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1 .  IN T R O D U C T IO N

Consider the second order linear ordinary differen­
tial equation with polynomial coefficients of the form:

It was shown by P. F. Hsieh and Y. Sibuya [ 1] , in 
1966, that since the only singular point of (1.1) is at 
x = ® , a solution of (1.1) is an entire function of 
(x , a^ , ... , a^) if its initial values are entire func­
tions of (a^ , ... , a^) . It was also shown that since
x = oo is an irregular singular point, a solution of
(1.1) can be determined by prescribing asymptotic condi­
tions as x tends to infinity in a sector S , if S
and the asymptotic conditions are suitably given.

In this paper, we shall consider the following two 
second order linear differential equations with poly­
nomial coefficients:

(1.1> y" - P (x) y = 0 M
dx

where P(x) is the polynomial in x :

/ \ _ r \ m m-1 ,(1.2) P(x) = x + a.x + + a ,x + a1 m-1 m

(1.3) x2y" + (x2 + X)y = 0

(1.4) x2y " + (x3 + X) y = 0

1
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2

where \ is a complex parameter. Notice that x = 0 
is a regular singular point and x = ® is an irregular 
singular point of both (1.3) and (1.4), while x = ® is 
the only singular point of (1.1).

The result for (1.3) is stated in §2 and proved in 
§3 ~ 6, while the result for (1.4) is stated in §7 and 
proved in §8 ~ 10.

_1/2Remark 1: Replacement of u by x y in
Bessel's equation

(1.5) x^u" + xu' + (x2 - v2)u = 0

leads to the equation

(1.6) x2y" + (x2 + \  - v2)y = 0 .

Therefore (1.3) is equivalent to Bessel's equation with
v = ±( J  - \)^ .

A Bessel function J y(x) is a solution of (1.5) 
which is known to have the following asymptotic expan­
sion [2] :

•V* >  * ( £ )  I ----- 2 T 2 -  - si" C I  i s W 1 )
s=0 X s=0 x

as x  tends to infinity in J arg x  J £  t t  -  6 , uniformly 
with respect to v in |v| < r , (0 < r < +*) , where
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2. ASYMPTOTIC SOLUTION OF x2y" + (x2 + X)y = 0

As the first result of this paper, we shall prove 
the following theorem:

Theorem 1: The second order linear differential
equation (1.3) has a solution y(x , X) that satisfies 
the following conditions:

(i) y(x , X) is holomorphic with respect to 
(x , X) 6 S x D , where S jLs a, sector in x-plane and 
D _iŝ an open disc in X-plane defined by:

S : — 2tt +  6 £ arg x ^ t t  — 6, |xj i M  .
D: J X| < r , 0 < r < +®

(ii) y(x , X) and y' (x , X) admit respectively the 
asymptotic representations:

(2.1)
n=l
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4

(2.2) y ’ (x , X) a ie1X {l + £  ^  x"n}
n=l

uniformly with respect to X € D , as x tends to 
infinity in S , where 6 , r and M are positive con­
stants and «n and 0̂  are polynomials in X .

Remark 2 : If the asymptotic representations of
y(x , X) and y* (x , X) in a sector different from S
is desired, it can be constructed as follows:

Let us change the independent variable x by 
A iex = e x . Then equation (1.3) becomes 

2A2 d v . _-2i0,A2 . 2ie. „(2.3) x + e (x + e X)y = 0 .
dx

—2 i 9Therefore, if we choose 0 so that e = 1 ,
the function y(x , e^1®x) is a solution of (2.3). Hence
if we put 0 = tt and y-̂  (x , X) = y(x , e2lf?X) =
y(elTTx, X) , then y^ (x , X) is a solution of (1.3) 
which admits the asymptotic representation Y(-x, X) as
x tends to infinity in any closed sector which is con­
tained in the sector S' , where S* is defined by:

S' : -tt + 6 ^ arg x £ 2tt - 6 , Jxj ^ M 

and Y(x , X) is the right-hand member of (2.1) .
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3. PROOF OF THEOREM 1: PART I.

3.1. Preliminary Transformations.

Let us write (1.3) as the following system of 

equations

(3.1) dY
dx = A(x)Y ,

where

and

- m

M x )  - [-? I] ♦ [_° s >
-2 -2 = A + A0x < o £

Since the eigenvalues of Ao are i and -i , in 
order to have the Jordan canonical form of Aq as the 
leading term in A(x) , let us put Y = TW , where

- G  x]
Then (3.1) becomes

(3.2) dW
dx = B(x)W ,

where

(3.3) B (x) =
i(l +

2x

2x

2x 
-i(l +

2x
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6

We shall now derive a nonlinear first order differen­
tial equation associated with the system (3.2).

Put

B (x) =
»1 (x) pjfx) 

j_ P2 (x) »2 (x)

where

6^ (x)

Of2 (x)

3o (x) =

. . X. -2i + yrx

X • -2 -i - jxx

X -2 
~ 2*

X -2 
“ 2*

The quantities , ot̂  , 0̂  and 02 are polynomials
—1 —2 . —2in x and we have =■ i + 0 (x ) , «2 = -i + 0 (x ) ,

3^ = 0(x”^ and 02 = 0(x~2 ) as x tends to infinity, 
uniformly with respect to X such that Jx| <  »  .

Now let us put the following expression into system
(3.2) :

(3.4) W = (p\x)) exp{f Y(n)d1l}

Then we obtain the following relations:
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(3.5) y (x) = (x) + B1 (x)p(x)

^  (x) + {&2 M  ~ o^Mjpfx) - g1 (x)p2 (x)

(3.6)
-X - 2i (1 + — ^ J p  (x) + p2 (x) .
2x2 2x~ 2x'“

If we determine p(x) from the nonlinear differen­
tial equation (3.6) and then y (x) by (3.5), the quantity
(3.4) is a solution of (3.2). Therefore

(3.7) Y = t(J) exp {J*v (71) d*n} 

will give us a solution of (1.3)

3.2 Formal Solution of (3.6)

Lemma 1. The nonlinear first order differential 
equation

(3-6) to = ̂  - 21 C1 + "*2 V (x) + “V  P2<x>X 2x v 2x J 2x
has a unique formal solution

00

(3.8) & (x) = £  Pnx“n ,
n=l

where P-L = 0 , P2 = 4 1 ' P3 = \  and

(3.9) Pn = ^ (  (n - D P ^  - Xi Pn_2 * i l P .  Pk )

for n is 4
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where the sum is taken over j , k > 1 and j + k = n -
00

Proof: Let p = ^  Pn x n and substitute into
n=l

(3.6). Then we obtain

l<~ n >Pnx ~n ~l
n=l

2x2 ' n 2x2 e, ^n=i n=2
- ^  + -rj) 1 pn x "n + A I G>-j pk>‘

where V  Pj P^ is taken over j , k £ 1 and j + k = n

Equating the coefficients of terms with equal exponent, 
we have

0 = -2i Px 
-Pl = - j  - 2i P2

-2P2 = -2i P3 - Xi P1

~nP_ = -2i P^., - Xi P_ , + ^ Yj pj pX
n " n+1 AJ- "n-l ' 2 L  cj "k

j+k=n-l

for n ^ 3

These relations determine P (n ^ 1) uniquely, namely
pl = ° , p2 = ^ i , P-» = "t and
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Pn 2 { (n “ x) pn_i pn _2 + 2 I Pj Pk}
j+k=n-2

for n s 4

By Lemma 1 and (3.4), we obtain a formal solution 
Wj (x , X) of (3.2) :

w1 (x , I) = {l - ^ x-2 + ^  ix“3 + |(3X + X2)x“4 + •**} 

x exp{ix - fix'1 + |yLx"3 + +■•••}

3.3 Analyticity of a solution of (3.6̂

In order to find the analytic meaning of the formal 
solution £(x) in (3.8), we need the following:

Lemma 2: There exists a unique solution p(x)
of Eq. (3.6) that satisfies the following conditions:

i) For each positive constant r , there exists 
a positive constant N such that p(x) is holomorphic
with respect to (x , X) in the domain determined by:

|arg(2i) + arg x| £ - 6 , |x| > N r
(3.10)

j X { < r ,  0 < r < »
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il) p(x) is; asymptotic to the formal solution 
$ (x) uniformly on each compact set in the X-space 
as x tends to infinity in the sector - 2 t t  + 6 £ arg x 
£  t t  -  6 , where 6 ^s a fixed sufficiently small 
positive number.

The proof of this lemma will be provided in §5.

4. PROOF OF THEOREM 1: PART II

In this section we shall complete the proof of
Theorem 1 by the use of Lemma 1 and Lemma 2.

Applying Lemma 2, using the fact that arg 2i = ^  , 
we have a unique solution p(x) of Eq. (3.6) holomorphic 
with respect to (x , X) in the domain S x D , where

S: -2tt + 6 £ arg x ^ tt + 6, [x | a M
D: | X | < r 0 < r < 00 .

By Eq. (3.5), we have

y(x) = i + •̂ix"’2 - 2X 2 P(x)

which is holomorphic with respect to (x , X) € S x D . 
Hence we have
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oc
exp{j Y(T])dT]}

(4.1) = exp[JX{i + j- ITf2 - fTl"2p(T])} dT]]

2: exp[j {i + ̂ iTl-2 - -|lf2 $ ( T j ) }  dT,]

uniformly with respect to X 6 D as x tends to infinity 
in S . Inserting the series obtained by Lemma 1 into 
the expression in (4.D and integrating, we obtain

exp {J*Y (T|) dT]}

- exp }ix - -ji x-1 + ■—  ix“3 + x-4 + --- } .

By (3.7) we have

y(x , X)= {1 + ip (x) } exp{j Y(T])dTl}

2: e1X{l -f  Xx:'1--|(2X + X2)x"2 + ^;(6X + X2 - X3)x"3 +.

-  +  i  v * }
n=l

uniformly with respect to X € D as x tends to infinity 
in S , where are polynomials of X -
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5. PROOF OF LEMMA 2: PART I

In this section we shall prove Lemma 2 in four 
steps:

i) Construct a function (x , X) holomorphic 
with respect to (x , X) € S x D and asymptotic to the 
formal solution £ (x) of Eq. (3.6) uniformly with 
respect to X € D as x -» ® in S .

ii) Find a function qr (x, X) holomorphic with
respect to (x , X) 6 S x D such that qr (x , X)
+ ^r (x , X) is a solution of Eq. (3.6), by constructing 
an integral equation.

iii) Show that qr (x , X) s: 0 uniformly with respect 
to X € D as x tends to infinity in S .

iv) Show that qr (x , X) is actually independent
of r . Let

p(x) = qr (x , X) + $ r(x , X)

Then p(x) is the desired solution of Eq. (3.6).

5.1 Construction of $r (x) .

In order to construct $r (x) , the following 
theorem is applied:

Theorem 2: (Borel-Ritt Theorem) [jj] . Corresponding
to every formal power series

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and to every sector S: 9^ ^ arg x ^ 62 (3^ ' ®2: con~
stants), there exists a function f(x) holomorphic in 
S for |x J £ xQ (xq an arbitrary constant) such that

CO
ffx) * I  Anx-n

n=0
as x tends to infinity in S .

We shall apply this theorem with the formal solution 
00

$ (x) = ^  Pnx n of Eq. (3.6). Notice that all coeffi- 
n=l

cients Pn are independent of x and polynomials in X. 
Therefore for each positive constant r, Pn are 
holomorphic with respect to X such that |X] < r .
Let 6 be a sufficiently small positive number and fi 
be an arbitrary fixed positive number. Let us define a
sector S in x-plane by:0

|arg(2i) + arg x| £ - 6 , |xj ^ n

The reason for choosing such a sector will be explained 
in Section 5.2. Let Dr be a domain in X-plane such 
that |\{ < r (0 < r < ®) .
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Now, Borel-Ritt theorem asserts that corresponding
C3

to £ (x) = Y  Pnx n and to the domain Sg x Dr , there 
n=l

exists a function $r(x) so that (x) is holomorphic 

with respect to (x , X)  ̂s§ x Dr an(̂  (x) an<̂  
d& (x)/dx admit the uniform asymptotic expansions

y, __ d^ (x) ,,
=■* ) p v  —  a: ''

r [x) ~ L n ' dx dx
n=l

for X € Dr as x tend to infinity in the sector Sg.

5.2. Construction of an Integral Equation.

Put p = q + Pr (x) in Eq. (3.6). Then the 
differential equation (3.6) is reduced to

*5*1* dx = ^ *x* + + v (x)q2

where

ur <x) = - = \ - 2if 1 + (X) +
r 2x^ 2x 2x r ax

(x) = -2if 1 + -Ar\ + £ (x). 2) T 2 -r' 2x / x

Vr (x) = 
r 2x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Notice that these three quantities are holomorphic in 
Sg x Dr , and we have

(5.2) ^(x) 2= 0
(5.3) ^r(x) = -2i + &(x 2)
(5.4) vr (x) = &(x 2)

uniformly for X € Dr as x tends to infinity in Sg . 
The asymptotic relation- (5.2) is derived from the fact 
that the asymptotic expansion of (x) is a formal 
solution of the differential equation (3.6). Let us put

<rr (x) = -2i + 0r (x)

Then the relation (5.3) implies that

(5.5) 0 (x) = e(x 2)

uniformly for X € Dr as x tends to infinity in S

Let

(5.6) q (x) = J (nr (Tl) + 0r (7])q(T»

+ vr (TDq2 (1p } exp{-2i(x - T|) }dT] ,

where the path of integration is a straight line, to be 
determined in Sg , given by

(5.7) T) = x + te^? , Qrconstant, 0 ^ t < ®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

such that along this path expf-2i (x - 7]) } converges as 
7} -♦ oo . Then by differentiating both sides of (5.6), 
we obtain

Therefore a solution of the integral equation (5.6) 
satisfies the differential equation (5.1). A question 
arises here. Is it possible to have a straight line path 
in Sg , from any point x in S& to infinity so that 
exp{ -2i (x - 1)) } converges as 71 -» » on this line?
The answer is affirmative. Suppose we chose a path so 
that Re(iT)) tends to negative infinity as 7) tends to 
infinity on this path, then exp{-2i(x- 7]) } tends to 0. 
Since

Re(iT)) = -t sin 0

on the path (5.7), this can be accomplished by choosing 
0 such that It is readily seen from

CD

+ e 2ix{^r (x) + 0r (x)q(x) + vr (x) q2 (x) }e2ix

= -2i q (x) + M-r (x) + 0r (x)q(x) + vr (x) q2 (x) 

= ^r (x) + (-2i + 0r (x)}q(x) + vr (x)q2 (x)

= Ur (x) + C*r (x) q (x) + vr(x)q2 (x)
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the figure below that such a straight line path is con­
tained entirely in S& .

\ arg x = - -r rr

x-plane

arg x.-O
arg x = ±tt

Figure 5.1
Thus it is established that a solution of integral 

equation (5.6) satisfies the differential equation (5.1) 
by choosing the path of integration to be

7, = x + te1® , j  s 9 s n O s t < a >

and x € S& .

Now we shall prove the existence of a holomorphic 
solution of the integral equation (5.6) by the method
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of successive approximations. There are several key 
inequalities used in the process. Let us now state 
these inequalities. Proofs will be provided in the 
later sections.

Lemma 3: [3 and 4] Let positive constants 6 and 
p be given, where 6 jLs sufficiently small, while p 
is arbitrary. Then there exist positive constants M,6p
and L_ such that we have   o ---------  ---------  —  ---------

(5.8) M -p|es-°||d<7| * L0 |s|-"

for all s in the sector, S. defined by
6 M 6 p

(5.9) I arg x | s - 6 , |x| a M. ,

where Lq _is independent of p , and the path of 
integration is the straight line

a = s + te^6 , 0 ^ t < “ # -|-^8STT-J-

Lemma 4 : The relations (5.2), (5.5) and (5.4)
imply that there exists â positive constant L such that

-2 

-1 

-1

(5.10) 1 (x> 1 ^ L |x|

(5.11) l0r (x) j £ L 1*1

(5.12) I vr (x) | £ L 1*1
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in the domain S e x D —  --- ■ * o r

Lemma 5: Let f (m) = m for m > 0 . Then
since lim f(m) = 0 , there exist positive constants

m-»eo
K and M ‘ such that

(5.13) LQLf (M*) {1 + K + f(M')K2) £ K

(5.14) ±  L0Lf(M') {1 + 2 f (M') K } £ j

Now let us choose a positive constant M such that

(5.15) M ^ max(M' , M. ) where p = -ir5 p z

and let us define the successive approximations in SCM
by:

qQ (x) — 0
(5.16)

qn (x) = j* (lir (Tl) + 0r ( TDq^Cn) + vr (TDq2^  (Tl) }
Q>

X exp{ -2i (x - Tl) }dT) 

for n = 1 , 2 ,  .. .
Then it can be shown, by induction, with the aid of 
Lemma 3, 4 and 5, that

(5.17) Iqn (x> I * K M _ 1 ' k n+l(x) “ <In(x) I *
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in the domain Se,, x D . As a matter of fact, supposeoM r
that (5.17) holds for n = j - 1 , then for n = j 
let x = -is and 7] = -ia in (5.16) . By the use of 
Lemma 3,4 and 5, we have

kj (*) I

£  f { | t t r ( H ) |  +  | 0 r ( T l ) I - k j _ 1 ( T I )  l +  l ^ t l D l  k j . i d l )  | } | e S " " l | a « l

* f {I-|Tir2+L|Tl|"1.K|lir1+L|ll|_1-K2 |n|"2}|eS_a||ao|
CO

= i f  I cr I -2 [ 1 +K + K2 IctI"1)* | es“°‘| |dff|
09

s s
= L(1+K)J |c[“2]eS“CT| ]daj + LK2 J | a| _3 | eS_cr | |da 1

09 09

£ L (1+K)Lq |s| 2 + LK2Lo |s|“3 

= LLq J s | ~2 (1 + K + K2 | s |_1)

£ |x[_1LLof (M*) {1+K + K2f (M*) } ^ ixf1- K .
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lqj+l(x) “ qj (x) I

=  J . {  lsr (il) i I q - j C i D - q ^ d ! )  I +  ! Vr  C-n) | !q?(Tfl-<j? jdi) |) !®S ~ CT| Ida I
g

*  I  ( L I m! ' 1 - i f  + L l u r 1 - 4  |q (TJ) + q .  (H) | } | eS_°  | | dc-|
oo 2J 2J J J

g
*  ^  J I Tli- 1 r i  + |q.(Tl)  + q .  (T)) |}|eS_C||da|

2 00 J J

* "I J !‘n!“1(l+2K|Tir1) |es_a| jda(
2 ®

s (Lols f"1 + 2KL0M ~ 2)

L L _ ,
£ — (f (M’) + 2Kf (M') }

23

= LLQf (M’ ) {1 + 2Kf (M‘) }
2?

s 1 1 - 1j 2 ,j+l

Therefore the sequence (<In (x) ) converges uniform
iy in S6M x Dr 
Put

qr (x , X) = lim qn (x) - 
n-Ko

Then qr (x , X) is a holomorphic solution of the integral 
equation (5.6) such that |qr (x, X) j £ K|xJ_1 in SgM x Dr.
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5.3 Asymptotic Property of qr(x , X).

Now, we shall prove, by induction, that 

qr (x , X) 2= 0

uniformly for \ € as x tends to infinity in S6M-
Suppose qn (x , r) 2 0 (n = 0 , 1 , 2 , . . . , j)

uniformly for X € Dr as x tends to infinity in S§M-
Then

lim xm qn (x , r) = 0  for m = 0 , 1 , 2 ,  ... and 
x-»®

n = 0 , l , 2 , . . . , j  -

Therefore for each nonnegative integer m , there exists 
a positive constant C such that

|qn (x,r){ sc|x| m l  (n = 0 , l , 2 , . . . , j ) .
Also by the relation (5.2) , we have

||Ar (x) | £ Ljxj m 2 for m = 0 , 1 , 2 , . . .

Hence by (5.16) for n = j + 1 , we have
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Put 71 = -iff and x = -is as before, then we have 

{xmqn (x , r) |

^ |s |ItlLLo (l +C) [s | m  ̂+ |s |s {  ̂ by Lemma 3

= LLq | s | ~2 (1 + C + C2 J s J -In~1)

s: |x|_1LLof (M‘) {1 +C +C2f (M') } £ |x|_1 - C

Therefore xmqn (x , r) tends to 0 uniformly for X € Dr 
as x tends to infinity in S6M for all nonnegative 
integer m. (i.e. qn (x , r'} s 0 for all n = 0, 1 , 2 ,  ...). 
Hence we have

qr (x , X) e: 0

uniformly for 6 D as x tends to infinity in S c„.j- oM

5.4 Proof of Lemma 2.

Thus far we have shown that

(5.18) p (x , r) = qr (x , \) + $r (x,X)
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is a holomorphic solution of (3-6) with respect to
(x , X) € S.„ x D - In this section we shall prove that cM r
p(x , r) is actually independent of r , which implies
the uniqueness of the solution.

In order to prove the independence of p(x , r) from
r , let us consider p(x , r̂ ) , and p(x , r2) , which
are defined in S... x D and S ... x D , respect-oM^ r^ 0^2 r2

ively. Let M = maxtiv^ , M2) and r = minf^ , r2) .

Then S-M X Dr = (Sgj^ x Dr )̂ n Ŝ6M2 x Dr2  ̂ ' and

q (x, X) and q (x, X) are asymptotic to 0 uniformly
rl r2
for X € D as x tends to infinity in S.„ .r oM

Let u (x) = p(x , r^ - p (x , r2) . Then we have

du _ d , „ » _d_ _ / _ v
dx dx p(x ' 1} ~ dx p( ' 2) '

where

j 2^  p (x , r̂ )̂ = P2 + (or2 - ox) p (x , rx) - p (x , r^  ,

by (3.6)

Similarly

j 2
p (x , r2) = (#2 ®̂1  ̂̂  ̂  > r2  ̂ ^1P * *̂2 ̂ *

By (3.6), we have

(5.19) ^  = [(«2 - ct̂ ) - 51 (p(x , rx) +p(x , r2) )]u = J(x)u
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where

J(x) = »2 “ — g-ĵ fpCx , r1) + p(x , r2) } .

Thus

| J (x) + 2i | = |0 (x_1) + 0(x-1) {p(x , rx) +p(x , r2) | ^ Klxj-1

for x 6 SgM , where K is a positive constant.
Let x q be an arbitrary point in SgM . Then (5.19) 

has a solution of the form

(5.20) u(x) = u(x ) exp{f” J(Tl)d,Pl}O  X q  j

In order to have u (x) a: 0 as x tends to infinity in 

^ 6M' we mus*- ^ave u = 0 - Since xQ was chosen
arbitrarily, this implies that u(x) h 0 for 
(x , X) 6 SgM x Dr , i.e. p(x , rx) s p (x , r2) for 
(x , X) € S£M x . Therefore p(x, r) is actuallyOM J-
independent of r.

This completes the proof of Lemma 2.

6 . PROOF OF LEMMA 3.

This lemma is due to P. F. Hsieh and Y. Sibuya and
the complete proof is given in [3 and 4]. In this section 
we shall prove the lemma as it is applied to our case.

For a fixed point s in SgM and a fixed 9 such 
that | s 0 s n -
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let » ke the angle between the two straight lines

(6 .1) a = s + te10 0 £ t < a , f S 0 ^ r r _ 2

(6 .2) arg a = arg s

s + te

Figure 6.1

s + te

Figure 6.2
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Case I: When a ^ ^  (Figure 6.1).

Since a? ^ y  implies |ct| ^ ] s | , |<j]-p £ |sj p .

Also s - a = -te^® implies JeS CT| = e cos ® . There 
fore we have

jJarpi®s_<Tiia°i s m ‘pJ“ e-tcose at
= IsPP — i—cos 9

* Lo i « r p

where

Case II: When 0 £ & < ̂  (Figure 6.2).

i 0Let A be the intersection of a = s + te and 
the ray arg 0 = 0 + 2'. Let d^ = |0A| and d^ = jSAj 
Then

(ct|2 = d2 + (t - d2 )2 

Put t = n + d- where -d_ s y, < ® . Then we have
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rJS „ _ ..
J j a r P|.M ||da| = J.^td2 ^ 2) e-‘“ +d2 ) ^ e dti

(6.1)
-P/2

= e-d2 c°s 0J (a| + u2) e'B COS edt*

Put

/C ~ , x _ , 2/2 T cos 9 p , ,2 , 2. -y, cos 0,(6.2) G(x) = (d ̂ + t ) e (d^ + t ) e dy, .

For t i; 0 , y varies over the interval [ t , ®) .
Thus

- 0 /  _ P /,,2 . 2 2̂ ^ , ,2 . 2. 72 ( d ^  +  y, ) £  ( d ^  +  T  )

Hence

-xx ^ / x  ̂ t cos G P® -u cos 9 1(6.3) G(t) s e J e d* =
T

For t < 0 ,

(6.4) G(t) = — 2^ — 2 + cos ® 'G(t) - 1
d^ + t

Now, it can be shown that

<6-5) ,’3 ^ ~ 2'i * i t  for a11 T
+  t  .1

Since s € S fiM , d^ ^ M .

Hence
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I— I— I 1 1
!a| + T2 1 £ 2ai 2S

Thus if M. is large, by making 9Tp ~ a - cos 0  ̂P _L 2.+  t

we have

(6.6) ~  G (t) a |cos 0 G(t) - 1 .

Therefore, by (6.4) and (6 .6f we have

(6.7) { -  G(t) = £[G(t) - ] ^ c o s ,  g(t) - 1

= |coS 6 !g(t) - ^ - 0 ) ,

which implies

dT ~ 3F cos ® 9 1£ [ •  (G(T) - ji-;)] * 0 .

Integrating (6 .8) from -d2 to 0 , we obtain the 
following inequality

9 -̂ d9 cos 9 „
<6-9' Gt°> - S i " ?  a e tG(-a2> - -55TTJ ■

But by(6.3) »

G(T) s for t 2 0 • 

in particular

2G(0) £ cos 0
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Therefore by (6.9) we have

(6.3 0) G(-cU < 22 cos e

Using (6.1), (6.2), (6.10) and the fact that
d2 + d2 = j s |2 , we obtain

gJj°rP le55'0 ! laa| =G(-d2)-(d| + &\) - P/'2

where

<; |s[ p — ~ r ^ L Is ' ! cos 9 o 1

max . {cos~e}
lel s f " 2

This completes the proof of Lemma 3 .

7. ASYMPTOTIC SOLUTION OF x2y" + (x3 + X) y = 0 .

In this section, we shall state the second result 
of this paper. The proof will be given in the following 
sections.

Theorem 3. The second order linear differential 
equation (1.4) has a solution y(x , X) that satisfies 
the following:
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(i) y(x , X) _iŝ holomorphic with respect to 
(x , X) € S x D , where S is a sector in X-plane and 
D _is an open disc in plane defined bv:

S: =^ L + If * ar9 x * ^  ' |x| * M .

D: j X j < r , 0 < r < +«

(ii) y(x , X) and y'(x , X) admit respectively the
asymptotic representations:

(7.1) y (x , X) e: x 4 exp{^p x 2j- ll + ^  an x 2j-
n=l

(7.2) y' (x , X) e: ix 4 exp-j^p x 2} {l + £  gn x 2}
n=l

uniformly with respect to X € D as x tends to infinity 
in S , where all «n and Bn are polynomials in X
and xa = exp{a (ln.|x | + i arg x) ) for any constant a.

The quantities 6 , r and M are positive constants.

Remark 3; For the construction of the asymptotic 
representation of the solution y(x , X) of (1.4) as
x tends to infinity in a sector different from the 
sector S , let us change the independent variable x 
by
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Then equation (1.4) becomes

/-7 A2 d^y , -3i0,A3 , 3i0,.(7.3) x y|- + e (x + e X)y = 0 .
dx

Therefore, if we choose 0 so that e-319 = 1 , the 
fucntion y(x,e 3l9X) is a solution of (7.3). Hence if 
we put

2 K tta =K 3 (K = 0 , 1 , 2)
3ie ie

then yK (x , a) = y (x , e KX) = y(e Kx , X) are solu­
tions of (1.4) which admit the asymptotic representations 

±0KY(e x , X) as x tends to infinity in any closed 
sector contained in the sector SR , where is given
by

-2tt , 2 6  2Ktt „ ^ 4 tt 2Ktt 26- 3-  + -y - -3- £ arg x s y  - y -  - —  (K = 0 , 1 , 2)

and Y (x , )̂ is the right-hand member of (7.1).
That is

y Q(x , X) ̂ Y  (x , X) as x-»» in y  + y s a r g  x s ^ 1- ^
2Hi

y X(x , X) a: Y (e 3X , X) as x-*« in y + y s  arg x £ y - y

^  iy2 (x , X) 2iY(e x , X) as x-»® in -2rr + y  £ arg x £ - y  .

Remark 4 : In [1], the asymptotic solutions of
second order linear ordinary differential equations with 
polynomial coefficients were discussed. If (1.4) is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

2divided by x , it becomes

y" + (x + -~)y = 0 . 
x

Therefore in the neighborhood of x = ® , the coefficient
x + ~  can be approximated by the polynomial P (x) = x . 

x

For this reason, the procedure used in the proof of this 
theorem will be similar to the one used in [1].

8 . PROOF OF THEOREM 3: PART I .

8.1. Preliminary Transformations.

Let us write equation (1.4)as the following system 
of equations.

(8.1) I5 = A(x )Y.

where

and

Put

dx

= ry ^Ly' JY -y

0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

* = 5 2 . * - [ £ “ >

Then system (8.1) is reduced to

(S.2) | F =  {52 I An 5'"}° '
n=0

where

a = u A = r° °i a  = r 0 °i~ nJ ' 3 LO -1J ' 6 L-2X OJ
0 2 

*o L-2 0.

and A^ = A^ = A^ = A^ = Zero matrix .
Since the eigenvalues are 2i and -2i , in order to 
have the Jordan canonical form of Aq as the leading 
coefficient of (8 .2) let us put u  = Tw where

T  -  K  - 1 ]  •
Then we have

,a aw _ -2r“i ei"j(8 .5) a? ~ 5 U 2 »2_i w '

where

(8.4) ax (g) = 2i - + Xi §-6 ,

(8.5) *2 (S) = -2i - if“3 ~ Xi S"6 ,

(8 .6 ) 01 (§) = \  S"3 + Xi i~6 ,

(8.7) ?2 (§) = \  r 3 - xi r 6 ,
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Note that , a2 » and P2 are linear in 1 and
polynomials in § ^ , and we have

ai = 2i + o(§“3) , = 0 (§"3) ,
(8.8)

»2 = -2i + 0(5 3) , g2 = 0(§ 3) .

Now let us put the following expression in (8.3)

(8.9) w = [p (|)J e*5>{J5 T? Y(T|)dTl} .

Then we have the following relations:

(8.10) Y(§) = o1 + 8-jP ,

d
(8.11)

^  = §2 (P2 + ( 2̂ “ ® ! ^  ~ P]P2}

= 1 - Xi§ 4 - (4i§2 + 2 Xi§ 4)p - (j§ 1 + Xi|"4)p2

If we determine p(5) from nonlinear differential 
equation (8.11) and then y(§) by (8.10) , the quantity 
in (8.9) is a solution of (8.3) . Therefore

(8.12) Y = [J °] T [£] exp-fj1 T]2Y ( 7]> a 7)}

will give us a solution of (1.4) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.2. Formal Solution of Eg. (8.11)

Lemma 6. Tine nonlinear differential equation (8.11) 
has a_ unique formal solution

CO
(8.i3) $(§> = £  pn r n

n=l

where

P = 0  if n 4 0 (mod 3) n 1

P3n = 4 l2Xl P3(n-2) " 3 {n " 1) P3 (n - 1)

+ 2 I  P3j P3K + Xx I  P3j P3K }
j+k=n-l j +K=n-2

for n ̂ 3 , where the summations are over j 1 and
k ^ 1 such that j + k = n - 1 and j + k = n - 2 .

00
Proof: Let p = ^  Pn § n and substitute into

n=l

(8.11), then we obtain

,-n-l - njPn?
n=l
Z<- n)Pn 5‘

= | C 4 -(4i c2 + 2 U  r 4) X  Pn S'” ~ (2 5~1 + X i S'
n=l

?n o 2n=l

W

( I  Pn O '
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Equating the coefficients of terms with equal exponent, 
we have

0 = -4i P1 ,

0 = -4i P2 ,

0 = 2 -4 i P 3 '

-pi = -4 i p4 '

-2P, = -4i P - 1 7  P.P. .5 2 L  j k
j+k=2

,3p3 = - Xi - 4i P6 - i y  P. Pk .

-4P4 = -4i

j+k=3

P, - 2X1 PX - j  I  P j P ,  ,
j+k=4

-5PS = -41 P8 - 2X1 P2 - j I  Pj Pk - Xi I  P. Pk ,
j +k=5 j +k=2

-6p6 = -41 P9 - 2 X1 P3 - i y  P. Pk - XI y P. Pk F
j+k=6 j+k=3

-npn = -41 Pn+3 - 2 X 1 Pn_3 - i y Pj Pk - Xi y P..
j+k=n jtk=n-3

for n s 7 , where the summations are taken over j :> ] 
and k ^ 1 such that j + k = n and j + k = n - 3 .
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These relations determine P , (n i 1) , uniquely. 
Furthermore it can be shown that = 0 for all n
such that n ^ 3m (m = 1,2, ...). Thus we obtain the 
formal solution

8.3. Analyticity of a Solution of Eg. (8.11).

In order to find the analytic meaning of the formal

Lemma 7. There exists a unique solution p(?) of
(8 .11) that satisfies the following conditions:

(i) For each positive constant r , there exists 
a positive constnat Nr such that p(?) is holomorphic 
with respect to ( f , X) iji the domain determined by:

n

00

n=l

solution in (8.13), we need the following:

| arg (-4i ) + 3 arg 5 1 s: - 6 , j§| a Nr
(8.14)

(ii) p(.f) is asymptotic to the formal solution 
£(e) uniformly on each compact set in the 1-space as 
5 tends to infinity in the sector
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| arg (-4i) + 3 arg § j :£ 3tt/2 - 6 , where 6 .is a fixed 
sufficiently small positive number.

The proof of this lemma will be given in Section 10.

9. PROOF OF THEOREM 3: PART II

In this section we shall complete the proof of 
Theorem 3 by the use of Lemma 6 and Lemma 7.

Applying Lemma 7 using the fact that arg(-4i)
= - t t / 2  , we have a unique solution p(§) of equation
(8 .11) holomorphic with respect to (§ , A.) in the 
domain S' x D , where

s ': i§ i * M

D: | X | < r , 0 < r < c o

By (8.10), we have

y(s) = 2i - \ r 3 + xi r 6 + (j r 3 + xi r 6>p(§>

which is holomorphic with respect to (§ , X) € S ’ X D. 
Hence we have
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exp {|§ Tl2v(T))dTl}

(9.1) = exp[JST]2{2i - j  if3 + XiT)"6 + (j Tl"3 + XiTl“6)pCn) }dT| ]

=s exp[J§7j2{2i - j  if3 +Xi ff6 + (j if3 + Xi if6) £ (71) }d7] ]

uniformly with respect to X € D as §: tends to infinity
in S ' .  Inserting the series obtained by Lemma 6 into 
the expression in (9.1) and integrating, we obtain

expjj5 n2 Y (T]) dTlj-

f2i .3 1 , _ . 1-16X , --3 , 1 _-6 , )
- expl T  f "2 log 5 + 48“ ' L28 + * • * } •  ■ -

By (8.12), for § such that -j - y £ arg § £ ^  ,
we have

y(§ / 1) = { 1 + P(V } exp{J§ Tl2Y(7])d7l}
-V

S [1 + £(§) } exp{^ §3)- § 2

- exP{ r 3( ^ i  ^ r 3 .-..)}

- r 1/2 exp{f sn  • {1 ♦ I  ,n r 3n}.
n=l

where o>n (n 2t 1) are polynomials in x and the 
expression

00

n=l
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i s  o b ta in e d  fro m  ,

r, . A,„, f_-3/l - 16 x . . 1 . - 3 .  \1{1 + P(5) 3 exp(g ( Yq ~  x + Y28 § + ***;}

r. i _-3 3 + 8X _-6 . 71 + 224X .-9 . 1
= \ Ib ~ 32~ +--- 5T2  ̂ + " * J

-6
• { l  +  § 3 'r(§) +  §J— r2 (V +  - - • }

, 1 — 16 > . 1 _-3 .where r(V - T q ~ 1  +  128  ̂ + ••• -

2Thus, by (9.2) and x = | , we have the desired
asymptotic representation

-1/ 3/ 00 -3rV
y(x , X) a:x 4* exp{-^ x 2} {i + £  »n x 2} •

n=l

uniformly with respect to X € D as x tends to
infinity in S .

10. PROOF OF LEMMA 7

In this section we shall prove Lemma 7 in steps
similar to the ones in Section 5.

By Theorem 2, corresponding to the formal solution 
00

$(§) = ^  P^n I 3n of (8 .11) and to the secter
n=l

SQ: 3 ~ 3 * arg 1 * *3 ~ 3 ' !§| * 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

there exists a function $r (§) holomorphic with respect 
to (§, X) € SQ x Dr such that ^ ( 5) and d $r (§)/d§ 
admit the uniform asymptotic expansions

& (j) =. f  p 5-3n l l r ( 5>. , d £(»r lSJ “ Z, 3n 6 ' d§ ~ d§
n=l

for A. € Dr as § tends to infinity in .

Put p = q + £ (§) in (8.11). Then the differen­
tial equation (8 .11) is reduced to

( 1 0 . 1 )  d f  =  52 O r (S) +  ( §) q  +  ( § ) q 2 )

where

*r(5) = 2 5~3 " x± §~6 " (4i + 2XL r 6)^r (l)

/ 1 A ?  d  ^ r - ( S )- ( I 5 + U  5 6)&2 (5) ---

*r(!> = -(4i + 2Xi |-6) - (I-3 + 2Xi C_6)^r(f)

vr<5) = -(| ?'3 + xi r6) -
Notice that these three quantities are holomorphic in 

x Dr and

(10.2) **r (§) as 0
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(10.3) tr(§) = -4i + 0(1 3)

(10.4) vr (5) = 0(§"3)

as  ̂ tends to infinity in , uniformly for X € Dr .
The asymptotic relation in (10.2) is derived from the
fact that $r (§) is asymptotic to the formal solution 
of (8.11). In (10.3), let us put

<|fr(§) = -4i + 0r (I)

Then the relation (10.3) implies that

(10.5) 0r (§) = 0(§"3)

uniformly for X € Dr as 5 tends to infinity in .
Let

(10.6) q(§) = Tj2 {y. r ( Tl) +0r (T,)q(Ti) + vr (T)) q2 (T]) }

. exp{ (§3 - Tl3) j- dT)

where the path of integration is a straight line in 
of the form

i0o(10.7) T) = § + te 0 £ t < ®

where 0Q is a suitably determined constant so that the 
entire path (10.7) lies in the secter and
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expj^ (§^-T]3)^ converges uniformly as T] tends to
infinity along the line.

Differentiating both sides of (10.6), we obtain

f| = S2{ Ur (§) +<5r(S)q(0 + Vr (?)q2 (|)} - 4i §2q(§)

= §2 {ur (§) + <rr (§)q(§) + vr (§)q2 U ) }

Therefore a solution of the integral equation (10.6) 
satisfies the differential equation (10.1). The validity 
of the equivalence of (10.5) and (10.6) depends on the 
path of integration. In order to determine such a path 
that maintains the validity, let us put

(10.8) s = s3

(10.9) c = Tl3

Then (10.6) becomes
g

(10.10) q(?) = - ^  J. {tir (H) + 0r (T))q(T|) + Vr (Tl)q2 (Tl) } eS~°

i 0Let c = s + te be the path of integration, where 
0 £ t < » and 0 is appropriately chosen constant so 
that lim jes-CT| exists and the corresponding path

CT-*»
(10.7) is contained entirely in of §-plane .

dCT .
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This can be achieved by choosing 0 such that

«TT jy
~2 < 0 < 2 ' since Re(s - a) = -t cos e . The follow­
ing figures show that this is possible.

2 rrarg 5 =

arg

\ arg

Figure 10.1
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4 6

-3narg g = g-plane

arg a = ± t t arg g = 0
6M

3tt

^  Figure 10.2 
Figure 10.1 shows the sector Sn in §-plane and

Figure 10.2 shows the corresponding sector in g-plane.
Complete detail of construction of the sector in
Figure 10.2 can be found in [1] .

By Lemma 3, there exist positive constants M and
L such that o

( 1 0 . 11 )  £  | ® r p | e s _ " | | d < j |  5  L 0 l s f P
for each s in the sector S^M in g-plane given by 

S6M : 6 “ 2̂ S arg c * ~ 6 ' |a| * M .
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where Lq is a positive constant independent of p and 
the path of integration is the straight line 
c = s + te10 ( 0 £ t < ® and J e1 < j  - 6) . Let L
be a sufficiently large positive constant such that

(10.12) (§) | * L|l|"2

(10.13) |0r (§) | £ L | § | ”3

(10.14) | vr (?) J * L j l f 3

in the domain S ... x . Such a constant L is6M r
assignable by (10.2), (10.3) and (10.4).

Now, in order to find a solution q(§) of (10.10), 
let us define the successive approximations in S^M by,

qo (S- - 0
(10.15)

s n (?) = i r  + 0r (T1)V i (T1) + vr (-n)ĉ 2_ ^ )  }es_

(n a 1)

We shall show that the sequence {q (5)} converges 
uniformly in S^M x Dr and the limit is asymptotic to 
0 uniformly for X € Dr as § tends to infinity in 
SgM - Note that <^(5) holomorphic in S^M x Dr for
all n.

Let f (m) = Then by Lemma 5, there exists a
constant K such that
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(10.16) -|lo Lf (M) {1 + K + f(M)K2} s K

(10.17) 2LoLf (M) ^  + 2f (M)K  ̂ ^ 2

Applying the inequalities (10.11), (10.12), (10.13),
(10.14), (10.16) and (10.17) in a similar fashion used 
in Section 5.2, it can be shown that

|qn (C> I * K U T 1

lqn+l(5> " qn (5> I * ^

in the domain SgM x Dr . Let

q (5 . X) = lim qn (§) -n-+oo

Then qr (I / 1) is, as the uniform limit of holomorphic
functions, holomorphic with respect to (§ , X) 6 S^M x Dr
and is a solution of the integral equation (1 0.6 ). 

Furthermore it can be shown that

(10.18) qr (I , 1) — 0

uniformly with respect to € Dr as § tends to infinity
in S M. We shall show (10.18) by induction. Supposeo M
qn (§) a:0 (n = 0 , 1 , 2 , ... , j) uniformly for X € Dr
as | tends to infinity in sgM * Then

lim §mqn U) = 0  (n = 0 , 1 , 2 , ... , j)
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4 9

for all nonnegative integer m , where ti . limit is 
taken as § tends to infinity in S5M * Therefore for 
each nonnegative integer m , there exists a positive 
constant C such that

|qn (§H * C J § (“m“3 (n = 0 , 1 , 2  j) .

Also by relation (10.2), we have

|tfcr (§) I * L|§rm_6 for m = 0 , 1 , 2 .......

Hence by (10.15) for n = j + 1 , we have

s ■H1- JtfLiTirI”’6+Lii>!'3cii'rm'3+i-iT>r3c2hr2in'6}
X |es-cr | |dcr[ ,

By (10.8) and (10.9), we have |s| = y |||3 and

M  = f h l 3 - Thus 

U mqn U>i 

^ {jl L(fiC7l) 3 IeS-Cr! 1 «3cr I

-m -6  - 2  m -9

+  J t  “ ( f  !a >) 3 le S ‘ a H ^ I  +  3 les - CT| | a 4
m —m—6 — m—6 —2m—9* K!isi)3{L Lo(lisi)3 + l v CIm ) 3 + L Loc2(lis03 }
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= i L L0{(||s|)-2 + c(f|s|)-2 + C2(||s|)'% ' 3}

- H ! i * i ) " 1 “ o(ii'0"1{1 + c + c2( | | . i f - 1}

1 1-1-3
4

where the last inequality is obtained by Lemma 5, and 
this implies that

lim | Imqn (§) | = 0 
5** 00

uniformly for X € Dr , for all nonnegative integer m . 
Therefore by induction qn (§) — 0 as | tends to infinity 

, uniformly with respect to ^ € D . Hence,
CM  J-

as the uniform limit of the sequence (qn (?)} »
qr (§/ X) is asymptotic to 0 uniformly for € Dr as
| tends to infinity in S$M ♦

Thus far, we have shown that

P r (S * X) 2 qr U  , *) + ^ r (l * V

is a solution of (8.11) holomorphic with respect to
(§ , X) € SgM x Dr , such that Pr (§ , X) at(|) , the
formal solution of (8.11) as g tends to infinity in
S e„ . To complete the proof of Lemma 7, we must show 0M
that pr (g , X) is actually independent of r , which
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im p l ie s  th e  u n iq u e n e s s  o f  th e  s o lu t io n .

Let us consider two solutions p_ (§ , X) and
rl

P (5# M  which are defined in S£JUI x andr i

zs D , respectively. Let M = max (M, , M_) r ± z

and r = min(r, , r~) . Then

S6M X Dr = (S6Ml x V  n (S6M2 X Dr2>

and q (§ , X) and q (§ , *) are asymptotic to 0 
rl 2

uniformly for X 6 Dr as § tends to infinity in S6M‘

Let u(§) = p^ (§ , 1) - p_ (§ , X) . Then we have 
rl 2

d p  d Pj ri r„du _ ___1 _______ 2
d§ _ d? d§

where
d P,

= p2 + {a2 - o^) Pr (? , X) - Pr (5 , X)

(j = 1 , 2)

Hence we have

(10.19) || = [(«2 “ orl) " Pl{pr (5' X) + Pr (5 ' X> } ] U1 2

5 J(§ , X)u
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where

J (I / X) = &2 ~ ~ P]_{pr (§ * M  + Pr ( § » X) j-

Thus

|J(§ , X) + 4± |

= |o(§"3) + o ( T 3) (Pr (S * X) + pr (S , X) } |
rl 2

* K u r 3

for £ 6 S c.. , where K is a positive constant.6M
Let § be an arbitrary point in SgM . Then

(10.19) has a solution of the form

u(§.X) = u ( § o ,X) exp{J^ J (T) , X) dTl} .

In order to have u(§ , \) as 0 as § tends to infinity
in S„. , we must have u (E , X) = 0 . Since § was 6M o o
chosen arbitrarily, this implies that u (§ , X) = 0 for
(| , X) 6 S6M x Dr , that is Pr^ U  # X) s pr (I » X) in
S ew x D . Therefore p„(|, X) is actually independent 6M r r
of r .

This completes the proof of Lemma 7.
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