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1. INTRODUCTION

Consider the second order linear ordinary differen-—

tial equation with polynomial coefficients of the form:
2
(1.1) y" - P(x)y = O (= <)
dx

where P (x) is the polynomial in x :

_ .m m-1 ...
(1.2) P(x) = x + a;x + + a 1% + a -

It was shown by P. F. Hsieh and Y. Sibuya [1], in
1966, that since the only singular point of (l1.1) is at
X = o, a solution of (1.1) is an entire function of
(x, Ay s enn s am) if its initial values are entire func-
tions of (@), ..., am) . It was also shown that since
X = » 1is an irregular singular point, a solution of
(1.1) can be determined by prescribing asymptotic condi-
tions as x tends to infinity in a sector S, if s
and the asymptotic conditions are suitably given.

In this paper, we shall consider the following two

second order linear differential equations with poly-

nomial coefficients:

(1.3) x2y" + (x> + Ay = 0

(1.4) X%y" + (x> + A)y = O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where )\ 1is a complex parameter. Notice that x = 0
is a regular singular point and x = = is an irregular
singular point of both (1.3) and (1.4), while x = « is
the only singular point of (1.1).

The result for (1.3) is stated in §{2 and proved in
§3 ~ 6, while the result for (1.4) is stated in §7 and

proved in §8 ~ 10.
!

Remark 1: Replacement of u by x y 1in

Bessel's equation

(1.5) x%u" + xu' + (x> - VV)u =0
leads to the equation
(1.6) x2y" + (x2 + % - vz)y =0 .

Therefore (1.3) is eqguivalent to Bessel's equation with
1
v=i(%-x)é .
A Bessel function Jv(x) is a solution of (1.5)

which is known to have the following asymptotic expan-

sion [2]:

(- 1) "a,g (V) o (1A, (v
3,00 = (& >{osgz =0 sin ¢ § gt
s=0

as x tends to infinity in |arg x| s m - &, uniformly

with respectto v in |v| <r, (0 <r < +=), where

L
ST
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_avi -1 @y - 3% --- (a2 - (25 - 1)2)
A (V) - 3
S s! 8
1
%
and the branch of x is determined by:
1
’6 1 1.
x © = exp{ 5 1n x| + 5 i arg x} .
1
Z

Therefore a solution of (1.3) has the form y = x Jv(x).

2. ASYMPTOTIC SOLUTION OF x°y" + (x2 + 1)y = O

As the first result of this paper, we shall prove

the following theorem:

Theorem 1l: The second order linear differential

equation (1.3) has a solution vy(x, )) that satisfies

the following conditions:

(i) y(x, ) is holomorphic with respect to

(x, ) €S xD, where S is a sector in x-plane and

D is an open disc in \A-plane defined by:

S: -2n+ &6sargx<muw -6, |x|]=2M.

D: JA] €xr, O0<r <+

(ii) y(x,A) and y'(x, L) admit respectively the

asymptotic representations:

(2.1) y(x, ) = eix{ 1+ Ei o, x—n}
n=1

. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(2.2) v'(x, A) = ie':Lx {1 + i Bn xbn}
n=1

uniformly with respect to X € D, as x tends to

infinity in S, where &6, r and M are positive con-

stants and o and Bh are polynomials in A .

Remark 2: If the asymptotic representations of
y(x, 1) and y'(x, 1)) in a sector different from S
is desired, it can be constructed as follows:

Let us change the independent variable x by

A 1 .
x = e+ % . Then equation (1.3) becomes
A2 d2 ~2i0 A2 2ie

(2.3) X X e (x° + e x)y =0 .

A2

ax

. -2i9 _
Therefore, i1f we choose 8 so that e =1,

the function y(Q, ezlex) is a solution of (2.3). Hence

21e,)

if we put 8 = and Yl(x' A) = y(&,e
Y(elﬁx. A) , then Yl(x , A) 1is a solution of (1.3)
which admits the asymptotic representation Y(~-x, A) as

x tends to infinity in any closed sector which is con-

tained in the sector S', where S' is defined by:
S': -n + &6 sargx <2m -5%, |x] =M

and Y(x, 2) is the right-hand member of (2.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. PROOF OF THEGREM 1: PART I.

3.1. Preliminary Transformations.

Let us write (1.3) as the following system of

equations
ay _
where
=[ Y ]
¥ [ y'J
and

AGx) =[] o]+ (3 k2 =a+ Ax ¥ .

Since the eigenvalues of A, are i and -i, in

order to have the Jordan canonical form of Ao as the

leading term in A(x) , let us put Y = TW, where

_ 1 i
T = i1 -
Then (3.1) becomes
aw _
(3.2) ax B(x)wW,
where
2x2 2x2
(3.3) B(x) = .
- A ~i(1 + 25
2x 2x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Wwe shall now derive a nonlinear first order differen-

tial eguation associated with the system (3.2).

Put
Bx) = oq (%) By (x)
B, (%)  a, (x)
where
al(x) = i + %:Lx—2
o, (x) = -i - Dix7?
By () = = %72
By (x) = = 3x72
The gquantities @y 5 &y 0 By and B, are polynomials
in x ! and we have @y = i+ 0(x~2) , @, = -i + 0(x—2) .

By = 0(x 3 and B, = 0(x_2) as x tends to infinity,
uniformly with respect to A such that |r]| < = .

Now let us put the following expression into system

(3.2) :

(3.4) v = (L) el viman}

Then we obtain the following relations:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(3.5) Y(x) = oq(x) + B (x)p(x)

L= gy (1) + ey (x) = o () Ipx) - 8 (x)p? (x)

=% 210 +25)p 0 + 25 %) .

2x 2x 2x2

If we determine p(x) from the nonlinear differen-
tial equation (3.6) and then y(x) by (3.5), the quantity

(3.4) is a solution of (3.2). Therefore
ol .

(3.7) v = 7(3) exp {; v(man}

will give us a solution of (1.3)

3.2 Formal Solution of (3.6)

Lemma 1. The nonlinear first order differential

equation
(3.6) %3=—'% - 2i (1 +-L2>p(x) + =2 p? (x)
2x 2x 2x

has a unigue formal solution

(3.8) By = ) px™

- = A 2
where Pl o, P 4 i, P3 =2 and

(3.9) P

!
|
oL,
Iy
-
o
|
=
vl
=)
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where the sum is taken over j,k >1 and j +k =n -2

.

Proof: Let p = Z P x 7 and substitute into

(3.6). Then we obtain

i(- n)an—n -1

(-}

.—_2—‘}35—21(1 +—%) z P x4 42 Z 6 k)x—n.

2x n=1

where \/:Pj Py is taken over j,k 21 and j +k =n.

Equating the coefficients of terms with equal exponent,

we have
0 =-2i Pl
N S
--P1 = > 21 P2
-2P2 = =21 P3 - A1 Pl
-nP_ = =21 P - A1 P -l--l— z P. P
1 n-1 2 J 7k

for n =2 3 .

These relations determine P_) (n =2 1) unigquely, namely

= =-L' _l
Pl 0, P2 2 1. P3—4 and
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_ =i _ N A
Ph =72 {(n )Py ~ M Py, *+3 Z Py Pk}

v
£
.

for n

By Lemma 1 and (3.4), we obtain a formal solution

wl(x, A) of (3.2):

i A -2 2. -3 1 2, =4 L ...
wl(x,).)—11—4x + 4 ix +8(37L+K)x + }
2 2
. A. -1 A . -3 -4 }
X - = .o
exp{lx 51X + 571X +——x32 +.

3.3 Analvticitv of a solution of (3,6)

In order to find the analytic meaning of the formal

solution ﬁ(x) in (3.8), we need the following:

Lemma 2: There exists a unique solution p(x)

of Eg. (3.6) that satisfies the following conditions:

i) For each positive constant r, there exists

a positive constant Nr such that p(x) is holomorphic

with respect to (x, A) in the domain determined by:

larg(2i) + arg x| 53—2"' -8 L, x|l >N,

(3.10)

Al <r, O0<r<e
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ii) p(x) is asymptotic to the formal solution

ﬁ(x) uniformly on each compact set in the A-space

as x tends to infinity in the sector -27 + § =< arg x

<n -6, where & is a fixed sufficiently small

positive number.

The proof of this lemma will be provided in §5.
4. PROOF OF THEOREM 1: PART II

In this section we shall complete the proof of
Theorem 1 by the use of Lemma 1 and Lermma 2.

Applying Lemma 2, using the fact that arg 2i = 121

we have a unique solution p(x) of Eg. (3.6) holomorphic

with respect to (x, A) in the domain S x D, where

S: =-2m + 6 s argx snw + &, [x] =2 M
D: Al €r O0<r<e.
By Eq. (3.5), we have

v (x) =i+%‘ix_2 - A2 p(x)

2

which is holomorphic with respect to (x, 1) € S x D .

Hence we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

X
exp{] v(man}

(4.1) exp[ [ {1 + 2 1772 - 21%p(n } an]

X
e [“fo + 3577 - 372 80} an]

W

uniformly with respect to X € D as x tends to infinity
in S . Inserting the series obtained by Lemma 1 into

the expression in (4.1) and integrating, we obtain
2 2

exp{]" v(man}
1 3

= exp {ix —%i x +i— ix™ +%x-4 + e-- },
By (3.7) we have
y(x, 2= {1 + ip(x)} exp{‘}rxy('n)dn}
= {1 R I {CL e G P Ler+a? -3 e}
eix{l + i anx—n}
n=1

uniformly with respect to A € D as x tends to infinity

in S, where @, are polynomials of 2 .
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12

5. PROOF OF LEMMA 2: PART I

In this section we shall prove Lemma 2 in four
steps:

i) Construct a function ﬁr(x, A) holomorphic
with respect to (x, *) € S x D and asymptotic to the
formal solution ﬁ(x) of Eg. (3.6) uniformly with
respect to A €D as x -+ ® in S .

ii) Find a function qr(x, A) holomorphic with
respect to (x, A) € S x D such that qr(x, A)
+ @r(x, X} is a solution of Eg. (3.6), by constructing
an integral egquation.

iii) Show that qr(x, 1) = 0 uniformly with respect
to A €D as x tends to infinity in S .

iv) Show that qr(x, A) is actually independent
of r . Let

P(x) =q (x,n) +8 (x,2)

Then p(x) 1is the desired solution of Eg. (3.6).

5.1 Construction of ﬁr(x).

In order to construct Qr(x), the following

theorem is applied:

Theorem 2: (Borel-Ritt Theorem) [5]. Corresponding

to every formal power series

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

and to everv sector S: 8; S arg x < 6, (8 » 6,: con-

stants), there exists a function f£f(x) holomorphic in

S for |x]| 2 x (x, an arbitrary constant) such that

fo)
L--]

f(x) = Z Z-\.nx-n
=0

as x tends to infinity in S .

We shall apply this theorem with the formal solution

®

B(x) = Z an'n of Eq. (3.6). Notice that all coeffi-
n=1

cients P are independent of x and polynomials in A.

Therefore for each positive constant r, Pn are

holomorphic with respect to A such that |[A] <=z .

Let & be a sufficiently small positive number and Q

be an arbitrary fixed positive number. Let us define a

sector 86 in x-plane by:
. 31
larg(2i) + arg x| =5~ -5, |x]=za .

The reason for choosing such a sector will be explained
in Section 5.2. Let D. be a domain in A-plane such

that |a]l <r (0 <r << .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now, Borel-Ritt theorem asserts that corresponding

@
to ﬁ(x) = Sﬁ P x ® and to the domain S, x D_, there
L n 8 r
n=1

exists a function ﬁr(x) so that ﬁr(x) is holomorphic

with respect to (x, 1) € S, X Dr and Qr (x) and

8
dﬁr(x) /dx admit the uniform asymptotic expansions

® ab_(x) A
A - -n r .. 4P (x)
Pr(x) - zpnx ’ dx - odx
n=1

for A €D as x tend to infinity in the sector S

r §°
5.2. Construction of an Integral Equation.
Put p =q + /lgr(x) in Eg. (3.6). Then the
differential equation (3.6) is reduced to
aq _ 2
(5.1) ax _u.r(x) + Wr(X)q + vr(X)q
where
- d ﬁ (x)
P S e B s Y L L
2x ' 2x 2x

b (%) = -2if1 + -—"-—2-) + 2B ()
Yo 2x X

vr(X) = —=5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Notice that these three quantities are holomorphic in

86 e Dr ’ and we have

(5.2) gr(x) >~ 0
(5.3) b (x) = —2i+6(x )
(5.4) v (x) = 6(x 2)

uniformly for A € D, as x tends to infinity in Sg -
The asymptotic relation (5.2) is derived from the fact
that the asymptotic expansion of @r(x) is a formal

solution of the differential equation (3.6). Let us put
y.(x) = =21 + ¢r(x) .

Then the relation (5.3) implies that

-2
(5.5) 6. (x) = 6(x )
uniformly for A € D, as x tends to infinity in 56 .
Let
X
(5.6) q(x) = | (u (W + o (Ma(n)

+ v (M (W) exp{~2i(x - lan,
where the path of integration is a straight line, to be
determined in Sg» given by

(5.7) MT=x + telg, g:constant, 0 < t € o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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such that along this path exp{-2i(x-17)}] converges as
M+ « . Then by differentiating both sides of (5.6),

we obtain

o = 2 &wZixfz{“r(“) +o (Malm + v (wa(m 1’ Ty

+ e—ZiX{pr(X) + ¢r (x)q{X) + Vr (X)qz (X)}ezix

= -2i g(x) + g.r(x) + ¢>r(x)q(x) + \ar(x)qz(x)
= p (x) + {21 + ¢r(X)}q(x) + vr(X)q2 (x)
= a0+ ¢ (0ax) + v (g (x)

Therefore a solution of the integral equation (5.6)
satisfies the differential eguation (5.1). A question
arises here. 1Is it possible to have a straight line path
in S6 , from any point x in Sy to infinity so that
exp{-2i(x -7} converges as T + » on this line?

The answer is affirmative. Suppose we chose a path so
that Re(iT) tends to negative infinity as 1 tends to
infinity on this path, then exp{-2i(x-71] tends to O.

Since
Re(iT) = -t sin @

on the path (5.7), this can be accomplished by choosing

6@ such that g-s 9 < -‘% . It is readily seen from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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17

the figure below that such a straight line path is con-

tained entirely in S

6 >

Figure 5.1

Thus it is established that a solution cf integral

equation (5.

by choosing

no=x +

Now we

solution of

6) satisfies the differential equation (5.1)

the path of integration to be

tel?, ’26'56511—'%, 0Ost<eo

and x € S& .

shall prove the existence of a holomorphic

the integral equation (5.6) by the method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of successive approximations. There are several key
inequalities used in the process. Let us now state
these inequalities. Proofs will be provided in the

later sections.

Lemma 3: [3 and 4] Let positive constants & and

o be given, where & 1is sufficiently small, while »p

is arbitrary. Then there exist positive constants M

5p
and LO such that we have

S - - -
(5.8) 2 117%1e%7% Jas] = 1y]s| ™
for all s in the sector, S6M defined by
6p
(5.9) |ar xlsél—é x| =2 M
- g 2 ’ 59'

where Lo is independent of p, and the path of

integration is the straight line

c=s + tele, 0 st << e % £ g <7 -

14

N|on

Lerma 4: The relations (5.2), (5.5) and (5.4)

imply that there exists a positive constant L such that

(5.10) b | s T |x|72
(5.11) lo_(x)| = |x| 7t
(5.12) Ivr(x)l <L le—l

R o0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

in the domain Sg X D_ .

r
1
)
Lemma 5: Let f(m) =m for m > 0 . Then
since lim f(m) = 0, there exist positive constants

m-o

K and M' such that

(5.13) -% L LEM') {1 +K+ £(M')K?) = K
1 . ' 1
(5.14) > LoLf(M ) {1 + 2£§(M")K} = 5

Now let us choose a positive constant M such that
(5.15) M = max{M', M} where o =J%

and let us define the successive approximations in S

M

by :

qo(x) =0
(5.16)

= 2
qy(x) = fx (hpe () + 8. (May (W + v (Ma,_; (W]
x exp{=2i(x - T)}4an

for n=1,2, ... .

Then it can be shown, by induction, with the aid of

Lemma 3, 4 and 5, that

(517 lag@ | =K x|, gy ®) - g0 | =5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

in the domain S6M X Dr . As a matter of fact, suppose
that (5.17) holds for n =3 -1, then for n = j
let x = -is and 1 = -ic in (5.16). By the use of

Lemma 3,4 and 5, we have

. . 2 s-c
< [ a0 I+le, (0 1= lay_y (D 1+lv, (0 |2y (0 ]3[57° | lao]
S p— - -— -— = -
s [l Tk a0l TR 02 16570 Ao

Lfslcl—z{l +K+K2lc’_l}°les—c| ldo‘l

©

S S
= £(1+R) | o] %% |ao|+1&2 [ o] 2[5 Jao]

-2, .2 -3
< L(I+K)L |s| © + IK L,ls|

= LLols!-z(l +K+K2|s['1)

< [x['lLLof(M'){l+K+K2f(M')} < lxl”l- K .

ALE
PR TL 4
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S
. 2 2 -
< e (M gy ay (] + v, e (- (0 [1]e* ™ jao]

S 4 .-l 1 -1 1 -
= [wpn™t L ) o3 la5( ~ay 1 (W 3]e*7 | Jao|

® 27 )
<L Pinp e ja. (0 ra._, (0 11157 ja
IR D= °!
L S -1 -1 s-s
S;J Pl T +2k|n] ) |7 7| |de]
L -1 =2
< ; (L |s] + 2KL_[s| )
LL )
< —2 [£(M') + 2KE“(M'))
2]
1 : :
= 3 LL_£(M') {1 + 2KE(M') ]
L1 _ 1
< 23 2 2j+1

Therefore the sequence {qn(x)} converges uniform-
ly in SGM X Dr .
Put

2 (x. 2 = lim q () .

Then q, (x , A) 1is a holomorphic solution of the integral

equation (5.6) such that !qr(x S S K]xl_l in Sgm X D.-
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5.3 Asymptotic Property of qr(x, A) .
Now, we shall prove, by induction, that
qr(x s Ay =0

uniformly for A € Dr as x tends to infinity in S sm-
Suppose qn(x, r) 20 (n=0,1,2, ...,3)
uniformly for 2 € D. as x tends to infinity in S sm-

Then

lim x™ g (x,r) =0 for m=0,1,2, ... and
b & n

n=0,1,2,...,3 .

Therefore for each nonnegative integer m, there exists

a positive constant C such that

la x, o)} sclx|™" @m=0,1,2,....39).

Also by the relation (5.2), we have
~-m-2
lw (x) | = Lix]| for m=0,1,2, 0. .

Hence by (5.16) for n = 3j + 1, we have
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mix
J

- <]

|x"q, (x, ) | = Ix]

L _ o _ _ -2i (x-7)
L1 ™2 srpay e g ™ e p gy mle? g 20 e T an)

Put M = -ig and x = -is as before, then we have

lxmqn(x , )|

A

S S
s 1™ le1™ 2w +0) 157 ao| + [ 1?0237 |ao |}

< _|s|mLLo(l +C) [s[-m—z + {s}m'LLocz|s]_2m“31 by Lemma 3

1

-2 2 -m-
LLolsl (L+c+c”s]|

s Ix|hten gy (1+c+ctemn ) s x| - c

Therefore xmqn(x, r) tends to 0 wuniformly for A € Dr

as x tends to infinity in Ssm for all nonnegative

integer m. (i.e. qn(x, ryi= 0 for all n=0,1,2, ...).

Hence we have
uniformly for A € D_ as x tends to infinity in S sm

5.4 Proof of Lemma 2.

Thus far we have shown that

(5.18) P, =q (x,2) +B (x, 1)
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is a holomorphic solution of (3.6) with respect to

(x, 2) €58 % Dr . In this secticn we shall prove that

&M
p(x , r) 1is actually independent of r, which implies
the uniqueness of thes solution.

In order to prove the independence of p(x, r) from

r, let us consider p(x, rl) R and p(x, r2) Y wnich

are cefined in S6M X Dr and S6M X Dr ’ respect—~
1 1 2 2

i 1 - —

ively. Let M max(M1 R M2) and r mln(rl , r2) .

Then S,y X D = (S5 X Drl) N (Sgqy xD_ ), and

2 2 2

%, {x,1) and q, (x,2) are asymptotic to 0 uniformly
-1 2

for L €D as x tends to infinity in S6M -

Let u({x) = p(x, rl) - p(x, r2) . Then we have
a d

G ax Plx. T - g Px.Ty)

where

a - a2 ;
ax P(x, 1) = B, +(a;~ay)p(x, ry) -BP (%, ry) .

by (3.6) .

Similarly
L b(x,r,) = 8, + (0, -0ay)P(x,1,) - 8;0°(x, 1)
ax P T} = Byt lep maylpix. 5 1P .yl -
By (3.6), we have

(5019) g—: = [(az ‘G’l) - Bl{p(x ’ rl) +P(x ’ rz) }}-‘ = J(x)u
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where
J(x) = ay -y -8By {P(x,xry) +px,r,)]} .
Thus
. -1 -1 -1
lg(x) +2i] = [o(x"7) + O0(x ) {p(x, ry) +p(x, r,}| =K|x]|
for x € S where K 1s a positive constant.

M’
Let =x be an arbitrary point in Sem - Then (5.19)

has a solution of the form

(5.20) u(x) = u(xo) exp{j:oJ(ﬂ)dn}

In order to have u(x) = 0 as x tends to infinity in
SGM' we must have u(xo) = 0 . Since X, was chosen
arbitrarily, this implies that u(x) = 0 for

(x, 1) €58 i.e. plx,x;) =p(x, r,) for

oM X D

(x,A) €58 x D_ . Therefore p(x, r) 1is actually

&M
independent of r.

This completes the proof of Lemma 2.
6. PROOF OF LEMMA 3.

This lemma is due to P. F. Hsieh and Y. Sibuya and
the complete proof is given in [3 and 4]. 1In this section
we shall prove the lemma as it is applied to our case.

For a fixed point s in Sem and a fixed 6 such
that 2s0sa-3,
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let o Dbe the angle between the two straigﬁt lines

8

0
0st<eo, %SGS“'E

(6.1) g =s + te1

(6.2) arg o = arg s

o ¥ g = s-*-tele

Figure 6.1

o
A c = s-*-’t:e:Le

Fiqure 6.2
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i

Case I: When ¢« = > (Figure 6.1).

since « = 5 implies |o| = |s|, |o}|7P s |s|7P .

i8

Also s - g = -te implies le%79] = e tCOS® | rhere-
fore we have

rS - s-o -o(® -~tcose

Jalol™e1e® 0 jac] s |s|7?f e at
- “p 1
!Si cos §
s Lois| P
where
_ 1
Lc> = max {cos 5 }

T 6

lel=3-2

Case II: When O < ¢ < % (Figure 6.2).

Let A Dbe the intersection of ¢ = s + te:Le and
the ray arg o =6 +3 . Let d, = |oa| and d, = |[saj.
Then

2 2 2
o] = a7 + (£ - &)

Put t=u,+d2 where ‘d2$|=i<°°- Then we have
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-p
S, -9y _s-~0 _re 2. 2 /2—(g+d2)cose
[Qe1™P1e ™ an] = [y @l +u® e a

(6.1)

- e-dz cos ej‘—dz(di+“2) o~k COS edp

Put

-9,

0/ . 5
(6.2) G(m) = (a3 +.2)%eT 0S8 (a2 4 .2) TeTe OSSOy,

For 1 = 0, g varies over the interval [71, =) .

Thus
(@ + 2% (a3 + N
Hence
(6.3) G(r) s e" °°° eJ‘:’ eTH oS g, < cols g
For v <0 ,
(6.4) F G(r) = =25 G(r) + cose -G(r) - 1
dl-FT

Now, it can be shown that

(6.5) =" = 33 for all T .
dl-FT 1
Hence
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| < 35 = 3%

d1+72 2<il 2M
Thus if M, is large, by making —T0— > - l‘-cos <]

Gl d2+ 2 2
T
1

we have
(6.6) £ 6(1) 22cos8 G(r) - 1 .

Therefore, by (6.4) and (6.6) we have

4 ~ 4 2 1
(6.7) Epn G(7) = dT[G(’T) ~ cos 3 ] = 5 cos 8 G(t) -1
1 2
= = { -
5 cos 8{G(T) papa 9} ’

which implies

3 ~%}cos e

a 2
(6.8) ile (6(n - =2=1]=0.
Integrating (6.8) from —d2 to 0, we obtain the
following inequality
6 o 2 %dzcose 5>
(6.9 G(0) - 55 g = ¢© (G(-dy) - cos 87 -
1 2

G{7) for v+ =20,

cos 8 cos 8§

in particular

G(0) =

cos @

e el
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Therefore by (6.9) we have

2
cos €

(6.30) G(—dz) <

Using (6.1), (6.2), (6.10) and the fact that

di + dg = !sfz, we obtain
o)
s -7
- - . a2 2 2
fmlol *1e°7%llao| = c(-4,) " (a] + &)
-p 2 -
= [s[ cos @ = Lo‘s’ g
where
2 3
Lo = max 5 {cos ef °
lel=5-3
2 2

This completes the proof of Lemma 3 .

2,, 3 —_
7. ASYMPTOTIC SOLUTION OF x y" + (x™ + A)y = 0 .

In this section, we shall state the second result
of this paper. The proof will be given in the following
sections.

Theorem 3. The second order linear differential

equation (1.4) has a solution y(x, 1) that satisfies

the following:
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(i) y(x, 1) 1is holomorphic with respect to

.

(x,2) € SsxD, where S 1is a sector in X-plane and

D is an open disc in A-plane defined bv:

=27 , 26 4o _ 26
S: —3- + 5 S arg x £ 3 5 x| =z M.
D: [ <r, O0<r<+=

(ii) y(x,1) and y'(x, 1) admit respectively the

asyvmptotic representations:

2, A
4 2i 2\ f 2
(7.1) y(x, A) =x expi3 X } {1 + z a, X }
n=1

L

3n

%)

Y . ¥ @ -
(7.2) y'(x, A) = ix 4 exp-‘L% X 2} {1 + z Bn x
n=1

uniformly with respect to A € D as x tends to infinity

in s, where all a and 8, are polynomials in A

and x° = expfa (n]x| + i arg x)} for any constant a.

The quantities 6, r and M are positive constants.

Remark 3: For the construction of the asymptotic
representation of the solution y(x, 1) of (1l.4) as
x tends to infinity in a sector different from the
sector S, let us change the independent variable x

by

J.ex
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Then equation (1.4) becomes

2 . .

(7.3) QZ d—A% + e-316($\<3 + e3lel)y =0 .

dx
Therefore, if we choose @ so that e =3° =1 , the
fucntion y.(?{ R e3lek) is a solution of (7.3). Hence if
we put

_ 2Km _

GK - 3 (K - 0 » l ’ 2) '
3ig ig

then yK(x , A) = y(é\{ , € Kx) = y(e Ky , A\) are solu-

tions of (1.4) which admit the asymptotic representations
ig
K

Y (e X, A) as x tends to infinity in any closed

sector contained in the sector Sk » where Sk is given

by
=27 28 _ 2Knm 4m _ 2Km _ 28 -

and Y(x, A) is the right-hand member of (7.1).

That is
yo(x » A) =Y(x, )) as x-o in 3 + 3 Sarg x< 3 3
_zli
vl 3 ., =Am, 28 2n_28
yl(x,l)_Y(e X,1) as x== in 3 +Ssarg x5 -5
4rn

i
yz(x.l)aY(e3x,l) as x-» in -2n+2—36—5arg xs--23—6 .

Remark 4: In [1], the asymptotic solutions of
second order linear ordinary differential equations with

polynomial coefficients were discussed. If (1.4) is
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divided by x2, it becomes

y" + (X+-%)y=0 .
X
Therefore in the neighborhood 0of x = =, the coefficient

x + —% can be approximated by the polynomial P(x) = x .
x

For this reason, the procedure used in the proof of this

theorem will be similar to the one used in [1].

8. PROOF OF THEOREM 3: PART I

8.1. Preliminary Transformations.

Let us write eqguation (1.4)as the following system

of equations.

(8.1) & - amy,
where

o=
and
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X = 52, Y = [é 2] U .

Then system (8.1) is reduced to

(8.2) = {¢° }_A s}u

n=0

where
_roz2 _i0 o _ T o0 o
Ao = [ -2 o]' a3 = | g -1] Bs = [-2x 0
and Al = A2 = A4 = A5 = Zero matrix .

Since the eigenvalues are 2i and -2i, in orxrder to
have the Jordan canonical form of A, as the leading

coefficient of (8.2) let us put ¢y = Tw where

1 17

T=15 -1l -
Then we have
(8.3) gy 2,‘ 1 511
where
(8.4 @y (8) = 2i - 3870 + i g
(8.5) @y (8) = -2i - 3673 - i g7°
(8.6) B (8) =3 E° + g
(8.7) 3,0 =2 €3 -1 g°,
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Note that @y s Oy, sl and 32 are linear in A and

g”l, and we have

polynomials in

2i +0(€7°), B, =o0(8

“1
(8.8)
~2i + 070, B, = 057 .

%o

Now let us put the following expression in (8.3)

= 3
(8.9) w= [ ) exel)s 7 viman} .

Then we have the following relations:

=2 2
(_di,%= S {62 + (Q’z-o’l)P - Blp }

If we determine p(Eg)

equation (8.11) and then vy (§)

in (8.9) is a solution of (8.3). Therefore

(8.12) Y = [é g T [;] exP{fg nzv(ﬂ)dﬂ}

will give us a solution of (1.4) .
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- 1, .. -4
L=l 567 - (2ig? +22ig 4)p-—(%€ Liaie™hp

from nonlinear differential

35

2

by (8.10) , the gquantity



8.2. Formal Solution of Eq.

36

(8.11)

Lemma 6. The nonlinear

differential equation (8.11)

has a unique formal solution

<

(8.13) oy =) p g™
n=1

where

p, =0 if n 3 0 (mod 3)

=1 oy -3(n -
Pin =7 1M P3(n-2) ~3(@-DP3p g,
1 .
* 3 Z P3y Pgg + M ) P35 P3x }
j+k=n-1 j+K=n-2
for n = 3, where the summations are over j =2 1 and
k21 such that j +k=n-1 and j+k=n-2.
(-]
Proof: Let p = E: Pn §—n and substitute into
n=1

(8.11), then we obtain

[--]

~-n-1
Z(- mP €
n=1
<

=1
2
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Equating the coefficients of terms with equal exponent,

we have
0 = —41 Pl o
= =41
0 -l P2 [ 4

3 4
- = =47 ._l. v
2P2 43 P5 > /—PJPk .
j+k=2"
-3p, = -3i - 4i P, - % z: P. P
®3 6 ~ 2 j *x -
j+k=3
-4p, = -4i P, - 2)i P, - % E: P. P
4 =7 1 T2 5 ‘k ¢
jt+k=
= A3 - . _ 1 i
5Py = -4i Pg 223 P, > 2 pj P AL 2 Pj P .
§+k=5 j+k=2
1 .
- = - - - = — AX
6P, 4i Pg - 2Ai Py - 3 P Py Py Py .
' j+k=6 j+k=3
-nP_ = -4i P - 2Aip -1 P. P, - 2 E: P. P
n n+3 -3 " 2 j “k 1 i "k -
j+k=n 3+k=n-3

for n 2 7, where the summations are taken over j =21

and k21 such that j+k=n and j+k=n- 3.
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These relations determine P (n 2 1) , uniquely.
Furthermore it can be shown that P_ =0 for all n

such that n # 3m (m=1,2, ...). Thus we obtain the

formal solution

= -3n

9(5) - ZPBn g
n=1
~i -3 3+8\ _-6  TL+224% . _-9 ...
=8 85 ~T33 § t+t+7T 515, 5% .

8.3. Analyticity of a Solution of Eg. (8.11).

In order to find the analytic meaning of the formal

solution 9(5; in (8.13), we need the following:

Lemma 7. There exists a unigue solution p(E) of

(8.11) that satisfies the following conditions:

(i) For each positive constant r, there exists

a positive constnat Nr such that p(Z) 1is holomorphic

with respect to (&, X)) in the domain determined by:

|arg(-4i) + 3 arg gl = -323 -6, gl = N_

(8.14)

A}l < 0<r<o

(ii) p(g) is asymptotic to the formal solution

9(5) uniformly on each compact set in the A-space as

€ tends to infinity in the sector
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larg(—4i) + 3 arg g} s.3n/2 - 86, where & is a fixed

sufficiently small positive number.

The proof of this lemma will be given in Section 10.
9. PROOF OF THEOREM 3: PART II

In this section we shall complete the proof of
Theorem 3 by the use of Lemma 6 and Lemma 7.

Applying Lemma 7 using the fact that arg(-4i)
= -n/2, we have a unigque solution p(g) of equation
(8.11) holomorphic with respect to (E, A) in the

domain S*' x D, where

21

S': %sarggsT—g,igle

Wwlo»

D: |Al<r, 0<r <o

By (8.10), we have

-3 -3

Y(E) =20 -3 €2+ €0+ (3 £ +0 £ %p(a)

which is holomorphic with respect to (E, A) € S' x D.

Hence we have
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exp{_.rg v ('-I)dﬂ}

(9.1) = exp[fg’nz{zi —%— T]—3 + ).i‘l’]-_6 + (12" 'ﬂ._3 + 'li'n_-e)P(Tl) laq ]
= exp[ [*1P{2i -2 13 i P+ G 1 v OB (m dan |

uniformly with respect to ) € D as & tends to infinity
in S' . Inserting the series obtained by Lemma € into

the expression in (9.1) and integrating, we obtain

exp{fg ﬂz Y(ﬂ)dn}

2i 3_1 1-16) , -3 1 -6
EeXP{Tg"i'bgg*Tls * 128 © +} -
By (8.12), for E such that % —'% < arg § < %? - %,

we have

y(€. 0 = 1+p(} exp{[* Pv(man}

%

= (1 +8(9) exp(& - &

% : °° .
L (R PP

n=1

where a (n 2 1) are polynomials in ) and the

expression

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is obtained from,

A -3/1-16\ . 1 _-3
=V — —
{1 +P(8)] exp{’s‘ ( e L*i5g £t )}
_f, i -3 3+8\ -6, 71 +224)% _~9 }
=1l-g8% -T33 & t+t—/=13 8§  *t---

YV = = =27 4 g PP
where 7(§ 35 & + 355 § + .

Thus, by (9.2) and x = §2 , we have the desired

asymptotic representation

@®

-1 3 3n
yocon = e epfZE a2l {10 T ax 2}

n=1

uniformly with respect to ) € D as x tends to

infinity in S .

10. PROOF OF LEMMA 7

In this section we shall prove Lemma 7 in steps

similar to the ones in Section 5.

By Theorem 2, corresponding to the formal solution

-} 8

ﬁ(g) = P3n §-3n of (8.11) and to the secter
n=1
. $ _ =& 2n _ 8
Sqf 3-3Sarg§sF -3, |gl=a.
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there exists a function Qr(g) holomorphic with respect

to (§,1) €S, x D_ such that ﬁr(g) and dﬁr(g)/dg

Q
admit the uniform asymptotic expansions

= a®_(9 8z

~ -3n r . 8 P(&)

ﬁr(g) - z P3n § ’ dg = dg&
=1

for A €D as § tends to infinity in S

r Q °

Put p =g + ﬁr(g) in (8.11). Then the differen-

tial equation (8.11) is reduced to

(10.1) 9T = Pl () + v (Da + v (8)d?)
where
() =3 €7 - i £7° - (41 + 221 £ 88 _(¥)
a B (e

- (387 w2 B -

-3

(0 = —(a1 + 208 £70) - (872 + i £ (D)

-( % g3 + i ;'6) ]

vr(E)

Notice that these three quantities are holomorphic in
SQ X Dr and

(10.2) p.(5) =0
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(10.3) t.(8) = -ai + 0(g77)

(10.4) v () = 0(z™3)

as E tends to infinity in S uniformly for A € D_.

Q'
The asymptotic relation in (10.2) 1is derived from the
fact that ﬁr(g) is asymptotic to the formal solution

of (8.11). In (10.3), let us put
(8 = —4i + g (2) .

Then the relation (10.3) implies that

(10.5) 8. (5) = 0(g73

uniformly for A €D as § tends to infinity in S

r Q °

Let
5 2 2,07
(10.6) (&) = [ w2 {u (M +o (Ma(m +v (ma® (M}

cexp{ T2 (-1} an

where the path of integration is a straight line in SQ

of the form
ieo
(10.7) N =E+ te 0<st<oeo
where 8o is a suitably determined constant so that the

entire path (10.7) lies in the secter SQ and
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exp{ -gl (§3-n3)} converges uniformly as 1 tends to
infinity along the line.

Differentiating both sides of (10.6), we obtain

92 = ?{ (@ +0,(9a(® +v (B (8)} - 4i §°q(D)

2f , 2 1
= §7{k (B) ¥, (B)a(8) +v (B)g™(8) ; .

Therefore a solution of the integral equation (10.6)
satisfies the differential equation (10.1). The validity
of the equivalence of (10.5) and (10.6) depends on the
path of integration. In order to determine such a path

that maintains the wvalidity, let us put

(10.8) s = 3L ¢
(10.9) o="2L o .

Then (10.6) becomes

S
(10.10) q(® =-2% [_ {e, (m +o (Mam +v (ma® (M} 5% .

Let o =s + te>?

be the path of integration, where
0 <t <o and 8 is appropriately chosen constant so

that 1lim les-cl exists and the corresponding path
T

(10.7) is contained entirely in SQ of E-plane .
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This can be achieved by choosing @ such that

~1r

> <8< %-, since Re(s - g} = -t cos 6 . The follow—

ing figures show that this is possible.

arg € = 0

Figure 10.1
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Figure 10.2

Figure 10.1 shows the sector SQ in §g-plane and
Figure 10.2 shows the corresponding sector in g¢-plane.
Complete detail of construction of the sector in
Figure 10.2 can be found in [1]}.

By Lemma 3, there exist positive constants M and

Lo such that
(10.11) fz o] P1e®° | ldo] = L,o]sl-'p

for each s 1in the sector S sm in ¢-plane given by

3 3
S. ..z & - S5 s arg o s ?? -5, lo] 2 M .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

where L, is a positive constant independent of p and

the path of integration is the straight line

c=s +te’® (0<t<e ana lel < % )

be a sufficiently large positive constant such that

. Let L

(10.12) lu (8] < Llg|™
(10.13) lg_(g)| = Lg|™
(10.14) v (8) ] = Ljg|™

in the domain S6M X Dr . Such a constant L is

assignable by (10.2), (10.3) and (10.4).
Now, in order to find a solution g(g) of (10.10),

let us define the successive approximations in Sgm DY

L]
(o

q, (5
(10.15)

a (8 = 7% ji{ur(n) + o (Mg _ (M + v (g2 (M Je> %o

(n =2 1)
We shall show that the sequence [qn(g)} converges

uniformly in S6M x D and the limit is asymptotic to

0 uniformly for A € D. as § tends to infinity in

‘SGM‘ Note that qn(g) is holomorphic in S6M X Dr for
all n.
Let f(m) = %; Then by Lemma 5, there exists a

constant K such that
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(10.16) 2L LEMD {1 + K + £(M)K%) s K
1 1
(10.17) ELOLE(M) {1 + 2E(M)K]} = 5

Applying the inequalities (10.11), (10.12), (10.13),
(10.14), (10.16) and (10.17) in a similar fashion used

in Section 5.2, it can be shown that

la, () ] = xlg]™

|an41 (&) —ap (8] < ;%

in the domain SGM X Dr . Let

qr(gu A) = lim qn(g) .
1%
Then q_(§, 1) is, as the uniform limit of holomorphic
functions, holomorphic with respect to (g, A) € SGM X Dr
and is a solution of the integral equation (10.6).

Furthermore it can be shown that
(10.18) qr(g ,A) =0

uniformly with respect to A € D_ as £ tends to infinity

in SGM’ We shall show (10.18) by induction. Suppose

q,(8) =0 (n=0,1,2,...,3) uniformly for 1 € D_

as E tends to infinity in S Then

&M °

lim §mqn(§) =0 (n=0,1,2,...,73)
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for all nonnegative integer m, where t: . limit is

taken as £ tends to infinity in S Therefore for

&M °©

each nonnegative integer m, there exists a positive

constant C such that
~-m-3 .
la, ()] = clg| m (n=0,1,2,...,3) .
Also by relation (10.2), we have
-m~6

e (8) | = L]g] for m=0,1,2, ... .

Hence by (10.15) for n=3j + 1, we have

lehq_ (8)]

m
s L [min™ 8 v n i ~3c )™ 3 s 32 | 0|26y
x €579 ]as] _ .

By (10.8) and (10.9), we have |s]| = %1§[3 and

o] =‘%[nl3 . Thus

l§7a, () |
-m-6
< 187 {2 ndte ® 157 jao
—-m-6 -2m-9
s 2 1e(d 161) 3 15 lao] + [1e?(31e]) 3 |57 |do}

m -6 —m-6 —2m-9
< ;ll(%ls[y{n Lo(%lsl) 3 41 LOC(%ISI) 3 s+ Locz(%lsl) 3 }
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1 (21a)2 x el31s) 2 s 2(2a)
=3 {Ge) veisl) s GIs)

}

-3 Gle)” = nGlel) fre s 2G) )

1 ,.,-3
z gl ~c
where the last inequality is obtained by Lemma 5, and
this implies that

. m i
lim  |§ q,(8)] =0

g

EGS&M

uniformly for A € D ., for all nonnegative integer m .
Therefore by induction qn(g) = 0 as £ tends to infinity
in S,,, uniformly with respect to A e D_ . Hence,

as the uniform limit of the sequence (a,(8) 1,

a,.(§., 1) is asymptotic to O uniformly for A e D as

E tends to infinity in S6M .

Thus far, we have shown that

P (E,0) =q. (5,0 +B (5,0

is a solution of (8.11) holomorphic with respect to
(g, ) € Sem X D_. such that pr(g, A) = Q(g), the
formal solution of (8.11]) as £ tends to infinity in
S6M . To complete the proof of Lemma 7, we must show
that pr(g, A) is actually independent of r, which
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implies the uniqueness of the solution.

Let us consider two solutions prl(§, A) and

a
SSM X Drl an

F 1

r (e, A) which are defined in
2

S&MZ X Dr ’ respectively. Let M = max(Ml, Mz)
2

and r = min(rl, r2) . Then

S x D = (S

oM r sMy x D

) N (s x D_ )
1 oM, Xy

and gq_ (§,1) and qr2(§. A) are asymptotic to O
1l 4

uniformly for i € D as § tends to infinity in S sM°

Let u(g) = prl(g, A) - prz(g, 1) . Then we have

dpr dPr

du _ 1 2
ag ~ " dg dg
where
d Pr. >
—ag-l = B, * (az-al)Prj(§. A - By prj(E, 1)
(3 =1, 2)

Hence we have

(10.19) %% = [(az-al)"Bl{Prl(§. A) + Pr2(§. l)}] u

J(§: l)u

m

1
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where
_ ]
J(E,N) = op-ay - sl{prl(g, Mo+ e (5.0}

Thus

35, ) + 4,

= Jote™3) + o(g™3) (p. (E. 0 +p_ (E.N)]]
rl rz

-3
< K|g|
for £ € Ssm where K 1is a positive constant.
Let & _ be an arbitrary point in S Then

o s§M °

(10.19) has a solution of the form

a(g, ) =u(g, . n exp{[} a(n, nan} .
(o]

In order to have u(g, A) =20 as E tends to infinity

. u - .
in SGM' we must have_ (go, 2) 0 . Since go was

chosen arbitrarily, this implies that u(g, 1) = 0 for

E,2) € S,, xD., thatis prl(g. A) = prz(g. ) in
S&M X Dr . Therefore pr(g, A) 1is actually independent
of r .

This completes the proof of Lemma 7.
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