The Effects of Hypophysectomy and Testosterone on Testicular Prostaglandin F$_{2\alpha}$

Diane Charron Beuving

Western Michigan University

Follow this and additional works at: http://scholarworks.wmich.edu/masters_theses

Part of the Anatomy Commons

Recommended Citation
Beuving, Diane Charron, "The Effects of Hypophysectomy and Testosterone on Testicular Prostaglandin F$_{2\alpha}$" (1979). Master's Theses. 1951.
http://scholarworks.wmich.edu/masters_theses/1951

This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
THE EFFECTS OF HYPOPHYSECTOMY AND TESTOSTERONE ON TESTICULAR PROSTAGLANDIN F$_2$α CONCENTRATION IN RATS

by

Diane Charron Beuving

A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the Degree of Master of Science

Western Michigan University Kalamazoo, Michigan December 1979
ACKNOWLEDGEMENTS

The assistance of Drs. Darwin Buthala and Jack Wood, Biomedical Sciences Department, Western Michigan University, and of Dr. Kenneth Kirton, Fertility Research, The Upjohn Company, in the planning and completion of this thesis is greatly appreciated. The aid of Patrícia Kemp, Biostatistics, The Upjohn Company, Kristi Forbes, Fertility Research, The Upjohn Company, and William Burr, Pathology, The Upjohn Company, is also acknowledged. The continued encouragement of Dr. Charles Spilman, Fertility Research, The Upjohn Company, and Dr. Leonard Beuving, Biomedical Sciences Department, Western Michigan University, has made the completion of this thesis a reality.

Diane Charron Beuving
INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.
BEUVING, DIANE CHARRON
THE EFFECTS OF HYPOPHYSECTOMY AND TESTOSTERONE ON TESTICULAR PROSTAGLANDIN F(2-ALPHA) CONCENTRATION IN RATS.
WESTERN MICHIGAN UNIVERSITY, M.S., 1979

University Microfilms
International
300 N. ZEEB ROAD, ANN ARBOR, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
PLEASE NOTE:
In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark.

1. Glossy photographs
2. Colored illustrations
3. Photographs with dark background
4. Illustrations are poor copy
5. Print shows through as there is text on both sides of page
6. Indistinct, broken or small print on several pages throughout
7. Tightly bound copy with print lost in spine
8. Computer printout pages with indistinct print
9. Page(s) lacking when material received, and not available from school or author
10. Page(s) seem to be missing in numbering only as text follows
11. Poor carbon copy
12. Not original copy, several pages with blurred type
13. Appendix pages are poor copy
14. Original copy with light type
15. Curling and wrinkled pages
16. Other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>4</td>
</tr>
<tr>
<td>Protocol</td>
<td>4</td>
</tr>
<tr>
<td>Prostaglandin F2α Assay</td>
<td>5</td>
</tr>
<tr>
<td>Testosterone Assay</td>
<td>6</td>
</tr>
<tr>
<td>RESULTS</td>
<td>9</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>19</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>21</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
INTRODUCTION

The presence of prostaglandins (PG's) in the mammalian male reproductive system has been well documented (1), however their physiological importance remains speculative. PG's have been shown to either increase or decrease testosterone production by decapsulated testes in vitro from rats and mice depending upon the concentration of PG added to the incubation media. Increased androgen synthesis was observed when 10^-5 to 10^-7 M prostaglandin was added to the media whereas 10^-3 to 10^-4 M PG caused a suppression in steroidogenesis (2).

Prostaglandins may also play a role in the transport of sperm from the testis to the epididymus. Prostaglandins have been shown to stimulate testicular capsule contractions in vitro. This stimulation was inhibited, in a dose dependent manner, by the addition of testosterone to the incubation media at concentrations of 4-20 µM. It was therefore postulated that there is an interaction between androgens and prostaglandins in vivo that modulates testicular contractility (3).

It is difficult to assess the physiological importance of prostaglandins in vivo. Inhibition of PG synthesis by compounds such as indomethacin or aspirin cause a suppression of PG synthesis in the central nervous system as well as in the reproductive tract. This results in a suppression of gonadotropin release (4). Similarly, administration of exogenous PG causes an increase in gonadotropin and prolactin release (2).
The control of prostaglandin concentrations in the male reproductive tract remains as illusive as their function. Bartke and Koerner (5) measured PGF in the testes, epididymides, vas deferentia, seminal vesicles, coagulating glands, and prostates of intact and castrated rats, as well as castrated rats treated with testosterone propionate (500 μg/day). They reported that castration caused a significant suppression in PGF concentrations which were restored by testosterone propionate. They have proposed a direct androgenic control of prostaglandin synthesis in the male reproductive tract.

Sutherland et al. (6) have also proposed an androgenic control of prostaglandins in the male reproductive tract. They measured PGF in the prostate and seminal vesicles of mature intact and castrated rats, and in castrated rats treated with testosterone. They observed an increase in PGF concentration in the tissues from castrated rats. Prostaglandin F concentrations in the castrated rats treated with testosterone were reported to be suppressed to the normal concentrations. They have proposed an androgenic control mechanism whereby androgens inhibit PG synthesis in the male reproductive tract.

Ellis et al. (7) measured prostaglandin synthetase activity in the testes of immature intact and hypophysectomized rats. They reported a decrease in prostaglandin synthetase activity in the hypophysectomized rats. From these data they concluded that prostaglandin synthesis in the testes is controlled by gonadotropins.

These authors also measured prostaglandin synthetase activity in the testes from mature intact and adrenalectomized rats. They
observed a decrease in prostaglandin synthetase activity following adrenalectomy. They concluded from these data that prostaglandin synthesis is also under an adrenal dependency (7).

In an attempt to further clarify the control mechanism of testicular PGF$_2\alpha$ concentration, the effect of hypophysectomy on testicular concentrations of PGF$_2\alpha$ in mature rats was examined. The effect of testosterone on testicular PGF$_2\alpha$ in mature hypophysectomized and intact rats was also examined.
MATERIALS AND METHODS

Protocol

Silastic implants containing either testosterone or cholesterol were made by packing 4.5 cm of Silastic tubing (0.062" i.d., 0.125" o.d.) with the crystalline steroid (The Upjohn Company). The ends were sealed with Dow Corning Medical Adhesive. Testosterone propionate (TP) was obtained from The Upjohn Company as a 50 mg/ml solution in cottonseed oil, and was further diluted to 20 mg/ml with cottonseed oil.

Hypophysectomized rats (250-300 g) were obtained from Hormone Assays, Inc. within 24 hours after surgery. They were housed in individual cages in a temperature and humidity controlled room (23°C) with a light cycle of 13 hours of light, 11 hours of dark. The rats were maintained on 5% glucose and Purina rat chow ad libitum. The diet was supplemented with apple and/or orange slices daily.

Intact rats of the same strain and size range were also obtained from Hormone Assays, Inc. They were housed and maintained identically to the hypophysectomized rats with the exception that water was provided in place of 5% glucose.

Hormone treatment was initiated as soon as the animals arrived. Hypophysectomized rats received either a testosterone or cholesterol implant subcutaneously, or daily subcutaneous injections of 2 mg TP in 0.1 ml cottonseed oil. Intact rats were treated with TP (2 mg/day) or 0.1 ml cottonseed oil. After 2 weeks of treatment the rats
were decapitated, the trunk blood collected, and the serum harvested. The cranial vaults of hypophysectomized rats were examined grossly for remnants of pituitary tissue. One testis from each animal, chosen at random, was removed, weighed, and immediately frozen on dry ice. The remaining testis was fixed in Bouin's solution for subsequent histological examination.

The mean testicular weight for each group of animals was compared to that of the intact rats treated with cottonseed oil by performing a one-way analysis of variance. Statistical significance was assumed at $p = 0.01$.

Prostaglandin F$_2\alpha$ Assay

The testes were homogenized in saline containing indomethacin (0.1 mg/ml) with a PCU-110 Polytron Tissue Homogenizer while submerged in an ice bath. Duplicate aliquots (0.3–0.5 ml) were acidified to pH 4 with 1N HCl and extracted twice with 3 ml's ethyl acetate. The extracts were combined and the solvent evaporated at 37°C under nitrogen gas.

The tissue extracts were chromatographed on prepacked Sephadex LH-20 columns (1 g Sephadex LH-20 in methanol, bed dimensions were 8 x 253 mm, Isolab, Inc.). The methanol was drained from the columns, and the columns rinsed with 20 ml's methylene chloride:ethyl acetate, 85:15 (MC:EA). The samples were applied to the columns with 2 x 0.1 ml MC:EA with 2% methanol and 0.5% acetic acid. Ten ml's of MC:EA with 2% methanol were then applied to each column, and the columns allowed to drain. Fifteen ml's of MC:EA with 10% methanol
were then passed through the columns and collected. The elution pattern is illustrated in Figure 1. The solvent was evaporated at 37°C under nitrogen gas. One ml glass distilled absolute ethanol was added to each tube. The tubes were corked and stored at 4°C until the time of assay.

Two 0.1 ml aliquots from each sample were assayed for PGF$_2$α with a specific radioimmunoassay (8). The ethanol was dried at 37°C under nitrogen gas and 0.2 ml tris buffer was added to each sample tube. The first antibody dilution was 1:5000, and the tritiated PGF$_2$α (3H-PGF$_2$α, obtained from Amersham with a specific activity of 14.4 Curies/mmole) and second antibody concentrations were adjusted to produce 80% binding in the zero-dose tubes.

Procedural losses, as monitored by the recovery of 3H-PGF$_2$α, were found to be less than 5%. Therefore the reported values were not corrected for procedural losses.

The concentration of PGF$_2$α in the testes (ng PGF$_2$α/g tissue) was calculated. A one-way analysis of variance with a rank transformation was performed. The Bonferroni method of multiple comparisons (9) was used to determine statistical significance. To assure an overall error rate of $p = 0.05$, the individual comparisons were made at $p = 0.005$.

Testosterone Assay

Two 10-100 μl aliquots of serum were extracted with 2 x 2.5 ml benzene:hexane, 1:2. The extracts were combined and dried at 37°C under nitrogen gas. Testosterone concentrations were estimated
Tritiated PG's were applied to separate columns and chromatographed as described. Ten 1 ml fractions followed by seven 2 ml fractions of the effluent were collected. The solvent was evaporated, scintillation fluid added, and the amount of radioactive PG recovered was measured.
using a specific radioimmunoassay for testosterone (10). Group means were calculated and compared to that of intact rats treated with cottonseed oil by performing a oneway analysis of variance. Statistical significance was assumed at $p = 0.01$.
RESULTS

The mean concentration of serum testosterone in hypophysectomized rats treated with testosterone implants (6.72 ng/ml) was not significantly different from that of the intact rats treated with cottonseed oil (3.37 ng/ml). Serum testosterone concentrations for the remaining groups of animals are reported in Table 1.

Hypophysectomy caused a significant decrease in testicular weight. Testosterone, when given to hypophysectomized rats, resulted in a dose-dependent increase in testicular weight. Testosterone propionate given to intact rats (2 mg/day) did not affect testicular weight (Table 1).

Microscopic examination of hematoxylin and eosin stained sections of the testes demonstrated the presence of spermatogenesis in all intact rats, as evidenced by maturing sperm in the lumen of the spermatogenic tubules (Figures 2, 3). Spermatogenesis was maintained in hypophysectomized rats by either a testosterone implant or TP injections (Figures 4, 5). Spermatogenesis was severely depressed in hypophysectomized rats treated with cholesterol implants (Figure 6).

Testicular PGF$_2\alpha$ concentrations are illustrated in Figure 7. Hypophysectomy resulted in a three fold increase in the testicular concentration of PGF$_2\alpha$. Testosterone given to intact rats at doses sufficient to cause a suppression in gonatropin release (11) did not result in the increase in testicular PGF$_2\alpha$ concentrations observed in hypophysectomized rats. When testosterone was given to hypophysectomized rats at either physiological doses (testosterone

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Serum Testosterone ng/ml</th>
<th>Testicular Weight g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact + oil</td>
<td>12</td>
<td>3.67 ± 0.69</td>
<td>1.73 ± 0.04</td>
</tr>
<tr>
<td>Intact + TP</td>
<td>12</td>
<td>41.14 ± 2.56*</td>
<td>1.69 ± 0.04</td>
</tr>
<tr>
<td>H + TP</td>
<td>10</td>
<td>69.67 ± 3.05*</td>
<td>1.42 ± 0.03*</td>
</tr>
<tr>
<td>H + CI</td>
<td>10</td>
<td>1.84 ± 0.62</td>
<td>0.91 ± 0.03*</td>
</tr>
<tr>
<td>H + TI</td>
<td>10</td>
<td>6.72 ± 1.00</td>
<td>1.29 ± 0.04*</td>
</tr>
</tbody>
</table>

H - Hypophysectomized
TP - Testosterone Propionate
CI - Cholesterol Implant
TI - Testosterone Implant
* - p < 0.01 as compared to intact rats treated with cottonseed oil

Reported values represent group means ± SEM.
Hematoxylin and eosin stain section of the testis from an intact rat treated with cottonseed oil (250x).
Figure 3

Hematoxylin and eosin stain section of the testis from an intact rat treated with testosterone propionate (250x).
Figure 4

Hematoxylin and eosin stain section of the testis from a hypophysectomized rat treated with a testosterone implant (250x).
Hematoxylin and eosin stained section of the testis from a hypophysectomized rat treated with testosterone propionate (250x).
Figure 6

Hematoxylin and eosin stained section of the testis from a hypophysectomized rat treated with a cholesterol implant (250x).
Figure 7

Testicular PGF$_{2\alpha}$ Concentrations in Hypophysectomized and Androgen Treated Rats

The reported values represent group means ± SEM. The number of animals in each group is given in parentheses.

I - Intact
H - Hypophysectomized
TP - Testosterone Propionate
CI - Cholesterol Implant
TI - Testosterone Implant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
implants) or pharmacological doses (TP injections) the increase in testicular PGF$_2\alpha$ concentrations caused by hypophysectomy was not suppressed (Table 2).
Table 2

Testicular PGF$_2$α Concentrations in Hypophysectomized and Androgen Treated Rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Testicular PGF$_2$α ng/g</th>
<th>Testicular PGF$_2$α Mean Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact + Oil</td>
<td>12</td>
<td>8.14 ± 1.32</td>
<td>15.83 ± 1.93</td>
</tr>
<tr>
<td>Intact + TP</td>
<td>11</td>
<td>5.70 ± 1.33</td>
<td>9.32 ± 2.42</td>
</tr>
<tr>
<td>H + TP</td>
<td>9</td>
<td>32.32 ± 5.00</td>
<td>41.67 ± 3.23</td>
</tr>
<tr>
<td>H + CI</td>
<td>9</td>
<td>28.79 ± 3.40</td>
<td>40.61 ± 2.91</td>
</tr>
<tr>
<td>H + TI</td>
<td>12</td>
<td>20.48 ± 2.32</td>
<td>33.17 ± 2.62</td>
</tr>
</tbody>
</table>

H - Hypophysectomized
TP - Testosterone Propionate
CI - Cholesterol Implant
TI - Testosterone Implant

The reported values represent group means ± SEM. The analysis of variance was performed on the ranked data. The mean rank for each group of hypophysectomized rats was different from that of both groups of intact rats. The mean rank for each group of hypophysectomized rats was not different from that of the other groups of hypophysectomized rats. The mean for the intact rats also were not significantly different from each other.
DISCUSSION

The results reported here demonstrate a highly significant increase in testicular PGF$_2\alpha$ concentrations in mature hypophysectomized rats as compared with intact rats ($p < 0.005$), suggesting that the testicular PGF$_2\alpha$ is under inhibitory hypophyseal control. This conclusion is further supported by the observation that testosterone given to hypophysectomized rats did not suppress this increase.

The release of testosterone by the testis of normal rats has been shown to be pulsatile causing large irregular fluctuations in plasma testosterone concentrations (16). No attempt was made to mimic this release pattern in hypophysectomized rats treated with testosterone. The effects of these fluctuations on testicular PGF$_2\alpha$ concentrations has not yet been investigated, but their role cannot be discounted.

It is assumed that gonadotropin secretion was suppressed in intact rats by testosterone propionate. This suppression did not produce the increase in PGF$_2\alpha$ observed in hypophysectomized rats. These data suggest that testicular PGF$_2\alpha$ is not controlled by gonadotropins.

The actions of several hypophyseal hormones have been associated with altered tissue levels of PG's. For example, some effects of prolactin have been reported to be associated with increased PGF$_2\alpha$ synthesis in the mouse mammary gland (12). Prostaglandins have also been shown to mediate the effects of prolactin in rat blood vessels.
(13, 14). Horrobin et al. (15) have proposed a control mechanism for prostaglandin synthesis that involves glucocorticoids, prolactin, growth hormone, and thyroid hormones. They suggest that prolactin, growth hormone, and thyroid hormones have a "permissive action" on PG synthesis whereas glucocorticoids inhibit PG synthesis. Their hypothesis is based on limited data from in vitro measurements on blood vessels, mammary glands, and renal tissue. As a consequence, they should not be generalized to all mammalian tissues. Hypophysectomy either directly or indirectly affects the secretion of all of these hormones. Further study is needed to determine which hypophyseal hormones have the principle role in regulating testicular PGF\textsubscript{2\alpha} concentrations, in either a direct or indirect manner, in the mature rat.
REFERENCES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

