4-1977

The Synthesis and Study of the Enolate Monoanion of 2, 4-Di-p-anisylbicyclo(3.2.1)oct-6-en-3-one

Phillip D. Reynhout
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses
Part of the Organic Chemistry Commons

Recommended Citation
Reynhout, Phillip D., "The Synthesis and Study of the Enolate Monoanion of 2, 4-Di-p-anisylbicyclo(3.2.1)oct-6-en-3-one" (1977). Master's Theses. 2203.
https://scholarworks.wmich.edu/masters_theses/2203

This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
THE SYNTHESIS AND STUDY OF
THE ENOLATE MONOANION OF
2,4-DI-P-ANISYLBICYCLO(3.2.1)OCT-6-EN-3-ONE

by

Phillip D. Reynhout

A Thesis
Submitted to the
Faculty of The Graduate College
in partial fulfillment
of the
Degree of Master of Arts

Western Michigan University
Kalamazoo, Michigan
April 1977
ACKNOWLEDGEMENTS

I am grateful to my research advisor Dr. George B. Trimitsis for his guidance and availability during this research. I would also like to thank Mr. T. Schahil of The Upjohn Company for obtaining the 100 MHz nmr spectra.

Finally, I wish to acknowledge the financial assistance received from the Chemistry Department in the form of teaching assistantships and The Graduate College for fellowships.

Phillip D. Reynhout
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in “sectioning” the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from “photographs” if essential to the understanding of the dissertation. Silver prints of “photographs” may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

University Microfilms International
300 North Zeeb Road
Ann Arbor, Michigan 48106 USA
St. John’s Road, Tyler’s Green
High Wycombe, Bucks, England HP10 8HR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
REYNHOUT, Phillip Daniel
THE SYNTHESIS AND STUDY OF THE ENOLATE MONOANION OF
2,4-DI-P-ANISYLBICYCLO(3.2.1)OCT-6-EN-3-ONE.

Western Michigan University, M.A., 1977
Chemistry, organic

Xerox University Microfilms, Ann Arbor, Michigan 48106
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>HISTORICAL</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A. Homoconjugative and Homoaromatic Stabilization Effects.</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>RESULTS AND DISCUSSION</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>A. The Formation and Study of 2,4-Di-p-anisylbicyclo(3.2.1)oct-6-en-3-one Enolate Monoanion (36)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>B. The Attempted Formation of 2,4-Di-p-anisylbicyclo(3.2.1)octa-2,6-diene (46)</td>
<td>31</td>
</tr>
<tr>
<td>IV</td>
<td>EXPERIMENTAL</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>A. General</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>B. Preparation of Starting Material</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>C. Attempted Preparation of 2,4-Di-p-anisylbicyclo(3.2.1)octa-2,6-diene</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>D. Formation and Study of the 2,4-Di-p-anisylbicyclo(3.2.1)oct-6-en-3-one Enolate Monoanion</td>
<td>40</td>
</tr>
<tr>
<td>V</td>
<td>SUMMARY</td>
<td>46</td>
</tr>
<tr>
<td>VI</td>
<td>BIBLIOGRAPHY</td>
<td>47</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>A-60 nmr spectrum of potassium enolate of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA</td>
<td>17</td>
</tr>
<tr>
<td>2.</td>
<td>XL-100 nmr spectrum of potassium enolate of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA-d_{18}</td>
<td>19</td>
</tr>
<tr>
<td>3.</td>
<td>A-60 nmr spectrum of sodium enolate of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA</td>
<td>22</td>
</tr>
<tr>
<td>4.</td>
<td>A-60 nmr spectrum of sodium enolate of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA formed by sodium-potassium exchange</td>
<td>23</td>
</tr>
<tr>
<td>5.</td>
<td>XL-100 nmr spectrum of sodium enolate of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA-d_{18} formed by sodium-potassium exchange</td>
<td>25</td>
</tr>
<tr>
<td>6.</td>
<td>A-60 nmr spectrum of lithium enolate of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA formed by lithium-potassium exchange</td>
<td>27</td>
</tr>
<tr>
<td>7.</td>
<td>XL-100 nmr spectrum of lithium enolate of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA-d_{18} formed by lithium-potassium exchange</td>
<td>28</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

For many years it has been known that carbanions can be stabilized by certain unsaturated substituents such as vinyl and aryl groups when the latter are directly attached to the carbon bearing the charge. In more recent times it has been shown that certain anions can be stabilized by an unsaturated group even when this moiety is not directly attached to the carbon carrying the negative charge.

This investigation was initiated in order to examine the possibility of charge delocalization from C₂ in enolate anion 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one to the remote carbon-carbon double bond at C₆,7. Furthermore, the effect of three different alkaline earth cations on the charge delocalization of the anion was to be examined.
II. HISTORICAL

A. Homoconjugative and Heteroaromatic Stabilization Effects.

It has been established that carbanions,1 carbonium ions,2 and free radicals3 can be stabilized by certain unsaturated substituents such as vinyl and aryl groups. The stabilization is the result of interaction of the p-orbitals bearing the charge or unpaired electron with the p-orbitals of the adjacent unsaturated group. This stabilization is represented by structures 1, 2, and 3, using the vinyl group as an example.

\begin{equation}
\text{CH}_2\text{=CH-CH} \quad \leftrightarrow \quad \text{CH}_2\text{CH} = \text{CH}_2 \quad \text{or} \quad \text{CH}_2\text{=CH-CH} \quad \leftrightarrow \quad \text{CH}_2\text{=CH-CH}_2
\end{equation}

\textbf{1}

\begin{equation}
\text{CH}_2\text{=CH-CH} \quad \leftrightarrow \quad \text{CH}_2\text{CH} = \text{CH}_2 \quad \text{or} \quad \text{CH}_2\text{=CH-CH} \quad \leftrightarrow \quad \text{CH}_2\text{=CH-CH}_2
\end{equation}

\textbf{2}

\begin{equation}
\text{CH}_2\text{=CH-CH} \quad \leftrightarrow \quad \text{CH}_2\text{CH} = \text{CH}_2 \quad \text{or} \quad \text{CH}_2\text{=CH-CH} \quad \leftrightarrow \quad \text{CH}_2\text{=CH-CH}_2
\end{equation}

\textbf{3}

In addition to the type of stabilization described above, charge stabilization can also be achieved by aromaticity.

2
Aromaticity refers to a completely conjugated planar cyclic hydrocarbon with the sum of the π-electrons in the system complying with Hückel's $4n+2$ rule. The difference in acidity between cyclopentadiene 5 and cycloheptatriene 6 (21 pKa units), is a good example of aromatic stabilization. This large difference is attributed to the fact that the cyclopentadienyl anion 5 has a 6 π-electron aromatic system. Other well known unusually stable systems such as the tropylium cation 7 and the cyclopropenyl cation 2, are believed to achieve their stability by the attainment of a favorable number of electrons leading to aromatic stabilization.

It is important to note that in all of the above systems delocalization of charge has occurred by way of p-orbitals on adjacent carbon atoms between which there is an additional
σ-bond. This is shown in structures 10 and 11 for the allylic and cyclopentadienyl anions.

As a result of studies by a number of workers, but especially by Winstead, a new concept has developed. It was determined that under conditions of favorable geometry, charge stabilization could take place even if the carbon bearing the charge is not directly attached to the unsaturated group. In this type of stabilization carbonium ions and carbanions can conjugate and therefore be stabilized by certain unsaturated groups even when a directly connecting σ-bond is not present.

An example of this type of interaction is that of the cholesteryl carbonium ion 13, obtained from cholesteryl-p-toluene-sulfonate 12, as shown. Reaction of the carbonium ion 13 with acetic anhydride led to the formation of the rearranged acetate 14.
The interaction of the positive charge with the C₅,₆ olefinic group in intermediate 13 was termed homoconjugation by Winstead, and the cation a homoallylic cation by analogy to allylic conjugation and allylic carbonium ions. This designation was used in order to show that carbonium ion 13 may be considered a homolog of the allylic carbonium ion 2.

The important difference between allylic conjugation and homoconjugation is the geometry of the interacting p-orbitals. While allylic conjugation achieves maximum stabilization when the p-orbitals associated with the charge are parallel to the p-orbitals of the olefinic group (structure 10), a homoallylic system achieves maximum stabilization when the orbital associated with the charge
is arranged perpendicularly to the orbitals of the olefinic group, as shown in structure 15.

Homoconjugation can also lead to cyclic delocalization with suitably chosen substrates. For example, the acceleration in the solvolysis rate of anti-norbornen-7-yl-p-toluene-sulfonate 16, compared to its saturated analog 17 was attributed by Weinstein to the interaction of the developing positive charge with the C6,7 olefinic group, leading to a cyclically delocalized system 18.

This type of conjugation was termed homoaromaticity, and carbonium ion 18 was considered to be a homoaromatic analog of the aromatic cyclopropenyl cation 9.

The above studies are concerned with the homoconjugation and homoaromatic stabilization effects of positive charges. It is also
possible for negative charges to be stabilized by homoconjugation and/or homoaromaticity. The first studies exploring nonclassical interactions in carbanion chemistry were concerned with carbanions stabilized by the carbonyl group.

The interaction between carbonyl and a negatively charged alpha carbon, which results in a resonance stabilized enolate anion, is responsible for the ease of alpha proton abstraction from carbonyl compounds as shown in Scheme 1. By analogy with homoallylic

\[
\text{Scheme 1}
\]

\[
-\overset{O}{\overset{\prime}{C}} C^{\prime}\overset{\prime}{C} - H + B \rightarrow \left[\overset{O}{\overset{\prime}{C}} C^{\prime} C^{\prime} \leftrightarrow \overset{O}{\overset{\prime}{C}} C^{\prime} C^{\prime} \right] + BH^+
\]

conjugation a carbonyl group could conceivably activate a more distant hydrogen, (on a \(\beta\)-carbon), sufficiently to allow conversion to an anion stabilized by homoconjugation, or a homoenolate anion, as shown in Scheme 2.

\[
\text{Scheme 2}
\]

\[
-\overset{O}{\overset{\prime}{C}} C^{\prime}\overset{\prime}{C} - H + B \rightarrow \left[\overset{O}{\overset{\prime}{C}} C^{\prime} C^{\prime} \leftrightarrow \overset{O}{\overset{\prime}{C}} C^{\prime} C^{\prime} \right] + BH^+
\]

The first studies of this type were reported by Nickon and Lambert.15 They observed that when optically active camphenilone19 was heated with potassium \(t\)-butoxide in \(t\)-butyl alcohol at 165-185\textdegree a gradual racemization occurred. The loss in optical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
activity is consistent with formation of a bridged nonclassical ion 20 (limiting classical structures 20a,b,c) upon proton abstraction from C6. Since structure 20b has a plane of symmetry, which is shown more clearly in 20b', capture of a proton at C6 by the ion regenerates the starting ketone whereas capture at the equivalent site C1 produces the enantiomer 21.

In a related study it was found that hydrogen exchange, with sodium deuterioxide in aqueous dioxane, occurs much faster with the diketo compound 23 than with 22. This rate enhancement is in accord...
with formation of a homodienolate ion 24 on proton abstraction from 23.

\[
\begin{align*}
22 & \quad 23 & \quad 24
\end{align*}
\]

The above study also provided one answer to the question of whether a carbanion formed alpha to carbonyl would be further stabilized by a more distant double bond. The results show that

\[
\text{relative rates of H/D exchange:} \quad 22 \quad 25 \quad 23
\]

\[
\begin{align*}
\text{endo} & : & 1 & : & 3 & : & 1,800 \\
\text{exo} & : & 380 & : & 2,700 & : & 80,000
\end{align*}
\]

the hydrogen-deuterium exchange is increased only a moderate amount by the olefinic group in 25. This contrasts with the situation in 23, where a homoenolate interaction is clearly indicated by the large rate enhancement of hydrogen exchange.
There is also evidence for carbanion stabilization by homo-
conjugative and homoaromatic mechanisms in systems which do not
contain heteroatom functions capable of acting as carbanion stabi-

lizing sites. The homoaromatically stabilized carbanion 26 was
proposed as an intermediate by Brown17 to explain the large (104.5)
acceleration in the rate of base catalyzed hydrogen-deuterium
exchange at C\textsubscript{4} of bicyclo(3.2.1)octa-2,6-diene 27 compared to its
more saturated analog 28. Anion 26 was produced in large enough

\begin{tikzpicture}

\node at (0,0) [draw, thick, circle] (26) {26};
\node at (1,1) [draw, thick, circle] (27) {27};
\node at (2,0) [draw, thick, circle] (28) {28};
\end{tikzpicture}

amounts by Weinstein18 to study its nuclear magnetic resonance (nmr)
spectrum. It was found that vinylic protons H\textsubscript{6} and H\textsubscript{7} had moved
upfield 2.3 ppm relative to the starting diene 27, clearly estab-
lishing that delocalization of charge to the double bond at C\textsubscript{6,7}
had taken place.

Trimitis and Tuncay19 have shown that replacement of hydro-
gens at C\textsubscript{2} and C\textsubscript{4} of compounds 27 and 28 by phenyl groups to
produce structures 29 and 30 results in greatly reducing the
large difference in the base catalyzed hydrogen-deuterium ex-
change rate. These results are interesting because they
demonstrate that the homoaromatic character of an anion can be
destroyed by certain stabilizing groups. The elimination of the
homoaromatic delocalization effect in compound 29 was explained by the stabilization rendered the negative charge by the phenyl groups. This was the first study demonstrating that the extent of charge delocalization in carbanions has an inverse relationship to the stability given to the developing negative charge by groups directly attached to the carbanionic center.

In other experiments aimed at studying the effects of stabilizing groups Trimitsis and Crowe20 have found that the enolate anion of 2,4-diphenylbicyclo(3.2.1)oct-6-en-3-one 31 did not homoconjugate with the olefinic double bond. This is in contrast to anion 20, mentioned earlier, which was shown to homoconjugate and...
therefore form a homenolate anion. It is important to note that although both form enolate anions, anion 20 must homoconjugate to be stabilized by the carbonyl group upon proton abstraction from C₆, while anion 31 does not have to homoconjugate to be stabilized by the carbonyl. The interactions between carbonyls and negatively charged carbons are shown in the structures 32 and 33 below. It

\[\text{Ph} \quad \text{Ph} \quad \text{Ph} \]

\[\text{Ph} \quad \text{Ph} \quad \text{Ph} \]

\[\text{32} \]

\[\text{Ph} \quad \text{Ph} \quad \text{Ph} \]

\[\text{Ph} \quad \text{Ph} \quad \text{Ph} \]

\[\text{33} \]

is also possible that the negative charge in compound 31 was also stabilized by the phenyl group at C₂ as shown in structure 34.

\[\text{H} \quad \text{Ph} \]

\[\text{34} \]

III. RESULTS AND DISCUSSION

A. The Formation and Study of 2,4-Di-p-anisylbicyclo-(3.2.1)oct-6-en-3-one Monoanion 36

It was stated in the previous section that enolate anion 31 did not homoconjugate with the double bond at C6,7. This is because the negative charge was sufficiently stabilized by the carbonyl group at C3 and phenyl group at C2. The present study was undertaken in order to determine if enolate anion 36 would homoconjugate with the olefinic double bond thus forming a homo-enolate anion 37. The sodium, lithium, and potassium salts of enolate monoanion 36 would also be formed to compare the effect.

[Chemical structures and reactions shown]
of the metal cation on the anion.

The synthesis of the ketone, 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one 35 was accomplished as illustrated in Scheme 3. Thus p-methoxyphenylacetic acid 38 was converted to ethyl-p-methoxyphenylacetate 39 with an excess of 95% ethanol, and in the presence of sulfuric acid. Reaction of the ester 39 with a Grignard reagent formed from 2-bromopropane and magnesium in ether, produced the β-ketoester 40. As in the procedure of Coan21, the β-ketoester was not isolated, but instead immediately refluxed with acetic acid to produce 1,3-di-p-anisyl-2-propanone 41. Ketone 41 was brominated in carbon tetrachloride essentially by the method of Breslow22, with certain modifications, to produce 1,3-dibromo-1,3-di-p-anisyl-2-propanone 42. Reaction of the dibromoketone 42 with cyclopentadiene and sodium iodide in acetonitrile following the procedure of Cookson23 with some modification afforded 2,4-di-p-anisylbicyclo (3.2.1)oct-6-en-3-one 35.

Enolate monoanion 36 was prepared by the treatment of ketone 35 with potassium hydride in the aprotic solvent hexamethylphosphoric triamide (HMPA). Thus ketone 35 was rapidly added to 1.5 equivalents of potassium hydride in HMPA at room temperature as illustrated in Scheme 4. This resulted in effervescence, a change in color from gray to dark red-brown, and the evolution of one equivalent of hydrogen gas which was taken to indicate complete monoionization. Although HMPA is not a common aprotic solvent, attempts to dissolve ketone 35 in the more common solvents such as THF and DMSO were not successful. Subsequent quenching of the enolate solution with
Scheme 3

CH₃O-CH₂C-CH₂OH + C₂H₅OH → CH₃O-CH₂C-CH₂OH

38

CH₃O-CH₂C-CH₂OH → CH₃O-CH₂C-CH₂-OCH₂CH₃

39

ether

CH₃CHCH₃

acetic acid

reflux

CH₃O-CH₂C-CH₂-OCH₃

40

CH₃O-CH₂C-CH₂-CH₂-OCH₃

41

CCl₄ + Br₂

CH₃O-CH₂C-CH₂-CH₂-OCH₃

42
water or deuterium oxide afforded the starting ketone, as shown by ir and nmr analysis of the reaction mixture.

The nmr spectrum of enolate anion 36 was recorded on a Varian A-60 instrument in HMPA with an external TMS standard and is shown in figure 1. From inspection of this nmr spectrum and earlier experimental results20,24 it was concluded that enolate anion 36 actually consisted of two isomers 36a and 36b. The following resonances were assigned to the nmr spectrum shown in figure 1; protons H\textsubscript{6a} and H\textsubscript{6b} appear at 5.58 and 4.92 ppm respectively as multiplets due to coupling with H\textsubscript{7a}, H\textsubscript{7b} and H\textsubscript{5a}, H\textsubscript{5b}. Protons H\textsubscript{7a,b} appear as a multiplet at 6.18 ppm due to coupling with H\textsubscript{6a}, H\textsubscript{6b} and H\textsubscript{1a}, H\textsubscript{1b}. The aromatic protons appear as a wide multiplet between 6.2 and 8.0 ppm. All other upfield protons were covered by solvent peaks and could not be identified.

Enolate anion 36 was also prepared in HMPA-d\textsubscript{18}. Ketone 35 was added to potassium hydride in HMPA-d\textsubscript{18} exactly as described earlier. The nmr spectrum of enolate anion 36 in HMPA-d\textsubscript{18} was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 1. A-60 NMR spectrum of potassium enolate of 2,4-di-p-anisylbicyclo(3.2.1)-oct-6-en-3-one monoanion (36a,b) in HMPA.
taken on a Varian XL-100 spectrometer and is shown in figure 2.
The following resonances were assigned to the spectrum; protons
H_{1a,b} appeared as poorly resolved multiplet at 3.22 ppm due to
coupling with H_{7a,b}. The signal for endo proton H_{4a} of isomer 36a
appeared as a sharp singlet at 2.70 ppm while proton H_{4b} of isomer
36b appeared as a partially covered doublet at 3.30 ppm due to
coupling with H_{5b}. This is because the H_{5a}-H_{4a} dihedral angle is
near 90°, and the H_{5b}-H_{4b} dihedral angle is approximately 40°, thus
accounting for the lack of spin-spin coupling between H_{5a} and H_{4a}.
The fact that the endo proton H_{4a} was found to absorb upfield from
exo proton H_{4b} is in good agreement with the nmr spectrum of the
closely related bicyclic enolate monoanion 31.^{20,24}

Proton H_{5a} was covered by HMFA peaks, but proton H_{5b} occurred
as a multiplet at 2.57 ppm due to coupling with H_{4b}, H_{6b}, and H_{8b}.
No coupling was observed between H_{5b} and H_{8b} because their dihedral
angle is about 85°. Vinylic protons H_{6a} and H_{6b} resonate at 5.56
and 4.94 ppm respectively as pairs of doublets arising from coupling
with H_{7a}, H_{7b} and H_{5a}, H_{5b}. Irradiation at H_{5a,b} reduced both
patterns to doublets. The other vinylic protons H_{7a} and H_{7b}
occurred each as a pair of doublets partially overlapping at 6.18
ppm due to coupling with H_{6a}, H_{6b} and H_{1a}, H_{1b}. Simultaneous
irradiation at H_{1a,b} reduced the multiplet to two doublets with
their inner peaks overlapping thus appearing as a triplet. Protons
H_{8a,b} and H_{8b} appear as a multiplet centered at 1.73 ppm.

The methoxy protons appeared as three partially overlapping
singlets due to the two different para-methoxy groups of isomers
Figure 2. XL-100 spectrum of potassium enolate of 2,4-dip-anisylbicyclo(3.2.1)-oct-6-en-one monoanion (36a,b) in HMPA-d$_{18}$.
36a and 36b at C₄, and the para-methoxy group at C₂. The absorption pattern is centered at 3.56 ppm. The aromatic protons appeared as a wide multiplet from 6.3 to 8.0 ppm. In the similar system 31 the ortho protons resonated downfield from meta protons at C₂, and all of the aromatic protons at C₄ appeared as a multiplet, however this system (36) did not follow such an integration pattern.

The enolate monoanion 36 was also prepared in HMPA with sodium hydride. In this procedure ketone 35 was rapidly added to two equivalents of sodium hydride in HMPA at room temperature as shown in Scheme 5. This resulted in a dark red-brown reaction mixture

![Scheme 5](image)

and the evolution of one equivalent of hydrogen gas. The nmr spectrum was recorded on a Varian A-60 instrument and it appears in figure 3. The nmr absorption pattern for the sodium salt of enolate anion 36 in HMPA (figure 3) was found to be identical to that of the potassium salt (figure 1).

The sodium salt of enolate anion 36 was next formed by a metal-metal exchange reaction in HMPA. After first forming a
potassium salt of anion 36 as described earlier, and shown in Scheme 4, one equivalent of sodium chloride was added to the reaction mixture as shown in Scheme 6. In this process the transfer of the organic group to another metal only works if the metal of the metal halide is more electronegative than that of the organometallic compound. Thus sodium (EN=0.9) will replace potassium (EN=0.8). In general, when an organometallic compound and metal halide are reacted the effect is to combine the halogen with more electropositive metal and the organic anion with the more electronegative element of the pair. The nmr spectrum of the sodium salt of enolate monoanion 35 formed by a metal-metal exchange reaction is shown in figure 4, and is also identical to that of the potassium salt (figure 1).

The sodium salt of enolate monoanion 36 was also formed by a metal exchange reaction in HMPA-d18. Thus the potassium salt of anion 36 was first formed in HMPA-d18 and then one equivalent of sodium chloride was added to the reaction mixture. The nmr
Figure 3. A 60 nmr spectrum of sodium enolate of 2,4-di-p-anisylbicyclo-(3,2,1)oct-6-en-3-one monoanion (36a,b) in HMPA.
Figure 4. A-60 nmr spectrum of sodium enolate of 2,4-di-p-anisylbicyclo-(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA formed by sodium potassium exchange.
spectrum was taken on a Varian XL-100 instrument and is shown in figure 5. The spectrum is identical to that of the potassium salt of anion 36 described earlier and shown in figure 2.

Finally the lithium salt of anion 36 was formed by a metal-metal exchange reaction. Although there was no difference in the nmr's between the potassium and sodium salts of anion 36, it was thought that some difference might be seen in the nmr of an organolithium compound. This difference might be because of the more covalent character of the organolithium compounds compared to those of sodium and potassium.26

Therefore the lithium salt of anion 36 was formed in HMPA by adding one equivalent of lithium bromide to the potassium salt as shown in Scheme 7. The nmr spectrum of the organolithium compound was taken on a Varian A-60 instrument and was found to be identical to the organopotassium and organosodium compounds (figures 1, 3 and 4). The spectrum is shown in figure 6. The lithium salt of anion 36 was also formed in HMPA-d18 by a metal-metal exchange.

[Diagram of Scheme 7]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 5. XL-100 spectrum of sodium enolate of 2,4-di-p-anisylbicyclo(3.2.1)-oct-6-en-3-one monoanion (36a,b) in HMPA-d$_{18}$ formed by sodium-potassium exchange.
reaction and its nmr spectrum was recorded on a Varian XL-100 instrument. The spectrum is identical to the potassium and sodium salts formed in HMPA-d$_{18}$ and is shown in figure 7.

From inspection of all earlier discussed nmr spectrums it was concluded that all of the alkali metal salts of enolate anion 36 display the same pattern and therefore different cations do not produce different effects in the anion. Although the lithium salt had been expected to produce a different nmr spectrum because of its more covalent character, it should be noted that the carbon-metal bond becomes more ionic in this case due to the stabilization of the enolate anion 26.

The question of whether or not homoconjugation had occurred in anion 36 was next examined. To determine if the negative charge at C$_2$ had interacted with the double bond at C$_6$ to give a homoallylic enolate anion such as 37, the chemical shifts of H$_{6a}$ and H$_{6b}$ were compared to the chemical shifts of H$_6$ in the starting ketone 35. If charge delocalization had taken place across the carbon-carbon double bond to form structure 43 the electron density around C$_6$ should increase causing protons H$_{6a},b$ to undergo an upfield shift in the nmr.

![Diagram of molecules 35, 37, and 43]
Figure 6. A-60 nmr spectrum of lithium enolate of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one monoanion (36a,b) in HMPA formed by lithium-potassium exchange.
Figure 7. XL-100 nmr spectrum of lithium enolate of 2,4-di-p-anisylbicyclo(3.2.1)-oct-6-en-3-one monoanion (36a,b) in HMPA-d18 formed by lithium-potassium exchange.
Examination of the nmr spectrum of enolate monoanion 36 shows that protons H_{6a} and H_{6b} had undergone an upfield shift of 0.56 and 1.18 ppm respectively, relative to the starting ketone 35 in HMPA with an external TMS standard. Although these upfield shifts at first seem substantial, it should be pointed out that they are slightly smaller than those of protons H_{6a,b} in anion 31 which has previously been shown24 not to homoconjugate. The upfield shift of proton H_{6a} is quite small and can be accounted for on the basis of anisotropic effects due to the carbon-carbon double bond at C_{2,3}. The chemical shifts of both vinylic hydrogens H_{6a} and H_{7a} are in fact very similar to the closely related system 2718 as shown in the following figures.

\[\text{36a} \]
\[\begin{align*}
(6.18) & \\
H_7 & \\
H_6 (5.56) & \\
\text{OCH}_3 & \\
\end{align*} \]

\[\text{27} \]
\[\begin{align*}
(6.18) & \\
H_7 & \\
H_6 (5.65) & \\
\end{align*} \]

\[\text{31b} \]

The upfield shift of proton H_{6b} relative to the starting ketone 35 is much larger than that of H_{6a}. In this isomer the anisyl group at C_{4} is in the endo position and the larger upfield shift of proton H_{6b} relative to H_{6a} can be attributed to the shielding ring current effect of the C_{4} benzene ring. This shielding ring current effect may also affect proton H_{6b} of system 31b in the same way.18
As stated earlier the H_{6a,b} protons of isomers 36a,b have undergone a slightly smaller upfield shift than that of protons H_{6a,b} in the closely related isomers 31a,b. In system 31 the vinylic protons H_{6a,b} had moved upfield by 0.68 and 1.35 ppm respectively\cite{24}, compared to the 0.56 and 1.18 ppm upfield shift of protons H_{6a,b} in system 36. These small differences can be attributed to the two different solvents used, THF for system 31 and HMPA for system 36.

In view of the results and explanations to the small upfield shifts in their nmr spectrum, it is concluded that no homoallylic conjugation has taken place in either of the isomeric enolates 36a,b. The lack of charge delocalization to the C_{6,7} carbon-carbon double bond is explained by the fact that the negative charge at C_2 can be stabilized through classical conjugation with both the carbonyl group and with one of the phenyl rings. Therefore classical conjugation has eliminated the tendency for the negative charge at C_2 in system 36 to engage in nonclassical interactions.

Classical stabilization has previously been shown to eliminate nonclassical interactions. Gassman\cite{27} has shown that the tendency of the C_7 positive charge to interact with the carbon-carbon double bond as in structure 18 was eliminated by an anisyl group as in structure 44. Trimitsis and Crowe\cite{20} have also shown that the negative charge at C_2 of enolate anion 31 (as shown in structure 45) does not interact with the carbon-carbon double bond at C_{6,7} but instead is stabilized through classical conjugation with the carbonyl group and one of the phenyl rings.
B. The Attempted Formation of 2,4-Di-p-anisylbicyclo(3.2.1)octa-2,6-diene

As explained earlier in the historical discussion, compound 27 was found to undergo base catalyzed hydrogen-deuterium exchange at a much faster rate than compound 28. The homoaromatically stabilized carbanion 26 was proposed and finally proven as an intermediate to

27 to explain the large rate difference. Compounds 29 and 30 were then found to undergo base catalyzed hydrogen-deuterium exchange at the same rate.
Another interesting study would be the formation of compounds 46 and 47, and the measurement of their base catalyzed hydrogen-deuterium exchange rates. This study was begun by the synthesis of 46 as shown in Scheme 8.
Treatment of the ketone 35 with lithium aluminum hydride in tetrahydrofuran (THF) resulted in the formation of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-ol 48. As expected the ir spectrum of the bicyclic alcohol 48 displayed OH absorption at 3580 cm\(^{-1}\) while the nmr spectrum still displayed vinlyc hydrogen absorption at 6.56 ppm.

The desired product, 2,4-di-p-anisylbicyclo(3.2.1)octa-2,6-diene 46 could be obtained by simple dehydration of alcohol 48. The related diene 29 was prepared from its corresponding alcohol by using thionyl chloride in pyridine, therefore this method was used for the attempted preparation of 46. Therefore alcohol 48 was treated with purified thionyl chloride in dry pyridine to yield white crystals in the rotary evaporator which immediately decomposed to a reddish oil. A nmr analysis of the decomposed product showed that it was not the desired diene. Subsequent tries and other purification techniques proved futile and the diene 46 was never isolated.
IV. EXPERIMENTAL

A. General

Melting points were taken on a Thomas-Hoover melting point apparatus in open capillary tubes and are not corrected.

Infrared spectra were taken on a Beckman IR-8 infrared spectrophotometer.

Nuclear magnetic resonance (nmr) spectra were obtained on a Varian Associates Model A-60 and/or XL-100 spectrometer. All chemical shifts are reported in ppm relative to tetramethylsilane and were measured to the center of a singlet or multiplet. Data are recorded in the order; chemical shift, multiplicity (where s=singlet, d=doublet, t=triplet, q=quartet, and m=multiplet), integration and interpretation. Samples were run in ordinary 5mm nmr tubes.

Mass spectra were taken on a Dupont 21-490B spectrometer.

4-Methoxyphenylacetic acid (99%) was obtained from the Aldrich Chemical Company, Milwaukee, Wisconsin. The sodium hydride was in a 50% mineral oil dispersion and the potassium hydride was 23.4% in mineral oil. Both hydrides were purchased from Alfa Products, Beverly, Massachusetts. Cyclopentadiene was obtained by fractional distillation of 3a,4,7,7a-tetrahydro-4,7-methanoindene and was obtained from Matheson Coleman and Bell, East Rutherford, New Jersey. Hexamethylphosphoric triamide (HMPA) was a gift from Dow Chemical Company, Midland, Michigan. HMPA-\textsubscript{d18} was obtained.
from Aldrich Chemical Company, Milwaukee, Wisconsin.

The yields of the products reported are the best yields from each reaction.

B. Preparation of Starting Material

1. Preparation of ethyl-4-methoxyphenylacetate

4-Methoxyphenylacetic acid (100 g, 0.6 moles) was placed in a one liter-one-necked round bottom flask and dissolved in 300 ml (5.1 moles) of 95% ethanol. Concentrated sulfuric acid (10 ml) and a stirring bar were added and the mixture was refluxed with good stirring for 2 hours. The reaction mixture was cooled and poured into a 2 liter separatory funnel containing 400 ml of a 1% aqueous salt solution. The ester was extracted from the mixture with 3x100 ml portions of ether. The extracts were combined, washed with 50 ml of 5% aqueous sodium bicarbonate, 50 ml of water, and then dried over anhydrous magnesium sulfate. The magnesium sulfate was removed by filtering and the ether was fractionally distilled using a column packed with glass beads. The remaining liquid was distilled under vacuum to give 99.3 g (85%) of ethyl-4-methoxyphenylacetate, bp 104° @ 1 mm Hg, lit 28 bp 141-143° @ 12 mm Hg; nmr (CCl₄) 1.19 (t, 3H, CH₂-CH₃), 3.43 (s, 2H, Ph-CH₂-C=O), 3.67 (s, 3H, O-CH₃), 4.05 (q, 2H, -CH₂-CH₃), 6.92 (d of d, 4H, aromatic).

2. Preparation of 1,3-dianisyl-2-propanone

The method used for the preparation of this compound was essentially that of Coan, et al. 21, with certain modifications. A one liter three-necked found bottom flask equipped with a
mechanical stirrer, a condenser, an addition funnel, and under nitrogen atmosphere was charged with 12.5 g (0.52 moles) of magnesium turnings and 300 ml of dry ether. In the addition funnel was placed 64 g (49 ml, 0.52 moles) of 2-bromopropane, and one-third of it was added to the reaction mixture. The reaction was started by gently warming the round bottom flask, and the refluxing was sustained by addition of the 2-bromopropane dropwise. After the addition was complete the reaction mixture was refluxed with a heating mantle for 40 minutes.

After cooling, 100 g (0.52 moles) of ethyl-4-methoxyphenylacetate in 100 ml of dry ether was added dropwise with constant stirring. After the addition was complete the reaction mixture was refluxed for 15 min and allowed to stir for 18 hrs under nitrogen. A 200 ml portion of 10% aqueous sulfuric acid solution was then added carefully and the two layers were separated. The water layer was extracted with 3x50 ml portions of ether. The ether layers were combined and washed with 50 ml of 5% aqueous sodium bicarbonate, 50 ml of water, and dried over anhydrous magnesium sulfate. The ether was fractionally distilled leaving a yellow-red residue of ca 100 ml. This \(\beta \)-ketoester (40) was not further identified or purified.

The residue was placed in a one liter one-necked round bottom flask, 400 ml of glacial acetic acid and 40 ml of 18% aqueous hydrochloric acid were added, and the mixture was refluxed for 5 hours. The acid was then distilled off leaving a red-brown residue which crystallized upon standing. This was recrystallized
from ethanol (95%) to yield 39.3 g (56%) of 1,3-dianisyl-2-propanone, mp 84°, lit21 mp 86°; nmr (CDCl\textsubscript{3}) 3.65 (s, 4H, C-CH\textsubscript{2}), 3.78 (s, 6H, O-CH\textsubscript{3}), 6.97 (d of d, 8H, aromatic).

3. Preparation of 1,3-dibromo-1,3-dianisyl-2-propanone

This compound was prepared by the method of Breslow, et al28, with certain modifications. In a two liter three-necked round bottom flask equipped with a condenser, an addition funnel, and an egg shaped stirring bar was placed 25 g (0.093 moles) of 1,3-di-p-anisyl-2-propanone dissolved in 800 ml of carbon tetrachloride. Bromine (29.8 g, 0.186 moles) in 150 ml of carbon tetrachloride was placed in the addition funnel and added dropwise with good stirring over a period of 3 hrs. After the addition of bromine was complete the reaction mixture was stirred an additional 45 min. A 400 ml portion of aqueous sodium sulfite solution was added and the solution was stirred for 15 min. The gray solid product was filtered, the layers separated, and the carbon tetrachloride layer reduced by evaporation to ca 200 ml by means of a rotary evaporator. The carbon tetrachloride was cooled, any solid product filtered, combined with the earlier solid and recrystallized from acetone to yield 30 g (75%) of 1,3-dibromo-1,3-di-p-anisyl-2-propanone, mp 155° (decomposes); ir, 1700 cm-1, 2300 cm-1; nmr (CDCl\textsubscript{3}) 3.82 (s, 6H, -O-CH\textsubscript{3}), 5.78 (s, 2H, -CH-Br), 7.13 (d of d, 8H, aromatic).

Mass spectrum (relative intensity) 428 (1, M+), 268 (75), 240 (90), 209 (87), 121 (100).

Analysis; Calcd. for C\textsubscript{17}H\textsubscript{16}Br\textsubscript{2}O\textsubscript{3}; C, 47.69; H, 3.77

Found; C, 47.79; H, 3.80
4. Preparation of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one

This compound was prepared by the method of Cookson, et al, with certain modifications as described below. A 2 liter three-necked round bottom flask was charged with 13.5 g (0.032 moles) of 1,3-dibromo-1,3-di-p-anisyl-2-propanone, 120 ml (1.46 moles) of cyclopentadiene, and 600 ml of acetonitrile. The solution was stirred with a magnetic stirring bar while 60 g (0.41 moles) of sodium iodide was added. After the addition was complete the mixture was refluxed for 45 min with good stirring. The brown solution was cooled to room temperature and 300 ml of chloroform was added and the solution was washed with 240 ml of 15% aqueous sodium thiosulfate until the brown color disappeared. The solution was filtered through sintered glass, the layers separated, and the yellow organic layer flash evaporated until only a small amount of solvent was left. The white crystals which appeared were filtered, combined with the earlier solid product, and recrystallized from acetone to give 8.3 g (75%) of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one, mp 210°; ir, 1690 cm⁻¹; nmr (CDCl₃), 2.30 (m, 2H, C₆-H), 3.07 (m, 2H, C₁-H, C₅-H), 3.81 (s, 8H, 0-CH₃, C₂-H, C₄-H), 6.29 (t, 2H, H-C₆-C₇-H), 6.99 (d of d, 8H, aromatic).

Mass spectrum (relative intensity) 334 (50, M⁺), 240 (100), 180 (40), 121 (45).

Analysis; Calcd. for C₂₂H₂₂O₃; C, 79.02; H, 6.63

Found; C, 78.96; H, 6.63

C. Attempted Preparation of 2,4-Di-p-anisylbicyclo (3.2.1)octa-2,6-diene
1. Preparation of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-ol

A solution of 4.2 g (0.013 moles) of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one in 700 ml of dry THF was introduced dropwise into a 2 liter three-necked round bottom flask containing 1.5 g (0.04 moles) of lithium aluminum hydride in 200 ml of dry THF and equipped with an egg-shaped stirring bar, a reflux condenser connected to a nitrogen tank, and a heating mantle. The mixture was refluxed for 22 hrs under nitrogen with good stirring. The reaction mixture was then cooled and 1.5 ml of water, 1.5 ml of 15% aqueous sodium hydroxide, and 4.5 ml of water were added in that order. The solids were filtered using a Buchner funnel and celite. The filtered solution was dried over anhydrous magnesium sulfate, and was freed of solvent on the flash evaporator to give white flakes which were recrystallized from 95% ethanol to yield 3.1 g (74%) of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-ol, mp 123°; ir, 3580 cm⁻¹ (OH); nmr (CDCl₃) 1.68 (m, 2H, C₈-H₂), 2.56 (m, 1H, C₃OH), 2.97 (m, 2H, C₁-H, C₅-H), 3.35 (m, 2H, C₂-H, C₄-H), 3.79 (s, 6H, OCH₃), 4.39 (m, 1H, C₃OH), 6.56 (s, 2H, H=C₆=C₇-H), 7.08 (d of d, 8H, aromatic).

Analysis; Calcd. for C₂₂H₂₄O₃; C, 78.54; H, 7.19

Found; C, 78.78; H, 7.23

2. Attempted preparation of 2,4-di-p-anisylbicyclo(3.2.1)octa-2,6-diene

To a well stirred ice cooled solution of 2 g (0.006 moles) of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-ol in 40 ml dry pyridine in a 100 ml three-necked round bottom flask equipped with a condenser connected to a nitrogen tank, and a septum, was added dropwise by
syringe 1.3 g (0.01 moles) of purified thionyl chloride. The temperature was not allowed to rise above 10° during the addition. After the addition the ice bath was removed and the mixture was allowed to stir for 6 hrs. The orange solution was then poured into 150 ml of ice water and extracted with 3x100 ml portions of pentane. The extracts were combined, washed with 50 ml of 3N hydrochloric acid, 50 ml of aqueous saturated sodium bicarbonate, and 50 ml of water, then dried over anhydrous magnesium sulfate. After filtering the clear solution was flash evaporated to a volume of about 15 ml. A white oil appeared which turned yellow and finally yellow-red in the freezer. A nmr analysis showed the presence of a new product which was not identified.

D. Formation and Study of the 2,4-Di-p-anisylbicyclo(3.2.1)oct-6-en-3-one Enolate Monoanion

1. Formation of the 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one enolate monoanion using potassium hydride in HMPA

This reaction, as well as the following reactions except where otherwise specified were each carried out in 15, 25, or 50 ml three-necked round bottom flasks equipped with a magnetic stirrer, a septum, and a condenser connected to a simple gas collection apparatus consisting of an inverted 250 ml graduated cylinder filled with water. The flask was charged with 0.092 g (0.0023 moles) of potassium hydride, connected to a nitrogen stream and closed to the atmosphere. HMPA (3 ml) dried immediately before use by distilling under vacuum from anhydrous barium oxide was added through the septum by syringe, and the potassium hydride was allowed to
settle to the bottom. Quickly 0.5 g (0.0015 moles) of 2,4-di-p-
anisylbicyclo(3.2.1)oct-6-en-3-one was added, and the nitrogen stream was replaced by the gas collection apparatus. The stirrer was then turned on and reaction occurred quickly as evidenced by the evolution of gas. After 30 min the color had turned from gray to dark red-brown and 1 eq of hydrogen gas had been collected. About 2 ml of the liquid was then drawn out by means of a syringe and placed in a small test tube with a nitrogen atmosphere through a septum. The test tube was centrifuged for 2 min, then the liquid was transferred into a nmr tube containing a nitrogen atmosphere and an external TMS standard. The nmr spectrum was then recorded on a Varian A-60 instrument. The following resonances were observed; 4.92 (m, H6b), 5.58 (m, H6a), 6.18 (m, H7a,b), and a multiplet at 6.50-8.0 due to the aromatic protons. All resonances below 4.0 ppm were hidden because of the solvent peaks.

2. Formation of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one enolate using potassium hydride in HMPA-d18

A 15 ml three-necked round bottom flask equipped with a magnetic stirrer, a septum, and a condenser connected to a nitrogen stream was charged with 0.06 g (0.0015 moles) of potassium hydride and flushed with nitrogen. Then 2 ml of HMPA-d18 was added as described earlier. After the potassium hydride had been allowed to settle 0.334 g (0.001 moles) of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one was added and the mixture was stirred for 30 min. The liquid was then extracted, centrifuged, and transferred to a nmr tube. The nmr spectrum was obtained on a Varian XL-100 instrument and the following resonances were observed; 1.73 (m, 2H, C8-H2 protons of both isomers), 2.40
(C-H$_{5a}$ proton covered by HMPA signal), 2.57 (m, $\frac{1}{3}$H, C-H$_{5b}$), 2.70 (s, $\frac{1}{3}$H, C-H$_{4a}$), 3.22 (m, 1H, C-H$_{1a, b}$), 3.30 (d, $\frac{1}{3}$H, C-H$_{4b}$), 3.56 (three sharp s, 6H, OCH$_3$), 4.94 (d of d, $\frac{1}{3}$H, C-H$_{6b}$), 5.56 (d of d, $\frac{1}{3}$H, C-H$_{6a}$), 6.18 (four sets of d, 1H, C-H$_{7a, b}$), 6.3-8.0 (m, 8H, aromatic).

3. Formation of the 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one enolate monoanion using sodium hydride in HMPA

A 15 ml three-necked round bottom flask equipped with a stirrer, septum, condenser, and gas collection apparatus was charged with 0.144 g (0.006 moles) of sodium hydride. The flask was then connected to nitrogen stream, 6 ml of dry HMPA was added and after the sodium hydride had settled 1 g (0.003 moles) of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one was added as described earlier. The nitrogen stream was replaced by the gas collection apparatus and the mixture was stirred for 1 hr. After 1 hr the color had turned from gray to dark red-brown and 1 eq of hydrogen gas had been collected. About 2 ml of the liquid was drawn out by syringe, centrifuged, and placed into a nmr tube containing an external TMS standard. The nmr spectrum was recorded on a Varian A-60 instrument and the resonances observed were exactly the same as those described for the potassium salt (part 1. above).

4. Formation of the 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one enolate monoanion using potassium hydride and sodium-potassium exchange in HMPA

A 15 ml three-necked round bottom flask equipped with a magnetic stirrer, a septum, and a condenser connected to a nitrogen tank was charged with 0.06 g (0.0015 moles) of potassium hydride. Then 2 ml of dry HMPA was added and the potassium hydride was allowed to settle.
to the bottom, after which time 0.334 g (0.001 moles) of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one was added and the solution was stirred for 30 min under nitrogen. After 30 min 0.0643 g (0.0011 moles) of sodium chloride was added and the solution was stirred for another 30 min under nitrogen. The solution was then extracted, centrifuged, and placed into a nmr tube containing an external TMS standard. The nmr spectrum was recorded on a Varian A-60 instrument and the resonances were exactly those as described earlier for the potassium and sodium salts (parts 1. and 3.).

5. Formation of the 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one enolate monoanion using potassium hydride and sodium-potassium exchange in HMPA-d$_{18}$

A 25 ml three-necked round bottom flask was charged with 0.06 g (0.0015 moles) of potassium hydride, and 2 ml of HMPA-d$_{18}$ was added as described earlier. After the addition of 0.334 g (0.001 moles) of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one the mixture was stirred for 30 min. After 30 min 0.0643 g (0.0011 moles) of sodium chloride was added, and the solution was stirred an additional 30 min. The liquid was then extracted by syringe, centrifuged, and transferred to a nmr tube containing an external TMS standard. The nmr spectrum was obtained on a Varian XL-100 instrument and is identical to that of the potassium salt in HMPA-d$_{18}$ (part 2.).

6. Formation of the 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one enolate monoanion using potassium hydride and lithium-potassium exchange in HMPA

A 50 ml three-necked round bottom flask was charged with 0.06 g (0.0015 moles) of potassium hydride and 2 ml of HMPA was added as described earlier. After the addition of 0.334 g (0.001 moles) of
2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one the mixture was stirred for 30 min. After 30 min 0.0957 g (0.0011 moles) of lithium bromide was added and the solution was stirred for another 30 min. The liquid was then extracted by syringe, centrifuged, and transferred to a nmr tube as described earlier. The nmr spectrum was obtained on a Varian A-60 instrument and was identical to those spectra of the sodium and potassium salts in HMPA (parts 1., 3., and 4.).

7. **Formation of the 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one enolate monoanion using potassium hydride and lithium-potassium exchange in HMPA-d$_{18}$**

A 50 ml three-necked round bottom flask was charged with 0.06 g (0.0015 moles) of potassium hydride and 2 ml of HMPA-d$_{18}$ was added as described earlier. A 0.334 g (0.001 moles) portion of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one was added and the solution was stirred for 30 min. Lithium bromide (0.0957 g, 0.0011 moles) was then added and the solution stirred an additional 30 min. The liquid was extracted by syringe, centrifuged, and transferred to a nmr tube as described earlier. The nmr spectrum was obtained on a Varian XL-100 instrument and is identical to the spectra of the sodium and potassium salts in HMPA-d$_{18}$ (parts 2. and 5.).

8. **Formation of the 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one enolate monoanion using potassium hydride and subsequent quenching with water**

In a 15 ml three-necked round bottom flask was placed 1 g (0.0025 moles) of potassium hydride and 3 ml of dry HMPA as described earlier. A 0.334 g (0.001 moles) portion of 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one was added and stirred for 30 min, after which time one equivalent of hydrogen gas had been collected.
A 5 ml portion of water was then added by syringe through the septum while the reaction mixture was being cooled in an ice bath. After the addition was complete and the reaction mixture was at room temperature the solid was filtered and dried. A nmr analysis showed that 2,4-di-p-anisylbicyclo(3.2.1)oct-6-en-3-one was obtained in quantitative yield.
V. SUMMARY

2,4-Di-p-anisylbicyclo(3.2.1)oct-6-en-3-one (35) was synthesized and converted to its potassium and sodium enolate monoanions (36a,b) by reaction with metal hydrides in HMPA. The nmr spectra of both the potassium and sodium enolate anions looked identical. 2,4-Di-p-anisylbicyclo(3.2.1)oct-6-en-3-one (35) was then converted to its sodium and lithium enolate monoanions by reacting the potassium enolate with sodium chloride and lithium bromide respectively, in HMPA. The nmr spectrum of the sodium and lithium enolates formed in this manner also looked identical to each other and to the enolates formed earlier. 2,4-Di-p-anisylbicyclo(3.2.1)oct-6-en-3-one (35) was then converted to its potassium enolate with potassium hydride, its sodium enolate by reacting a potassium enolate with sodium chloride, and its lithium enolate by reacting a potassium enolate with lithium bromide all in HMPA-d18. These nmr spectra also exhibited identical patterns.

It was concluded that the alkaline earth metal cation had no effect on the organic anion.

It was also shown that there was no interaction between the negative charge at C2, on enolate monoanion 36, and the olefinic group at C6,7. Therefore it was concluded that classical stabilization of the charge at C2 eliminated the possibility that it might engage in nonclassical interactions.
VI. BIBLIOGRAPHY

47
14. (a) S. Winstein, M. Shatavsky, C. Norton and R. B. Woodward,
 (b) S. Winstein and M. Shatavsky, *J. Am. Chem. Soc.*, 78, 592
 (1956).
 85, 2324 (1963).
 77, 60 (1955).
 87, 1320 (1965).
 Bicyclic Enolate Monoanions and Dianions," Masters Thesis,
 Western Michigan University, Kalamazoo, Michigan, August 1972.
 of Organometallic Chemistry," Methuen and Co. LTD, London, 1968,
 pp. 19-21.
27. P. G. Gassman and A. F. Fentiman, Jr., *J. Am. Chem. Soc.*, 91,