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CHAPTER I

INTRODUCTION

Information concerning the e le c tro n ic  s t ru c tu re  of atoms may 

be obtained by observing the  e f fe c ts  of high ve loc ity  ions co ll id in g  

with ta rg e t  atoms. Inner shell io n iz a t io n ,  the s tr ipp ing  of an 

atom's most t ig h t ly  bound e lec tro n s ,  was f i r s t  investigated  by Chad­

wick in 1912. Using alpha p a r t ic le s  from a rad ioactive  source as 

p ro je c t i le s ,  he studied the  x-rays emitted from various metal ta rg e ts .  

He found th a t  each metal emitted a c h a ra c te r i s t ic  x-ray of a given 

frequency. Mosely (1912) continued th i s  inves tiga tion  system atica lly  

fo r  f o i l s  of d if fe re n t  atomic number and deduced the  well known 

re la tio nsh ip  between the  wavelength of th e  x-ray and the atomic num­

ber of the ta rg e t .

The f i r s t  theory of inner shell ion iza tion  was developed by 

Henneberg in 1933. This calcu la tion  which i s  ca lled  the Plane Wave 

Born Approximation (PWBA) t rea te d  the  p ro je c t i le  ion as a point 

charge which perturbs a bound electron  of the  t a rg e t  atom v ia  the  

Coulomb in te rac tio n . Both p ro je c t i le  and ta rg e t  atom are t r e a te d  as 

plane waves. The PWBA provides a very good descrip tion  of th e  

observed x-rays re su l t in g  from protons and alpha p a r t ic le s  inc iden t 

on a wide range of t a r g e t s ,  15 ^ Z i  70, and over th ree  orders of 

magnitude of p ro je c t i le  energy (Garcia, Fortner, & Kavanagh, 1973). 

Modern studies of x-ray production by protons and heavier p ro je c t i le s  

began in the early  1950's with the  development of s c in t i l l a t io n

1
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counters and l a t e r  so lid  s t a t e ,  S i(L i) ,  de tec to rs .  Lewis, Simmons, 

and Merzbacher (1953) studied the  K-shell x-ray production by protons 

and Bernstein and Lewis (1954) investigated proton induced L-shell 

x-ray production. The early  work in th is  f i e ld  i s  discussed in the 

review a r t i c l e  by Merzbacher and Lewis (1958).

Larger acce lera to rs  and b e t te r  ion sources have made beams of 

heavier ions ava ilab le . X-ray production has been measured using 

such ions as lith ium , carbon, oxygen, s u l fu r ,  and a l l  the way to  

lead (Garcia e t  a ! . ,  1973; Meyerhof, Anholt, Saylor, & Bond, 1975).

Some of the assumptions used in the PWBA are no longer va lid  

fo r  these heavier ions and the  observed x-ray production no longer 

agrees with th i s  theory. Heavy ions bring in complicated e le c tro n ic  

s truc tu res  th a t  in te ra c t  with ta rg e t  atoms in ways other than simple 

two body Coulomb fo rces ;  th us ,  the assumption th a t  the p ro je c t i le  may 

be t rea ted  as a point charge i s  no longer va lid .

One model th a t  has been proposed fo r  heavy ion c o l l is io n s  i s  the 

quasi-molecular model of Fano and Lichten (1965). I f  the p r o j e c t i l e ' s  

velocity  r e la t iv e  to  the  ta rg e t  atom i s  le s s  than the o rb i ta l  veloc­

i ty  of the  bound e le c tro n s ,  the  e lec trons  w ill be able to  ad ju s t  to  

the changing Coulomb f i e ld .  Energy level diagrams may be computed 

(Barat & Lichten, 1972) which show how the e lectron sh e lls  overlap 

with decreasing separation of p ro je c t i le  and ta rg e t  nuclei u n t i l  a t  

very small d istances a "united atom" of Z = 1\ + Z2 is  b r ie f ly  formed 

where Zj i s  the nuclear charge of the p ro je c t i le  and Z2 is  the  

nuclear charge of the  ta rg e t .
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In the c o l l is io n  process the e lec tron ic  s truc tu re  of the ta rg e t  

and p ro je c t i le  atoms may be a lte red  as e lectrons are given enough 

energy to  move to  higher levels or become unbound and leave the atom. 

The vacancies produced w ill be f i l l e d  in one of several ways. An 

unbound e lectron  may f i l l  the vacancy, or an e lectron from a higher 

level may f i l l  th e  vacancy. In each case the energy th a t  the  e lec ­

tron loses as i t  moves to  a lower level will be given up as e i th e r  

an Auger e lectron  or as a photon. An Auger e lectron is  e jected from 

the atom with an energy equal to  the  d ifference  between the i n i t i a l  

and f in a l  binding energy of the t r a n s i t io n .  S im ilarly , the  photon 

will have the  energy E = hv equal to  the  d ifference in the energy 

libe ra ted  by f i l l i n g  the  vacancy, where h is  Planck's Constant and 

v i s  the frequency of the  photon.

Experiments by Betz, Bell, Panke, Kalkoffen, Welz, and Evers 

(1974); Gardner, Gray, Richard, Schmiedekamp, Jamison, and Hall (1977); 

Gray, Richard, Jamison, and Hall (1976); and Hopkins (1975) indicated 

th a t  the  y ie ld  of ta rg e t  and p ro je c t i le  x-rays from various metal 

f o i l s  are  not simply proportional to  ta rg e t  th ickness, or equiva­

len t ly ,  th a t  the  e f fe c t iv e  x-ray production cross section varies 

with ta rg e t  th ickness. A model used to  describe the  variab le  e ffec ­

t iv e  cross sec tion  fo r  x-ray production in ion-atom co ll is io n s  is 

the two component model of Betz e t  a l . (1974) th a t  was developed to  

explain the  t a rg e t  thickness e ffe c t  obtained fo r  su lfu r  ions moving 

through th in  so l id  ta rg e ts .  In th i s  model i t  is  assumed th a t  the 

ta rg e t  x-ray cross section fo r  a p ro je c t i le  with a vacancy in the 

K-shell i s  la rg e r  than the  cross section fo r  a p ro je c t i le  without

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .



4

a K vacancy and th a t  m ultiple  co ll is io n s  occur within the ta rg e t  

allowing a p ro jec ti le  f i r s t  to  co ll id e  with a ta rg e t  atom, crea te  a 

vacancy in i t s  own K s h e l l ,  and l a t e r  t ra n s fe r  th i s  vacancy to  a 

ta rg e t  atom in another c o l l is io n .  The p ro je c t i le  vacancy i n i t i a l l y  

created must have a l ife tim e comparable to  the mean f ree  path of the 

ion divided by the ve locity  of the ion i f  i t  is  to  t ra n s fe r  th is  

vacancy to  a ta rg e t  atom in the second c o l l is io n .  As the p ro je c t i le  

moves through the ta rg e t ,  vacancies are  being f i l l e d  and vacancies 

are being created. The two processes must proceed a t  d i f fe re n t  ra te s  

in order to  observe changing ta rg e t  and p ro je c t i le  x-ray cross 

sections.

For l ig h te r  ions such as f luo r ine  and su lfu r  incident on copper 

t a rg e ts ,  i t  has been found by Gardner e t  a l .  (1977) th a t  the  frac tion  

of the beam in the ta rg e t  with two K vacancies has an e ffe c t  on the 

x-ray cross section th a t  can not be ignored. In the present work a 

two component model appears to  be su i tab le  fo r  describing the  x-ray 

cross section. The e ffe c t  of two K vacancies i s  therefore  considered 

to  be neg lig ib le .

Feldman, Silverman, and Fortner (1976) used an argon beam in c i ­

dent on th in  f o i l s  of aluminum and were able to  describe the nonlinear 

ta rg e t  K x-ray cross section by considering the f rac t io n  of the beam 

with an L (2p) shell vacancy as the  beam moved through the ta rg e t .  

Bernstein and Ferguson (1979) used bromine beams a t  55 MeV on germa­

nium and found th a t  the  observed ta rg e t  thickness e f fe c t  could a lso  be 

described by considering the  changing f rac t io n  of the beam with L 

vacancies as the beam moves through th e  ta rg e t .  In these l a t e r  cases

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .
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the frac tion  of the p ro jec ti le s  with K shell vacancies is  very small 

and hence do not produce any observable e f fe c ts .

This work involves measurements of the  ta rg e t  thickness e ffec ts  

of a chlorine (Cl) beam on germanium (Ge) ta rg e ts .  The e ffe c t iv e  

ta rg e t  x-ray production cross sections were studied a t  energies of 

25, 30, and 35 MeV. Measurements made by Guiter (1979) a t  40 MeV are 

included in the analy s is ,  as are those of Bernstein (1980), who 

measured ta rg e t  and p ro je c t i le  x-ray production at 49.5 MeV. F inally  

measurements were made a t  49.5 MeV which u t i l iz e d  beams of several 

d i f fe re n t  pure charge s ta te s  corresponding to  d if fe re n t  numbers of 

L shell vacancies. These measurements showed no observable depend­

ence of the  x-ray production cross section on the number of L shell 

vacancies.

The analysis  of the data has led to  the conclusion th a t  the 

observed ta rg e t  thickness e ffe c t  fo r  ta rg e t  and p ro je c t i le  x-ray 

cross sections fo r  Cl on Ge can be described by a two component model 

which t r e a ts  the  changing frac tion  of the  beam with one K vacancy as 

the  beam tra v e ls  through the ta rg e t .  A le a s t  squares f i t  t  : he data 

allows the  determination of several physical parameters concerning 

K shell vacancy processes in the p ro je c t i le  atoms.

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .



CHAPTER I I

THEORY

The present work involves measurements of the  K shell x-rays 

produced in the c o ll is io n  of chlorine ions incident on th in  so lid  

germanium ta rg e ts .  The average e ffe c t iv e  ta rg e t  x -ray  cross sec tion , 

5^(T), which i s  a function of ta rg e t  th ickn ess ,  T, is  defined by the 

following re la t io n :

°x I 0nE *

where Y(T) is  the x-ray y ie ld  fo r  ta rg e t  th ickness T, I 0 i s  the 

number of incident p a r t i c le s ,  n is  the number of ta rg e t  atoms per cm2 , 

and e is  the de tec to r  e ff ic iency  fo r  ta rg e t  x-rays.

As noted e a r l i e r  there  are two conditions fo r  observing a ta rg e t  

thickness e f f e c t ,  namely a changing f rac t io n  of the beam with one K 

vacancy as the beam moves through the t a r g e t ,  and a ta rg e t  x-ray 

production cross section which i s  la rg e r  fo r  p ro je c t i le s  with one K 

vacancy than fo r  p ro je c t i le s  with no K vacancies. Thus,

<?i = aa|j (a > 1 ) ,

where i s  the ta rg e t  x-ray cross section  fo r  a p ro je c t i le  with a K 

shell vacancy and oq i s  the ta rg e t  x-ray cross section  fo r  a p ro jec­

t i l e  without a K shell vacancy.

The d i f f e r e n t ia l  equation describing the  change in K shell 

vacancies in the  beam as i t  moves through the  ta rg e t  i s  obtained 

(Gray e t  a ! . ,  1976) as follows: Let Yx(x) be the  f rac t io n  of the

6
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beam with one K vacancy a t  a depth x in the  ta rg e t  and

Y0(x) = 1 - Y2(x) be the f rac tion  of the  beam a t  depth x with no K

vacancies. Then

<>v*o(*> -  “d*i(x) (2)

where ov is  the p ro je c t i le  K vacancy production cross section and 

is  the  p ro je c t i le  K vacancy decay cross section including a l l  modes 

of f i l l i n g  the vacancies. Then

4 ^ 1 =  ov( l  -  Yi) -  odYi

or

= ov -  aYj, where a = + ov

The solution to  th i s  equation is :

Yl(x ) = ^  (1 - e“ax) + Ae-ax (3)

where A is  the f rac t io n  of the beam entering the ta rg e t  with one K 

vacancy.

The e ffec tiv e  cross section a* is  th e  sum of the  two cross

sections weighted with the f rac t io n  of th e  p ro je c t i le s  in each s ta te :

CTx = ao V x ) + ° i Yi ( x )

= oq[ 1 -  Yx(x)] + aagYi (x)

a* = Oq[ 1 + (a - 1)Y j(x )] .

To find the  average cross section fo r  a ta rg e t  of th ickness T, 

o*(T), in tegra te  from x = 0 to  x = T and divide by T.
X X

o‘ (T) .  4  / T[ l  + (a -  l )Y ,(x )]dx  
X 1 0
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The parameter a may be determined experimentally by taking the 

r a t io  of the  ta rg e t  x-ray cross section fo r  a vanishingly thin 

ta rg e t  of a beam composed e n t i re ly  of p ro je c t i le s  with one K vacancy 

to  th a t  of a beam with no K vacancies (Gardner e t  a l . ,  1977; T an is .

& Shafroth, 1978). Gray e t  a l .  (1976) suggest th a t  a may be 

re la ted  to  d i re c t  charge t ran s fe r .  A ta rg e t  K vacancy is  created by 

tran s fe r r in g  a ta rg e t  K electron to  the  p ro je c t i le .  In th is  formula- 

t i  on,

where u> is  the  fluorescence y ie ld  fo r  the ta rg e t  and R is  the radius 

corresponding to  the  peak in the dynamic coupling element as calcu­

la ted  by Taulbjerg, Vaaben, and Fastrup (1975). The parameter w 

(Meyerhoff, 1973) i s  a semi-empirical p robab ility  th a t  a vacancy in 

the  K shell of the p ro je c t i le  is  t ran s fe rred  to  the K shell of the 

ta rg e t  atom. Experimentally measured values of a compare well with 

th eo re tic a l  ca lcu lations of a fo r  ions with Z = 9, 13, 14, 16, and 

17 incident on copper ta rg e ts  a t energies per u n it  p ro je c t i le  mass 

of 1.7 MeV/amu (Gardner e t  a l . ,  1977).

The y ie ld  of the p ro je c t i le  x-rays may also be described by 

using a two component model (Betz e t a l . ,  1974; Tanis & Shafroth, 

1978). For the p ro je c t i le s  one must consider the x-rays produced 

inside  the  ta rg e t  and those produced outside the t a rg e t .  Inside 

th e  fo i l  the  number of x-rays produced, dN  ̂ is
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dN’ = IoY jtxJx^ 'dx  , (6)

where Av is the decay p robab ility  per un it path length, and e '  is  

the detection e ffic iency  fo r  p ro je c t i le  x-rays. Then

N j ( T )  = I o X x e ’ J ^ T Y1( x ) d x  ( 7 )

Outside the  fo i l  the observed x-ray in te n s i ty ,  Nx , is

N°(T) = Io Y jd Ja i^ ' , (8)

where T is  the ta rg e t  thickness and u>K i s  the mean K-shell f lu o re s ­

cence y ie ld  of the ionized p ro je c t i le s .  Summing these  contributions 

gives the to ta l  p ro jec ti le  x-ray y ie ld :

Nt o i m  = Ni + No = j - p  (T)Te, ^

where is  the average e ffe c t iv e  x-ray cross section.

Using equations (7) and (8 ) ,  0 ^ can be written

*^n Li

This may be in tegrated to  y ie ld :

a P m  = Ioxx£ ' **n Yj. (x)dx + InYi (T)ai|^e 1 / gx
" I 0Te* * K J

« J (T ) -  XX ( ^  -  A ) (  ) ]
-oT

+ «K [ ^  (1 - e"aT) + £ e " * T ] . (10)
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CHAPTER I I I

EXPERIMENTAL SETUP

A beam of negative chlorine ions was obtained by in jec ting  freon 

gas in to  a duoplasmatron ion source, then accelera ting  the  negative 

ions produced through the Western Michigan University  EN tandem Van 

de Graaff accelera to r . By gas s tripping  in the term ina l, charge 

s ta te s  of 6+ , 7+ , and 8+ were obtained a t  energies ranging from 

25 MeV to  49.5 MeV. The terminal voltage of the  machine ranged from 

3.6 MV to  5.5 MV during these runs.

Thin f o i l s  of Ge, ranging in thickness from about 1 to  180 yg/cm2 

were prepared by vacuum evaporation onto thin carbon backings which 

were 8 yg/cm2 or 23 yg/cm2 th ick . A movable ta rg e t  ladder was used 

which allowed six ta rg e ts  to  be placed in the ta rg e t  chamber and 

changed a f t e r  each run. The ladder could ro ta te  on i t s  axis to  

present a d if fe re n t  e ffec tiv e  thickness to  the beam. Rotating the 

ta rg e t  by 180° to  present the carbon f o i l  to  the  beam f i r s t  provided 

a f in a l  s tr ipp ing  of the chlorine beam, re su ltin g  in a higher average 

charge s t a te  entering the  germanium ta rg e t .  Figure 1 shows a sche­

matic diagram of the ta rg e t  chamber and experimental setup. Target 

thicknesses were determined by comparison of the p a r t ic le  y ie ld s  from 

the ta rg e ts  to  the  y ie ld s  from ta rg e ts  whose th icknesses had previ­

ously been determined (Bernstein, 1980).

A lithium d r if te d  s i l ico n  de tec to r (S i(L i)) placed 4.35 cm 

below the  ta rg e t  a t  an angle of 90° to  the beam detected the germanium

10
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Figure 1. Experimental geometry. The p a r t i c le  de tector i s  a t  an 
angle of 30° r e la t iv e  to  the  beam d irec tio n  and the  x-ray de tec tor 
is  a t  an angle of 90° r e la t iv e  to  the  beam d irec tio n .
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1^ x-rays; p a r t ic le s  were detected by a surface b a r r ie r  detector a t  

an angle of 30° to  the beam and 5.99 cm from the ta rg e t .  The system 

had collimating s l i t s  of 0.23 cm diameter and 0.64 cm diameter placed 

18.7 cm and 26.4 cm, respec tive ly , in f ro n t  of the  ta rg e t ,  and an 

aluminum absorber 0.00254 cm th ick  placed between th e  ta rg e t  and the 

x-ray de tec tor to  a ttenuate  unwanted chlorine  x-rays. The signals 

from the p a r t ic le  and x-ray detectors were sent through pream plifiers 

near the detectors and then through cables in to  the  control room.

The pulses were then amplified and sent to  a d iscrim inator and scaled 

or fed in to  the computer and stored on magnetic tape . A diagram of 

the  experimental e lec tron ics  is  given in Figure 2.

The system had a provision fo r  reducing "dead time" and x-ray 

pulse p ile-up . "Beam-flipping" p la tes  a t  1500 v o lts  (Thibeau, 1973) 

shunted the  beam away from the ta rg e t  each time the detector re g is ­

tered  an x-ray pulse. The beam i s  swept away from the  ta rg e t  in less  

than 0.5 ys and re turns to  the ta rg e t  within about 50 ys. The dead 

time correction was made by taking the  r a t i o  of the to ta l  number of 

x-rays detected to  the to ta l  number of x-rays counted and multiplying 

the  y ie ld  of germanium KQ x-rays by th i s  f a c to r .  A typ ical x-ray 

spectrum a t  40 MeV is  shown in Figure 3.

Runs were made fo r  a spec if ic  amount o f charge collec ted  in 

the  Faraday cup; the quantity  of charge co llec ted  ranged from 

8 x 10"6 to  4 x 10-lt coulombs.

A carbon fo i l  s t r ip p e r  located a f t e r  the  analyzing magnet 

allowed stripping  to  higher charge s ta te s  than those of the  acce le r­

ated beams. With th is  external s t r ip p e r  in p lace, pure charge s ta te s
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Figure 2. Electronics block diagram.
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Figure 3. X-ray spectrum from the Si(L i) de tec to r  fo r  Cl on Ge 
a t  40 MeV. Note the r e la t iv e  in te n s i t ie s  of the Cl Ka and the 
Ge Ka lines .
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were selected by the switching magnet and sent to  the  ta rg e t .  At

49.5 MeV, charge s ta te s  of .Cl p ro je c t i le s  of 8 + , 10+, 11+ , 12+ , 13+ , 

and 14+ were obtained, corresponding to  1, 3, 4, 5, 6 , and 7 L shell 

vacancies. Figure 4 shows the re s u l ts  of measurements of x-ray cross 

sections fo r  Ge ta rg e ts  of 6  yg/cm2 and 32 yg/cm2 vs. charge s t a t e ,  

q, of the incident ion. Within the u n cer ta in tie s  there  i s  no change 

in the ta rg e t  x-ray cross section fo r  p ro je c t i le s  with d if fe ren t  num­

bers of L vacancies. This provides strong evidence th a t  the  observed 

ta rg e t  thickness e ffe c ts  in th i s  case are due to  K vacancies.

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .



1 6

L SHELL VACANCIES 
1 3  5 7

COzaz
<
0
Oo

zo
t-oki
CO

CO
COocro

q

Figure 4. Target x-ray cross section vs. charge s t a te ,  q, of the 
incident ions. The number of L vacancies i s  shown on the top 
scale  and q i s  shown on the  bottom scale . The so lid  s t ra ig h t  l in e  
is  the average value fo r  a l l  q. The so l id  c irc le s  are cross sec­
tions  fo r  T = 6  yg/cm2  and the so lid  t r ia n g le s  are cross sections 
fo r  T = 32 yg/cm2 .
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CHAPTER IV

DATA ANALYSIS

After each run the ta rg e t  number, ta rg e t  th ickness, angle of the 

ta rg e t  to  the beam, current in tegra tion  count, time of run, p a r t ic le  

count, and germanium 1̂  x-ray y ie ld  corrected fo r  dead time were 

recorded. For a p a r t ic u la r  ta rg e t  a t  a given ta rg e t  angle, current 

in tegra tion  counts, p a r t ic le  counts, and germanium 1̂  x-rays were 

to ta led .  A background correction was made by counting the  number of 

x-rays th a t  resu lted  in passing the beam through a carbon fo i l  of 

the same thickness as the ta rg e t  backings.

The r a t io  of germanium x-rays to  sca tte red  p a r t ic le s  i s  used to  

determine the e f fe c t iv e  ta rg e t  x-ray production cross section . The 

p a r t ic le  count i s  used instead of a charge in teg ra tion  because of 

the  d i f f ic u l ty  fo r  heavy ions in accura te ly  determining the number 

of incident p a r t ic le s  from the  co llec ted  charge. With the th in  t a r ­

gets used, the sc a t te r in g  of p ro je c t i le s  i s  very well described by 

the Rutherford formula. The y ie ld  of x -ray s ,  Yx , i s :

V   t — t  d f l v
Tx " 1 oax l 4 -ct ex » 

where I 0 i s  the  number of p a r t ic le s  in the beam, T is  the ta rg e t  

th ickness, dftx i s  the  so lid  angle subtended by the x-ray d e te c to r ,  

and ex is  the e ff ic ien cy  of the x-ray de tec to r .  The p a r t ic le  y ie ld ,
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where is  the Rutherford sca ttering  cross section in lab
\  /  R , LAB

coordinates and dflp is  the so lid  angle of the  p a r t ic le  de tec to r. The 

p a r t ic le  y ie ld  includes germanium re c o i ls  as well as sca tte red  chlor­

ine p ro je c t i l e s ,  both detected a t an angle of 30° in the  laboratory 

re la t iv e  to  the  beam. To ca lcu la te  the cross section fo r  germanium 

reco ils  i t  can be shown th a t  fo r  germanium to  s c a t te r  a t  30° in the 

lab , chlorine must s c a t te r  a t  1 2 0 ° in the center of mass frame.

Corrections fo r  the energy loss as the beam traveled  through the 

ta rg e t  were made by using values of the e lec tron ic  stopping power of 

germanium and carbon (N orthcliffe  & S ch ill in g , 1970). All re su l ts

are corrected to  the same energy a t  the center of the t a rg e t .  For
AE f ip

ta rg e ts  with germanium f i r s t ,  —  is  the energy loss to  the center

of the ta rg e t .  For the runs where the beam f i r s t  went through the

carbon backing, the  beam lo s t  energy through the carbon as well as
AEge

the germanium; the  to ta l  energy loss was aE' = —  + AEC where

aEc i s  the energy loss in carbon. This energy loss a f fe c ts  the 

p a r t ic le  y ie ld  because the Rutherford cross section varies as E"2 .

The x-ray y ie ld  varies  as E5 * 3 8  in the energy range of in te r e s t .

This energy dependence fo r  the x-rays was determined by graphing the 

x-ray y ie ld  vs. energy a t  30, 35, 48.5 , 49.0, and 49.5 MeV on 

semi-log paper. The e ffec tive  x-ray cross section cx , which is  pro­

portional to  Yx/Yp, is  therefore  proportional to  E7*38. For

°x = kEm

Then

dax = mkEm-1dE ,
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Thus, the correction fac to r  fo r  ta rg e t  x-rays fo r  the germanium f i r s t
A Epp

points was Yx [1 + 7.38 2 j? ] , and fo r  the carbon f i r s t  points

r  ,AEG p  AEC n _
Yx [1 + 7.38 v~2 £^ +  ̂* ”̂ e con,bined corrections ranged from

less than 1% to as much as 17% fo r  the th ic k es t  ta rg e ts  with carbon

f i r s t .

Windows were se t  so th a t  only the  germanium 1^ x-rays were 

counted. The ta rg e t  x-ray y ie ld  was m ultip lied  by 1.169 to  account 

fo r  the germanium Kg x-rays. This fa c to r  was obtained a t  49.5 MeV 

(Bernstein, 1980).

There are two major sources of uncerta in ty  in the  r e la t iv e  x-ray 

production cross sec tions. These u n ce r ta in tie s  are: s t a t i s t i c a l
I*

f luc tuations which give an uncertain ty  of AN = N2 fo r  N counts, and 

the uncertainty connected with the rep rodu c ib il i ty  of the data which 

is  presumably caused by changes in the  position  of the beam and by 

ta rge t  nonuniformities. The s t a t i s t i c a l  u n ce r ta in t ie s  ranged from 

less than 1% to  about 5%, while rep rod uc ib il i ty  e rro rs  were assigned 

an estimated value of 3%. The overall u n c e r ta in t ie s  in the  re la t iv e  

cross sections were almost always smaller than 4%.

The u ncerta in ties  in the  absolute ta rg e t  x-ray production cross 

sections are estimated to  be about ±2 0 %, while the  u n certa in tie s  in 

the absolute p ro je c t i le  x-ray cross sec tions are estimated to  be 

±30%. These u n ce r ta in tie s  in the  absolute  cross sections are s im ila r
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in magnitude to  other measurements (Garcia e t  a l . ,  1973). Since the 

quan ti t ie s  of primary in te re s t  in th i s  work are determined by the 

re la t iv e  cross sec tions , the magnitudes of the  u n ce rta in tie s  in the 

absolute cross sections are acceptable.
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CHAPTER V

RESULTS AND DISCUSSION 

Target X-ray Cross Sections

I f  p ro je c t i le s  with only a s ing le  value of A are a v a i la b le ,  fo r  

example a beam entering the ta rg e t  with no K vacancies (A = 0 ) ,  a 

le a s t  squares f i t  to  Equation (4) allows determination of a^ , a ,  and 

the  product ov(a - -1 ) .  The q u an ti t ie s  ov and (a - 1) can be d e te r ­

mined independently i f  p ro je c t i le s  with two d if fe re n t  known values 

(Gray e t  a l . ,  1576) of A (e .g . A = 0 and A = 1) are ava ilab le . In 

the  present work nonzero values of A were obtained by passing the 

beam through the carbon ta rg e t  backing f i r s t .  When the  r e s u l ts  

obtained with a beam of nonzero (but unknown) A are  f i t  to  Equation

(4) simultaneously with the  re su l ts  obtained with a beam with A = 0, 

the  product (a -  1)A i s  determined in addition to  the o ther th ree  

parameters which are common to both se ts  of data . Table 1 and Table 

2  show the re s u l ts  obtained using a le a s t  squares f i t t i n g  computer 

program developed by Tanis (1979). The values of the  parameters fo r  

the  A = 0 data are  shown in Table 1, and the  values fo r  the  sim ulta­

neous f i t s  fo r  beams with nonzero A values and zero A values are 

shown in Table 2. The e rro rs  quoted a re  only the  " f i t t i n g  e rro rs"  

from the le a s t  squares ana lysis . These f i t t i n g  e rro rs  were obtained 

by determining approximately the values of the parameters which 

gave an average e rro r  per data point about 20% to  30% la rg e r  than
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Table 1

Least Squares F i t  Parameters fo r  Ge F irs t  Data

E
(MeV)

t
°0

(b)
-

(a -  l ) o v 
(1000 Kb)

0
(1000 Kb)

25 5.1 +0.6
- 0.2

c o +3.5 
6 ' 2 -1 .7 17 9 +7' 6 -1 .9

30 12.7 +0.1
-0 .3 8 - 4  3 1 22.8 t f ; f

35 26.1 +0.9
- 0.1 1 1  •3  3 1 1 9 - 2  3 1

40 58.4 +2.0
- 0.1 “ - 1  -3 :S

Table 2

Least Squares 
and C

F it  Parameters fo r  Ge F irs t  
F i r s t  Data Combined

E
(MeV)

t
ao

(b)
(a -  l ) o v 
(1000 Kb)

0
(1000 Kb) A(a - 1)

30 12 91<L' -0 .3 R 0 + 1 - 9  6,0 -2 .4 1 6 - 6  3 1 0 470u'^ /u - 0 . 0 1

35 27 1
^ / ’ 1 - 0 . 1

7 5
- 1 . 0

1 ! . 8  t 3 ; 4 0 724
U * ' ^ 4  - 0 . 0 1

40 C O  o  + 0 . 158.2 _Q2 1 1  2  1 1 . * _ l 2 i s -° 3 1
n  „ o  + 0 . 0 1  

° ‘ 5 3 2  - 0 . 0 2

49 .5a 191.1 * ^ 7 c . +0.56 
6 * 4  -0.13

7 , +0.3 
- 1 . 2

°.6S5 t g l

aAt th is  energy p ro je c t i le  data was a lso  f i t  in the lea s t  squares 
analysis.
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the e rro r  per point fo r  the best f i t  parameters. The parameters 

determined a t  49.5 MeV were obtained by f i t t i n g  p ro je c t i le  x-ray cross 

sections simultaneously with the A = 0 and A f  0 cross sec tions. Fig­

ure 5 shows ta rg e t  x-ray cross sections vs. ta rg e t  thickness fo r  E = 

25, 30, 35, and 40 MeV along with the two component model f i t s .  Fig­

ure 6  shows the ta rg e t  x-ray cross section a t  49.5 MeV as well as the 

p ro jec ti le  x-ray y ie ld  (see below) a t  th is  energy along with the f i t s .

I f  a determination of A can be made, a may be calculated  from 

the value of (a - 1)A. Values of A can be determined fo r  a given 

thickness of carbon (C) using Equation (3) i f  a and av are  known for 

Cl on C. The thicknesses of the carbon backings used in th i s  exper­

iment were 27.5 ug/cm2 a t  25, 30, and 35 MeV and 9.5 pg/cm2  a t  40 and

49.5 MeV.

Tanis, Shafroth, and W illis (1979) have made measurements of a 

and the vacancy production cross sec tion , av , fo r  Cl on C a t  energies 

of 40, 60, and 80 MeV. In the  determination of av , Tanis e t  a l .

(1979) made use of Cl on Cu data. In the present analysis  the Cl on 

Cu data has been recomputed using a d if fe ren t  value of R in Equation

(5). The value in atomic un its  ( a .u .)  used was R = 2.85 a .u . / (Z 2  - 

3/4) (Taulbjerg e t  a l . ,  1975) instead of R = 2.6 a .u . /Z 2  given by 

Gray e t a l .  (1976). I t  is  not c lear  how Gray e t  a l .  arrived  a t  th e i r  

value fo r  R since i t  was also obtained from Taulbjerg e t  a l .  (1975). 

Using the recomputed values of av fo r  Cl on C and values in terpolated  

and extrapolated from these values on a log-1og graph, A has been 

determined a t  the energies of in te r e s t .  The values of A are given in 

column 4 of Table 3.
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Figure 5. Target K x-ray production cross sections vs. ta rg e t  
thickness fo r  Cl on Ge a t  25, 30, 35, and 40 MeV. The so lid  
c irc le s  are fo r  data points with A = 0 , and the so lid  t r ia n g le s  
are fo r  points with A j* 0. The so lid  curves are le a s t  squares 
f i t s  to  the data.
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Figure 6 . At the top is  shown the ta rg e t  K x-ray production cross 
section vs. ta rg e t  thickness fo r  Cl on Ge a t  49.5 MeV. Solid 
c irc le s  are  fo r  A = 0 and so lid  t r ia n g le s  are fo r  A f  0. The so lid  
curves are the le a s t  squares f i t s  to  a l l  the data a t  t h i s  energy.
At the bottom is  shown the p ro je c t i le  K x-ray y ie ld  vs. ta rg e t  
thickness fo r  Cl on Ge a t  49.5 MeV. The y ie ld  i s  given in terms 
of the cross section in kilobarns times the ta rg e t  thickness in 
ug/cm2 . The so lid  curve is  the r e s u l t  of the  le a s t  squares f i t  
to  a l l  the  data a t  th is  energy.
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Table 3

Comparison of Experimental and Theoretical Values of a

(MeV) a  ( T h e o r y ) a  a  ( ExP * )  AC ( K b )  (Kb)

30 38.9 35.8 0.0135 158 172 +55
-69

35 30.2 34.5 0.0216
2 5 8  -34 224 +78

-30

40 2 1 . 0 21.5 0.0259 Ffin + 4 0  
5 6 0  -60 546 +39

-59

49.5 1 1 . 8 12.9 0.0551 593 * 1 2 538 +47
- 1 1

aCalculated using Equation (5).

^Obtained from value of A in column 4 and (a - 1)A value given in 
Table 2.

cFrom Cl on C measurements.

C a lc u la te d  from (a - l ) a v in Table 2 using the value of a from 
column 2 .

C a lc u la ted  from (a -  l ) a y in Table 2  using the value of a from 
column 3.

In Table 3 the  values of a obtained using the values of A calcu­

lated  from the C data and the (a -  1)A values from the  le a s t  squares 

f i t  are compared to  the values of a found using Equation (5). The 

value of R used in the ca lcu la tion  fo r  Cl on Ge was R = 2.6 a .u . /

(Z2  -  3 /4 ) ,  where Z2  is  the  atomic number of Ge, 32. This value fo r  

R was extrapolated  from the ca lcu la tions  given in Taulbjerg e t  a l .

(1975) and is  consis ten t with the value of R used fo r  Cl onCu. The

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .
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value of to i s  0.540 (Bambynek, Crasemann, Fink, Freund, Mark, Sw ift, 

P rice , and Rao (1972). The He-like binding energy of Cl, 3.6584 keV 

(Kelly & Harrison, 1973) was used in the ca lcu lation  of the Meyerhoff 

parameter w. The value of o j  was taken from the le a s t  squares f i t  of 

A = 0 and A f  0 da ta . The values of a calculated  using the C data 

agree to within ±15% of the values of a predicted by Equation (5).

Using the values of (a - 1) and the  (a -  l ) c v values from Table 2, 

the  values of the vacancy production cross sec tion , av , obtained from 

the two d i f fe re n t  values of a ,  are a lso  compared in Table 3. The 

(a -  l ) a v values come from the simultaneous le a s t  squares f i t  of the 

A = 0 and A f  0 da ta .

A p lo t of a vs. energy i s  shown in Figure 7. The large f i t t i n g  

e rro r  fo r  25 MeV ind ica tes  th a t  more data needs to  be taken a t  th is  

energy. Because there  are  so few data points a t 25 MeV with carbon 

f i r s t ,  no attempt was made to  simultaneously f i t  the nonzero A data 

with the A = 0 da ta . Values of a from the f i t s  using the A = 0 data 

and the combined A = 0 and A 1 0 data are  s l ig h t ly  o ffse t  from the 

values of a found using only the  A = 0 data. Total cross sections 

fo r  Cl on Cu (Tanis, Jacobs, & Shafro th , 1980) and Cl on C (Tanis 

e t  a l . ,  1979) are  shown fo r  comparison. The values of a fo r  Cl 

on Ge decline steep ly  with increasing energy, following the  general 

trend of the  o ther two curves. This occurs because the vacancy decay 

cross sec tion , which i s  prim arily  due to  e lectron capture, decreases 

with increasing energy more rap id ly  than the vacancy production cross 

section increases. As noted e a r l i e r  o i s  the sum of the vacancy

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .
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Figure 7. Cross section a vs. energy fo r  Cl on C, Cu, and Ge. 
The so lid  c i r c le s  represent values of c fo r  Cl on Ge using both
A = 0 and A i  0 data , while the so lid  t r ia n g le s  are values of o
fo r  Cl on Ge using the A = 0 data only. The so lid  squares are 
o values fo r  Cl on Cu (Tanis e t  a l . ,  1980) and the open squares 
are o values fo r  Cl on C (Tanis e t  a l . ,  1979). The so lid  l ines
are drawn through the points to  guide the eye. Error bars show
f i t t i n g  e rro rs  only.
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production cross sections and the vacancy decay cross sections 

including a l l  modes of f i l l i n g  K vacancies in the p ro je c t i le .

Figure 8  i s  a graph of the vacancy production cross section ov 

vs. energy fo r  Cl on Ge with cv fo r  Cl on Cu (Tanis e t  a l . ,  1980) 

and Cl on C (Tanis e t  a l . ,  1979) included fo r  comparison. The 

vacancy production cross section i s  seen to  increase with energy, 

re f lec t in g  the f a c t  th a t  creating a ta rg e t  K vacancy is  more l ik e ly  

fo r  p ro je c t i le s  of higher ve locity . From these re s u l ts  i t  appears 

th a t  the Cl on Ge values have a somewhat s teeper r i s e  with energy 

than the other two se ts  of cross sections.

P ro je c t i le  X-ray Cross Sections

The p ro je c t i le  K x-ray production cross sections measured a t

49.5 MeV (Bernstein, 1980) were f i t  simultaneously with the ta rg e t  

x-ray cross sections. A le a s t  squares f i t  to  the data  determined 

Oq , the p ro je c t i le  x-ray cross section fo r  zero th ickness , the 

product Axav where ax i s  the rad ia tiv e  decay p robab ility  per un it  

path length , the product axA, as well as a^ , (a - l ) a v , and a . The 

re su l ts  of the analysis  along with the  f i t t i n g  e rro rs  are: =

214 ^ 3  Kb, Axav = ( 3 5 4 ^ ^ )  x 103 Kb2 , and AxA = 36.2 Kb.

Using the  value fo r  A from Table 3 column 4 allows determination 

of Ax = 657 Kb.
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Figure 8 . Vacancy production cross sec tio n , ov , fo r  Cl on C, Cu, 
and Ge vs. energy. The so lid  c i r c le s  represent values of av fo r  
Cl on Ge found using the th eo re tic a l  values of a ,  while the  so lid  
t r ia n g le s  are values of ov obtained using the experimental values 
of a. The so lid  squares are fo r  Cl on Cu (Tanis e t  a l . ,  1980) and 
the open squares are fo r  Cl on C (Tanis e t  a l . ,  1979). The so lid  
l ines  are drawn through the  points to  guide the eye. Error bars 
show f i t t i n g  e rro rs  only.
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CHAPTER V I

CONCLUSIONS

The ta rg e t  thickness dependence of a l l  of the ta rg e t  and 

p ro je c t i le  K x-ray production cross sections were f i t  reasonably well 

using the two component model of Betz e t  a l .  (1974). Target x-ray 

cross sections were enhanced when the  beam was passed through the 

carbon backing f i r s t  before entering the  ta rg e t .  This enhancement 

can be explained by considering th a t  a cer ta in  frac tion  of the  beam 

emerges from the carbon backing with K vacancies. The ta rg e t  x-ray 

cross section was found to  be independent of the  number of L vacan­

cies in the  p ro je c t i le s  in agreement with e a r l i e r  work by Gray e t  a l .

(1976) fo r  Cl inciden t on Cu. This provides strong evidence th a t  

the observed ta rg e t  thickness e f fe c t  fo r  the K x-ray cross sections 

fo r  Cl on Ge r e s u l ts  from K vacancies in the  beam.

There i s  good agreement in the experimentally determined values 

of a and th e o re t ic a l  values of a ,  ind icating  the usefulness of the 

Gray e t  a l .  (1976) formula in the energy ranges of the c o l l is io n  sys­

tem studied. In addition to  f i t t i n g  the da ta , the two component 

model yielded two parameters of physical s ign if ican ce , o and ctv > 

which describe some of the dynamics of th e  p ro je c t i le  in te rac t io n  

with the ta rg e t  atoms. The energy dependence of o and ov was studied 

and compared with Cl on C and Cl on Cu. More work is  needed a t  lower 

energies where the  data was l im ited , and a t  higher beam energ ies , 

espec ia lly  using higher beam charge s ta te s  so th a t  beams with A = 1

31
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can be acce lera ted , and more precise  experimental determinations 

a made.
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