Crizotinib
(Xalkori®)
A Small Molecule Tyrosine Kinase Inhibitor
By: Graham McLaren
Lung Cancer

- Small Cell Lung Cancer (15%)
- Non Small Cell Lung Cancer (NSCLC) (85%)
- Adenocarcinoma (~50%)
- Squamous-Cell Carcinoma
- Large-Cell Lung Carcinoma
- ALK+ EML4-ALK Fusion (~2-7% of NSCLC)
- Other Oncogene Cancers
Non Small Cell Lung Cancer

• Non Small Cell Lung Cancer (NSCLC) is the most common cause of cancer-related deaths
• EML4-ALK Fusion Protein present in ~2-7% of NSCLC cases
 – 10,000 new cases per year in the United States alone
 – Most common in younger, never smokers
Overview

• Fights ALK+ Cancers
 – EML4-ALK oncogene (NSCLC)
 • Translocation in short arm of chromosome 2
 • Encodes a protein that can undergo ligand independent dimerization
 – Is therefore constitutively active and unregulated
 – ALK-NPM (ALCL)
 • Present is anaplastic large cell lymphoma

• Other tyrosine kinases
 – c-MET

• Competitively binds to ATP binding site
 – Shuts down pro-survival second messenger signaling
Background on EML4-ALK

• A translocation on the short arm of chromosome 2

• Fusion between:
 – The N-terminal end of the echinoderm microtubule-associated protein-like 4 (EML4) gene
 • Several truncations observed
 – Always contains coiled-coil domain
 – Everything downstream of intron 20 of the anaplastic lymphoma kinase (ALK) gene
 • encodes the entire intracellular tyrosine kinase domain

• EML4-ALK fusion is an oncogene
EML4-ALK Translocation
What does ALK do?

• The function of ALK in healthy individuals is not fully understood.
 – May play an important role in embryonic neurogenesis.

• It is present in high levels in utero and shortly after birth but then declines to very low levels that are maintained throughout adulthood.
 – May be partially responsible for the regeneration of axons in damaged motor neurons.
The ALK Tyrosine Kinase Makes a Good Target

• Vulnerable
 – Attacking it has anti-tumor effects

• Not necessary (in mice at least)
 – ALK knockout mice (mice without any ALK proteins) were found to be viable and fertile.
 • If ALK proteins serve few functions in adults then inhibiting healthy ALK proteins should produce few side effects

• Unintended side benefits
 – ALK knockout mice tended to perform better than their wild type counterparts in experimental models of clinical depression.
 • Possible research into ALK inhibitors as an antidepressant.
What does EML4-ALK do?

• The EML4-ALK fusion gene codes for a protein called, cleverly, the EML4-ALK protein.
 – Oncoprotein
 – Is capable of using EML4’s coiled-coil domain to dimerize proteins and constitutively activate ALK’s tyrosine kinase domain.
 • Type of trans-autophosphorylation
 • No ligand is needed
Signaling Pathways

• 3 main, slightly disputed pathways
 – Ras/Raf/MEK/ERK pathway (agreed)
 – PI3K-AKT pathway (disputed)
 – STAT3 pathway (disputed)
Ras/Raf/MEK/ERK pathway

• Long cascade that ends with the phosphorylation on of extracellular signal-regulated kinase (ERK)

• Phosphorylation of ERK is responsible for:
 – Increased cell proliferation
 – Decreased apoptosis
PI3K-AKT pathway

• Phosphorylation and activation of Protein Kinase B (PKB or AKT)
 – Triggers other signaling cascades
 • Increase growth
 • Increase proliferation
 • Evade apoptosis
STAT3 pathway

• Abridged JAK/STAT pathway
• When active, the STAT3 pathway induces the production of a protein called ‘survivin.’
 – Survivin prevents apoptosis by inhibiting caspase proteins
 – Allows cells to live longer than healthy cells
Crizotinib

Crizotinib Facts

• Chemical Formula
 – $C_{21}H_{22}Cl_2FN_5O$

• IUPAC Name
 – 3-((R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine

• Molecular Weight
 – 450.34 g/mol
Where did Crizotinib come from?

• Discovered by accident... kind of
 – Pfizer was working on a c-MET inhibitor
 • c-MET is another tyrosine kinase receptor
 – Found a drug with great pharmacodynamics but poor pharmacokinetics
 – Pfizer continued to tweak the drug until they came up with crizotinib
 – Crizotinib binds to the lipophilic ATP binding pocket of RTK
 – Marketed as Xalkori®
Crizotinib Timeline

- Crizotinib was developed in 2005
- Target was discovered in 2007
- Target validated in 2009
- FDA approved in 2011
Cost

- Costs $9,600 per month without insurance
- With insurance, co pay can be as low as $30
Why Crizotinib works

- Binds efficiently ($IC_{50} = 20\text{nM}$)
- The 2-aminopyridine NH group forms a Hydrogen bond with the hinge residue Glu 1197 while the ring nitrogen hydrogen bonds with the hinge residue Met 1199.
- The alpha-methyl group aids the structure of the benzyl group and makes favorable hydrophobic interactions in the lipophilic pocket.
 - Only the R configuration will fit.
What that all means.

ATP CANNOT BIND
EML4-ALK positive cells

ALK inhibitions

Inhibition of ERK Inhibition of STAT3

BIM induction Down-regulation of survivin

Apoptosis
No ATP, No Autophosphorylation

• With the EML4-ALK protein no longer active, the aforementioned signaling cascades are all inhibited.
• This leads to decreased cell proliferation and increased apoptosis.
• Clinically, an objective response rate (ORR) of 55% was seen with 3 complete responses. (n=255)
Shortcomings

• Crizotinib works very well, very quickly...
 – 80% with objective response saw improvement within the first 8 weeks

• But, it also looses its effectiveness quickly.
 – The average length of response was about 42 weeks.
 – Resistance formed through secondary mutation
 • Usually consists of a larger amino acid residue being substituted into the pocket, preventing crizotinib from binding
 • Author’s speculation that the cleft in which the 3-benzyloxy group sits would be a fitting place for the substitution.
Pharmacokinetics

• Administration
 – 250mg taken orally, twice daily

• Absorption
 – Peak plasma levels are reached in 4-6 hours after dosing
 • ~131ng/mL after a single dose
 – Steady state is reached in about 15 days
 • ~256ng/mL minimum
 – The bioavailability ranged from 32-66%
 – Absorbs best at low pH
Pharmacokinetics

• Distribution
 – The V_D is 1772 L
 • Indicative of extensive uptake by tissues
 • Of the drug left in circulation, 91% was bound to plasma proteins
 – Half life \sim42 hours

• Metabolism
 – Primarily metabolized by chytochrome P450 (CYP3A4/5)
 • Oxidized the piperidine ring,
 • Dealkylation
 – Conjugation
Pharmacokinetics

• Elimination
 – 63% through feces
 • 53% unchanged
 – 22% through urine
 • 2.3% unchanged
Side Effects

• Most are manageable
• Over half (62%) report low grade visual disturbances
 – Light trails, vitreous floaters and blurred vision
• GI disturbances were generally low grade
 – Nausea, diarrhea, vomiting and constipation
• 1.6% of patients reported life-threatening interstitial lung disease
• Cases of hepatotoxicity (7%)
Contraindications

• Avoid taking crizotinib with any CYP3A substrates, inducers or inhibitors
• Avoid taking crizotinib with anything that can raise the stomach pH
 – Antacids
 – Crizotinib is best absorbed at low pHs
• Because crizotinib is such a new drug, many drug interactions are untested
Why am I interested?

• My mom has been taking crizotinib since New Years
• First diagnosed in 2006
 – stage 3 adenocarcinoma
 – Surgery, chemo and radiation put it into remission
• Scan shows masses in brain Fall 2010
 – Erlotinib (Tarceva) and whole brain radiation shrunk both
• Stage 4 diagnosed December 2012 after finding her sacrum full of disease
 – Palliative radiation to the area relived pain and crizotinib was started early January 2013
 – Currently doing well
 – Bought a dog on Tuesday (23 April 2013)
Acronym Table

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
<td>Non-Small Cell Lung Cancer</td>
</tr>
<tr>
<td>ALK</td>
<td>Anaplastic Lymphoma Kinase</td>
</tr>
<tr>
<td>EML4</td>
<td>Echinoderm Microtubule-Associated Protein-Like 4</td>
</tr>
<tr>
<td>TKR</td>
<td>Tyrosine Kinase Receptor</td>
</tr>
<tr>
<td>ALCL</td>
<td>Anaplastic Large Cell Lymphoma</td>
</tr>
<tr>
<td>NPM</td>
<td>Nucleophosmin</td>
</tr>
</tbody>
</table>
References

References