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COMPARISON OF ELECTRON AND LIGHT MICROSCOPY OF CHROMOSOME 
ABERRATIONS INDUCED IN HUMAN LYMPHOCYTES BY 

ADRIAMYCIN AND MITOMYCIN C

Abbas Parsian, Ph.D.
Western Michigan University, 1986

The present study was designed to develop a technique to prepare 
human chromosomes for sequential light and electron microscopic obser
vation and to compare detectability of chromosome aberrations induced 
by adriamycin and mitomycin C by the two procedures. The technique 
developed preserved the morphological and structural organization of 
chromosome while allowing observation of the cell's entire chromosome 
complement. It was rapid and reproducible and chromosomes could be 
treated and stained for banding.

Light microscopic data showed that in cultures of human lympho
cytes both drugs induce chromosome aberrations. In comparison with 
controls both drugs produced significantly more chromosome and chro
matid fragments. Electron microscopy revealed greater numbers of 
chromosome aberrations in both drug groups at higher levels of sta
tistical significance.

The differences between chromosome and chromatid fragments 
observed at the light and electron microscope levels were statis
tically significant. However, with mitomycin C, only the number of 
chromatid fragments scored at electron microscope was significantly 
greater than at light microscope. In mitomycin C and control 
groups chromosome fragments failed to show significant differences
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between electron and light microscopy. However, the number of chro
mosome fragments scored was small. It is also possible that length 
measurement accuracy is not increased at the greater resolution 
level.

The present study showed the advantage of high resolution in 
detecting minute chromosomal aberrations. Should a reproducible 
banding technique applicable to electron microscope be developed, 
the use of high resolution in cytogenetics could be greatly 
extended. The technique developed could also be used for studying 
the ultrastructural organization of chromosome and/or chromosomal 
fibers.
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CHAPTER I

INTRODUCTION

Over the past decade it has become Increasingly evident that man
kind is being exposed to a wide variety of clastogenic agents, i.e., 
physical or chemical agents that are capable of breaking chromosomes. 
The production of visible chromosome aberrations in eukaryotic cells 
is known to be a sensitive indicator of damage to the genetic appara
tus (Kihlman, 1966; Lea, 1946). A direct relationship between dose 
and effect has been demonstrated in man for radiation-induced aberra
tions both in vivo (Fischer et al., 1966) and in vitro (Evans, 1962). 
This relationship has also been shown for a large number of mutagenic 
and carcinogenic substances, in particular cytostatic drugs used in 
the treatment of malignant diseases (Hampel, Kober, Rosch, Gerhartz & 
Meining, 1966) and in a number of nonmalignant conditions (Jensen, 
1967; Jensen & Soborg, 1966; Locher & Franz, 1967; Ryan & Baker,
1969).

Several lines of evidence indicate that chromosomal rearrange
ments may be one of the steps in carcinogenesis, although it is not 
completely known which types of genetic alteration are more relevant 
in this process (Cairns, 1981; Radman, Jeggo & Wagner, 1982). How
ever, the mechanisms of production of chromosomal aberrations follow
ing treatment with mutagens or carcinogens are not fully understood. 
Chromosome breaking agents induce a variety of DNA lesions, such as, 
among others, single- and double-stranded breaks, apurinic and

1
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apyrimldinic sites and cross-links. The primary lesions do not nec- 
essarily give rise to chromosomal aberrations, since they are subject 
to cellular repair. However, unrepaired or mlsrepaired lesions lead 
to chromosomal aberrations (Evans, 1977; Evans & Scott, 1969).

Virtually all the work on chromosome banding and chromosomal 
aberrations has been done at the resolution of the light microscope 
(LM). Although the electron microscope (EM) can provide a wealth of 
information not attainable with the LM, few attempts have been made 
to study banded chromosomes by this means (Bahr, Mikel & Engler,
1973; Burkholder, 1974, 1975; Comings, Avelino, Okada & Wyandt, 1973; 
Green & Bahr, 1975). No evidence was found of any attempts to study 
chromosome aberrations at high resolution transmission EM up to this 
date. The resolution of about 10 to 20 nm should be attainable with 
EM, whereas the practical limit of resolution in LM is about 200 nm. 
This represents approximately a 10 to 20 fold improvement. Such 
high resolution studies are important because they may reveal pre
viously unidentified bands, pinpoint more precisely the exact loca
tion of breaks and exchanges, improve our knowledge of the structure 
of chromosome, and finally provide ideas about the mechanisms of 
banding and aberrations.

There are two conventional methods of observing chromosomes by 
EM: thin sectioning and whole mounts. The most common method for
the ultrastructural analysis of metaphase chromosome is the whole 
mount technique (DuPraw, 1965), in which unfixed cells are spread on 
the surface of distilled water. This method has provided most of 
our current knowledge of chromosome structure (Comings & Okada,
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1972; DuPraw, 1965, 1970). Burkholder (1974, 1975) using fixed 
Chinese hamster Don cells, made chromosome spreads on plastic film 
floated on distilled water. These techniques have several disadvan
tages: they produce various degrees of stretching and/or dispersion 
of the chromosomes and chromatin fibers; they do not provide consist
ently good chromosome spreads; and they are not rapid and reproduc
ible. Xu and Wu (1983) used a technique in which chromosome spreads 
were transferred from glass slide to EM grids by coating slide with 
thin layer of parlodion film. With this technique it is frequently 
not possible to pick up all the chromosome within a spread.

It is generally considered that most of the cell injury is caused 
by damage to the genetic material that may be studied by observing 
chromosome aberrations. To compare chromosome aberrations (chroma
tid and chromosome types) induced in human lymphocytes at LM and EM 
level, adriamycin (ADM) and mitomycin C (MMC) were used. ADM is a 
glycoside antibiotic that was isolated from Streptomyces peucetius 
var. cesius. Reports on ADM in 1969 indicated its antitumoral poten
tial. It has since been employed as an effective chemotherapeutic 
agent in the treatment of solid tumors and leukemia. Cytogenetic 
investigations of ADM reveal chromosomal lesions of both the chro
matid and chromosomal type in phytohemaglutinin (PHA) stimulated 
lymphocytes. The frequency of "altered mitosis" (abnormal metaphase 
cells) was as high as 74% when doses as low as 0.05 or 0.1 pg/ml 
were present throughout a 72 hour culture period (Massimo, Dagna- 

Bricarelli, & Fossati-Guglielmoni, 1970).
Antibiotic MMC was first isolated from Streptomyces caespitosus
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in 1956 and shown to possess antitumor and antibacterial properties. 
Shiba, Terawaki, Taguehi and Kamawata (1959) demonstrated that the 
antibiotic was a specific inhibitor of DNA synthesis, and the action 
of the chemical was suggested to be due to its alkylating properties 
(Schwartz, Sodergren & Philips, 1963). MMC produces only chromatid- 
type aberration whereas ADM has been shown to produce both chromatid 
and chromosome aberrations. One striking effect of MMC is the induc
tion of chromatid exchanges involving homologues at corresponding 
points. It also produces quadriradial configurations in the treated 
cells.

There are problems with techniques that have been developed for 
studying human chromosomes with EM. Due to high resolution power of 
EM, more knowledge regarding the chromosomal structure, breakages and 
exchanges may be obtained. The purpose of this study was threefold:
(1) to develop a technique to prepare human chromosomes for LM and 
EM, (2) to induce chromosome aberrations in human lymphocytes by the 
ADM and MMC, and (3) to compare chromosome aberrations at LM and EM 
levels to find out if there are minute aberrations that could not be 
identified by LM.
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CHAPTER II

LITERATURE REVIEW 

Electron Microscopy of Chromosome

The success of the EM In interpreting cell ultrastructure began 
with the Introduction of better fixatives and methods for the prepara
tion of ultrathin sections. In a few years the structure of cyto
plasmic organelles was worked out in amazing detail. But the same 
methods proved most unrewarding for the study of the nucleus. With 
the best techniques, it remained a monotonous jumble of granules and 
nondescript fibrils with no evidence of chromonemata, chromosomes, 
or in fact, any continuous structures. Some blamed it on the fixa
tion and looked for a special fixative to preserve chromosomal 
continuity. Others who had doubted the genetic continuity of chro
mosomes all along and saw, in the interphase nucleus, a bag filled 
with colloidal particles, hailed it as proof for their views (Makarov, 
1960). But perhaps this unsatisfactory picture was not the fault of 
buffered osmium tetroxide, but rather the outcome of faulty inter
pretation of the data presented by thin sections. How can these 
essentially two-dimensional pictures be translated into the three- 
dimensional reality of the fixed nucleus? Ris (1961) proposed two 
methods that could be useful to accomplish this. First, the prepara
tion for electron microscopy of intact chromosomes Isolated from 
cells and secondly, the use of stereoscopic electron micrographs of

5
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relatively thick sections. Together, these two methods are useful 
if the concern is to study the structural organization of small 
regions of a chromosome.

There are two conventional methods of observing chromosomes by 
EM: thin sectioning and whole mounts. There are pros and cons for
each method for studying the ultrastructure of the chromosome.

Thin Sectioning

At this time, electron microscopy of the chromosome showed it 
consists of delicate fibers, whose reported diameters varied from 
20-500 A (Hay & Revel, 1963; Ris, 1961). Gall (1966), based on his 
work, believed that further characterization of the chromosome fiber, 
using conventional embedding and sectioning techniques, was difficult 
since only short segments appear in a given thin section. Burkholder 
(1977) stated that "since chromosomes are relatively large structures, 
thin sectioning only permits the examination of a wafer of the chro
mosome in one section and this method has provided little information 
on chromosome structure or organization" (p. 324). Ris (1978) 
restated his idea of 1961 about thin sectioning of chromosome by say
ing that in usual thin sections, it is, however, quite impossible to 
get information on the spatial arrangement of chromatin fibers.

Hozier, Furcht and Wendelshafer-Grabb (1981) are supporters of 
thin sectioning method. He and his associates developed an embedding 
procedure called "EM Transfer Technique." Briefly, fixed cells were 
spread in 60 mm plastic tissue culture dishes. Good spreads were
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identified by LM and were fixed with 2.5% glutaraldehyde and post- 
fixed with 1% osmium tetroxide. They were dehydrated by ethanol and 
washed with ethanol: epon 812. Epon was poured to depth of 3 mm in 
a dish and short pieces of polyethylene tubing were centered over 
marked areas. After overnight incubation at 60 degrees C, the tub
ings were filled with epon and incubated for 48 hours. The tubings 
with specimen were separated by immersion in liquid nitrogen. Sec
tions were made using a diamond knife and picked up by carbon-formvar 
coated grids. Hozier et al. (1981) published several EM micrographs 
of longitudinal cross section of whole chromosomes. But, it is 
important to notice that producing this kind of section is not easy, 
especially for long chromosomes. So, this technique poses a problem 
for studying the cells entire chromosome complement.

Mitotic cells in suspension were used for embedding by Lampert 
and Lampert (1970). Cells were fixed with glutaraldehyde and post
fixed with osmium tetroxide. After dehydration, the cells were 
embedded in epon. Thin sections with gray color were stained with 
uranyl acetate (UA). A reduction in the site of fiber diameter was 
noticed in sections, of course, as compared with the fiber size of 
whole mount chromosomes. This reduction is explained by shrinkage 
secondary to fixation and embedding (Schwarzacher & Schnedl, 1967; 
Wolfe, 1968).

Some investigators embedded isolated chromosomes for thin sec
tioning. Bak, Zeuthen and Crick (1977) isolated human fetal fibro
blast chromosomes by a method based on the procedure of Wray and 
Stubblefield (1970). Chromosomes were embedded in vestopal and
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60-80 nm sections were produced. Adolph (1980) isolated Hela cell 
chromosomes by four different methods. The methods differed in 
divalent cations (Mg 2+ and Ca 2+) and polyamines (Spermine and 
Spermidine) in HGPES and CAPS buffers. The isolated chromosomes 
were fixed with glutaraldehyde and postfixed with osmium tetroxide. 
Spurr medium was used for embedding and 60-90 nm sections were cut 
using a diamond knife. Laughlin, Wilkinson-Singley, Olin and Olin 
(1982) used Chinese hamster ovary cells in their studies. The chro
mosomes were isolated by three techniques, namely, Adolph, 1980; 
Rattner and Hamkalo, 1978; Wray and Stubblefield, 1970. The chro
mosome suspension was fixed and postfixed with glutaraldehyde and 
osmium tetroxide respectively. Chromosomes were embedded in Spurr*s 
resin and 60-80 nm sections were produced. Laughlin et al. (1982) 
believed that ultrastructural studies of metaphase chromosomes fixed 
in situ have been largely uninformative due to the dense packing of 
chromatin fibers. In the above studies, the thin sections were cut 
for the most part across the chromatid arms. Again, the sections 
are representative of a small region of chromosome. Therefore, they 
are not informative for structural studies of whole chromosomes 
although they provide information regarding the structure and 
organization of chromatin fibers in small areas.
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Whole Mount

There are many Investigators who have supported the whole mount 
techniques, but there have also been detractors of these techniques. 
For example, Hozier et al. (1981) stated that in whole mount chro
mosomes, little detail regarding the internal arrangement of chro
mosomal components can be seen. He believed there were two main dis
advantages: (1) difficulty in visualizing internal structure when
it is necessary to penetrate the entire body of the chromosome; and
(2) difficulty in comparing standard cytogenetic staining patterns 
with the electron microscopic view. He also believed that formvar 
is fragile and does not stand up to banding and staining procedures.

The studies done with whole mounts area are divided into four 
categories based on the principles behind the techniques. Chromoso
mal spreading on a water surface for whole mount EM studies was 
first developed by Gall (1963, 1966). Similar spreading techniques 
had been previously used by Kleinschmidt and Zahn (1959) to study DNA 
preparations and by Feraandez-Moran (1948), Parsons (1963) to observe 
cytoplasmic structures. Materials were spread at an air-water inter
face, using a "Langmuir trough" built according to instructions by 
Stong (1961). The trough was filled with distilled water. Control 
over the density of material on the final EM grid is achieved by 
compressing the spread film. The bulk of the film is assumed to be 
protein, with the chromosomal material being merely enmeshed in the 
film or suspended from it. Materials were picked up by touching 
.conventional carbon coated grids to the surface, followed by fixation
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10
and critical point drying. Gall (1966) reported that chromosomal 
fibers were not clearly evident. Groups of chromosomes from divid
ing cells were recognizable on the basis of their gross morphology. 

However, many chromosomes showed extreme stretching and distortion.
Ris (1978) reported that the chromosomes prepared in this manner were 
generally considerably distorted and the procedure was not recommended 
where the arrangement of chromatin fibers in higher order structure 
was to be preserved. However, the procedure has been used success
fully, with some modification, by several investigators (Comings &
Okada, 1972; DuPraw, 1965, 1970; Lampert & Lampert, 1970; Okada & 
Comings, 1980; Ris, 1978, 1981; Ris & Chandler, 1963;. Wolfe, 1965a, 
b).

Burkholder's (1974, 1975) spreading technique is a modification 
of Gall's (1966) procedure. He coated a slide with a formvar film 
and evaporated carbon. A stiff wire screen was placed in the bottom 
of a tray. The film was released on the surface of the water in a 
tray. A drop containing mitotic cells suspended in 6:1, methanol: 
acetic acid was put on top of the floating film. The wire screen 
with grids on it, was lifted out of the water with forceps so that 
the formvar-carbon film is spread over the grids. The grids were 
then air-dried and stained with Giemsa by floating grids on drops of 
stain. Even though this technique is an improvement of Gall's (1966) 
technique, it still causes some chromosome stretching and dispersion.

The second category of whole mount preparation of chromosome for 
EM is the transfer of chromosomes to formvar coated grids by gradient 
centrifugation. The technique, developed by Stubblefield (1975),
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11
uses chromosomes Isolated by the technique of Wray and Stubblefield 
(1970). Goyanes and Mendez (1981) have used this technique with some 
modification. A 12 mm circular coverslip (No. 1) is placed in the 
bottom of a 15 ml round bottom glass centrifuge tube. Two hundred 
mesh coated grids are put on top of the coverslip and covered with 
2.5 ml of 10% sucrose in chromosome buffer. The chromosome suspen
sion was layered over the sucrose and sedimented by centrifugation at 
1500 g for 15 minutes. Grids with adhering chromosomes were washed 
in chromosome buffer, dehydrated and critical point dried. Goyanes 
and Mendez (1981) have used this technique with some modification. 
Chromosomes were preserved but the technique required considerable 
time, was difficult to reproduce and did not exhibit the entire 
chromosome complement.

The third category of chromosomal preparation for EM is the 
direct transfer of cell (Hozier et al., 1981) or chromosome (Bak et 
al., 1977; Ris, 1981) suspension onto EM grids. Either fixed or 
unfixed cells or chromosomes were spread on formvar-carbon coated 
grids, then fixed, stained, dehydrated and critical point dried.
Hozier et al. (1981) stated that little detail regarding the internal 
arrangement of chromosomal components can be seen by this technique.
He also reported that his chromosome preparations appeared quite 
similar to Chinese hamster chromosomes prepared in 1974 and 1975 by 
Burkholder. Burkholder's technique is quite different from that of 
Hozier's. The limitations of these techniques are that good chro- 
some spreads are difficult to produce and a significant number of 
cells or chromosomes are wasted during the transfer.
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The fourth whole mount chromosome category for electron micros
copy can be divided into two groups based on differences in methods 
of transferring chromosome spreads from the glass slide to EM grids. 
In the first group, glass slides are coated with plastic (Burkholder, 
1981; Haapala & Nokkala, 1982; Parsian & Buthala, 1985) or carbon 
(Ruzicka, 1977) and the chromosome spreads are produced on these 
slides by air-dry techniques universally used for light microscopy. 
Good spreads are located with a LM, marked, and the supporting film 
and chromosomes floated or pulled off the slides on surface of water 
or water containing hydrofluoric acid. EM grids are positioned over 
or under the chromosome spread and the films with grids picked up 
using parafilm or nonwetable cardboard or stiff wire screen and air- 
dried. At this stage, chromosomes can be treated with stains, 
enzymes or any agents.

In the second group under category four, chromosome spreads are 
produced on plain glass slides by the squash technique (Ris, 1978, 
1981) or by the air-dry technique (Xu & Wu, 1983). The chromosome 
preparation is then stained and coated with a thin layer of parlodion 
by dipping the slides in a solution of parlodion in amyl acetate.
Good chromosome complements are marked, scoring the plastic with a 
razor blade or other markers. The parlodion film with or without 
grids is floated off on the surface of water or water containing 
hydrofluoric acid. The chromosomes are then air-dried and/or can be 
critical point dried or coated with carbon. The disadvantage of 
this technique is that not all the chromosomes within a spread are 
recovered.
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The techniques described were developed primarily to study the 
structure and organization of mammalian and human chromosomes. Dif
ferent techniques reveal different information regarding the organi
zation of chromosome chromatin fibers and proteins. These procedural 
differences have lead to several models for chromosome organization. 
However, it is generally accepted that chromosomes are uninemic 
(Comings & Okada, 1972; Kavenoff & Zimm, 1973; Prescott, 1970; Wolfe 
& Perry, 1975), that is, a single DNA molecule runs from end to end 
through a mitotic chromatid. Human chromosomes prepared by surface 
spreading and critical point drying appear composed of 200-300 A wide 
fibers (Abuelo & Moore, 1969; DuPraw, 1965; Gall, 1966; Ris & Chandler 
1963; Wolfe, 1965). Similar fibers have been seen in thin sections 
but with smaller dimensions (Wolfe, 1968). The deoxyribonucleoprotein 
component of the chromosomes resides in this fiber. As revealed by 
autoradiography (Hay & Revel, 1963) and enzyme digestion (DuPraw,
1965) this single, irregularly folded fiber that makes up a chro
matid (DuPraw, 1965, 1966) contains the DNA components. Based on 
dry mass determinations, DuPraw and Bahr (1969) proposed that a fully 
packed chromosome fiber consists of a second order supercoiled fibril 
that contains the DNA-double helix as a first order DNA-protein super
coil.

Several investigators have used whole mount of chromosomes col
lected by spreading unfixed cells on the surface of distilled water 
for EM study of chromosome banding (Bahr, Mikel & Engler, 1973; 
Comings, Avelino, Okada & Wyandt, 1973; Green & Bahr, 1975). This 
method commonly produces various degrees of stretching and/or
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dispersion of the chromosomes and chromatin fibers. This can be a 
distinct disadvantage for investigations of chromosome banding since 
the banding methods are normally performed on condensed and fixed 
chromosomes. Several others have used whole mount electron micros
copy of chromosome by spreading fixed cells on surface water (Burk
holder, 1974, 1975) or on coated slide (Burkholder, 1981; Haapala & 
Nokkala, 1982; Ruzicka, 1977) or on plain slide (Xu & Wu, 1983) for 
studying banded chromosomes.

Techniques for banding chromosomes for EM commonly employed G- 
banding procedures. It has been observed that the various G-banding 
methods yield similar results with some differences in the quality 
of the ultrastructure of the banding pattern (Burkholder, 1974, 1975; 
Ruzicka, 1973). Bahr et al. (1973) reported that for the distribu
tion of chromatin mass (46xy) they have found 225 bands that were 
considered major (EM) and 453 minor (em). It appears that, on the 
average, two EM bands contribute to one Q band, whereas the ratio 
of Q to G bands is 1:1.7 in their assessment. A distinctly discontin
uous distribution of chromosomal matter along chromatids suggest a 
basis for all banding observations. Such detailed banding descrip
tion may be useful in the mapping of the human genome, in defining 
new cytogenetic markers, and in identifying small marker chromosomes 
in cancer cells as well as chromosomal fragments in microchromosomes.

As mentioned in Chapter I, there has not been any study regard
ing the chromosomal aberrations at transmission EM level. Therefore, 
the literature related to ADM and MMC and their effects on human 

chromosomes is at LM level.
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Induction of Chromosome Aberrations

The study of chemically-induced chromosomal abnormalities In 
humans Is relatively recent, the first being carried out by Pollinl 
and Colombi (1964a, b) and Vigliani and Salta (1964). These pub
lished papers concerned abnormalities in the peripheral lymphocyte 
chromosomes of benzene-exposed workers. Studies of other chemical 
effects on human chromosomes tend to be more limited than those of 
benzene. Several anticancer drugs have been shown to produce such 
abnormalities after treatment. These Include azothioprine (Jensen, 
1967), daunomycin (Whang-Peng, Leventhal, Adamson & Perry, 1969), 
cytosine arabinoside (Bell, Whang, Carbone, Brecher & Bloek, 1966), 
methotrexate (Jensen, 1967) and 6-mercaptopurine (Bischoff & Holtzer, 
1967). In view of the general cytotoxic and carcinogenic effects of 
some of these anticancer drugs it is not surprising that they produce 
clastogenic effects.

In this study designed to compare chromosome aberrations (chro
matid and chromosome types) induced in human lymphocytes at LM and EM 
level, ADM and MMC were used. These antibiotics are antineoplastics 
agents. Biochemically, their significance resides primarily in the 
fact that both are capable of interacting with DNA and can inhibit syn
thesis of macromolecules of genetic importance. This, and related 
properties, are apparently responsible for their potency in causing 
chromosome damage in both plant and animal cells. However, both of 
these chemicals do not appear to have the same potentials for being 
general mutagens. MMC is a definite mutagenic compound whereas less
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is known about the potentials of ADM, although preliminary data do 
not suggest its general mutagenic properties. Despite the fact that 
both these chemicals induce sister chromatid exchanges (SCG), alter 
recombinational patterns, and induce chromosome aberrations, their 
modes of action in terms of their effects on DNA, RNA and protein 
synthesis are clearly different. The concentrations of these chem
icals required to induce aberrations are generally very low (Fishbein, 
Flam & Falk, 1970) and the chemicals appear to be capable of express
ing delayed-type effect to different degrees. As discussed in detail 
in the following pages, MMC produces only chromatid-type aberrations 
whereas ADM has been shown to produce both chromatid as well as chro
mosome types of aberrations, sometimes in the same cell given only a 
pulse treatment.

Adriamycin (ADM)

ADM is a glycoside, made up of an aglycone chromophore (adri- 
mycinone) linked to an amino sugar and it is 14-hydroxydaunomycine.
The anthracyclines are antibiotics with anticancer properties against 
a variety of tumors. The best studied member of the group, ADM, has 
potential against several carcinomas, among others soft tissue sar
comas, pediatric solid tumors, malignant lymphomas and acute leuke
mia (Carter, 1975).
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Figure 1. Structure of Adriamycin (ADM)

ADM was Isolated from Streptomyces peucetlus var. caeslus in 1967 
by Arcamone, Franceschi, Teno and Selva at the Farmltalla Research 
Laboratories, In Milan, Italy. Studies on its antitumor activity have 
been carried out mainly on mice and rats bearing Ehrlich ascites as 
well as solid tumors. A comparison of the results obtained with the 
antibiotics daunorubicin and ADM, showed that the latter is a more 
active drug (DiMarco, Gaetani & Scarpinato, 1969). The microscopic 
findings demonstrated that the ADM promptly stops the proliferation 
of a tumor. A clinical trial has been made by Bonadonna, Monfardini, 
DeLena and Fossati-Bellani (1969) in adults and children, suffering 
either from leukemia, hematosarcoma or solid tumors, and by Massimo, 
Cottafava, Mori and Fossati-Guglielmoni (1969) in children with solid 
tumors in an advanced stage.
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Effects on Chromosomes

ADM has been investigated for its cytogenetics effects. T\ro 
laboratories independently reported on chromosome aberrations induced 
by ADM in cultured human lymphocytes (Massimo et al., 1970; Vig,
1971) with results similar to those obtained with daunomycin (DNM). 
Massimo et al. (1970) proposed that chromosomal damage induced by the 
chemical can produce an inhibition of blastogenesis and cellular 
aberrations observed in the treated cells. The frequency of "altered 
mitosis" (abnormal metaphase cells) was as high as 74% with doses as 
low as 0.05 or 0.1 ̂ ig/ml when added throughout the culture period of 
72 hours. But, most of the mitosis had only minor aberrations and 
the chromosomes maintained their regular morphology. Under these 
conditions, doses of 1 jig/ml or higher were apparently lethal or com
pletely inhibited cell division. At all the concentrations used,
(0.05 to 5 jig/ml), ADM inhibited the transformation of small lympho
cytes into blast cells. The inhibitory effect increased in a linear 

relationship, with the increase in the dose. The cytogenetic damage 
produced by ADM on lymphocytes, was detectable at doses lower than 
0.5 jig/ml, whereas at higher concentrations mitotic figures were 
absent. The severity of the chromosome lesions varied with the dose. 
The most frequent effect seen was the fragmentation of the chromatids, 
the extremities of which tended to link either between themselves, 
forming dicentric chromosomes and rings, or with the chromatids of 
other chromosomes forming rackets, rearrangements, translocations or 
polyradial figures. Longitudinal fragmentation of centromeres with
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consequent division of the chromatids between themselves; the fusion 
of the satellites of two acrocentric chromosomes; alteration of the 
morphology of the chromosomes such as "erosion," lysis, stickiness 
and agglutination; polyploidy, due to either endoredupllcatlon or to 
lack of cell division; and aneuploidy with hypo- and hyperploidy 
were also observed. Massimo et al. (1970) concluded that ADM mainly 
induces chromosome lesions on normal lymphocytes grown "in vitro" 
with PHA, an effect usually assumed as mutagenic.

A more detailed account of aberrations was provided by Vig 
(1971) who reported a high percentage (71%-92%) of abnormal cells 
from cultures treated for only 4 hours (44-48 hrs.) with concentra
tions ranging between 0.02 to 0.15 jug/ml. In this study some cells 
appeared totally "demolished" or pulverized whereas in others, the 
morphology of the chromosomes was deformed. The chromosomal aberra
tions included fragments and exchanges of both chromatid and chro
mosome types. The most predominant aberration (37.6%) was chromatid- 
type exchanges. Next in order were the chromosome fragments (28%), 
that together with the chromatid-type fragments made up 17.7% of the 
total. The frequency of asymmetrical (U-type) exchanges was higher 
in the material treated with 0.02 jig/lm than that of symmetrical 
(X-type) exchanges from the same material (63% to 37%). These obser
vations confirm the large deviation from expected 1:1 as observed in 
almost every instance dealing with such analyses. Also, about 73% of 
the cells had chromatid-type exchanges. To confirm the chromosome 
damaging potential of ADM and to determine whether continuous treat
ment as given in above experiments yields different results from a
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short-term treatment for a few hours, Vig (1971) treated the cells 
with ADM at 0.05 and 0.10 jig/ml of culture between 20 to 24 hours and 
also with 0.05 ̂ ig/ml during 44 to 48 hours of culturing. Cells were 
harvested 24 hours later. The results confirmed the observations 
made earlier (Vig, 1971). The type and frequency of aberrations and 
the relationship between aberrations were also studied. The results 
indicated that the frequency of aberrations Is dose dependent. An 
increase in concentration of the drug caused a rapid increase in the 
proportionate frequency of chromatid-type exchanges. Although there 
were as many as 37.5% of the exchanges observed that involved homol
ogous or apparently homologous chromosomes, only 8 out of 120 
exchanges involved exactly corresponding loci. Vig (1971) believes 
that these data do not express preferential breakage and reunion at 
corresponding points on homologous chromosomes and may not thus sup
port the idea that somatic crossing over had occurred. The frequency 
of chromosome breaks was always higher than the frequency of chroma
tid breaks but in general parallel with the frequency of chromatid 
exchanges. There were very few, if any, exchanges of chromosome 
type.

Newsome and Singh (1977) studied the cytologic effects of ADM 
on human peripheral lymphocytes by exposure of cells to ADM for a 
very short period of time. During hour 44-45 and 67-68 of 72 hours 
series of cultures were treated for one hour with ADM in a final 
concentration of 0.00, 0.01, 0.03, 0.05 and 0.10 ̂ ig/ml. All the 
treated cultures showed chromosomal structural changes. The aberra
tions recorded five and 24 hour posttreatment were mostly of the
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chromatid-type, including simple breaks and deletions. Other struc
tural abnormalities observed were sister chromatid reunions, despi- 
ralization, binucleate cells and dicentric chromosomes. Chromatid 
exchanges were rare. The overall aberration frequency decreased from 
52% to 10% with an increase in duration of recovery and concentration 
of ADM. Most of the aberrations that recovered were chromatid breaks 
in cells harvested five and 24 hours posttreatment. Such breaks were 
higher in cells treated with lower concentrations (.01 and .03 jig/ml) 
and harvested five hours later. The 44 chromatid breaks scored 
failed to show specificity in terms of the chromosomal breaking action 
of ADM within or among chromosome groups. ADM also induced a paucity 
of both chromosome type lesions and chromatid exchanges even in cells 
with the highest frequency of aberrations. No chromosome breaks were 
recovered in cells treated with higher concentrations of ADM (0.10 
jig/ml) and harvested five and 24 hours posttreatment. Dicentric chro
mosomes were very rare and were recovered only in cells treated for 
one hour with 0.05 jig/ml ADM and harvested 24 hours later. Newsome 
and Singh (1977) concluded that preliminary data in their laboratory 
showed clinical preparations of ADM cause chromosomal structural 
changes in human lymphocytes. But the spectrum of aberrations failed 
to show that ADM induces aberrations as drastic and extensive as 
earlier studies reported (Vig, 1971). Previous studies reported a 
percentage aberration frequency of 50% to 83% in cells treated with
0.02 jig/ml for 24 hours or 0.05-0.15 for 3 to 4 hours (Vig, 1971). 
Newsome and Singh (1977) believed that this differential effect may 
well be due to some cells escaping the effect of ADM, a limited
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exposure time, and a different genetic background of the exposed 
cells.

Nevstad (1978) studied the effects of ADM on chromosomal aberra
tions In human lymphocytes In vitro and In vivo. In an In vitro 
study, ADM treatment lasted for 48 or 24 hours. Only a few chromoso
mal aberrations (break events) were observed at low concentrations of 
ADM (0.001 ̂ ig/ml). Maximal frequencies of SCE (24.5/cell) and chro
mosomal aberrations (5.5/cell) In the experiment treated with ADM for 
48 hours were observed at 0.1 ̂ ig ADM/ml. Higher concentrations of 
ADM Inhibited mitosis and the number of second divisions necessary 
for scoring SCE was extremely low. In another set of experiments ADM 
lasted for 24 hours. Here, at a concentration of 0.1 ̂ ig/ml, the fre
quency of SCE was lower than when treatment lasted for 48 hours; and 
chromosomal aberrations were rare. Higher frequencies of SCE and 
chromosomal aberrations were observed at 0.2 jig/ml. Even though 
Nevstad (1978) showed the relationship between duration of exposure 
and concentration of ADM with chromosomal aberration, he failed to 
report what percentages of cells were affected or had chromosomal 
aberrations. He only showed the chromosome aberration/cell for dif
ferent ADM concentrations on a graph. So, it is difficult to compare 
his results with previous data that show percentages of aberrant 
cells. As far as the chromosomal aberrations are concerned, Nevstad*s 
(1978) study supports the previous data but again fails to indicate 
the types of chromosomal aberrations induced in the cells.

Triradial structures have been observed after radiation and chem
ical treatments. These structures are generally interpreted to be
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the results of isochromatid-chromatid type exchanges. As expected, 
triradials generally are rare. Some triradials have two centromeres, 
suggesting their origin from two chromosomes. Others have only one 
centromere, and these monocentrlc triradials sometimes have one very 
small arm. The monocentrlcs are, however, less frequent than dicen
trics. Some of these monocentrlc triradials appeared to have orig
inated from intrachromatidal rearrangements of one chromosome; a fact 
supported by the rare presence of cells with a monocentrlc triradial 
as the only aberration. Vig (1971) reported that one class of Inter
est In human lymphocytes treated with ADM, was the triradials with 
single, two, or very rarely three centromeres In the whole complex. 
Usually, centromeres in excess of one were located one on each chro
mosome participating. Some of the monocentrlc triradials were 
extremely small and appeared to have originated by intrachromosomal 
manipulation. Massimo et al. (1970) reported about polyradial fig
ures but Newsome and Singh (1977) and Nevstad (1978) did not mention 
anything regarding triradial or polyradial figures in lymphocytes 
treated with ADM.

Position of Chromosome Breaks

Positions of chromosome breaks induced by ADM along the length of 
human genome have been investigated and nonrandomness was observed 
both between and within chromosomes. Vig (1971) analyzed the posi
tions of chromosome breaks and exchanges from three samples treated 
with 0.05 ̂ ig/ml ADM between 44 and 48 hours of culturing. It was found 
that the break positions, at least qualitatively, were similar to one
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another. Hence, the data were pooled to give composite diagrams for 
the points of breaks Inferred from exchanges and for breaks inferred 
from fragments. Chromosome 2 was involved more often, in absolute 
frequency, than any other chromosome, but it was group G (21/22) that 
was involved most often per unit length. Y chromosome was the only 
one that was not involved in any exchange. Group C was engaged max
imally in intragroup exchanges, i.e., exchanges involving both chro
mosomes from the same group. The involvement of various chromosomes 
was not uniform or dependent on their length but, nevertheless was 
somewhat nonrandom. The distribution of the points of exchanges gave 
impression of being nonrandom, with a certain region along the length 
of chromosome being much more susceptible to breakage. A total of 112 
points of chromosome breaks were analyzed from fragments. The dis
tribution of points of breaks along the length of chromosomes or 
groups thereof, did not support the conclusion that breaks are non- 
random. Also, the frequency of breaks per unit of chromosome length 
in this case did not compare well with the respective values for 
exchanges. In both cases, the Y chromosome and chromosome 3 and 
19/20 were the least involved. It is a matter of interest that the 
breaks were not localized only in the heterochromatic part of the 
chromosomes but the aberrations were found in and around the areas 
of centromeres (proximal heterochromatin) also (Vig, 1971).

As previously discussed, MMC induces quadriradial configura
tions involving breakage and rejoining between homologous chro
mosomes at apparently corresponding regions as observed in human 
lymphocytes and in Vicia faba. From the later studies, the idea was
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developed that homologous chromosomes, at least In some species, are 
paired In Interphase of somatic cells. ADM does Induce exchanges 
between homologous chromosomes, but rarely, If ever, Induces quadri- 
radials at corresponding points. Thus, In one study (Vig, 1971) with 
ADM, 37.5% of total exchanges Involved homologous or apparent hom- 
ologues, but only 8 out of a total of 120 such exchanges met the 
criteria of region-specific reciprocal recombination. The chromatid 
exchanges Induced by this chemical were most frequently of the asym
metric type. For Instance, In one experiment In which cells were 
treated with 0,02 ̂ jg/ml of ADM (Vig, 1971) for four hours, 63% of all 
exchanges were of U-type leaving only 37% as X-type exchanges.

Effect of Temperature

Hahn, Braun and Har-Kedar (1975) and Hahn and Strand (1976) have 
demonstrated a striking synergism between ADM and hyperthermia in 
relation to cytotocicity to HA1 Chinese hamster cells and EMT-6 mam
mary sarcoma of mice. In one experiment HA1 cells treated with 0.02 
jig of ADM per ml at A3 °C showed survival of only 4 X 10 in con
trast with 90% for heat control and 60% for ADM control at 37 °C. 
Although the mechanism of such synergistic effects is not yet clear, 
fluorescence measurements showed an increased concentration of the 
ADM in cells treated at 43 °C, presumably because of increased per
meability of the cells' plasma membranes. However, this situation 
of increased permeability can be reversed if cells are exposed to a 
high temperature for much longer than 30 minutes.

Although synergism between chemicals and hyperthermia has been
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previously demonstrated (Johnson & Pavelec, 1973), the experiments 
mentioned above raise questions of practical importance for chemo
therapy as well as for basic cell biology, specifically, because ADM 
is one of the most promising antitumor drugs available. Vig (1978) 
studied the effects of hypothermia and hyperthermia on the induction 
of chromosome aberrations in human leukocytes by ADM. All cultures 
were started at 37 °C and ADM solution was added at room temperature 
for a desired length of time. For comparing the effect of ADM at 
37 °C versus 4 °C, the cells were treated during 22 to 23.5 hours 
after culture initiation at 0.04 ̂ ig/ml of ADM. The frequency of 
aberrations after 48 hour recovery was only 0.02 per cell in the 4 °C 
treatment compared with 0.07 per cell in the 37 °C treated material. 
In another similar experiment in which the recovery period was 
reduced to 24 hours, no scoreable metaphases were available, indicat
ing the delay induced by the ADM. Thus, in spite of a very low fre
quency of aberrations per cell, there is little doubt that ADM treat
ment at 37 °C produces more aberrations than at 4 °C. The frequency 
of aberrations was also increased by raising the concentrations of 
ADM. The drastic reduction in the relative frequency of aberrations 
requiring rejoining of broken ends of chromosomes was noticed. Thus, 

whereas chromatid exchanges had shown a highly reduced frequency in 
the 4 °C population, aberrations like rings and triradials were 
totally absent.

The data on chromosome aberrations studied after recovery of 44 
or 62 hours, exhibited a far greater potential of ADM in causing 
aberrations in synergism with hyperthermia (43 °C) than at 37 °C
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(Vig, 1978). The number of aberrant cells at 43 °C was three times 
the number observed at 37 °C, but the frequency of aberrations was 
about ninefold greater at 43 °C than at 37 °C. The largest relative 
increase was found in the frequency of those aberrations that required 
rejoining, especially chromatid exchanges. In a series of experiments 
(Vig, 1978), cells were treated at 24 to 25 hour postculture initia
tion period and were treated with 0.2 jig/ml of ADM at 4 °C, 23 °C,
37 °C and 43 °C. A recovery of 45 hour was allowed. The data confirm 
the earlier findings with a slightly more than twofold increase in the 
frequency of aberrations at 43 °C as compared with that at 37 °C.
Also, a large increase (about fourfold) was observed in the cumula
tive frequency of all types of exchanges at 43 °C. At temperatures 
lower than 37 °C fewer aberrations (about 30%) were observed.

It is possible that the effect of hyperthermia is an inhibition 
of restitution of ADM-induced damage to the chromatin material. 
Distinction between immediate effectiveness of ADM and inhibition of 
repair at the posttreatment period can be made if cells are treated 
at 37 °C and then postincubated for a few hours at various tempera
tures. In case "delayed" effectiveness due to the repair process is 
involved, the end results should be similar to those in data for 4 °C 
or 43 °C posttreatment in Vig’s (1978) work. A series of experiments 
was conducted by Vig (1978) and the conclusion was that the major 
effect of ADM is during the period when the chemical is in contact 
with the cells, or, alternately, that any changes in enzymatic activ
ity, brought about by temperature fluctuations in the post-ADM treat
ment period, do not have any serious effect on the frequency of
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aberrations induced by ADM.

Vig, Comforth and Farook (1982) studied the hyperthermic poten
tiation of chromosome aberrations by three anticancer antibiotics.
One with a nondelayed type of effect (adriamycin), one with a delayed 
type of effect (mitomycin C), and one with a truly radio-mimetic 
effect (bleomycin) were selected for study on human lymphocytes and 
Chinese hamster K-l cells. The data showed increased potential of 
these chemicals to induce chromosome aberrations when applied at tem
peratures higher than 37 °C, irrespective of the phase of cell cycle.
The potentiation may be synergism (bleomycin) or the facilitation of 
entry of larger quantities of the drug (ADM).

Hyperthermia increases the effectiveness of ADM in inducing cell 
death and chromosome damage. The mechanism is not synergism, if it is 
the increased influx of the ADM molecules into the cell (nucleus) as 
indicated by studies of Hahn et al. (1975) and Hahn and Strand (1976).
It might well be called facilitation resulting in apparent synergism 
or pseudosynergism. If hyperthermia does result in an increased 
quantity of ADM in the cell, then one simply expects a higher degree 
of damage to cellular components. True synergism shall be demon
strable in case the quantity of ADM in the cell is kept constant, as 
might be possible at doses that saturate the cell with ADM. Alter
nately, one may compare the effect of hyperthermia and ADM with ADM 
alone if, in both instances, the quantities inside the cell can be 
shown to be equivalent. Such experiments, although possible, do not 
appear in the literature.

Data from Newsome and Littlefield (1975) with skin fibroblasts
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differ from those of Vig (1971) using leukocytes. In the former case 
few exchanges were induced in ADM-treated materials. The high inci
dence of exchanges induced in the Vig (1978) experiments at 43 °C, 
but fewer exchanges at 4 °C, indicate that exchange frequency depends 
on the total frequency of aberrations and may well be related pos
itively with the increased uptake of ADM by the cell. It can also be 
true for reduced quantities of ADM in the cell at 4 °C treatment.
Among others, the length of the recovery period and tine of treatment 
also promote higher frequency of exchanges.

Mechanism of Action

Because of the clinical importance of ADM in the treatment of 
many common tumors, extensive studies have been performed to determine 
the possible antitumor mechanisms of ADM and other related antitumor 
anthracyclines. The major biochemical effects of anthracyclines (ADM 
& DNM) are claimed to be related to nucleic acid synthesis through 
interference with template DNA function. Distortion of the DNA struc
ture and uncoiling of supercoiled, double helix of DNA have been taken 
as evidence of intercalation (Waring, 1970). However, the data on 
DNA-anthracycline binding (DiMarco, Areamone & Zunino, 1975) suggest 
at least two types of DNA binding sites for the anthracyclines. One 
of these is the site of intercalation for DNA. The other represents 
electrostatic interactions involving DNA phosphate groups and anthra- 
cycline amino acid (Pigram, Fuller & Hamilton, 1972). Kersten (1968) 
has provided evidence that DNM-DNA complex formation depends only 
slightly, if at all, on the G:C content of DNA. It is, however,
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significant that an alternate dG-dC sequence binds to ADM tenfold 
better than alternate dA-dT (Tsou & Yip, 1976).

ADM and DNM cause inhibition of DNA, as well as RNA, synthesis.
\ •>

This inhibition of DNA shows a peculiarly severe effect in the late 
S phase (Silvestrini, DiMarco & Dasdia, 1970; Theologides, Yarbro & 
Kennedy, 1968). Also, of the two types of RNA studied, in one case 
nucleolar RNA synthesis was found to be much more sensitive than 
extranuclear RNA and some reports (Evans, Lindstead, Rhodes &
Wilkies, 1973) provide evidence of high sensitivity of a particular 
fraction of mitochondrial RNA. Detailed studies have shown that the 
inhibition of the two types of nucleic acids results from the inhibi
tion of DNA polymerase and DNA-dependent RNA polymerase (DiMarco et 
al., 1975). The inhibition of nucleic acid synthesis by anthra
cyclines in tissue culture experiments may be similar to inhibition 
of DNA synthesis reported for proliferating cells of different organs 
in mice given ADM intravenously (Zedeck, Formelli, Sternberg & 
Philips, 1976). Both DNM and ADM have, in addition, been reported to 
inhibit DNA polymerase in mutant and wild type T4 bacteriophage 
(Goodman, Bessman & Bachur, 1974). But, when compared with DNA poly
merase of wild type phage, antimutator enzymes were inhibited to a 
far greater extent than the mutator enzymes. The stronger inhibition 
of viral DNA polymerase than of cellular DNA polymerase has been sug
gested to result from interaction of anthracyclines with the primer 
template-DNA (Zunino, Gambetta, DiMarco, Zaccara & Luoni, 1975).

The studies dealing with shifts in relative frequencies of 
aberrations of different types suggest that Ĝ  chromosomes may be the
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target of ADM action. This does not imply that post Gj chromosomes 
are not affected by the drug. In fact, S phase appears to be more 
vulnerable to the action of ADM (Hittleman & Rao, 1975). Chromosome 
aberrations have also been reported by Sinkus (1972) to appear after 
treatment of Gg population of cells. This has been additionally 
demonstrated by Hittleman and Rao (1975) who used the premature chro
mosome condensation (PCC) technique. It is interesting to note that 
contrary to the results obtained with x-rays and phleomycin, mitotic 
G2  cells exhibited higher frequencies of exchanges than those 
observed in PCC cells treated with ADM. The S cells are much more 
sensitive than G2  cells to ADM induced breaks but the ADM induced 
prolongation of G2  phase is about three times greater than that of 
S phase (Hittleman & Rao, 1975), an observation contradicted by some 
other studies (Krishan & Frei, 1976).

Observations of experimental tumor systems have shown that ADM 
promptly inhibits DNA and RNA synthesis and to a lesser extent pro
tein synthesis (Kim & Kim, 1972; Zunino et al., 1975). The inter
action of ADM with the DNA of the chromosomes induces initial lesions 
in the DNA that precipitate visible structural changes in the chro
mosomes at metaphase. First, the initial lesions induced along the 
DNA of the chromosomes by ADM may fail to repair. Thus, the affected 
chromosomes may show discontinuous strands that are released as frag
ments at metaphase. Second, terminal or end point breaks may become 
involved in exchanges between chromosomes. A paucity of exchanges 
were observed as compared with breaks. Similar phenomena were 
observed in ADM treated human fibroblasts. Since exchanges were
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rare, it is reasonable to infer that S cells are blocked in their 
progression through the cell cycle. Newsome and Singh (1977) con
cluded that since chromatid breaks predominated in cells harvested 5 
and 24 hours posttreatment, it is plausible to suggest that ADM 
induced chromosomal aberrations and DNA inhibition are not causally 
related. Based solely on cytologic evidence, and S cells appear 
to be more sensitive to ADM.

ADM binds tightly to DNA and so interferes with many DNA-related 
functions such as DNA replication and RNA synthesis (Crooke & Reich, 
1980; fyers, 1982). It has been shown that, when linked to agarose 
beads, ADM can exert its cytotoxic effect without entering cells 
(Tritton & Lee, 1982). ADM can also be reduced to a semiquinone rad
ical that damages macromolecules such as DNA and cell membranes.
Whether this damage is related to toxic side effects, such as cardiac 
toxicity or to the antitumor effect, has not been established. Many 
intercalative antitumor drugs, including ADM, induce protein-linked 
DNA breaks in cultured mammalian cells by a mechanism that is probably 
independent of radical formation. The nonintercalative antitumor 
drugs VP-16 and VM-26 also induce protein-linked DNA breaks (Wozniak 
& Ross, 1983).

To test whether protein-linked DNA breaks induced by ADM and 
other antitumor drugs also involve mammalian DNA topoisomerase II,
Tewey, Rowe, Yang, Halligan and Liu (1984) conducted in vitro studies 
using purified calf thymus DNA topoisomerase II. Two interesting 
features of topoisomerase II-mediated cleavage were noted.

1. At higher concentrations of intercalators, DNA cleavage
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was actually Inhibited. ADM (0.01 jig/ml) was one of the most potent 
drugs In stimulating topoisomerase II-medlated DNA cleavage at low 
concentrations. At doses of more than 0.25 jig/ml of ADM, topo
isomerase II-medlated DNA cleavage was not observed.

2. Although antitumor anthracyclines (ADM, DNM, & IDR) stim
ulated cleavage at similar sites, antitumor drugs of different 
chemical classes showed strikingly different cleavage patterns.

Several pieces of evidence Indicated that DNA double-strand breaks, 
Induced in vitro by topoisomerase II and anthracydine antitumor 
drugs, are protein-linked. For example, In the absence of DNA topo
isomerase II, anthracyclines alone did not produce any DNA double
strand breaks. On the basis of the known properties of mammalian 
DNA topoisomerase II, Tewey et al. (1984) favor the hypothesis that, 
like m-AMSA, ellipticines, and epipodophyllotoxins, these anthra- 
cycline antitumor drugs affect the breakage-reunion of DNA topo
isomerase II by stabilizing the cleavage complex formed between 
topoisomerase II and DNA (Nelson, Tewey & Liu, 1984).

To investigate the effect of ADM on the catalytic activity of 
mammalian DNA topoisomerase II, Tewey et al. (1984) monitored the 
strand-passing activity of mammalian DNA topoisomerase II. Like 
ellipticine, ADM strongly inhibited the unknotting activity of calf 
thymus DNA topoisomerase II in the P4 unknotting assay. Thus, it 
seems possible that the inhibition of activity by intercalative 
antitumor drugs may result from both drug stabilization of the 
cleavage complex and drug intercalation into DNA. Intercalation 
may block the binding of topoisomerase II to DNA and thus inhibit
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the strand-passing activity. This interpretation is also consistent 
with the observations that, at higher concentrations of lntercalative 
antitumor drugs, DNA cleavage was actually inhibited (Tewey et al., 
1984). Tewey et al. (1984) results are consistent with the earlier 
reports that the antitumor activity is closely related to drug 
stabilization of the cleavable complex rather than to drug inhibi
tion of the enzymatic activity of mammalian DNA topoisomerase II 
(Nelson et al., 1984). Nalidixic acid selectively kills growing 
bacterial cells presumably by a mechanism related to its specific 
, stabilization of the gyrase-DNA complex (Gellert, 1981). Many 
potent antitumor drugs affect the breakage-reunion reaction of 
mammalian DNA topoisomerase II by stabilizing the cleavable complex. 
Whether this unusual DNA damage is related to drug-induced cyto
toxicity, sister chromatid exchange, or chromosomal aberration is 
still not clear. Tewey et al. (1984) studies suggest a possible 
role of topoisomerase II in the action of these antitumor drugs.

Mitomycin C (MMC)

MMC is a chemically reactive antibiotic derived from streptomy- 
ces caespitosus (Fig. 2). The drug selectively inhibits DNA syn
thesis (Ben-Porat, Reissig & Kaplan, 1961; Iijima & Hagiwara, 1960; 
Shlba et al., 1959) and degrades cellular DNA but does not affect 
the synthesis of RNA or protein (Reich & Franklin, 1961). MMC 
induces bacteriophage production in lysogenic bacteria (Levine,
1961), increases the rate of genetic recombination among mutant 
forms of E. Coli and possesses antitumor activity (Iijima & Hagiwara,
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1960). In tissue culture systems, MMC Inhibits mitosis, reduces 
cell viability and produces nuclear disorganization and giant cells 
(Kuroda & Furuyoma, 1963).

NH

Figure 2. Structure of Mitomycin C

The effects of MMC on the cell-cycle traverse have been varied, 
and contradictory results have appeared from various laboratories.
In general, the cells can be affected both in the S-phase and out of 
S-phase. There are reports of the Hela cells showing high sensitiv
ity to MMC in the latter half of Gj and the first half of S-phase 
(Doi, Taki, Aoki, Higashi & Kosaka, 1967) as well as the findings 
that MMC is generally more toxic to non-S cells than to the cells in 
the S-phase (Djordjevic & Kim, 1968). On the colony forming units 
of mouse bone marrow, the antibiotic appears to have more pronounced 
lethal effects on the S-phase than in the phase, and the latter
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is not significantly less sensitive than is the 60 phase. As an 
additional example of inconsistency, Stein and Rothstein (1968) 
have reported that the drug inhibits mitosis by reducing RNA syn
thesis in the G2  phase. Thus, it appears difficult to present a 
generalization of specificity of action of MMC on the cell cycle 
traverse.

Effects on Chromosomes

Chromosome studies using MMC were first carried out by Merz 
(1961) on the root-tip chromosomes of Vicia faba. In treatments last
ing only for one hour with 0.001% solution of antibiotic, he observed 
chromosome aberrations including gaps, chromatid exchanges and dele
tions. The effect of MMC is delayed; rejoining occurs, and aberration 
frequency is not affected by anoxia or changes in pH and temperature 
(Cohen & Hirschhora, 1971; Kihlman, 1960; Merz, 1961). Treatment of 
human leukocytes in GO, Gj- or S-phase has also been known to produce 
chromatid aberrations (Nowell, 1964). The cells treated during GO or 
G2  are not inhibited in their development to the first mitosis, though 
inhibition is observed for cells in Ĝ  or S at the time of treatment. 
Chromosome breaking effects of MMC have been attributed to its prop
erty to link complementary DNA strands together by the formation of 
covalent bonds (Iyer & Szybalski, 1963) and results exclusively in the 
production of chromatid-type aberrations. The embryonic fibroblasts 
appear to be much more sensitive than leukocytes from peripheral 

blood (Simard, 1967).
The chromosome aberrations induced by MMC are localized mainly
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in secondary constriction in cultured human leukocytes (Cohen & Shaw, 
1964; German & LaRock, 1969; Mbrad, Jonasson & Lindstan, 1973;
Nowell, 1964; Slnkus, 1969). The breaks are maximal in their fre
quency in secondary constrictions of chromosomes 1, 9 and 16 in man 
(Bourjeols, 1974; Cohen & Shaw, 1964; Morad et al., 1973; Shiraishi 
& Sandberg, 1979). MMC is known to function as an alkylating agent, 
even though the response of MMC treated human cells is different from 
those with ethyl methanesulfonate (Brogger, 1974).

Shiraishi and Sandberg (1979) reported that normal human lym
phocytes, exposed to MMC (0.3 jig/ml) during 48 hours of culture, 
exhibited an average of 58.6 SCE per cell, i.e., about ten times as 
high as the control frequency (4.1 SCE/cell). A large number of 
chromosome aberrations was observed, including exchanges, breaks and 
dicentrics. In another study done by the same group (Shiraishi, 
Minowada & Sandberg, 1979) to compare the effects of MMC on normal 
and abnormal human lymphocytes, the chromosome aberrations observed 
in normal cells were of exchange- and break-type and included chro
matid as well as isochromatid-breaks, with the heterochromatic 
regions of chromosomes being particularly affected. The frequency 
of these exchange configurations increased with MMC concentration.
The number of induced exchanges and breaks observed in normal cells 
were higher after 24 hour treatment with MMC at 0.5 ̂ ig/ml than at 
0.1 jig/vol. Chromosome damage in the normal cells was less marked at 
and below 0.05 jig/nl. As evidenced by the remarkably high reduction 
of viable cells, the neoplastic cell lines appeared to be much more 
sensitive to MMC than were the normal cells. Therefore, there is a
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possibility that cells with chromosome damage (e.g., exchanges) can
not survive at concentrations of MMC higher than 0.05 jig/ml or cannot 
enter into metaphase. This agrees with previous findings that chro
mosome aberrations are associated with a high rate of cell death 
(Shiraishi, Minowada & Sandberg, 1976; Wolfe, Rodin & Cleaver, 1977).

Chromosome aberrations were scored simultaneously with SCG after 
72 and 96 hours of cultivation (Novotna, Goetz & Surkova, 1979). The 
normal human lymphocytes showed a statistically significant increase 
of aberrant cells only after 0.160 jig/ml of MMC that was added after 
24 hours of cultivation. The statistically significant differences 
showed a dependence on the time of cultivation. High doses (0.16 - 
1.0 jig/ml) of mutagen resulted in significantly increased numbers of 
aberrant cells after 96 hours cultivation compared with those found 
after 72 hours. A high percentage of severely damaged mitoses, i.e., 
multiple breakage and rearrangements, was observed.- Chromosome dam
age occurred almost exclusively in the first mitoses.

Miura, Morimoto and Koizumi (1983) reported that in cultures 
exposed to increasing concentrations of MMC, normal lymphocyte cells 
showed a clearly dose-dependent delay in cell turnover times. For 
example, an exposure of cells to 0.03 jig/ml MMC gave a distribution 
of 10% XI (first division), 20% X2, and 70% X3 cells. Chromosomal 
aberrations were examined separately in XI, X2, and X3 metaphase 
cells. It was noted that chromosomal aberration frequencies decreased 
with successive divisions by about 60% in normal cell cultures. This 
reduction has been shown by others (Carrano & Heddle, 1973; Conger,
1965; Sasaki & Norman, 1967) to be 50% through subsequent mitoses.
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Another effect of MMC and other related agents is attenuations 

(Brogger, 1974a, b; Cohen & Shaw, 1964; Hoehn & Martin, 1972), or 
even Induction (Brown, Palmer & Yu, 1972), of secondary constric
tions. In man, the paracentromeric area In chromosome 9 Is the mo3t 
sensitive area and the effect might be due to the presence of a par
ticular type of satellite DNA present in this region (Arrighi & Hsu, 
1971). Even though marked aberrations in the morphology of constric
tions have been observed in treated materials, a total lack of these 
in some chromosomes appear to be incompatible with the life of the 
cell (Hoehn & Martin, 1972). Perhaps, the suggestion that longer 
viability of MMC induced micronuclei in Vicia than that induced by 
radiation is due to higher amounts of heterochromatin (Arora, Shah 
& Rao, 1969). This may be interpreted in terms of this function of 
heterochromatin.

One striking effect of MMC is the induction of chromatid 
exchanges involving homologues at corresponding points. In one study 
as many as 50% of all exchanges produced were of this type (Shaw & 
Cohen, 1965). Such cross-configurations have been observed in treated 
human leukocytes (German & LaRock, 1969; Nowell, 1964; Shaw & Cohen, 
1965; Shiraishi et al., 1979; Shiraishi & Sandberg, 1979) and are 
reminicent of chromosome configurations considered responsible for 
producing meiotic recombination. German and LaRock (1969) observed 
such exchanges in human blood cells and suggested these as evidence 
of possible somatic crossing over in mammalian cells. Generally, 
quadriradial configurations in the treated cells utilize the parts of 
chromosome containing repetitive DNA possibly associated with
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secondary constrictions and hence late replicating regions of chro
mosomes (German, 1964). Models for the induction of chromosome 
aberrations by MMC have been proposed that explain the origin of 
quadriradlals in the areas of repetitive DNA (Brogger & Johansen, 
1972; Comings, 1975) but production of free fragments in other 
regions also (Brogger & Johansen, 1972). These views challenge the 
traditional concepts, like those formulated by the study of homo/ 
hetero ratio of MMC induced exchanges in Vicia (Reiger, Michaelis, 
Schubert & Meister, 1973). The somatic chromosomes in interphase 
are paired together, and the fusion tendency of heterochromatin 
(Natarajan, Ahnstrom & Sharma, 1974) perhaps is the only factor 
contributing to the production of complementary exchanges.

Position of Chromosomal Breaks

MMC, a bifunctional alkylating agent, is known to effectively 
induce nonrandom chromosome aberrations and SCE in normal human 
lymphocytes (Brogger & Johansen, 1972; Cohen & Shaw, 1964; Morad 
et al., 1973; Nowell, 1964). The majority of the former are involved 
preferentially in the constitutive heterochromatin of homologous 
chromosomes, especially in the secondary constriction regions of 
chromosomes number 1, 9, 16. This may be a result of the association 
of these chromosome regions during interphase, either through somatic 
pairing (Rao & Natarajan, 1967) or a unique "gathering" effect of 
MMC (Kobayashi, 1960). Aberrations are not always found in all het- 
erochromatic areas. For example in man, all centromeric regions with 
constitutive heterochromatin are not particularly affected by MMC in
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chromosomes other than 1, 9 and 16 (Brogger & Johansen, 1972). And, 
heterochromatic segments from chromosomes numbers 1 and 9 have been 
found to be translocated by MMC In the parts of the genome devoid of 
any heterochromatin (Hoehn & Martin, 1973). Also there Is no evidence 
of Involvement of telomeric regions of chromosomes that may contain 
repetitive DNA (Bourjeois, 1974).

The availability of both facultative and constitutive heterochro
matin in the same cell has been exploited by Natarajan and Schmid 
(1971) in differentiating the effect of MMC on two types of hetero
chromatin. Chinese hamster cells offer this possibility with the 
added advantage that the short arm of the inactivated (lyonized) X 
chromosome in the female cells is facultatively heterochromatic 
whereas the long arm is constitutively heterochromatic. The exper
iments convincingly demonstrated that the effect of MMC is related to 
the structural rather than functional properties of heterochromatin. 
Interestingly, however, the long arm of inactivated X was affected 
much more frequently than the long arm of the active X.

Distribution of chromosome aberration sites has also been found 
to be related to the banding patterns. Thus, Morad et al. (1973) 
found that interchanges are overrepresented in the C-bands of hom- 
ologues in quinacrine mustard banded preparations. As expected, the 
secondary constriction areas of chromosome 1, 9 and 16 were most often 
involved. However, the breaks were preferentially localized in the 
regions of R-bands. Studies carried out by Rieger, Michaelis,
Schubert, Doebel and Janak (1975) using Vicia faba have indicated 
that clustering of aberrations occur within or adjacent to G-bands
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and that MMC induced exchanges and chromatid deletions do not share 
the "hot spots" to a similar extent. Sinkus (1969) and Funes- 
Cravioto, Yakovienko, Kuleshov and Zhurkov (1974) have analyzed, 
segment wise, the distribution of chromatid aberrations in man. 
Generally, segment 3 on chromosome 1 and 3 on C (apparently No. 9) 
are among the best responding, and segments 2 on chromosome 1, 3 on 
chromosome 3, 4 on B, 4 on C, and 1 on G, are some of the least.
However, no segment of any chromosome or group was totally unaffected. 
The distribution of MMC induced aberrations in cells differ from what 
is expected from poison distribution and confines more closely to 
geometric pattern (Bochkov, 1972). In human cells, this pattern has 
been found to be independent of the stage of cell cycle and the time 
of fixation (Bochkov, 1972).

Among 200 human lymphocyte cells observed (Shiraishi et al.,
1979) at 0.5 jig/ml MMC, 101 cells (about 50%) had exchange configura
tions. Sixty percent of the figures occurred between homologs or 
apparent homologs and the majority of exchanges at the secondary 
constrictions of chromosomes number 1, 9 and 16 or in the so-called 
C-bands. Fifty percent of the exchange figures Included chromosomes 
possessing secondary constrictions (No. 1, 19%; No. 9, 25%; No. 16,
6%). A large number of homologous chromatid exchanges were also 
observed in the centromeric heterochromatin segments of chromosomes 
number 1, 9 and 16. This agrees with the findings of other reports 
(Brogger & Johansen, 1972; Cohen & Shaw, 1964; Morad et al., 1973; 
Nowell, 1964).

Vogel and Schroeder (1974) have suggested that such nonrandomness
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may reflect a spatial or temporal organization of chromosomes during 
Interphase. Schaap, Sagl and Cohen (1980) investigated MMC-lnduced 
rearrangements to study the spatial vs. temporal hypothesis. The 
lack of a positive relationship between the frequency of aberrations 
and the measured length of chromosomal segments at metaphase has 
been repeatedly demonstrated (Aurias, Prieur, Dutrillaux & Lejune, 
1978; Mattel, Ayme, Mattel, Aurran & Giraud, 1979; Mitelman & Levan, 
1978; Nakagome & Chiyo, 1976; Sagi, Cohen & Schaap, 1978; Vogel & 
Schroeder, 1974; Yu, Borgaonkar & Boiling, 1978). Therefore, the 
conventional method of calculating expected frequencies of chromoso
mal rearrangements from measured lengths at metaphase was not 
employed in Schaap et al. (1980) study. Instead, the expected fre
quency of rearrangements between two given chromosomal regions was 
based on the total number of rearrangements involving each of the 
given regions.

In approximately 1400 metaphases analyzed (Schaap et al., 1980), 
613 open breaks and 353 rearrangement configurations were observed. 
The latter were scored twice, once for each partner, thus yielding 
a total of 706 rearrangements. Even though the aberration could be 
unequivocally assigned to specific bands, their total number in most 
chromosomal regions was too small to make such assignment meaning
ful. Therefore, assignments to specific bands was practiced only 
for aberrations occurring at highly breakable regions (e.g., the 
centromeric regions, including the secondary constriction of chro
mosomes 1, 9 and 16 and the centromeric region of 5). The remain
ing aberrations were assigned to chromosome arms (lp, lq, 16p, and
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16q) or to entire chromosomes.
The centromeric regions, including the secondary constrictions 

of chromosomes 9 (9C), 1 (1C), and 16 (16C), with 193, 139 and 47 
rearrangements respectively, were most often involved in rearrange
ments. Chromosomes 19 and 17 followed, with 28 and 27 rearrange
ments, respectively. These five highly "rearrangeable" regions were 
involved in 67% (474/706) of the scored rearrangements. A pro
nounced "preference" for rearrangements between homologous regions 
was apparent for all but the rarely rearranging (rr) regions. The 
latter "preferred" members of their own group, barring homologs, or 
acrocentric chromosomes, and strongly "avoid" rearrangements with 
the 1C and 9C regions. The acrocentric chromosomes "preferred" mem
bers of their own group, including homologs, and "avoided" region 9C. 
The combinations 1C X 17, 9C X 17, and 9C X 19 were rare than 
expected (Schaap et al., 1980). Weaker trends of "avoidance" and 
"preference" were apparent from comparisons of the observed and 
expected numbers of rearrangements. Thus, both 1C and 9C seem to 
"avoid" chromosomes 2 and 6, whereas rearrangements between homologs 
seem to be "favored" by 5C, 6, and 20. However, these numbers of 
rearrangements are too small to draw any firm conclusions.

Schaap et al. (1980) calculated the correlation coefficient for 
all chromosomes and regions except 9C and 1C and found not to differ 
significantly from zero (r ■ 0.28; 27 df). Hence, the probability 
of an open break seems to be independent of that for a rearrangement 
in the same region. This low correlation may be due to heterogene
ity in the analyzed group. They concluded that "the obvious lack of
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correlation between open breaks and rearrangements Indicates that 
the three possible outcomes of a chromosomal break (open break, res
titution, and rearrangement) have different probabilities In dif
ferent chromosomal regions (p. 247)." Some observations of this 
study contradict several previous results. For example, Bourgeois 
(1974) suggests that exchanges between the acrocentric chromosomes 
and 1, 9 and 16 are more frequent than expected. Schaap et al.
(1980) data demonstrated that rearrangements between the acrocentrics 
and 9C are certainly less frequent than expected, rearrangements 
between the acrocentrics and 16C probably occur less often than 
expected, and rearrangements between the acrocentrics and 1C surely 
do not occur more often than expected. These contradictions may stem, 
however, from Schaap et al. (1980) method of calculating expected 
exchange frequencies. Schaap et al. (1980) beleive that the concept 
of a predesignated spatial organization of interphase chromosomes as 
underlying the pattern of "choosing" partners for rearrangements can 
hardly account for some of their results. An exceptionally complex 
topological model is necessary to explain the observation that rarely 
rearranging (rr) chromosomes do not "prefer" their homologs as part
ners, in view of the pronounced homolog "preference" displayed by 
all other analyzable chromosomal regions. Therefore, a temporal 
model provides a more plausible explanation for the "preference" and 
"avoidance" of specific partners, as well as the different rates of 
Involvement in rearrangements. Any structural differentiation deter
mining the specific pattern of availability and choice of partners 
for rearrangements may also underlie the pattern of open break:
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rearrangement ratios.

Mechanism of Action

The selective action of the antibiotic MMC on DNA, together with 
its reported antineoplastic, mutagenic and phage-inducing activities 
(Otsuji, 1962; Reich & Tatum, 1960; Shiba et al., 1959), have stim
ulated several investigations on the mechanism of its action. The 
preferential inhibition of the bacterial DNA synthesis by MMC, accom
panied by progressive and extensive breakdown of the DNA, indicated 
that DNA is the principal target. However, the rapidity of MMC- 
induced "death" seemed to be "out of step" with the relatively much 
slower process of DNA breakdown. This suggested that the effects 
observed might be secondary to an earlier action of the antibiotic 
on DNA.

Several models for the mechanism of MMC activity have been sug
gested. Reich and Tatum (1960) proposed that MMC acts through the 
splitting of the DNA strands, thereby preventing replication. This 
implies that the template competence of the DNA is destroyed (Reich 
& Franklin, 1961). The depolymerization of DNA and the accumulation 
of acid-soluble fragments implicates the DNA polymerase system as a 
possible target of MMC activity (Reich, 1961). Iyer and Szybalski 
(1963) suggested that the primary action of MMC is the "cross-linking" 
of the complementary strands of the DNA molecule and that the deg
radation of DNA may be of a secondary nature.

After uptake and enzymatic reduction of MMC (Iyer & Szybalski,
1964) the substance reacts with DNA by alkylation, either
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monofunctionally so that one mitomycin residue attaches to a single 
base, or bifunctionally, cross-linking the two strands in the DNA 
(Iyer & Szybalski, 1963; Weissbach & Lisio, 1965). It Is not known 
whether the whole MMC molecule is involved in the final reaction 
product. If the MMC-DNA complex is left unrepaired, it may Inhibit 
DNA and RNA functions so that the cell never enters mitosis. If 
the chromosomes are replicated and the cell divides, the damage may 
be invisible at the level of the metaphase chromosome, or it may 
interfere with the packing of DNA into a metaphase chromosome 
resulting in an attenuation, constriction or gap. Brogger (1971) 
considered such aberrations to be packing or folding changes.

The existence of cross-links, a phenomenon of genetic signif
icance, was demonstrated by heating the DNA to 100 °C in the presence 
of MMC and then rapidly cooling to 0 °C. The MMC treated cells 

"retained" their double stranded form in contrast to the single 
strandedness of the untreated cells. The cross-linking can, however, 
be achieved only after apparent reduction of the molecule of MMC to 
its hydroquinone derivative through the mediation of an NADPH-depend- 
ent quinone-reductase (Samuels, 1964). This reduction has also been 
found to be necessary for DNA cross-linking in vitro, since nothing 
happens when MMC is added to purified DNA and allowed to react for 
as long as one to two hours (Waring, 1968). The cross-linking prop
erty is a peculiarity of the MMC molecule, and derivatives decar- 
bamoyl MMC and 7-methoxymitosene do not evidence this phenomenon in 
spite of their action in producing single strand DNA breaks (Otsuji 
& Murayama, 1972). The cross-linking efficiency of MMC depends on
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the presence or absence of proteins associated with DNA. In human 
tissue, about a third of the DNA shows such cross-linking with the 
addition of large amounts of the antibiotic (Szybalski, 1964). This 
is far less than in bacterial DNA that has no associated proteins 
and can have as high as 100% of its molecule altered (Haring, 1968) 
in spite of the fact that only 10-20% of all MMC is associated with 
DNA to form cross-links (Szybalski & Iyer, 1964).

The binding of MMC to DNA affects the physical properties of 
the latter, viz., UV hypochromicity, specific transforming activity 
and buoyant density. However, reassociation of complementary nucleo
tide chains under appropriate conditions suggests the existence of 
some sort of covalent bonding. It has been shown that the antibiotic 
molecule becomes bound to two neighboring sites on opposite DNA 
strands. This interpretation has helped to explain most of the data 
of biological significance obtained with MMC; even though the ques
tion of MMC binding at the G-C moiety (Goldberg, Rabinovitz & Reich, 

1962) is still a matter of debate.
The formation of cross-links appears to be positively related to 

cell killing. It has been advocated that the difficulty experienced 
in the separation of sister strands of DNA during replication is the 
cause of lethal action of MMC. This would mean that a single cross
link in some cells may lead to the death of the cell (Szybalski & 
Iyer, 1964) especially in akaryotes. In early studies (Kersten, 
Kersten, Leopold & Schneider, 1964) it was suggested that MMC, by 
acting on RNA, may liberate an RNA-bound DNAase, supporting the 
observation that DNA is rapidly degraded in bacteria and tumor cells

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



treated with the antibiotic (Reich, 1963). Thus, DNAase in MMC- 
induced degradation of DNA was suggested to be released by the 
action of MMC on ribosomes (Kersten et al., 1964; Welssbach & Lisio,
1965). The concept that cell death after MMC treatment may not 
necessarily result from cross-linking of DNA, has also been sup
ported by the finding that most of MMC residues attack single bases 
of DNA through monofunctional alkylation (Welssbach & Lisio, 1965).

Several studies have suggested that the effects of MMC are gen
erally, although not always, similar to those produced by ultraviolet 
radiation. As a matter of fact, cell resistance to MMC are cross 
resistant to UV (Otsuji & Murayama, 1972). Also, cells from patients 
with Fanconi's anemia show enhanced sensitivity to MMC (Miura et al., 
1983; Novotna et al., 1979) and UV but not 8-rays or ethyl methane- 
sulfonate (Finkelberg, Thompson & Siminovitch, 1974). This suggests 
that the enzymatic background for inducing cross-links in these cells 
may be similarly affected by UV and MMC.

According to Kihlman (1977), chromosome breaking agents can be 
classified operationally into "S-dependent" agents, like UV and 
alkylating agents and "S-independent" agents like x-rays and bleo
mycin. The S-independent agents produce chromosomal aberrations 
independently of chromosome and semiconservative DNA replication, 
whereas the S-dependent agents produce lesions that must be rep
licated in order to give rise to chromosomal aberrations. Evans and 
Scott (1969) suggested that chromosomal aberrations involved a mis- 
repair process if induced by S-independent agents and a misreplica- 
tion process if induced by S-dependent agents. Recently another
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hypothesis has been suggested by Kihlman, Hanson, Falitti, Andersson 
and Hartly-Asp (1982): namely, the damage produced by S-dependent
agents has to be replicated before mistakes in connection with a 
repair process occur and this process takes place in Gj giving rise 
to chromatid-type of aberrations. Falitti et al. (1983) recent 
results have confirmed the existence of unrepaired lesions in DNA of 
mutagen-treated cells that persist until the cells enter mitosis and 
that the repair of these lesions can be inhibited effectively at 
this stage. Palitti, Tanzarella, Degrassi, DeSalvia and Fiore (1984) 
believe that at least three processes are relevant in the formation 
of chromatid type of aberrations, operating in G2» These include 
(a) DNA repair, (b) replicative DNA synthesis, and (c) chromatin 
condensation.

Palitti et al. (1984) data showed that both Chinese hamster 
cells and human lymphocytes, treated only with inhibitors together 
with colchicine, did not respond with increased frequencies of chro
matid aberrations or SCE over the controls. With MMC-treated hamster 
cells, after a G2 posttreatment with the three inhibitors (HU, 3AB, 
Caffeine) there was an increased frequency of both chromatid aberra
tions and SCE. The MMC-treated human lymphocyte cultures showed an 
increased frequency of both chromatid type of aberrations and SCE 
after a G2 posttreatment with caffeine or APC, whereas only a Alight 
increase follows the posttreatment with HU. These data confirmed 
Palitti et al. (1983) results and demonstrated that if, after a G2 
posttreatment with replication or repair inhibitors, there is an 
increase in the frequency of chromosomal aberrations, there is also
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a potentiation of SCE frequency. MMC-induced SCE and chromatid 
aberrations are enhanced.

As can be seen in EM section of the literature review, there 
are very few techniques in the area of whole mount electron micros
copy of chromosome. These techniques are difficult to reproduce and 
they are not rapid. The greatest disadvantage of them is that they 
are not suitable for study of the whole chromosome complement in a 
cell. Therefore, these techniques, as human cytogenetics is con
cerned, can not be used in study of chromosomal aberrations in human 
or other mammalian cells in culture. So, there is a need for devel
opment of a technique that allows the study of chromosomal aberra
tions at both LM and EM level. As noticed in the induction of chro
mosome aberrations section of the literature review, no evidence was 
found of any study in this area at transmission EM level. Almost all 
the works are at LM level of resolution. Again, there is a need to 
do such study at EM and show if the developed technique can be used 
in this area. It is also important to compare the chromosomal aberra
tions induced by the drugs at LM and EM levels to determine any 
advantage of EM.
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CHAPTER III

MATERIALS AND METHODS 

Blood Collection

Blood was collected by venipuncture Into five ml evacuated blood 
collection tubes (B-D vacutalner obtained from Becton Dickinson, 
Rutherford, NJ) from three normal and healthy Individuals. Each tube 
was coated with 100 USP units of sodium heparin by the manufacturer. 
The blood was used the day of collection to prepare cultures.

F-H Gradient Medium

9.2% ficoll (Pharmacia Fine Chemicals, Uppsala, Sweden) solution 
was prepared with distilled water find sterilized by autoclaving at 
121 °C for 15 minutes. 43.4 ml of above solution was mixed with 6.6 
ml of hypaque-M (75% brand of sodium and meglumine diatrizoates, 
Winthrop Laboratories, New York, NY) and shaken vigorously. This 
F-H gradient medium was stored at 4 °C.

Cell Culture Medium

The culture medium was RPMI-1640 with added L-glutamine (Flow 
Laboratories, McLean, VA). To culture human lymphocytes, the medium 
was prepared as follows:
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RPMI-1640
Glass distilled water
PHA (from Phaseolus vulgaris)

(Sigma Chemical Co., St. Louis, MO)
HEPES buffer

(Flow Laboratories, McLean, VA)
7.5% Sodium Bicarbonate
Fetal Bovine Serum

(Hyclone Laboratories, Logan, UT)
Antibiotics: Gentamycine Sulfate

(United States Biochemical Cocp.,
Cleveland, OH)
Nystatin (mycostatin)
(U.S. Biochemical Corp.)

After thorough mixing the medium was filtered through a 0.20 jm met-
ricel membrane (Gelman Instrument Co., Ann Arbor, MI) and stored at
4 °C.

ADM and MMC Solutions

One mg of ADM (Doxorubicin HCl: Distributed by Adria Laborato
ries, Wilmington, DE; manufactured by Farmitalia, S.P.A., Italy) was 
dissolved in 100 ml of glass distilled water to give a final con
centration of 10 jig ADM/ml. The ADM solution was agitated thoroughly 
and filtered through 0.20 jim metrical membrane (Gelman Instrument 
Co.). Two mg of MMC (Sigma Chemical Co., St. Louis, MO) was dissolved 
in 100 ml of glass distilled water to obtain a final concentration of 
20 jig/ml. The rest of the procedure was same as for ADM. Both solu

tions were kept in the dark at 4 °C.

10.38 grams (gr)
858.7 ml

5 milligrams (mg)

2.5 gr
26.7 ml

100 ml

1 ml (25000 mg/ml 

1 ml (25000 IU/ml)
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Lymphocytes Separation

Two ml of F-H gradient medium was transferred to each of three 
dilution tubes (Falcon Plastic, Oxnard, CA) under the laminar flow 
hood (Labconco, Ann Arbor, MI). Five ml of blood was slowly layered 
on top of the gradient. The mixture was centrifuged at 400 g for 30 
minutes at room temperature. The band containing the lymphocytes was 
collected and transferred into dilution tubes. Cells were washed in 
two ml of RPMI-1640 medium and centrifuged at 400 g for 15 minutes at 
room temperature. The supernatant was removed except for 0.5 ml, 
into which cells were resuspended. Four cultures were prepared from 
each blood sample and were started in tubes (Polystyrene, from Corning 
Glass Works, Elmira, NY) containing five ml media. All cultures were 
incubated at 37 °C for 72 hours.

Administration of Drugs

After 48 hours of incubation the 12 cultures were randomly 
divided into three groups, namely, ADM, MMC, and control. The time 
of administration and drug concentration were determined by a series 
of pilot experiments. In one series, 0.1 ml of working ADM solution 
(1 jig/ml) was added to each of the four cultures to give a final 
concentration of ADM at 0.02 jig/ml; in another 0.1 ml of working MMC 
solution (15 jig/ml) was added to each of the four cultures for a final 
concentration of 0.3 jig/ml, and each of four control cultures received 
0.1 ml sterile glass distilled water. All cultures were immediately 
returned to the 37 °C incubator.
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Chromosome Preparation

After 70 hours of incubation, all cultures were treated with 
colcemide (Demecoline, Sigma Chemical Co.) at final concentration of 
0.2 jig/ml. The cultures were then reincubated for two hours. At the 
end of colcemide treatment, the cultures were agitated gently and 
centrifuged for three minutes at 250 g. The supernatant fluid was 
withdrawn leaving the cell pellet and 0.5 ml media. The cells were 
resuspended and four ml of 0.075M KC1 added, gently shaken, and held 
at room temperature. After 30 minutes, all tubes were centrifuged at 
250 g for three minutes. The supernatant fluids were drawn off leav
ing about 0.5 ml on top of the cell pellet. The cells were resus
pended and four ml fresh fixative (3 parts ethanol: 1 part glacial 
acetic acid) was added dropwise. After 20 minutes, all tubes were 
centrifuged at 250 g for three minutes. The supernatant fluids were 
drawn off and last step was repeated two more times, using freshly 
made fixative each time. After the last sedimentation and removal 
of the supernatant fluids, the contents of four tubes of each group 
were suspended and mixed to produce one rich cell suspension.

Slide Preparation

Standard microscope slides were cleaned with acetone and ethanol, 
wiped with Kimwipe and air-dried. Each slide was dipped into a 0.5% 
solution of formvar (Ernest F. Fullman, Inc., Schenectady, NY) in 
ethylene dichloride. The dipped slide was removed quickly and sus
pended for 20 seconds in a wide-mouthed jar with an atmosphere
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saturated with ethylene dichloride. The slides were then removed 
and air-dried.

Preparation of Chromosomes for EM and LM

The fixed suspension of lymphocytes were applied dropwise to 
plastic filmed slides that were previously chilled in 4 °C 70% ethanol. 
The slides were stood at a 45° angle to allow the excess fixative to 
drain off. They were then air-dried at room temperature. Six slides 
were made from each group and the quality of chromosome spreads 
checked using phase microscopy. The slides were then randomly coded 
from one to 18 by a second party. The film on each slide was scored 
using the edge of a standard microscope slide. Each of the 18 slides 
were transferred individually to petri dishes and 30 ml of a 0.15%
(V/V) hydrofluoric acid solution with distilled water were poured 
into the dish. The film was pulled off the slide by a sharp end 
forceps, and was then positioned so that the chromosome spreads were 
facing the fluid. The film was picked up on a wet slide and checked 
under phase microscope. Where good chromosome spreads were located a 
50 mesh copper grid (Ernest F. Fullman, Inc.) was positioned on the 
film. The film with positioned grids was floated on the surface of 
glass distilled water. The film with grids and chromosome spreads 
was picked up by nonwetable cardboard and air-dried. This procedure 
was repeated until all of the usable pieces were recovered. Each 
piece of cardboard was numbered according to the code on the slide 
and stored in dry and dust free containers. The grids were later 
separated from the cardboard and checked under low power phase
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microscopy (40x) for quality and position of chromosome spreads. From 
each group grids were randomly selected that had 20 to 25 chromosome 
spreads. One hundred chromosome spreads were expected from each of 
the three groups.

Staining

For LM, chromosomes were stained with solution of one part giemsa 
(Fisher Scientific Co., Fair Lawn, NJ) and 25 parts of glass distilled 
water. Grids were floated on drops of giemsa solution for 10 minutes. 
The grids were then washed with two changes of glass distilled water 
and air-dried.

After light microscopic observation the chromosomes were stained 
for EM with 1% uranyl acetate (Polysciences, Inc., Warrington, PA) in 
glass distilled water. Followed three minutes of stain, the grids 
were rinsed in two changes of cooled freshly boiled glass distilled 
water and air-dried.

LM and EM Photography

The chromosome spreads on each grid were photographed at lOOOx 
magnification (American Optic LM) using Tri-X pan film (Eastman Kodak 
Co., Rochester, NY). Negatives were developed for 15 minutes in a 
solution of one part microdol-X (Eastman Kodak Co.) and three parts 
distilled water. They were washed in distilled water for five minutes, 
fixed for eight minutes in Kodak fixer, and washed for 25 minutes in 
running tap water. The film was then dipped in Photo Flow (Eastman 
Kodak Co.). After air-drying the negatives were cut and matched
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according to the code.
The same chromosome spreads were photographed with Siemens 

transmission EM model 1A at 80 KV and 1600 magnification. A Kodak 
electron microscope film 4489 (Eastman Kodak Co.) was used for this 
purpose. The negatives were developed four minutes in D-19 devel
oper (Eastman Kodak Co.), rinsed for two minutes in running water 
and fixed for six minutes in Kodak fixer solution. After fixation, 
the negatives were rinsed in running water for 20 minutes and dipped 
in Photo Flow prior to air-drying.

Printing

Both LM and EM negatives were printed on Kodak photographic 
paper (Kodabromide F-3, Eastman Kodak Co.) using a Laborator 138 S, 
Durst (made in Italy) enlarger. Following the correct exposure for 
10 to 20 seconds, the paper was developed in dektol (Eastman Kodak 
Co.), rinsed in stop bath (Eastman Kodak Co.) for two to three min
utes and fixed in Kodak fixer for four to five minutes. The prints 
were then rinsed in running water for one hour, placed in pakosol 
(Pako Corp., Minneapolis, MN) solution for a few minutes, drained 
and dried on a drying drum (Arkay Corp., Milwaukee, US).
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CHAPTER IV

RESULTS AND DISCUSSION 

Data Collection

The sources of data were 589 metaphase cell micrographs that 
were taken with both LM and EM. From this pool of micrographs, 316 
were at LM and 273 at EM levels of resolution. These micrographs 
were subjected to chromosome aberration analysis and were classified 
using standard criteria. Gaps were small achromatic discontinuities 
seen along the length of chromatid or chromosome without disturbing 
the continuity of the chromosome. Isolated fragments (or breaks) 
were of chromatid type if only one of the two chromatids was broken 
or deleted at any one point. Where both chromatids were affected, 
the two sister fragments were classified as one chromosome fragment. 
Exchanges and intrachromosomal reunions were classified as chro
mosome or chromatid type, depending on whether the origin could be 
traced to single-stranded or double-stranded chromosomes. Thus, 
dicentrics were considered as chromosome exchanges (or reunions) 
whereas quadriradials were classified as chromatid exchanges. For 
the analysis of fragments with respect to their points of origin 
along the chromosome, only chromosomes or fragments were used that 
could be definitely identified with a particular chromosome or a 
group of chromosomes. The analyzable fragments were in the vicinity 

of the parent chromosome and their points of origin. The points of
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chromatid breaks were easily recognized because of the intact posi
tion of the sister chromatid. Approximate positions of breaks were 
marked along the lengths of reference lines drawn to represent the 
lengths and positions of centromeres of the chromosomes (or groups) 
in the complement.

After all metaphase cells were classified for chromosome aberra
tions, the codes were broken. The metaphase cells in LM and EM 
levels were pooled into three groups, namely, control, ADM and MMC.
In every group, the data were tabulated in specific classes of aberra
tions.

Statistical Analysis

For statistical analysis of the data double precision Fisher 
exact test for one and two-tailed tests were used. These tests were 
accomplished by using a computer program developed for the IBM-PC by 
Forbes (1985). The results appear on the following pages. Dicen
trics, gaps and quadriradials were not included in the statistical 
analysis due to few numbers. The probability value of 0.05 was 
accepted.

Adriamycin (ADM)

The data for ADM at LM and EM levels of resolution appear in 
Table 1. At LM level, 118 metaphase cells were scored for chro
mosomal aberrations. The aberrant cells were 53 (44.91%) of the 
total. The numbers of chromosome and chromatid fragments (breaks) 
were 62 (52.54%) and 43 (36.44%) respectively. The numbers of
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cells scored for aberrations In control group was 116 from which the 
numbers of aberrant cells, chromosome and chromatid fragments were 
9 (7.75%), 6 (5.17%) and 4 (3.44%) respectively. In the case of 
chromosome fragments, the differences were statistically significant, 
the values for one and two-tailed tests were pi « 0.000 and p2 ■
0.000. The same values for chromatid fragments were pi ■ 0.000 and 
p2 * 0.000 that proved also to be statistically significant. There
fore, the data at LM level showed that ADM may be related to chro
mosome and chromatid breaks. Massimo et al. (1970) reported that 
after treatment of human lymphocytes with 0.05 to 0.1 jig/ml ADM for 
72 hours, 74% of the cells showed "altered mitosis." The differences 
between percentages of aberrant cells In Massimo's and the present 
study is that in the former the percentage is for "altered mitosis." 
Massimo et al. (1970) did not report what percentage of cells had 
chromosome or chromatid aberrations. The other sources of this dif
ference are the ADM concentrations (0.05-0.1 vs. 0.02 ̂ ig/ml) and the 

duration of treatment (72 vs. 24 hours).
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Table 1
Frequency of Chromosome Aberrations Induced in Human 
Lymphocytes by ADM at LM and EM Resolution Levels

Chromosome Aberrations
Resolution

level
Treatment Cells

scored
Aberrant
cells
(%)

Chromosome
fragments

(%)

Chromatid Dicentrics 
fragments 

(%)

Gaps

LM Control 116 9 (7.75%) 6 (5.17%) 4 (3.44%) -

ADM 118 53 (44.91%) 62 (52.54%) 43 (36.44%) ■ -

EM Control 115 26 (22.60%) 13 (11.30%) 30 (26.08%) 3
ADM 93 69 (74.19%) 75 (80.64%) 134 (144.08%) 13

ON
to
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Vig (1971) treated human lymphocytes with 0.02 ̂ ig/ml ADM for the 
last 24 hours of 72 hours of cultivation time. The percentages of 
aberrant cells reported were 83.06% of which 37.06% were chromatid 
exchanges. The high percentage of aberrant cells in his study may 
have been due to chromatid exchanges that were not classified in the 
present study. Excluding the chromatid exchanges, the number of 
aberrant cells in both studies were quite similar. Vig (1971) also 
reported that the numbers of chromosome fragments (breaks) were always 
higher than chromatid fragments. This is in agreement with data in 
the present study.

In another study (Newsome & Singh, 1977) human lymphocytes were 
treated with 0.03 ̂ ig/ml of ADM for one hour between 44-45 or 67-68 
hours of cultivation. The percentages of aberrant cells were 40%- 
52% with few chromosome and chromatid breaks. In this study the 
numbers of chromosome breaks were higher than chromatid breaks. The 
percentage of aberrant cells in Newsome's and Singh's (1977) study 
is in agreement with that for the present study even though in the 
former the chromatid exchanges are included. It should be noticed 
that Newsome and Singh treated the cells for very short period of 
time.

At the EM level, total of 93 metaphase cells were classified 
for aberrations that were treated with ADM. The number of metaphase 
cells with aberrations was 69 (74.19%). The numbers of.chromosome 
and chromatid fragments (breaks) were 75 (80.64%) and 134 (144.08%) 
respectively. In the control group, from total of 115 metaphase 
cells, 26 (22.06%) had aberrations in which there were 13 (11.03%)
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chromosome and 30 (26.08%) chromatid fragments (breaks). The dif
ferences between chromosome fragments in control and ASH groups were 
statistically significant (pi ■ 0.000, p2 ■ 0.000). Also, the dif
ferences in chromatid fragments were statistically significant 
(pi - 0.000, p2 - 0.000).

In comparing the data of LM with that of EM, the differences 
between the chromosome fragments (breaks) induced by ADM (62 and 
75) were statistically significant (pi ■ 0.007A, p2 ■ 0.0119). In 
the same group, the difference between chromatid fragments at LM 
and EM level (43 and 134) was very significant (pi = 0.000, p2 = 
0.000). In control group, the numbers of chromosome fragments at LM 
and EM level were 6 and 13 but the difference was not statistically 
significant (pi = 0.080, p2 = 0.113). However, the difference 
between chromatid fragments at LM and EM level (4 and 30) was statis
tically significant (pi = 0.000, p2 * 0.000). In the ADM group the 
advantage and resolution power of EM over LM are not only clearly 
obvious but are statistically significant. The number of chromatid 
fragments (breaks) induced by ADM, at EM level was more than three
fold greater than that of LM level. The differences between chro
mosome fragments at EM and LM levels in control groups were not sig
nificant. The reason may be that for detection of chromosome frag
ments, the lengths of chromosomes were measured. Therefore, higher 
resolution may not play an important role in length measurements.
Of course, the numbers of chromosome fragments in the control group 
at both level of resolution were quite low. At EM level, it was 
noticed that the numbers of chromatid fragments were higher than
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chromosome fragments in both ADM and control groups. This is 
opposite the data at LM level. Indeed, this may show the advantage 
of EM over LM.

Mitomycin C (MMC)

The results of experiment with MMC at LM and EM levels are pre
sented in Table 2. As can be seen the same control was used for 
both ADM and MMC. At the LM level of resolution, in MMC group, of 
82 metaphase cells that were classified for aberrations, 37 (45.12%) 
were aberrant. In these cells 19 (23.17%) chromosome fragments, 50 
(60.97%) chromatid fragments and three quadriradials were observed. 
The differences between the numbers of chromosome fragments in con
trol and MMC groups (6 vs. 19) were statistically significant 
(pi = 0.000, p2 = 0.000). The values for chromatid fragments were 
also statistically different (pi ■ 0.000, p2 * 0.000). Therefore, 
the data at LM level showed that MMC may be related to chromosome 
aberrations in human lymphocytes. It was also noticed that most of 
the chromosome aberrations were of the chromatid type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 2
Frequency of Chromosome Aberrations Induced In Human 
Lymphocytes by MMC at LM and EM Resolution Levels

Resolution
level

Treatment Cells
scored

Aberrant
cells
(%)

Chromosome Aberrations
Chromosome
fragments

(%)

Chromatid
fragments

(%)

Dicentrics Gaps Quadriradials

LM Control 116 9 (7.75%) 6 (5.17%) 4 (3.44%) - -

MMC 82 37 (45.12%) 19 (23.17%) 50 (60.97%) - 3

EM Control 115 26 (22.60%) 13 (11.30%) 30 (26.08%) 3 -

MMC 65 45 (69.23%) 25 (38.46%) 66 (101.53%) 5 15 5

o>cr>



Morad et al. (1973) treated human lymphocytes with 0.25 jig/ml 
of MMC for 72 hours. He observed that 72% of cells had chromosome 
aberrations Including exchanges. In this study the high percentage 
of aberrant cells could be related to the long treatment period 
(72 hours) and chromosome exchanges. In another study done by 
Novotna et al. (1979), human lymphocytes were treated with 0.16 ̂ ig/ml 
of MMC for the last 24 hours of cultivation. From a total of 311 
cells classified only 9 breaks were observed. They did not mention 
the type of chromosome breaks that were observed. It is obvious that 
the number of chromosome aberrations in the present study is much 
higher than Novotna’s study. The sources of this difference could be 
the MMC concentration, duration of treatment and genetic background 

of the cells.
Shiraishi and Sandberg (1979), in one of their experiments, 

treated human lymphocytes with 0.3 pg/al of MMC for 48 hours. The 
percentage of aberrant cells was 37% from which 29 chromosome and 
chromatid breaks were recovered. Although, the MMC concentration was 
the same in the Shiraishi and Sandberg and present study, the dura
tion of treatment was not. It has been shown that the chromosome 
aberrations were reduced by 50% in subsequent cell division following 
drug treatment (Carrano & Heddle, 1973; Conger, 1965; Sasaki &
Norman, 1967). The difference in chromosome breaks in these two 
studies may well be due to the time of treatment.

A recent study was done by Palitti et al. (1984) in which human 
lymphocytes were treated with 0.6 jig/ml of MMC. Of the 30% aberrant 
cells, 21% had chromosome or chromatid breaks. However, it is
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difficult to compare this study with the present study because the 
duration of MMC treatment was not reported in the former. In all the 
studies with human lymphocytes, the differences may be related to 
differences in genetic background of the cells.

At EM level, 65 cells were scored in MMC group from which 45 
(69.23%) were aberrant cells. The numbers of chromosome and chromatid 
fragments in aberrant cells were 25 (38.46%) and 66 (101.53%) respec
tively. The difference between the numbers of chromosome fragments 
(breaks) in control and MMC groups (13 and 25) was statistically sig
nificant (pi = 0.0001, p2 = 0.0002). In case of chromatid fragments, 
the difference in control and MMC group (30 and 66) was statistically 
very significant (pi * 0.0000, p2 * 0.0000). At EM level, like LM, 
the number of chromatid fragments was more than twofold the number of 
chromosome fragments.

To determine potential advantage of EM over LM, the data for MMC 
at the two levels of resolution were compared. The numbers of chro
mosome fragments at LM and EM levels were 19 and 25 respectively.
The difference between these two values was not statistically signif
icant (pi « 0.062, p2 = 0.095). The reason for the lack of a sig
nificant difference may be the low number of cells classified at EM 
level (65 cells). In addition, since chromosome fragments were 
determined by measuring the chromosome length, high resolution power 
of EM could not be a major factor. The numbers of chromatid frag
ments at LM and EM levels were 50 and 66 respectively. The difference 
was statistically significant (pi ■ 0.003, p2 ■ 0.006). Therefore, 
the advantage of EM over LM in detecting minute fragments (chromatid
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breaks) seems obvious.
A reduction In number of metaphase cells classified from LM to 

EM was observed. This reduction was very small for the control 
group, namely, from 116 cells to 115 cells at LM and EM respectively. 
But, this reduction Increased to 17 cells In MMC and 25 cells In ADM 
groups. There are some explanations for this phenomenon. During 
the development of technique, It was noticed that the cells close to 
the margins of EM grids could not be observed and photographed under 
transmission EM. This caused reductions of observable cells on grids 
from two slides In MMC group from 17 for LM to 9 for EM and from 8 
LM to 2 EM. Therefore, In MMC group, only half of the cells observed 
at LM could be observed at the EM level. The same reduction was 
noticed In two slides in ADM group; in one slide the reduction was 
from 21 to 10 and in the other 16 to 8. The other reduction in total 
cell number happened during the transferring of film to EM grids.
In one slide in MMC group, only eight cells were recovered during the 
transferring step. This was the lowest number of cells that were 
recovered from a slide during the course of the study. It is 
believed that the film on that particular slide was very thin and 
difficult to pull off the slide. In future studies the number of 
recoveries could be increased by making more slides. Overall, the 
total numbers of cells or spreads recovered in three groups were 
sufficient to show statistical differences between control and 
treated groups, and at LM and EM levels.
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CHAPTER V

CONCLUSIONS

The objectives outlined for the present study were accomplished. 
The first objective was to develop a technique for preparing human 
chromosomes for sequential LM and EM. The technique described pre
serves the morphology and structural organization of chromosome while 
allowing observation of the cell's entire chromosome complement. 
Chromosomes thus prepared can be stained for banding and aberration 
studies, two important procedures in areas of cytogenetics and 
genetic toxicology. Most of the techniques described in the litera
ture for studying mammalian chromosomes at the EM level either failed 
to preserve all the chromosome complement, caused chromosome disper
sion or stretching.

The second objective aimed at inducing chromosome aberrations in 
human lymphocytes by ADM and MMC and observing them by LM and EM was 
also accomplished. At the LM level, differences between chromosome 
and chromatid fragments in MMC and ADM groups in comparison with con
trol were found to be statistically significant. However, at the EM 
level, the numbers of chromosome aberrations observed in both drug 
groups were much greater than that for the control and were found to 
be statistically significant.

The third objective was to determine whether EM observations 
might reveal chromosomal aberrations not observable by LM. The 
objective was accomplished. In control groups the number of chromatid
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fragments observed by EM was significantly greater statistically than 
by LM. However, the difference between the numbers of chromosome 
fragments observed was not statistically significant. In the ADM 
group, the differences between both chromosome and chromatid frag
ments observed at the LM and EM levels were statistically significant. 
With MMC, the number of chromatid fragments scored at EM was signif
icantly greater than that at LM. The numbers of chromosome fragments 
recovered at EM were also greater than that at LM level but the dif
ference was not statistically significant. There were two cases of 
chromosome fragments whose differences at EM and LM were not signif
icant, namely, in MMC and control groups. However, the number of 
chromosome fragments scored was small. It is also possible that 
length measurement does not discriminate well between resolution 
levels.

Overall, the present study showed the advantage of high resolu
tion in making observations in cytogenetics. Should a reproducible 
banding technique applicable to EM be developed, the use of EM could 
be greatly extended. An EM banding technique might increase accuracy 
in detecting minute chromosome or chromatid deletions or duplications. 
The technique described in the present study could be used for eval
uating banding procedures and for studying the ultrastructural organ
ization of chromosome and/or chromosomal fibers.
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