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  ABSTRACT 

 In aquifers and other natural systems, single mineral systems are rare.  Solids are commonly 

heterogeneous, containing multiple minerals, and mineral interactions are expected.  Mineral 

interactions such as formation of coatings and physical blocking of adsorption sites have the 

potential to significantly change the adsorption of ions onto solids.  To investigate such 

interactions, batch experiments using Co(II) or Cr(VI) were conducted to compare adsorption 

edges of these sorbates on pure and mixed mineral systems.  Specifically, sorption of 10
-5

 or 10
-6

 

M Co(II) and Cr(VI) was measured as a function of pH, with a background electrolyte 

concentration of 0.01 M NaNO3 on 2 to 4 g/L of nanoparticulate (<50 nm) maghemite, quartz, 

maghemite-quartz physical mixtures, or maghemite-coated quartz. Changes in pH greatly 

influence adsorption behavior, but changes in sorbent concentration have little effect under the 

conditions of this study. A significant quantity of Co (up to 100%) sorbed onto maghemite and 

quartz in the pure mineral systems. In contrast, Cr(VI) only sorbed significantly onto maghemite 

and was insignificant on pure quartz.  In mixed and coated mineral systems, the adsorption of Co 

and Cr(VI) was closer to that observed for the pure maghemite than the pure quartz systems.  

This study shows that maghemite is likely the dominant sorbent for Co and Cr(VI) in systems 

containing both quartz and maghemite. 



1. INTRODUCTION: 

Adsorption is defined as the adherence of molecules or ions in a solution to the surfaces 

of solids (Debrowski 2001).  Adsorption of metals is particularly important in environmental 

systems and remediation processes.  Groundwater is a primary source of fresh, potable water that 

continues to become scarcer as time goes on (Vaux 2011).  The protection of this important 

source of freshwater is critical.  Many ions, such as chromium, cobalt, and lead, have the 

potential to contaminate groundwater.  Each of these contaminants has been found at elevated 

concentrations in the groundwater of areas influenced by industrial land use (Tariq et. al. 2007).  

A likely pathway of these contaminants into the groundwater is through dumping or leaching of 

industrial waste into surface or groundwater sytems (Tariq et. al. 2007). The adsorption process 

may remove these ions from the groundwater, which has the potential, under certain 

circumstances, to affect the mobility and toxicity of contaminant plumes (Abulaban and Nieber 

2000).  Neglecting the process of binding of contaminant ions to mineral surfaces, or describing 

it poorly, could lead to an incorrect analysis of the severity and migration of contamination in 

reactive-transport models.  Most adsorption models have been calibrated using relatively simple, 

single solid systems.  Few models have been carefully tested for systems with mixtures of 

minerals, such as are present in natural systems.  Discrepancies between experimental and 

theoretical results of adsorption in systems with mixed minerals could contribute to incorrect 

predictions of contaminant mobility and toxicity in natural or engineered systems (Stumm and 

Morgan 1996; Bethke and Brady 2005). 

The chemical behavior of Co(II) and Cr(VI) is very different in earth systems.  While 

both Cr and Co are electron donors, or metals, in oxic aqueous solutions, Cr(VI) forms the 

chromate anion (CrO4
-2

),whereas Co(II) is a cation (Faure 1991; Blowes 2002).  Co, according to 

the Goldschmidt classification of elements, is a siderophile, meaning that it is often found in 



association with iron.  Cr is classified both as a chalcophile, found in association with sulfides, 

and a lithophile, found in association with silicates (Faure 1991).  Thus, it might be expected that 

Co would be more strongly sorbed by the iron oxide, maghemite, while Cr would be more 

strongly sorbed by the quartz because it is a silicate  

Co is typically found as Co(II) at the surface of the earth, and does not form Co(I) or 

Co(0), except under extremely reducing conditions. In contrast, in near-surface environments 

under slightly acidic conditions, or in anoxic environments, Cr(VI) is readily reduced to Cr(III).  

Both organic matter, and ferrous iron (Fe(II) can reduce Cr(VI) to Cr(III), affecting the 

adsorption behavior of chromium in natural systems (Richard and Bourg 1991).  

 Adsorption is influenced by a variety of factors, including ionic strength, pCO2, 

sorbate/sorbent ratio, and ion competition (Faure 1991; Richard and Bourg 1991; Waite et. al 

2000).  For example, a study of the adsorption of Cr(VI) on γ-alumina found that the adsorption 

of Cr(VI) is influenced by pH and the presence of carbonate anions.  Specifically, a combination 

of low pH, a high ionic strength, and high pCO2 represses sorption of Cr(VI) on this solid (Reich 

and Koretsky 2011).  Adsorption of Pb was most influenced by pH, ionic strength and Pb loading 

on quartz and kaolinite surfaces (Reich et. al 2010).  This conclusion concurs with that found by 

several other studies of ion adsorption on mineral surfaces at differing ionic strengths and pHs 

including those by Gu et al. (2010), Dyer et al. (2003) and Gu and Evans (2008).  In contrast, 

adsorption of Pb on hydrous ferric oxide (HFO) was not significantly dependent on ionic 

strength for systems with 0.001 to 0.1 M NaNO3 (Reich et. al. 2010).  This conclusion is 

supported by prior work (e.g., Roberston and Leckie 1997; Weisner et al. 2006) showing that the 

influence of ionic strength is dependent upon various factors including adsorption site type as 

defined by the mineral surface.  



 Sorbents in combination have the potential to influence the quantity of adsorption that 

occurs due to solid interactions.  Such interactions include coating of a mineral by another or 

dissolution of one solid with subsequent precipitation of a new solid on the surface of another, 

blocking adsorption sites.  Natural groundwater and sediment systems are rarely composed of a 

single mineral.  The solid composition is typically heterogeneous, containing a variety of 

minerals and other solids.  Thus, significant mineral interactions are probable.  Understanding of 

how and if these interactions affect adsorption of ions will contribute to an understanding of the 

behavior of contaminant plumes in groundwater systems. 

A study of a groundwater aquifer in the Cape Cod area has shown that coatings, mainly 

goethite, on aquifer minerals often dominate ion adsorption, in spite of the fact that other 

minerals comprised the majority of the sediment (Zhang et. al. 2011).  Another study showed 

that iron oxide coatings on aquifer sediments are significant contributors to the adsorption of Pb 

and Zn ions (Coston et. al. 1995).  Mixed mineral systems, not coated, also have the potential to 

affect adsorption because one solid may dominate ion sorption under a particular solution 

condition, as seen, for example, with Pb adsorption on physical mixtures of HFO and kaolinite 

(Reich et. al. 2010). 

The hypotheses examined in this study are that adsorption of Co will be controlled by the 

presence of maghemite in solution and adsorption of Cr(VI) will be controlled by the presence of 

quartz.  These hypotheses will be tested by measuring Co and Cr(VI) adsorption edges in slurries 

containing nanoparticulate maghemite, quartz, physical mixtures of these, or maghemite-coated 

quartz with NaNO3 background electrolyte to determine whether the adsorption of Co and Cr(VI) 

are dominated by the maghemite or quartz, respectively. 

   



2. MATERIALS AND METHODS 

Quartz and maghemite were chosen as the sorbents for the experiments completed in this 

study.  The quartz is Min-U-Sil 5, a natural, high purity, ground quartz with a median particle 

diameter of ~1.4 µm (U.S. Silica, 2008), purchased from the U.S. Silica company in Berkeley 

Springs, WV.  The maghemite was obtained as iron (III) oxide from the Aldrich Chemistry 

company.  The maghemite is a nanopowder (<50 nm in particle size).  Quartz coated with the 

nanopowder maghemite (obtained from Michael Komarek) was also used in some experiments.  

The success of the coating process was verified using an electron microscope.   

Hydroxylamine hydrochloride (HA-HCl) extractions were conducted to verify the coating of 

the quartz with maghemite. A solution of 100 mL of 0.5 M HA-HCl was made from HA-HCl 

powder.  0.5 g of solid, either coated quartz or pure maghemite, was added to 20 mL of the 0.5 

M HA-HCl solution in 50 mL test tubes. Three replicates were carried out for each solid together 

with one no-solid control.  The test tubes were placed on a rotator for 16 hours.  After 16 hours, 

the samples were centrifuged at 8,000 rpm for 30 min or until the supernatant was visually 

separated from the solid.  The supernatant was pipetted off and filtered using a 0.45 µm syringe-

filter.  The samples were then diluted by either 10 or 100 times. The concentration of iron was 

tested using the FerroZine method with a UV/Vis spectrophotometer.   

BET analyses were conducted on the pure maghemite and coated quartz to determine surface 

area using a Quantachrome Instruments NOVA 2200e Surface Area & Pore Size Analyzer.  

Weighed samples of each solid were placed into short 9 mm Quantachrome tubes and degassed 

at 80
o
C for 16 hr, after which the samples were allowed to cool and then reweighed.  The NOVA 

instrument calculates the density of the solid as well as the surface area using 99.9% purity 



nitrogen gas as the adsorbate.  Liquid nitrogen was used as the coolant for analysis.  11-point 

BET analysis was conducted and the resulting surface area was recorded.  

 Adsorption edges, as a function of pH, were measured for Co and Cr on systems 

containing 2 g/L of pure quartz, maghemite or maghemite-coated quartz as well as for systems 

with physical mixtures of quartz and maghemite.  Each edge was measured with a NaNO3 

background electrolyte concentration of 0.01 M.  The concentration of sorbates varied from 10
-5

 

to 10
-6 

M.  For each edge experiment, 500 mL solutions containing sorbent, sorbate, and 

background electrolyte were prepared in a 1 L nalgene bottle.  Two 10 mL control samples were 

taken prior to the addition of the sorbent.  The nalgene bottle containing the 500 mL slurry was 

capped and placed on a Lab Quake shaker for 24 hours at 200 rpm.  The 500 mL slurry was then 

placed on a stir plate and titration was started immediately.  The slurry was titrated to an initial 

pH of approximately 2.5 using drops of concentrated 0.001, 0.01, and 0.1 M HCl. Additional 

drops of concentrated 0.01, 0.1, and 1 M NaOH were used to increase the pH.  10-12 mL of the 

slurry was removed at approximately 0.5 pH intervals for a total of 15 samples spanning a pH 

range of ~2.5 to 10.  These samples were then placed on the shaker with the controls for 24 hours 

to allow sorption reactions to reach equilibrium.  After the equilibration period, the pH of each 

sample was measured.  The samples were then centrifuged at the maximum speed on a Fisher 

Scientific Centrific Centrifuge for 10 min or until the solid and supernatant were visually 

separated.  The supernatant was pipetted off and filtered using a 0.45 µm syringe-filter.  The 

concentration of total Co or Cr remaining in the supernatant was tested using ICP-OES.  For ICP 

analyses, samples were acidified using trace metal grade concentrated nitric acid (~5%) and 

spiked with an yttrium internal standard.  Calibration standards were prepared using the yttrium 

internal standard and were matrix-matched to samples with the same NaNO3 concentration.  The 



concentration of Cr(VI) was tested using the diphenylcarbazide method with a UV/Vis 

spectrophotometer.  The concentration of adsorbed Co or Cr was calculated based on the 

difference between the concentration of added metal (verified with control samples) and the 

concentration measured in the supernatant.   

 

4.     RESULTS AND DISCUSSION 

4.1 BET Surface Area Analyses 

 The surface area of the maghemite measured using 11-point BET analysis is 37.1 m
2
/g 

(±1%).  The surface area of the maghemite-coated quartz from the BET analysis is 5.9 m
2
/g 

(±1%).  A previous study found the surface area of the quartz to be 9.2 m
2
/g (Landry et. al. 

2009).  The surface area of the maghemite is large, which is as expected due to the nanoscale 

particle size (<50 nm).  The surface area of the coated quartz is much smaller than that of the 

pure maghemite.  However, it seems that the addition of the maghemite coating onto the quartz 

decreases the surface area significantly.  The results suggest that adsorption of ions should be 

greatest for the pure maghemite and least for the coated quartz if available surface area were the 

only major influencing factor. 

Scanning electron microscopy images (courtesy of Sherine Obare and Clara Adams, Dept of 

Chemistry, WMU) show a minimal coating of maghemite on the quartz grains (Figure 1).  The 

images also show that the quartz grains are larger than the maghemite grains.   



 

Figure 1.  Scanning electron microscopy images (from Sherine Obare and Clara Adams, 

Department of Chemistry, WMU) of maghemite (left) and maghemite coated quartz (right). 

Rounded grains are maghemite and angular grains are quartz. 

 

4.2 Hydroxylamine HCl Extractions 

 The hydroxylamine-hydrochloric acid (HA-HCl) extractions were used to assess the 

amount of maghemite that coated the quartz.  During the extractions, Fe is reductively dissolved 

into solution by the HA-HCl, and the concentration of released Fe is measured.  The 

concentration of Fe in solutions extracted from the maghemite-coated quartz was approximately 

545 µM, which converts to approximately 22 moles of Fe per g solid.  The concentration of Fe in 

extracted solutions from the pure maghemite was approximately 5830 µM, which converts to 

Maghemite          Maghemite Coated Quartz 



approximately 230 moles of Fe per g solid.  Thus, a given mass of maghemite-coated quartz 

contains approximately 10 times less Fe than the same mass of pure maghemite.  As stated in 

previous studies, small amounts of coatings on mineral surfaces can dominate the adsorption of 

ions (Zhang et. al. 2011 and Coston et. al. 1995), thus, even this small quantity of maghemite 

may have a large effect on ion adsorption. 

 

4.3 Adsorption Edge Experiments 

4.3.1 Co adsorption 

 Adsorption of Co was measured as a function of pH on pure maghemite and physical 

mixtures of maghemite and quartz.  These experiments were done using a Co concentration of 

10
-5

 M and NaNO3 background electrolyte concentration of 0.01 M.  An initial experiment was 

conducted to analyze the adsorption of Co on 2 g/L of maghemite.  The edge is typical of that of 

cations, with maximum sorption at high pH and minimum sorption at low pH (Figure 2).  The 

adsorption “edge”  spanned a pH range of approximately 4 to 7.  The pH50, the pH value at 

which 50% of the total Co is sorbed on the maghemite is 5.7 +/- 0.1.  This value differs from the 

pH50 of approximately 8 for experiments using 0.01 M NaNO3, 10
-5

 M Co, and 2 g/L of quartz 

(Landry et al. 2009).   



 

Figure 2. Adsorption of 10
-5

 M Co on equal masses of physically mixed quartz and maghemite (1 

or 2 g/L of each) and 2 g/L of pure maghemite, maghemite coated quartz, and pure quartz in a 

background electrolyte of 0.01 M NaNO3. 

Two experiments with physical mixtures of quartz and maghemite were conducted to 

study possible mineral interactions.  Each experiment had a Co concentration of 10
-5 

M and a 

NaNO3 background electrolyte concentration of 0.01 M.  The concentrations of quartz and 

maghemite differed in the two experiments.  In the first experiment, the total concentration of 

solids was kept at 2 g/L.  Thus, the concentration of quartz was 1 g/L and the concentration of 

maghemite was 1 g/L.  In the second experiment, each solid had a concentration of 2 g/L for a 

total solid concentration of 4 g/L.  This was done in order to more readily compare the edge with 

the edges measured on pure quartz and pure maghemite.  Surprisingly, the concentration of 

solids had no significant effect on the sorption edges (Figure 2).   The pH range over which 

cation sorption increases with increasing pH spanned a range of approximately 4.5 to 7 for both 

of the experiments, and the pH50 of both mixed mineral systems is approximately 6 +/- 0.1.  

However, at the upper portions, pH range of 6 to 7, the adsorption edges of the physical mixtures 

shift slightly to the right, closer to the adsorption edge of pure quartz.  This maghemite-like edge 



for the mineral mixtures suggests that the maghemite (or Fe released from dissolving 

maghemite) may block the quartz sites, even in these physical mixtures. Alternatively, the 

stronger sorption of Co on maghemite, as demonstrated by the lower pH50 compared to the pure 

quartz system, may dominate Co adsorption in the physical mixtures.  

Experiments using a concentration of 2 g/L maghemite coated quartz, 0.01 M NaNO3, 

and 10
-5

 M Co were conducted to assess the influence of coatings on adsorption.  The coated 

quartz was also used because it is a good analog for natural systems because natural systems 

often contain minerals coated with iron oxides or other minerals. The pH50 of the coated quartz is 

7 +/- 0.1 with Co sorption increasing over a pH range of ~5 to 9 (Figure 2).  Prior studies of Co 

on pure quartz found a pH50 for 10
-5

 M Co sorption on 2 g/L quartz with 0.01 M NaNO3 of ~8 

+/- 0.2, with Co sorption increasing over a pH range of approximately 7 to 9 (Landry et. al. 2009; 

Figure 2).  The adsorption edge of the coated quartz falls approximately halfway between that of 

the pure maghemite and pure quartz.  This suggests that much of the Co sorption is dominated by 

the presence of maghemite coating the quartz, in spite of the fact that there is less total 

maghemite present in these systems. 

Another cation, Cd, has been analyzed under the same sorbate (10
-5

 M Cd), sorbent (2 

g/L pure quartz, pure maghemite or maghemite-coated quartz), and background electrolyte (0.01 

M NaNO3) conditions (Michael Komarek, personal communication).  The Cd adsorption edge on 

coated quartz falls between the pure maghemite and pure quartz, similar to the Co edges 

measured in this study (Figure 3).  This suggests that, as for Co, the adsorption of Cd is 

dominated by relatively small quantities of maghemite.  However, the difference between the 

three Cd edges is much smaller than observed for Co. 



 

Figure 3. Adsorption of 10
-5

 M Cd on equal masses of coatings, pure maghemite, and pure quartz 

at 2 g/L with a background electrolyte of 0.01 M NaNO3 (data from Dr. Michael Komarek, 

Czech University of Life Sciences Prague, personal communication). 

 

4.3.2 Cr(VI) adsorption 

 Adsorption edge experiments for Cr(VI) on quartz were completed using 2 g/L quartz, 

0.01 M  NaNO3 and either 10
-5

 or 10
-6

 M Cr(VI). For these conditions, an insignificant (below 

detection limits) quantity of Cr(VI) is sorbed by the quartz (Figure 4). A comparison of UV/Vis 

data and ICP-OES data to measure Cr(VI) and total Cr in solution, respectively, shows that 

insignificant amounts of Cr are present in solution.   The 10
-6

 M Cr(VI) UV/Vis data is elevated, 

likely due to a systematic error because the total Cr analyzed with the ICP-OES should not be 

lower than that of just the Cr(VI). 
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Figure 4. Adsorption of 10
-5

 and 10
-6

 M Cr on 2 g/L of pure quartz in a background electrolyte of 

0.01 M NaNO3. UV/Vis and ICP-OES were used to analyze for Cr(VI) and total Cr in solution, 

respectively.   

In contrast to quartz, Cr(VI) is readily adsorbed on nanosized maghemite.  This has been 

noted in previous studies as well. For example, Hu et al. (2005) proposed a method using 

nanosized maghemite to remove Cr(VI) from waste water.  They found that Cr(VI) was 

significantly adsorbed by the maghemite, with optimal adsorption occuring at a pH of 2.5.  An 

adsorption edge measuring 10
-5

 Cr(VI) on 2 g/L pure maghemite with 0.01 M NaNO3 showed 

that Cr is significantly sorbed onto maghemite (Figure 5; Krishna Stephen, Western Michigan 

University, personal communication). An adsorption edge for Cr(VI) on maghemite-coated 

quartz was intermediate between edges measured for the same mass of pure quartz or pure 

maghemite (Figure 5). This suggests that the adsorption of Cr(VI) in the maghemite-coated 

quartz system is dominated by the presence of maghemite.   
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Figure 5. Adsorption of 10
-5

 M Cr on 2 g/L of pure quartz, pure maghemite, and maghemite 

coated quartz in a background electrolyte of 0.01 M NaNO3. Pure maghemite data from Krishna 

Stephen, Western Michigan University, personal communication. 

 

 

5.     CONCLUSIONS 

 Cobalt sorbed strongly onto pure maghemite and pure quartz. The adsorption of Co in 

physical mixinturs of maghemite and quartz closely resembled adsorption on pure maghemite, 

with a slight shift to more alkaline pH at ~6 to 7. The similarity of the edge to that measured for 

pure maghemite suggests that maghemite controls most of the Co adsorption in the physically 

mixed system.  Changes in concentrations of sorbents in the mixed systems resulted in 

insignificant changes in adsorption edges.  The adsorption edge for Co on maghemite-coated 

quartz also lay between those of pure quartz and pure maghemite, with the edge slightly closer to 

the pure maghemite.  This indicates that in natural systems, the adsorption of Co will likely be 



controlled by the presence of maghemite rather than quartz. The Cd data gathered by Michael 

Komerak showed similar trends to those observed for Co.  The Cd adsorption edge in the pure 

maghemite system is at a slightly lower pH than the edge for maghemite-coated quartz and the 

pure quartz edge is at a slightly higher pH. 

It is important to note that while Co and Cd significantly sorb onto quartz and 

maghemite, Cr(VI) does not sorb appreciably onto quartz under the conditions assessed in this 

study.  Cr(VI)  does, however, significantly sorb onto maghemite, as shown by Krishna Stephen.  

In the maghemite-coated quartz systems, the sorption of Cr(VI) was likely dominated by the 

maghemite, as shown by the significant increase of Cr(VI) adsorption at low pH compared to the 

pure quartz system. 

 

5.1 Suggestions for Future Work 

 Adsorption experiments for Co and Cr(VI) on maghemite-coated quartz could be used to 

determine how small amounts of maghemite influence adsorption of these ions on quartz.  This 

could be done by measuring adsorption edges with Cr(VI), Co, and NaNO3 concentrations 

comparable to those used in this study (10
-5 

M Co, 10
-5

 and 10
-6

 M Cr, and 0.01 M NaNO3), but 

with varying concentrations of the maghemite coatings.  One set of experiments should be done 

using less than 2 g/L of maghemite-coated quartz in order to determine if small amounts of 

maghemite can dominate the adsorption of ions.  Cr(VI) would be best to use in this situation due 

to the insignificance of sorption on quartz.  A second set of experiments should be done by 

calculating the mass of maghemite-coated quartz needed for a total maghemite concentration of 

2 g/L. This would enable the possible mineral interaction effects to be compared to the 

adsorption on pure maghemite.  X-ray absorption spectroscopy or XAS could be used to confirm 



whether the Co and Cr ions are associating with the iron or silicon sites.  The remaining solid 

from the samples could be analyzed using this technique. 

Kinetics of adsorption on each of the mineral assemblages would also provide useful 

information.  Adsorption edges could be measured at 1 hr, 4 hr, 24 hr, 48 hr, 1 week, and 2 week 

intervals. The kinetics would give a better idea whether mineral interactions are actually causing 

the difference in adsorption edges between sorbents. This is because with a longer equilibration 

time, mineral interactions are assumed to be greater.  Thus, it would be hypothesized that the 1 

week and 2 week intervals would have adsorption edges that are significantly influenced by 

mineral interactions in comparison to the 1 or 4 hour intervals.     
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