

Haswell_Arm Haswell_x86 Haswell_Alpha A15_Arm A15_x86 A15_Alpha
21264_Arm 21264_x86 21264_Alpha Atom_Arm Atom_x86 Atom_Alpha
A8_Arm A8_x86 A8_Alpha 21164_Arm 21164_x86 21164_Alpha

H
as

w
e

ll

A
1

5

A
to

m

A
8

2
1

1
6

4

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

A
1

5

A
1

5

A
1

5

A
1

5

A
1

5

A
1

5

A
1

5

A
to

m

A
to

m

A
to

m

A
to

m

A
to

m

A
to

m

A
to

m

A
8

A
8

A
8

A
8

A
8

A
8

A
8

2
1

1
6

4

2
1

1
6

4

2
1

1
6

4

2
1

1
6

4

2
1

1
6

4

2
1

1
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

2
12

6
4

21
26

4

2
1

2
6

4

Figure 4.25: Execution time relative to ARM Haswell for embedded benchmarks

0

2

4

6

8

10

12

14

16

18

20

bzip_chicken gobmk omnetpp perlbench hmmer libquantum mcf_in sjeng_ref Avg.

N
o

rm
al

iz
e

d
 T

im
e

Haswell_Arm Haswell_x86 Haswell_Alpha A15_Arm A15_x86 A15_Alpha

21264_Arm 21264_x86 21264_Alpha Atom_Arm Atom_x86 Atom_Alpha

A8_Arm A8_x86 A8_Alpha 21164_Arm 21164_x86 21164_Alpha

H
as

w
e

ll

A
1

5

2
1

1
6

4

H
as

w
e

ll

2
1

1
6

4

A
1

5

2
1

1
6

4

A
1

5

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

A
1

5

A
1

5

A
1

5

A
1

5

A
1

5

A
1

5

2
1

1
6

4

2
1

1
6

4

2
1

1
6

4

2
1

1
6

4

2
1

1
6

4

2
1

1
6

4

2
1

2
6

4
A

to
m

A
8

2
1

2
6

4
A

to
m

A
8

A
8

A
to

m

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

A
to

m

A
to

m

A
to

m

A
to

m

A
to

m

A
to

m

A
8

A
8

A
8

A
8

A
8

A
8

Figure 4.26: Execution time relative to ARM Haswell for integer benchmarks

0

2

4

6

8

10

12

14

16

18

20

lbm milc namd povray soplex sphinx Avg.

N
o

rm
al

iz
e

d
 T

im
e

Haswell_Arm Haswell_x86 Haswell_Alpha A15_Arm A15_x86 A15_Alpha
21264_Arm 21264_x86 21264_Alpha Atom_Arm Atom_x86 Atom_Alpha
A8_Arm A8_x86 A8_Alpha 21164_Arm 21164_x86 21164_Alpha

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

H
as

w
e

ll

A
1

5

A
1

5

A
1

5

A
1

5

A
1

5

A
1

5

A
1

5

A
to

m

A
to

m

A
to

m

A
to

m

A
to

m

A
to

m

A
to

m

A
8

A
8

A
8

A
8

A
8

A
8

A
8

2
1

1
6

4

21
16

4

2
1

1
6

4

2
1

1
6

4

21
16

4

2
1

1
6

4

2
1

1
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

2
1

2
6

4

21
26

4

2
1

2
6

4

2
1

2
6

4

Figure 4.27: Execution time relative to ARM Haswell for floating point benchmarks

4.5 Microarchitectural Optimizations for x86

Modern x86 microarchitectures like Intel Haswell employ many microarchitecture optimiza-

tions to improve performance, such as µ-op fusion. In this section, we study the impact of

51

two optimizations on OoO cores used in this work. We examined the effect of µ-op fusion

and µ-op cache on performance of OoO cores and compared improved x86 performance with

other ISAs.

µ-op fusion refers to the technique of generating a fused combination of µ-ops by the

decoder stage in modern Intel pipelines. The fused µ-op occupies a single entry in reorder

buffer and reservation stations. The operations in a fused µ-op are issued separately when they

are ready to execute. To implement µ-op fusion in the simulator we performed an optimistic

approximation. As shown in [36], the number of fusible operations range from 6% to 29%

in SPEC-CPU2006 benchmarks. Thus, the maximum number of µ-ops that can be fused is

29%. Keeping this in mind, the maximum possible benefit from µ-op fusion can be observed

by scaling up the sizes of pipeline structures (like ROB and reservation stations) and stages

(rename, decode, dispatch) that deal with fused µ-ops by 14.5%. Thus, we scaled up their

sizes by 14.5% to examine the benefit of µ-op fusion.

Contemporary Intel cores also use a µ-op cache, which caches µ-ops when instructions

are decoded into µ-ops at decode stage. When new instructions have to be fetched from

Instruction cache, the µ-op cache is also checked in parallel. In case of a µ-op cache hit, µ-

ops are directly used from the µ-op cache. We added a µ-op cache in the simulator following

the design discussed in [91]. The implemented cache is capable of holding 1.5K µ-ops and it

is an 8-way associative cache. Figure 4.28 shows the percentage improvement in performance

seen for each benchmark using both µ-op fusion and µ-op cache together for x86. The average

improvement is up to 3% (only exception is A15 for embedded benchmarks).

0

0.5

1

1.5

2

2.5

3

3.5

b
as

ic
_

m
at

h

b
it

cn
ts

d
ijk

st
ra

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

A
vg

.

b
zi

p
_

ch
ic

ke
n

go
b

m
k

o
m

n
e

tp
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_
in

sj
e

n
g_

re
f

A
vg

.

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.

%
ag

e
 Im

p
ro

ve
m

e
n

t
in

 P
e

rf
o

rm
an

ce

Haswell A15 21264

INT-SPEC CPU2006 FP-SPEC CPU2006EMBEDDED

Figure 4.28: Percentage improvement for x86 using µ-op fusion and µ-op cache

52

Figure 4.29 shows cycle counts for ARM and Alpha relative to x86 with the implemented

microarchitecure optimizations for OoO cores. Because of the small percentage improvement

in performance the total execution time is not affected much by these optimizations and the

figure is similar to Figure 4.1 (cycle counts relative to normal x86 cores).

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

b
as

ic
_m

at
h

b
it

cn
ts

d
ij

ks
tr

a

jp
e

g

q
so

rt

st
ri

n
g_

se
ar

ch

ty
p

e
se

t

A
vg

.

b
zi

p
_c

h
ic

ke
n

go
b

m
k

o
m

n
et

p
p

p
e

rl
b

e
n

ch

h
m

m
e

r

lib
q

u
an

tu
m

m
cf

_i
n

sj
e

n
g_

re
f

A
vg

.

A
vg

_n
o

_
m

cf

lb
m

m
ilc

n
am

d

p
o

vr
ay

so
p

le
x

sp
h

in
x

A
vg

.C
yc

le
 c

o
u

n
ts

 r
e

la
ti

ve
 t

o
 x

8
6

Arm_Haswell Alpha_Haswell Arm_A15 Alpha_A15 Arm_21264 Alpha_21264

INT-SPEC CPU2006EMBEDDED FP-SPEC CPU2006

Figure 4.29: Cycles relative to x86 (with µ-architecture optimizations) for OoO Cores

4.6 Summary of the Findings

This section discusses a summary of the findings based on the aformentioned examples and

results.

1. On average, ARMv8 outperforms other ISAs on similar microarchitectures, as it offers

better instruction-level parallelism and has lower number of dynamic µ-ops compared

to the other ISAs in most of the cases.

2. The average behavior of ISAs can be very different from their behavior for a particular

phase of execution, which agrees with Venkat and Tullsen’s findings [20].

3. The performance differences across ISAs are significantly reduced in in-order cores

compared to out-of-order cores.

4. On average, x86 has the highest number of dynamic µ-ops. This agrees with previous

findings when compared to Alpha [20]. There are few examples where Alpha exceeds

53

x86 in the number of µ-ops, but ARMv8 always has lower or equal number of µ-ops

when compared to x86.

5. x86 seems to have over-serialized code due to ISA limitations, such as use of implicit

operands and overlap of one of the source and destination registers as observed by

[21]. x86 has the highest average degree of use of registers (the average number of

instructions, which consume the value generated by a particular instruction).

6. The total number of L1-instruction cache misses is very low across all ISAs for the stud-

ied cores. This infers that the sizes of L1 instruction caches that are used are sufficient

to eliminate any ISA bottlenecks related to code size for the studied benchmarks.

7. Based on our results, the number of L1-data cache misses are similar across all ISAs

in case of in-order cores, but the numbers can vary significantly in case of out-of-order

cores.

8. On average, the number of branch mispredictions are very close across ISAs for all cores

with few exceptions such as gobmk, qsort and povray.

9. µ-ops to instructions ratio on x86 is usually less than 1.3, as observed by Blem et al [40].

However, the overall instructions count and mixes are ISA-dependent, which contradicts

Blem et al’s [40] conclusion that instruction counts do not depend on ISAs.

10. Significant microarchitectural changes affect performance more than an ISA change

does on a particular microarchitecture.

11. According to Blem et al’s study [40], performance differences on studied platforms are

mainly because of microarchitectures. We see performance differences on exactly simi-

lar microarchitectures; which means ISAs are responsible for those performance differ-

ences. Moreover, since performance differences across ISAs are different for different

microarchitectures, we can conclude that the behavior of ISA depends on microarchi-

tecture as well but they certainly have a particular role in performance.

54

Chapter 5

Conclusion and Future Work

Modern developments in ISAs and their implementations, in addition to the conflicting claims

regarding the role of ISAs in performance of a processor, demand for a review of this his-

torical debate. This thesis studies and analyzes the effect of three ISAs on performance of

many benchmarks using six microarchitectures. The adopted methodology ensures that the

non-ISA factors are kept constant across ISAs for all experiments. This work relates the ob-

served performance differences across ISAs to the benchmarks’ assembly code for each ISA.

Specific examples of such code blocks are shown to explain the noticed differences. We also

relate our findings to the related work found in literature that studied impact of ISAs on per-

formance. Our results indicate that ISAs can affect performance, and that the amount of effect

differs based on the microarchitecture. Moreover, programs often exhibit phases of execution,

which can be more affine to one ISA than the other. We also observed that the difference

in performance among the studied ISAs is insignificant for in-order (IO) cores, compared to

out-of-order (OoO) cores.

One future direction for this work is to explore the impact of ISAs on diverse types of

workloads such as workloads related to server and cloud computing, artificial intelligence,

cryptography, multimedia and ultra-low power systems. It will be interesting to see if some

ISAs are more suitable for a particular category of workloads. Moreover, more diverse ISAs

can be selected to examine the maximum possible performance differences across ISAs. Since,

low power consumption has become a stringent need of modern microprocessors, it is impor-

tant to study the impact of ISAs on power consumption given a particular microarchitecture.

Differences across ISAs in terms of performance and power consumption (possibly for specific

55

types of workloads) can then be exploited to design heterogeneous ISA multicore systems.

Other interesting thing to look at is the possibility of building some models to predict the

effect of ISAs on certain applications. These models can be built using machine learning or

fuzzy reasoning based techniques. Such models can be used not only to improve ISAs, but

also to help scheduling of applications across different cores in heterogeneous ISA multi-core

systems.

56

Appendix A

Kiviat Plots for All Benchmarks

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

basic_math

Arm x86 Alpha

bitcntsFigure A.1: kiviat plot for basic math

Atom

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

bitcnts

Arm x86 Alpha

Figure A.2: kiviat plot for bitcnt

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

dijkstra

Arm x86 Alpha

Figure A.3: kiviat plot for dijkstra

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

jpeg

Arm x86 Alpha

Figure A.4: kiviat plot for jpeg

57

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

qsort

Arm x86 Alpha

Figure A.5: kiviat plot for qsort

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

string_search

Arm x86 Alpha

Figure A.6: kiviat plot for string search

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

typeset

Arm x86 Alpha

Figure A.7: kiviat plot for typeset

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

bzip_chicken

Arm x86 Alpha

Figure A.8: kiviat plot for bzip chicken

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

gobmk

Arm x86 Alpha

Figure A.9: kiviat plot for gobmk

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

omnetpp

Arm x86 Alpha

Figure A.10: kiviat plot for omnetpp

58

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

perlbench

Arm x86 Alpha

Figure A.11: kiviat plot for perlbench

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

hmmer

Arm x86 Alpha

Figure A.12: kiviat plot for hmmer

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

libquantum

Arm x86 Alpha

Figure A.13: kiviat plot for libquantum

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

mcf_in

Arm x86 Alpha

Figure A.14: kiviat plot for mcf in

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

sjeng_ref

Arm x86 Alpha

Figure A.15: kiviat plot for sjeng ref

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

lbm

Arm x86 Alpha

Figure A.16: kiviat plot for lbm

59

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

milc

Arm x86 Alpha

Figure A.17: kiviat plot for milc

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

namd

Arm x86 Alpha

Figure A.18: kiviat plot for namd

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

povray

Arm x86 Alpha

Figure A.19: kiviat plot for povray

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

soplex

Arm x86 Alpha

Figure A.20: kiviat plot for soplex

60

0

0.5

1

1.5

2
Haswell

A15

21264

Atom

A8

21164

sphinx

Arm x86 Alpha

Figure A.21: kiviat plot for sphinx

61

Appendix B

Example Code Blocks

Listing 2.1: Example from create function
C/C++ Code:

V ec to r s h i f t = (i %3−1) ∗ a1 + ((i /3)%3−1) ∗ a2 + (i /9−1) ∗ a3 ;
f o r (i n t j = 0 ; j < n ; ++ j) {

d t [j] = d [j] ;
d t [j] . p o s i t i o n += s h i f t ;
}

x86:

mov %r12d ,% eax // independent operation
mov $0 x38e38e39 ,% edx // independent operation
mov %r12d ,% e d i // independent operation
imul %edx
s a r $0 x1f ,% e d i
mov $0 x55555556 ,% ecx // independent operation
mov %r12d ,% eax
movsd 0x28(% rbp) ,%xmm2 // independent operation
movsd 0x10(% rbp) ,%xmm5 // independent operation
s a r %edx
movsd 0x40(% rbp) ,%xmm1 // independent operation
sub %edi ,% edx
movsd 0x8(% rbp) ,%xmm6 // independent operation
sub $0x1 ,% edx
c v t s i 2 s d %edx ,%xmm3
imul %ecx
mov %edx ,% e s i
sub %edi ,% e s i
mov %e s i ,% eax
imul %ecx
mov %e s i ,% eax

62

mov %e s i ,% ecx
s a r $0 x1f ,% eax
sub %eax ,% edx
l e a (%rdx ,% rdx ,2) ,% eax
mulsd %xmm3,%xmm1
sub %eax ,% ecx
mov %ecx ,% eax
sub $0x1 ,% eax
c v t s i 2 s d %eax ,%xmm0
l e a (% r s i ,% r s i ,2) ,% eax
sub %eax ,% r12d
sub $0x1 ,% r12d
t e s t %r14d ,% r14d
c v t s i 2 s d %r12d ,%xmm4
mulsd %xmm0,%xmm2
mulsd %xmm4,%xmm5
mulsd %xmm4,%xmm6
mulsd 0x0(% rbp) ,%xmm4 // inst. will be decoded into 2 µ-ops
addsd %xmm5,%xmm2
movsd 0x20(% rbp) ,%xmm5
mulsd %xmm0,%xmm5
mulsd 0x18(% rbp) ,%xmm0 // inst. will be decoded into 2 µ-ops
addsd %xmm2,%xmm1
movsd 0x38(% rbp) ,%xmm2
mulsd %xmm3,%xmm2
addsd %xmm6,%xmm5
mulsd 0x30(% rbp) ,%xmm3 // inst. will be decoded into 2 µ-ops
addsd %xmm4,%xmm0
addsd %xmm5,%xmm2
addsd %xmm0,%xmm3

ARM:

mov w3 , #0 x5556 // independent operation
mov w1 , #0 x3 // independent operation
s d i v w1 , w19 , w1
movk w3 , #0 x5555 , l s l #16 // independent operation
s m u l l x3 , w1 , w3
l s r x3 , x3 , #32
mov w2 , #0 x8e39 // independent operation
sub w3 , w3 , w1 , a s r #31
movk w2 , #0 x38e3 , l s l #16 // independent operation
s m u l l x4 , w19 , w2
add w6 , w3 , w3 , l s l #1
mov x2 , x22 // independent operation
add w5 , w1 , w1 , l s l #1
l s r x4 , x4 , #32
sub w1 , w1 , w6
l d r d18 , [x2] , # 4 8

63

sub w5 , w19 , w5
sub w1 , w1 , #0 x1
a s r w4 , w4 , #1
l d r d6 , [x22 , # 2 4] // independent operation
l d r d4 , [x22 , # 3 2] // independent operation
l d r d19 , [x22 , # 4 0] // independent operation
s c v t f d2 , w1
sub w19 , w4 , w19 , a s r #31
sub w1 , w5 , #0 x1
l d r d17 , [x22 , # 8] // independent operation
l d r d16 , [x22 , # 1 6] // independent operation
s c v t f d1 , w1
fmul d6 , d2 , d6
fmul d4 , d2 , d4
sub w19 , w19 , #0 x1
l d r d3 , [x22 , # 4 8] // independent operation
l d r d7 , [x2 , # 8]
fmul d2 , d2 , d19
l d r d5 , [x2 , # 1 6]
s c v t f d0 , w19
fmadd d6 , d1 , d18 , d6 // inst. will be decoded into 2 µ-ops
fmadd d4 , d1 , d17 , d4 // inst. will be decoded into 2 µ-ops
cmp w23 , wzr
fmadd d1 , d1 , d16 , d2 // inst. will be decoded into 2 µ-ops
fmadd d3 , d0 , d3 , d6 // inst. will be decoded into 2 µ-ops
fmadd d4 , d0 , d7 , d4 // inst. will be decoded into 2 µ-ops
fmadd d5 , d0 , d5 , d1 // inst. will be decoded into 2 µ-ops

Alpha:

l d a h t4 ,21845 // independent operation
s8subq s0 , s0 , t 1 // independent operation
l d t $ f25 , 8 (s1) // independent operation
l d t $ f14 , 0 (s1) // independent operation
l d a t4 , 2 1 8 4 6 (t 4)
s l l t1 , 0 x6 , t 0
l d t $ f13 , 1 6 (s1) // independent operation
l d t $ f10 , 5 6 (s1) // independent operation
mulq s0 , t4 , t 3
addq t1 , t0 , t 1
l d t $ f23 , 6 4 (s1) // independent operation
l d t $ f22 , 4 8 (s1) // independent operation
s r a s0 , 0 x1f , t 5 // independent operation
s8addq t1 , s0 , t 1
l d t $ f24 , 2 4 (s1) // independent operation
l d t $ f26 , 3 2 (s1) // independent operation
s l l t1 , 0 xf , t 0

64

l d t $ f15 , 4 0 (s1)
subq t0 , t1 , t 0
s8addq t0 , s0 , t 0
s r a t0 , 0 x21 , t 0
subq t0 , t5 , t 0
s r l t3 , 0 x20 , t 3
s u b l t0 , 0 x1 , t 0
subq t3 , t5 , t 3
i t o f t t0 , $ f11
s e x t l t3 , t 1
s4subq t3 , t3 , t 5
mulq t1 , t4 , t 4
s r a t1 , 0 x1f , t 1
subq s0 , t5 , t 2
s u b l t2 , 0 x1 , t 2
c v t q t $ f11 , $ f12
i t o f t t2 , $ f27
c v t q t $ f27 , $ f11
mul t $ f12 , $ f23 , $ f23
mul t $ f12 , $ f22 , $ f22
s r l t4 , 0 x20 , t 4
mul t $ f12 , $ f10 , $ f12
subq t4 , t1 , t 4
s4subq t4 , t4 , t 4
mul t $ f11 , $ f13 , $ f13
subq t3 , t4 , t 3
mul t $ f11 , $ f14 , $ f14
s u b l t3 , 0 x1 , t 3
mul t $ f11 , $ f25 , $ f11
i t o f t t3 , $ f25
c v t q t $ f25 , $ f10
mul t $ f10 , $ f15 , $ f15
mul t $ f10 , $ f24 , $ f24
mul t $ f10 , $ f26 , $ f10
a d d t $ f13 , $ f15 , $ f13
a d d t $ f14 , $ f24 , $ f14
a d d t $ f11 , $ f10 , $ f11
a d d t $ f13 , $ f23 , $ f13
a d d t $ f14 , $ f22 , $ f15
a d d t $ f11 , $ f12 , $ f14

65

Bibliography

[1] M. Martin and A. Roth, Instruction Set Architecture. Available: https://www.cis.up
enn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf [Online; accessed 1-June-
2017].

[2] O. Mutlu, ISA Tradeoffs. Available: https://www.ece.cmu.edu/~ece447/s15/lib/
exe/fetch.php?media=onur-447-spring15-lecture3-isa-tradeoffs-afterl

ecture.pdf [Online; accessed 1-June-2017].

[3] M. V. Wilkes, “The Growth of Interest in Microprogramming: A Literature Survey,”
ACM Computing Surveys (CSUR), vol. 1, no. 3, pp. 139–145, September 1969.

[4] S. Terpe, Why Instruction Sets No Longer Matter. Available: http://ethw.org/Why_I
nstruction_Sets_No_Longer_Matter [Online; accessed 1-June-2017].

[5] E. W. Pugh, IBM System/360. Available: http://ethw.org/IBM_System/360 [Online;
accessed 1-June-2017].

[6] RISC Architecture. Available: http://www-03.ibm.com/ibm/history/ibm100/us/e
n/icons/risc/ [Online; accessed 1-June-2017].

[7] J. Cocke and V. Markstein, “The evolution of RISC technology at IBM,” IBM Journal of
research and development, vol. 34, no. 1, pp. 4–11, January 1990.

[8] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics,
vol. 38, pp. 114–117, April 1965.

[9] M. Bohr, MOORE’S LAW LEADERSHIP. Available: https://newsroom.intel.com
/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores

-Law.pdf [Online; accessed 1-June-2017].

[10] risc vs. cisc. Available: https://cs.stanford.edu/people/eroberts/courses/so
co/projects/risc/risccisc/ [Online; accessed 1-June-2017].

[11] M. Kerner and N. Padgett, A History of Modern 64-bit Computing, 2007. Avail-
able: http://courses.cs.washington.edu/courses/csep590/06au/projects/h

istory-64-bit.pdf [Online; accessed 1-June-2017].

[12] Intel Timeline: A History of Innovation. Available: https://www.intel.com/co

ntent/www/us/en/history/historic-timeline.html?iid=about+ln_history

[Online; accessed 1-June-2017].

66

https://www.cis.upenn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf
https://www.cis.upenn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf
https://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture3-isa-tradeoffs-afterlecture.pdf
https://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture3-isa-tradeoffs-afterlecture.pdf
https://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture3-isa-tradeoffs-afterlecture.pdf
http://ethw.org/Why_Instruction_Sets_No_Longer_Matter
http://ethw.org/Why_Instruction_Sets_No_Longer_Matter
http://ethw.org/IBM_System/360
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/risc/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/risc/
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-Bohr-2017-Moores-Law.pdf
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
http://courses.cs.washington.edu/courses/csep590/06au/projects/history-64-bit.pdf
http://courses.cs.washington.edu/courses/csep590/06au/projects/history-64-bit.pdf
https://www.intel.com/content/www/us/en/history/historic-timeline.html?iid=about+ln_history
https://www.intel.com/content/www/us/en/history/historic-timeline.html?iid=about+ln_history

[13] C. Lomont, Introduction to x64 Assembly. Available: https://software.intel

.com/en-us/articles/introduction-to-x64-assembly [Online; accessed 1-June-
2017].

[14] B. C. Lopes, R. Auler, L. Ramos, E. Borin, and R. Azevedo, “SHRINK: Reducing
the ISA Complexity via Instruction Recycling,” ACM SIGARCH Computer Architecture
News, vol. 43, no. 3, pp. 311–322, June 2015.

[15] AMD vs Intel Market Share. Available: https://www.cpubenchmark.net/market_

share.html [Online; accessed 1-June-2017].

[16] TOP500. Available: https://www.top500.org/ [Online; accessed 1-June-2017].

[17] TOP500 Supercomputers by Processor Family. Available: https://commons.wiki

media.org/wiki/File:Processor_families_in_TOP500_supercomputers.svg

[Online; accessed 1-June-2017].

[18] Intel Streaming SIMD Extensions Technology Defined. Available: https://www.

intel.com/content/www/us/en/support/processors/000005779.html [Online;
accessed 20-June-2017].

[19] Introduction to Intel Advanced Vector Extensions. Available: https://software.int
el.com/en-us/articles/introduction-to-intel-advanced-vector-extensio

ns [Online; accessed 20-June-2017].

[20] A. Venkat and D. M. Tullsen, “Harnessing ISA Diversity: Design of a Heterogeneous-
ISA Chip Multiprocessor,” in Proceedings of International Symposium on Computer Ar-
chitecture (ISCA), pp. 121–132, Minneapolis, MN, 14-18 June 2014.

[21] R. Rico, J.-I. Pérez, and J. A. Frutos, “The impact of x86 instruction set architecture
on superscalar processing,” Journal of Systems Architecture, vol. 51, no. 1, pp. 63–77,
January 2005.

[22] A. S. Waterman, Design of the RISC-V Instruction Set Architecture. PhD thesis, Univer-
sity of California, Berkeley, 2016.

[23] Guide to x86-64. Available: https://web.stanford.edu/class/cs107/guide_

x86-64.html [Online; accessed 20-January-2017].

[24] Evolution of the ARM Architecture. Available: http://www.eit.lth.se/fileadmin
/eit/courses/eitf20/ARM_RG.pdf [Online; accessed 1-June-2017].

[25] Q4/FY2016 Roadshow Slides. Available: https://www.arm.com/company/investor
s [Online; accessed 1-June-2017].

[26] A. Shah, Qualcomm’s new chip may be too late as ARM server market fades. Avail-
able: http://www.pcworld.com/article/3148251/data-center-cloud/qualco

mms-new-chip-may-be-too-late-as-arm-server-market-fades.html [Online;
accessed 1-June-2017].

[27] NEON. Available: https://developer.arm.com/technologies/neon [Online; ac-
cessed 20-June-2017].

67

https://software.intel.com/en-us/articles/introduction-to-x64-assembly
https://software.intel.com/en-us/articles/introduction-to-x64-assembly
https://www.cpubenchmark.net/market_share.html
https://www.cpubenchmark.net/market_share.html
https://www.top500.org/
https://commons.wikimedia.org/wiki/File:Processor_families_in_TOP500_supercomputers.svg
https://commons.wikimedia.org/wiki/File:Processor_families_in_TOP500_supercomputers.svg
https://www.intel.com/content/www/us/en/support/processors/000005779.html
https://www.intel.com/content/www/us/en/support/processors/000005779.html
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://web.stanford.edu/class/cs107/guide_x86-64.html
https://web.stanford.edu/class/cs107/guide_x86-64.html
http://www.eit.lth.se/fileadmin/eit/courses/eitf20/ARM_RG.pdf
http://www.eit.lth.se/fileadmin/eit/courses/eitf20/ARM_RG.pdf
https://www.arm.com/company/investors
https://www.arm.com/company/investors
http://www.pcworld.com/article/3148251/data-center-cloud/qualcomms-new-chip-may-be-too-late-as-arm-server-market-fades.html
http://www.pcworld.com/article/3148251/data-center-cloud/qualcomms-new-chip-may-be-too-late-as-arm-server-market-fades.html
https://developer.arm.com/technologies/neon

[28] 64-bit ARM (Aarch64) Instructions Boost Performance by 15 to 30% Compared to 32-bit
ARM (Aarch32) Instructions. Available: http://www.cnx-software.com/2016/03/
01/64-bit-arm-aarch64-instructions-boost-performance-by-15-to-30-co

mpared-to-32-bit-arm-aarch32-instructions/ [Online; accessed 1-June-2017].

[29] Introduction to ARMv8 64-bit Architecture. Available: https://quequero.org/2014/
04/introduction-to-arm-architecture/ [Online; accessed 1-June-2017].

[30] A. Prakash, A study of the Alpha 21364 Processor. Available: http://www.cs.utah.
edu/~arul/projects/alpha.pdf [Online; accessed 20-January-2017].

[31] R. E. Kessler, “The Alpha 21264 Microprocessor,” IEEE micro, vol. 19, no. 2, pp. 24–36,
March/April 1999.

[32] The evolution of the power workstation. Available: http://triosdevelopers.com/

jason.eckert/blog/Entries/2015/2/18_The_evolution_of_the_power_works

tation.html [Online; accessed 1-June-2017].

[33] Alpha Assembly Language Guide. Available: https://www.cs.cmu.edu/afs/cs/

academic/class/15213-f98/doc/alpha-guide.pdf [Online; accessed 20-January-
2017].

[34] D. Bhandarkar, “RISC versus CISC: A Tale of Two Chips,” ACM SIGARCH Computer
Architecture News, vol. 25, no. 1, pp. 1–12, March 1997.

[35] D. Bhandarkar and D. W. Clark, “Performance from Architecture: Comparing a RISC
and a CISC With Similar Hardware Organization,” vol. 19, no. 2, pp. 310–319, April
1991.

[36] C. Isen, L. K. John, and E. John, “A Tale of Two Processors: Revisiting the RISC-
CISC Debate,” in Proceedings of SPEC Benchmark Workshop on Computer Performance
Evaluation and Benchmarking, pp. 57–76, Springer-Verlag, 2009.

[37] D. Ye, J. Ray, C. Harle, and D. Kaeli, “Performance Characterization of SPEC CPU2006
Integer Benchmarks on x86-64 Architecture,” in Proceedings of IEEE International Sym-
posium on Workload Characterization (ISWC), pp. 120–127, San Jose, CA, October
2006.

[38] J. Goodacre and A. N. Sloss, “Parallelism and the ARM Instruction Set Architecture,”
IEEE Computer, vol. 38, no. 7, pp. 42–50, July 2005.

[39] V. M. Weaver and S. A. McKee, “Code Density Concerns for New Architectures,” in
IEEE International Conference on Computer Design (ICCD), pp. 459–464, Lake Tahoe,
CA, February 2009.

[40] E. Blem, J. Menon, T. Vijayaraghavan, and K. Sankaralingam, “ISA Wars: Understand-
ing the Relevance of ISA being RISC or CISC to Performance, Power, and Energy on
Modern Architectures,” ACM Transactions on Computer Systems (TOCS), vol. 33, no. 1,
pp. 3:1–3:34, March 2015.

[41] E. Blem, J. Menon, and K. Sankaralingam, “A Detailed Analysis of Contemporary Arm
and x86 Architectures,” UW-Madison Technical Report, 2013.

68

http://www.cnx-software.com/2016/03/01/64-bit-arm-aarch64-instructions-boost-performance-by-15-to-30-compared-to-32-bit-arm-aarch32-instructions/
http://www.cnx-software.com/2016/03/01/64-bit-arm-aarch64-instructions-boost-performance-by-15-to-30-compared-to-32-bit-arm-aarch32-instructions/
http://www.cnx-software.com/2016/03/01/64-bit-arm-aarch64-instructions-boost-performance-by-15-to-30-compared-to-32-bit-arm-aarch32-instructions/
https://quequero.org/2014/04/introduction-to-arm-architecture/
https://quequero.org/2014/04/introduction-to-arm-architecture/
http://www.cs.utah.edu/~arul/projects/alpha.pdf
http://www.cs.utah.edu/~arul/projects/alpha.pdf
http://triosdevelopers.com/jason.eckert/blog/Entries/2015/2/18_The_evolution_of_the_power_workstation.html
http://triosdevelopers.com/jason.eckert/blog/Entries/2015/2/18_The_evolution_of_the_power_workstation.html
http://triosdevelopers.com/jason.eckert/blog/Entries/2015/2/18_The_evolution_of_the_power_workstation.html
https://www.cs.cmu.edu/afs/cs/academic/class/15213-f98/doc/alpha-guide.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15213-f98/doc/alpha-guide.pdf

[42] V. M. Weaver, ll: Exploring the Limits of Code Density. Available: http://web.eece.m
aine.edu/~vweaver/papers/iccd09/ll_document.pdf [Online; accessed 1-June-
2017].

[43] H. Lozano and M. Ito, “Increasing the Code Density of Embedded RISC Applications,”
in Proceedings of IEEE 19th International Symposium on Real-Time Distributed Com-
puting (ISORC), pp. 182–189, York, UK, May, 2016.

[44] R. Durán and R. Rico, “Quantification of ISA Impact on Superscalar Processing,” in
IEEE International Conference on Computer as a Tool, EUROCON, vol. 1, pp. 701–704,
Belgrade, Serbia, November 2005.

[45] B. C. Lopes, L. Ecco, E. C. Xavier, and R. Azevedo, “Design and Evaluation of Compact
ISA Extensions,” Microprocessors and Microsystems, vol. 40, pp. 1–15, 2016.

[46] S. Bartolini, R. Giorgi, and E. Martinelli, “Instruction Set Extensions for Cryptographic
Applications,” in Springer Cryptographic Engineering, pp. 191–233, 2009.

[47] R. B. Lee, “MULTIMEDIA EXTENSIONS FOR GENERAL-PURPOSE PROCES-
SORS,” in IEEE Workshop on Signal Processing Systems., pp. 9–23, Leicester, UK,
November 1997.

[48] N. T. Slingerland and A. J. Smith, “Multimedia Extensions for General Purpose Mi-
croprocessors: A Survey,” Elsevier Microprocessors and Microsystems, vol. 29, no. 5,
pp. 225–246, June 2005.

[49] A. Jundt, A. Cauble-Chantrenne, A. Tiwari, J. Peraza, M. A. Laurenzano, and L. Car-
rington, “Compute Bottlenecks on the New 64-bit ARM,” in Proceedings of the 3rd In-
ternational Workshop on Energy Efficient Supercomputing, no. 6, Austin, TX, November
2015.

[50] K. Mayank, H. Dai, J. Wei, and H. Zhou, “Analyzing Graphics Processor Unit (GPU) In-
struction Set Architectures,” in IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pp. 155–156, Philadelphia, PA, March 2015.

[51] I.-J. Huang and A. Despain, “Synthesis of Application Specific Instruction Sets,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14,
no. 6, pp. 663–675, June 1995.

[52] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution Migration in a Heterogeneous-
ISA Chip Multiprocessor,” ACM SIGARCH Computer Architecture News, vol. 40, no. 1,
pp. 261–272, March 2012.

[53] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran, C. Kendir, A. Mur-
ray, and B. Ravindran, “Popcorn: Bridging the Programmability Gap in Heterogeneous-
ISA Platforms,” in Proceedings of the Tenth European Conference on Computer Systems
(EuroSys), p. 29, Bordeaux, France, April 2015.

[54] C. Celio, P. Dabbelt, D. Patterson and K. Asanović, “The Renewed Case for the Re-
duced Instruction Set Computer: Avoiding ISA Bloat with Macro-Op Fusion for RISC-
V,” Tech. Rep. UCB/EECS-2016-130, Electrical Engineering and Computer Sciences,
University of California at Berkeley, July 2016.

69

http://web.eece.maine.edu/~vweaver/papers/iccd09/ll_document.pdf
http://web.eece.maine.edu/~vweaver/papers/iccd09/ll_document.pdf

[55] The RISC-V Instruction Set Architecture. Available: https://riscv.org/ [Online;
accessed 1-June-2017].

[56] J. Engblom, Does ISA Matter for Performance? Available: http://jakob.engbloms
.se/archives/1801 [Online; accessed 1-June-2017].

[57] RISC vs. CISC: the Post-RISC Era. Available: http://archive.arstechnica.com/
cpu/4q99/risc-cisc/rvc-6.html [Online; accessed 1-June-2017].

[58] A. Akram and L. Sawalha, “The Impact of ISAs on Performance,” in Workshop on Dupli-
cating, Deconstructing and Debunking (WDDD) co-located with 44th International Sym-
posium on Computer Architecture (ISCA), Toronto, Canada, June 2017. Available: http
s://drive.google.com/file/d/0By_qFMnj-9GLRXZPYm8yWDh4TE0/view [Online;
accessed 1-July-2017].

[59] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 Simulator,” ACM SIGARCH Computer Architecture
News, vol. 39, no. 2, pp. 1–7, May 2011.

[60] G. Black, N. Binkert, S. K. Reinhardt, and A. Saidi, “Modular ISA-Independent Full-
System Simulation,” in Processor and System-on-Chip Simulation, pp. 65–83, Springer,
2010.

[61] A. Akram and L. Sawalha, “x86 Computer Architecture Simulators: A Comparative
Study,” in IEEE International Conference on Computer Design (ICCD), pp. 638–645,
Pheonix, AZ, October 2016.

[62] K. Hoste and L. Eeckhout, “Microarchitecture-independent Workload Characterization,”
IEEE Micro, vol. 27, no. 3, pp. 63–72, August 2007.

[63] A. Fog, Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs, [Online, accessed 3 September,
2015].

[64] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitectural Simulation
of Thousand-Core Systems,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA), pp. 475–486, Tel-Aviv, Israel, June 2013.

[65] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the Level of Abstrac-
tion for Scalable and Accurate Parallel Multi-Core Simulation,” in ACM International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1
– 12, Seattle, WA, 2011.

[66] Zsim, Zsim Tutorial Validation, 2015. Available: http://zsim.csail.mit.edu/tut
orial/slides/validation.pdf [Online; accessed 5-June-2017].

[67] ISA POWER STRUGGLES. Available: http://research.cs.wisc.edu/vertical/

wiki/index.php/Isa-power-struggles/Isa-power-struggles [Online; accessed
5-June-2017].

[68] J. E. Smith and G. S. Sohi, “The Microarchitecture of Superscalar Processors,” Proceed-
ings of the IEEE, vol. 83, no. 12, pp. 1609–1624, December 1995.

70

https://riscv.org/
http://jakob.engbloms.se/archives/1801
http://jakob.engbloms.se/archives/1801
http://archive.arstechnica.com/cpu/4q99/risc-cisc/rvc-6.html
http://archive.arstechnica.com/cpu/4q99/risc-cisc/rvc-6.html
https://drive.google.com/file/d/0By_qFMnj-9GLRXZPYm8yWDh4TE0/view
https://drive.google.com/file/d/0By_qFMnj-9GLRXZPYm8yWDh4TE0/view
http://zsim.csail.mit.edu/tutorial/slides/validation.pdf
http://zsim.csail.mit.edu/tutorial/slides/validation.pdf
http://research.cs.wisc.edu/vertical/wiki/index.php/Isa-power-struggles/Isa-power-struggles
http://research.cs.wisc.edu/vertical/wiki/index.php/Isa-power-struggles/Isa-power-struggles

[69] Products formerly Haswell. Available: https://ark.intel.com/products/codenam
e/42174/Haswell [Online; accessed 1-June-2017].

[70] Introuction to Intel Architecture. Available: https://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/ia-introduction-basics-paper

.pdf [Online; accessed 1-June-2017].

[71] INTEL ATOM PROCESSORS. Available: https://www.intel.com/content/www/us
/en/products/processors/atom.html [Online; accessed 1-June-2017].

[72] Cortex-A15. Available: https://developer.arm.com/products/processors/cort
ex-a/cortex-a15 [Online; accessed 1-June-2017].

[73] Cortex-A8. Available: https://developer.arm.com/products/processors/cort

ex-a/cortex-a8 [Online; accessed 1-June-2017].

[74] Alpha 21164 Microprocessor Data Sheet. Available: http://www.cs.cmu.edu/afs/c
s/academic/class/15740-f03/public/doc/alpha-21164-data-sheet.pdf [On-
line; accessed 1-June-2017].

[75] Intel’s Haswell CPU Micrarchitecture. Available: http://www.realworldtech.com/
haswell-cpu/ [Online; accessed 1-June-2017].

[76] Intel’s Haswell Architecture Analyzed: Building a New PC and a New Intel. Avail-
able: http://www.anandtech.com/show/6355/intels-haswell-architecture/6
[Online; accessed 1-June-2017].

[77] Inside Atom Architecture, 2015. http://www.hardwaresecrets.com/inside-atom-
architecture/2/ [Online; accessed 1-June-2017].

[78] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.
Elsevier, 2011.

[79] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D. Emmons,
M. Hayenga, and N. Paver, “Sources of Error in Full-System Simulation,” in IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 13–
22, Monterey, CA, March 2014.

[80] F. A. Endo, D. Couroussé, and H.-P. Charles, “Micro-architectural Simulation of Embed-
ded Core Heterogeneity with Gem5 and McPAT,” in Proceedings of the 2015 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools, pp. 7:1–7:6, Am-
sterdam, Holland, January 2015.

[81] ARM Cortex-A8. Available: http://www.7-cpu.com/cpu/Cortex-A8.html [Online;
accessed 5-June-2017].

[82] R. E. Kessler, E. J. McLellan, and D. A. Webb, “The Alpha 21264 Microprocessor Ar-
chitecture,” in Proceedings of International Conference on Computer Design: VLSI in
Computers and Processors, pp. 90–95, Austin, Tx, 5-7 October 1998.

[83] Z. Cvetanovic and D. Bhandarkar, “Performance characterization of the alpha 21164
microprocessor using tp and spec workloads,” in Proceedings of Second IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pp. 270–280,
San Jose, CA, February 1996.

71

https://ark.intel.com/products/codename/42174/Haswell
https://ark.intel.com/products/codename/42174/Haswell
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
https://www.intel.com/content/www/us/en/products/processors/atom.html
https://www.intel.com/content/www/us/en/products/processors/atom.html
https://developer.arm.com/products/processors/cortex-a/cortex-a15
https://developer.arm.com/products/processors/cortex-a/cortex-a15
https://developer.arm.com/products/processors/cortex-a/cortex-a8
https://developer.arm.com/products/processors/cortex-a/cortex-a8
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/alpha-21164-data-sheet.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f03/public/doc/alpha-21164-data-sheet.pdf
http://www.realworldtech.com/haswell-cpu/
http://www.realworldtech.com/haswell-cpu/
http://www.anandtech.com/show/6355/intels-haswell-architecture/6
http://www.hardwaresecrets.com/inside-atom-architecture/2/
http://www.hardwaresecrets.com/inside-atom-architecture/2/
http://www.7-cpu.com/cpu/Cortex-A8.html

[84] SPEC CPU 2006. Available: https://www.spec.org/cpu2006/ [Online; accessed
1-June-2017].

[85] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,” in IEEE
4th Annual Workshop on Workload Characterization, pp. 3–14, Austin, TX, December
2001.

[86] crosstool-NG. Available: http://crosstool-ng.github.io/ [Online; accessed 1-
June-2017].

[87] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder, “Using Sim-
point for Accurate and Efficient Simulation,” ACM SIGMETRICS Performance Evalua-
tion Review, vol. 31, pp. 318–319, June 2003.

[88] M5ops. Available: http://gem5.org/M5ops [Online; accessed 1-June-2017].

[89] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A Call Graph Execution
Profiler,” in ACM Sigplan Notices, vol. 17, pp. 120–126, 1982.

[90] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM SIGARCH Computer
Architecture News, vol. 34, pp. 1–17, September 2006.

[91] B. Solomon, A. Mendelson, R. Ronen, D. Orenstien, and Y. Almog, “Micro-operation
Cache: A Power Aware Frontend for Variable Instruction Length ISA,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 5, pp. 801–811, 2003.

72

https://www.spec.org/cpu2006/
http://crosstool-ng.github.io/
http://gem5.org/M5ops

	A Study on the Impact of Instruction Set Architectures on Processor’s Performance
	Recommended Citation

	1 Introduction
	1.1 Evolution of RISC and CISC ISAs
	1.2 Overview of Instruction Sets Under Analysis
	1.2.1 x86-64
	1.2.2 ARMv8
	1.2.3 Alpha

	1.3 Thesis Contributions

	2 Related Work
	3 Methodology
	3.1 Basic Requirements
	3.2 Simulation Environment
	3.2.1 Modifications in the Simulator

	3.3 Target Microarchitectures
	3.4 Benchmarks
	3.5 Mapping Simpoints Across ISAs
	3.6 Definitions of Studied Metrics

	4 Results and Analysis
	4.1 Cycle Counts and -architecture-Independent Statistics
	4.2 Individual Benchmark Analysis
	4.3 Other Microarchitecture Dependent Statistics
	4.4 Performance Analysis Across Microarchitectures
	4.5 Microarchitectural Optimizations for x86
	4.6 Summary of the Findings

	5 Conclusion and Future Work
	Appendix A Kiviat Plots for All Benchmarks
	Appendix B Example Code Blocks
	Bibliography

