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SEMI-STRONGLY REGULAR GRAPHS AND GENERALIZED CAGES

Cong Fan, Ph.D.

Western Michigan University, 1995

Two well-known classes of graphs, strongly regular graphs and cages, 

have been studied extensively by many researchers for a long period of 

time. In this dissertation, we mainly deal with semi-strongly regular graphs, 

a class of graphs including all strongly regular graphs, and (r, g, t)-cages, a 

generalization of the usual cage concept.

Chapter I introduces the two new concepts: semi-strongly regular 

graphs and generalized (r, g, t)-cages, gives necessary conditions for the 

existence of semi-strongly regular graphs and some interesting properties 

regarding common neighbors of pairs of vertices, and shows connections 

between these two new concepts and the old ones as well as connections 

between the two new concepts themselves.

In Chapter II, we study the existence problem of clique-disjoint semi- 

strongly regular graphs. We give lower bounds for the order of clique-disjoint 

semi-strongly regular graphs in Section 1. Then in Section 2 we prove that 

the necessary conditions given in Chapter I are also sufficient for a clique- 

disjoint semi-strongly regular graph of order n to exist when n is relatively 

large. And in Section 3, we show that certain clique-disjoint semi-strongly 

regular graphs can not exist when their orders n are too close to the lower 

bound.
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Chapter IE is devoted to generalized (r, g, t)-cages. We prove that an 

(r, g, t)-cage always exists in Section 1. Then we study the lower bounds for 

the order of (r, g, t)-cages in Section 2 and list some known (r, g, t)-cages in 

the last section.

Maximal graphs without C4 on 31 vertices, which is the smallest 

unsettled case to a conjecture of Erdos, are studied in Chapter IV and some 

open questions are mentioned in Chapter V.
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CHAPTER I

INTRODUCTION

1.1 Strongly Regular Graphs and Semi-Strongly Regular Graphs

In 1966, Erdos, Renyi, and Sds [7] proved the following result.

Theorem 1.1 (Friendship Theorem). Let G be a graph such that any two 

vertices of G have a unique common neighbor. Then G = Kx + mK2, i.e., a

number of triangles with a common vertex (see Figure 1.1).

Figure 1.1. G = K1 + mK2.

Another concept concerning common neighbors of pairs of vertices, 

so called strongly regular graphs, was introduced by Bose [1] in 1963. An r- 

regular graph G of order n is said to be [n, r, X, p]-strongly regular if every 

two adjacent vertices of G have k common neighbors and every two non- 

adjacent vertices have p. common neighbors. For example, complete 

graphs and regular complete bipartite graphs are strongly regular, the 

Petersen graph is a strongly regular graph with parameters n = 10, r = 3,

1
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X = 0, and jx = 1, the line graph of the complete graph is [^nCn — 1),

2(n -  2), n — 2, 4]-strongly regular, and the line graph of the complete 

bipartite graph n is [n2, 2(n — 1), n -  2, 2]-strongly regular. The

existence problem of strongly regular graphs have been studied extensively 

by many researchers. Some necessary conditions for an [n, r, X, u]-strongly 

regular graph to exist have been developed. A very strong necessary 

condition is the following integrality condition. For more information about 

strongly regular graphs, see [3],

Theorem  1.2 (Integrality Condition). If there is a [n, r, X, p.]-strongly

regular graph, then the numbers
I f  , (n-l)(p —?0 —2r 1

are non-negative integers.

We note in the following two propositions that, in certain cases, the 

regularity condition in the definition of a strongly regular graph is implied by 

the other two conditions. Proposition 1.1 can also be viewed, to some extent, 

as an extension of the Friendship Theorem.

Proposition 1.1. Suppose G is a graph such that every two adjacent 

vertices have X common neighbors and every two non-adjacent vertices 

have one common neighbor. If G is not regular, then G = Kx + mK> +1.

Proof. We first show that every two non-adjacent vertices of G must 

have the same degree. Let v and w be two non-adjacent vertices of G. 

Then there is a unique vertex u adjacent to both v and w. Since every
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two adjacent vertices have X common neighbors, v and u must be in a 

complete subgraph Hj = K̂ +2, u and w must be in a complete subgraph 

H2 = Kx+2, and u is the only common vertex of Hx and H2. Let A be the 

set of vertices adjacent to v but not in H, and let B be the set of vertices 

adjacent to w but not in H2. Then A fl B = 0 . Note that A induces a 

union of K- +1's, so does B. For every vertex x in A, there is a unique

vertex y in B adjacent to x. A similar argument holds with A and B 

interchanged. So IAI = IBI, that is deg(v) = deg(w).

Since G is not regular, there are two vertices u and v with 

different degrees. Then u and v must be adjacent. A complete subgraph 

H = K> +2 containing u and v is forced. If x is any vertex not in H, then x

has to be adjacent to exactly one vertex in H. In fact, x must be adjacent 

to either u or v for otherwise, we would have deg(u) = deg(v). Without loss 

of generality, assume x is adjacent to u. Then all the vertices in H other 

than u have the same degree and all the vertices not in H are adjacent to
u. It follows that G consists of a number of Kx+2's with a common vertex

u. □

A clique of a graph G is a maximal complete subgraph of G. We 

say that a graph G is clique-disjoint if every pair of cliques of G are edge- 

disjoint.

Proposition 1.2. Suppose G is a graph such that every two adjacent 

vertices have X common neighbors and every two non-adjacent vertices 

have |x s  2 common neighbors. If G is clique-disjoint, then G must be 

regular.
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Proof. Let u and v be two adjacent vertices of G. Then u and v have 

X common neighbors, say they are w1? w2, w ^ .  Since all cliques of G

are edge-disjoint, the vertices u, v, wlf w2, ..., wx must induce a complete

subgraph K> +2 in G. Let A be the set of the vertices adjacent to u but

not in { v, w1? w2, ..., } and let B be the set of the vertices adjacent to v

but not in { u, w1? w2, ..., w? }. Since every two non-adjacent vertices have

(x s: 2 common neighbors, every vertex in A has p.— 1 common neighbors

with the vertex v. Then every vertex in A is adjacent to jx — 1 vertices in

B. Similarly, every vertex in B is adjacent to jx — 1 vertices in A. This

implies IAI = IBI. Thus, deg(u) = deg(v). It follows that G is regular. □

Note that if every two adjacent vertices have exactly one common 

neighbor in a graph G, then G must be clique-disjoint. Proposition 1.2 has 

the following immediate consequence.

Corollary 1.1. Suppose G is a graph such that every two adjacent 

vertices have exactly one common neighbor and every two non-adjacent 

vertices have p. s  2 common neighbors. Then G is regular and so it is 

strongly regular.

Next, we introduce a weaker concept by dropping off one of the two 

restrictions on common neighbors of pairs of vertices in a strongly regular 

graph.

D efinition 1.1. An r-regular graph of order n is [n, r, k]-semi-strongly 

regular if every two adjacent vertices of G have X common neighbors.
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For example, the graph shown in Figure 1.2 is a [12, 4, l]-semi- 

strongly regular graph which is not strongly regular. From the definition, we 

see that if G is a triangle free r-regular graph, then the line graph L(G) of 

G is semi-strongly regular. The graph in Figure 1.2 is the line graph of the 

cube L(Q3). Also, we note that G is an [n, r, X]-semi-strongly regular

graph if and only if its complement G is a regular graph in which any two 

nonadjacent pair of vertices have a constant n — 2r + X common neighbors. 

In this view, one may have an equivalent definition for a semi-strongly 

regular graph by dropping off the restriction that every two adjacent 

vertices have X common neighbors in a strongly regular graph.

Figure 1.2. A [12, 4, l]-semi-strongly Regular Graph.
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The following proposition gives necessary conditions for an [n, r, X]- 

semi-strongly regular graph to exist.

Proposition 1.3. If G is an [n, r, ?J-semi-strongly regular graph, then
(1) 6 | nrX,
(2) n ^ 2r—X.

Proof. Suppose G is an [n, r, X]-semi-strongly regular graph. For every

edge e of G, let T(e) be the number of triangles in G containing e.
1 (Clearly, the total number of triangles in G is T = g ^  T(e) . Since

V e e E (G ) ,

every edge of G is in X triangles, it follows that T = g-nrX and so 6 | nrX. 

By a direct calculation, we obtain (2). □

Clearly, for a clique-disjoint semi-strongly regular graph, we have the 

following necessary conditions.

Proposition 1.4. If G is a clique-disjoint [n, r, Xj-semi-strongly regular 

graph, then

(1) all cliques of G have the same order X + 2,

(2) (X + 1) a  + 2) | nr,
j*

(3) (X + 1) | r and each vertex is in — edge-disjoint cliques.
A +  1

Later, we will pay most of our attention to clique-disjoint semi- 

strongly regular graphs. In the next chapter, we will show by construction 

that the above necessary conditions are also sufficient for a clique-disjoint 

semi-strongly regular graph to exist when n is relatively large.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

Now, we give the following connections between strongly regular 

graphs and semi-strongly regular graphs.

Theorem  1.3. If both a graph G and its complement G are semi-strongly 

regular, then G is strongly regular.

Proof. Let G be an [n, r, A.]-semi-strongly regular graph whose 

complement G is also semi-strongly regular. For each nonadjacent pair of 

vertices u and v in G, let be the number of common neighbors of u 

and v in G. Then in G , u and v have a. = n — 2r — 2 + common 

neighbors. Since G is semi-strongly regular, X is a constant which implies 

that is a constant over all nonadjacent pairs u and v. Thus, G is 

strongly regular. □

Corollary 1.2. If G is a self-complementary semi-strongly regular graph, 

then G is strongly regular.

A clique graph of a graph G is a new graph whose vertices are the 

cliques of G and two vertices are adjacent if  the corresponding two cliques 

intersect. We state the next proposition without proof as it  is an easy 

consequence from the definitions and Proposition 1.4.

Proposition 1.5. The clique graph of a clique-disjoint strongly regular 

graph is semi-strongly regular.
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1.2 Cages and Generalized Cages

For r 2:2 and g s 3 ,  an (r,g)-cage is an r-regular graph of minimum 

order n = f(r, g) which has girth g. That an (r, g)-cage always exists has 

been proved by Erdos and Sachs [8]. For a good survey on cages, see [14].

Note that in an r-regular graph with girth g s: 4, every clique is a K2, 

each vertex is in r cliques, and the girth g is the same as the minimum 

length of a cycle with edges from distinct cliques. An (r, g)-cage is simply 

such a graph of minimum order. This observation leads us to give the 

following generalization of the cage concept.

Definition 1.2. For t s  2, r = k (t -1 ), and g s: 4, we define an (r, g, t)-cage 

to be a clique-disjoint r-regular graph of minimum order fir, g, t) such that 

every clique has t vertices, every vertex is in k cliques, and the minimum 

length of a cycle with edges from distinct cliques is g.

For example, the line graph L(P) of the Petersen graph P is a 

(4 ,5 ,3>cage (See Figure 1.3).

Given a clique-disjoint graph G, we call the minimum length of 

cycle in G with edges from distinct cliques the clique-girth of G. In fact, 

an (r, g, t)-cage is a clique-disjoint [n, r, t — 2]-semi-strongly regular graph of 

minimum order which has clique-girth g.
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Figure 1.3. The Line Graph of Petersen Graph.

In Chapter m , we will prove that for g ^ 4, an (r, g, t)-cage always 

exists. Then, we examine lower bounds for the number f(r, g, t) and show 

some connections of generalized cages with generalized quadrangles, 

strongly regular graphs, and Moore geometries, from which many 

generalized cages are obtained.
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CHAPTER II

SEMI-STRONGLY REGULAR GRAPHS

2.1 Lower Bounds for the Order of Clique-Disjoint 
Semi-Strongly Regular Graphs

We begin this section by giving a lower bound on the order of a clique- 

disjoint semi-strongly regular graph.

Proposition 2.1. If G is a clique-disjoint [n, r, A.]-semi-strongly regular 

graph, then n s  (X + 2) ( r—X).

Proof. By Proposition 1.2, all cliques of G are of order X + 2. Let H be a 

clique of G and let ux, Ug,..., Uj+2 be the vertices of H. Then for i * j, 

and Uj have no common neighbors not in H. Thus, it follows that 

n s  a  + 2 ) [ r - a  + l)]  + X + 2 = a  + 2 )(r-> 0 . □

When X = 1 , every semi-strongly regular graph is clique-disjoint. 

Thus, Propositions 1.4 and 2.1 give the following necessary conditions for an 

[n, r, l]-semi-strongly regular graph.

Corollary 2.1. If G is an In, r, l]-semi-strongly regular graph, then

(1) n s  3 r -3 ,
(2) 6 | nr,

(3) r is even.

10
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Next, we discuss what are those clique-disjoint semi-strongly regular 

graphs with order equal to the lower bound given in Proposition 2.1. Before 

getting into it, we first introduce the following concepts (see [3] for a 

reference).

A partial geometry with parameters (k,t, h), where k > l  and t >  1, 

consists of a set of points and a set of lines such that (1) every point is in k 

lines and every line has t points; (2) two points are in at most one common 

line; (3) if  a point p is not in a line L, then p is collinear with exactly h 

points of L. A generalized quadrangle GQ (k, t) is a special partial 

geometry with h = 1. The point graph of a partial geometry is the graph 

whose vertices are the points of the geometry, and whose edges correspond 

to collinear point-pairs.

We also need Theorem 6.3 in Cameron [3] which is stated as follows.

Theorem  2.1. The parameters (k, t, h) of a partial geometry satisfy the 

inequality

(k — 1) (t -  2h) s  (t -  h)2 (t -  2).

Now, we show that a clique-disjoint semi-strongly regular graph 

which attains the lower bound in Proposition 2.1 must be strongly regular.

Theorem  2.2. Let G be a clique-disjoint [n, r, A]-semi-strongly regular

graph of order n = (X + 2) (r -  X). Then G must be [n, r, X, k]-strongly 
1*

regular with k = —— - .  Moreover, G is the point graph of a generalized 
A + 1

quadrangle GQ (k, X + 2).
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Proof. Let G be a clique-disjoint [n, r, X]-semi-strongly regular graph of 

order n = (X + 2) (r — X). Since G is clique-disjoint and every vertex is in k 

edge-disjoint cliques of order X + 2, it follows that every pair of non-adjacent 

vertices have at most k common neighbors. We claim that every two non­

adjacent vertices have exactly k common neighbors in G. We will verify 

the claim by showing that for a vertex v, every vertex not adjacent to v 

has k common neighbors with v. Let N(v) denote the set of vertices 

adjacent to v. Let w1,w 2,...,wn_r_1 be the vertices not adjacent to v and 

let v and wj have Pj common neighbors for l s j s n  —r —1. Then all 

 ̂k as every pair of non-adjacent vertices have at most k common 

neighbors. We count the number of edges between N(v) and W = {w1; w2, 

..., wn_r_-|} in two ways. For any vertex u in N(v), there are r — X — 1 

edges joining u with vertices in W, whereas for each ŵ  in W, there are 

edges joining Wj with vertices in N(v). Thus, we have

n-r-1
r ( r -  X - l )  = <; k ( n - r - l )

i=l

= k [ (X + 2) (r—X) -  r — 1] = r (r —X — 1)

which implies that = k for all i, l s i s n - r - 1 .  Thus, G is a [n, r, X, k]-

strongly regular graph. And it is easy to see that G is the point graph of a 

generalized quadrangle GQ(k, X + 2). □

Corollary2.2. A [3r —3, r, l]-semi-strongly regular graph is [ 3r - 3 ,  r, 1, 
£•
gl-strongly regular. Moreover, r can only be 2 ,4 ,6 ,  and 10, where K3, 

K3 x K3, t._\d L(K6) are the unique strongly regular graphs corresponding
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to r = 2,4, 6, respectively, and the point graph of GQ(5, 3) is [27,10, 1, 5]- 

strongly regular.

Proof. Since every [3r — 3, r, l]-semi-strongly regular graph G is clique-
rdisjoint, it follows from Theorem 2.2 that G is [3r — 3, r, 1, gjj-strongly

r
regular and G is the point graph of a generalized quadrangle GQ (g, 3). By

3*
Theorem 2.1 with h = 1, we have ^  —1^4,  and so r s l O .  As r is even,

r = 2, 4, 6, 8, or 10. By Theorem 1.2 (the Integrality Condition ), r * 8. 

Since the strongly regular graphs of order at most 15 are unique, the 

corollary follows. □

2.2 The Existence of Clique-Disjoint Semi-Strongly Regular Graphs

We know from Proposition 1.4 that if G is a clique-disjoint [n, r, a]- 

semi-strongly regular graph, then r is a multiple of X + 1 and 

(a. + 1) (k + 2) I nr. In this section, we will show that these two necessary 

conditions are also sufficient for a clique-disjoint [n, r, A]-semi-strongly 

regular graph to exist when n is relatively large.

Throughout this section, we let r = (k + l)k  . We first consider the 

case where n is a multiple of X + 2. Assume

n = (k + 2)m

with

m s k ^  (k— 1) + 1.

Define the graph G )̂k m as a graph of order n with the vertex set 

V(Gxkm) = I 0<;i<;X + l  and O s j s  m - 1 }
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such that G^km consists of k factors of degree X + 1 , say F0, F1?..., Fk-1 

with each (>.+l)-factor Ft being a union of m complete graphs of X + 2 

vertices, that is,

Fi = Qi,0 U Q i,l U ••• U 

where each Qi j is a K> +2 with vertex set

Vi(j = { (0, j )}u{(x,  j +  ikx_ 1 ) | l<:x<;X + l |

and the sum in above expression is taken modulo m.

We give the graph Gj 3 8 as an illustration of how graph G> km is 

constructed. Gj 3 8 consists of 3 factors of degree 2, call them F0, F1? and 

F2 , where each FA is obtained by horizontally translating Qi 0 shown in 

Figure 2.1 along the vertices in the top row. Note that the first index is 

computed mod 3 and the second mod 8.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

G,°)C>

•l.o -2,0

(2, 0)

Figure 2.1. The Triangles Through the Vertex (0,0) in Gj 3 8 .

Notice that Gi 3 8 is regular of degree 6 and of order 24. For 

convenience, later we will call the set of vertices { (i, j) I 0 s  j  ̂ m - 1  } the 

i-th row and the set of vertices { (i, j) I 0 ^ i s  X + 1} the j-th column
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Theorem  2.3. For positive integers X , r , and n with r = (X +1 )k and 

n = (X + 2)m s  (X + 2 )((k - l)k^ + l) ,

Gx.k.m is a clique-disjoint [n, r, X]-semi-strongly regular graph.

Proof. Assume k  ̂2. We first show that G^km is r-regular by showing 

that F0, Fl 5 Fk_j are edge-disjoint. Suppose, to the contrary, that Fa 

and Fb are not edge-disjoint for some a * b. Let edge e e E(Qa x) D ECQ̂  y)

for some x and y. Then there exist two integers p and q with 0 p < q

such that if p > 0, then the edge e is

e = (p, x + akP “ 1) (q, x + ak*l “

= (p,y + bkP- 1 )(q ,y  + bk<l - 1)

and otherwise

e = (0, x) (q, x + ak*!-  -1)

= (0, y) (q, y + bk<i “ 1).

This impHes that x = y or

x + akP -  1 s  y + bkP “ 1 (mod m)

and

x + ak  ̂“ 1 s  y + bkl “ 1 (mod m).

It follows that

ak<l ~ 1 = bk* ~ 1 (mod m)

or

(a -  b) (kP “ 1 — k*l-  1) = 0 (mod m)
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which implies that a = b or p = q, contradicting the assumption that a * b 

and p * q. Thus, F0, F j , F ^  are edge-disjoint and G> km is r-regular. 

To see that is a clique-disjoint semi-strongly regular graph, it

suffices to prove that G ^ m  has no triangle with edges from different F^s. 

Let T be a triangle on the vertices (a, x), (b, y) and (c, z). Then a, b and c 

are all distinct. Without loss of generality, assume a < b < c. And assume 

that edges

ex = (a, x) (b, y) e Fa , 

e2 = (b, y) (c, z) e Fp,

and

e3 = (a, x) (c, z) e Fy .

Then there exist three integers h, i and j such that

ei e Qa,h> 

e2 e Qp,i>

and

e3 6 Qy j-

First we consider the case where a > 0. We have

x = h + aka ~ 1 s  j+  yk3 ~ 1 (modm) 

y = i + (5kb “ 1 s  h + akb “ 1 (mod m) 

z = j + ykc ~ 1 = i + pkc ~ 1 (mod m).

Thus,

ak? “ 1 + pkb “ 1 + ykc - 1 s  yk? “ 1 + akb - 1 + [3kc - 1 (mod m).

That is

(y — P) (kc~ 1 — ka “ ■*•) = (a  — p) (kb -  1 — ka “ -1) (mod m).
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Since m s  (k—l)k^ + l ,  0^ a, p,y  ̂ k —1 and a < b < c s X  + l,

| ( y - P )  (kc _ 1 - k a _ 1 ) j <  m

and

| ( a - p ) ( k b - 1 - k a - 1) | < m.

Now if  any two of a, (3 and y are equal, then we can obtain a = p = y . 

Thus, we assume a, (3 and y are all distinct. If y — (3 and a — {3 are both 

positive or both negative, then we have

( y - p ) ( k c - 1- k a - 1) = (a  — p) (kb -  1 — ka ~ -1) ,

i.e.,

| y — P | kc -  1 = | (a  — p) kb ~ 1 + (y — a )  Is? -  1 J

s  (k—1)kb_ 1 + ( k - l ) k a_ 1 < k0" 1 

which implies p = y, a contradiction. If one of y -  p and a -  p is positive 

and the other is negative, then we have

I y - P  I £  k  — 2

and

( y - p ) ( k c" 1- k a - 1) = ( a - p ) ( k b - 1- k a - 1)± m .

It follows that

m <. | y — p j kc -  * + | a — p | kb “ ■*■ + | y — a | k3 ~ *

s  ( k - 2 ) k c - 1 + ( k - l ) k b - 1 + ( k - l ) k a - 1 

<; (k —2)kc_1 + ( k - l ) k c - 2  + ( k - l ) k c - 3  

s  (k — 1) kc - 1 <. (k — 1) k \  

contradicting the assumption m s  (k —l)k^ + l. If a = 0, then we have

x = h = j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

y = i + pkb ~ 1 = h + akb ~ 1 (mod m) 

z = j + ykc ~ 1 = i + pkc “ 1 (mod m)

which gives

(y — p)kc_1 - ( a - p ) k b - 1  (modm).

By similar argument we have a = p = y. Therefore, all three edges of the 

triangle T are in Fa. This completes the proof. □

We now construct [n, r, X]-semi-strongly regular graphs for r being a 

multiple of (X + 1) (X + 2). The technique of constructing this kind of graphs 

will be modified to construct general semi-strongly regular graphs. First we 

introduce some terminology which will be used in the constructions.

For an [n, r, X]-semi-strongly regular graph G with X > 0, we say a 

set S = { G1( G2, ..., Gt } of subgraphs of G is a good set if

(i) all G1} G2, ..., Gt are vertex-disjoint complete graphs of order X + 2 ,

(ii) G has no edges incident with one vertex in Gj and the other vertex in 

Gj for i*j,

(iii) there exists a vertex v i in each subgraph Gt such that vt and Vj 

have no common neighbors for i * j.

We can now present the construction.

Suppose G is an [n, r, ^]-semi-strongiy regular graph with X > 0 and 

r = (X + 1) (X + 2) x. For a good set S = { Glf G2, } of G, we can

obtain a new graph G(S) from G as follows: We remove all the edges from 

v i to the other vertices in Gi for 1  ̂i ^ (X +1) x, add a new vertex u and
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join u to every vertex in each Gj and add an edge between each pair of 

vertices in

Xj = ^Xj | ( i - 1) (X + 1) + 1 s  j <; i (X + l)j-

for 0 £ i s x .  Then it is clear that G(S) is an r-regular graph of n + 1 

vertices and every edge is in at least one complete graph of order X + 2.

Lem m a 2.1. Let G be an [n, r, A.]-semi-strongly regular graph with X > 0 

and r = (X + 1) (X + 2) x and let S = { Gx, G2, G a+1)x } be a good set of G.

Then G(S) is [n + 1, r, X.]-semi-strongly regular. In addition, if  G is clique- 

disjoint, then G(S) is also clique-disjoint.

Proof. From the construction, we know that G(S) is an r-regular graph of 

order n+1 and every two adjacent vertices of G(S) have at least X 

common neighbors. We now show that every two adjacent vertices of G(S) 

have exactly X common neighbors. Let W be the set consisting of all 

vertices in Gj for 1 s  i  ̂ (X + 1) x together with the new vertex u and let 

V j, v2 be two adjacent vertices in G{S). If both v 1 and v2 are not in W, 

then clearly v 1 and v2 have X common neighbors in G(S) since the 

original graph G is semi-strongly regular. If exactly one of vx and v2 is in 

W, then no common neighbors of Vj and v2 are in W, and hence vx and 

v2 have exactly X common neighbors in G(S). If both v, and v2 are in

W, then by the conditions (ii) and (iii) of S and the construction, the edge 

VjV2 is in a unique K> +2, and the subgraph induced by W has no triangles

which contain two edges from different complete graph of order X + 2. 

Therefore, G(S) is [n +1, r, A.]-semi-strongly regular. □
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Theorem  2.4. Let X, r, n be positive integers with

r = (X + 1) k = (X +1) (X + 2) x

and

( k - l ) k  + ( f - k - f \  (k + 2) if X = 1;

Then there exists a clique-disjoint [n, r, X]-semi-strongly regular graph. 

Proof. Let n = (X + 2) m + y with 0 ^ y ̂  X +1. Then

By Theorem 2.3, k m is a clique-disjoint [n1? r, X]-semi-strongly regular

graph, where nx = n —y = (X + 2) m. We intend to add y new vertices to 

Gx,k,m *n a ProPer way so that the resulting graph is a clique-disjoint 

[n, r, X]-semi-strongly regular graph. By Lemma 2.1, it suffices to find y 

vertex-disjoint good sets S0, S1}..., in Gx k m. Let Qj be the complete 

graph Kx+2 on the i-th column {(0, i), (1, i ) , ..., (X + 1, i ) }, for 0 £ i  ̂m -  1. 

Next let

if X = 1;

SJ = { % J )  | 0 s i s ( X + l ) x - l }

for 0 isj  ̂y — 1, where
- i (k + 1) + j if X = 1 and k is even;

ffi, j) = - i (k + 2) + j if X = 1 and k is odd;
. i (k2 + 1) + j if X  ̂2.

Since j s y -  1 s X s k - 2  and k = (X + 2)x, we have
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i £ (X + l )x — 1 £ k - 2 ,  

i (k + 2) + j £ (k —2)(k + 2 ) + k —2 £ ( k - l ) k  + ^ | - k - l j  (k + 2) < m

and

i (k2 + l )  + j £ [(k + l ) x - l ]  (k2 + l )  + k - 2  < m

which imply that S0, S1 ( Sy_x are vertex-disjoint. Next, we prove that 

each Sj is a good set in k m. Clearly, condition (i) is satisfied. To verify 

condition (iii), we let x^ = (0, fii, j)) for 0 s  i s  (k + 1) x — 1. Then we claim 

that N(xa j) fiN(xb j) = 0  for a*b.  Suppose, to the contrary, that (d, h) is 

adjacent to both xa j and x^. Then by the construction of Gx k m, there 

exist O^p, q s  k — 1 such that

h = fia,j) + pkd_1 = fib,j) + qkd_1 (modm),

i.e.,

fia, j) —fib, j) s  — (p — q)kd - 1 (modm).

It follows that

fia, j)-f ib , j) = — (p — q)kd - 1

or

f ia , j ) - f ib , j )  (p-q)kd - 1 ± m.

For the former case, we claim that d = l .  If d > l ,  then k I [fia, j) —fib, j)].

Since gcd (k, k + 1) = 1 = gcd (k, k2 + 1) and gcd (k, k + 2) = 1 if  k is odd, 
the definition of f  and j a - b  | <; k - 2 imply that k I [fia, j) -  fib, j)] is

impossible. Thus, fia, j) -  fib, j) = -  (p -  q). Since | p - q | ^ k - l ,  we have 

a = b, contradicting the condition a *b. For the latter case, since
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0 s  a, b<; a  + I ) x - l  = -————  — 1,
X +  2

i i i (  ̂+ 1) ka - b  £ ------------- 1 ,
1 1 X + 2

and since d — l s X ,  we have 

m £ j fia,j)-fib,j) | + | p - q  I kd_1 <s | fia,j)-fib,j) | + ( k - l ) k x

<  m ,

a contradiction. Thus the claim holds and condition (iii) for Sj is satisfied.

We now show that condition (ii) is also true for every good set Sj. 

Assume, to the contrary, that there exist two integers a and b with 

0 ^ a ^ b ^ ( X .  + l ) x  — 1 such that there is an edge e joining a vertex of 

Qflaj) to a vertex of Q ^ j), say

e = (h, fia, j)) (d, fib, j)), 

where 0 ^ h < d ^ X  + 1. Then e e Q pq for some integers p and q with 

O ^ p ^ k —1 and O s q s m - l .  Then

r q (mod m) if h = 0;

1 q + pkh ~ 1 (modm) i f h > 0

and

fib, j) = q + pkd “ 1 (mod m).

It follows that

1) when h = 0, fib,j)-fia,j) s  pkd _ 1 (modm);

2) when h> 0 ,  fib,j)-fia,j) = p(kd_  ̂ - k 11-1) (modm).
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From the discussion for condition (iii) in the last paragraph, we conclude 

that 1) can not happen. For 2), by similar argument, we must have h = 1 

which gives

fib,j)-fia,j) -  p(kd“ 1 -  1) (modm).

It follows that either

fib, j) —fia, j) = p(kd - 1 - l ) - m

or

flb,j)-f(a,j) = p(kd - 1 — l) .

If fCb,j)-fCa,j) = p(kd - 1 — l )  — m, then we have

m = p(kd - 1 — 1) + | fib, j )— fia, j) j 

<; ( k - l ) ( k >t- l ) +  | fib,j)-fia, j) |

<; ( k - l ) k x + | f ib,j)-fia,j) | < m,

a contradiction. Now we only have to check the case where

fib, j ) - f ia ,  j) = p(kd “ 1 — l) .

We first consider when a 2:2 . Then

p(kd ~ 1 - 1) = fib, j )-f ia , j)

= (b -a )  (k2 + l )

^ [(X + 1) x - 1 ]  (k2 + l )

(X +1) k
- 1 (k2 + 1 )

X + 2 

< ( k - 1) (k2 + l )

which implies that d s  3 or p = 0, for otherwise

p (kd " 1 -  l )  s k 3- l  s: (k— 1) (k2 + l) .
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Since b * a ,  we must have p > 0  and d = 3. That is,

p(k2 - 1) = (b -  a) (k2 + l )  = t(k2 + l )

for some positive integer t. Thus, (p — t)k2 = p + t < 2k which implies 

p = t = 0 as k = (X + 2)x s  2. This gives a = b, contradicting the 

assumption a * b. Finally we consider the remaining case with X = 1. 

When k is even, we have

p (k d _ 1 - l )  = f(b,j)-f(a,j) = (b — a)(k + 1) < ( k - l ) ( k  + l)

which implies d = 2 and p(k— 1) = (b — a) (k + 1) = t(k + 1) where t = b — a. 

Thus, (p —t)k = p + t<2k.  So k I (p + t) and p - t s l .  Since k is even, 

we have p + t is even, and hence p — t is also even. Therefore p = t = 0 

and a = b, a contradiction. Else when k is odd,

k = (X. + 2)x = 3x.

Similarly, we have

p ( k - l )  = (b -a ) (k  + 2) = t(k + 2),

where t = b — a. Then, (p - t )k  = p + 2t < 3k. Note that k is divisible by 

3. We conclude that 3 I (p + 2t), and then 3 I (p — t) so p = t = 0 and 

a = b, again a contradiction. Therefore, condition (ii) holds.

This completes the proof. □

From Theorems 2.3 and 2.4, the next result follows immediately.
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CoroUary2.3. Let X, r, n  be integers such that X + 2 is a prime and

exists if and only if (X + 1) | r and (.X +1) (X + 2) | nr.

Now, we are ready to construct a clique-disjoint [n, r, X]-semi- 

strongly regular graph for any n large enough if

(X + 1) | r and (X + l)(X + 2) | nr.

Given positive integers X, r = (X + l)k  and n = (X + 2)m + y with 

O s y s X  + 1 such that (X + 1) (X + 2) | nr. Then we have

(X + 2) | ky.

By Theorem 2.3, G^km is a clique-disjoint [(X + 2) m, r, X]-semi-strongly 

regular graph. We want to modify the graph G  ̂k m and add y vertices 

together with certain edges to obtain a clique-disjoint [n, r, X]-semi-strongly 

regular graph. Suppose in graph G^km there exist a set S = { Gp G2, ..., 

Gjjy} of disjoint cliques of order X + 2 and a set X = { x1( x2, ..., } of

independent vertices with xi EV(Gi). We define a new graph G[S, X] on n 

vertices as follows: First, remove all the edges from Xj to the vertices in 

Vi = VCGj) — { Xj} for 1 ^ i £ ky, and add y new vertices u1; u2, ..., Uy.

Then a clique-disjoint [n, r, X]-semi-strongly regular graph

Let

ky = (X + 2)p.
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For 1 s  j ^ y, join vertex Uj to every vertex in Vi for (j —l ) k + l  ^ i  ̂ jk; 

then, we divide the set X into p subsets XJ.X2 , ...,Xp with X + 2 vertices 

in each subset, i.e.,

Xi = {x j I (i- 1 )  (X + 2) +1  s  j <; i (X + 2) J-,

and add an edge between each pair of vertices in Xj to form a K>+2 for 

1 ^ i ^ p. It is clear that G[S, X] is r-regular. Similarly to Lemma 2.1, we 

can derive the following lemma.

Lemma 2.2. Let S = { Gj, G2, ..., Gj  ̂} be a set of disjoint cliques of order 

X + 2 in GX)k m such that each Sj = { Gg_1)k+1, G ^ ^ , ..., Gjk > is a good 

set and X = { xv  x2, ..., x ^  } with xi EV(Gj) is an independent set of vertices 

satisfying N(xi) D N(xj) = 0  for i * j, then G[S, X] is a clique-disjoint 

[n, r, A.]-semi-strongly regular graph.

Now, we can present our general existence theorem.

Theorem2.5. Let l s 2 ,  n  and r be integers and let n = (X + 2)m + y 

with 0 ^ y £ X +1 and

m > ( k - 1) k  ̂+ ( k y - 1) (k* + 1)
r

where k =  ̂ s  2 and t is an integer such that

k 1" 2 <  U l s  k * ~ 1 .

Then a clique-disjoint [n, r, X]-semi-strongly regular graph exists if  and only 

if (X + 1) | r and (X + 1) (X + 2) | nr.

Proof. Clearly, t ̂  2. The necessary condition follows from Proposition 1.4.
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Conversely, assume (X + 1) I r and (X + 1) (X + 2) I nr. We know that 

these two conditions imply (X + 2) | ky. Assume

ky = (X + 2)p.

Let G be the graph G[S, X] constructed above by adding y vertices to the 

graph G  ̂j. m. By Lemma 2.2, it suffices to show that G^k m has a set S 

= { G1? G2, ..., G ^ } of disjoint cliques of order X + 2 such that each subset 

Sj = { G(j_1)k+1, G(j_1)k+2, ..., Gjk } is a good set and there exists a set X = { xv  

Xg,..., xj^} of independent vertices with xt e VCGp satisfying N(xi) D N(Xj) 

= 0  for i * j. In fact, we take Gi to be the clique on the (i — 1) (k* + l)-th  

column and xi to be the top vertex of that column, i.e.,

Xj = (0, (i — 1) (k* + 1)) for I s i s  ky.

Let

S = {G1,G2,...,Gky},

X — { Xj, X2, ..., Xjjy }

and

—  ̂^(j-l)k+l> ^(j-l)k+2; ^jk

It is clear that X is an independent set. We will show that each Sj is a 

good set. First, we prove Sj satisfies the condition (ii) of a good set.

Suppose, to the contrary, that there exist two integers a and b with 

(j — 1) k + 1 s  a * b *s jk such that there is an edge from a vertex of Ga 

to a vertex of Gb, say

e = (h, (a -  lXk* + 1)) (d, (b -  lXk1 + 1)) 

with 0 ^ h < d ^ X + l .  Then e e Qp for some O s p s k - 1  and 0 ^ q  ̂

m —1. This implies that
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r q (mod m) if h = 0;
(a-DCls  ̂+ l) * \ , h_i  . , . . . .[ q + pkn L (mod m) if h > 0

and

(b — 1) (k* + 1) = q + pkd - 1 (mod m).

It follows that

1) when h = 0, (b -  a) (k* + 1) = pkd “ 1 (mod m);

2) when h > 0, (b — a) (k* + 1) = p(kd -  1 — kh -  *) (mod m).

Since lb —a l ^ k —1, we have

1 (b -  a) (k* + 1) | s  ( k - 1) (k6 + 1) < m.

Also,

p(kd _ 1 — kh _ 1)  ̂ pkd “ 1 ^ (k -  Dk^ < m.

If 2) is true, that is,

(b — a) (k* + 1) = p(kd “ 1 — kh " 1) (mod m) with h > 0, 

then we must have

(b -  a) (k* + 1) = p(kd -  1 -  kh -  !), (2.1)

for otherwise,

(b — a) (k* + 1) + m = p(kd -  1 — k*1 -  ■*■)

which implies

m (k -  l)k^ + ( k y - 1) (k6 + 1), 

contradicting the definition of m. Since 0 s  b —a ^ k —1 and

gcd (k, k* +1) = 1, 

equation (2.1) implies h = l  which gives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

(b - a ) ( k t + l) s  p(kd _ 1 - l ) ,

or equivalently

0 s  pkd “ 1 — (b — a)^  = p + (b —a) ^ 2k —2.

Recall that t s  2 which implies d —1^1. Thus,

pkd ~ 1 — (b — a)^  = p + (b -  a) s  pk — (b — a)^

which leads to k2 + 1 s  (b — a) (k* + 1) s  p(k — 1)  ̂ (k — l)2 as b — a > 0, 

a contradiction that completes the discussion of 2). Similarly, for 1), we 

must have d = 1. Then

k2 + 1 :£ (b -  a) (k* + 1) = p s  k - 1  

which is impossible. Thus, each Sj satisfies the condition (ii).

To see that N(xp D N(xp = 0  for i * j, we suppose, to the contrary, 

that there exists a vertex (d, h) adjacent to both xi and Xj for some i * j .  

Then by the construction of  ̂m, there exist 0 £ p ,q  s  k - 1  such that

h = (i —l)(kt + l ) +  pkd_1 = (j — l)(kt + l) + qkd_1 (modm),

that is,

(i —j) (k* + 1) = (q—p)kd_1 (modm).

Notice that

| (i-j)(k* + 1) | <; ( k y - 1) (k* + 1) < m

and

I (q —p)kd_1 | ^ (k—l)k^ < m.

Then either

( i - j H k H l )  = (q—p)kd -  1 ± m,
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which leads to

m ^ (k— 1) + (ky— 1) Qct + 1),

again contradicting the definition of m; 

or

(i—j)(kfc h- 1) = (q-p)kd _ 1 .

For this second case, if  d - 1  s  t, then k* I (i—j) (k* +1). That is the same 

as k** I (i —j). But

| i —j | ^ k y - 1 <; (k + l ) k - l  s  k * - 1

which is impossible. Thus, d —l < t .  We have

k 1 - 1 1 (i — j)

and

q - p  = aflkt + 1)

for some integer a. But a(k2 + 1)  ̂ a ^  + 1) = q — p s  k — 1 implies 

t = 0, and so i = j, contradicting the assumption i * j. Therefore the 

independent set X = {x1,x2, ....xj^y} satisfies conditon N(xi) flN(Xj) = 0  for 

i * j  and each Sj ={G(j_1)k+1,G(j_1)k+2, ...,Gjk> is a good set. This completes 

the proof. □

2.3 The Nonexistence of Some Clique-Disjoint 
Semi-Strongly Regular Graphs

Recall that a clique-disjoint [n, r, X]-semi-strongly regular graph 

must satisfy the necessary conditions given in Proposition 1.4 as well as 

the lower bound n s  (X + 2)(r — X) given in Proposition 2.1. Then, in 

Section 2.2, we showed that when n is large enough, such as n is bigger
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than the lower hound given in Theorem 2.5, the necessary conditions in 

Proposition 1.4 are also sufficient for a clique-disjoint [n, r, L]-semi-strongly 

regular graph to exist. Now, an immediate question is: Do there exist [n, r, 

a ]-semi-strongly regular graphs for those n between the two bounds 

mentioned above? In this section we will give further study to the existence 

problem of [n, r, X]-semi-strongly regular graphs and prove the nonexistence 

of certain such graphs for some remaining values of n with X = 1.

In Corollary 2.2 we observed that the lower bound n = 3r — 3 is 

attained for certain [n, r, l]-semi-strongly regular graphs which then also 

become strongly regular. We now wish to show that other [n, r, l]-semi- 

strongly regular graphs can not exist if n is too close to the bound 3r — 3. 

Specifically:

Theorem  2.6. For r * 6, 12, there is no [n, r, l]-semi-strongly regular 

graphfor n = 3r — 2 or 3r— 1.

Proof. For r  ̂ 0 (mod 6), by Corollary 2.1, n is divisible by 3, so the 

result follows. Assume r = 6k with k s  3. Suppose, to the contrary, that 

there exists an [n, r, l]-semi-strongly regular graph for n = 3r — 2 or 

3r—1. Clearly, every vertex of G lies in 3k triangles. Let vx, v2, v3 be the 

vertices of a triangle in G. For 1  ̂i ^ 3 and for 0 s  t  ̂ 3k — 2, let vi( 

Xi>2t+i, Xj 2t+2 be the vertices of the other 3k — 1 triangles containing v i (for

k = 3 see Figure 2.2) and let

Xi = {*i.j I 6k—2 } .
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Since each edge is in a unique triangle, Xj fl Xj = 0  for i * j and each Xi 

induces a matching with 3k -  1 edges ^  2t+ixi 2t+2 ôr 0 ^ t  ̂ 3k — 2. 

Moreover, for each v * v£, at most one of the two vertices xA 2t+1 and

1.4

‘1.2

v.3

Figure 2.2. A Subgraph of G for k = 3.

*i'2 t+ 2  adjacent to v for 0 s  t ^ 3k — 2. Thus, each vertex v not in 

{ Vj} U Xj can have at most 3 k - 1 neighbors in Xj. Let

X = X1 UX2 UX3

and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

A = { vi> v2> v3 } u X •
Then | A | = 3r —3. Observe that a triangle whose vertices are in X must

contain exactly one vertex from each Xi. We call such a triangle an inner

triangle. For xeX,  let m(x) be the number of inner triangles containing x.

We claim that for 1 s  i s  3, if G has a vertex w e V(G) — A such that

d = ^  dj 2: 4k,

where dj = | N(w) HXj | , then there is at most one vertex y in Xj

adjacent to w with m(y) = 3k — 2. For otherwise, suppose that there are 

two vertices y-j and y2 in Xj which are adjacent to w such that m(yx) = 

m(y2) = 3k—2. Since every inner triangle containing yt or y2 contains no 

vertices in N(w), it follows that yx and y2 have at least cf — 2 common 

neighbors in Xj for j * i. For the set N of common neighbors of yx and y2

in X, | N ] s  ^  ^  — 4 and N must be an independent set. Since yx is in 
j * i

m(y1) = 3k—2 inner triangles, we have

2 (3k — 2) — | N | s  | N | ,

i.e.,
3k —2 s  | N |  ̂ d —4 s  4k—4

which yields k  ̂2, contradicting the assumption that k s 3 .  Thus, the 

claim holds. Now, we consider the cases when n = 3r — 2 and n = 3r — 1 

seperately.

Case 1. n = 3r —2. Then | V(G) —A | = 1. Let u be the additional vertex. 

Let
di = | N(U) D Xj |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

for I s i s  3. It is obvious that each djS3k—land d1+d2 + d3 = r = 6k. 

Without loss of generality, assume dx ^ d2  ̂ d3. Then dx + dg s  4k and 

d3 2i 2. Since m(x) = 3k—2 for every x adjacent to u, from the claim we 

have d3s  1, a contradiction.

Case 2. n = 3 r— 1. Then |V(G) — A | = 2. Let u and v be the two 

additional vertices and let

di= | N ( u ) n X j

and

ti=  1 N(v) DX* |

for 1 s  i s  3. It is easy to see that s  3k — 1 and tx s  3 k - 1. Without loss
2

of generality, assume dx ^ d2 s  d3. Then dx +d2 ^ g- (6k - 1 )  which implies

that dx + d2 a 4k and d3 s  2k. Let nx be the number of triangles 

containing exactly one vertex in Xi. Then nx = n2 = n3 = (6k — 2) (3k — 1). 

This implies that if uveE(G), then

f d i + ti = 4 k —1 ifw^Xj;

|  dx + ^ = 4k if w eXj,

where w is the unique common neighbor of u and v; if  uv £ E(G), then

d̂  + tj = 4k

for all I s i s  3. For the former case, u and v have the unique common

neighbor w. Then we must have m(x) = 3k- 2  for every x adjacent to u

in X. By the claim, d3 s  1. However, k ^ 3, t3 s  3k -  1, and d3 + tg £;

4k- 1  imply d3 s: k 2:3, a contradiction. Thus, we assume uvgE(G). It is 

clear that

dx + + d3 = tx + + 13 = 6k.
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Since dj + 14 = 4k for all l ^ i ^ 3  and d j s d 2s  d3, we have tx <: t2 ^ t3 

and so t2 + 13 s  4k and tx s  2k. Notice that for each

x e [N(u) U N (v ) -  N(u) nN(v) ]  D X, 

m(x) = 3k -  2. By the claim, it follows that u and v have a s  tj — 1 

common neighbors in X1 and b s  d3 — 1 common neighbors in X3. It is 

obvious that d3 s  2 and tx  ̂2. Without loss of generality, let x3 1 and x3 3 

be two vertices adjacent to u in X3 with m(x31) = 3k -  3. Then x3 x and 

x3 3 have p s  dx -  4 common neighbors in Xx and q  ̂d2 — 4 common 

neighbors in X^ Since x31 is in 3k—3 inner triangles, it follows that

3 k - 3  a p  + q s d j  +d2- 8 .

As k s  3, dj + 6 2  ^ 4k + 2 which implies that d3 ^ 2k — 2. By symmetry, 

we also have t1s 2 k —2. Thus, d1:s2k + 2 and t3 ^2k + 2, and so d2 +d3 

s 4 k - 2  and t1 + t2 ^ 4 k - 2 .  Since d3 s 2 k - 2 ,  tx s 2 k - 2 ,  and dj + t2 = 

4k for 1  ̂ i 3, we have either tj + 13 s  4k or dx + d3  ̂4k. By the claim, 

u and v have c £: min {d2 — 1, — 1} common neighbors in X .̂ It follows

that u and v have

a + b + c s  min{ tx — 1 + d3- 1  + d2- 1 ,  t1- l  + d3 — l  + t g - l }

£ (2k — 2) + (4k— 2) -  3 = 6k — 7 

common neighbors. This implies that 3k ^ 6k -  7, i.e., k s  2, 

a contradiction. Therefore, the theorem holds. □

Next, we make several remarks which cover the cases r = 6 and

r = 12.

Remark 2.1. There is no [ 3 r - 2, r, l]-semi-strongly regular graph for r = 6 

or 12.
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Proof. Suppose, to the contrary, that there exists a [3r -  2, r, l]-semi- 

strongly regular graph G for r = Sk with k = 1 or 2. Let v1( v2, v3 be the 

vertices of a triangle in G. For 1 ^ i ^ 3, let vv xi 2t+1, Xj 2t+2, for 0 ^ t s  

3k—2, be the vertices of the other 3k — 1 triangles containing v i and let

Xi = { xi j  I 1 ^  J ^  6 k “ 2 } •

Since G has 3r — 2 vertices, we let u be the only additional vertex of G. 

Clearly, each inner triangle (i.e., a triangle not containing v1,v 2, v3 and u) 

of G must contain one vertex from each this implies that u is  

adjacent to exactly 2k vertices in each say xi2j+1 for 0 s j s 2 k - l  in 

X̂ . Without loss of generality, let 3k triangles containing u be

uxi,2j-ix2 ,2j+2k-i> ux2,2j-ix3,2j+2k-i> ux3 ,2j-ixi,2j+2k-i f°r 1 ^ j s  k (see Figure

2.3 for k = l ) .  We consider the following two cases.

1.4

1.2

v.3

Figure 2.3. A Spanning Subgraph of G for k = 1.

Case 1. k = 1. In this case, since Xj 1 is in an inner triangle, x 1 j must be 

adjacent to x2 2. Similarly, x 13 is adjacent to x3 4, x2 1  is adjacent to x32, 

and x3 3 is adjacent to x2 4. Then x 1 1  and x2 2 must have the common
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neighbor x3 4. Now, x13 and x3 4 can not have any common neighbor, 

contradicting the condition that every edge of G is in a triangle.

Case 2. k = 2. Then each vertex in X = { x3 1( x3 3, x3 5, x3 7 } is in four

additional inner triangles. This implies that every pair of vertices in X have 

at least two common neighbors in each of X 1 and Xg. Moreover, if x3 x 

and x3 3 have exactly two common neighbors in X1? then x3 5 and one of 

x3 1 and x3 3 must have at least three common neighbors in Xv  It follows

that there are two vertices x and y in X which have at least five common 

neighbors in X 1 U X2 . Then those five common neighbors must be

independent which implies that neither x nor y is in four inner triangles, a 

contradiction. □

Finally, we note that a [3r — 1, r, l]-semi-strongly regular graph for 

r = 6 exists (see the graph shown in Figure 2.4).
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CHAPTER IH

GENERALIZED CAGES 

3.1 The Existence of Generalized Cages

In Section 1.3 we generalized the usual cage concept and defined an

(r, g, t)-cage to be an r-regular graph of minimum order n = Hr, g, t) such
1*

that every clique has t vertices, every vertex is in cliques, every

edge is in one clique, and the minimum length of a cycle with edges from 

distinct cliques is g. Clearly, an (r, g)-cage is the same as an (r, g, 2)-cage. 

It was proved by Erdos and Sachs [8] that an (r, g)-cage always exists. Our 

purpose in this section is to establish the existence of generalized cages.

We begin with the following lemma.

Lemma 3.1. For g s: 5, if  an (r, g, t)-cage of order fir, g, t) exists, then 

there also exists an (r, g - 1, t)-cage of order fir, g - 1, t), and fir, g — 1, t) s  

fir, g, t).

Proof. For t = 2, fir, g, 2) is the same as the order fir, g) of an (r, g)-cage. 

It is known that Hr, g - 1) s  fir, g) (see [14]). Thus, we assume t s  3. Let 

G be an (r, g, t)-cage and let C = u ^  ... ugux be a cycle of length g in G 

such that edge uiui+1 is in clique F4 for I s i s  g, where ug+1 = u: and Fi * 

Fj for i * j. Let V(Fj) = { u1( u2, vx, v2, ..., v̂ _2 > and V(F2) = { i^, u3, wx, w2, 

..., Wĵ 2 }. Suppose that G* is the graph obtained from G by replacing two

38
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cliques Fx and F2 with two new cliques Fx' and F2' on the vertex sets 

( VCFj) — { ux }) U { Wj } and ( V(F2) — { wx }) U { ux }, respectively. Then it is 

clear that every vertex is in k cliques and G* has a cycle C' = UjU3u4 ... 

u^Uj with edges from different cliques. Thus the clique girth of G* is at

most g —1. We now claim that the clique girth of G* is g — 1. Suppose, to 

the contrary, that G* has a cycle C* = axa2 ... aha, with h s g  —2 and

with edges from different cliques. Then C* must contain at least one new 

edge, i.e., an edge in E: = { u 1u3,u 1Wj I 2 s j  <; t — 2 > or E2 = { wxVj i 1 s  j £ 

t -  2 }. Since Ex is contained in the clique F2' and E2 is contained in the 

clique F /, C* contains at most one edge from each Et. If C* contains 

exactly one new edge a ^ ,  then either axa2 = u1a2, where a2 =u3 or a1a2 

= w 1Vj, for some j. Then G must has a cycle a - ^ a ^  ... a^aj of length h 

+ 1  ̂ g — 1 , which implies that the clique girth is at most g -  1 , 

a contradiction. If C* contains two new edges, say axa2 = uxa2 where a2 = 

u3 or Wj, and ajaj+1 =w 1vg, for some j ( 3 s j < ; h - l ) ,  then G has a cycle 

a2a3 ... â a2  of length j - 1  <; g - 4  and a cycle aj+1aj+2 ... aha1aj+1 of length 

h - ( j - l ) ^ h - 2 s g - 4 ,  both imply that the clique girth is less than g, a 

contradiction. Thus, an (r, g - 1 , t)-cage exists and fir, g - 1 , t)  ̂fir, g, t). □

We define the distance dlHj, between two subgraphs of a graph 

G to be the shortest distance from any vertex vx e Hj to any vertex 

v2 e H2. For convenience, we shall invent some names for certain 

quantities that arise repeatedly, specifically let

cp(k, g, t) = 1 + ( k - 1 ) ( t - 1 ) + ( k - 1 )2 ( t - 1 )2 +... + ( k - 1)®- 2  ( t -  l)s- 2 

and
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h(k, g, t) = t  ( t - 1 ) [ tp(k, g, t) + ( k -  l)g- 2  (t -  l)s_1 ] + 1 .

For each vertex v of a graph G, let c(v) be the number of cliques in 

G containing v. Suppose that G = (V, E) is a clique-disjoint graph with t 

vertices in each clique such that k — 1  ̂ c(x) s  k for all x e V. Then we 

have the following immediate inequalities:

(1)If p e V  and c(p) = k —1 , then

| {x e V I d(x, p) £ g -  2  } I =s <p(k, g, t).

(2) Let be a clique in G. Then

| {x e V I d(x, Kj.) s  g - 2} i <; t cp(k, g, t).

Let G(k, g, t) = { G I G is a clique-disjoint semi-strongly regular 

graph with X = t —2, c(x) = k for all xeV(G) and clique-girth at least g).

These quantities happen to lead to the proof of Theorem 3.1, but the 

reason they have been chosen will not be evident until we reach the end of 

the proof. The proof is motivated by a method in [1 2 ].

Theorem 3.1. For t s 2 ,  g s  4, k s l ,  nsh(k, g, t) and n = 0 (mod t), there 
exists a graph G e G(k, g, t) so that | V(G) | = n.

Proof. (By induction on k.) The theorem obviously holds for k = 1 . 

Assume the result is true for k — 1, where k > 1 . Since n s  h(k, g, t) > 

h ( k - 1 , g, t), there exists a graph G0e G ( k - 1, g, t) of order n. Let

N = { H I H is a clique-disjoint graph of order n with t vertices in each 

clique, k - 1  <; c(x) «s k for any x e V(H), and clique-girth at least g }.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Then N * 0  since G0 e N. Let c(G) denote the number of cliques in graph

G. Assume G e N  such that c(G) s  c(H) for every H e N .  We claim that

G is the desired graph (i.e., G e G(k, g, t ) ).

To prove the claim, it suffices to show that c(x) = k, for every x in 

V(G). Suppose, to the contrary, that V  = { x i x e  V(G), c(x) = k — 1 } * 0}. 

The number of distinct pairs (x, with x in Kj is t- c(G) = n k — | V  |.

Since n = 0 (mod t), | V  | is a multiple of t and so | V* | s  t. Let A be a 

subset of V  and | A | = t. Next we will show that there are t — 1 distinct 

cliques of t  vertices Q1} Q2, ..., such that

d(Qj, A ) s :g -1  (3.1)

and

d(Qi;Q j)sg - 1  for i^j.  (3.2)

Suppose that there are at most m cliques Q1? Q2, ..., Qm satisfying (3.1) 

and(3.2) and O s m s t - 2 .  Let

B = A U V(Qj) U V(Q2) U ... U V(Qm)

and let

C = { xeV(G) i d(x, B ) ^ g - 2 } .

Then

| C | *s (m + 1 ) t <p(k, g, t) <; t ( t - 1) cp(k, g, t).

Define D = V(G)-C, then

| D | = n -  | C ! > t ( t - l ) ( k - l ) g - 2 ( t - l ) s - 1.

The set D contains no by the maximality condition on m. Let

E = { v e V(G) I d(v, B) = g —2 }.
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Then | E | s  (m + 1) t (k -  1)S"2 (t -  l)z~ 2  <; t (k -  l)g"2 (t - 1)^1. Let

D'MK,. I V(Kt) n D * 0 } .

Since D contains no complete Kj. and the vertices of D are at distance at 

least g — 1 from B, it follows that if  e D', then K,. n E * 0  and VCK̂  

C E l l D .  Since each vertex in E is in at most k -  1 cliques in D', it 

follows that

Also since each vertex of D is in at least k - 1  cliques Kj. in D' and every 

Kj. in D' contains at most t — 1 vertices in D, we have

s  (t -  1) | E | £ t(t - 1 ) (k -  l)s- 2 (t -  l)s_1.

Thus, there are —.Qt-i satisfying (3.1) and (3.2).

Since A, V(Q1), V(Q2) , ..., V(Qfc_1) are t disjoint sets each with t 

elements, there are disjoint sets Xlf X2 , ..., X,. such that | X̂  | = t and

|X^flA | =1, | Xi DV(Qj) | = 1 for l ^ i ^ t ,  l s j s t —1.

Now, let Gj = G -  E(QX) U  E(Q2) U ... U  E(Qt_1) and G2 be the graph 

obtained from Gx by joining all possible pairs of vertices in each Xj and 

denote the new cliques on each Xj by Zj. Clearly, G2 is a clique-disjoint

graph with t vertices in every clique and c(x) = k — 1 or k for all x e 

V(G2). We now show that G2 has clique-girth at least g. Suppose, to the
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contrary, that G2 contains a cycle with length b < g such that

each edge eA is from a different clique FA. Since the clique-girth of G is at 

least g, one of the cliques Fj must be one of the Zi( say Fj = Zx. Let p e  

Fj D F2 and q e  Fx fl Fb, then p * q and by the definition of Z1 we may 

assume pgA.  Since Zv  Z2 , Z t are mutually disjoint, F2 £ { Zlf Z2, ..., 

Zj.}, and hence, there is some s with 2  s  s s  b such that Ft is in Gx for 

l s i ^ s  and Fs+1 e { Z^ Z2, ..., Zt }. This imphes that there is a path of 

length at most g - 2  joining p and a vertex w e A U  V(Qj) U  V(Q2) U  . . .  U  

VCQ^j), where w and p are not in the same Qj, which contradicts (3.1) 

and (3.2). Therefore, the clique-girth of G2 is at least g and G2 e  N. But 

c( G 2 ) = c(G) + 1, contradicting the maximality of c(G). Hence G e 

G(k, g, t). □

By Lemma 3.1 and Theorem 3.1, we have the following existence 

theorem for an (r, g, t)-cage.

T heorem 3.2. For g ^ 4  andr = k(t—1), there exists an (r, g, t)-cage and

/g-2 \
fir, g, t) s  t(t - 1 )  J ( k - l ) i  (t - 1  y  + (k -  1)S- 2 (t -  DB- 1 + 1.

i= l

3.2 Lower Bounds for the Order of (r, g, t)-Cages

For g ^ 4  and r = k ( t —1), let
d

1 + ^  k (k — I )1-1 (t — l )1 if g = 2 d + 1 ; 

f0(r, g, t) = - d 1-1

if g = 2 d + 2 .
v i=0
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Then it is easy to see that f(r, g, t) s  f0(r, g, t). For a clique-disjoint

[n, r, t — 2]-semi-strongly regular graph G with clique-girth g, define 

e = n — f0(r, g, t) to be the excess of G. Recall that any (r, g, t)-cage must be

a clique-disjoint [n, r, t — 2]-semi-strongly regular graph. The following 

statement is equivalent to Theorem 2 .2 .

Proposition 3.1. For g = 4 and r = k ( t —1), an (r, 4, t)-cage G of order n 

= f0(r, 4, t) must be [n, r, t — 2, k]-strongly regular and it is the point graph

of a generalized quadrangle GQ(k, t). Conversely, the point graph of a 

generalized quadrangle GQ(k, t) is an (r, 4, t)-cage with r = (t — 1) k.

Next, we derive that any (r, 5, t)-cage with excess 0 must also be 

strongly regular.

Proposition 3.2. For g = 5 and r = k(t— 1), any (r, 5, t)-cage G of order 

n = f0(r, 5, t) is [n, r, t - 2 ,  l]-strongly regular.

Proof. Let G be a (r, 5, t)-cage of order n = f0(r, 5, t), where r = k(t — 1 ), 

and

f0(r, 5, t) = 1 + k ( t - 1) + k ( k - 1) (t — l)2.

We only need to verify the condition that every two non-adjacent vertices 

have exactly one common neighbor. Since the clique-girth of G is 5, every 

pair of non-adjacent vertices have at most one common neighbor. Let u 

and v be two non-adjacent vertices. The set N(u) of neighboring vertices 

of u contains r elements. Then v is in the set W of remaining vertices. 

Since G is of minimum order, every vertex of W is adjacent to some
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vertex of N(u). Therefore, u and v have exactly one common neighbor, 

and G is strongly regular. □

Note that for g = 2d +1, an (r, g, t)-cage of order n = f0(r, g, t) is a 

Moore geometry of diameter d (see [9] for a definition). It is known that 

there exists no nontrivial Moore geometry of diameter greater than 2 (see

[6 ], [9] and [10]). Thus, we have the following proposition.

Proposition3.3. For g = 2d +1 ^ 7 and r = k(t— 1) > 2,

f(r, g , t )> f 0(r,g,t).

Theorem  3.3. There is no clique-disjoint [n, r, t — 2]-semi-strongly regular 

graph with clique-girth 5 and excess one.

Proof. Suppose, to the contrary, that there is an [n, r, t — 2]-semi-strongly 

regular graph G with clique-girth 5 and excess one. Then

n = 2  + k(t— 1 ) + k(k— 1 ) ( t - 1 )2

and r = (t — 1) k for some positive integer k. For convinence, let X = t — 2. 

Then r = (X + l)k  and n = r2 — Xr + 2. Without loss of generality, we 

assume r ̂  3. Let A be the adjacency matrix of G. Then we obtain

A2 — (X — 1) A — (r — 1) I = J — B

where J is the nxn matrix all of whose entries are 1 and B is an 

adjacent matrix of a perfect matching, i.e., a direct sum of the adjacent 

matrices of K2's with a suitable relabelling of G. It follows that n is even

and J — B -  I is the adjacency matrix of K(2, 2,..., 2). Since the 

eigenvalues of K(2 , 2 ,..., 2 ) are n — 2 , 0 , — 2  with multiplicities 1 , 7 7 , ^  — 1 ,
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respectively, J — B has eigenvalues n — 1 , 1 , - 1  with multiplicities 1, ^ ,
n
2 —1 , respectively. Any eigenvector of A having eigenvalue x must also

be an eigenvector of J —B with eigenvalue x2 — (X -  l)x -  (r -  1). As A is 

real and symmetric, it must have one eigenvalue satisfying

x2 — (X -  l)x  — (r - 1 ) = n - 1  

which gives one eigenvalue x = r, ^  eigenvalues satisfying

x2 — (X — l)x  — (r — 1) = 1,

i.e.,

xi 2 = “ — where s = “sjCk — l )2 + 4 r , 

and tt — 1  eigenvalues satisfying

x2 -  (X - 1 ) x — (r — 1 ) = — 1 ,

i.e.,
(a — 1 ) ± t

X3,4 = ' 2

Suppose that the multiplicities of the distinct eigenvalues x4, x2, x3, x4 for 

adjacency matrix A are a, b, c, d, respectively. Then

a + b = ^ and c + d = ^ — 1.

Since the trace of A is zero, we obtain the following identity:

r + ^ g  "On —l )  + §~(a —b) + |~(c —d) = 0. (3.3)

where t = — l)2 + 4(r — 2).
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Considering A3, the number in each (i,i)-entry gives the number of (i,i)

walks of length 3. Since each triangle containing vertex i gives two such

walks, the (i.i)-entry of A3 is equal to -—-—- f^+^ 2  = Xr. Thus,
(X + l) V 2 )

tr( A3) = nXr.

On the other hand,

tr(A3) = r3 + xf a + x | b + x | c + x | d

which leads to the following identity:
,  a - i ) 3 + 3 a - i ) s 2 n 3 a - D 2s + s3 , , N

nAr = rs + ------------ g--------------  ̂+ ---------- g----------(a -b )

( x - i ) 3 + 3 ( x - i ) t 2 /n s a - i ^ t + t 3 , 1N
+ ------------ g-------------------- + ---------- g--------- (c-d).

By substituting s2 and t2 in the the above identity we obtain
,  ( X - l ) 3 + 3 ( X - l ) r  n r,, n s ,

nXr = r3 + ------------g------------- 2 + +rJ 2 ̂ a_ ^
( X - l ) 3 + 3 ( X - l ) ( r - 2 )  /n ^  .............................

+ ---------------- 2------------------ (2 J + ~   ̂ + r̂ _  2 Ĵ 2 ^  ~  ^  ^

Now we consider the following four cases:

Case 1. Both s and t are rational, hence both integral. Since s2 — t2 = 8, 

we must have s = 3 and t = 1. Thus (X — l)2 + 4r = 9 which implies r s  2, 

contradicting the assumption r s  3.

Case 2. Both s and t are irrational. First suppose that s and t are 

linearly dependent over the rationals. Then s2 and t2 must have the same 

square-free part a, which must divide their difference 8. Then a can only 

be 2. Let s = u y/2 and t = v V2. We have s2 — t2 = 2(u2 — v2) = 8 which
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gives u2 — v2 = 4. But there are no two positive integers u and v with the 

difference of the squares equal to 4. Thus s and t must be linearly 

independent over rationals. This implies that the eigenvalues xx and x.2 

occur in pairs; so also do the eigenvalues x3 and x4. Since one of ^  and

^  — 1 is odd, this is impossible.

Case 3. s is irrational and t is rational. Then the eigenvalues x1 and x2 

must occur in pairs which implies that ^  is even and a = b. Since

n = r2 — Xr + 2 = (X + l)2k —X(X + l)k  + 2, where r = (X + l)k,

we must have X + l  even and k odd. Moreover, X + l  can not be divisible 

by 4. It follows that X + l  = 2(mod4), i.e., X = l(mod 4). As a = b, (3.3) 

and (3.4) give

r + —2~ ( n  — 1) + | - ( c -d )  = 0

and
,  (X — l)3 + 3 (X — 1)r n (X-1)3 + 3 ( X - 1) ( r - 2 )  ,n ^  

nXr = r3 + ----------- 3------------- 2 + ----------------2--------------- (S""1)

+ [(X —l)2 + (r - 2 ) ] | ( c - d ) .

After simplifying the second identity above we have

2nXr-2r2 + 2 ( X - l ) 2r + 2 r ( r - 2 ) - 3 ( X - l ) n r  + ( X - l ) ( n  + 2)r  

= (X — 1) (—n + 4) (3.5)

which implies that r I (X — 1) (n — 4) = (X — lXr2 — X r + 2), i.e., r I 2 (X — 1). 

Since r = (X + l)k, we have (X + l)  I 2 (X -1) ,  i.e., (X + l)  I 4. Then X + l  

= 1,2, or 4. Recall that X s  1 (mod 4). Thus X = 1, which eliminates
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several terms in (3.5) and leaving 2nr—2I-2 + 2r (r — 2) = 0. That is nr =

2r, a contradiction.

Case 4. s is rational and t is irrational. Then the eigenvalues x3 and x4 

appear in pairs. That is, c = d. Similar to Case 3, by combining (3.3) and 

(3.4) and simplifying the resulting identities, we obtain

3 (X — l)r + 2r — 2Xr = X2 — X — 4 (3.6)

which implies that r I X2  -  X — 4. Since r = (X + l)k, (X + 1) I X2  -  X -  4, 

i.e., (X + 1) 12. Thus, X + 1 = 1 or 2, that is X = 0 or 1. For X = 0, (3.6) 

yields that r = 4. But the (4 ,5)-cage has 19 vertices which is greater than 

n = 18, a contradiction. For X = 1, it follows from (3.6) that 0 = — 4, also a 

contradiction.

Therefore, the theorem follows. □

By letting X = 0, we obtain Brown's result [2] as the following 

corollary.

Corollary 3.1. There are no r-regular graphs with excess one and girth 5.

3.3 The Known (r, g, t)-Cages

We begin this section with the following observation that shows a 

connection between (r, g)-cages and generalized (2(r — 1), g, r)-cages.

Proposition 3.4. For g s> 4, a graph G is an (r, g)-cage if and only if  the 

line graph L(G) of G is a (2 ( r - 1), g, r)-cage.
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Proof. Assume that g 2:4. Let H be a (2(r — 1), g, r)-cage. Then, by a 

characterization for a graph to be a line graph of some graph (see [13]), it 

follows that H must be a line graph of another graph G. Furthermore, G 

must be r-regular and has girth g. Since H = L(G) is of minimum order, G 

is an (r, g>cage. Conversely, let G be an (r, g)-cage. Then it is easy to see 

that the line graph L(G) of G is a 2(r -  l)-regular graph with every clique 

of the same order r and clique-girth g. This implies that L(G) is a 

(2(r -  1), g, r)-cage for otherwise a 2(r -  l)-regular graph of smaller order 

with all cliques of the same order r and the clique-girth g would give an 

r-regular graph with girth g which has order less than the order of G, 

contradicting the choice of G. □

So far, (r, g)-cages with g s  4 have been found for the pairs (see [14] 

for detail information)

(r, g) = (r, 4): order n = 2r, K(r, r) with r s: 2;

(3, 5): order n = 10, the Petersen graph;

(4, 5): order n = 19, the Robertson graph;

(5, 5): order n = 30, three known cages;

(6,5): order n = 40;

(7, 5): order n = 50, the Hoffinan-Singleton graph;

(3, 6): order n = 14, the Heawood graph;

(7,6): order n = 90;

(r, 6): order n = f0(r, 6,2) with r —1 a prime power;

(3, 7): order n = 24;
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(3,8): order n = 30;

(r, 8): order n = f0(r, 8,2) with r - 1  a prime power;

(3,10): order n = 70, three known cages;

(r, 12): order n = f0(r, 12, 2) with r - 1 a prime power.

Thus, by Proposition 3.4 we have a corresponding (2(r — 1), g, r)-cage for

each pair (r, g) listed above.

The above generalized cages are special cases where each vertex is

in two cliques. In the following, we present some generalized (r, g, t)-cages

with each vertex in at least three cliques.

We first consider (r, g, t)-cages with g = 4. By Proposition 3.1, any 

(r, 4, t)-cage of order n = f0(r, 4, t) = t [1 + (k -  1) (t -  1)] is [n, r, t  -2 , k]-

strongly regular and is the point graph of a generalized quadrangle
J*

GQ (k, t), where k = ; and conversely. It is known (see [3]) that a

generalized quadrangle GQ(k, t) exists for the pairs (k, t) = (2, q + 1),

(q + 1, 2), (q + 1, q + 1), (q2 + 1, q + 1), (q +1, q2 + 1), (q2 + 1, q3 + 1), and

(q3 + 1, q2 + 1), where q is a prime power. Thus, we have (r, 4, t)-cages for

(r, 4, t) = (2q, 4, q + 1),

((q + 1) q, 4, q + 1),

C(q2 + 1) q, 4, q + 1),

((q + 1) q2, 4, q2 + 1),

((q2 + 1) q3, 4, q3 + 1),

((q3 + 1) q2, 4, q2 + 1),

where q is a prime power.
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Recall that each (r, g, t)-cage of order n corresponds to a clique- 

disjoint [n, r, t — 2]-semi-strongly regular graph of minimum order with 

clique-girth g. In particular, for g = 4 and t = 3, it follows from Corollary

2.1 that n s 3 r - 3  = f0(r, 4,3). By Corollary 2.2, n = 3 r - 3  only for r = 2, 

4, 6, and 10. Since r = 2 produces K3, the other three give three (r, 4, 3)- 

cages:

(4,4, 3)-cage, (6,4, 3)-cage, (10, 4, 3)-cage 

which can also be obtained by taking q = 2 in the first three triples of the

Figure 3.1. A (8 ,4 ,3)-cage.
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list in the preceding paragraph. Thus, any other (r, 4, 3)-cages must have 

order n > 3r — 3. As all cliques K3 in an (r, 4, 3)-cage are edge-disjoint,

3 must divide nr which implies that a (8 ,4 ,3)-cage must have order n  ̂3r 

= 24. The graph shown in Figure 3.1 is a (8, 4, 3)-cage which has 24 

vertices. The smallest unknown (r, 4, 3)-cage is (12,4, 3)-cage.

For (r, g, t)-cages with g= 5, by Proposition 3.2, any (r, 5, t)-cage of 

order n = f0(r, 5, t) is [n, r, t -  2, l]-strongly regular. In particular:

(a) When t = 3, (t — 1) I r means r must be even. By the Friendship 

Theorem (Theorem 1.1), there is no [n, r, 1, l]-strongly regular graph other 

than C3. It follows that any (r, 5, 3)-cage must have order n > f0(r, 5, 3).

And then Theorem 3.3 implies that any (r, 5, 3)-cage must have order 

n s f 0(r, 5,3) + 2. The line graph L(P) (see Figure 1.3) of the unique (3, 5)-

cage, the Petersen graph P, is the unique (4, 5, 3)-cage of order 15 = 

f0(4, 5,3) + 2.

(b) For t = 4, (t — 1) I r implies that r is a multiple of 3. It can be 

shown by the Integrality Condition (Theorem 1.2) that an [n, r, 2, 1]- 

strongly regular graph can possibly exist only for r = 21. It is not known 

whether a [400, 21, 2, l]-strongly regular graph exists. Such a graph is 

necessarily a (21, 5, 4)-cage. Any (r, 5, 4)-cage with r * 21 will have order 

n > f0(r, 5, t), and then Theorem 3.3 implies that n s  f0(r, 5, t) + 2.

For odd clique-girth g = 2d + 1 s  7, by Proposition 3.3, any (r, g, t)- 

cage must have order n s  f0(r, g, t) +1.
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CHAPTER IV

MAXIMAL GRAPHS WITHOUT C4

4.1 Introduction of the Problem

Recall that an (r, 5, 3)-cage is an r-regular graph of minimum order 

such that every clique is a C3, all cliques are edge-disjoint, and clique-girth 

is 5. Such a graph can not contain a C4. If we are just interested in the 

restriction of without C4, then a different interesting question could be:

What is the maximum size fin) among all graphs of order n which have no 

C4? This is an old problem posed by Erdos in 1938 (see [11] for a reference). 

It is well-known that f[n) ~^-n V n. It is also well-known that

f(n) £ j n  (1 + V 4 n - 3 ).

For n = q2 + q + 1, the above inequality gives

flq2 + q + 1) |:(q2 + q + 1) (q + 1).

Next, we define the graphs ER(q2 + q + 1) due to Erdos, Renyi, and 

Sos [7],

Definition 4.1. For any prime power q, the graph ER(q2 + q + 1) is defined 

as follows: the vertices are the points of the finite projective plane PQ(2, q) 

over a feild of order q and the points (x, y, z) and (x1, y!, z') are adjacent if  

and only if xx' + yy' + zz1 = 0.

54
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The graph ER(q2 + q +1) has q2 + q + 1 vertices and ^  q (q + 1) 2 

edges and it contains no C4. This establishes the following proposition.

Proposition 4.1. If q is a prime power, then j  q (q + 1 )2 ̂  flq2 + q +1).

It was then conjectured by Erdos in 1976 that 

Kq2 + q + l)  = | q ( q  + l ) 2 .

In 1983, Fiiredi [11] proved that flq2 + q + 1) = ^-q (q + 1) 2 when q is a

power of 2. For n  ̂21, the exact values of fin) have been determined in

[5]. Thus, the smallest unsettled case for the Erdos's conjecture above is 

when q = 5, i.e., fI31). By Proposition 4.1, fl31)  ̂90. On the other hand, it 

follows from the next proposition due to Fiiredi [11] that f(31) s  93. In this 

chapter we will show that fI31)*92, 93, and so fI31) = 90 or 91.

Proposition 4.2. Let G be a graph on q2 + q + 1 vertices which has no 

C4. If the maximum degree of G satisfies A(G) s  q + 2, then I E(G) I  ̂

| -q(q + 1 ) 2 .

4.2 Maximal Graphs Without C4 on 31 Vertices

We now prove the following result.

Theorem  4.1. The maximum size f(31) of a graph on 31 vertices without 

C4 satisfies 90 ^ fI31) :£ 91.

Proof. Let G be a graph on 31 vertices with fI31) edges which has no 

C4. Note that 31 = 52 + 5 + 1. By Proposition 4.1, H31) s  90. If the
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maximum degree of G is A = A(G) s  7, then it follows from Proposition 4.2 

that $31) = I E(G) I ^ 90. Thus, we assume A = 6 and so $31) = I E(G) I  ̂

93. Moreover, if every vertex of degree 6 has a neighbor of degree at most 

5, then G has at least 6 vertices of degree at most 5, and so I E(G) I 

90. Hence, we can assume further that G has a vertex y of degree 6 

such that all the neighbors of y have degree 6. This implies that G has a 

spanning subgraph as shown in Figure 4.1. For convenience, for 1 s  i s  6 

we let Xj be the set of the other four neighbors of vertex yi. We consider

the following two cases.

C a se l. $31) = 93. In this case, G must be 6-regular and every edge of G 

is in exactly one C3. This implies that G must be a [31, 6, l]-semi-

strongly regular graph with clique-girth 5. It follows from Proposition 3.2 

that G is [31, 6,1, l]-strongly regular, i.e., every two vertices of G have 

exactly one common neighbor. By the Friendship Theorem (Theorem 1.1), 

no such graph exists.

Case 2. $31) = 92. Since G has no C4, for each 1  ̂i ^ 6 the subgraph 

induced by Xj has maximum degree at most 1 and each vertex in Xi of
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degree 6 in G must be adjacent to exactly one vertex in each Xj for

j * i, i +1 if i is odd, and j * i — 1, i if i is even. This implies that G must 

have exactly two vertices vx and v2 of degree 5 and all other vertices of 

degree 6. Moreover, vx and v2 can only be in either the same Xj, say 

Xg, or different Xj and Xj with { i , j } ^ { l ,  2 >,{3,4 >, or { 5, 6 }, say X4 

and Xg. For the former case, by moving the vertex yL to the position of the

vertex y in Figure 4.1, we end up with the latter case since there is no 

vertex other than y6 which is adjacent to both vx and v2. Thus, we 

assume the two vertices vx and v2 of degree 5 are in X4 and Xg,

respectively. Then G must contain a spanning subgraph H shown in
/31\ /6\ /5\

Figure 4.2. There are (  ̂ ] pairs of vertices and 29 + 2 (2 ) pairs are

v v,1 2

Figure 4.2. The Spanning Subgraph H of G.

covered in G. Thus, there are 10 uncovered pairs. This meas that there 

are at most 10 edges using uncovered pairs, that is, at least 82 edges of 

G are in C3's. It follows that there are at least 28 C3's in G. Note that
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H contains 15 C3's. Then G has at least 13 additional C3's. We can 

rearrange the vertices of G as in Figure 4.3.
y

,w

Figure 4.3. A Spanning Subgraph of G Containing H.

For convenience, we call C3’s not in H interior triangles. Thus we 

have at least 13 interior triangles. Let A = Xx U Xg, B = X3 U X4, and C = 

Xg U Xg. Then all vertices in A have degree 6, and so every vertex in A 

must be adjacent to exactly one vertex in Xi for 3 s  i s  6. Clearly, each 

interior triangle contains exactly one vertex from each of A, B, and C. 

Since there are at least 13 interior triangles, in each of A, B, and C there 

exist two adjacent vertices each of which is in two interior triangles.
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Assume ux and u2 are two such vertices in A. Without loss of generality, 

assume the interior triangles containing the vertex ux are as shown in 

Figure 4.3 and let the four neighbors of u2 in Band C are w3, w7, z3, 

and z7. Then there are two ways to form two interior triangles contain ing  

U2 - either u2w3z3U2 and t^w ^v^ or u2w3z7u2 and u2w7z3xj2 . Now, 

without loss of generality, let wx and w2 be two adjacent vertices in B 

each of which is in two interior triangles. Then each of w 1 and w2 must be 

adjacent to one vertex in each Xj for i = 1, 2, 5, 6. This forces that wx is 

adjacent to z8 in Xg and one of the vertices in Xv  say u5. Thus, the 

second interior triangle containing wx is w1u5z8w1. Similarly, the edge 

w2z6 is forced and w2 is adjacent to one of z3 and z4 in Xg, one of u3 

and u4 in X2 , say u3, and one of u7 and u8 in Xv  say u7. Now, there 

are two ways to form two interior triangles containing w2 according to 

whether the triangle containing z6 is WgV̂ ZgWg or w2u3z6w2. For the 

former case, since u3 is adjacent to one vertex in Xg, the edge u3z8 is 

forced and then u3z8w1w2u3 is a cycle of length 4, a contradiction. For the 

latter case, since w2 is adjacent to one of z3 and z4 in X5, the second 

interior triangle T containing w2 is either W2U7Z3W2 or vr2 \x1zAw2. For 

T = w 2u7z3w2, since u7 is adjacent to one vertex in Xg, the edge u7z7 is 

forced and then u7z7U2Z3u7 is a cycle of length 4, a contradiction. For 

T = w2 u7 z4 w2, the edge u3z2 is forced, and then the edge u4z4 is forced. 

This gives a cycle u3u4z4w2u3 on four vertices, again a contradiction. 

Therefore, the result follows. □
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CHAPTER V

OPEN PROBLEMS 

5.1 Problems on Semi-Strongly Regular Graphs

For clique-disjoint [n, r, X]-semi-strongly regular graphs, Proposition

2.1 gives a lower bound on the orders n s  (X + 2)(r—X). We then showed in 

Section 2.2 that when n is large enough, such as n is bigger than the lower 

bound given in Theorem 2.5, a clique-disjoint [n, r, X]-semi-strongly regular 

graph exists as long as the necessary conditions in Proposition 1.4 are 

satisfied. Now, an immediate question follows.

Problem  5.1. Do there exist clique-disjoint [n, r, X]-semi-strongly regular 

graphs for those n between the two bounds mentioned above?

In a special case where X = 1, Theorem 2.5 and Remark 2.1 indicate 

that an [n, r, X]-semi-strongly regular graph can not exist when n is too 

close to the lower bound 3r—3. In general, when n is reasonably far away 

from the lower bound, such a clique-disjoint [n, r, X]-semi-strongly regular 

graph should exist.

When n = (X + 2) (r — X), Theorem 2.2 tells us that a clique-disjoint 

[n, r, X]-semi-strongly regular graph is also strongly regular and is the point 

graph of a generalized quadrangle GQ(k, X + 2). Thus, finding clique-disjoint 

[n, r, X]-semi-strongly regular graphs with order attaining the lower bound is 

the same as to discover unknown clique-disjoint [n, r, X, k]-strongly regular

60
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graphs with k = --------- (or equivalently, generalized quadrangles
X + l

GQ(k, X + 2)). Corollary 2.2 gives all possible [n, r, 1, k]-strongly regular 

graphs.

Problem  5.2. For X s 2 ,  determine all clique-disjoint [n, r, X, k]-strongly
J*

regular graphs where k =  (or equivalently, all generalized quadrangles
X + l

GQ(k, X + 2)) .

5.2 Problems on Generalized Cages

In Chapter HI, we showed the existence of generalized (r, g, t)-cages 

in Section 3.1 and listed all known (r, g, t)-cages in Section 3.3. A general 

question here is as follows.

Problem 5.3. Determine the values of f(r, g, t) and find unknown (r, g, t)- 

cages (in particular, find a (12, 4, 3)-cage which is a smallest unknown 

generalized cage).

As shown in Proposition 3.2, any (r, 5, t)-cage of order n attaining 

the lower bound f0(r, 5, t) must be strongly regular. Again, to look for such

generalized cages is the same to discover [n, r, t -  2, l]-strongly regular 

graphs. It can be shown that if  a [n, r, 2, l]-strongly regular graph exists, 

then r = 21, and so n = 400. So far, whether a [400, 21, 2, l]-strongly 

regular graph exists is still open.

Problem  5.4. Determine whether a [400, 21, 2, l]-strongly regular graph 

exists (if exists, it is a (21, 5 ,4)-cage).
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