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INTRODUCTION

Selenium is an essential trace element in animal and human 

nutrition (64, 65, 67, 69). It is found organically bound in 

nearly all foods including grain, meat, eggs, milk, fruits, 

vegetables, and seafood. Other biological properties of selenium 

include toxicity (53, 67, 79), mutagenicity (38, 49, 52), carcino­

genicity (30, 50, 80), and anti-carcinogenicity (26, 27, 31, 32, 

45, 66, 68). The latter property has led to epidemiological 

studies which suggest an inverse relationship between human 

cancer mortality and dietary intake of selenium (34, 64, 69). 

Therefore, investigations of the anti-carcinogenic properties of 

selenium in animals are necessary to understand this relation­

ship.

Selenium has recently been shown to inhibit colon carcino­

genesis induced by the chemical carcinogen 1,2-dimethylhydrazine 

(DMH1) (31, 32), which specifically induces colon tumors in rats 

and mice (6, 11, 13, 46, 78). Investigations of the colon- 

specific mechanisms of action of DMH and/or selenium may shed 

light on the prevalence of human colon cancer, which shows one of 

the highest incidences of all neoplastic diseases in the United 

States (85). DMH has been shown to methylate the DNA of

1The abbreviations used are: DMH, 1,2-dimethylhydrazine;
AM, azomethane; AOM, azoxymethane; MAM, methylazoxymethanol; 7- 
MeG, 7-methylguanine; 05-MeG, 06-methylguanine; ENU, N-ethyl-N- 
nitrosourea; MNU, 2lf-methyl-27-nitrosourea; ppm, parts per million; 
Se, selenium as sodium selenite.

1
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various animal tissues (28, 29, 37, 62, 77). It is believed that 

alkylation of particular sites in the DNA represents promutagenic 

events which may lead to tumor initiation. The purpose of the 

present work is to ascertain whether selenium affects the metab­

olism of DMH, and/or the alkylation of DNA by DMH, and how these 

effects are related to the carcinogenic activity of DMH.
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LITERATURE REVIEW

Colon Carcinogenesis and 1,2-Dimethylhydrazine

The study of DMH has been of particular interest because of 

its high specificity for inducing colon cancer in laboratory 

animals. Druckrey et at. (13) reported that weekly s.c. doses 

of 7 and 21 mg DMH/kg induced intestinal adenocarcinomas in all 

treated rats. Weekly 20 mg/kg s.c. injections of DMH in mice 

induced colonic carcinomas in more than 90% of the animals after 

186 days (78). In another rat study (46), weekly 20 mg/kg s.c. 

injections of DMH predominantly induced adenocarcinomas of the 

colon in 100% of the animals after 24 weeks. Induction of 

tumors by DMH also depends on genetic susceptibility (2, 11, 14), 

age, and sex (48).

Metabolic Activation of DMH

The mechanism of tumor induction by DMH has been postulated 

to involve metabolism to an active alkylating agent (12, 59). 

Alteration of DNA by alkylation is believed to be a major step 

in chemical carcinogenesis. In the postulated metabolic pathway 

(Chart 1), DMH is oxidized, probably nonenzymatically, to azo- 

methane (AM), which may proceed to two alternate pathways. In 

the inactivation pathway, AM isomerizes to hydrazone, which may 

be hydrolyzed to form monomethylhydrazine and formaldehyde. In 

the activation pathway, AM is oxidized, presumably by a microso-

3
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(DMH)

(AM)

(AOM)

(MAM)

(MD)

(F)

Chart 1. Postulated (12, 59) metabolic reactions 
leading to the activation and inactivation of DMH. Acti­
vation consists of a series of oxidations via AM and AOM 
to form MAM, which breaks down to formaldehyde (F), hy­
droxyl ion, and the active methylating species, methyl- 
diazonium (MD). DMH is inactivated by oxidation to AM 
which isomerizes to hydrazone (H). This may be hydrolyzed 
to form monome thy lhydrazine (MMH) and formaldehyde. The 
latter is oxidized to form CO2 .

CH3-NH-NH-CH3
I

CH3-N=N-CH3 --------► CH3-NH-N=CH2 (H)

1 I
CH3-N=N-CH3 CH3-NH-NH2 (MMH)

♦
o  +
J h2c=o — ► co2

c h 3-n = n -c h 2o h
♦
o

CH3-NEN 
+ OH©

+ h 2c =o  — ► co2
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mal iV-oxygenase, to azoxymethane (AOM), which is hydroxylated to 

form methylazoxymethanol (MAM). Fiala (18) reported preliminary 

in vitro experiments demonstrating that MAM can be formed by a 

standard microsomal mixed function oxidase system. Homogenates 

or microsomal fractions from liver hydroxylated AM, but fractions 

from kidney or colon mucosa failed to do so. This suggested 

that the formation of MAM occurs in liver, but not in the target 

tissue. The breakdown of MAM to formaldehyde (presumably oxidized 

to CO2 ), nitrogen, and methanol is believed to involve the 

highly reactive methyldiazonium ion, an ultimate carcinogen 

which forms a methyl carbonium ion. It is uncertain whether the 

breakdown of MAM is spontaneous or enzymatic. At nearly phys­

iological conditions, MAM decomposed with a half-life of 8 hr 

(17). Schoental (63) proposed that MAM may undergo oxidation to 

methylazoxyformaldehyde by the action of an alcohol dehydrogenase. 

Zedeck et at. (87) supported this view, reporting that alcohol 

dehydrogenase activity was high in colon, duodenum, and cecum. 

Recent experiments demonstrated that pyrazole, an alcohol dehydro­

genase inhibitor, blocked the oxidation of MAM (22). Fiala (18) 

speculated that noncovalent bonding of MAM occurred directly to 

bases of nucleic acids.

In the liver, MAM was believed to form a stable conjugate 

with glucuronic acid, which would be transported via the bile to 

the intestine, where it would be hydrolyzed by bacterial B-glu- 

curonidase in colon to free MAM (17, 84). This would, in part,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



account for its tissue specificity. Reports that germ-free rats 

were less sensitive to the carcinogenicity of DMH than conven­

tional rats (61) supported the view that intestinal microflora 

play an important role. However, more recent data (5, 23, 87) 

suggest that the carcinogen does not require biliary transport 

to the intestine in order to exert some of its effect. Tumors 

were found in sections of nonfunctional colon in colostomized 

rats after the s.c. administration of DMH or AOM, suggesting that 

the active metabolites may be transported to the intestine through 

the circulatory system. Rat colon mucosal cells are capable of 

activating carcinogens (16), and do possess a microsomal cyto­

chrome P-450 enzyme system (15). Cultured human colon epithelial 

explants activated DMH to a metabolite which methylated the DNA (3).

Evidence that AM, AOM, MAM, and CO2 are indeed metabolites 

of DMH has recently been provided (17-21). High pressure liquid 

chromatographic methods were developed to detect AM in the ex­

pired air, AOM in the bile, and unmetabolized DMH, AOM, and MAM 

in the urine. Evidence for metabolites such as hydrazone and 

monomethylhydrazine in the inactivation pathway has not been 

presented in the literature.

Alkylation of DNA by DMH

Recent experiments have shown that DMH, following activation, 

does indeed alkylate nucleic acids. Early alkylation experiments 

(28, 29) demonstrated the formation of 7-methylguanine (7-MeG)
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in liver, colon, small intestine, kidney, lung, and spleen of 

NMRI mice which were killed 6 or 12 hr after a 15 mg/kg s.c.

injection of [14c]DMH. Methylation (7—MeG) was also detected in
liver, colon, and kidney nucleic acids from Wistar rats which 

received a 200 mg/kg s.c. injection of [1^C]DMH. Likhachev et 

at. (37) reported 7-MeG in the DNA of various rat tissues 3 hr 

after a 300 mg/kg s.c. injection of C^^DMH. Another product,

06-methylguanine (<9e-MeG), was detected in small quantities of 

liver and colon DNA. The ratio of 0s-MeG to 7-MeG was four 

times higher in colon than liver. Rogers and Pegg (62) detected 

several methylated purines in DNA of rat liver, kidney, and 

colon 24 hr after a 4 mg/kg i.p. injection of [1I+C]DMH. These 

included 7-MeG, (96-MeG, 7-methyladenine, 3-methyladenine, 1- 

methyladenine, and possibly 3-methylguanine. Swenberg et at.

(77) reported that O6-MeG levels in the liver, colon, and ileum

increased rapidly in the first 6 hr after s.c. administration of

[1IfC]DMH (20 mg/kg) . Maximum alkylation occurred 6 to 12 hr 

after exposure. Loss of 0^-MeG between 12 and 72 hr was most 

rapid in liver and ileum, and least rapid in colon.

Significance of Alkylation

According to the multistage hypothesis, chemical carcinogenesis 

consists of three stages: initiation, promotion, and progression

(4, 58). It is believed that initiation is an irreversible 

process representing a somatic mutational event which may be the
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result of promutagenic lesions in DNA, error-prone DNA repair, 

or other unknown mechanisms. The interaction of alkylating 

agents with DNA may result in such promutagenic lesions, leading 

to the initiation process. Thus, the alkylation of DNA may be 

an important initiating step in the induction of tumors by 

alkylating agents.

Sites of DNA alkylation

Various alkylated products have been isolated from DNA of 

various tissues after in vivo or in vitro exposure to labelled 

alkylating agents. The major product in all cases was 7-alky1- 

guanine (25, 43, 62, 73, 74), probably because the 27-7 position 

of guanine is highly nucleophilic (35). Other DNA sites that 

react with alkylating agents are the 27-1, 27-3, and 27-7 of 

adenine, the 27-3 and 0® of guanine, the 02 , O1*, and 27-3 of 

thymine, the 02 and 27-3 of cytosine, and phosphodiesters (70,

74). The extent of alkylation at the various DNA sites differs 

significantly depending on the alkylating agent.

Biological importance

There has been much research and discussion of the bio­

logical importance of alkylation at these various positions. The 

extent of formation of the major product, 7-alkylguanine, does not 

correspond to the carcinogenicity of several alkylating agents 

(75, 76). For example, a single dose of ethyl methanesulphonate
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caused ten times as much ethylation of rat kidney DNA as tf-ethyl- 

ilf-nitrosourea (ENU), but produced no tumors, whereas ENU did 

produce tumors. Base pairing of 7-MeG in vitro was similar to 

that of guanine (40). Loveless (39) first suggested that 0&- 

alkylguanine could lead to atypical base pairing. In cell-free 

experiments, C^-methylguanine-containing templates for RNA 

polymerase misincorporated UMP and AMP (24), and 0s-methylated 

templates for DNA polymerase I (1) misincorporated dTMP into the 

product polymer. Phage mutagenesis has also been correlated 

with 06-alkylation of guanine (36).

Studies have shown a relation between carcinogenicity and 

O^-alkylguanine production. However, the initial degree of <96- 

alkylation does not correlate with the carcinogenicity of cer­

tain compounds. For example, levels of 06-MeG in rat liver DNA 

(a nontarget organ) exceeded that in kidney and colon DNA (the 

target tissue) even at 72 hr after a single carcinogenic dose of 

DMH (62, 77). The authors suggested that the sensitivity of the 

kidney and colon to carcinogenesis may be based on other factors 

such as cell turnover, alkylation of phosphodiesters, or forma­

tion of O^-alkylthymine.

In another case (25), the initial degree of 06-ethylation 

by ENU was higher in nontarget tissue (liver) than in target 

tissue (brain) in neonatal rats. However, the half-life of 0&- 

ethylguanine in brain DNA (220 hr) was much longer than in liver 

DNA (30 hr), and longer than other ethylated products. This
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persistence of 06-ethylguanine in t.*e DNA of replicating cells 

may explain the specific carcinogenic effect of ENU in the devel­

oping nervous system of the neonatal rat. Similar results were 

found with #-methyl-iV-nitrosourea (MNU) (42). Brain DNA retained 

significantly more 06-MeG than the liver and other tissues after 

five weekly applications. The authors suggested that rat brain 

is deficient in enzymes capable of excising 06-MeG. In other 

work (8, 9), the induction of bladder and mammary cancer by MNU 

was correlated with the accumulation of 06-MeG in the DNA of 

bladder and mammary tissue, respectively.

However, factors other than the amount of <95-alkylguanine 

and its persistence or accumulation cannot be ruled out (62). 

Other alkylated sites in DNA may be biologically important based 

on in vitro experiments with polynucleotides and nucleosides. 

Misincorporation of UMP and AMP occurred when 3-methylcytidylic 

acid units were present in a DNA template for RNA polymerase 

(41) . Experiments measuring codon-directed aminoacyl tRNA 

binding to ribosomes have indicated miscoding properties for 02- 

ethylcytidine (72). Singer (70) suggested that alkylation at 

the Qz of cytosine or thymine would weaken the glycosidic link­

age causing depyrimidination which could lead to deletions. In 

02-alkylthymine, there is no proton at N-3 available for pairing 

with adenine, so normal pairing could not occur. Lawley (35) 

suggested that O^-alkylthymine could mispair with guanine, 3- or

7-alkylguanine with thymine, and 3-alkyladenine with cytosine.
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Sun and Singer (74) suggested that reaction of alkyl groups with 

phosphodiesters to form phosphotriesters could inhibit cation 

and histone binding, and could lead to changes in interaction 

with complementary polynucleotides. Singer has recently stated 

that there is no evidence that ethylphosphotriesters are muta­

genic (71).

In summary, many of the known alkylated products could 

cause some structural changes in DNA. But when chemical agents 

with differing carcinogenic potency and alkylating ability are 

tested for miscoding or mispairing properties, those products 

that appear to be the most biologically significant are: Ch­

alky lguanine (55, 56), N-3 and 02-alkylcytosine (72), and 02- 

and O^-alkylthymine (55, 56, 71).

Inhibition of Colon Carcinogenesis 

Inhibition of tumor induction

Several chemicals have recently been found to inhibit colon 

carcinogenesis in laboratory animals. Bracken fern, a human 

food delicacy and a bovine forage contaminant in certain parts 

of the world, induced intestinal tumors in all treated rats when 

administered in the diet (54). Dietary butylated hydroxyanosole, 

disulfiram, and calcium chloride decreased this incidence by 25- 

30%. It was suggested that calcium chloride may absorb or 

precipitate certain carcinogenic compounds in bracken fern. 

Butylated hydroxyanosole had a similar effect on DMH-induced

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tumors in mice (81). The mechanisms of inhibition by butylated 

hydroxyanosole and disulfiram are not clear. Both may act 

via an antioxidant function, and the latter is known to inhibit 

oxidative enzymes (21, 54).

Colon cancer induced by DMH or its metabolite, AOM, can be 

inhibited by some compounds including disulfiram. AOM-induced 

tumors were reduced by dietary disulfiram in Sprague-Dawley rats 

(51). No tumors were found in female CF^ mice which received 

DMH injections after treatment with 5 mg disulfiram per gm of 

diet (81, 82). A related compound, sodium diethvldithiocar- 

bamate, and two pesticides were also found to inhibit DMH. All 

three compounds have structural similarities to disulfiram, and 

contain a carbon disulfide moiety. Carbon disulfide itself 

inhibited DMH-induced colon tumors in mice (83).

Inhibition of DMH metabolism

Studies by Fiala et at. (18, 20, 21) showed that disul­

firam, diethyldithiocarbamate, carbon disulfide, and bis(ethyl- 

xanthogen) inhibited the metabolic activation of [lttC]DMH in rats 

by significantly increasing the levels of exhaled [ltfC]AM and 

decreasing the levels of exhaled ltfC02. The levels of urinary 

AOM and MAM were significantly decreased. It was concluded that 

these compounds inhibit the 27-oxidation of AM to AOM, and that 

the effective inhibiting agent is carbon disulfide or possibly 

carbonyl sulfide, both of which may be metabolites of the above
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parent compounds.

Inhibition of the alkylating ability of DMH

Disulfiram not only inhibits the metabolism of DMH but also 

the alkylation of DNA in various rat tissues by DMH (77). In 

disulfiram-treated rats, levels of 7-MeG in liver, colon, and 

ileum DNA were less than 1% of that found in rats treated with 

DMH alone. 0®-MeG was undetectable in disulfiram-treated rats. 

Methylation of DNA by DMH was also inhibited by aminoacetonitrile 

(57) .

Selenium and Inhibition of Carcinogenesis

Another inhibitor of experimental carcinogenesis is selenium, 

usually in its inorganic form, sodium selenite or selenate (10,

26, 27, 31, 32, 45, 66, 68). Shamberger (68) reported that 

applications of sodium selenide significantly reduced the inci­

dence of papillomas induced in ICR mice by 7,12-dimethylbenz[a]an­

thracene and various promoters. Dietary sodium selenite decreased 

the incidence of skin tumors in mice treated with benzo[a]pyrene. 

In Harr’s experiments (27), rats which were fed a diet contain­

ing the carcinogen, iV-2-fluorenyl acetamide, and 0, 0.1, 0.5, or 

2.5 ppm sodium selenite had similar numbers of mammary adenocar­

cinomas and hepatomas, but the latency period increased with the 

dose of selenium. Griffin and Jacobs (26) showed that 6 ppm 

selenium (in the form of sodium selenite) in the drinking water
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or in the diet decreased the incidence of liver tumors induced 

in rats by the azo dye, 3*-methyl-4-dimethylaminoazobenzene. 

Selenium decreased the carcinogenicity and mutagenicity of 2- 

acetylaminofluorene and its derivatives, and altered the activity 

of enzymes involved in their activation (10, 33, 45).

Selenium also had inhibitory effects on colon carcinogenesis 

(31, 32). The colon tumor incidence in rats treated with DMH 

was reduced from 87% to 40% by 4 ppm selenium in the drinking 

water. The incidence in rats treated with MAM was not affected, 

but the total number of tumors was reduced from 73 to 42. All 

of the animals were sacrificed at the end of the 20-week treat­

ment, so final tumor incidence remains unknown. Jacobs suggested 

that selenium may act in similar fashion to that proposed for 

disulfiram, by blocking the oxidation of AM and/or the hydroxy1- 

ation of AOM. It could also interact directly with DMH metab­

olites. More investigation is needed to verify these mechanisms.

The purpose of this work was to examine the possible 

mechanisms of selenium inhibition of DMH carcinogenesis. It is 

possible that selenium affects the metabolism of DMH and the 

alkylation of DNA by a mechanism similar to that of disulfiram, 

as suggested by Jacobs. Assuming that methylation of DNA by DMH 

is an important factor in tumor initiation, and that 06-MeG is a 

promutagenic lesion in DNA, the effect of selenium treatment on 

levels of 06-MeG and 7-MeG was studied. To determine whether 

selenium affects the metabolism of DMH, the amount of [llfC]AM
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and 1I*C02 in the exhaled air from rats treated with [1 ]DMH 

was measured. These two metabolic products were chosen as in­

dicators of [llfC]DMH metabolism because both have been used as 

indicators of metabolic inhibition (20, 21), and both are the 

major metabolites found in the exhaled air (18, 19, 21).
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MATERIALS AND METHODS

Animals

Male Sprague-Dawley (CD) rats weighing 50-90 g were obtained 

from Charles River Breeding Laboratories, Inc., Portage, MI.

They were provided Purina Lab Chow (Ralston Purina Co., St.

Louis, MO) and deionized wafer alone, or deionized water con­

taining sodium selenite ad ti.b'ttum. Rats weighed 120 g or more 

whfen given [llfC]DMH.

Chemicals

The specific activity of l,2-di[ llfc]methy lhydrazine* 2HC1 

(New England Nuclear, Boston, MA) was decreased from 10 mCi/mmol 

to 5.02 and 0.552 mCi/mmol by the addition of nonradioactive 

1,2-dimethylhydrazine dihydrochloride (Aldrich Chemical Co., 

Milwaukee, WI). Trisodium EDTA was added to a final concentration 

of 15 yg/ml, and the pH was adjusted to 6.5 with 1 N NaOH.

Selenium in the form of sodium selenite (Na2 Se0 3 , Pfaltz and 

Bauer, Stamford, CT) was freshly prepared twice weekly in deionized 

water at concentrations of 2, 4, 6, or 8 ppm of the element 

(Se).

Treatment

Pilot alkylation experiments were done using 1-2 rats per 

treatment. The animals were provided with drinking water con-

16
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taining 0 or 2 ppm Se for 2 weeks, A ppm for 2 weeks, or 8 ppm 

for 2 or A weeks before a single 20 mg/kg s.c. injection of

(5.02 mCi/mmol, 2.32 mg/ml). These rats were also used 

in metabolism experiments and were killed by decapitation 12 or 

72 hr after the injection. Rats which were used in

alkylation experiments or in metabolism experiments alone received 

[lltc]DMH at a specific activity of 5.02 or 0.552 mCi/mmol, 

respectively.

Metabolism experiments were done using 2-A rats per group 

to establish a Se dose that might affect metabolism of [llfC]DMH, 

but would not cause liver toxicity or a severe decrease in body 

weight gain. Rats were provided drinking water with A ppm Se 

for 2, A, 6, or 8 weeks, or 6 ppm for 6 weeks before a single 20 

mg/kg s.c. injection of [ll+c]DMH (0.552 mCi/mmol, 2.57 mg/ml).
A control group received no Se, but received the same dose of 

[^C]DMH. The rats were killed by decapitation 12 hr after the 

injection. Based on the results, a treatment of A ppm Se for A 

weeks was selected for a 12 hr metabolism and alkylation experi­

ment with A rats.

[llfC]DMH Metabolism Studies

Measurement of expired 11+C02 and azo[ll+C]methane (AM), 

collected according to the method of Fiala (18-20), was used as 

an indicator of [lltC]DMH metabolism. The rats were fasted 

overnight prior to the [^^c]DMH injection, and were then placed
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in glass metabolism chambers for 12 hr with access to food and 

water ad libitum. Dried air was drawn through at a rate of 250- 

350 ml/min. During the first 6 hr, air leaving the chamber was 

drawn through a series of three gas washer bottles. The first 

trapped [llfC]AM and contained 100 ml absolute ethanol cooled to 

-70° in a dry-ice-absolute ethanol bath. The second trapped 

llfC02 and contained 150 ml 1 N NaOH, and the third contained 150 

ml 1 N H2S0tf to trap any remaining [1Ifc]AM. The contents of the 

first bottle were sampled (1 ml aliquots) and changed every hour 

for the first 6 hr, then this bottle was removed from the series. 

The second and third bottles were sampled every hour for the 

first 6 hr and at 8, 10, and 12 hr. The contents of the second 

bottle were changed at 4 and 8 hr, and the contents of the third 

bottle were not changed during the 12 hr experiment. Aliquots of 

1 ml were placed in scintillation vials with 4 ml water and 10 ml 

Aqueous Counting Scintillant (ACS, Amersham Corp., Arlington 

Heights, IL), were shaken, and counted at a counting efficiency 

of 80% using the external standard ratio method of quench cor­

rection. Expired ll+C02 and [llfc3AM were expressed as cumulative 

percent of total dose of [llfC]DMH for each sampling time. The 

group means and standard errors of cumulative percents were 

calculated and plotted against time. Using a three-compartment 

model to fit the data, the rates of expiration of [llfc3AM and 

llfC0 2 , and the rate of metabolism of [llfc3AM were estimated for 

individual rats and each group of rats (47). These estimates
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were then compared by analysis of variance (Duncanrs multiple 

range test).

Tissue Collection

The rats were killed by decapitation 12 hr after [1,+c]DMH 

injection. Kidneys, livers, and 12-14 cm samples of duodenum, 

ileum, and colon were excised, immediately frozen in liquid ni­

trogen, and stored at -70°. Contents of the intestinal lumen 

were rinsed out prior to freezing.

DNA Isolation

The selected tissue DNA was purified by a modification of 

the Marmur method (44, 86). Frozen tissue was weighed (1-2 g), 

thawed, and homogenized in a Braun-Potter homogenizer (Sargent- 

Welch Scientific Co., Skokie, IL) in 0.15 M NaCl (10 ml/g tissue) 

at 4°. Sodium lauryl sulfate was added to the homogenate (final 

concentration 1%), and the mixture was incubated for 30 min at 

37° with moderate shaking. A volume of 5 M NaCl equal to % the 

volume of the mixture was added. Chloroform:isoamyl alcohol 

(24:1) equal to h the total aqueous volume was added, and this 

mixture was shaken at 120 oscillations per min for 30 min at 

25°. The mixture was centrifuged for 5 min at 10,000 rpm, at 

4°. The aqueous supernatant was removed and extracted again 

with h volume of chloroform:isoamyl alcohol twice as before.

DNA was precipitated from the final supernatant with cold 2-
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ethoxyethanol equal to twice the supernatant volume. The pre­

cipitate was air dried on filter paper and dissolved in a solu­

tion consisting of 3 ml cold distilled water, 0.15 ml saturated 

aqueous sodium acetate, and 0.4 ml of 2 mg/ml RNAse (Ribonuclease 

A, Type 1A, Sigma; heated at 80° for 10 min). The resulting 

solution was stored 18-20 hr at 4°. The DNA was precipitated 

with 7.1 ml of cold 2-ethoxyethanol, washed twice with 6 ml cold 

ethanol, once with 6 ml cold ethyl ether, dried on filter paper, 

and stored at -20° in capped vials.

Purine Chromatography

DNA was hydrolyzed in 2.0 ml of 0.1 N HC1 at 37° for 20-24 

hr. Aliquots of 20 pi of a 3.0 mg/ml solution (0.1 N HC1) of 

each of the nonradioactive markers, 3- and 7-methyladenine, 7- 

MeG, and 0®-MeG, were added. Two tenths ml ammonium formate (0.5 

M) was added to this solution, and the pH was adjusted to 4.8 

with 1 N NaOH. Purine bases were separated on a Sephadex G-10 

column, 0.9 x 100 cm, using 0.05 M ammonium formate, pH 6.4, as 

eluant. Column flow rate was maintained at 15 ml/hr using a 

Minipuls 2 peristaltic pump (Gilson Medical Electronics, Middle­

ton, WI). The absorbance was monitored at 254 nm using a Type 6 

Dual Beam UV-Visible Optical Unit (ISCO, Lincoln, NE) in conjunc­

tion with a UA-5 (ISCO) chart recorder and a Digitec HT-6150 

digital printer (United Systems Corp., Dayton, OH), which printed 

the eluate absorbance, elapsed time, and cumulative absorbance
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(calculated by equipment designed and constructed at The Upjohn 

Co.) at 5 min intervals. Five ml fractions were collected every 

20 min, and each was mixed with 10 ml ACS, and counted at 82% 

counting efficiency. Total dpm of 7-MeG, 0 6-MeG, and incor­

porated [i*c] in guanine and adenine were calculated. The 

amounts of guanine and adenine were determined by measurement of 

the absorbance at 254 nm of relevant fractions, based on ex­

tinction coefficients of 10,870 and 12,450 liters/mole*cm for 

guanine and adenine, respectively. The concentrations of 7-MeG 

and 06-MeG in DNA were expressed as fractions of total guanine or 

adenine, assuming that the specific activity of the methylated 

purines was half that of the injected [ltfC]DMH. This assumption 

is based on the transfer of one labelled - ltfCH3 from [llfC]DMH 

(which contains two isotopic carbon atoms) to the purine. A 

Student’s t test was used to compare the means of 7-MeG, 06-MeG, 

and labelled guanine and adenine for rats treated with 0 and 4 

ppm Se for 4 weeks.
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RESULTS

Pilot Alkylation Experiments

Pilot alkylation data of Table 1 shows considerable variation 

between individual rats. The data are not sufficient for statisti­

cal tests. Qualitatively, the results indicate that a treatment 

of 8 ppm Se for 2 weeks had no effect on alkylation of liver and 

colon DNA 12 hr after [llfc]DMH injection. A treatment of 8 ppm 

Se for 4 weeks decreased levels of 06-MeG and 7-MeG in colon and 

liver DNA, but the data are variable. This may have been due to 

individual animal variation in liver toxicity, and a failure of 

two chromatographs to detect <76-MeG. There was no indication 

that the treatment of 8 ppm Se for 2 weeks had any effect on 

removal of 7-MeG or 06-MeG from the DNA of tissues listed in 
Table 1. Se doses of 8 ppm caused a decrease in body weight 

gain, icterus, and congestion and mottling of the liver. Toxicity 

at this level, therefore, agrees with that reported by others 

(53, 67).

[llfC]DMH Metabolism

Charts 2-5 show the mean and S.E. of exhaled [1IfC]AM for 

each group. Charts 6-8 show the mean and S.E. of exhaled lt+CC>2 

for each group. Although some of the data show a large degree 

of variation between individual rats (Charts 3, 5, 6), there is a 

dose-response effect, both for increasing length of treatment

22
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Table 1

Alkylation of DNA. 12 and 72 hr after single s.o. infection of [ll*CfDMH

Rats were treated with 0 or 8 ppm Se in the drinking water for 2 or 
4 weeks before injection of [1Ifc]DMH, 20 mg/kg, 5.02 mCi/mmol.

Tissue

Selenium 
treatment 
ppm wks

Alkylation (methylguanine/guan:ine x 10s)
12 hr 72 hr

7-MeG 0b-MeG 7-MeG 0b-MeG

Liver 0 3177 363 959 133
3347 413 1663 126

8 2 2842 290 1489 148
3618 400 1558 139

8 4 2040 230
1027 77

Colon 0 266 33.3 71 12.3
261 0 61 13.5

8 2 269 28.7 101 12.1
241 26.7 96 10.2

8 4 219 12.1
207 0

Duodenum 0 267 56.7 24.4 0
109 4.9 21.1 0

8 2 407 65.8 18.0 0
139 0 16.6 0

8 4 89 7.2
161 20.7

Kidney 0 133 10.6 57 4.2
279 27.5 75 2.1

8 2 138 9.8 67 4.2
233 0 112 7.3

8 4 205 19.1
147 10.9
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Chart 2. Exhalation of [llfC]AM from rats treated with 
0 or .4 ppm Se for 2 or 4 weeks before s.c. injection of 
[^cjDMH, 20 mg/kg. Bars, S.E.; numbers in parentheses, 
number of rats.
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Chart 3. Exhalation of [llfc]AM from rats treated with 
0 or 4 ppm Se for 6 or 8 weeks, or 6 ppm for 6 weeks before 
s.c. injection of [llfc]DMH, 20 mg/kg. Bars, S.E.; numbers 
in ■parentheses, number of rats.
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Chart 4. Exhalation of [1‘tC]AH from rats treated with 
0 or 8 ppm Se for 2 weeks before s.c. injection of [14C] 
DMH, 20 mg/kg. Bars, S.E.; numbers in parentheses* 
number of rats.
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Chart 5. Exhalation of [14C]AM from rats treated with 
0 or 8 ppm Se for 4 weeks before s.c. injection of [ ^C] 
DMH, 20 mg/kg. Bars3 S.E.; numbers in -parentheses3 
number of rats.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

24

® 20

16

12

I

•  0  ppm Se, (9) 
a  4 ppm Se, 2 wks (3) 
■ 4 ppm Se, 4 wks (6)

1210
TIME (Hours)

Chart 6. Exhalation of 11+C02 from rats treated with 
0 or 4 ppm Se for 2 or 4 weeks before s.c. injection of 
[14C]DMH, 20 mg/kg. Bars  ̂ S.E.; numbers in parentheses3 
number of rats.
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Chart 7. Exhalation of llfC02 from rats treated with 0 
or 4 ppm Se for 6 or 8 weeks, or 6 ppm Se for 6 weeks 
before s.c. injection of [11+c]DMH, 20 mg/kg. Bars, S.E.; 
numbers in parentheses3 number of rats.
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Chart 8. Exhalation of 1ItC02 from rats treated with 
0 or 8 ppm Se for 2 or 4 weeks before s.c. injection of 
[1Ifc]DMH, 20 mg/kg. Bars, S.E.; numbers in parentheses, 
number of rats.
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and increasing dose. Total expired [11+C]AM increased as length 

of treatment with 4 ppm Se increased from 2 to 4 weeks (Chart 

2). This was accompanied by a decrease in total expired lltC02 

from 2 to 6 weeks (Charts 6, 7). Total expired [1Itc]AM increased 
as the Se dose increased from 4 ppm to 6 ppm (both at 6 weeks, 

Chart 3), and this was accompanied by a corresponding decrease in 

expired llfC02 (Chart 7). The mean exhaled [^C]AM from rats 

treated with 4 ppm Se for 8 weeks was similar to control levels 

(Chart 3). This was a result of individual animal variation 

which is shown by the large standard error for that group.

Chart 9 is a three-compartment model which gives very good 

fits of the averaged [llfC]AM and 14C02 data. The model is a 

simplification of the proposed metabolism of DMH (Chart 1), and 

thus is only an approximation. The rates RIO, R12, R23, and R30 

for individual rats were estimated (47), and the group means 

were compared for statistically significant differences by 

Duncan's multiple range test. According to this model, treatments 

of 4 ppm Se for 4 or 6 weeks, and 6 ppm for 6 weeks showed 

significantly greater rates of [llfc]AM expired (RIO), and a 

significantly smaller ratio of the rate of [1Ifc]AM metabolism to 

the summed rates of [^c]AM metabolized and expired, that is, 

R12/R12+R10. All groups of Se-treated rats expired llfC02 at a 

significantly slower rate than control rats.
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■* expired 14C0 2

Chart 9. Model for [1Ifc]AM and 14C02 data. At time 
zero, all of the AM is in Compartment 1. Some of the AM 
is expired at a rate arbitrarily designated RIO. The 
remainder is metabolized to an intermediate (Compartment 
2) at a rate R12. After another metabolism step at a 
rate R23, the CO2 is expired at a rate R30.
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Alkylation

Table 2 shows the incorporation of into guanine and

adenine, and relative amounts of 7-methylguanine and 0^—methyl— 

guanine in DNA of five tissues from rats treated with 0 or 

4 ppm Se for 4 weeks, and killed 12 hr after the [1 ]DMH in­

jection. Alkylation was 10-15 times greater in the liver than 

in the colon, kidney, or duodenum. Alkylation of ileum DNA 

was minimal. The following statistically significant dif­

ferences were found in the Se-treated rats. Incorporation of 

[^C] into guanine and adenine of colon DNA was 69% and 72% 

lower, respectively, than control colon DNA (Chart 10). This 

may be the result of a decrease in the amount of DNA synthesis 

in colon mucosal cells. Incorporation into guanine of duodenum 

was 44% higher. Liver DNA had 20% less 7-methylguanine and 27% 

less 06-methylguanine. Colon DNA had 40% more 06-methylguanine. 

Ileum DNA had 49% more 7-methylguanine.

Incorporation of [llfC] into guanine of liver was 20% greater 

in rats treated with Se, suggesting an increase in cell turnover 

due to cell loss associated with the toxic effects of Se.
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Table 2
Incorporation o f  ( lt(C] and alkylation o f DM 12 hr ,a fte r oingle e,o. injeotion o f

Rats were created with 0 or 4 ppm aelenlura In the drinking water for 4 wka before Injection of (^CjDMH, 20 mg/kg, 
5.02 mCl/mmol. Each value la the mean of 6 rate except where noted.

Incorporation (dpm/umol)
*

Alkylation (methylRuanlne/Ruanlne x 106)
Selenium

Tlaaue
treatment 
ppm wka Cuunlne X change Adenine X change 7-MeG X change 06-MeG X change

Liver (4)a 0 101 1 19b 130 1 25 3137 1 212 371 1 26
(4) 4 4 217 1 75 +20 131 ± 27 0 2511 ± 163° -20 270 t 26° -27

Colon (3) 0 2336 ± 166 1883 ± 193 233 ± 21 27.8 t 3.2
(4) 4 4 729 1 129 -69 523 ± 106° -72 334 t 28 +43 39.0 t 3.0e +40

Duodenum (3) 0 2134 ± 325 2817 ± 220 150 ± 32 13.0 ± 4.3
(4) 6 4 3082 ± 195' +66 2876 i 163 +2 169 1 15 +13 19.4 ± 1.7 +49

Kidney (3) 0 162 1 33 120 1 25 182 ± 69 16.2 i 8.0
(4) 6 4 130 1 14 -20 86 ± 10 -30 263 1 5.9 +61 22.6 i 0.8 +38

Ileum (4) 0 2966 1 306 2736 1 113 15.6 t 1.2. 0
(4) 4 4 2665 1 406 -11 2978 ± 972 -9 23.3 t 0.6' +49 0 0

aNumbera In parentheaes, number of rata
Mean 1 S.E.

°P < 0.025.
< 0.005

6P < 0.05.
?P < 0.01.
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Chart 10. Sample Sephadex G-10 chromatographs of acid 
hydrolysates of colon DNA from a control rat (•) and a rat 
pretreated with 4 ppm Se for 4 weeks ( A ) . Each rat received 
a single s.c. injection of [1I+C]DMH, 20 mg/kg, 5.02 mCi/mmol, 
and was killed 12 hr later. DNA was hydrolyzed in 0.1 N HC1 
for 20 hr at 37°. Ammonium formate (0.2 ml, 0.05 M) was 
added, and the pH was adjusted to 4.8 with 1 N NaOII. Pyv3 
pyrimidine nucleotides; 3-MeA, 3-methyladenine; 7-MeG, 
7-methylguanine; G, guanine; A; adenine; Os-MeG, 05-methyl- 
guanine.
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DISCUSSION

Selenium treatment significantly increased the rate of 

expired [lltc]AM, and decreased the rate of expired llfC02« This 

effect indirectly supports the hypothesis that Se interferes 

with the metabolic activation of DMH. The cellular and mole­

cular nature of the Se effect on metabolism is not clear.

Jacobs et at. (33) postulated that selenium may replace oxygen 

and sulfur to form organoselenium amino acid analogs and thus 

alter a cellular component critical to metabolic activation. It 

is possible that the effect of Se at doses above 2 ppm is a 

result of general liver toxicity. Histologic lesions of toxic 

hepatitis were observed in rats treated chronically with 2.5 ppm 

Se (27). Cirrhosis and decrease in liver size were observed in 

selenate-treated rats (53). If most of the metabolism of DMH 

occurs in the liver, a generalized toxicity may impair the 

activity of microsomal drug-metabolizing enzymes. Alternatively, 

Se may act in a nontoxic manner by inhibiting only certain 

enzymes involved in the activation pathway. Se has recently been 

shown to alter the metabolism of the carcinogens, benzo[a]py- 

rene and 2-acetylaminofluorene (45, 60).

An inhibition of the metabolic activation of DMH by Se 

should lead to a decreased production of the active methylating 

species, and, therefore, a decrease in alkylation in Se-treated 

rats. This was the case for liver DNA, but alkylation in the 

colon was higher. Thus, the target tissue DNA contained higher

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



levels of 06-MeG in Se-treated rats. Such an effect is not found 

with disulfiram and aminoacetonitrile, which inhibit alkylation 

of DNA in both liver and colon (57, 77). This discrepancy 

suggests that Se inhibits DMH metabolism primarily in the liver, 

causing a systemic increase in unmetabolized DMH, which was 

subsequently metabolized by other organs. Increased expiration 

of AM supports a slower removal of AM through hepatic metabolism. 

A  buildup of AM could thus slow the rate of the nonenzymatic 

conversion of DMH to AM, causing an increase in the systemic 

levels of DMH. This, in turn, could lead to greater exposure of 

the kidneys and colon to DMH and its metabolites. Since colon 

mucosa is capable of activating DMH (3, 23), and contains enzymes 

capable of metabolizing other carcinogens (15, 16), the circu­

lating DMH and AM would be activated and thus alkylate the DNA, 

which could account for the increased alkylation in the colons of 

Se-treated rats.

The decreased incorporation of [llfc]DMH-derived radioac­

tivity into guanine and adenine of colon DNA from Se-treated rats 

(Table 2) is similar to the effect of disulfiram on incorporation 

(77). Incorporation of radioactivity into guanine and adenine is 

mainly due to the formation of [llfC]formaldehyde which rapidly 

enters the Cj pool (7, 77). Formaldehyde is produced at the end 

of both the activation and detoxification pathways (12, 17). It 

is possible that Se inhibits both pathways, and thus causes a 

decrease in [1I+Cj incorporation. The radioactivity would then be
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exhaled as [1IfC]AM. However, Se is known to inhibit mitosis 

(38). A reduction of DNA synthesis in the colon would lead 

to a decreased incorporation of [14C] into adenine and guanine. 

Tissues with little or no cell turnover (liver) have very low 

incorporation (Table 2). The increased levels of alkylation in 

the colon, and the known rapid cell turnover and associated DNA 

replication are conditions conducive to carcinogenesis according 

to the somatic mutation theory of cancer (62, 77). Thus the 

anti-carcinogenic effect of Se may be the result of reducing the 

rate of DNA synthesis, and, hence the chance for pre-neoplastic 

somatic mutations to occur. More research is necessary to deter­

mine the effect of Se on cell turnover in the colon.

Further studies on the effects of Se on DMH carcinogenesis 

are also necessary to determine if the decrease in colon tumor 

incidence in Se-treated rats sacrificed at 20 weeks (32) is due 

to an increase in the latency period of tumor induction. Se may 

or may not decrease the tumor incidence of rats allowed to live 

20-30 weeks after a 20-week treatment with DMH.
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